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Abstract 
 

We consider a supply function equilibrium (SFE) model of interaction in an electricity 

market. We assume a linear demand function and consider a competitive fringe and 

several strategic players having capacity limits and affine marginal costs. The choice of 

SFE over Cournot equilibrium and other models and the choice of affine marginal costs is 

reviewed in the context of the existing literature. 

 

We assume that bid rules allow affine or piecewise affine non-decreasing supply 

functions by firms and extend results of Green and Rudkevitch concerning the linear SFE 

solution. An incentive compatibility result is proved. We also find that a piecewise affine 

SFE can be found easily for the case where there are non-negativity limits on generation. 

Upper capacity limits, however, pose problems and we propose an ad hoc approach. 
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We apply the analysis to the England and Wales electricity market, considering the 1996 

and 1999 divestitures. The piecewise affine SFE solutions generally provide better 

matches to the empirical data than previous analysis. 

 

Keywords: Electricity restructuring, supply function equilibrium, divestitures 

JEL codes: D43, L13, L51, L94. 

 

1. INTRODUCTION 

This paper explores the linear version of the supply function equilibrium (SFE) model. 

The general SFE approach was introduced by Klemperer and Meyer (1989) and applied 

by Green and Newbery (1992) to the electricity industry reforms in England and Wales 

(E&W). Green (1996) used a linear version of this model and applied it to prospective 

divestitures of generation assets mandated by the regulator of the electricity industry in 

E&W.  We offer a generalization of Green’s model and extend the application to 

subsequent changes in the horizontal structure of the electricity market in E&W, beyond 

those studied by Green.  In particular, we introduce cost heterogeneity, capacity limits, 

and non-zero marginal cost intercepts into the linear supply function equilibrium 

framework.  We apply these refinements to analyze divestitures in the England and Wales 

market in the period 1996-1999.  Before exploring these issues and describing the 

England and Wales market, it is worthwhile addressing two threshold questions. First, 

what does SFE offer beyond the traditional Cournot framework and other alternative 

models such as multi-unit auction models and agent-based simulations? Second, why use 

the linear form of SFE rather than the more general formulation? 

 

1.1 Why Not Cournot? 

SFE competes with the Cournot model as a practical tool for studying oligopoly in the 

electricity industry. Recent reforms of the electricity industry around the world have 

stimulated numerous studies of oligopoly behavior in restructured electricity markets. 

Papers of this kind have been published reflecting issues in Scandinavia, Spain, New 
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Zealand, and U.S. electricity markets, particularly California.1 All of these papers rely on 

the Cournot framework.  

 

SFE is attractive compared to Cournot because it offers a more realistic view of 

electricity markets, where bid rules may require suppliers to offer a price schedule that 

may apply throughout a day, rather than simply put forth a series of quantity bids over a 

day. In the Cournot framework, price formation depends exclusively on the specification 

of the demand curve (and on the specification of a competitive fringe.)  The market price 

is determined by the intersection of the aggregate quantity offered and the demand curve. 

It is notoriously difficult to specify the market demand curve in electricity, due to low 

short-run elasticity and inexperience with market competition in electricity. As a result, 

price predictions from Cournot models are not particularly reliable.2  

 

The SFE approach also requires the specification of the dependence of demand on price 

and therefore is not immune to the problem of sensitivity to specification of the market 

demand.  However, the results from SFE analysis are less sensitive to the dependence of 

demand on price.  

 

The SFE model formulation also offers the possibility of developing some insight into the 

bidding behavior of firms. One recent example of this application is the use of the SFE 

framework by the Market Monitoring Committee of the California Power Exchange 

(Bohn, Klevorick, and Stalon, 1999).  

 

A final attraction of the SFE model is that it explicitly represents an obligation to bid 

consistently over an extended time horizon such as a day.  Baldick and Hogan (2002) 

show that SFE prices will be below Cournot prices throughout such a time horizon.  In 

                                                      
1 For Scandinavia, see Andersson and Bergman (1995). For Spain, see Alba et al (1999), Ramos et al 
(1998) and Rivier et al (1999). For New Zealand, see Read and Scott (1996) and Scott (1998). In all three 
of these countries hydro storage plays an important role. For the US, see Borenstein and Bushnell (1999). 
US markets typically involve network congestion issues. Network congestion is treated in an oligopoly 
context by Hogan (1997) and by Borenstein, Bushnell and Stoft (2000). 
2 For example, Frame and Joskow (1998) offer the following observation made in the context of reviewing 
a particular Cournot model implementation in electricity, “We are not aware of any significant empirical 
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contrast, the Cournot framework does not represent the obligation to bid consistently.  

This obligation was important in the England and Wales system that we model. 

 

1.2 Why Not an Multi-Unit Auction Model? 

Multi-unit auction models are another alternative to the SFE approach.  For example, von 

der Fehr and Harbord (1993) propose a multi-unit auction model with discrete cost and 

bid steps for the England and Wales market.  As with the Cournot model, however, their 

multi-unit auction model does not directly represent the requirement to bid consistently 

over a time horizon. 

 

1.3 Why Not an Agent-Based Model? 

Day and Bunn (2001) describe an agent-based numerical model that models firms as 

seeking optimal responses to the bids of the other firms.  Baldick and Hogan (2002) 

describe a similar numerical framework.  These computational equilibrium approaches 

involve iterations in the function space of supply functions and have the potential to 

directly treat capacity constraints, price caps, and other details directly.  However, such 

approaches require significant computational effort and because there is no analytic 

solution do not provide qualitative insights into bidding behavior.  Our interest here is in 

developing qualitative insights into the effect, over a year, say, of changes in market 

structure such as divestments of capacity. 

 

1.4 Why Use the Linear SFE Model? 

In the SFE model, functional forms must be specified for demand, cost, and supply 

functions.  We first discuss demand.  A particularly simple form is to assume a “linear” 

demand function; that is, at each time the demand as a function of price has a non-zero 

intercept and a constant negative slope.3  Assuming that the slope is independent of time 

                                                                                                                                                              
support for the Cournot model providing accurate predictions of prices in any market, let alone an 
electricity market.”  
3 We follow the convention of calling this specification a “linear” demand function although it is more 
precisely described as “affine.”  In discussing cost and supply functions, we reserve the word linear for 
affine functions with a zero intercept. 
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greatly simplifies the model.  Most authors use linear demand functions with demand 

slope independent of time.4 

 

Next we consider the marginal cost as a function of production.  There are a range of  

possible functional forms.  The simplest non-trivial case is an affine function with zero 

intercept or, equivalently, all cost functions having the same non-zero intercept.  

Following the literature, we will refer to marginal costs that are affine with zero intercept 

as “linear” marginal costs.   

 

In some models, there is a competitive fringe as well as strategic firms.  The functional 

form for the strategic firms and the fringe can, in principle, be different.  Two significant 

issues explored here concern whether or not the strategic firms are assumed to all have 

the same cost functions and whether or not the strategic firms and fringe have maximum 

capacity limits.  Both of these issues are empirically important.  In the following, if all 

strategic firms have the same cost functions and all have the same capacity limits (or 

there are no capacity limits on the strategic firms) then we will say that the cost functions 

of the firms are symmetric or that the firms are symmetric.  Otherwise, we will call the 

firms asymmetric. 

 

Finally, consider the supply as a function of price.  Again, there are a range of possible 

functional forms.  Typical applications use a form for the supply function that is similar 

to the assumed form of the (inverse) marginal cost function.  If the cost functions are 

symmetric then the equilibrium supply functions often turn out to be symmetric.5 

 

Assuming linear demand and affine marginal costs greatly simplifies the SFE 

mathematics.  For example, Turnbull (1983) analyzes an asymmetric two firm model 

with linear demand, affine marginal costs, and affine supply functions.  The resulting 

conditions for the SFE are straightforward to solve. 

                                                      
4 A computational advantage of the Cournot framework is that constant elasticity demand curves are 
straightforward to represent, as in Borenstein and Bushnell (1999), p.302. 
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Green and Newbery (1992) (GN) generalize the linear demand and linear marginal cost 

asymmetric two firm model by analyzing strategic firms having quadratic marginal costs.  

This requires numerical solution of differential equations and is undertaken in the interest 

of greater realism (p.941). For the duopoly structure examined, GN report results 

primarily for the case of symmetric strategic firms.  As the structure of the electricity 

industry in E&W has changed, realism suggests that the symmetry assumption and the 

duopoly assumption both need to be dropped.   

 

The asymmetric duopoly case is also solved by GN and by Laussel (1992).  Neither of 

the latter two papers require linearity.   However, there does not appear to be any other 

results on asymmmetry beyond the duopoly case for non-linear marginal costs.  

 

The great advantage of the SFE with linear marginal costs over the more general form is 

the ability to handle asymmetric firms when there are more than two strategic firms.  

Green (1996) does not emphasize this property, but it turns out to be useful in practice. 

As noted above, the general SFE requires solving a set of differential equations or 

iteration in the function space of supply functions. These approaches are sufficiently 

difficult that most authors typically rely on the case of symmetric firms. For practical 

applications, the asymmetric case is more interesting. This motivates the use of the linear 

model for the asymmetric, multiple strategic firm industry we consider. 

 

A final justification of the affine SFE model is that in recent work, Baldick and Hogan 

(2002) show that when there are no capacity constraints and the firms are symmetric with 

affine marginal costs, then all the SFEs besides the affine SFE are unstable in the sense 

that given arbitrarily small perturbations to the supply functions from equilibrium, the 

best responses of the firms involve larger perturbations from the equilibrium.  While this 

result has not been proven in the general case of asymmetric firms, numerical simulations 

of asymmetric firms in Baldick and Hogan (2002) suggest that SFEs that are less 

                                                                                                                                                              
5 Klemperer and Meyer (1989) show that if the demand has infinite support then symmetric cost functions 
imply that the equilibrium is symmetric.  With finite demand support, as in the electricity market 
formulation, a symmetric equilibrium is no longer guaranteed. 
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competitive than the affine SFE are unstable and therefore unlikely to be observed in 

practice.   

 

1.5 Organization of paper 

The remainder of the paper is organized as follows. Section 2 introduces the affine 

marginal costs case. We characterize the affine SFE and prove an incentive compatibility 

result regarding the price intercept of the equilibrium supply bids.  Section 3 introduces 

capacity constraints. These have been addressed for strategic firms by GN under the 

assumption that the cost functions are identical for each firm. We address the case of 

capacity constraints, both for the strategic firms and fringe, where there are asymmetric 

costs.  This case is more realistic for the England and Wales market subsequent to the 

1996 divestiture.  We show that this situation is very much more complex than the case 

of asymmetric costs and capacity constraints in the Cournot framework and propose an 

ad hoc approach to dealing with the capacity constraints. Section 4 applies these methods 

to recent structure and price changes in the electricity market in England and Wales. The 

theoretical issues discussed in Sections 2 and 3 are illustrated by the numerical examples 

introduced in section 4. Section 5 offers some conclusions.  

 

2. THE AFFINE MARGINAL COST CASE 

As discussed above, the SFE models reported in the literature typically assume that the 

bidders’ marginal cost functions have zero intercept, or, equivalently, assume that all 

have a common intercept.  This makes the SFE easier to find and was plausible for the 

coal technology in England and Wales market prior to the 1996 divestitures.  For 

electricity markets with heterogeneous technologies, including gas as well as coal, this 

assumption is neither plausible nor practically useful. 

 

2.1 What is Gained 

The requirement that marginal cost functions have zero intercept is compared to where 

they are allowed to have a positive intercept.  We evaluate these two approximations in 

terms of the more realistic case of piece-wise linear marginal costs. Figure 1 illustrates 

the two approximations to a typical piece-wise linear marginal cost curve characteristic of 
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electricity generation firms.  In these curves, we have neglected issues such as start-up 

and no-load costs of individual generating units owned by a firm and subsumed them into 

a piece-wise linear firm marginal cost curve.  The two approximations to this curve will 

be used in Section 4 below. If the marginal costs curves are equal at full production, as 

illustrated in figure 1, then assuming that the marginal costs pass through the origin will 

over-estimate profits compared to the piece-wise linear function.  The line through the 

origin is likely to be particularly unrealistic when the supply of a firm is from the low end 

of its capacity. Our examples in Section 4 will show cases of this kind.   

 

We use an affine approximation as in figure 1 that matches the marginal cost at both full 

and zero production.  This affine approximation will typically under-estimate profits, 

although other affine approximations could be chosen to potentially better estimate 

profits.  
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Figure 1: Affine Approximations to a Piece-wise Linear Marginal Cost Curve 

 

 

2.2 Formulation 

We begin with the same general form of the demand curve as in Green, namely: 
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D(p,t) = N(t) – γp.       (1) 

 

The underlying load-duration characteristic is specified by the function N(t), which is 

assumed to be continuous.  It represents the variation of demand over a time horizon, 

during which we assume that the bid supply functions are required to be held constant.  

The load-duration characteristic is conventionally represented as a non-increasing 

function and we will assume that the length of the time horizon has been normalized so 

that it ranges from 0 to 1.  Furthermore, for each time t, the demand D is “linear” in p 

with slope dD/dp = – γ.  The coefficient γ  is assumed to be positive.   

 

The total cost function for firm i, Ci, i = 1,…,n, is given as a strictly concave quadratic 

function of production.  This form results in an affine marginal cost function for each 

firm: 

 

  ∀i, ∀qi ≥0, Ci(qi) = ½ ciqi
2 + aiqi,      (2) 

 

∀i, ∀qi ≥0, dCi/dqi(qi) = ciqi + ai,           (3) 

 

with ci > 0 for each firm i for strictly convex costs.  In contrast to previous analysis in the 

literature, we allow the ai to be non-zero and to be specific to each firm.   

 

We assume that the market rules specify that the supply function of each firm is affine; 

that is, of the form: 

 

∀i, qi(p) = βi (p – αi).              (4) 

 

The parameters αi and βi are chosen by firm i subject to the requirement that βi be non-

negative.  Strictly speaking, we should modify the supply function (4) so that it is always 

non-negative; however, we will initially assume that the realized prices over the time 

horizon are such that no supply functions ever evaluate to being negative.  We will 
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subsequently revisit this assumption and generalize the allowed form of the supply 

function to piecewise affine non-decreasing functions. 

 

2.3 Solution 

Klemperer and Meyer (1989), Green and Newbery (1992), and Green (1996) describe the 

optimization problem faced by firm i assuming that the supply functions qj of the other 

firms j remain fixed over the time horizon.  The basic equation governing the SFE 

solution is provided by Green (1996) as his equation (4), which we quote here for 

reference: 

 

∀i, qi(p)  = (p – dCi/dqi(qi(p)))(–dD/dp  + ∑j ≠i dqj(p)/dp).  

  

If there are no capacity constraints, then any solution to these coupled differential 

equations such that each qi is non-decreasing over the relevant range of prices is an SFE.  

Notice that these equations do not involve the load-duration characteristic N(t) but do 

depend on the demand slope dD/dp.   

 

Substituting from (1), (3), and (4) above into Green’s equation (4), noting that dqi/dp = 

βi, we obtain: 

 

∀i, βi(p – αi) = (p – ciβi(p – αi) – ai)(γ  + ∑j≠i βj).     (5) 

 

Assuming that the bid supply function must be consistent across all times, this equation 

must be satisfied at every realized value of price p.  If there are at least two distinct 

values of price that are realized and satisfy (5) then equation (5) is an identity.   That is, 

we can equate coefficients of like powers of p on the left and right hand side of the 

equation.  Equating coefficients of p, we obtain Green’s equation (6):   

 

∀i, βi = (1– ciβi){γ +  Σj≠i βj}.      (6) 

   

Equating coefficients of the constant terms we obtain: 
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∀i, – αi βi = – (ai – ciβiαi){γ + Σj≠i βj}.     (7) 

   

Both (6) and (7) must be satisfied with non-negative values of βi for each firm i for an 

affine SFE to exist.  Substituting from (6) for βi for each i into the left hand side of (7) 

yields: 

 

∀i, –αi (1– ciβi){γ +  Σj≠i βj} = – (ai – ciβi αi){γ +  Σj≠i βj}. 

 

Since the required solution must satisfy ∀i, βi ≥ 0 then, if γ > 0, we have that γ + Σj≠iβj > 

0 and we can cancel this factor on both sides.  Rearranging the resulting expression yields  

αi = ai for each firm i.  Conversely: 

• if αi = ai for each firm i and if (6) is satisfied with non-negative βi, 

• then (5) is satisfied and the resulting αi and βi specify an affine SFE. 

 

Rudkevich (1999) shows that there is exactly one non-negative solution to (6) and 

presents an iterative scheme in the special case of all firms having zero intercept (that is, 

∀i, ai = 0) for finding the solution to (6).  The iterative scheme begins with each firm 

bidding “competitively.”  That is, each firm i initially bids supply functions with slopes βi 

= 1/ci.  Rudkevich shows that if each firm at each iteration updates its value of βi so as to 

find the profit maximizing value for firm i, given the values of βj for the other  firms from 

the previous iteration, then the sequence of iterates converges to the optimal solution of 

(6).   

 

In the affine case, we can slightly generalize Rudkevich’s scheme to imagine each firm i 

bidding supply functions specified by the values of βi and αi at each iteration, with βi and 

αi chosen by firm i at each iteration to maximize profits given the most recent bid supply 

functions of the other firms.  From the identity following (7), the optimal value of αi at 

each iteration will satisfy αi = ai.  Rudkevich’s result therefore also provides an 

explanation for how the firms could arrive at the affine SFE, given that they all begin by 
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bidding competitively and update their bids myopically at each iteration based on the 

most recent bids of the other firms.  As discussed by Rothkopf (1999), this update ignores 

the repeated game aspects of the daily pool.   

 

In Baldick, Grant, and Kahn (2000), Appendix 1, we generalize Rudkevich’s result to 

show that if n c
ci i

jj

< + +
+

F
HG

I
KJ∑1 1 1

1

2

min γ
γ

 then Rudkevich’s update is a contraction 

map and so the iterative scheme converges to the unique optimum from any starting 

point. The condition n c
ci i

jj

< + +
+

F
HG

I
KJ∑1 1 1

1

2

min γ
γ

 is always satisfied for n = 1,2, but 

for larger values of n it depends on the cost function and demand function.  If the 

condition is satisfied, then Rudkevich’s iterative scheme converges to equilibrium even 

if, for example, some firms begin by bidding competitively while others begin with non-

competitive bids.  That is, the unique affine SFE is stable in the function space of affine 

supply functions. 

 

Since the affine supply function is not dependent on the load-duration characteristic, the 

same slopes βi will apply for any load-duration characteristic.  Therefore, we can estimate 

the profits over a year, say, by considering the yearly load-duration characteristic.  That 

is, although the bids could be changed on a daily basis in the England and Wales pool 

during the period we consider, we can equivalently use the analysis to calculate a single 

set of supply functions that apply throughout a year.  This allows a significant reduction 

in computational effort compared to analysis on a day-by-day basis.  It also provides a 

convenient framework for comparing pre- and post-divestiture market structure. 

 

The above discussion and uniqueness result are both predicated on the assumption that 

bid supply functions are affine and that there are no capacity constraints, either minimum 

or maximum capacity constraints.  We will consider minimum and maximum capacity 

constraints in subsequent sections.  If non-affine supply functions may be bid then there 

are in general multiple SFEs.  However, Baldick and Hogan (2002) show that, in some 
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circumstances, non-affine SFEs are unstable in the function space of piecewise 

continuously differentiable supply functions so that only one of the multiple SFEs would 

be exhibited in practice. 

 

2.4 Aggregate demand and supply 

To calculate equilibrium prices over the time horizon, we now consider the aggregate 

demand and price as a function of time. Summing supply over all firms, we have: 

 

∀t, N(t) – γp(t) =  Σi βi  (p(t) – ai),  

                           = p(t) Σi βi  - Σi βiai, 

where the sum is over all i. 

 

So, 

 

∀t, p(t) = (N(t) + Σiβiai)/(Σiβi + γ).         (8) 

Equation (8) exhibits the equilibrium price at each time in the time horizon in terms of 

the load-duration characteristic. 

 

2.5 Incentive compatibility 

The equilibrium condition αi = ai for each firm i means that it is incentive compatible for 

bidders to reveal the intercepts of their marginal cost functions.  Bidding a supply 

function with any other value of intercept results in less profit for the firm.  This 

generalizes a similar result in Rudkevich (1999), which was proven for the case where 

marginal costs had intercept ai = 0.  A straightforward economic interpretation of this 

result is that, at low output levels, the bidders have less motive to exaggerate their cost 

since they have less infra-marginal capacity than at high output levels.  Interestingly, 

however, the result that αi = ai for each firm i does not rely on low output levels and 

prices ever being realized.  The result only depends on their being at least two, perhaps 

high, prices being realized. 
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2.6 Low demand and price levels 

As remarked, if prices fall below the value of ai for a firm i then the affine functional 

form (4) will require negative production, which is outside the region of validity of the 

cost function specification (2).  A minor generalization of the affine supply function 

would allow for piecewise affine, non-decreasing bid supply functions from each firm.  

That is, we now assume that the bid rules allow each firm to bid piecewise affine, non-

decreasing supply functions.   

 

In practice, electricity markets typically require bid supply functions that are functions 

from quantity to price.  A jump in a supply function of a firm can be interpreted as a 

block of power offered at constant price.  Pool operators typically have discretion to 

choose any or all of such an offered block to meet demand.  That is, if demand crosses 

aggregate supply at a jump in the supply function then we will assume that the price and 

quantity are determined by interpolating the quantities at the jump.  Abusing the 

definition of a function slightly, we will also depict (in figure 2) supply functions with 

this interpolation shown explicitly.  That is, we will depict supply “correspondences” 

where, at points of discontinuity, the “function” is multi-valued. 

 

With the above assumption for price and quantity determination at a jump, we can 

construct a candidate SFE in piecewise affine supply functions by piecing together 

several supply functions.  In each piece, we use the optimality conditions (6) to evaluate 

the slope of the supply functions of the firms that are actually generating.6  So long as the 

resulting composite supply functions are all non-decreasing then the function is a 

candidate for the SFE.  

 

We illustrate this approach for n = 2 firms and consider piecewise affine supply functions 

of the form: 

 

                                                      
6 In fact, we must modify the optimality conditions by recognizing that a piecewise affine supply function 
is not differentiable at its break-points.  However, its directional derivatives exist and for our specification 
of the slopes we find that Green’s equation (4) is satisfied in each direction. 
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The price intercept at ai for firm i reflects the fact that for prices below this level it cannot 

be optimal for firm i to produce anything.7  Let us assume that a1 < a2 and seek the 

location of the break-point p' in each supply function.  Notice that for prices up to a1 

there will be no production by either firm.   

 

For prices between a1 and a2, only firm 1 will generate.  For this range of prices, we can 

consider the SFE where firm 1 is the only firm.  Substituting into (6) yields 

β γ
γ

β1
1

21
0=

+
=

c
.   Also,  ,  since firm 2 is not producing in this region.  These values 

apply for prices up to a2.  That is, the higher break-point in equation (9) is at for 

this example.   

′ =p a2

 

At higher prices than , both firms will generate and the resulting equilibrium 

slopes of the demand functions are given by the simultaneous solutions of: 

′ =p a2

β γ β
γ β

β γ β
γ β1

2

1 2

1

1 11 1
' '

( '
'

( '
.=

+
+ +

=2)
'

)
+

+ +c c
  and  By writing the conditions in this way, 

Baldick, Grant and Kahn (2000), lemma 1 shows that β β β β1 1' '≥ ≥  and 2 2 .  

 

Because β β β β1 1' '≥   and 2 2 ,≥  the resulting piece-wise affine supply functions of the 

form (9) are non-decreasing, as illustrated in figure 2 for a firm i.  In figure 2, the price 

intercept is at ai = £6/MWh, while the break-point is at p' = a2 = £12/MWh.  (For firm 2, 

supply stays at zero between p =  £6/MWh and p = £12/MWh since 2 0.β = ) 

 

                                                      
7 We are ignoring issues such as start-up costs. 
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If there is more than one firm with a low price intercept and if prices below the break-

point p' are realized then our construction fails because an undercutting strategy will 

disrupt the equilibrium.  In particular, the two cheaper firms will undercut each other 

below the price p'.  Numerical simulations in Baldick and Hogan (2002), however, 

suggest that a qualitatively similar but “smoothed off” SFE in piecewise affine supply 

functions exists.  Moreover, the profits of the smoothed off SFE are very similar to the 

profits calculated from the supply functions as in figure 2 for the cases considered in 

Baldick and Hogan (2002).  In practice, for the coal and gas technologies we consider, 

the prices stay above the higher gas intercept and consequently only prices corresponding 

to the higher slope region are realized.   
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Figure 2:  Illustration of piecewise affine, non-decreasing supply function. 

 

3. MAXIMUM CAPACITY CONSTRAINTS 

In the application discussed in Section 4, we encounter maximum capacity constraints on 

price-taking bidders.  (Similar issues apply in representing maximum capacity constraints 

on the output of strategic firms.)  Green and Newbery (1992) discuss how to treat 

capacity constraints when cost functions are identical amongst firms.  However, their 

arguments do not appear to generalize to the case where firms have asymmetric costs.  

We take a different approach here. 
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We use the function Dr to represent the residual demand resulting from a price taking 

fringe with capacity constraints.  The price taking fringe bids supply functions that reflect 

their marginal cost and this can be used to solve for the residual demand, eliminating the 

fringe players from the solution process.  Following Bushnell (1998), if the demand is 

linear then the resulting residual demand Dr can be modeled as a piecewise linear 

function.  In particular, if the marginal cost of the fringe at its full production is p' then 

there are γ and γ' such that: 

 

               
 if 
 if 

                                                 − =
≤ ′

′ > ′
RST

dD
dp

p p
p p

r γ
γ

, ,
, .

( )10  

 

The slope γ' for prices above p = p' is due to the demand alone when the fringe is at 

capacity, while the composite slope γ  for prices below p = p' is due to the combined 

effect of demand and the competitive fringe when the fringe is also marginal.  (See 

Bushnell (1998) section 4 for derivation of this functional form for the residual demand.)  

We have that 0 < γ' < γ.  That is, the combination of demand and marginal fringe capacity 

is more elastic than when the fringe is at its capacity. 

 

A straightforward approach to this case would be again to posit a candidate SFE in 

piecewise affine functions of the form (9) as we did in the previous section.  We solve for 

the slopes of the supply functions in each piece using (6) with the appropriate demand 

slope for the piece.  In contrast to the case considered in the previous section, however, it 

will be the case that βi' < βi because of the relationship between γ and γ'.  This means that 

the candidate supply functions so constructed will not be non-decreasing.  In particular, 

there is a drop in the supply at p = p'.   

 

The drop in the supply function violates typical pool rules.  Moreover, even if the pool 

rules were to allow such bid supply functions, there can be two intersections of the 

demand and aggregate supply curve.  It is not clear that one of the intersections would be 

preferred by all of the  firms to the other intersection.  The profit function of each firm 

can have two local maxima, one in each of the two price regions, p ≤ p' and p ≥ p'.  
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Different firms may have their global maximum in different regions.  That is, the 

proposed supply functions may not be an equilibrium even under the (unrealistic) 

assumption that non-monotonic supply functions were allowed.  A similar observation 

about profit functions was made in Bushnell (1998). 

 

If we knew a priori that demand (and prices) were “low” then we could delete the part of 

the supply functions for p ≥ p'.  On the other hand, if we knew that the demand and prices 

were “high” we could delete the part of the supply function for p ≤ p'.  This latter 

approach was taken by Green (1996) in modeling the fringe in the British pool. 

 

However, our interest is in the case where we anticipate that price will vary from below p' 

to above p'.  Unless the price “jumps” from below p' to above p', we are faced with 

deciding on a strategy for values of price near to p'.  Unlike Green’s equation (4), which 

made no reference to the load-duration characteristic N(t) of the demand, conditions for 

an equilibrium in piecewise affine supply functions requires knowledge of the range of 

N(t).  Day and Bunn (2001) and Baldick and Hogan (2002) take an iterative 

computational approach to seeking the equilibria in the presence of constraints.  They 

make use of explicit knowledge of the load-duration characteristic N(t).   

 

Here, instead, as an ad hoc approach that avoids the need to specify N(t), we propose a 

non-decreasing approximation to the previous piecewise affine function.  For prices p > 

p' we maintain the functional form βi'(p – ai) where the βi' satisfy (6) for demand slope 

equal to –γ'.  For prices p significantly below p' we maintain the functional form βi(p – ai) 

where the βi satisfy (6) for demand slope –γ.  For prices between p = p' and a price pi'' < 

p' we posit a joining segment having zero slope.  The price pi'' is chosen to make the 

composite supply function continuous.That is, we posit a supply function of the form:8 

 

                                                      
8 It is also possible to consider a supply function that matches the functional form βi(p – ai) at p = p' by 
modifying the function for prices above p'.  However, this results in a greater supply and it is presumably in 
all the strategic players interests to keep supply lower. 
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This makes the supply function constant between pi'' and p' and guarantees that the supply 

function is non-decreasing. 

 

 

Figure 3 illustrates this supply function with ai = £6/MWh, pi'' = £10.4/MWh, and p' = 

£12/MWh.  In Baldick, Grant and Kahn (2000), an approach is discussed for calculating a 

non-zero slope for the joining segment that matches the slope of the solution of Green’s 

equation (4) for prices infinitesimally below the price p'. 
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Figure 3:  Illustration of supply function (11). 
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We emphasize that the set of supply functions in (11) cannot be an equilibrium in 

nonlinear supply functions since for prices sufficiently below p' but above pi'' the 

suggested demand slopes cannot satisfy Green’s equation (4).  Moreover, the values of  

the pi'' will differ from firm to firm so that the joining segments will not span the same 

ranges of prices.  Nevertheless, we claim that the general form of this supply function is a 

reasonable one in practice, for three basic reasons. 

 

The first reason is that, for the cases considered in section 4, we discretize the time 

dimension fairly coarsely.  Under these circumstances, we find that prices near to the 

break-point price p' do not arise for the cases we consider.  That is, the price does “jump” 

from well below p' to well above p' and the value of the supply function is irrelevant in 

the vicinity of p'. 

 

The good fortune that prices near to p' are not realized is partially an artifact of the 

coarseness of our time discretization.  That is, we must in general consider the case where 

prices are realized that are in the vicinity of p'.  If the duration of time when p pi ' ' '< p≤  

is relatively small then the effect on profits is also small.  In the cases we consider this 

interval of prices is very small.    

 

Ultimately, this argument points to the fact that in the case of capacity constraints, it is 

not possible to find an optimal strategy that is independent of the range of the load-

duration characteristic N(t).  That is, the choice of the slopes in the piecewise affine 

functions will be affected by whether or not prices are realized in the vicinity of the 

break-point price.  For firms faced with making a decision about their supply functions, 

the lack of optimality may be relatively inconsequential because it is likely to persist over 

a relatively short time.  We will see that this is true for the cases considered in section 4. 

 

The third reason for the reasonableness of the choice of supply functions is that 

calculation of the optimal response by a firm i requires estimation of the slope of the 

aggregate supply function of the rest of the firms.  Generalizing the discussion in 

Rudkevich (1999), we can imagine firm i fitting a piece-wise affine curve to the observed 
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aggregate supply function.  If the price p' where the fringe reaches capacity is known 

publicly, then it is reasonable for firms to estimate different slopes for the parts of the 

supply function above and below price p = p'.  It may even be reasonable for firms to 

estimate slopes for prices above p', well below p', and in the vicinity of p' as required for 

the functional form in (11).  However, if only a few data points are observed it will not be 

possible to estimate parameters of functional forms with a large number of parameters.  

That is, piecewise affine functions with known break-points may be a practical limit to 

the ability to estimate functions.  As mentioned in section 2, at least some of the break-

points are common knowledge. 

 

 

4. APPLICATIONS 

In this section we show how to apply the previous results to modeling the price effects of 

structural change in the E&W electricity market. Our objective is to illustrate how the 

SFE enhancements described in Sections 2 and 3 improve the numerical fit of such 

models to actual market experience. We begin by characterizing the structural changes in 

the E&W electricity market and describing the fitting of the observed demand curves. 

Next, we briefly reconsider Green’s forecast of the effects of divestitures made by 

National Power (NP) and Power Gen (PG) in 1996. This discussion illustrates the 

importance of fitting the demand curve properly and the role of capacity constraints.  

 

We then examine the effect of the 1999 divestitures of  National Power (NP) and Power 

Gen (PG). We show that a linear SFE that uses zero cost intercepts for the strategic firms 

will predict prices that are too low in the post-divestiture case. We also consider two 

special issues in this context. First we examine the role of “earn out” payments as an 

explanation of post-1996 pricing behavior. Finally we illustrate the effect of fringe 

capacity constraints on the supply curves of strategic firms, showing that the size of this 

effect is small, as argued above. Table 1 summarizes the structure of the cases examined 

in this section. 
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Table 1: Cases Examined and Their Features 

 

 Model Features  Structural Change table or figure 

1996  

Divestitures 

Strategic Firm Capacity Limits 

Demand Curve Specification 

Two firms → Three 

Firms 

table 4 

1999  

Divestitures 

Positive vs. Zero Intercept Three Firms → Five 

Firms 

tables 5, 6, 7 

  Earn Out table 8 

 Maximum Capacity Limits   figure 5 

 

4.1 The E&W Electricity Market 

Market power has been a constant theme in the regulation of the electricity industry in 

England and Wales.9 This has motivated regulatory intervention and responses by both 

incumbents and entrants. The two dominant generators, National Power (NP) and Power 

Gen (PG), have retired very substantial amounts of capacity, invested in new combined 

cycle gas turbines (CCGTs) and been required to divest generation to new entrants. 

Additional entry has come primarily from CCGT projects. Nuclear output also grew over 

time. All of this change on the supply side occurred in the face of very sluggish growth in 

demand (about 1.5% per year in the late 1990s). Table 2 summarizes the changes in 

capacity by ownership category over the period 1995-1999, with some comments about 

the previous history.  This table forms the capacity basis for the linear supply function 

equilibrium (LSFE) estimates reported below. 

 

 

Table 2: Supply Mix by Firm and Fuel Type 

 

Category Comment MW MW MW 

                                                      
9 For recent statements of these issues see Offer (1998, 1999) and Newbery (1995, 1999) among others. 
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95-96 98-99 99-00 

Nuclear British Energy + 

Magnox Electric 

10519 10519 10519 

Interconnector France +Scotland 3200 3200 3200 

IPP  5000 7339 9721 

Eastern   6700 6700 

National Power 29 GW @ Vesting + 

3 GW CCGT – 

retirements and sales 

23000 16236 12291 

Power Gen 19 GW @ Vesting 

+3 GW CCGT – 

retirements and sales 

18845 15865 11421 

AES w/o IPPs   3945 

Edison Mission Energy w/o First Hydro   3954 

 

Nuclear generation expanded in 1994 when Sizewell B, the last nuclear plant constructed 

in E&W came into service. In 1996, the government owned Nuclear Electric was 

restructured into the privatized British Energy and Magnox Electric, which remains in 

government hands.  

 

Independent power producers (IPPs) all rely on combined cycle gas turbine (CCGT) 

technology. In the first "dash for gas" from 1991-1993, IPPs contracted with regional 

distributors (Newbery, 1999, p.224f). By 1995 about 5000 MW of IPP capacity was 

operating. Table 2 shows that this nearly doubled by 1999.  

 

Table 2 also indicates substantial reductions in capacity by NP and PG over the 1990s. 

When NP and PG were first created in 1989, NP had 29,486 MW and PG had 19,802 

MW (Newbery, 1999, p.202). Each added about 3,200 MW of CCGT capacity and 

together the two firms retired more than 20,000 MW.10  These retirements were in 

                                                      
10 According to NGC (1999) there were 15,152 MW of “Disconnections” between 1991 and 1999 (see table 
3.11 and 5328 MW of “Decommissionings” (see table 3.12) for NP and PG together.  
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addition to divestitures of more than 6000 MW to Eastern11 in 1996 and the 1999 

divestitures to AES and Edison Mission Energy indicated in table 2.12  

 

Table 3 shows the cost and availability assumptions used in our calculations. The cost 

intercept is assumed to be zero for Nuclear and the Interconnector, a common intercept of 

£12/MWh is assumed for the generators with coal-fired plant only (Eastern, AES and 

EME) and £8/MWh for generators with CCGT plant (IPP, NP, and PG). These marginal 

cost estimates are based on Bunn and Day (1999).13 The cost at maximum capacity 

follows Green (1996) for generators with thermal plant. These costs can be thought of as 

either simple cycle turbine costs or the costs of coal plant running very few hours and 

recovering start up and no load costs over that short period.  

 

The availability estimates in table 3 for all fossil fuel generators are generic. The 

estimates for nuclear are set to reproduce recent production levels. The high availability 

for the Interconnector reflects the multiplicity of resources available from Scotland and 

France.   

 

The cost and availability data in table 3 are combined to produce the cost slope 

parameters ci that are used to solve for the equilibrium prices and mark-ups. These 

parameters also depend upon the capacity of each firm. The appendix gives the numerical 

values used in the results reported below.   

 

 

 

 

 

                                                      
11 These assets were subsequently sold to Texas Utilities (TXU). 
12 Edison Mission Energy’s First Hydro pumped storage capacity is omitted from table 2 because some 
fraction of that capacity is devoted to supplying reserves and therefore is not in the energy market.  The 
remaining capacity has uncertain input costs and is therefore difficult to model. 
13 GN use £18.5/MWh as the intercept of the marginal cost function for coal plant (p.942), based on coal 
prices quoted in generators’ prospectuses when first privatized in 1991. In the years since the flotation of 
NP and PG, coal and gas prices have declined substantially.  
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Table 3: Cost and Availability Parameters 

 

Category Availability Cost Intercept 

(£/MWh) 

Cost at Maximum 

Capacity (£/MWh) 

Nuclear 83.0% 0 10.00 

Interconnector 98.0% 0 10.00 

IPP 85.0% 8.00 14.00 

Eastern 85.0% 12.00 30.00 

National Power 85.0% 8.00 30.00 

Power Gen 85.0% 8.00 30.00 

AES 85.0% 12.00 30.00 

Edison Mission Energy 85.0% 12.00 30.00 

 

 

4.2 Fitting Demand Curves 

A major problem associated with practical use of both SFE and Cournot models is the 

representation of demand. The plausibility of price forecasts with these models depends 

substantially on how the demand curve is specified.  Although there is little demand-side 

response in the E&W market, low values of demand elasticity have typically yielded poor 

fits to the observed data.  For example, when GN used very low slopes for the linear 

demand curve they estimated prices that were very much higher than what was 

subsequently observed. Even at a high slope (-0.5 GW/(£/MWh)) the predicted prices are 

much higher than what was observed.  

 

A significant part of the problem of representing demand involves how the demand curve 

is “anchored” in price-quantity space. GN use an estimate of pre-competition marginal 

costs and production to anchor their demand curve. Green (1996) uses a demand curve in 

the form of Eq. (1) above, with N(t) specified as a cubic load duration curve and a slope 

parameter of -0.5 GW/(£/MWh). This value is considerably higher than what other 

authors use. GN use 0.25 as their “central” case; Bushnell (1998) uses 0.1; Bunn and Day 
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(1999) use values between 0.01 and 0.10. We will follow GN and report cases for 

demand slopes of 0.5, 0.25 and 0.1.  

 

Our procedure takes advantage of the Pool price history. Figure 4 shows both the load 

duration curve and the price duration curve for 1998-99. The prices shown in this figure 

are the System Marginal Price (SMP).14  Vertically aligned pairs of values of load and 

price correspond to the same times.  Using the data in figure 4 yields a (time) average 

demand of 33.5 GW and a (time) average price of 23.7 pounds per MWh.  (All 

subsequent reported averages will also be averaged over time.)   

 

We use the data in figure 4 to anchor the demand curves used in our simulations. The 

anchor point for each of the nine periods we consider is taken to be the (p,q) pair 

corresponding to the period’s midpoint.15 This procedure assumes that past price behavior 

represents a set of expectations that is familiar to strategic firms and apparently 

acceptable to regulators at that time. The data in this figure are used as the starting point 

for the iterative solution to Eq. (11). The actual solutions will produce price-quantity 

pairs that are close to, but not identical with figure 4. 

 

                                                      
14 We ignore other price elements, i.e. the uplift and capacity charges.  
15 The time periods are equal in length with midpoints at t = 0.056, 0.167, 0.278, 0.389, 0.500, 0.611, 0.722, 
0.833, and 0.944 for our periods 1 through 9, respectively. 
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Figure 4:  Load & Price Duration Curves
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For the conditions studied by GN and Green (1996), the price-taking producers were 

never marginal. Therefore, Green (1996), for example, reduces the load duration curve by 

his estimate of constant inframarginal production and applies the LSFE to the residual 

demand.16   

 

By 1999, however, growth in the capacity of IPPs and the increased availability of 

nuclear plant made the price-takers marginal during low demand periods. Incorporating 

this effect introduces the need to model capacity limits explicitly. The methods discussed 

in Section 3 are implemented in our estimates. Examples of how this works are given 

below.  We also discuss the plausibility of the ad hoc piecewise affine model (11). 

 

4.3 Revisiting the 1996 Divestitures 

                                                      
16 We followed the same approach in section 3 for notational convenience.  However, here we will report 
the actual demand and supply, not the residual demand. 
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In this section, we examine the 1996 divestitures. Our chief interest is in showing how 

capacity constraints, cost intercepts, and demand curve representation affect numerical 

estimates. This is done by re-examining Green (1996), which we refer to as G96.   

 

We first consider capacity constraints.  There is no explicit notion of capacity in the G96 

model, which amounts to the assumption of potentially infinite supply from any producer. 

Without an explicit mechanism to introduce maximum capacity limits, results may 

violate capacity constraints.  Applying the G96 analysis to the 1996 divestiture results in 

violations of the divested plant capacity constraints under various assumptions of demand 

slope.  This emphasizes the need to represent the capacity constraints explicitly in the 

model.  All subsequent analysis will incorporate capacity constraints. 

 

Table 4 shows the results for before and after the 1996 divestitures, with adjustment of 

demand intercepts and capacity constraints enforced.  Both the cases for zero intercept 

and for unequal non-zero intercepts are shown.  Average divestiture prices in table 4 are 

in the vicinity of the observed average of 23.7 pounds per MWh. 

 

Table 4: Results for 1996 divestitures 

 Demand Slope 

GW/(£/MWh) 

Duopoly price 

(£/MWh) 

Divest to three 

price (£/MWh) 

Average GW 

Zero Intercept 0.10 36.2  23.5 32.8 

 0.25 26.5  20.8 33.4 

 0.50 22.7  19.8 34.6 

Cost Intercepts 0.10 38.4  26.1 32.6 

 0.25 29.2  23.8 32.8 

 0.50 25.1 22.5 33.3 

 

 

4.4 The 1999 Divestitures 

In 1999, NP and PG each divested about 4000 MW of coal-fired plant. Their motivation 

was to meet regulatory requirements associated with their proposed vertical mergers.  
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Table 2 shows that the U.S. firms AES and Edison Mission Energy (EME) acquired the 

divested plant. Both firms already had generation assets in the E&W market; IPPs for 

AES and both IPPs and the pumped storage plants for EME.17 We use the LSFE 

framework to assess the price implications of these divestitures, and to compare the 

performance of the affine case with the case where the marginal cost curves must pass 

through the origin. 

 

Table 5 shows the results of using the data in table 2 and the two versions of the cost 

curve for the strategic generators with gas and coal-fired plant. The cases labeled Zero 

Intercept assume that all cost curve pass through the origin. The Positive Intercept cases 

assume the cost intercept values in table 3. Our calculations assume that both AES and 

EME bid strategically. Because the price changes from divestiture are realized over an 

extended time, we have used the 1998-99 level of IPP capacity (i.e 7339 MW) for the 

three strategic firm game and the 1999-2000 level of capacity (i.e. 9721 MW) for the five 

strategic firm game. 

 

Table 5: Base Case Price Results for 1999 Divestitures (£/MWh) 

 

 1999-Five Firms 1998-Three Firms 

Demand 

Slope 

(GW/ 

(£/MWh)) 

Average 

Price 

(£/MWh) 

High Price 

(£/MWh) 

Low Price 

(£/MWh) 

Average 

Price 

(£/MWh) 

High Price 

(£/MWh) 

Low Price 

(£/MWh) 

Zero Intercept 

0.10 15.5 27.3 7.4 23.5 51.3 8.0 

0.25 16.3 31.1 7.5 20.8  40.8 8.1 

0.50 17.1 34.4 7.7 19.8 38.0 8.2 

Positive Intercept 

0.10 19.9 28.1 12.4 26.1  50.7 12.8 

                                                      
17 For simplicity, the pumped storage plant is neglected in these estimates. Much of that capacity supplies 
reserves. It is reasonable to ignore this factor in this kind of simple analysis of the energy market. 
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0.25 19.9 29.3 12.3 23.8 41.2 12.7 

0.50 20.5 34.9 12.2 22.5 38.4 12.5 

 

Table 5 shows, for each case, the time-weighted average price, the highest price and the 

lowest price. The price change predictions of divestiture, i.e. the difference in average 

prices, are greater at low elasticity than at high elasticity regardless of the cost curve 

characterization. As expected, the biggest differences between the positive and zero 

intercept representation are at the low end of the price distribution. 

 

In reality, the SMP dropped substantially in the 1999-2000 power year. Previously, the 

average SMP had been reasonably stable in the £23-24/MWh range over many years. For 

the 1999-2000 power year the average SMP was £20.18 This suggests that the estimates 

based on the positive intercept cases are better than those based on the zero intercept 

cases because the average prices for zero intercept are too low for the five-firm case.  

 

Tables  6 and 7 show the quantity behavior (MWh produced per hour) of the firms for the 

cases with demand slope of 0.25 GW/(£/MWh) for each cost curve characterization.  

Table 6 illustrates the zero intercept results and table 7 illustrates the positive intercept 

results.  

 

Table 6a shows that the fringe firms (Nuclear, Interconnector and IPP) are marginal 

during periods 8 and 9. This is indicated by shading the periods and indicating in bold 

that the fringe firm production is below the maximum levels achieved in higher demand 

periods. In table 6b, the fringe firms are marginal in period 7 as well as periods 8 and 9. 

 

Table 6a: Zero Intercept Case: 1998-Three Strategic Firms 

 
Time Period Average 1 2 3 4 5 6 7 8 9

 Price 
(£/MWh) 

 
20.78 

 
40.81 29.06 24.59 21.54 19.35 17.44 

 
15.25 

 
10.96 8.06 

                                                      
18 See data available at http://www.elecpool.com/financial/financial_f.html. The SMP declined to £18 in 
the power year 2000-2001 following additional IPP entry and further divestiture.  
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 Nuclear 8,707 8,732 8,732 8,732 8,732 8,732 8,732 8,732 8,732 8,478 
Interconnector 3,075 3,136 3,136 3,136 3,136 3,136 3,136 3,136 3,136 2,579 

 IPP 5,966 6,239 6,239 6,239 6,239 6,239 6,239 6,239 5,747 4,225 
 Eastern 3,569 5,695 5,165 4,370 3,828 3,438 3,100 2,711 2,138 1,677 

 NP 6,469 10,711 9,055 7,660 6,710 6,027 5,434 4,751 4,229 3,648 
 PG 6,408 10,633 8,972 7,590 6,649 5,972 5,384 4,708 4,176 3,593 

 
 

Table 6b: Zero Intercept Case: 1999-Five Strategic Firms 

 
Time Period Average 1 2 3 4 5 6 7 8 9

 Price 

(£/MWh) 

    16.29     31.12     23.24    19.41    16.80    14.92    13.29    10.96       9.34       7.54 

 Nuclear 8,643 8,732 8,732 8,732 8,732 8,732 8,732 8,732 8,732 7,932 

Interconnector 3,039 3,136 3,136 3,136 3,136 3,136 3,136 3,136 2,987 2,413 

 IPP 7,655 8,262 8,262 8,262 8,262 8,262 8,262 7,607 6,482 5,235 

 Eastern 3,012 5,350 4,273 3,568 3,088 2,743 2,443 2,181 1,891 1,576 

AES 1,882 3,315 2,704 2,258 1,954 1,736 1,546 1,333 1,147 944 

 NP 4,715 7,893 6,631 5,537 4,792 4,256 3,791 3,619 3,185 2,732 

PG 4,481 7,568 6,312 5,271 4,561 4,052 3,608 3,409 2,994 2,556 

EME 1,882 3,315 2,704 2,258 1,954 1,736 1,546 1,333 1,147 944 

 

Tables 6a and 6b indicate production by the coal based strategic firms even when the 

fringe firms are marginal. The prices in those periods, however, are below the minimum 

marginal costs of the coal plants; i.e. the assumed intercept of £12/MWh. The zero 

intercept formulation forces the plants to operate at prices that are below the intercept of 

their true marginal cost curves. By contrast, tables 7a and 7b show production by coal 

based strategic firms declining toward zero as price falls toward the marginal cost 

minimum. 

 

Table 7a: Positive Intercept Case: 1998-Three Strategic Firms 
 

Time Period Average 1 2 3 4 5 6 7 8 9
 Price 

(£/MWh) 
 

23.75 
 

41.20 29.96 26.48 24.10 22.40 20.91 
 

19.21 
 

16.84 12.69 
 Nuclear 8,732 8,732 8,732 8,732 8,732 8,732 8,732 8,732 8,732 8,732 

Interconnector 3,136 3,136 3,136 3,136 3,136 3,136 3,136 3,136 3,136 3,136 
 IPP 6,186 6,239 6,239 6,239 6,239 6,239 6,239 6,239 6,239 5,732

Eastern 2,986 5,695 4,960 3,997 3,342 2,871 2,461 1,990 1,336 223 
 NP 6,230 10,657 9,043 7,608 6,631 5,928 5,317 4,615 3,639 2,628 
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 PG 6,177 10,590 8,964 7,542 6,573 5,876 5,271 4,575 3,607 2,592 
 
 

Table 7b: Positive Intercept Case: 1999-Five Strategic Firms 

 
Time Period Average 1 2 3 4 5 6 7 8 9

 Price 

(£/MWh) 

  19.88   29.32   25.29   22.51  20.61  19.25  18.06  16.70   14.80 12.34

 Nuclear 8,732 8,732 8,732 8,732 8,732 8,732 8,732 8,732 8,732 8,732 

Interconnector 3,136 3,136 3,136 3,136 3,136 3,136 3,136 3,136 3,136 3,136 

 IPP 8,125 8,262 8,262 8,262 8,262 8,262 8,262 8,262 8,262 7,032 

 Eastern 2,296 5,086 3,903 3,085 2,528 2,128 1,780 1,380 823 114 

AES 1,480 3,278 2,516 1,989 1,630 1,371 1,147 889 531 69 

 NP 4,636 8,324 6,751 5,664 4,923 4,391 3,928 3,396 2,656 2,051 

PG 4,410 7,922 6,425 5,390 4,685 4,178 3,738 3,232 2,528 1,926 

EME 1,480 3,278 2,516 1,989 1,630 1,371 1,147 889 531 69 

 

The results in tables 5-7 show dramatic price effects from the 1999 divestitures, 

accentuated by the additional IPP capacity.  At the low demand slope preferred by many 

authors, i.e. 0.10 GW/(£/MWh), the average prices in the pre-divestiture case are 

reasonable for the zero intercept case, but the price drop prediction is too great. The 

positive intercept case predicts a plausible post-divestiture price but is too high pre-

divestiture compared to the observed level.  

 

4.5 The Earn Out Payments 

The data used for tables 5-7 neglects a particular point about Eastern’s costs that came to 

public attention in 1997. This is the "earn-out" payments made by Eastern to NP and PG.  

Green and Newbery (1997) provide a discussion of this issue.  The plant controlled by 

Eastern was actually leased from NP and PG, not purchased. Some of the lease payments 

were made on a variable basis at a rate of £6/MWh. This has the effect of increasing 

Eastern’s marginal costs by this amount. It is interesting to test how the earn-out 

payments affect the equilibrium price. Table 8 reports the results of re-running the 1998-

three strategic firm game for the positive intercept case with the earn-out payment and 

also repeats the corresponding entries from table 5 without the earn-out payment.  
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Table 8: 1998-Three Strategic Firm Market: Earn-out Sensitivity 

 

 Without Earn-out With Earn-out 

Demand 

Slope 

Average 

Price 

High Price Low Price Average 

Price 

High Price Low Price 

0.10 26.1 50.7 12.8 26.4 37.4 18.4 

0.25 23.8 41.2 12.7 24.4 36.2 14.9 

0.50 22.5 38.4 12.5 23.2 36.1  12.6 

 

There are a number of interesting results in table 8.  First, the average prices are only 

slightly higher with than without earn-out.  Second, for a given demand slope, the spread 

of prices are generally smaller with earn-out than without earn-out.   The key driver of 

the earn-out results is that the earn-out payments raise Eastern’s costs and hence its offer 

curve at low demand. This pushes Eastern’s plants up in the loading order, so that their 

capacity is no longer at maximum in the high demand state. Without the earn out 

payment, Eastern reaches full capacity in Time Period 119, so NP and PG can shift to a 

more inelastic supply curve and push the price up in that period (£41.2/MWh vs. 

£36.2/MWh). Table 9 shows these effects by tabulating the slopes of the supply curves 

for each strategic firm during the different time (load) periods for the Demand Slope = 

0.25 case. 

 
Table 9: Supply Curve Slope (MW/(£/MWh)) 

 
Case Firm Period 1 Periods 2-8 Period 9 
No Earn-Out Eastern 0 276 325 
 NP 321 412 561 
 PG 319 408 553 
Earn -Out Eastern 276 276 0 
 NP 412 412 321 
 PG 408 408 319 
 
 

                                                      
19 table 7a shows that Eastern’s output in Time Period 1 is 5695 MW, which is its total nominal capacity 
adjusted downward for 85% availability. 
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Table 9 shows that Eastern’s supply function has zero slope in Period 1 without the Earn-

Out, because it is at maximum capacity. In this case, also, all strategic firms are more 

elastic in Period 9, when IPP capacity is marginal (see table 7a), than in Periods 2-8, 

when IPPs are at maximum capacity. In the Earn-Out case, the Period 9 price is below 

Eastern’s marginal cost, so it does not produce. NP and PG can offer a less elastic supply 

in this period because Eastern is out of the market. They become more elastic when 

Eastern can produce, starting in Period 8.  Since Eastern is not at maximum capacity with 

Earn-Out in Period 1, NP and PG cannot shift to the less elastic segment of their supply 

curve. 

 
 

4.6 Piece-wise Affine Supply Curves 

A final empirical point about the effect of capacity constraints on supply functions is 

illustrated in figure 5. This figure corresponds to table 7b. It shows the supply functions 

of the five strategic firms constructed according to equations (9) and (11).  Figure 5 

shows prices in the range £10/MWh to £30/MWh, which covers the range of realized 

prices.  In this range, every firm except the IPP is either: 

• always at capacity, or 

• always marginal or off. 

Consequently, the only maximum capacity reached in this range is the capacity of the IPP 

fringe capacity. 

 

Recall that in (11) we posited zero slopes for the supply functions for the range of prices 

just below where the fringe reaches capacity.  This accounts for the horizontal part of the 

supply curve in figure 5 between £12/MWh and £13/MWh. 
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Figure 5:  Piecewise affine supply curve constructed according to (9) and (11). 

  

The supply functions are horizontal in a relatively small price range.  This confirms the 

claim made in section 3 that the adjustment to the supply curve is relatively 

inconsequential in the overall supply curve.  Numerical simulations in Baldick and 

Hogan (2002) to estimate the non-linear SFE are consistent with the general shape of the 

supply functions in figure 5. 

 

 

5. CONCLUSIONS 

This paper has shown that the LSFE model generalizes readily to the affine case. We also 

introduce capacity constraints. Capacity constraints seem essential to model cases where 

fringe producers set the price for any demand periods. These constraints introduce 

discontinuities that are in some sense more extreme than similar phenomena in the 

Cournot framework. We propose an ad hoc approach to constructing piece-wise affine 

supply curves. 

 

These theoretical properties are illustrated in a practical setting, namely the evolution of 

price behavior in the E&W electricity market during periods of structural change. The 
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affine case seems to fit the price behavior in the E&W market better than the zero 

intercept case. 

 

In future work we plan to consider the effect of price caps and analyze transmission 

constraints.  The work of Berry et al. (1999) provides guidance in the consideration of 

transmission constraints. 
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APPENDIX. COST SLOPE PARAMETERS 

The cost slope parameters for tables 4, 5, 6 are given in table A.  

 

Table A: Cost slope parameters for tables 4, 5, 6 

 
 1996 pre-

divestiture 
1996 post- 
divestiture 

1998 1999 

IPPs 0.002800 0.001907 0.000817 0.000617 
NP 0.000957 0.001358 0.001358 0.001789 
PG 0.001167 0.001384 0.001384 0.001930 
Eastern  0.002687 0.002687 0.002687 
EME, AES    0.004615 
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