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a b s t r a c t

We describe how a robot can develop knowledge of the objects in its environment directly
from unsupervised sensorimotor experience. The object knowledge consists of multiple integrated
representations: trackers that form spatio-temporal clusters of sensory experience, percepts that
represent properties for the tracked objects, classes that support efficient generalization from past
experience, and actions that reliably change object percepts. We evaluate how well this intrinsically
acquired object knowledge can be used to solve externally specified tasks, including object recognition
and achieving goals that require both planning and continuous control.
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1. Introduction

One reason why people function well in a changing environ-
ment is their ability to learn from experience. Moreover, learning
from sensorimotor experience produces knowledge with seman-
tics that are grounded in this experience. Replicating this human
capability in robots is one of the goals of the robotics community.
This paper describes how a robot can acquire knowledge of objects
directly from its experience in the world.
This experiential knowledge has some significant advantages

over knowledge directly encoded by programmers as it intrinsi-
cally captures the capabilities and limitations of a robot platform.
The advantage of experiential knowledge has been demonstrated
in the field of robotmappingwhere robot generatedmaps aremore
effective than human generated maps for robot navigation [31]. A
similar situation arises when reasoning about objects, namely the
robot’s perception of the environment can differ greatly from that
of a person. Hence, a robot should autonomously develop models
for the objects in its environment, and then use these models to
perform human specified tasks.
An important capability for a robot is to solve a current

problem with knowledge acquired from past experience. Much
research effort is spent on generalizing from past experience
across individual objects (‘‘a chair’’), however a more pressing
problem for a robot is to generalize across experiences of individual
objects (‘‘the red lab chair’’) so as to reliably reason and interact
with the individual objects encountered in the environment over
extended periods of time. This approach has the advantage that
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broader object classes can potentially be formed by weakening the
restrictions on recognizing individual objects.
We describe how a physical robot can learn about objects

from its own autonomous experience in the continuous world.
The robot develops an integrated system for tracking, perceiving,
recognizing, and acting on objects. This is a key step in the larger
agenda of developmental robotics, which aims to show how a
robot can start with the ‘‘blooming, buzzing confusion’’ of low-
level sensorimotor interaction, and can learn higher-level symbolic
structures of common-sense knowledge. We assume here that the
robot has already learned the basic structure of its sensorimotor
system [24] and the ability to construct and use local maps of the
static environment [31].
The robot represents its knowledge of the individual objects in

its environmentwith trackers, percepts, classes and actions. Trackers
separate the spatio-temporal sensory experience of an individual
object from the background. This sensory experience is filtered
though perceptual functions to generate informative percepts such
as the distance to the object and the object’s shape. The robot
uses the observed shape of a tracked object to generate shape
classes, which the robot uses to efficiently generalize from past
experiences. Finally, the robot is able to interact with an individual
object using learned actions that modify the object’s percepts.
In the following sections, we describe the motivations for this

work, the representations for the objects and actions, the algorithm
for learning this knowledge from experience, the evaluation with
a physical robot, future directions and related work.

2. Motivation

Objects play a central role in the way that people reason about
the world, so it is natural to want robots to share this capability.
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However, the manner in which people think of objects is often
different from the needs of a robot. People rarely have difficulty
with object tracking, recognition, or interaction. However, it is
difficult for a robot to acquire these capabilities even individually
and a robot must be able to integrate these capabilities to solve
tasks.
The semantic dictionaryWordnet [6] treats objects primarily as

physical entities that belong somewhere on a classification tree.
Wordnet attempts to bridge the gap between the representation of
aword as a sequence of characters and its human-definedmeaning
by forming hierarchical relationships betweenwords. For example,
Wordnet states that a can is a container, while spoons and forks
are cutlery. The OpenMind Indoor Common Sense project [9] goes
further by defining multiple relationships between the names for
common household entities. This style of knowledge is of little
direct use to a robot without a connection between these words
and the robot’s experience in the world.
There is a broader role for object semantics, which is to support

the formation of object representations that are defined from the
robot’s sensorimotor experience. It is tempting to think of objects
as physical entities in the world that are derived from abstract
classes, i.e. that the experience of seeing a fork is coming from a
physical fork, which in turn is an instantiation of an abstract fork
model that is shared by all people. The reality is the reverse, people
start from sensorimotor experience, and classes are formed from
individual experiences.
Instead of considering an object to be a physical entity, we

consider an object to be an explanation for some subset of an
agent’s experience. With this approach, the semantics of an object
are intrinsically defined from the agent’s sensorimotor experience.
When the robot uses its internal representations to solve externally
specified tasks, the internal object representations may acquire a
societally shared meaning.
Our approach to learning object models is inspired by theories

in child development, in particular the assumption that coherent
motion is one of the primarymechanisms for the initial perception
of objects [28]. As modern techniques in robotics can effectively
model the local static structure of the environment, any dynamic
changes in the environmentmust come from some dynamic entity.
By relying on a static environmental model, the robot can still
perceive objects that are not moving. We use this as a basis
for focusing our attention on learning about dynamic objects.
The focus on dynamic objects provides a tractable way to make
progress on an otherwise difficult problem—to perceive objects
that have never been previously observed.
The focus of this work is to demonstrate how a robot can

acquire an integrated set of object representations that can be used
to solve externally specified tasks although the representations
are internally formed directly from the robot’s experience in the
world. If a human and a robot are to share similar meanings for
objects, then the robot must be able to perceive previously unseen
physical objects, reason about the perceived objects, and take
actions to achieve goals. The efficacy of the robot’s internal object
representations can be measured by how well they enable the
robot to accomplish externally specified tasks such as recognizing
a yoga ball or moving the recycling-bin to a goal location.

3. Representing the object

The robot’s description of physical objects is a symbolic
abstraction of the low level continuous experience of the robot.
3.1. Continuous system

From an experimenter’s perspective, a robot and its environ-
ment can be modeled as a dynamical system:

xt+1 = F(xt , ut)
zt = G(xt)
ut = Hi(z0, . . . , zt)

(1)

where xt represents the robot’s state vector at time t , zt is the raw
sense vector, and ut is the motor vector. The function F encodes
state transitionswhile the functionG encodes the observation from
each state. The functions F and G represent relationships among
the environment, the robot’s physical state, and the information
returned by its sensors, but these functions are not known to the
robot itself [12].
The robot acts by selecting a control law Hi such that the

dynamical system Eq. (1) moves the robot’s state x closer to its
goal, in the context of the current local environment. When this
control law terminates, the robot selects a new control law Hj and
continues onward.
The raw sensorimotor trace is a sequence of sense and motor

vectors.

〈z0, u0〉, 〈z1, u1〉, . . . , 〈zt , ut〉, . . . (2)

3.2. Symbolic abstraction

The components of the object knowledge are represented by a
tuple,

O ≡ 〈T ,P ,C,A〉 (3)

consisting of trackers (T ), perceptual functions (P ), classes (C),
and actions (A).
An object, considered as part of the agent’s knowledge

representation, is a hypothesized entity that accounts for a spatio-
temporally coherent cluster of sensory experience. Note that the
word ‘‘object’’, when used in this sense, does not refer to a
physical thing in the external world, but to something within the
agent’s knowledge representation that helps it make sense of its
experiences.
A tracker τ ∈ T names two corresponding things:

(1) the active process that tracks a cluster of sensory experience as
it evolves over time, and

(2) the symbol in the agent’s knowledge representation that
represents the object (i.e., the hypothesized entity that
accounts for the tracked cluster).

A perceptual function f ∈ P is used to generate the percept ft(τ )
which represents a property of τ at time t . The percept is formed
from the sensory experience by the tracker τ . Examples of simple
percepts include the distance or location of a particular object at a
particular time. A more complex percept is the shape of an object,
which can be assembled from multiple observations over time.
For a particular perceptual function f , a class σf ∈ C is an

implicitly defined set of percepts similar to an exemplar percept
q̄ = ft ′(τ ′),

σf [q̄] = {q | d(q, q̄) ≈ 0}, (4)

where d is a distance function (an example is given in Eq. (13)). For
example, a shape class is a set of shape percepts that are similar to a
prototype shape percept. Fig. 5 shows ten shapemodels, which are
percepts obtained from the robot’s sensory experiencewith the ten
depicted objects. These individual percepts belong to ten classes,
each corresponding to percepts obtained from the same real-world
object on different occasions.
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Fig. 1. (a) The sensor measures distances to obstacles, with readings taken at every degree. (b) By projecting the readings into an occupancy grid, the robot is able to identify
readings from dynamic obstacles. A snapshot is formed by spatially clustering these readings, and forming a bounding circle.
An action α ∈ A is specified by a description D of its effects on
the object’s percepts, the context C for the action to be reliable, and
an associated control law H .

α = 〈D, C,H〉. (5)

The description is a tuple that provides both a qualitative and a
quantitative characterization of the action’s effects. The context
is represented as a conjunction of boolean constraints on the
percepts. The control law is a function thatmaps percepts tomotor
vectors. An action encapsulates a reliable sensorimotor interaction
between the robot and the object: when the object percepts satisfy
the constraints in the context C then the execution by the robot of
the control law H will result in changes to percepts as described
by D. The description is used to predict the effects of an action. The
context defines the preconditions for the action, and so facilitates
planning. The control law provides the executable component of
the action. These components are described in more detail when
the action learning algorithm is introduced.
The tuple in Eq. (3) represents not just the information about

one object, but rather it represents all the object information
that the robot has collected. There is information about each
tracked object, the knownperceptual functions, the known classes,
and the known actions. As the robot gathers experience and
applies inference algorithms, the robot can create new knowledge
of the objects in the environment. While this representation
has limitations, we show in the subsequent sections how this
knowledge can be created and then used to solve externally
specified tasks.

4. Learning object representations

One goal of developmental robotics is for robots to be capable
of learning both incrementally and without extrinsic rewards.
Incremental acquisition allows the robot to learn from novel
experience throughout its lifetime. An autonomous, internal
process is used to generate knowledge without extrinsic rewards.
The following sections describe how components of the object
knowledge can be learned by a robot while satisfying these
constraints from developmental robotics.

4.1. Formation of trackers

Using the method from [17], a mobile robot can create trackers
for movable objects. The robot senses the environment with a
laser range finder. Each observation from the sensor is an array of
distances to obstacles

zt : Θ → R

whereΘ are the array indices, as shown in Fig. 1(a).
The robot uses these observations to construct an occupancy

grid map of space as shown in Fig. 1(b). The occupancy grid is
constructed with the assumption that the world is static. In the
occupancy grid, local space is divided into grid cells, each of which
has some probability of being occupied or clear, and a SLAM
algorithm updates these probabilities using sensor observations.
The robot needs a SLAM algorithm to simultaneously localize itself
within the current map, and to extend the map into previously
unseen areas. In addition to the standard SLAM process, at each
time step the algorithmmarks each grid cell that is currently clear
with high confidence. This is used to identify cells that are not part
of the static world. SLAM with occupancy grids is a robust way to
build a static world model in spite of significant amounts of noise,
some of which is random sensor noise, but other parts of which are
due to unmodeled dynamics such as pedestrians and othermoving
objects.
When a physical object moves into a previously clear region

in the map, the sensor readings that fall on the object violate
the map’s static world explanation. These readings are clustered
spatially to define snapshots. A snapshot S of an object is a cluster
of these dynamic range sensor readings in the map. An example of
a snapshot is shown in Fig. 1(b). A snapshot is characterized by a
circle that encompasses all the sensor readings.
Finally, a tracker τ is created by forming associations between

snapshots over time. The support of a tracker, suppt(τ ), is given
by the sensor indices of the points in the snapshots, and is
represented as a subset of the sensor indices Θ . The tracker
associates snapshots using their bounding circles. The tracker is
terminated when clear successor snapshots do not exist.

4.1.1. Tracking implementation and limitations
In our implementation, agglomerative clustering is used to

place every pair of dynamic sensor readings that fall within 0.5 m
of each other into the same snapshot. The bounding circles are used
to define the distance between snapshots as the distance between
centers plus the absolute value of the difference between the radii.
For snapshots in subsequent timesteps to be associated with the
same tracker, the distance between the snapshots must be less
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Fig. 2. Two examples of tracking. In both examples, two people are walking, starting at the bottom of the figure and moving to the top. The plus signs show laser readings
taken at one second intervals, shown in the coordinates of the local map. These readings are shown in the bounding circles of their associated snapshots. The lines indicate
the path of the trackers. The units on the axes are in meters. (a) The people first approach each other and then move apart. Since the people do not come too close together,
the tracking system generates exactly two trackers, one for each person. The two paths show the trajectory of the center of each tracker. (b) This example demonstrates
two methods by which tracking can fail. One is the failure to track a single object in the presence of distractions. The second is the failure to notice when a tracked cluster
separates into multiple distinct entities. Initially at the bottom of the figure, each person has a separate tracker. As they approach, the spatial clustering process returns a
single snapshot for both people. Since the snapshot at the merger has no clear successor (as each of the original trackers can explain the merged snapshot), the existing
trackers are terminated and a new tracker is created. A similar inference occurs when the two people move apart. Spatial clustering creates two snapshots that must be
explained. The tracking algorithm finds that one snapshot (on the right) is the only clear successor for themerged tracker and a new tracker is formed for the second snapshot.
than one meter with no other snapshots within a distance of 0.01
m. Similar tracking performance is observed when the thresholds
are varied by twenty percent.
Part of an agent’s development are early failures in the

perceptual system. One commonly discussed phenomenon in child
development is the lack of object permanence,where the child fails
to maintain a representation for an object when it is not perceived
in the observation stream. Another type of failure is the failure to
correctly track objects. The following example demonstrates both
kinds of failure.
Fig. 2 shows two examples of a scenario where two people

are walking. The people start at the bottom of the figures and
walk towards the top, first approaching one another and then
separating. The people are observed using a SICK LMS-200 sensor
at a height of 40 cm above the ground plane. In the first example,
the people remain sufficiently far apart so tracking keeps the two
people separate. In the second example, as the people move close
together, the spatial clustering into snapshots fails to separate
them. This failure causes a new tracker to be created. When the
two people separate, the tracker for the pair follows the person on
the right, and a new tracker is created for the other person.
This example shows that the robot is able to track multiple

objects when they are well separated, but can make errors when
objects are in close proximity. Hence, the robot and the human
experimenter agree on the semantics of which objects exist in a
scene when the objects are well separated, but differ when the
objects are in close proximity. The difference is largely due to the
human’s superior visual senses, and background knowledge about
the structure of humans and their activities.
4.2. Formation of percepts

For each tracker τ , Wemanually define a small set of perceptual
functions f ∈ P . Each perceptual function gives rise to the percept
ft(τ ) for a given tracker τ at a time t . The simplest percept is the
object’s support (suppt(τ )).
Somepercepts can be defined as functions of the object support.

For this work we consider two such functions.

anglet(τ ) = mean{i | i ∈ suppt(τ )} (6)

distancet(τ ) = min{zt(i) | i ∈ suppt(τ )}. (7)

A larger set of perceptual functions could be generated au-
tonomously using a constructive induction process [27,24]. In
constructive induction, new functions are generated fromold func-
tions by applying functional transformations. For example, a new
scalar perceptual function can be the sum, product or difference of
two original scalar perceptual functions, while for a vector percep-
tual function, the mean, minimum, or argument of the minimum
can form new perceptual functions.
Another percept is the object’s shape. A shape is represented

with a set of situated views of the object, where each situated view
is a tuple with the robot location, the robot heading, the object
support and the sensor observation from a set of previous time
steps I . The location and heading of the robot (robot-locationt and
robot-headingt ) are non-object percepts that are generated from
localization in the occupancy grid.

shapet(τ ) = {〈robot-locationt ′ , robot-headingt ′ ,

suppt ′(τ ), zt ′〉 | t
′
∈ I}. (8)
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Fig. 3. (a) A scene with the learning robot observing a physical object. (b) The robot builds a structured description of its local environment consisting of a static map, the
learning robot, and the recognized object.
When a tracker’s shape matches a known shape (described in
the next section), the robot is also able to generate percepts for the
object’s location and heading (locationt(τ ) and headingt(τ )) in the
map.

4.3. Formation of classes

Given a temporal sequence of percept values,

. . . , ft−1(τ ), ft(τ ), ft+1(τ ), . . .

with a distance function d, a percept is a candidate for defining a
class if

∀k > 0, d(ft(τ ), ft+k(τ )) ≈ 0. (9)

Thus, classes are formed by creating clusters from object percepts
that are stable in time. Shape is a good class-defining percept, but
angle and distance are not. Classes facilitate generalization from
past experience.
Using a particular perceptual function f ∈ P , a class σf is

defined by Eq. (4) to be a set of percepts that are near the prototype
percept q̄ = ft ′(τ ′) (within the threshold η).

σf [q̄] = {q | d(q, q̄) ≤ η}. (10)

When the robot observes a stable potentially class-defining
percept ft(τ ), the robot first checks to see if it is a member of
a known class by measuring the distance between the observed
percept and all prototypes associated with the perceptual function
f . When the percept does not belong to a known class, a new class
is generated from the percept.
We now describe how a class is formed from a shape percept.

First, structurally consistent shapes are created by minimizing
violations of geometric constraints between the situated views
in the shape percept. Fig. 4 shows how error vectors are defined
between situated views. Using three error vectors defined in the
figure, we define an inconsistency measure for an object shape A,

µ(A) =
∑
a∈A

∑
b∈A

‖eL,a,b‖2 + ‖eR,a,b‖2 + ‖eI,a,b‖2. (11)

Minimizing this error generates consistent shapes, as shown in
Fig. 5. In our implementation, this minimization is performed by
numerical optimization with the Nelder–Mead simplex algorithm
where the minimization is initialized with the robot’s poses in the
local map.
Wedenote the rigid transformation of a shape B (defined as a set

of tuples in Eq. (8)) by offset vectors for the location and heading
(λ and γ respectively) by

Tλ,γ (B) = {〈l+ λ, h+ γ , S, z〉 | 〈l, h, S, z〉 ∈ B}. (12)

The distance between two shapes is then defined to be the
minimum error over all rigid transformations.

d(A, B) = min
λ,γ

µ(A ∪ Tλ,γ (B)). (13)

This distance function is used by the robot to create the shape
classes shown in Fig. 5. We use the threshold η = .02 in Eq. (10)
which is twice the sensor resolution. In our implementation,
optimizing over rigid transformations is performed by aligning the
geometric centers of the shapes and taking the minimum after
performing numerical optimization starting from eighteen initial
orientations spaced twenty degrees apart.
New percepts for the object location and heading are also

defined using this distance function. Given an object shape A,
the robot estimates its pose in the object frame of reference, by
searching for a robot location and heading that are consistent with
the tracker τ ,

λ′, γ ′ = argmin
λ,γ
d(A, {〈λ, γ , suppt(τ ), zt〉}). (14)

Given the robot location and heading in both the reference
frame of the map and the reference frame of the object, the
robot can estimate the location and orientation (locationt(τ ) and
headingt(τ )) of the object in the map as shown in Fig. 3. These
values are computed by the object tracker in real-time using
numerical optimization.

4.4. Formation of actions

Thus far, the robot does not have any knowledge of its
interactionswith the object. To address this need, we nowdescribe
how the robot learns actions that reliably change individual object
properties. Our definition of an action differs from STRIPS actions
(with complete declarative preconditions and postconditions), and
reinforcement learning actions (with no declarative description).
Our definition of an action Eq. (5) includes a partial description
of an action’s postconditions, along with complete declarative
preconditions. The partial description of postconditions simplifies
learning, but it can limit the reliability of plans.
Actions facilitate planning by characterizing the behavior of

a control law. To sequence actions, the planner must know
the preconditions of a control law and its postconditions. We
form actions by learning control laws whose postconditions and
preconditions have simple descriptions.
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Fig. 4. (a) The shape percept is a set of situated views of the physical object. A single situated view consists of the robot’s pose, the tracker’s support and the sensory
observation. (b) The object is bounded by rays on the left and right. (c) The sensor readings from one situated viewmust fall within the bounding rays from all other situated
views. (d) Exterior error vectors are defined from violations of this geometric constraint. A left error vector (eL,a,b) is shown here and a right error vector (eR,a,b) is defined
similarly [18]. (e) An interior error vector (eI,a,b) is defined from sensor readings that come from the inside of an object. (f) A consistent shape description is created by
minimizing the lengths of these error vectors.
Fig. 5. A set of physical objects with their learned shapes.
The robot learns actions by observing the effects of performing
random motor babbling in the presence of the object. Motor
babbling is a process of repeatedly performing a random motor
command for a short duration. One strength of the action learning
approach we present here is that the robot is able to use this
goal-free experience to form actions that can be later used
for goal directed planning. The robot performs self-supervised
learning, where the observations in the training data are labeled
using the qualitative changes that occur to an individual percept.
Once learned, actions are used to achieve goals by reducing the
difference between the robot’s current perception and the desired
goal, as demonstrated in the evaluation (Section 5.2). Thus goals
are not required while the actions are being learned but they are
required for planning and execution.
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4.4.1. Action definition
An action is defined in Eq. (5) as a tuple with a description, a

context and a control law. These components are now formally
defined.
Our action learning algorithm is restricted to perceptual

functions fj which are either vector-valued or not perceived.

fj,t(τ ) ∈ Rnj ∪ {⊥}. (15)

In particular, the robot does not learn an action to change the shape
of an object, as a shape percept is represented by a set. The change
in a perceptual function is denoted by δj,t = fj,t+1− fj,t (the indices
j and t are sometimes elided for clarity).
The description of an action, D = 〈j, b, qb〉, consists of the

name j of the perceptual function to be controlled, the qualitative
behavior b,

b ∈ {inc, dec} ∪ {dir[fk] | fk ∈ P }, (16)

and the quantitative effect qb. Two qualitative behaviors are
defined for a scalar perceptual function: increasing and decreasing.
The qualitative behavior dir[fk] is defined for a vector function fj
and means that fj changes in the direction of fk. The quantitative
effect for scalars is bounded by ε > 0,

qinc(δt) ≡ δt > ε, qdec(δt) ≡ −δt > ε. (17)

The quantitative effect for vectors is bounded by ε > 0 and ε′ > 0,

qdir[fk](δt) ≡ ‖δt‖ > ε ∧
〈δt , fk,t〉
‖δt‖ · ‖fk,t‖

> 1− ε′. (18)

The context of an action is represented as a conjunction of
inequality constraints on scalar perceptual functions:

(xRc)where x ∈ {fk}, R ∈ {≤,≥}, c ∈ R. (19)

Finally, the control law of an action is a function H from a percept
to amotor output. In thisworkwe restrict our attention to constant
functions H .

4.4.2. Learning algorithm
Learning an action that satisfies a qualitative description

requires specifying the components of the action given Eq. (5).
First, to complete the description, a threshold ε is selected from
the observed values of δ. Next, the quantitative effect is used to
search for constraints on the perceptual context and motor output
that reliably induce the desired behavior. Finally, the constraints
are used to define a perceptual context and a control law.
For each perceptual function, a threshold ε > 0 is chosen

by running a Parzen window [5] with a Gaussian kernel over the
observations of δ (or ‖δ‖ for vector percepts). The threshold ε is
set to the first local minimum above zero if it exists, otherwise it is
set to a value one standard deviation from the mean. The value of
ε′ for vector percepts is set along with the perceptual constraints
while optimizing the utility function defined below.
The threshold ε is used to define qb via Eqs. (17) and (18), and

qb is used to label the examples in the training data. The learning
algorithm uses the labeled examples to search for constraints
on the percepts and motor outputs that generate the desired
behavior. The constraints are represented by axis aligned half-
spaces, specified as inequalities over the variables of the scalar
perceptual functions (fk) and the components of the motor vector
(πk(u)).
To find the perceptual constraints C and motor constraints M ,

we define a set of measures for the precision (µ0), recall (µ1), and
repeatability (µ2). The utility function U is their geometric mean.
Table 1
Perceptual functions used by the learning robot

Name Definition Dim

robot-location Robot’s location in the map 2
robot-heading Robot’s heading in the map 2
distance (τ ) Distance from sensor to object τ 1
angle (τ ) Angle from sensor to object τ 1
location (τ ) Location in map of object τ 2
heading (τ ) Geading in map of object τ 2

The robot has previously learned actions that change its location and heading in
themap. The robot learns to control the properties of the object image on its sensor
array (the angle anddistance to the object). The robot also learns an action to control
the object position in the environment (Fig. 2). The headings are represented by unit
vectors.

These functions are defined using the empirical probability (Pr) as
measured in the training data.

µ0 = Pr(qb(δt) | zt ∈ C ∧ ut ∈ M)
µ1 = Pr(zt ∈ C ∧ ut ∈ M | qb(δt))
µ2 = Pr(zt+1 ∈ C | zt ∈ C ∧ ut ∈ M)

U = (µ0µ1µ2)
1
3 .

(20)

Constraints are added incrementally to greedily optimize the util-
ity function. The process terminates when adding a constraint pro-
vides no significant improvement to utility. The newly generated
action is discarded if the final utilitymeasure is low (less than 50%).
Otherwise, the learned context C becomes part of the action.
A constant control law is defined fromM .

H(zt) = m = argmin
u∈M
‖u‖. (21)

The constant control law is enhanced during execution in two
ways. The first is to account for perceptual latencies by predicting
the current value of the percept. The second is to scale down the
motor output for fine control, when the robot wants to change a
percept to a goal value g .

s(g, τ ) = min(1, ‖E[fk,t(τ )] − g‖/ε) (22)

H(zt) = s(g, τ ) ·m. (23)

The learned components define the new action α = 〈D, C,H〉.

4.4.3. Training scenario
Several perceptual functions were used for learning and they

are listed in Table 1. Perceptual functions for the robot’s location
and heading come from the robot’s ontology of space. The robot’s
heading is represented as a unit vector. The remaining perceptual
functions are computed for each tracker. Object localization,
described in the previous section, provides the position and
heading of the object.
The robot was physically modified for this experiment by the

addition of a small foam bumper to the front of the robot. The
bumper reduced the impact of the object collisions on the robot’s
body. The bumper also kept the objects further away from the
range sensor which limited the amount of the static environment
obscured by the object. This was necessary as the localization
algorithm requires an adequate view of the static environment to
keep the robot localized in the map.
The robot created a log of observations for training data.

The robot gathered observations by randomly selecting a motor
command and executing it for a fixed duration. The motor
commands for drive and turn (linear and angular velocities) were
selected from the following set.

{−0.2, 0.0, 0.2}m/s × {−0.4, 0.0, 0.4} rad/s.

The data was gathered in different environmental configurations,
where the experimenter changed the environment between trials.
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Table 2
The actions below were learned by the robot from its observations of the effects of
motor babbling by optimizing the utility function defined in Eq. (20)

Action I {Move the sensor image of the object to the left }

Description 〈angle(τ ), inc, δ > 12〉
Context ∅

Control Law (0.0 m/s,−0.4 rad/s)
Utility 73 %

Action II {Move the sensor image of the object to the right }

Description 〈angle(τ ), dec,−δ > 12〉
Context ∅

Control Law (0.0 m/s, 0.4 rad/s)
Utility 74 %

Action III {Move away from the object }

Description 〈distance(τ ), inc, δ > .19〉
Context ∅

Control Law (−0.2 m/s, 0.0 rad/s)
Utility 69 %

Action IV {Approach the object }

Description 〈distance(τ ), dec,−δ > .19〉
Context (distance(τ ) ≥ 0.43)∧ (angle(τ ) ≥ 69∧ (angle(τ ) ≤ 132))
Control Law (0.2 m/s, 0.0 rad/s)
Utility 61 %

Action V {Move the object }

Description 〈location(τ ), dir[robot-heading], ‖δ‖ > .21 ∧ ε′ = .13〉
Context (distance(τ ) ≤ 0.22)∧ (angle(τ ) ≥ 68)∧ (angle(τ ) ≤ 103)
Control Law (0.2 m/s, 0.0 rad/s)
Utility 65 %

These actions cause changes in (I, II) the angle to the object (by turning), (III, IV) the
distance to the object (by driving), and (V) the location of the object in the map (by
pushing). The context of an action represents the precondition for the action to be
successfully executed for a single time step.

The experimenter ensured that the robot could see the training
object (the recycle-bin) at the start of every trial. The experimenter
varied the configurations observed by the robot to ensure that
the robot gathered experience frommultiple configurations of the
robot and the object. For example, the robot experienced some
situations when the object was far away and and others when
it was nearby. The robot also experienced situations where the
object was on the left, directly ahead, and on the right. The training
session included periods of time where the robot was pushing the
object, and the object would fall away to the left or to the right if
the object was significantly off-center. Approximately tenminutes
of training data were gathered, with one observation per second.
Running the learning algorithm generated several useful

actions that are shown in Table 2. These actions canbe thought of as
simple affordances of the object; actions which the robot assumes
will always work. However, the action for pushing an object will
fail for heavy objects that the robot can not move. This was not
tested to avoid damaging the robot. As an extension to the current
work, a more robust robot could use this action to create new
perceptual functions that predict which objects are pushable and
which are not.
The learning algorithmwas not able to learn an action to control

every object property. In particular, it was not able to learn an
action for changing the heading of the object. The robot’s physical
configuration makes it difficult for the robot to continuously push
and turn the object. When the robot pushes the object off-center,
the object tends to slide off the bumper. Without examples of
successfully turning an object, the learning algorithm was unable
to find a reliable action for changing the object’s heading.

4.4.4. Representing goals and planning to achieve them
Part of the value of the object representation is that it provides

a formalism for representing and achieving goals. The high-level
task specified in natural language as ‘‘Place the recycle bin in
Fig. 6. Dependency graph between actions used for planning.

the center of the room’’ can be formally represented as a goal
state with a tracker whose shape corresponds to the recycle bin
and whose location is in the center of the room. The robot can
describe goals and measure its progress towards achieving them.
A goal is formally expressed either with an inequality bound
(distance(τ ) < 1) or with a tolerance from a setpoint (|angle(τ )−
90| < 10).
The learned actions are used by a planner to achieve goals

by sequentially reducing differences between the robot’s current
percepts and the goal. First, a dependency graph is formed among
the actions by linking constraints in the context of one action
with the description of the effects of other actions (Fig. 6). For
example, the constraint angle(τ ) ≥ 68 in the action that changes
location(τ ), can be satisfied by the action that increases angle(τ ).
Planning relies on this duality between the constraints in the
context and the described effects, which is essentially means-
ends analysis [13]. To achieve goals, the constraints provided in
an action’s context are used with backchaining to create reactive
plans that change a percept to a goal value.
Attempting to satisfy the preconditions sequentially can fail

when more than one precondition is not satisfied. For example, to
push an object to a goal position when the robot, object, and goal
do not lie in a line, the robot must first move to a position near
the object which is opposite from the goal. In this situation, the
robot simulates observations from possible robot poses to find a
pose fromwhich the perceptual context is satisfied. The simulation
based planning algorithm first creates an error vector, with one
dimension per constraint. The value of each component of the
vector is the amount by which the corresponding constraint is
violated. The algorithmhill-climbs on the error vector length in the
space of robot poses to find a pose with a zero length error vector.
A procedure for simulating observations from different poses
was provided externally to the robot. The process of simulating
observations relies on the shape percept for the object. Hence, even
though an action may not explicitly reference an object’s shape,
planning with simulated observations may require knowledge of
an object’s shape in order to find a pose for the robot from which
the context is satisfied. If a satisfying pose is found, the robotmoves
to this pose and then attempts to execute the desired action.

5. Evaluation

We have described algorithms that generate object represen-
tations for robots. Now we demonstrate the utility of these rep-
resentations on our mobile robot. Our experimental platform is a
Magellan Pro robot with a laser rangefinder running with Player
drivers [7]. The mapping and localization code is implemented in
C++, and the object-based code is implemented in Python. The
laser rangefinder provides a planar perspective of the world, from
approximately 40 cm above the ground. We evaluated the learned
object representation on two tasks. The first is a classification task
that tests the robot’s object recognition capability. The second task
tests the robot’s ability to achieve goals.
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Fig. 7. (a) Shape hierarchies are created frommultiple observations of the objects in Fig. 5. The identifiers for the objects are included here for clarity, but they are not used
for clustering. The graph depicts the minimum spanning tree formed using the distances between the observed shapes. The horizontal axis shows the distance at which a
branch is connected to its neighbors. Note that all observations of the same physical object are grouped near zero. (b) Accuracy of label prediction using the tracker’s shape
percept. (c) Accuracy of label prediction using the shape class.
5.1. Classification

We evaluated the robot’s ability to perform an object recogni-
tion task. The robot modeled the shape of each of the ten objects in
Fig. 5 on five separate occasions. The classification task was to pre-
dict the object’s label as provided by the experimenter. The first
graph shows prediction accuracy using the shape percept of each
tracked object. The second graph shows prediction accuracy us-
ing the shape class for each tracked object. We compared the per-
formance using nearest neighbor learning with unaligned shapes
(before minimization of Eq. (11)), nearest neighbor learning with
aligned shapes (after minimization of Eq. (11)), and a theoretical
optimal learner. A perfect learner would achieve 100% accuracy
after ten examples (one example for each class), while random
guessing would only achieve 10% accuracy.
The results from a five fold stratified cross validation experi-

ment are shown in Fig. 7(b), (c). The results show that using aligned
shapes performs significantly better than using unaligned shapes.
Also, while learning with the shape class performs well, learn-
ing with the raw percepts will perform better. However, using
the raw percepts has a disadvantage that is not shown in these
graphs, namely greater run-time computation and space require-
ments from comparisons with all of the percepts instead of a few
class prototypes.
To better understand the shape classes formed by clustering

with the shape distance function, we can create a hierarchy of
the shape percepts as shown in Fig. 7(a). This hierarchy is formed
by taking the minimum spanning tree of a fully connected graph
where the shape percepts are the nodes and the edge weights are
given by the shape distance function. The horizontal axis indicates
the link length at which a set of percepts is connected to its
neighbors. Setting the class threshold η to a value near zero in Eq.
(10) will create classes that are in close correspondence with the
physical objects.
Although the number of examples is limited, this figure

provides some evidence that distance between object shapes can
suggest similarity in function. The recycle bin and black garbage
bin are the closest two objects, and the garbage can is linked to
these before any others. All three of the physical objects share
the function of being waste receptacles. The three chairs are also
linked together into a cluster. This ‘‘chair’’ cluster is joined to
another cluster with a variant of a chair (Vulcan the wheelchair)
but excludes other large objects (including the yoga ball and the
box).
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Fig. 8. (a) The robot pushes a recycling bin towards a goal location. (b) The shaded shapes show the robot’s percepts for itself and the object. The starting poses of the robot
and the object are shown unshaded, and the goal location for the object is indicated by×.
Table 3
The robot used the learned actions to perform three tasks: facing the object, approaching the object and moving the object

Behavior Goal Distance Accuracy Time (s)

Face |angle(τ )− 90| < 10 45◦ 7.4◦ (σ =3) 4.38 (σ =.51)
Approach distance(τ ) < 1 1.8 m .04 m (σ =.02) 21.1 (σ = 5.7)
Move ‖location(τ )− (3, 2)‖ < .15 2.0 m .09 m (σ =.04) 258 (σ = 138)

The columns indicate the initial distance to the goal, the final distance from the goal and elapsed time. Each task was performed ten times, and the results are shown with
the standard deviations. The goal was achieved on every trial.
5.2. Interaction tasks

To evaluate the learned actions, we measured the ability of
the robot to perform three tasks: facing the object, approaching
the object and moving the object to a location. These tasks were
represented by setting goal values for the angle(τ ), distance(τ )
and location(τ ) percepts respectively. The starting state for the
three tasks was approximately the same (the object was placed
at different orientations), and is shown in Fig. 8. The desired
final states for the tasks were to have the object in front of the
robot (|angle(τ ) − 90| < 10), to have the robot near the object
(distance(τ ) ≤ 1.0), and to have the object at the goal location
in the figure (‖location(τ ) − (3, 2)‖ < .15 m). Ten runs were
performed for each task, and the experimenter physically verified
task completion for each run. The results in Table 3 show that the
robot is able to achieve these goals reliably and accurately. Fig. 8
shows an example of the robot pushing the object to a goal.

6. Related work

Work in psychology has explored the development of object
representations in children. Work by Spelke [28] has studied how
children develop from using motion as an indicator of object unity
to using other cues. Work by Mandler [16] has explored how
classes might form in more general conditions. Work by Bloom [3]
has studied how objects and classes are used to quickly learn
a language. Our work builds upon these ideas to implement a
computationally tractable method for learning about objects on a
mobile robot.
Previous work in developmental robotics [24,23,4] has shown

how the structure of an agent’s sensory and motor systems can be
learned. A key method in this process is the projection of high-
dimensional observations into a low-dimensional space. Further
advances include Isomap [30] which identifies manifolds in the
data, the use of information distance for sensor organization [21],
and the use of intrinsically learned spatial representations to
accelerate learning externally specified tasks [25]. Our work in this
paper conceptually builds upon a foundation of spatial knowledge
to learn about objects.
There is also work studying how a robot can learn object

representationswith actions. Kemp and Edsinger [11] showed how
mutual information connects proprioception in an arm joint with
visual patches associated with the hand. Work by Stoytchev [29]
has a robot learning the affordances of simple tools. Related
work [10] demonstrates how a robot can learn the preconditions
for actions. Natale [20] has shown how motor babbling with a
robot arm can be used to learn how to move objects. The work in
each of these papers uses stationary perception, whereas our work
demonstrates the use of mobile perception.
Related work has also explored object recognition and action

but not in conjunction. Work on object recognition has used
laser-basedmapping techniques [2], and image-basedmodels [15].
Object-based actions have been learned in simulated symbolic
domains [8,1,33,14]. These approaches provide methods for
learning object interactionswhen a symbolic abstraction is already
available, but do not address how continuous actions can be
learned on a mobile robot.
Some studies have attempted to more directly connect the

robot’s intrinsic experience of objects with their extrinsic shared
meaning. Work by Yu and colleagues [32] has explored how
internal visual object representations can be associatedwith object
names represented as phoneme sequences. Work on the Open
Mind Indoor Common Sense project [9] has explored ways of
directly specifying relationships between the names of objects.
Combining these approaches with the work presented here would
yield a system thatwould have access to both a rich intrinsic object
representation and a shared extrinsic object representation.

7. Future directions

We have described an approach by which a robot can learn
an integrated representation of objects that is grounded in



J. Modayil, B. Kuipers / Robotics and Autonomous Systems 56 (2008) 879–890 889
experience, However, the completed work has several limitations
which are fertile areas for further research. Some of the most
important are sensor generalization, active exploration, extending
the learning process, and real-world applicability.
The use of a planar laser rangefinder as the sensor for

this work has both benefits and drawbacks. As a benefit, it
shows that many critical tasks for working with objects can
be accomplished with a limited sensor. These tasks include
tracking objects, building structural models, and learning actions.
Moreover, these representations can support object classification
and goal-directed planning. As a drawback, a richer data stream
could provide more information for distinguishing objects. As the
planar laser rangefinder is a range sensor, similarmethods could be
applied to building object representations from three dimensional
range sensors including 3D scanners and stereo vision. Tracking
would generalize directly using SLAM techniques to separate
the dynamic sensor readings from the static background. The
geometric constraints used to determine an object’s shape could
be generalized from rays to planes, though some algorithmic
modifications may be required for handling higher volume data
streams. Generalizing to other sensors such as monocular vision
requires more research, since real-time background subtraction
with a moving camera is still a challenging research problem.
Alternatively, local image features may prove to be effective as a
basis for image-based object representations [26].
Another area that requires further research is the use of active

exploration to discover object actions. The current work required a
person for the data gathering process to ensure that data samples
were collected from different parts of the feature space. Ideally,
the robot would be able to engage in active exploration, perhaps
driven by an intrinsic reward [22] for acquiring new actions.
This is challenging to perform on physical robots due to the fact
that the not all robot actions are invertible: while our robot can
push an object against a wall, the robot can not pull the object
back from the wall. The inability to restore the environment
in such circumstances limits the use of completely human-free
exploration strategies.
The learning process could be extended to find actions that

are object contingent, to generate new perceptual functions, and
to discover relations between objects. On a less fragile robot
platform (without the risk of motor burnout) the robot could
attempt to learn a constraint that large objects can not be moved.
This constraint in an action’s context is an example of how
learned actions can be contingent on an object’s properties such
as its size or mass. Automatically generating new perceptual
functions by constructive induction would relieve the burden
of relying on hand-generated perceptual functions. However, a
perceptual function that yields an efficient structural model would
be challenging to discover automatically. Learning relationships
between objects could help the robot generalize across the
relative ways objects are positioned, used, or shaped. Relations
between objectsmay also support learning from demonstration by
observing natural interactions between people and objects.
This work is based on ideas from human development, and

several more learning stages may be required before this approach
performs well on real-world problems. However, the robot could
use its current knowledge for self-supervision to bootstrap more
capabilities. For example, the robot could use the experience
gathered from dynamic objects to improve its ability to track
dynamic objects and to find stationary objects. The robot could
learnmore efficient control laws for the individual actions, and also
learn the side effects of actions. Adding these extensions should
allow this developmental approach to tackle more significant real-
world tasks.
8. Conclusions

The above work shows how a robot that starts with an un-
derstanding of its sensors and space can construct object rep-
resentations. Multiple representations are acquired, which form
perceptual, structural and functional object representations. The
object snapshots and trackers form perceptual representations.
The shape percept provides a structural representation. The
learned actions provide a functional representation. By integrating
these different aspects of objects, the learned representations sup-
port perception, geometric inference, and goal-directed planning.
The robot can effectively learn and use knowledge about objects.
The learned knowledge is adequate for generalizing from past ex-
perience both for object recognition tasks and for acting to achieve
goals.
The learned object representations are grounded in the robot’s

sensorimotor experience. The robot creates object trackers for
individual objects, forms percepts fromobservations, forms classes
to generalize from past experience, and learns actions to change
the perceived features of an object. Using this knowledge, the
physical robot is able to recognize objects and plan with learned
actions to achieve goals. The learned representation is simple and
lays the foundation for learningmore complex objectmodels in the
future.
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