ON NON-HOLOMORPHIC FUNCTIONAL CALCULUS
FOR COMMUTING OPERATORS

SEBASTIAN SANDBERG

ABSTRACT. We provide a general scheme to extend Taylor’s holo-
morphic functional calculus for several commuting operators to
classes of non-holomorphic functions. These classes of functions
will depend on the growth of the operator valued forms that define
the resolvent cohomology class. The proofs are based on a gener-
alisation of the so-called resolvent identity to several commuting
operators. We give a concrete interpretation of the general result
in the case when the spectrum is contained in a convex set in C™.

1. INTRODUCTION

Let X,Y be two Banach spaces. We denote by L(X,Y’) the Banach
space of all continuous linear operators from X to Y and we let L(X) =
L(X, X). We denote by e the identity operator of L(X). For a subset
A C L(X) we let A” denote the bicommutant, that is the Banach
algebra of all operators in L(X) which commute with every operator
b € L(X) such that ab = ba for all a € A.

Suppose that a € L(X). The spectrum of a is then defined as
o(a) ={z € C: z — ais invertible},

where z — a is the operator ze — a. If f is a holomorphic function in
a neighbourhood of o(a) then one can define the operator f(a) by the
integral

1
(1.1) @)= [ F)(z—a)dz,

271—7/ 9D
where D is an appropriate neighbourhood of o(a). This expression
defines a continuous algebra homomorphism

f = fla): O(o(a)) = (a)",

such that 1(a) = e and z(a) = a, called the Riesz functional calculus.
We want to extend this algebra homomorphism to functions not nec-
essarily holomorphic in a neighbourhood of the spectrum. In order to
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do this, we define

-l
(1.2) ~9 /af (z—a) dz
for all f € S,, where S, is defined by
S, = {f € CH(C) : Wfll, = Hgf(z) A(z — a)fldzHoc < oo} .

It is evident that f(a) is a bounded linear operator on X which com-
mutes with each operator that commutes with a, that is f(a) € (a)”.
By Stokes theorem the definition of f(a) only depends on the behaviour
of f near o(a). Suppose that D is an open set such that o(a) C D and
that f € O(D). Then if ¢ € C!(D) is equal to 1 in a neighbourhood
of o(a), we have that ¢f € S, and ¢f(a) defined by (1.2) equals f(a)
defined by (1.1).

We now prove the basic theorem of this non-holomorphic functional
calculus, that is it is an algebra homomorphism and the spectral map-
ping theorem holds.

Theorem 1.1. (Dynkin) The mapping
f fla):S, = (a)"

where a € L(X), is a continuous algebra homomorphism that continu-
ously extends the holomorphic functional calculus. Moreover, if f € S,

then o(f(a)) = f(o(a)).

Proof. The map f — f(a) is obviously linear and continuous. We have
the so-called resolvent identity,

(1.3) (w—2)(z—a) ' (w—a)'=(z—a ' (w—a)
where z,w € C. The multiplicative property then follows,

fla)g(a) = A(z—a) 'dz Adg(w) A (w—a) 'dw

; Az = a)"tdz A dg(w) A (w — 2) " dw
’ —w) tdz A Og(w) A (w — a) tdw
- f%' Z 9(2)Af(2) A (2 — a) dz
~52 [ F)a(0) A (w0 = ) = Fofa).

by Fubini-Tonelli’s theorem.

Suppose that D is an open neighbourhood of o(a) and that f, €
O(D) is a sequence such that f, — 0 uniformly on compacts. Then if
¢ € C!(D) is a function equal to 1 in a neighbourhood of o(a) we have
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that || f,¢||, = 0. Thus the mapping f +— f(a) continuously extends
the holomorphic functional calculus.

If w¢ f(o(a)) and ¢ € C!(C) is equal to 1 in an appropriate neigh-
bourhood of g(o(a)), then
¢
w— f
and hence w — f(a) is invertible and thus w ¢ o(f(a)). Therefore we

have the inclusion o(f(a)) C f(o(a)). Suppose that w € f(o(a)) and
assume that w = 0. Then 0 = f(() for some ( € o(a). Let

€ S,,

9(z) = Zf(Z)C
Then
fla) = QLm (z—)0g(2) A (z —a) 'dz
= (¢ g [0 A a) e
1 5 1y
o Z(Z*a,) g(2) N (z —a)” dz.

The last integral equals f((), which is 0, and hence 0 € o(f(a)) since
otherwise ¢ — a would be invertible. Therefore f(o(a)) C o(f(a)), and
hence the theorem is proved. O

Furthermore, we have a rule of composition for this functional cal-
culus.

Theorem 1.2. (Rule of composition) If g € S, and f is a holo-
morphic function in a neighbourhood of o(a), then ¢ (f o g) € S, and
flg(a)) = ¢ (fog)(a), if p € CHC) is equal to 1 in a neighbourhood
of o(a).

Proof. Suppose that 1 € C!(C) is equal to 1 in a neighbourhood of
o(g(a)). There is a function ¢ € C!(C) such that ¢ is equal to 1 in a
neighbourhood of o(a) and

¢

w—yg

h = €S,

for each fixed w € supp ‘31/)‘ The function ¢(f o g) is in S, since

d(p(fog) ¢ af dg
s 9% T
We have that
1

f(g(a)) = f(w)outp(w) A (w — g(a))'dw

2mi Jw



— (2;72)2/ /f(w)awlb(w) Adw A B,h(z) A (2 —a) 'dz

1 ~ ~ é(z)dw .
— W/Zaz .Lf(w)aww(w)/\m/\(za) dz
1 _
= _% . az (¢f © Q) A (Z - a)ildz = ¢(f © Q)(a)a
and hence the theorem is proved. ]

For further results regarding this functional calculus, see Dynkin [6].
Now to the notion of spectrum of a commuting tuple of operators.

Suppose that a = (ay,...,a,) € L(X)" is a commuting tuple of oper-
ators, that is a;,a; = a;a; for all 7 and j. Denote by

A=) (A
the exterior algebra of C" over C. If s1,---, s, is a basis of C" then A

has the basis
sp=1, sr=sy, N---Ns;, T ={i, - iy},

where iy < --- < i, and 1 < p < n, and we denote A = A(s) in this
case. We let K,(a, X) be the Koszul complex induced by a,

s Ky (@, X) S Ko, X) 2 Ky (0, X) =

where
K,(a,X)=A(s,X) =X ®c AP(s)
and
P
Op(xsy) = 2mi Z(—l)k”aikmsil Ao NS N NS
k=1

If Ki(a,X) is exact then a is called non-singular, otherwise singular.
Then the spectrum is defined as

o(a) ={z € C": z — a is singular} .
One also defines the split spectrum as
sp(a) ={z € C" : K.(z — a, X) is not split},

where split means that for every integer p there are operators h and
k such that e = 0,.1h + kd,. If X is a Hilbert space or n = 1 then
sp(a) = o(a). In general we have that o(a) C sp(a), but not the reverse
inclusion, see Miiller |11].

We will consider operators parametrized by a variable z, such as
2z — z—a. In that case the boundary map 6, depends on z and we will
henceforth suppress the index p and write 9, as 6,_, for every p. We
also let s; = dz;.
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Now suppose that T € L(X,Y) has closed range and let k(T") be the
norm of the inverse of T considered as a map from X/KerT to ImT.
The next lemma is Lemma 2.1.3 of |7], and it implies that if ay is a
non-singular tuple then a is non-singular if ||ag — a/| is small enough.

Lemma 1.3. Suppose that X,Y, 7 are Banach spaces, oy € L(X,Y),
Bo € L(Y, Z), Im By closed and Ker 3y = Im «, that is

X 2y o

is exact. Let r be a number such that r > max{k(ag),k(fo)}. If « €
L(X,Y), ﬂ € L(K Z); Ima C Kerﬂ and ||G/7 O/OH ) ||6*50|| < 1/6T
then Im o = Ker 8 and k(a) < 4r.

Hence o(a) is closed. Furthermore, the spectrum has the projection
property, see Theorem 2.5.4 of |7].

Theorem 1.4. Ifa € L(X)" and a’ = (a,a,41) € L(X)" are com-
muting and m : C**1 — C" is defined by w(2, zp41) = 2 then w(o(a')) =
o(a).

It follows that
o(a) C o(ay) X -+ x o(ay)

and hence o(a) is bounded. Thus o(a) is a compact subset of C".
Conversely, any compact set K in C" can arise as the spectrum of a
commuting tuple of operators. This one sees by letting the operators
ax to be multiplication by z; on the Banach space C(K) of continuous
functions on K C C".

The next theorem says that pointwise exactness is equivalent to con-
tinuous exactness, see Corollary 2.1.4 of [7].

Theorem 1.5. Suppose that X,Y, 7 are Banach spaces and that €2
15 a paracompact topological space. Furthermore suppose that a €

C(L(X,Y)) and € C(Q, L(Y, Z)) such that Im $(X) is closed and
Ker B(A) = Ima(A) for all A € Q. Then

Ker (C(Q,Y) iC(Q,Z)) = Im (C(Q,X) i>C(Q,Y)) .

Moreover for each point A € Q and vector © € Kera(X) there is a

function f € C(, X) with af =0 and f(N\) = x.

Thus the complex
K‘(a’a C((Cn \ O'(Cl), X))

is exact. The next theorem is more complicated to prove, see Taylor
[14], Theorem 2.16 and Eschmeier and Putinar |7], Section 6.4.
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Theorem 1.6. Suppose that U is an open subset of C", Y, are Banach
spaces, a, € O (U, L(Y,,Y,_1)) and that

---—))/'er]M)}/'pL(z))}/'p,]—)---

18 exact for all z € U. Then the complex
S g COO(UJ Y;H-l) m) COO(UJ Y;l) % COO(U= Ypfl) —

15 exact.

Hence the complex
K.(a,C¥(C" \ o(a), X))
is exact.

This notion of joint spectrum for a commuting tuple of operator was
introduced by Taylor, [13|, in 1970. Furthermore, he proved the holo-
morphic functional calculus and the spectral mapping theorem for this
spectrum in [14]. His first proof of the holomorphic functional calcu-
lus was based on the Cauchy-Weil integral. Using homological algebra
he generalized the construction to not necessarily commuting tuples
of operators in [16]. See Kisil and Ramirez de Arellano |9] for more
recent developments of non-commuting functional calculus. In [1, 2]
Andersson proved the holomorphic functional calculus for commuting
operators using Cauchy-Fantappie-Leray formulas.

The purpose of this paper is to study generalisations of Theorem 1.1
to the case of several commuting operators. In [5] and [3] results of this
kind are obtained in the case when the spectrum is contained in R",
or more generally, in a totally real submanifold C*. Our main results
are contained in Section 3. The basic tool in the proof of these results
is a generalisation of the resolvent identity (1.3) to several commuting
operators, this is proved Section 2. In order to explain the ideas of the
proof in Section 3 we apply the resolvent identity to give a simple proof
of the multiplicative property for Taylor’s holomorphic functional cal-
culus. Our construction of the holomorphic functional calculus follows
the ideas in [1, 2| and in Section 2 we recollect the basic ideas.

Finally T would like to thank my supervisor Mats Andersson for
valuable discussions about the results of this paper.

2. HOLOMORPHIC FUNCTIONAL CALCULUS

Remember that X is a Banach space, a € L(X)" is a tuple of com-
muting operators on X, and z € C” is a variable. Remember also the
fact that if the complex K,(z — a, X) is exact for every z in an open
set U then there is a smooth solution u in U to the equation d,_,u = f
if f is a closed and smooth X-valued form in U.



We now construct the resolvent on C" \ o(a). We have that

_ ] 0 B _
0oal Y frdzy = —2mi Y (2 — ak)a—ﬁdzl =—00.0 Y frda,
k k.l k
and therefore §,_,0 = —06,_, for 1-forms and hence for all forms since

8,_, and O are anti-derivations. Suppose that K.(z — a,X) is exact
and € X. Then we can define a sequence u; in C* \ o(a) by

(2.1) O, g1 =T, 0, Uiy = Ou,

since 0 and 4, , anti-commute. If this sequence starts with z = 0 then
there is a form w,, such that u, = dw,, this follows from the fact that
we successively can find w; such that

(22) w1 = 0, 6zfawi+1 = 511)7 — U;.

Thus if one has two sequences u; and u} as in (2.1) then the difference
u, —u,, is exact. Hence u, defines a Dolbeault cohomology class w, .z
of bidegree (n,n — 1), which is called the resolvent cohomology class.

Suppose we have two cohomology classes, w,_,r and w,_px, where
z,w € C", a,b € L(X)", corresponding to sequences u; and v;, respec-
tively. Then one defines the X-valued cohomology class w,_, A wy,_pT
as the class of ¢y, where ¢; solve

(2.3) 1 =0, 0, quw bCiy1 = 0¢ +v; — u;.

To see that this really is a well defined cohomology class, let u}, v; and

)

c; be other choices of sequences. Let w}' and w} be the sequences given
by (2.2) for the sequences u; — u; and v; — v} respectively. Then we
have that

o — i +w —wi=0
and
! v U _ 9 ! v u
Oz—aw—b (Ci+1 — Gy T Wigy — wi+1) =0 (¢ — ¢ +w —wy').

Hence, by (2.2) again, there exists a sequence wf such that ¢, — ¢}, =
c
ows,,.
Now suppose that we instead have operator valued forms, u;, such
that

(24) (SZ,(LU1 =€, 6zfaui+1 = (;9u,;,

so that u, represents the operator valued cohomology class w, ,. Then
we have that w, ,Aw,_px is the class of u, Av,, where v; is an X-valued
sequence defining w,,_,r. This follows from the fact

0o (U1 Avp) = Un, 0 q (Uig1 Avy) = 0 (u; Avy)

and the following proposition.
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Proposition 2.1. If v; is a sequence defining w,,_pxr and

6z7af1 = Up, 6zfafi+1 = 5f1:

then f, represents w, o, A Wy_pT.

Proof. Let ¢; be any sequence that defines w,_, A wy,_px, so that ¢;
satisfies (2.3). Denote by c?’l the component of ¢; which is of degree k
in dz and degree [ in dw. We have that 52,ac§?’i = 0, so there is a form
f such that c?’] =0, of. This gives

0,1
627(1,,11171)612 = 6z7a,1u7b (Ci —C - 61ufbf) )

0,i :
and hence we can assume that the component ¢;” vanishes. We have
that

1n _ i+1ln 3 in
0z-aCp1 = Un, 6Z*acn+i+] = acn+i7

and therefore there is a form w,, such that
fn = oy’ + 0wy, = 0.
Since ¢y, = 3" the proposition is proved. O
In one variable there is only one possible representative for w, ,x,
a€ L(X),
1

Wy g = 2—7”(2 —a) 'dzz,

and we have that w, , is operator valued. The key part of the proof
of the holomorphic functional calculus in one variable is the resolvent
identity (1.3), which we can reformulate as

Weag NWy—qt Wy—aNWyyy +Wy—z Nw,_q =0.

We will now generalize this equality to several commuting operators.
Let A = {(z,w) € C* : 2 = w} be the diagonal in what follows.

Lemma 2.2. For every x € X, we have the equality

(2.5) Wya AWy +Wya N Wy T + Wy AN w, g =0,
on ((C*\o(a)) xC"NC" x (C"\ o(a))) \ A.

Proof. Define the sequence my by

1 olr—wl (20— w)
(2.6) my = A (a S ) .

(2mi)* |2 —w]? |z — w|’
The equalities,
1

(27) 6zfa,1ufaml = o .. 2
27i |z — w]

6zfa,1ufaa |Z - w‘Q = 17

k
1 0]z —w| -
(28) 5zfa,w7amk+l - (27{'7,)k (a 2 > - amk’
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for all & < n, and my = 0 for all k¥ > n, holds on C*" \ A. Let u;

be a sequence as in (2.1) that defines w, ,z. Define u; and u? by

u} = miu; and u? = wiu;, where m(z,w) = z and 7y (2, w) = w are the

projections. Let ¢; be a sequence that satisfies the equalities
(2.9) 1 =0, 0 qw aCii1=0c+ui—u.

Using the equalities (2.7), (2.8) and (2.9) (for [ > n), we get that

—3 Z my N C = (Sz,a’w,a Z myg VAN C; — 5 Z my N C;

k+1=2n k+1=2n+1 k+1=2n
2n 2n—1

= E 6zfa,11)7am2n+lfl ANep — E a7”271,7l A ¢
l=n+1 l=n

n
+ E my A (66271,719 - 6zfa,1117a62n+17k)
k=1

= —5mn N ¢, + Ccop + My N (“711 — 11,2) .

n

Thus

(2.10) -0 Z My A ¢ = Cop + U2 A My +my, Aul
k+1=2n

outside the diagonal. We have that the component of m,, without dw
and dw represents w, ,, and that the component of m, without dz
or dz repesents w,, ,. Since ¢y, represents w, , A w, .z, the lemma
follows from (2.10). O

Choose representatives W, _,&, Wy_qr and w,_, A Wy,_ox for w,_,z,
Wy o and w, 4 Awy 4 respectively on (C" \ o(a)) x C"NC" x (C*\
o(a)). Let @, , = my. Then (2.5) says that the form defined on
((C"\o(a)) x C*'NC" x (C" \o(a))) \ A

(2.11) Wyg N Wy + Woypg N Dy g+ Wy N Wy

is exact. We want this expression to be an exact current over A as well.
Suppose that (2.11) holds on (C* \ o(a)) x C* N C" x (C* \ o(a)). We
have that [A] = 0w, ., where [A] denotes the current of integration
over [A]. If we apply 0 to (2.11), interpreted as a current, we get

0= *awfa A [A] + [A] A @zfa = [A] A (@zfa o awfa) .

Hence i* (0, 4 — Wy o) = 0, where i is the function defined by i(7) =
(1,7). The next theorem gives the desired equality in the case where
we have i*W,_, = 1*Wy_q-
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Theorem 2.3. (Resolvent identity) Suppose that w, ., W, .r and
Wy—a N\ Ww_oX are representatives for w,_ox, Wy_oT and w,_, N\ Wy_aT,
respectively. Let w, ,, = m,, where m,, is defined in (2.6). Then the
current

Wya N Wy—q + Wyy—qg N W4y + Wy oy N Wy

defined on (C" \ o(a)) x C* NC" x (C* \ o(a)) is exact if and only if

10y q = "Wy q, where i : C* — C* is defined by i(1) = (1,7).

Proof. The necessity of having i* (0, , — @, o) = 0 has already been
proved. Now suppose that i* (0, 4 — @y o) = 0. Let u}, u?, m; and ¢;
be the sequences in the proof of Lemma 2.2. Let 6 = d,_44,_4. Then
we have that i*0 = §,_,¢* by induction, since

"0 (fdzy, + gdwy) = (1, — ax) f(7,7) + (11 — ;) g(7,7)

=0, _ot" (fdzx + gdwy)
and
iO(uAv)=i"0uNi'v —i"u Ni"ov = 6, 0" (WA V),
if u is a 1-form. Thus
ier =0, 6 qi*cip = 0itc

and hence, by (2.2), there is a form w,, of 7 such that i*c, = Ow,. For
all test forms f we have the identity

Omy, A cp.f = / (e Nf) = / Ow, Ni* f = / wy, A i*Of.
A A A
Therefore the calculation in the proof of Lemma 2.2 gives the equality

(2.12) -0 ([A] A w, + ka A CQHk) = Con + UE Ay +my Al
k=1

Since w, ,x and u, represent the same cohomology class, there is a
form ¢ such that ©, .o — u, = dq. Let ¢' = 7}q and ¢* = 75q. Then

Wy N (&z,am — Oyat — (u) — ui))
=@, wA(0¢" —0¢%) = [AIA (¢" —¢°) — 0 (Wew A (¢' — ¢7))

= _3 (a}sz A (ql - q2)) .
Thus, since w,_, A Wy_a — €2, is an exact current, the theorem is
proved. O

Now we give the definition of f(a). If f is a holomorphic function in
a neighbourhood of o(a) then we define f(a) by the formula

(2.13) fla)z = — / fOpAw, .z forallz e X,
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where ¢ € C'° is equal to 1 in a neighbourhood of o(a). This definition
is independent of the choice of ¢. To see this, suppose that ¢ € C° is
equal to 0 in a neighbourhood of the spectrum. Then we have that

/ago/\wz ,,3:—/8(,0/\%,—/5 o ANuy,) =0,

if u,, is a smooth form in C" \ o(a) representing w, ,z. Note also that,
by Stokes theorem, we have ’rhe equality

- [ 190 N = /a fonan

where D is a small enough neighbourhood of o(a). We now prove that
f(a) € (a)"
Lemma 2.4. If f(a) is defined by the formula (2.13), then f(a) € (a)".

Proof. Suppose that x,y € X and ¢,d € C. Denote by u} the sequence
(2.1). Then

d 7
0sa (ui“’ Y—cuf — dui’) =0
and
cr+dy T 3 r"r-l—dy u”® Y

so uf™ % and cu® + du? define the same cohomology class. Therefore
the resolvent is linear, i.e.,

Wz—a ((’T + dy) = CWy—oT + dwzfaya

and hence f(a) is a linear operator.

The map J,_, is linear, continuous and surjective between the Frechet
space of all €20, (U, X) forms to the Frechet space of all §, ,-closed
Cro (U, X) forms, where U = C" \ o(a). Let K; C C" \ 0(a) be a given
compact set and let ¢; = 0. Then the open mapping theorem gives the
existence of a sequence of compact sets K; C C" \ o(a) and natural
numbers ¢; such that the equation d,_,u = v has a solution u, which
satisfies

< C ol

||“‘| Ki,ti+] 7,+17 41

for all closed v. Thus we can choose the sequence (2.1) so that

P el - PA—y
and
||“li+]||Kn7iatn—i+] S C nglliHKn,i+]7tn,i+1 S C ||UZ||K 7,+17 n— 7,+1+] '
Hence
@) f@sl < [ 7908w < Clflagy o o]

and thus the operator f(a) is bounded.
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Suppose that b € L(X) is an operator which commutes with the
tuple a. Then

dr—obui = bz, 0, .bui , = obu®

7
so bu® and u® defines the same cohomology class. Therefore
bw,_ & = w,_.bx

and thus f(a) € (a)". O

X6 A4 ve s theorem.
We can no rove Taylor’s theorem

Theorem 2.5. (Taylor) The mapping
(2.15) f— fla): O(o(a)) = (a)"

is a continuous algebra homomorphism such that 1(a) = e and zx(a) =
Q.

Proof. The map f — f(a) is continuous by (2.14). We now prove that
f(a)g(a) = fg(a). Let u;, u), u? and ¢; be as in Lemma 2.2. By

(3
the proof of Proposition 2.1 we can assume that the component c

vanishes. Since

1n i+1ln 7,1
0saCpty = Un(w),  O,_qen it = 0c,

we have that ¢y, represents w, ,u,(w) and thus we have that

fla)up(w) = — / f(2)001(2) A w,_quun(w) = — | / F(2)0¢1(2) A can.

Multiplying this equality by ¢(w)d¢s(w) and integrating with respect
to w we get

x—//f W) (w) A Dy (2) A con.

The resolvent identity (2.12) then gives that the right hand side is equal
to

//fg@@ /\8¢2/\mn/\u,]l+/ fg0p1 A Oby A u’ Amy,

and hence we get, by the Bochner-Martinelli integral formula,

- / (F962061 + [19902) A tn = — / 799 (6169) A un = fo(a)a,

since u! = mfu, and u? = mju,. Since the map (2.15) obviously is

linear, it is an algebra homomorphism.
[t remains to prove that 1(a) = e and zi(a) = ax. The first equality
follows by representing w,_, by
1

i (2% — za) " 8)2> A (90]2)7)" ",
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cf. [1], and integrating against d¢, where ¢ is a radial cutoff function
which is equal to 1 in a neighbourhood of o(a). The second equality
follows from the first equality and

1 1
(2 — ag) Uy = =— (0, qup) Ndzg = =—0 (uy_1 A dzg),
211 211

where u; is a sequence that satisfies (2.1). O

The next theorem says what happens when one has a norm conver-
gent sequence in L(X)™. Note first that if a — a¢ in operator norm
and D is an open set such that o(ag) C D then

o(ag) C D

for all but a finite number of k. Suppose that is not the case. The-
orem 1.4 gives then that all the sets o(ay) are supported in a fixed
bounded set, hence we would have a convergent sequence z, € C" \ D
such that z; —ay is singular. Therefore, by Lemma 1.3, this would con-
tradict the assumption that o(ag) C D. Notice also that if 0(a) = sp(a)
then the conclusion in the following theorem would be that f(a;) —
f(ag) in operator norm.

Theorem 2.6. Suppose that a;, € L(X)" are commuting for every
k > 0 and that |lax —agl| — 0 as k — oo. If f is holomorphic in
a neighbourhood of Ugsoo(ax), then f(ag)x — f(ag)z for every x € X.

Proof. Consider the Banach space
e(X) = { @)y : lim fla — o] = 0}
k—o00

with norm ||(z4)3 .. = SuPr<g ||zk|| and the tuple of n operators a' €
L(c(X))™ defined by a'(21)5%, = (ax71)%,. Suppose that aj, is a non-
singular tuple for every £ > 0 and that f is a closed ¢(X)-form, that is
do f = 0. Then d,, fr = 0 for every k > 0. Hence there is a solution ug
of the equation d,,uy = fy since ag is non-singular. Lemma 1.3 gives a
uniform constant C' and vy such that d,, vi, = 4, ug — fi and

[or]l < Cllda,uo — fill < Cllda, — Sy [l[[u0ll + Cl[fo — fell

Thus uy = ug — vy solve the equations 6, ur = fr and up — wu if
k — oo. Hence u = (ug);2, is a solution of d,u = f and the complex
K.(d',c(X)) is exact, and thus o’ is non-singular. That is, we have
proved the inclusion

o(a) C U o(ag).

k>0
Let u; be smooth ¢(X)-forms defined on C" \ o(a’) by the equations

5z,a/u1 =, 5z,afu,;+1 = au,
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Thus (uy), represent w, o x for all & > 0 and (u,)o = limy_o0 (un),,
represents w, ,,z. Suppose that ¢ € C° is equal to 1 in a neighbour-
hood the union of o(ay). Then

i fax)e = fim [ 706 (ua), == [ 100 A (), = flan)s
k—o00 k—o0 .
for all x € X, and hence the theorem is proved. ]

3. NON-HOLOMORPHIC FUNCTIONAL CALCULUS

In this section we will extend the holomorphic functional calculus of
Section 2 to functions such that ‘5}‘(2)‘ tends to zero when z approches
the spectrum. If f is a C'-function with compact support, we define
whenever possible

fla)r = — /8f/\u£,

where v is a form that represents w,_,x.

Several problems occur. There is a problem with the possible de-
pendence of the choice of representative uy of the class w,_,x. Other
problems are to investigate whether

fla) € (a)", fla)g(a) = fg(a), o(f(a)) = f(o(a)),

9(f(a)) = go f(a)
and whether f(a) = 0if f =0 on o(a). We will prove that f(a)g(a) =
fg(a), f(a) € (a)" and o(f(a)) = f(o(a)) for a certain algebra S,
(3.7) of functions. In order to do this, we will need a slightly stronger
condition on Jf than in the case n = 1. To begin with, we will see
what is needed for the muliplicative property to hold.

Suppose that £ D o(a) is a compact set such that there exists a
sequence u; on C"\ F satisfying (2.4). Then we have that u,, is operator
valued and represents w, , in C" \ E. The definition of f(a) in this
case 1S

fa) == [of nu
Define a sequence ¢; by
(3.1) a1 =0, 0, aw aCis1 =0 +u] —u,,

where ull = miuy and “12 = myuy. Then we have that ¢y, represents
Wy g N\ Wy _o. We now prove the multiplicative property.

Proposition 3.1. Let u; be a sequence defined on C" \ E, where E D
o(a) is a compact set, as in (2.4), and suppose that ¢;, n <1 < 2n are
forms that satisfies the condition,

, 3 2 1 1 2
(3.2) e =0, 0, quw_aCiyr =0c +u; —u;, Cop = Uy AU,
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where i(7) = (7,7). Moreover suppose that f,g € C? such that
/Haf/\ ]| < oo, /Hag/\unH <o
and
Of(2) A Og(w) A e

(33) [/ ore) b Aal_ - <o

-z-wd(Z,E)d(w,E)|Z—w| "
for all l such that n <1 < 2n. Then f(a)g(a) = fg(a).
Proof. First note that

fagte) == [ [ 0 ndgtw) Al n

and that, by the Bochner-Martinelli integral formula,
fota) = = [ (905 + f0g) A,

= //8f(z)/\8g(w)/\mn/\u7ll //8f(z)/\8g(w)/\mn/\ui.

Let x. be the convolution of the characteristic function of the set
{(z,w) : d((z,w), Ex C*" UC" x E) > 2¢}

and the function e 1" p(-/¢), where p is a non-negative smooth function
with compact support in the unit ball of C** such that its integral is
equal to 1. Since

10 () A Dg(w) A (up Aup +my Ay, — my Au)||

is integrable, we must prove that

lim / / X=0f(2) AOg(w) A (uy, Aul +my, Auy, —my, Aul) = 0.

e—0

The resolvent identity (2.10) gives that
-0 Z my A+ [A] A ey = ul AuZ +my, Aup, —m, Au?

in the sense of currents (note that the proof of this formula only made
use of the forms ¢; for [ > n). Hence, since i*¢, = 0, we must prove
that

(3.4) lim// X0f(2) A dg(w) A D Z my A\ ¢, = 0.
e—0
z w k—H:QTL
Integration by parts gives that (3.4) is equivalent to
(3.5) lim0 / / Oxe N Of(2) A Dg(w) A Z my A ¢ = 0.
£ oz Jw k+l:n
Note that ‘SXE‘ < Ce ! and that ‘3)(5‘ has support in
e <d((z,w), ExC'"UC" x F) < 3e.
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We also have that
d((z,w), ExC'"UC" x F) > min{d(z, F),d(w, F)}
>Cd(z, E)d(w, F)

on a bounded set, where C' > 0 is a constant (depending on the bound).
Thus (3.5) follows since

// H@f /\Bg (W) A 2nmk/\qH cx
(z,w), ExCrUC" x E)
by (3.3). Hence the pr0p081t10n is proved. O

To be able to separate the condition (3.3) we will assume that u;
commute with a. We can then choose the sequence ¢; in the following
way.

Proposition 3.2. Suppose that u; is a sequence as in (2.4) and that

au; = u;a. Then
_ 1 2
= 5 Uy N\ U,
k+l=i

satisfies (3.1).

Proof. We have that ¢; = 0, and since a and u; commute,

6cipq — Oc; = Z (Guy Auj — uy A du})

ktl=it1
1 2 1 2 2 1
— Z (6uk+1/\ul —uk/\éuH_l) =u; —u,,
k=i
where § = J,_4.4—a- Thus ¢; satisfies (3.1). O

Unfortunately, the sequence ¢; in Proposition 3.2 does not necessarily
satisfy 7*c,, = 0. However, by the proof of Theorem 2.3 we have that
1" ¢, 18 exact.

We have an explicit choice of sequence that satisfies (2.4). Suppose
that s satisfies the equalities §,_,s = e and as = sa. Then

0, 0S=¢€, 0, 4 (s A (és)i> _ (6:9)i -9 (s A (Ss)iq)

and hence u; = s A (33)i7] satisfies (2.4). The sequence ¢; of Proposi-
tion 3.2 is then

(3.6) c; = Z st A (551)1%1 A s? A (352)l7] :
k=i

where s' = 7s and s> = 713s. Note that if s A s = 0 then s A (9s) =
(35) A s and hence i*¢,, = 0.
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Let E D o(a) be a compact set and let s be a given form such that
s is defined on C" \ E, §, ,s = e and as = sa. Define the class S, by
(3.7) Sa={f€C(C"):|fll, < oo},
where
A A il
df Ns A (85)

d(z, F)

1=

i=1

o0

Of AsA (53)]{71 As A (53)%1
d(z, E)

Y

k+l=n

o

Note that the second sum vanishes if s A s = 0. This is always the case
if n = 2 since then §, , (s As) =s—s=0and J, , injective. If n =1
then S, defined by (3.7) is a slightly smaller class than S, defined in
the introduction. This is because the left hand side in the resolvent
identity (2.10) is 0if n=1. If f € S, then f(a) is defined by

- /af/\s/\ (9s)""

Of course we have that f(a) € L(X) if f € S,. Note that S, is an
algebra. In the next lemma we will use Proposition 3.1 to prove that

fla)g(a) = fg(a) if f,g € Sa.
Lemma 3.3. If f,g € S, then f(a)g(a) = fg(a).

Proof. Let ¢; be the sequence defined by (3.6) and let
d; = Z 2 A (552)#] A s% A (552)#]
k=i

By a computation similar to the proof of Proposition 3.2, we see that
the sequence d; satisfies the relation

6zfa,1117adi+1 = 5d1;
and hence that dd,, = 0. For every | > n define ¢} by ¢} = ¢; and define
¢, by ¢, = ¢, —d,. Then ¢ satisfies the condition (3.2) since dd,, = 0
and i*¢, = i*d,. We have that |z —w| >""" is a locally integrable
function on C** and hence

// H@f ) A Bg(w) A ci|
(w, E) |z — w|*™

Jos A <és1>’” [[[astw) n <2 1 (2:2)"
=2 /]

d(ZaE)d(waE) |Z _w|2”*1

< Q.

k+l=i
Similarly, we have that

// ‘af ,§|zi\i|l‘"]<007
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since ||g]|, < oo. Thus the statement follows from Proposition 3.1. O

In order to prove that f(a) € (a)” we construct the resolvent w, 4,
and use the multiplicative property of the functional calculus of the
tuple (a,b), where b € L(X) commutes with a.

Lemma 3.4. If f € S, then f(a) € (a)".

Proof. Suppose that b € L(X) is an operator such that ab = ba. Define
the form

1
v(w) = 5 (w — b)71 dw
i

Define the sequence ¢, by
c1=0, c=vASsSA (53)’“2.
Then we have the equations
c1 =0, 0, qutCa=85—0
and
Os—aw—bCri1 = SN (5S)k7] — VA (58)’67] = 0cp + s A (35)’67]

Let x be a smooth cutoff function such that {x,1 — x} is a partition
of unity subordinate the cover

H(zw) 2 ¢ B, Jw] <3|b]]}, {(z, w) : [w] > 2]} }
of C" x C\ E x {w : |w| < 2]b||}. This is a special choice of function

x used in Lemma 3.2 of |1]| which enables us to avoid an integration by
parts. Define the sequence a; outside E x {w : |w| < 2[b||} by

a;=xs+ (1=x)v, ar=xsA (58)’67] — 0x A ¢.
We then have that
Oramw b1 =€, Oy qw by = X5+ I A (s —0v) = day
and that
s a sk 1 = X (95)" +0x A (Bex+ 5 1 (95) ") = D,
and thus
Uni1 = —O0OXAUVASA (35)”7]

represents w, 4.,-p. Choose ¢ € C2°(C) which is 1 in a neighbourhood
of {w € C: Jw| < 3||b|}. Then we have that

(6f)(a,b) / / 8 (6(1)f(2)) A s (2, 0)
= // fOLPNDXAVASA (35)”7]

/ ¢8f/\8wx/\7)/\9/\ 89 /8]‘/\9/\ 1:f(a,).
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Let a), = mjay, and ai = w5ay, where
1 (21, w1, 29, wo) = (z1,wy) and wo (21, wn, 29, wy) = (29, ws).
Define the sequence ¢ by

r_ r_ 1A 2
¢, =0, Cz'*g a, N\ a

k+l=1

so that by Proposition 3.2,
' A0 2 1
c =0, (szlfa,wl*b,@*a,wszcz#] = aci +a; —a;.

Let F' = E x {w:|w| <2]b]|}. Define the function g by g(z,w) =
wip(z,w) where ¢ € C is equal to 1 in a neighbourhood of F. We
have that

H (o) A ax
d((z,w). F)

o

XO(df) A s A (55)#]

- d(z, E)
O(Pf) NOX ANvAsA (58)]672
+ (=, E) < 0

since f € S,. Hence we have that

H8 (wn) f(21)) A Og(z2, ws) A ('lH
g1 < OO
((z1,w1), F)d ((20, wa), F) |(21, w1) — (29, ws)|

for all [. Define the forms ¢ by the equations ¢/ = ¢; if | > n + 1 and

" o 2 2
Cni1 = Cg1 — E ay A\ aj-
k+l=n+1

Then we have that ¢, satisfies i*c;;,; = 0 and hence by Proposi-

tion 3.1 we have that (¢f)(a,b)g(a,b) = g(a,b)(df)(a,b) since
// Ha Zl))/\g.q(ZQJwQ) AZIC-HZTH—I ai/\a?H
((z1,w1), F)d (22, ws), F) | (21, w1) — (22, wo)[*"*!

Thus f(a)b = bf( ) since g(a,b) = b by the holomorphic functional
calculus. 0

< oQ.

We can now prove a generalisation of the holomorphic functional
calculus.

Theorem 3.5. (Non- holomorphic functional calculus) Suppose

compact such that zt emsts a smooth form s defined on C" \ E wzth
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0, oS = € and as = sa. Let S, be the class defined by (3.7) and let
f(a), f € Sa, be the operator defined by

—/Bf/\s/\(as)nl.

Then we have that the map f +— f(a) : Su — (a)" is a continuous
algebra homomorphism that continuously extends the map f — f(a) :

O(E) — (a)".

Proof. By Lemma 3.4 the map f — f(a) : S, — (a)" is well defined.
The map is continuous and linear. Lemma 3.3 gives that the map is
multiplicative, and thus the map is an algebra homomorphism. To see
that it continuously extends the map f — f(a) : O(F) — (a)”, suppose
that we have a sequence f,, € O(U), where U is an open neighbourhood
of F, and that f, — 0 uniformly on compacts. Then

/a0l =0,
where ¢ € C°(U) is a function equal to 1 in a neighbourhood of £. O

We now go on and prove the spectral mapping theorem for this
functional calculus. To do this, we need the following lemma which
shows that f(w) acts as f(a) on Hy(w —a,c, X).

Lemma 3.6. Suppose that there is an operator valued form s outside
E such that 6,_,s = e and sa = as. Furthermore, suppose that ¢ €
(@)™, w € o(a) and k € Ky(w — a,c,X) (with respect to a basis
dwy, ..., dwy, ety .. enim of CT™) such that §y_ok = 0. If f €
S,, then

(f()_f( :war/af /\Zm;;+1]/\8/\(a) ]/\]{J,

where m! is defined in the proof.
Proof. We have that
627(1,,'wfam1 =€, 6zfa,1117ami+1 = ami;

by (2.7) and (2.8), where m; is defined by (2.6). We also have that

O aw a5 =€ Ouawa (57 (35)') = 0. (s (95)7)

where s only depends on z. Therefore the same calculation as in the
proof of Proposition 3.2 shows that

02 —aw—a Z mk/\s’/\ 89 —8ka/\s’/\ ) -

k+l=i+1 k+l=1

=sA (5s)i7] —m,.
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Let + = n and identify the component without any dw and dw in this
expression to get,

Sw—a miAsA (55)171
ktl=n-+1
=sA(0s)" ' —ml +0, Z mi A s A (33)171 :
k+l=n

where

) N
, 1 0,z —w <az|z—w|)

2mi)kE |z — w|? C oz —wf

and mj is the component of my with one dw and no dw. Let x. be the
convolution of the characteristic function of the set

{z:d(z, FE) > 2}

and the function e %" p(-/¢), where p is a non-negative smooth function
with compact support in the unit ball of C" such that its integral is
equal to 1. We have that

/azf(z)/\az S i As A (0s)

k+l=n

~ liny / DS A0 Y ml As A (0s)

k+l=n

= lin% D.x: N0, f(2) A 5 my A s A (58)171 =0
E—
z k+l=n

1

since ‘3)(6‘ < Ce™' and ‘3)(5‘ has support in € < d(z, F) < 3e. Hence

we have that

fla) = f(w) = [ 01 A (54 (05)" " =)

= 0w_a /af(z) A my A s A ((;95)%] )
z k+l=n+1
Therefore,
(fla) = f(w))k = dp—ar /af(z) A Z my 4 ASA (35)#] Nk,
v =1
since (w — a,c¢) and s commute. O

We can now prove the spectral mapping theorem.

Theorem 3.7. (Spectral mapping theorem) If f is tuple of func-
tions in S,, where S, is defined by (3.7), then o (f(a)) = f (o(a)).
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Proof. Suppose that we can prove the statement; if z € o(a) then
(z — a, f(a)) is non-singular if and only if f(z) # 0. In that case
(z —a,w — f(a)) is non-singular if and only if w — f(z) # 0 and hence

o (f(a) =m0 (a, F(a)) = 72 {(2, ) - w = (2), € o(a)} = f (o(a)
by Theorem 1.4.

Suppose that z € o(a). We have the induction hypothesis that if m
is a natural number then the tuple (z — a, f(a)) is non-singular if and
only if f(z) # 0 for all m-tuples f of functions in S,. The case m = 0
follows from Lemma 3.6. Assume that the hypothesis has been proved

for m. Given f' = (f1,..., fms1) let f = (f1,..., fm). Then there is a
long exact sequence

.= Hy(z—a, f(a),X) = Hy(z — a, f'(a), X)

fm+1(a)

— H, (2 —a, f(a), X) H, (z—a,f(a),X)—...,

for this see Taylor [13], Lemma 1.3. Lemma 3.6 gives that the last
homomorphism is equal to f,,+1(2). Hence

Hy(z — a, f'(a), X) =0
if fm+1(2) # 0 and
ImH,(z —a, f'(a),X) = Hy_1(z — a, f(a), X)

if fm41(2) = 0. Therefore the induction hypothesis hold for m + 1 and
hence the theorem follows. O

We will now consider a concrete situation where we can give an
answer to all the questions we set up in the beginning of this section.
Suppose that E D o(a) is a compact and convex set with C? boundary
and that we are given a form wu,, representing w, , on C" \ E. Then
we can use the holomorphic functional calculus to construct a form s,
0,_as = €, such that for each i, s A (55) admits estimates controled by
the growth of u,,.

Theorem 3.8. Suppose that o(a) C E, where E is a compact and
conves set with C%-boundary. Let u® be a differential form representing
w,_qx outside E such that [|[u®(2)|| < ||z||e?"Z) where r(2) = d (2, E),
q is a decreasing function and q(0) = oo. Then the map

f= fla): Sy — (a),

where S,, s

{f € C?:|0f(z)] < Cr(z)sup {6"67‘1(“”75)} for all z € (C"} ,

e>0

18 a continuous algebra homomorphism.
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Proof. We have that r € C? (see |10|, Exercise 4 page 136) and dr # 0
in U \ o(a) where U is a neighbourhood of do(a). Therefore

1) = (O < 2Re (- G5 (2) < 200 Or(:)

for all z € U\ o(a) and ( € C" since r is convex. Thus the form s
defined by

_or(z)
(.0 =

is well-defined for all (z, () such that r(z) > r({). We get

5.0 A (05(,) " = ar(i;Afgf(Z()ji) |

Integrating over (, we get by the holomorphic functional calculus that

s(z,a) A (9s(z, a))j*]

1

_ / (8, 0r(2)) 7 u(Q)ar(2) A (B0r(2))" ",
r(Q)=r(z)—¢
for 0 < € < r(z). Therefore,
Hs(z, a) A (9s(z, a,))jf] H < CedEH7E) (p(2) — r(()) T < Cetr@D e,

An application of Theorem 3.5 finishes our proof. O

Theorem 3.9. If g € S, and f is holomorphic in a neighbourhood of
o(g(a)), then

o(g(a)) = glo(a)), ¢(fog)(a) = flg(a)),

where ¢ € C is equal to 1 in a neighbourhood of o(a), and g(a) =0
if g(2) =0 for all z € E.

Proof. The equality o(g(a)) = g(o(a)) follows from Theorem 3.7. As-
sume that 0 € E and let
h(z) = r(z) sup {8”671](7(2)78)} :
>0

Then |dg,| < h, < h where g,(2) = g(rz) and h,(z) = h(rz) and r < 1.
Hence g,.(a) — g(a) when r — 1, by dominated convergence, and thus
g(a) =01if g(z) = 0 for all z € o(a). The rule of composition is true for
holomorphic functions, and hence we have that (f o g.)(a) = f(g,(a)).
Since ¢(fog) € S, we can let r — 1 in this equality to get ¢(fog)(a) =
f(g(a)), by Theorem 2.6. O
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