A HIERCHICAL DESIGN METHODOLOGY

FOR DATA BASE SYSTEMS

by
Jerry Baker and Raymond T. Yeh

April 1977 TR-70

Acknowledgements are due to National Science Foundation for partial support
of this work under grant DCR 75-09842.

DEPARTMENT OF COMPUTER SCIENCES

THE UNIVERSITY OF TEXAS AT AUSTIN

ABSTRACT

A formal design methodology for the éevelopment of data base
system software is presented. This methodology provides a systematic
method for the design, specification and implementation of a reliable
data base system such that integrity and security constraints can be
automatically included, and that correctness proofs can be established
for the resulting system. The design process is top—-down and the result-
ing data base system will consist of a hierarchy of formally specified
data abstractions.

The methodology has several advantages over more ad hoc approaches
including reliability and flexibility. Moreover, a performance modeling
technique is introduced which will enable the designer to evaluate
the performance characteristics of the system at each stage of the develop-
ment process.

Some examples illustrating the application of the methodology to

the design of a small relational data base system are also presented.

I. INTRODUCTION

The growth of the data processing industry has been spectacular.
Almost every ;izable business, government agency, and educational
institution depends in a critical way on very large data processing
systems. Moreover, as the cost of computing goes down it is expected
that there will be a further explosive growth in the number and variety
of other data bases.

While a significant amount of research has been dedicated to
specific aspects of data base systems (data models, query languages,
performance modeling, etc.) relatively little has been accomplished
in the way of integrating these ideas into a design methodology which
can be used to systematically comnstruct data base systems for large
classes of applications. Current approaches to the design and evalua-
tion of data base systems, unfortunately, remain ad hoc and based
primarily on experience. If, however, the technology of data base
system design is to satisfy the requirements of future critical areas
of application, then a general design methodology for data base systens
is a necessity. Such a methodology ideally should provide guidelines
for the systematic design and construction of any DBMS and its associated
data bases such that the total system is

i) applications and machine independent
ii) dntelligent
iii) efficient

iv) reliable

v) secure

We believe that knowledge in many disciplines of computer
science shoulq and could be utilized for the development of such a
methodology. In this paper we make a first attempt in presenting a
methodology in which we borrow heavily from software engineering. Our
methodology is aimed to achieve all of the ideal goals except intelli-
gence mentioned previously. Our methodology provides for the systematic
design, specification, and implementation of a reliable data base
system such that integrity and security constraints and performance
characteristics can be automatically included, and that correctness
proofs can be established for the resulting system. Using this
methodology, a data base system can be described and structured in a
hierarchical fashion. The design is top-down and the resulting system
will consist of multiple levels - each level being described by a self
contained specification. The approach not only enhances the reliability
of the design but it also enables the designer at each step of the
development process to evaluate the performance characteristics of the
system,

Our approach to data base system (DBS) design is quite a departure
from the traditional view that a DBMS consists of two levels - logical
and physical, such that these two levels can be designed separately
and connected by complex mappings. In our approach, the separation
of logical and physical structures no longer exists.

Tt should be noted that the notions of top-down design and multi-
level data base system architectures are not new. For example, Smith

and Smith [1976], Weber [1976] and Aurda and Solvberg [1975] used the

concept of abstraction to design a hierarchical structured data bases.
Our methodology, however, aims at the design of the whole system, i.e.,
both a DBMS and its associated data bases. Hierarchical data base
architectures have also been proposed by many authors, e.g., Hammer
and McLeod [1975], Madnick and Alsop [1967], Mealy [1967], Mylopoulous,
Schustery and Tsichritizis [1975], Schmid and Bernstein [1975}, Kraegeloh
and Lockemann [1975], kand Senko [1976]. We do not, however, propose
any specific architectures. Rather, the methodology presented here is a
cohesive set of techniques which can be applied in a systematic manner
~to achieve a variety of data base system designs.

The methodology to be presented in the following sections has
been applied to the systematic development of a very small relational
data base system. A small subset of the example will be used to

illustrate the methodology here.

IT. Abstraction, Stepwise Refinement-and Data Base System Design

One of the most powerful tools in software development is that
of abstraction. The use of abstraction allows a designer to initially
express his solution to a problem in a very general term and with
very little regard for the details of implementation. This initial
solution may be refined in a step by step manner by gradually intro-
ducing more and more details of implementation. The process continues
until the solution is finally expressed within the framework of scwe
appropriate "target" language. This combination of abstraction and

stepwise refinement enables the designer to overcome the problem of

complexity inherent in the construction of programs by allowing him
to concentrate on the relevant aspects of his design, at any given
time, without worrying about other details. An important result of
this approach is the development of a hierarchically structured system
through a stepwise refinement process (function abstraction) such that
each level consists of a number of modules (data abstractions). Note
that such a hierarchically structured system is both horizontally
and vertically modular, and hence is a useful model for a DBMS. The
horizontal modularity provides machine independence, since change of
machine architecture will only affect the bottom level of such a system.
The vertical modularity provides application independence since the
addition and deletion of applications can be accommodated through
changes in cblumns (modules and their vertical refinements), but not
the whole system.

Other benefits for a hierarchically structured DBS include:

i) Integrity and security constraints can be automatically
implemented at each level (by means of exception conditions for example)
since (Parnas) modules are designed to explicitly hide information
from users.

ii) Proof of correctness of the system is now possible (this
has not been a practice for DBS). Furthermore, due to the rigorous
specification of modules, the proof is reduced to a proof of consis-
tency between levels.

We will discuss these two items in more detail in later sectionms.

We observe that the notion of abstraction comes naturally in DBS from

another aspect., Various users may view é DBMS quite differently, and
their access rights to the system are also distinct. For example,

only the top level of the system is visible to a casual user, whereas

an applications programmer is allowed to create new functions and hence
may need to access information available in the second level in order

to create efficient function implementation. There are other levels,
e.g., systeﬁ programmer level, privileged programmer level, and storage
structure development level.

Our mention of specific levels is neither intended to be ex-
haustive or even the best possible. We wish to emphasize that the notion
of abstraction translates to a natural interpretation in the context
of data base systems.

The methodology presented in this paper uses the concepts of
abstraction, stepwise refinement and modularity to achieve a data base
management system with a hierarchical structure. The structure consists

of a set of n+l abstract machines, Mn’ M

NETREEE M., connected by a set

0

«++ss P.. Each machine in the hierarchy re-

of n programs, Pn, P 1

n-1’
presents a ''view'" of the system at a particular level of abstraction
and, moreover, constitutes a refinement of the previous (higher) level.
Thus, for example, the top level or "user machine" represents Ehe end
user's conception of the data base system both in terms of abstract

data and operation. Fach successive machine in the design sequence,

moreover, represents a 'refinement" of the previous machine in the sense

"

that its data abstractions are used to "implement' those of the previous

-machine. This implementation

consists of a set of "virtual" programs each of which expresses an
operation of the previous machine in terms of a (sequehce of) operations
of the current machine. A formal proof can then be constructed to
verify that ~the implementation is consistent with the specification of
each machine.

The stepwise process of machine specification, implementation and
verification continues until the design reaches the level of some well-
defined implementation language, MO’ which may be a programming language,
low-level file management system, or the machine language of some
appropriate hardware configuration. The result is a hierafchy of
formally specified machines (Figure 1) and a corresponding hierarchically
structured software system which expresses the concepts of the user level
machine M within the framework of the implementation language MO.

Before turning to adetailed discussion of the design process,
it should be mentioned that there is a natural deficiency in the top-
down approach proposed here. 1In this approsach, it is necessary for the
designer to choose among alternative designs at each level. The metho-
dology, however, does not provide any guidance for the designer in
‘making such choices., As a consequence, a system may be reliable but
must be scratched because of reasons such as poor performance. In

section VI, we shall point out how this deficiency can be eliminated

by doing performance evaluation at the design level.

END~USER

Mn <::> <:;> T (ii) User Level
w | O O O

bomsmm: wacae e weem wee wnswhed

Implementation Level

Figure 1 - A HIERARCHY OF FORMALLY SPECIFIED MACHINES
SHOWING MODULARITY

ITI. Design and Specification

The design process of this methodology may be viewed as a sequence of
decompositions of abstract concepts. The user level machine, for example,
consists of those concepts visible to the end-user of’fhe system. The
design of the next level, then, is concerned with determining what con-
cepts are necessary and desirable to represnet those of the previous level.
This decomposition process continues until the concepts of the system are
0 The

decomposition process is, of course, not unique and, therefore, there is no

represented within the framework of the implementation machine M

rigid rule for determining the number of levels used in a design. Thus, two
designers may derive different hierarchies for the same system. 1In this
paper, we decide that at the user machine level we are concerned with struc-
tures such as "relations", "networks", etc. At each succeeding level, less
abstract concepts such as access paths, indexes, etc. are used to implement
comcepts used at the higher level.

Each abstract concept within a machine is realized by a collection of
one or more formally specified Parnas modules (Parnas [1972]). The role of a
module in this methodology can be seen from two different viewpoints. First,
a module may be viewed as defining an abst?act type of data object. The
module's specification, then, serves the purpose of defining the manner in
which "instances" of the object type may be created and manipulated. 1In the
second viewpoint a module itself is considered as an abstract machine which
is characterized by its state and a set of machine operations. Each opera-
tion may serve one of two functions - that of causing a state change in the

module or that or returning a value which partially defines

V 904 SNOISIDHA NOISHId HHL A0 MAIAYHAO NV

I.O.Hl

‘WALSAS TVNOIIVIAY TAAXT-H004

‘T TTdVL

a3ei01s TBNIATA
03U SWBAIISIT]

Surpooua pue

*039 ‘sld Jo uoTINGIIAISTP UOTIOBIIXD WEAI3ZSIT] SWE3I3s 1ITq IBSUIT 1
se2131-¢
spIodal Spioo21 B1EBpP puUR ‘soTqe3 310BIISQE
B1Ep puU®B S°3il-g | so2i3~-g °SISTT P9Yurl JO yisusT 93ITUT]
©239 ‘TYYIgflT [SISTT Jo Burpoous 1ITq | SOUBUSIUTRE PUB UOTIBIID JO S3STT poYurl bA
UOT3
s3oTe3BD pur s3oTe3®D -PUIOJUT UTBWOP pu®
: *03° syjed ssso0® TBOTZ0T pue ‘so8ewr ‘SWuUI JOo | UOI3IBIa1 JOo s3oTe3ED
‘LLCONI “MNTC INa 1N 70 uoTleluUeWRTdWl |9OUBPUIIUTEW PUB UOTIBOID ‘syury ‘sedeur €
suor3jassse £3tadaiut
puB uoIlBZTIOYINE®
ATd0L fZLTU99AINI B3EBp JO JusmWOII0JU3 pur £3111893UT OTIUBWSS
‘NOTIVZIYOHLOV jo =93v103s ‘uoijeu uor3leeid ‘suoriexado ‘uoT3BZTIOUINE
‘NOTIVITY ~z0yur yied ssed0® TeUOTIBI2a DIBIqe3(® so1dny ‘suorieIoa ¥
SdTNAON NIJIAIH SLJIONOD dTdISIA SLJEONOD TIATT

SNOILVYAd0

the module's state. Both viewpoints are useful and will thus be
referred to throqghout this paper.

We present now an example which illustrates the design and
specification of a relational system achieved by the application of the
hierarchical design methodology. The purpose of the example is to
illustrate the top-down design process and the resulting hierarchical
decomposition of abstract concepts which occurs from the use of the
methodology. Tables 1 and 2 show the general architecture of this system.
Table 1 specifies for each level the visible concepts, the operations,
and the concepts hidden. Table 2, furthermore, shows the decomposition
of each level into some of its component modules. The "uses'" hierarchy
(Parnas. [1974]) which exists between the modules at different modules is

shown in Figure 2.

Level 4
RELATION - relations and algebraic relational operations
AUTHORIZATION - assertions defining allowable user accesses
INTEGRITY ~ assertions defining the semantic integrity of the

system

TUPLE - n~tuples and operations on them

Level 3
RNT>~ catalog of relation names and related information
DNT - tables of domain names and related information for each

relation

TT -~ tables of data values of relations

~.ll.—

LNK - abstract "links'" between sets of relation ® tuples
IMG ~ logical ordering of relation tuples
Level 2
LT - linked lists of finite length tables
RT - file structure of records
BTR - B-tree structures
Level 1

BTS - linear bit streams

Table 2 - Abstract Concepts Represented by System Modiles

The design of Level 4 includes four modules, each of which repre-
sents an abstract concept visible to the system end-user. The RELATION
module, for example, defines the operations by which users are able to
create, modify, and view the primary data objects (relatioms) of
this level. Likewise, the TUPLE module enables users to create and
manipulate n-tuples as seperate entities. The AUTHORIZATION module
relates to the concept of security in the data base system. Through

the operations of this module it is possible to create authorizations

which are assertions defining the allowable user accesses to the abstract
data objects of Level 4. Certain operatiocns also make it possible to
scan all defined authorizations to determine if a user has access to

a specified data object. The INTEGRITY médule provides operations for
defining and maintaining the semantic integrity of relations. For
example, it is possible to create assertions which define allowable
domain values in relations. Likewise, it is possible to scan these
assertions to determine if an update or modification would violate any

pf these.

In the design of Level 3
-1

RT

Figure 2. The "uses’hierarchy of modules in a

relational data base system.

13~

domain values in relations. Likéwise, it is possible to scan these
assertions to determine if an update or modification would violate any
of these.

In the design of Level 3, of course, it was necessary to deter-
mine what concepts should be used to impleﬁent those of Level 4. Figure
shows some of the modules used to implement the RELATION module. The
RNT module, for example, contains operations for creating and maintain-
ing a catalog containing information about defined relations. Once
created, this table contains ome entry for each relation which is
defined at Level 4. Each entry contains a relation name, the number of
tuples contained in the relation, the "type' of the relation ('BASE' or
'TEMP'), the number of domains in the relation and a "pointer" to
another abstract table containing domain information.

In a similar manner the operations of the DNT module allow the
creation and maintenance of catalogs each of which contains information
about the domains of a defined relation. Each entry in such a table
contains a domain name, the data type of domain values (REAL, INTEGER,
etc.) and information‘as to existing access paths for the values of the
domain.

The IMG and LNK modules represent logical access paths corres-
ponding to the concepts of links and images (Astrahan et al [1976]),
respectively. Through the use of the LNK module it is possible to
create logical links between tuples of the same or different relations.
Such a concept is useful in efficiently implementing the relational join

operation of Level 4. The IMG module makes it possible to create

-1

logical reorderings of relation tuples based upon domain values. Such
a concept is useful in efficiently implementing the 'select' operation
of Level 4.

A further refinement of these concepts is shown at Level 2. The
LT module, for example, implements the catalogs and images of Level 3
by linked lists of finite length tables. Likewise, the BTR module also
implements the concept of an image as a B-tree structure (Bayer and
McCreight [1972]) . Also, the links and TT tables of Level 2 are imple-
mented as "files" of "record" values by the RT module.

Finally, at Level 1 a single module representing linear bit
streams is shown. This module can be used to extract and insert informa-
tion into specified locations of user bit streams and is used to
implement the LT, BIR and RT modules of Level 2.

The design shown in Figure 2 should by no means be construed as
representing a prototype architecture for future data base systems.
Rather, its purpose is to illustrate the process of viewing the opera-
tion of a data base system at various levels of abstraction. Consider,
for example, the creation of a relation at the user level. This is
viewed at Level 3, among _other things, as being the insertion of an
entry into the RNT table and the creation of a DNT table for the
domains of the;created relation. These processes, in turn, are viewed
at ievel 1 as being the manipulation of certain linear bit streams.

The primary importance of viewing a data base system in this
manner is that it reduces the complexity of the design process. At

each system level the designer is able to concentrate on the issues of

~15-

desigﬁ relevant to the concepts at that level without being distracted
by implementation details. The expected result 1s increased system
reliability. Another advantage is that the various levels may naturaily
correspond to different classes of users (casual user, application pro-
grammer, system programmer, etc.) each desiring to view the system at
a different level . of abstraction. Thus, the operations defined by a
machine's formal spécifications not only may be used to implement a
higher level machine, but also may servé as an interface to external
system users.

Appendix A contains the formal specifications for some of the
modules shown in Figure 2. The primary purpose of these specifications

is to define the functions by which a module may be accessed. Basically,

there are three types of access functions: SV, SE, and ST. 5V and SE
functions return values which partially define the abstract state of
the module. Each SV function has a value associated with its name
while SE functions return values indirectly through . parameter lists.
ST functions, on the other hand, are operations which produce a state
change in the machine containing the module. The result of correctly
invoking an ST function is specified as a sequence of effects each of
which is a formal statement defining a resulting change in the values
returned by SV or SE functions. Each effect may be classified as

local or non-local. Local effects are those produced in the state of

the module itself while non-local effects are state changes produced in

other modules of the machine.

-16-

While non-local effects may seem to violate module independence,
the concept can be very useful in data base system design. Consider,
for example, the design of Level 4 of the system shown in Figure 2.

It was decided that in this system any user creating a data object
should automatically have complete access rights to it. Thus, a user
invoking the operation

R: = join(S,dl,G,T,dz)
should automatically have access rights. to relation R. However, such
an effect is impossible to specify within the traditional framework of
the Parnas module. Therefore, the join operation has a non-local effect
specified as:

Yop (op € opset) [check~auth(uid,R,op) = Ezggj
where uid is the user requesting the 'join' operation and opset is the
set of all relation operation types. The 'check auth' function is a
function of the AUTHORIZATION module which returns the value true if user
uid has the authorization to perform the operation specified by op on
relation R. It should be noted that non-local effects correspond-

to the concept of triggers as presented by Eswaran [1976].

Iv. Implementation and Verification
The implementation between two adjacent machines Mi and Mi~l is
the process by which the data abstractions of Mi are defined in terms
of the data abstractions of M, .. More formally, if ¥, = {fi g1, fk}
i-1 ’ i 12 Tk
is the access function set for Mi then the implementation of Mi by Mi‘l

is defined by

i e, id i
Ii"l = {ﬁi_l!pl’pzﬁ sy pk.}

-17-

where Q;_l is a mapping from the states of Mi_l to the states of Mi and
p; is a "virtual" program which implements the function f; on machine
Mi—l' The mapping function @;_l has the effect of "binding' each state

of M, to a state or set of states of M, .. That is, if S, and § are
i i-1 i i-1

the state sets of Mi and'Mi_l, respectively, then the mapping Qi—l is

i

defined such that for every state s, € S, we have s, = g,
i i i i-1

(siﬁl) for
some state Si—l of Si—l’ The mapping function is actually constructed
by expressing each SV and SE function of Mi as an expression containing
the SV and SE functions of Mi»l' Each such expression is referred to
as a partial mapping function and the set of all partial mapping functions
for Micomprisesthe mapping ¢i~l'

Appendix B illustrates the process of mapping function construction.
Shown there is the set of partial mapping functions between Level 4 and
Level 3 which corresponds to the SV and SE functions of the RELATION
module.

The purpose of virtual program p; is to express the functién f;
of Mi in terms of the functions of Mi—l' Thus, the program is constructed
using well-defined control constructs and the function set Fi—l' This
implementation process must be consistent with the formal specifications

of Mi and Mi— That is, the following commutative diagram must be

1
satisfied.
£t '
5.] 254
‘> b .
i i
®i~], wi—l
5! s
i-1° T i-1
Pj
! Figure 3

-18-

where s, and s! are states of M, and s,
i i i i

and s! are states of M,
i-1 i

1 -1

Appendix D contains a program which implements the '"select'" function of
the RELATION module.

The verification of the implementation Ii_l requires a formal proof
that the commutative diagram of Figure 3 is satisfied for every virtual
program p? of the implementation Ii-l' This verification process is
basically a standard inductive assertion proof on p? and we, therefore,
only give a brief description of it. However, the reader is referred
to Robinson and Levitt [1977] which contains a detailed discussion of the
hierarchical proof techniques used in the methodology.

In general, the precondition for each virtual program p§ is true
because the program contains its own mechanisms for exception handling.

The output assertions for p? are derived from the assertions in the EFFECTS
section of the specification for function fj and from the mapping function
¢i_l. Each output assertion is obtained by taking an EFFECTS assertion

and replacing each reference by the instantiation of the appropriate
partial mapping function of @i_l. This process is demonstrated in Appendix
C which shows the derivation of output assertions for the virtual program
implementing the 'select' function of the RELATION module.

Intermediate assertions for pj can be taken directly from the EFFECTS
sections of the ST operations used to construct the program. Loop

invariants and verification conditions can then be derived and proved to

establish the validity of the program's output assertions.

-19-

V. Exception Handling

Exception conditions have been defined as "those conditions

detected while attempting to perform some operation' which are "brought

to the attention of the operation's invoker'" (Goodenough, [1975]). In the
hierarchical design methodology the mechanisms used to deal with
exception conditions play an important role in the development of
(reliable) integrity and security subsystems. This section, then, con-
tains a description of the methodology's approach to the definition,
detection, and handling of exception conditions. Also included are
several examples which illustrate the utility of this approach.

In the methodology exception conditions are defined during the
" design of each module and are a part of each module's formal specificationms.
Each exception condition is specified as a name with a formal parameter
list and is defined as an assertion containing the SV and SE functions
of the module.

Each conditidn thus corresponds to a machine state or set of
machine states about which the user must be informed. Consider, for
example, the design of the RELATION module of Level 4 (Appendix A). One
exception condition defined for this module is

NO_RELATION(R): relation exists(R) = false
where the formal paraﬁeterlg represents a relation name. This definition
indicates that the NO RELATION exception condition for actual parameter
R' corresponds to any state of the machine in which the SV operation
relation exists(R') returns the value false.

In the formal specification of each module function a list of

exception conditions may be included in which the formal parameters of

-20-

the function call are used as actual parameters for the exception con-
ditions. The existence of such a list for a function indicates to the
implementor of the module what conditions detected during the execution
of the operation require notification of the invoker. The existence
of an exception condition for an ST function also indicates that the
function will have no effect upon the state of the machine if the con-
dition is detected when the function is invoked. 1In a similar manner,
if a specified exception condition exists when an SV (or SE) function
is called then the value(s) returned by that function is (are) undefined.
Consider, again, the design of the RELATION module of Level 4.

One function defined for this module is the 'select' operation which
returns a subset of some specified relation based upon a domain value.
The function has the prototype call

R:= select(S,d,0,v)
where R and S correspond to relation names, d is a domain name, o
is a relational operator, and v is a domain value. One exception con-
dition specified for this function is

NQ_RELATION(S)
Thus, invoking the 'select' operation would have no observable effect
on the system if the machine's state was such that the 'relation
exists' function returned the value false when supplied with relation
name specified in the user's call to 'select'. Also, the user would be
informed that this condition existed.

Exception conditions may correspond to local or non-local conditions.

-2]-

For example, the NO RELATION exception condition of the RELATION module
corresponds to a local condition because its definition uses only an

SV function of the RELATION module. Consider, however, the RELATION
module exception condition definition

NO_AUTH(id,R,op) : check auth(id,R,op) = false
where the AUTHORIZATION module function "check auth' returns false if
user id does not have authorization to perform the operation type op
on relation R. This non-local exception condition definition can beb
used to prevent unauthorized access of relations. For example, the
operation

R : = select(S,d,8,v)
has the exception condition

NO_AUTH (uid,S,'VIEW').
Hence the operation cannot be performed unless the user has VIEW access
to relation S. Non-local exception conditions also correspond to the
notion of triggers (Eswaran [1976]) and can be a useful concept in
the design of a data base system.

One important advantage of this approach to exception handling is
that the definition and detection of exception conditions occurs
hierarchically within the design and implementation process. This
allows the designer at each level of abstraction to concentrate omn
defining the exception conditions which are relevant to the concepts
represented by that level. Also, because the specification of exception

conditions is separated from their detection the designer is free to

concentrate on what conditions are to be deteoted without worrying
about how they are to bé’detected.

The reliability of exception handling is enhanced by the hierar-
chical nature of exoeption condition specification and detection. At
the initial level of definition an exception condition is expressed in
terms of the SV and SE operations of that level. Each of these operations
is then, of course, implemented and verified in the hierarchical manner
prescribed by the methodology.

Figure 4, for example, shows the decomposition of the BAD DOMAIN
exception condition into its component functions at each system level,
Figure 5, on the other hand, shows the hierarchical expansion of the
exception condition definition at each level. This expansion is
obtained from the exception condition definition by the formal mapping
specifications of each level. Thus, at level 4 the BAD DOMAIN
exception condition is defined in terms of the 'domain exists' functiom
by

BAD DOMAIN(d,R): “Idomain_exists(d,R).

The 'domain exists' function, in turn, is implemented at level 3 by
the functions 'get rnval' and 'get dnval" and the resulting expansion of
the exception coﬁdition definition is

BAD DOMAIN(d,R) : 1if get_rnval(R) = false

then undefined

else ge;ﬂdnval(get_;nval6(R)1d).

For each successive level, the two figures show the decomposition of

-23~

the functions of the previous level and the resulting expansion of the
exception conditon definition in terms of the functions of the present
level. |

Exception handling also plays an important role in the development
of reliable security and integrity mechanisms.b This is explained in more

detail in the following section.

BAD_DOMAIN(d,R): domain_exists = false

3 :
get_rnval get_dnval
¥ ¥
5
W ¥
get ntab get tval
Y v
v y A W

entry_loc entry_ _size comps get val

Figure 4 The hierarchical decomposition of the BAD DOMAIN exception

condition of level 4.

=2y

Level 4
BAD*DOMAIN(d,R): -domain_exists(d,R)
| Level 3
BAD DOMAIN(d,R): 11§_get”rnval(R) = false

then undefined

else get_ﬁnval(get_;nvalé(R),d)
Level 2
BAD DOMAIN(d,R): 7if 33(1 £ 3 < get_ntab(rptr)) [get_tval(l,j,rptr)=R]

then undefined

else 3di(l ¢ i f_get_ptéb(get_;val(ﬁ,j,rptr)))
[gep~tval(l,i,get_ﬁval(6,j,rptr)) = d]
Miscellaneous Definition Level 1
A(i,j,tptr): get_yal(entry_}oc(j,tptr),comp“;oc3(i,tptr),
compﬁlocA(i,tptr),tptr)

BAD DOMAIN(R): 1if 33(1 43 £ get_val(nloc,0,nsz,rptr) A(1l,3,rptr)=R

then undefined

else Fi(1 ﬁ_i.ﬁ_getﬂyal(A(6,j,rptr))

[ACL,i,A(6,3,rptr)) = d]

Figure 5 Hierarchical expansion of the bad_domain exception condition

of level 4

VIi. Tmplementation of Security and Integrity Mechanisms

The hierarchical design methodology provides an excellent frame-

work within which to develop reliable integrity and security mechanisms.

25

Using the methodology an AUTHORIZATION module and an INTEGRITY module
have been designed to operate with the RELATION moduleidescribed earlier.
The specifications for these modules are contained in‘appendix A.

The AUTHORIZATION module is designed to provide facilities for
defining the authorized use of data objects (relations) and for detecting
any unauthorized uses which may be attempted. For example, the function

define auth(id,rname,op)
can be used to create an authorization for a user to perform a certain
type of operation on a specified data object. In this function call
id represents a user jdentification number for which the authorization
is being created, rname is a relation name, and op is an operation type
from the set {'VIEW', "MODIFY','INSERT', 'COMPUTE', 'GRANT', 'AUTH',
"REVOKE', 'INT', 'DROP', 'SAVE', 'GREATE'} . Thus, execution of
define_auth(id,'EMP','INSERT')
creates an authorization which permits the user specified by id to
ingert tuples into relation EMP.

To determine if a user has the authorization to perform a
particular operation, thg boolena function

check_auth(id,rname,op)
can be invoked. This function returns the value true if an authorization
exists for the user to perform the operation type on the specified relation
and false otherwise.

Examination of the specifications of the RELATION module indicates
how the appropriate use of exception conditions can be used to ensure

that no unauthorized use of the data base can occur. The function

-26—

insert_tuple(r,R), forbexample, contains the exception condition
NO_AUTH(uid,R,'INSERT')

which indiﬁates that the function cannot be successfully executed unless

the user has been given the required authorization. Each function

available to external users of the system contains such an exception

condition and thus at the level of specification for the RELATION-

INTEGRITY-SECURITY machine the security of the system is aésured.

The INTEGRITY module is designed to provide facilities for defining
the data types and allowable values for relation domains and for insuring
that the defined integrity of the data base is not violated by users of
the system. Data types of relation'domains can be specified using the
function

' set_dtype(d,R,dt)

where d is a domain of relation R and dt is either a system defined

data type from the set {real, integer, boolean, char} or a user defined
data type. Using the function 'define range' it is possible to specify
that all values of a domain lie within a particular range of values.
For instance,

defineﬁrange('AGE','EMP','Zf,lS,'A','<',65)
creates an integrity assertion which specifies that all values of domain
AGE of relation EMP must be greater tham or equal to 15 and less than 65,
In a similar manner it is possible to create an integrity assertion
requiring that all values of a domain be contained in a specified set.
Execution of

define_set ('SEX','EMP', {'M','F'})

for example, creates an integrity assertion specifying that all values

-27-

for domain SEX of EMP must be in the set {'M','F'} .

Several functions of the module can be used to detect attempted
user violations of the integrity of the data base. The boolean function
check dtype(d,R,Vv) retﬁrns the value true if the data type of variable v
is the same as domain d of relation: R and false otherwise. 1In a similar
manner the boolean function checkﬂyalue(d,R,v) returns true if v
is an allowable value as defined by the integrity assertions for domain
d of relation R and false otherwise.

Again, the definition of the RELATION module indicates how the
specification of exception conditions can be used to ensure the integrity
of the data base. The function insert_tuple(r,R), for example, contains
the exception conditions

BAD TUPLE(r,R)
and

BAD TVAL(r,R)
That is, if the data type of any component of tuple r is not the same
as the corresponding domain of relation R then the function cannot be
successfully executed. Also, if any component value of r is a value not
allowed by the integrity assertions of the corresponding domain of R,
then the function cannot be invoked. Any funcfion which somehow
changes values in defined relations contains similar exception conditions
to insure that inserted values are of the correct data type and are
allowed by the corresponding integrity assertions.

The specifications of the INTEGRITY module are>also designed to

insure that non-meaningful integrity assertions cannot be created.

—~28~-

For example, the BAD RANGE exception condition of the function 'define _
range' prevents the creation of a range integrity assertion for a domain
which already has values which violate the assertion. Likewise, a
RANGE _CONFLICT exception condition prevents the creation of a range
integrity assertion which cannot bé satisfied (e.g. 1 < 5 A i 2> 12).
The reliability of the security and integrity mechanisms is
enhanced by the fact that they are also hierarchically implemented and
verified. At the highest level the designer is concerned only with
identifying and specifying the types of authorization and integrity
control allowed in the system. The implementation and verification
of these concepts then occurs in the same step by step manner as

 described previously.

VII. Hierarchical Performance Modeling

Performance evaluation is generally carried out after a system
has been designed at a fine level of detail using simulation techniques,
or more often, after the system has been constructed using measurement.
This approach has the disadvantage that performance characteristics of
alternative designs cannot be compared at the design phase, and may result
in discarding a design at a detailed level due to performance reasoms.
In current modeling approaches a data base system is considered to be
structured into two well-defined representations: logical and physical.
The function of performance modeling, then, is to allow the system
designer to determine the most appropriate physical structure to which
to map his logical design. Based upon the results of current research

efforts, however, there seem to be some problems with this approach.

29~

For one, the complexity of the physical structure of a data base system
makes it difficult to derive meaningful performance models. Simplifying

assumptions which are often necessary to make the performance analysis

tractable also significantly affect the utility of the model. Also,
the results of such performance models are generally stated within the
framework ofvlow level query structures. The designer generally has
no basis for which to judge the performance characteristics of high
level user operations.

In the hierarchical design methodology, however, the distinction
between the logical and physical description of a data base system is
not so well defined. That is, through a stepwise process of design and
specification the designer gradually refines an abstraét representation
of the system into a sequence of less abstract representations. Thus,
at each step in the developmental process the designer is required to
make decisions which determine the eventual performance characteristics
of the system. However, in the hierarchical design methodology discussed
so far, there is no provision for the designer to evaluate the effects of
his design decisions at each level. As a result, the system developed
may not be meaningful due to performance reasons.

In this section, we make an attempt to incorporate the performance
evaluation into the design process. The technique to be presented will
enable the system designer to construct a performance model in parallel
" with the design and implementation of this system. This performance
model can be used at each stage to evaluate the performance characteristics
of the current design. Based upon this evaluation the designer may derive
alternative designs or backtrack to a pervious design level to achieve

the desired system performance.

-30-

We propose a technique of hierarchical performance evaluation by
describing the process at the ith level of system design. That is, for
adjacent machines Mi and Mi—l and implementation Ii_l the evaluation pro-
cess consists of two phases:

1. a formal verification of the performance properties of each

operation fj € Fi based upon the implementation Ii—l’ and

2. an analysis process in which the overall performance properties
of implementation Ii~l on machine Mi—l based on the expected use of
machine Mi is predicted.

The formal verification of the performance properties of operation

i,
fj is accomplished through an inductive assertion proof on virtual program

p§ (Wegbreit E1976]). This process results in a performance assertion
which expresses the expected performance of f§ as a function of the
expected performance of the operations of Mi—l' Applying this process

at every level of design and implementation, then, results in a hierarchy
of performance assertions which can be used to express the expected
performance of each opefation of the user level machine Mn as a function
of the expected performances of the operations of the current machine
design Mi—l'

The analysis process is achieved through the use of certain design
and useage parameters. Each level of a hierarchically designed data base
system represents a collection of abstract data objects thch in some way
can be used to store and access data. Such data objects may correspond
to indexes, links, directories or simple storage structures for data.

The design parameters for each level then, represent information about

-31-

the expected number of, size of, and access time for each abstract object
type for that level. Usage paramenters on the other hand relate informa-
tion about the ekpected pattern of user operations. Consider, for
example, a relational system in which a particular type of access path
may exist for any relation domain. One usage parameter, then, would be
the probability that a user operation specified a domain for which this
access path existed. A design parameter, however, would be the average
probability that any domain would have this access path.

The first applicatiom of these parameters is in the derivation of
the expected storage requirements for the system. That is, certain
design and usage parameters may be used to form an expression which
relates the expected storage requirements of each object type of Mi
in terms of storage requirements of each object type of level Mi—l'

The second part of the analysis uses the hierarchical performance
assertions derived in the formal verification process to achieve a case
by case analysis of the properties of the design'of Mi—l' Each case
corresponds to a different set of assumptions regarding the relative
values of design and usage parameters.

Results from this analysis can be used by the designer in two ways.
First, they can be compared with the analysis results for an alternative
design to determine the most appropriate implementation path. Next,
the results can be used to aid in any data base design process for the
system.

There are several advantages to this approach to performance
modeling. For one, the nature of the hierarchical model constructed

using this approach enables the derivation of the performance properties

-32-

of the user level structures and operations at each step in the design
process. This has not been achieved in current performance models. This
method should allow the construction of more complex models of data base
system performance. The hierarchical nature of the model enables
performance issues to be understood at different levels of abstraction.
Moreover, simplifying assumptions can be made at any level to reduce the
complexity of the model as necessary. This approach also provides the
designer witﬁ a much greater degree of flexibility. At each level the
designer is free to evaluate the performance characteristics of altermative
designs and choose the one which most satisfies his requirements. TFinally,
the performance analysis should make the actual data base deéign relatively
straightforward. That is, the structure of the performance model is such
that values of design parameters may be altered at each level to obtain
performance characteristics of a wide range of data base designs.

An example illustrating the hierarchical performance evaluation
technique is given in Appendix E.

It.should be pointed out that the technique presented in this section
is a very crude first try toward the development of hierarchical perform-
ance models. In general, design alternatives may be characterized by
means of a decision tree. At the top levels of the tree, the designer
has to make basic decisions regarding the structure of the system while
detailed decisions about smaller subsystems are made at lower decision
nodes. At top levels, performance models are only used to decide
whether certain branches of the decision tree should be extended or

whether searches along these branches should be stopped at this time

-33-

since these avenues are not likely to yield satisfactory designs.

It is not possible to have accurate models at the conceptual
design level since accurate models require the specification of detailed
system parameters which the designer cannot provide at top levels of
the décision tree. Gross models focus attention on a small number of
key parameters which can be specified by the designer. These models
should test the éensitivity of system performance to assumptions made
in the model.

Another important feature of the use of hierarchical performance
modeling is that it enhances the development of "families'" of data
base systems which share certain operating characteristics and yet which
are implemented in different ways. This concept is perhaps best
illustrated by the tree structure shown in Figure 6. FEach node in this
tree represents a particular machine design at some level while the
arcs between nodes are implementation 'pathways'. (Thus, for example,
the root node represents a user level machine while each terminal node
corresponds to a different implementation machine or operating environ-
ment.) Any node above the first level may have one or more sons, each
of which is a possible implementation alternative for the node. A
complete data base system design, therefore, corresponds to a single
pathway through the tree.

It should be clear from this diagram that the methodology provides
the designer with great flexibility in developing alternative designs

for different operating environments. The cost of developing these

=34

FIGURE 6 Tree representation of a '"family" of data base systems.
Each path through the tree (e.g.,'{Ml,Mé,Mé,Mg}) is a

complete system desigﬁ.

=35«

alternative designs is minimized because they may share design character-
istics as much as possible. This, of course, enhanceé the portability

of a particular data base system design because small perturbations in
the operating environment require only small changes in the system
design.

Perhaps the best example to illustrate the "family" concept is the
development of a data base system to operate in a network environment,
each node of which represents a different operating environment. The
methodology would allow the construction of system software for each
node in the configuration at minimal cost because design decisions would
be shared among the systems as much as possible. DMoreover, as new
nodes were added to the configuration appropfiate systems could be

achieved by slight modifications to existing designs.

VIII. An Assessment of the Methodology: Promises and Problems

The methodology presented in this paper is but a small step in
the development of a design theory for data base systems. This approach
to data base system design and implementation has several advantages over
- ad hoc methods currently used. We summarize a few of the most important

ones here.

1. Reliability of Design

The multi-level design process enables the designer to concen-
trate on the relevant aspects of each level without worrying about
implementation details. Also, because the implementation occurs in

small steps the probability of design errors is reduced.

-36-

2. TFormal Consistency Proofs

The hierarchical nature of the implementation reduces the
verification of ghe entire system into a sequence of the hierarchical
proofs designed to insure the consistency of the specification and
implementation of adjacent levels. Because the verification proceeds
in sequence with the design process, implementation errors can be
detected at the same level in which they are introduced.

3. Localized Effects of Modification

A data base system is a dynamic entity which requires constant
modification and maintenance. FEven after the system is installed and
operating, frequent modifications may be required‘to correct programming
errors or to increase system efficiency. Likewise, design changes may
be necessary to adapt the system to changing user requirements or to a
new operating environment. If system is poorly designed then the impact
of such modifications may be so great that maintenance is a significant
part of the overall development cost. For a hierarchically structured
system discussed in this paper, at each level of the system design an
abstract concept is realized by a formally specified (Parnas) module.
Because the module structures hide all aspects of the implementation,
modifying a machine design or implementation requires only localized
changes in the system.

4. Understandability

The hierarchical design process allows the designer to under-

stand the operation of the system at each level of abstraction before

-37=

proceeding with the implementation. The formal specification of each
level also serves as a record of the design decisions made during the
development process. As the design process unfolds, it is important to
documenf the design cycle itself, document which alternatives were
rejected and for what reasons, and document model inputs and predications.
Such documentation is helpful in avoiding earlier mistakes, provides
continuous evaluation of the models and enhances the understandability

of the final product.

5. Formal Specification of Exception Conditions

The formal specification of each module provides for the
designation of exception conditions for machine operations. As a result,
integrity and security checking can be automatically specified. Also,
the hierarchical nature of the design process enables the specification
of exception conditions at the most appropriate level of abstraction.

6., Machine and Application Independence

The operational view of data semantics inherent in Parnas
modules enhances the achievement of machine and application independ-
ence in the data base system.

7. Design Flexibility

The methodology enables the development of data base system
"families" in which systems are implemented differently and yet share
design concepts as much as possible.

8. Hierarchical Performance Modeling

The methodology includes a performance modeling technique

which enables the designer to estimate the performance characteristics

-38-

of his design at each stage of the development process.

There are of course, many difficult problems remaining to be tackled
in order for the methodology to be effective. We will point out a few here.

1. Systems which are intended to support multiple users are typically
designed and modeled as single user systems. Necessary modifications to
support concurrent access are accomplished once the design is completed.
This, however, can have a substantial impact upon syStem performance.
Guidelines, therefore, need to be developed for incorporating the concept of
multiple user support into the initial phases of design and modeling.

2. There needs to be additional design tools for testing formal spe-
cification so that a designer is reassured that a lengthy formal statement
is "consistent" with his intuition.

3. Development of hierarchical performance models to formalize the
technique presented informally in this paper. The performance modeling
sybsystem not only should be able to prediet the gross system performance
characteristic at each level, but should also be able to provide guide-
lines for structuring data bases which can best fit the system. It seems
that some of the existing work in queueing network theory and Baysian
decision theory could be useful in this regard.

4. Automatic aids are needed for the documentation of design process.

5. Incorporating intelligence in the specification and/or design. Al-
though this is a problem that researchers in artificial intelligence area

have been working for many years, it seems that this problem is

-39~

finally tractable, at least to a certain degree, due to emergence of
many similar results in artificial intelligence, data base engineering,
and software engineering. For example, the notion of a "demon'" as
a basic unit of intelligence used in many AI systems is discovered
independently in data base systems as a ''trigger" system, and in pro-
gramming the {ON»<{condition} statement in PL/1.

Our overall assessment is that the time has finally arrived for
the dévelopment of a comprehensive design methodology for data base

systems.

IX. Acknowledgment

It is a pleasure to acknowledge the stimulating discussions and
suggestions of Daniel Chester, Sakti Ghosh and T. L. Kunii during the
evolution of this paper.

LAcknoWIedgments also are due to National Science Foundation for
partial support of this work under grant DCR 75-09842
and to IBM for the support given to the first author under an IBM

fellowship.

40~

10.

11.

12,

13.

ll"‘

15.

References

Astrahan, M.M. et al [1976], "System R: Relational Approach to
Database Management', ACMTODS, Vol. 1, No. 2, 97-137.

Aurdal, E. and Solberg, A., [1975], "A Multiple Process for Design of
File Organization', CASCSDE Working Paper No. 39, Royal Norwegian
Council for Scientific and Industrial Research.

Bayer, R., and McCreight, E. [1972], "Organization and Maintenance
of Ordered Indexes'", Acta Informatica, Vol. 1, No. 3, 173-189..

Chen, Peter P.S., [1975], "The Entity-Relationship Model -~ Toward a
Unified View of Data'", Rech. Report, Center for Information System
Research, Sloan School of Management, M.I.T.

Codd, E.G. [1970], "A Relationsl Model of Data for Large Shared Data
Banks'", CACM, Vol. 13, No. 6, 377-387.

Engles, R.W., [1972], "A Tutorial on Data Base Organization",
Annual Review in Automatic Programming, Vol. 7, Part 1, 1-64.

Eswaran, K.P., [1976], "Aspects of a Trigger Subsystem in an Integrated
Data Base System', Proc. 2nd Int. Conf. on Software Engineering,
243-250.

Goodenough, John B., [1975], "Exception Handling: Issues and a Pro-
posed Notation', CACM, Vol. 18, No. 12, 683-696.

Hammer, M. and D.J. McLeod, [1975], "Semantic Integrity in a Relational
Data Base System', Proc. Int. Conf. on Very Large Data Bases.

Kraegeloh, Klaus-Dieter and Lockemann, Peter C., [1975], "Hierarchies
of Data Base Languages: An Example", Information Systems, Vol. 1.

McKeeman, W., [1975], "On Preventing Programming Languages from
Interfering with Programs', IEEE Trans. on Software Engineering, Vol. 1.
No. 1, 19-25.

Madnick, S.E. and Alsop, J.W., [1969], "A Modular Approach to File
System Design', Proc. AFIPS, Vol. 34, 1-12.

Mealy, G.H., [1967], "Another Look at Data', Proc. AFIPS, Vol. 31,
525-534,

Mylopoulos, J., S. Schuster, and D. Tsichritzis, [1975], "A Multi-
level Relational System', Proc. NCC 1975, AFIPS Press, 403-408.

‘Parnas, D.L., [1972], "A Technique for Software Module Specification

with Examples'", CACM, Vol. 15, No. 5, 330-336.

-41~

16.

17.

18.

19.

20.

21.

22.

23.

24,

Parnas, D.L., [1976], "On the Criteria to be Used in Decomposing
Systems into Modules'", CACM, Vol. 15, No. 12, 1053-1058.

Parnas, D.L., [1976], "On a Buzzword: Hierarchical Structures:, IFIP

Proc.

Robinson, L. and K.N. Levitt, [1977], "Proof Techiniques for Hierar-
chically Structured Programs'", to appear - Current Trends in
Programming Methodology, Vol. 2, (ed. Yeh), Prentice-Hall.

Schnid, H.A. and Swenson, J.R., [1975], "On the Semantics of the

' Relational Model", Proc. 1975 ACM-SIGMOD Conference, 211-223.

Schmid, H.S. and P.A. Bernstein, [1975], "A Multi-level Architecture
for Relational Data Base Systems', Proc. Int. Conf. on Very Large

Data Bases, 202-226.

Senko, M.W., "DIAM II and Levels of Abstraction', [1976], Proc. Conf.
on DATA: Abstraction, Definition and Structure, 121-140.

Smith, J.M. and D.C.P. Smith, "Data Base Abstraction:, CACM,
(to appear).

Weber, H., [1976], "The D-graph Model of Large Shared Data bases:
A Representation of Integrity Constraints and Views of Abstract
Data Types', IBM TC (San Jose).

Wegbreit, B., [1976], '"Verifying Program Performance", JACM, Vol. 23,
No. 4, 691-699.

42~

