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Abstract

Memory trace reactivation in hippocampal ensembles during sleep has been suggested as a coordinating mechanism for consolidation of new

memories. Here we propose a simple statistical scheme allowing analysis of the reactivation of firing rate modulations, with a well-defined null

hypothesis. This method allowed reliable detection of ensemble reactivation across three experimental settings. Reactivation of firing rate

modulations mirrors several properties of commonly studied reactivation measures: it is stronger during hippocampal sharp waves, and decays

over a period of 10–20 min.
Moreover, in some conditions, firing rate reactivation covaries with reactivation of cell pair cross-correlations, suggesting the two phenomena

reflect similar processes. We propose an attractor network model, with pre-wired attractors, in which experience selects and primes some

attractors. Priming occurs by either experience dependent synaptic plasticity or changes in neuronal excitability. Primed attractors are more likely

to activate in the following sleep, inducing reactivation of both rates and cross-correlations.

q 2005 Published by Elsevier Ltd.
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1. Introduction

Although memories may be formed of single-trial, unique
events, it is widely held that the physical changes underlying
permanent memory formation continue for some time after the
event being remembered. In particular, it has been hypoth-
esized that a ‘memory consolidation’ process, occurring in
sleep after a learning experience, is essential for formation of
permanent memory traces in the brain (Buzsaki, 1989; Marr,
1970, 1971; McNaughton, Barnes, Battaglia, Bower, Cowen
and Ekstrom, 2003).

Lesion data have demonstrated the implication of the
hippocampus and the medial temporal lobe in new memory
formation in humans and rats (Broadbent, Squire, & Clark,
2004; Moser, Moser, & Andersen, 1993). While the
hippocampus is crucial for acquisition of new memories
and for the retention of recently formed memories, its
importance decreases for memories acquired at more remote

times; the final storage of those memories may take place
elsewhere, and may be guided by information provided by
the hippocampus during offline periods. In fact, hippocampal
offline activity across many weeks after memory acquisition
is necessary for retention (Riedel, Micheau, Lam, Roloff,
Martin and Bridge, 1999). It has therefore been suggested
that memory consolidation requires that hippocampal neural
assemblies activated during learning be reactivated during
subsequent sleep, as has been demonstrated in a variety of
experimental settings and with different statistical techniques
(for a review see Sutherland and McNaughton, 2000).
Although some insights into the possible mechanisms of
reactivation, such as its NMDA receptor dependence (Stanis
et al., 2004) have been shown, the detailed mechanism of
reactivation still remains to be elucidated; nevertheless,
answers to many specific questions may now be coming
within reach, thanks to the unprecedented possibility of
simultaneous recording from ensembles of many neurons
(Buzsaki, 2004; Wilson and McNaughton, 1993). In
particular, does memory consolidation require activation of
precise patterns of activity (Lee and Wilson, 2002; Skaggs
and McNaughton, 1996;Wilson and McNaughton, 1994), or
merely increased firing rates of appropriate neurons (Zhang
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and Linden, 2003)? Does consolidation require the repetition
of precise temporal sequences of cell firing that occurred in
previous behavior? Does memory consolidation occur
preferentially during particular points of the sleep cycle, or
during particular population events such as hippocampal
sharp-waves (Kudrimoti, Barnes, & McNaughton, 1999)?

Distinguishing between these particular alternatives will
require not only carefully controlled experiments, but also
careful statistical analyses. First, these biological conjectures
must be turned into precise null hypotheses regarding the
structure of population spike trains and field potentials. Second,
statistical methods must be developed that can test these
hypotheses, without making unjustified assumptions concern-
ing the statistical distribution of the data. Finally, these methods
must be robust against possible artifacts such as misidentifica-
tion of extracellularly recorded neurons. In this paper, we seek to
develop a statistically rigorous methodology to investigate the
simplest possibility; that of reactivation of firing rate modu-
lations. We test this hypothesis using a novel, conservative
cross-validation approach, in which model misspecification is
likely to yield type II rather than type I errors. We find that the
activation of neurons in the initial phases of sleep is correlated
with the degree of activity during recent waking behavior.

We then discuss the relationship between the reactivation of
firing rate modulations and the effects observed on quantities
that seem to describe more directly ensemble activity, such as
cell-pair correlations, then we discuss a simple theoretical
model delineating a possible scenario in which reactivation of
firing rate modulation and cross-correlation originate from the
same network effects.

2. Experimental methods

2.1. Animal subjects, surgical and recording techniques

Male Fisher 344 or Brown Norway/F344 hybrid rats were
used for these experiments. All procedures were conducted
according to approved University of Arizona Institutional

Animal Care and Use Committee protocols and NIH standards.
The rats were implanted, under pentobarbital or isofluorane
anesthesia, with a circular array of 14 separately moveable
microdrives (‘HyperDrive’), each one guiding a tetrode in the
dorsal CA 1 region of the hippocampus. During recording, the
tetrode signal was filtered between 600 Hz and 6 kHz, and spike
waveforms were acquired at 32 kHz each time the signal
exceeded a manually set threshold. Spike waveforms were
sorted offline bymeans of a semi-automatic clustering algorithm
(BBClust, author: P. Lipa), and the classification was refined
manually using custom-written software (MClust, author: A.D.
Redish). The recording device and the parallel recording
technique have been described in detail elsewhere (Battaglia,
Sutherland, & McNaughton, 2004; Gothard, Skaggs, Moore, &
McNaughton, 1996; Wilson and McNaughton, 1993). Putative
pyramidal cells and interneurons were discriminated by
considering the average firing rate, cell burstiness and spike
waveform. Only pyramidal cells were analyzed in this work.
The signal from tetrodes placed in the CA1 pyramidal layer was
also filtered between 100 and 300 Hz and a thresholding
algorithm was used to detect the ripple oscillations that occur
during sharp wave events.

2.2. Behavior

Experiment A was described by Battaglia et al. (2004) as
Experiment C. Briefly, before surgery the rat was trained to
shuttle back and forth on a linear track in an environment
different from those used for the recordings, with food reward
at the two ends. For the experiments, two structurally identical
linear tracks (180!8 cm), placed in two adjacent recording
environments, were used. One track (‘cue-rich’ track) was
enriched with local cues including steel wool, cotton, odors
(vanilla essence), various kinds of hurdles that the rats were
required to climb over, or which limited the accessible width of
the track. The other (‘cue-poor’) was left unadorned. In
recording sessions, the rats were allowed to rest in a towel-
lined flower pot placed next to the track for 20–25 min (sleep 1

List of mathematical symbols

a strength of the experience-dependent synaptic
potentiation (in the model)

b strength of the experience-dependent change in
excitability (in the model)

f iS1;M;S2 firing rate for the ith cell during, respectively, the
sleep 1, maze, sleep 2 epochs

hi neural input field (in the model)
G gain of the threshold-linear neural response

function
Hi external input to ith cell during sleep (in the model)
I rate of the global inhibitory unit (in the model)
Jij value of the synaptic connection between the ith

and the jth cell (in the model)
rMS1, rMS2, rS1S2 correlation between the zero-lag cell-pair

correlation matrices observed, respectively, in
maze and sleep 1, maze and sleep 2, sleep 1 and
sleep 2

t time constant for the Wilson-Cowan neural
dynamics (in the model)

xmi value of the mth pre-wired pattern on the ith cell (in
the model)

q threshold of neural response function (in the model)
Vi firing rate for the ith cell (in the model)
Xi
0 baseline log-firing rate for the ith cell

Xi
S sleep baseline log-firing rate for the ith cell

Xi
S1;M;S2 log-firing rate modulations specific to the sleep 1,

maze, sleep 2 epochs
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epoch), then they performed the shuttling task on one of the
tracks (alternating the two in consecutive experimental
sessions) for 15 min (maze 1 epoch), and then rested again in
the flowerpot for another 20–25 min (sleep 2 epoch). After-
wards, the rat was moved to the other environment for a
shuttling session on the other track (maze 2 epoch) and then
allowed to rest in a flower pot for another 20–25 min (sleep 3
epoch). Because of the difficulties involved in comparing
recordings from two data acquisition setups, only the sleep 1/
maze 1/sleep 2 epoch were considered for this analysis. Note
also that the designation of epochs as ‘sleep’ periods is by
convention only. The animals rested quietly and were often in
apparent slow-wave sleep, but at some times they were in a
quiescent waking state. The latter is a sufficient condition for
memory trace reactivation (Kudrimoti et al., 1999).

In Experiment B, described by Battaglia et al. (2004) as
Experiment A, the rats shuttled back and forth on a ‘cue-rich’
circular track, with different portions covered with materials of
different textures, and other kind of local visual, olfactory, and
tactile cues. Experimental sessions followed a sleep 1/maze/
sleep 2 protocol, with sleep periods of 20–25 min.

In Experiment C (Karten et al., 2002), the rats shuttled on a
T-maze between the base arm and one of the two collinear arms
(alternating the two between trials). Food reward was delivered
at all three arm ends, on a probabilistic schedule: the base arm
was rewarded in 50% of the trials, the two collinear arms were
rewarded, respectively, 20 and 80% of the times. Each

experimental day, two running sessions were recorded, in
two maze configurations: in one, the rat had access to the full
arm extent, in the second, the arms were shortened with
barriers. The sessions were preceded, interspersed, and
followed by sleep sessions of 20–25 min (sleep 1/maze 1/
sleep 2/maze 2/sleep 3 protocol). Reactivation analyses are
performed considering

1. the effect of maze 1 activity on the subsequent sleep period
(sleep 2), using the preceding sleep period (sleep 1) as
control

2. the effect of maze 2 activity on the subsequent sleep period
(sleep 3), using the preceding sleep period (sleep 2) as
control

For most analyses only the last 10 min of the preceding
sleep period and the first 10 min of the following sleep period
were used. Since, sleep 2 lasted for at least 20 min, non-
overlapping portions of that epoch were used when examining
the effects of the maze 1 epoch and of the maze 2 epoch.

2.3. Analysis methods

Firing rates of principal cells in the hippocampus have
widespread and skewed distributions (Fig. 1). A log-
transformation was, therefore, applied to make the distribution
closer to Gaussian, allowing the use of linear analyses.
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Fig. 1. Distribution of epoch-averaged population firing rates. A. Histogram of population firing rates averaged over the maze epoch. B. Histogram of population
firing rates averaged over the sleep 1 epoch. C–E. Scattergrams of the population firing rates. C. X-axis: average firing rates for all cells during the maze epoch. Y-

axis: average firing rates during the sleep 1 epoch. D. X-axis: average firing rates during the maze epoch. Y-axis: average firing rates during the sleep 2 epoch. E. X-

axis: average firing rates during the sleep 1 epoch. Y-axis: average firing rates during the sleep 2 epoch.
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We consider the firing rates in sleep immediately before the
behavioral task (the sleep 1 epoch, S1), during behavior (the
maze epoch, M), and sleep immediately after (sleep 2 epoch,
S2). In a reactivation analysis, we seek to investigate whether
neurons which fire at elevated rates during M continue to fire at
elevated rates during S2. The widespread variability in baseline
rates complicates this analysis. The S1 epoch is used to provide
information about each cell’s baseline firing rate, when
studying the correlation between M and S2.

In a complex analysis, it is essential to formalize precisely
the null hypothesis being tested. The null hypothesis here is
that there are no correlations between the activity in maze and
sleep 2, other than resulting from variable baseline activity.
More precisely, the firing rates of the i-th cell in the three
epochs are modeled by

logðf iS1ÞZXi
0 CXi

S CXi
S1

logðf iMÞZXi
0 CXi

M

logðf iS2ÞZXi
0 CXi

S CXi
S2

Here, Xi
0 represents the baseline firing rate of cell i, Xi

S

characterizes the relative preference of this neuron for firing
during sleep as compared to waking, and Xi

S1, X
i
S2 and Xi

M

represent the session-specific firing rate modulations of neuron
i in the three epochs. The null hypothesis is that the X’s are
independent Gaussian variables, and that all correlation
between rates therefore arises due to common influence of
the baseline variables Xi

S and Xi
0. In particular, we aim to test

the hypothesis that Xi
S2 and Xi

M are uncorrelated.
An initial approach might be to consider the correlation

between logðf iM=f iS1Þ and logðf iS2=f iS1Þ. In these variables, the
effect of the baseline Xi

0 is subtracted away. However, the
subtracted values both still contain Xi

S1, and a spurious
correlation will, therefore, be observed. This problem is
alleviated by dividing the Sleep 1 session into two halves,
S1a and S1b. We then examine the correlation of XS2S1Z
logðfS2=fS1aÞZX2KX1a with
XMS1Z logðfM=fS1bÞZXMKXSKX1b. This provides a test of
the null hypothesis, provided that X1a and X1b are uncorrelated.
This latter assumption may be validated by considering the
return to baseline of the population vector autocorrelogram
during sleep (Fig. 3).

As a further control, we also examine the reverse analysis or
‘preactivation’, in which the same formula is used, swapping
the roles of sleep 1 and sleep 2 (Pennartz, Lee, Verheul, Lipa,
Barnes and McNaughton, 2004).

The cell-pair correlation reactivation was computed as
described by Kudrimoti et al. (1999) and by Hoffman and
McNaughton (2002). For each epoch, spike trains were binned
into T intervals of 100 ms, producing sequences of spike counts
fi(t). The normalized correlation C between each pair (ij) of
spike trains was computed using the equation:

Cij Z
1=T

P

T

tZ1

fiðtÞfjðtÞK1=T2
P

T

tZ1

fiðtÞ
P

T

tZ1

fjðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=T2
P

T

tZ1

f 2i ðtÞ
P

T

tZ1

f 2j ðtÞ
s :

The explained variance (EV) of correlations from sleep 2 and
maze, given the correlations of sleep 1 was then computed. The
EV was calculated based on the square of the partial correlation
coefficients:

EVZ r2MS2jS1 Z
rMS2KrMS1rS2S1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1Kr2MS1

" #

1Kr2S2S1
" #

q

0

B

@

1

C

A

2

;

where rAB indicates the Pearson correlation coefficient between
the cell pair correlations Cij computed in epoch A and in epoch
B.

2.4. Simulation methods

Spontaneous activity during sleep was simulated in a
recurrent network of NZ2000 threshold-linear neurons. The
simulation is a refinement and extension of the model
published previously by Shen and McNaughton (1996).

The time course of the input-field variables hi, modeling the
total input received by each neurons was dictated by the
(Wilson and Cowan, 1972) equations

t
d

dt
hi ZKhi C

X

jsi

JijVj C ICHi

(Rolls and Treves, 1998; Treves, 1990), where Jij is the matrix
of the synaptic connections, I is an inhibition term, uniform
across neurons, that prevented the total network activity from
exceeding a fixed limit. Hi is an external input term. The time
constant t is not ascribed here any precise biological meaning,
and was adjusted in order to moderate spurious dynamical
phenomena related to synchronous unit update (Amit, 1989)
such as 2-cycles. Only the stable states reached by the
dynamics are of interest here. The activations Vi, representative
of firing rate variables for each neuron were related to the input
field by a threshold linear function:

Vi ZGðhiKqÞ;
with gain GO1 and threshold q.

The synaptic matrix Jij encoded pZ100 (0, 1) random
patterns xm according to the Hopfield-like formula:

Jij ZM
X

m

xmi x
m
j ;

where M is a normalization factor.
This synaptic encoding is assumed to be already in existence

at the beginning of themaze epoch, and to influence the activity
during the maze: in this simplified scenario, the Hopfield-like
matrix plays the same role that it has been advocated for a
topology-embedding, ‘multi-chart’ synaptic architecture
(Redish and Touretzky, 1998; Samsonovich and McNaughton,
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1997). Roughly, each attractor then represents a possible
representation of a physical location. In any single environ-
ment, only a relatively small fraction (15–25%) of hippocam-
pal cells have a place field. In our modeling framework, this is
equivalent to saying that only a few of the pre-wired attractors
are actually activated during the maze experience. For
simplicity, we assumed here that only one of the attractors
was active during the maze epoch.

As suggested by Shen and McNaughton (1996), two
hypotheses were considered about how a trace of the maze
activity could be encoded in the network. First, a LTP-like
change in synaptic strength, potentiating the synapses between
units that were co-active during the maze epoch (that is, in the
l-th pattern):

J 0ij Z Jij C
X

m

aMxlix
l
j;

where a represent the strength of the synaptic potentiation.
Second, a change in cellular excitability proportional to a

given cell’s activity in the maze epoch (dictated by the l-th
pattern) was considered, in the form of a leftward shift in the
activation function threshold:

q0i Z 1Kbxli
" #

q

where b represents the intensity of the facilitation.
Spontaneous activity during sleep was modeled by injecting

into each cell a constant, positive, exponentially distributed
noise term Hi. The network dynamics was allowed to relax, and
the process was repeated with 500 realizations of the noise.
Only the steady state configurations, that is, the configurations
obtained at the end of the relaxation process, were retained for
analysis.

3. Results

3.1. Summary of results

We characterized memory trace reactivation in cell
ensembles, by means of a measure of the correlation between
the global firing rates in the maze epoch and in the subsequent
sleep. The measure was designed to eliminate the spurious
correlations induced by the distribution of the baseline firing
rate across a population of hippocampal pyramidal cells, using
data recorded in a sleep epoch before the maze session to assess
the baseline, in a cross-validation scheme. Reactivation was
observed in a large majority of the experimental sessions
considered. Also, similarly to cell-pair correlation measures of
reactivation, reactivation was stronger during sharp waves than
in inter-sharp wave periods, and showed a declining time
course across the first 20 min of the sleep session. We also find
that rate and cell-pair correlation measures of reactivation are
correlated, at least in some experimental conditions. We
provide a simple scenario, in an attractor network with
attractors pre-wired in the connectivity matrix, where
reactivation of both firing rate modulations and cell-pair
correlations are observed as an effect of experience related

changes in either the synaptic structure or the intrinsic
excitability, causing a shift in the proportion of time each of
the pre-existent attractors is reached in spontaneous activity.

3.2. Analyzed data

A total of 2035 putative pyramidal cells were recorded from
eight rats: 507 cells from two rats, 19 datasets for Experiment
A, 514 cells from two rats, 16 datasets for Experiment B, 1014
cells from four rats, 27 datasets, in Experiment C.

3.3. Distributions of firing rates and log-firing rates

The population distribution of firing rates is very skewed
and very far from Gaussian both while running on the track
(meanZ1.1 Hz, SDZ2.38 Hz; skewnessZ10.2; kurtosisZ
169.5; Fig. 1A) and during sleep (meanZ0.98 Hz, SDZ
1.96 Hz; skewnessZ9.06; kurtosisZ140.9; Fig. 1B). This is
expected, given the large number of pyramidal cells with very
low firing rates (in both cases the mode of the distribution was
very close to 0). When comparing the average firing rates
across epochs, a relatively strong correlation is observed (maze
vs. pre-sleep: r2Z0.44 Fig. 1C, maze vs. post-sleep: r2Z0.53
Fig. 1D, pre-sleep vs. post-sleep: r2Z0.53 Fig. 1E). The
correlation is mostly generated by a minority of high firing rate
cells, and seems to be dominated by the wide range of intrinsic
excitability of the cells. Thus, using correlations between
average firing rates as a measure of the similarity between the
population patterns of cell excitability in different epochs
misses the structure contained in the activity of the low firing
rate hippocampal pyramidal cells, which contain a great deal of
spatial information, and are an important component of the
hippocampal activity pattern.

A better choice to compare the population activities
between different epochs may be to take the logarithm average
firing rates. Log-firing rates have a distribution closer to normal
in both themaze and sleep epochs (maze: meanZK0.28, SDZ
0.65; skewnessZK 0.8; kurtosisZ4.23; Fig. 2A, sleep:
meanZK0.34, SDZ0.59; skewness K0.20, kurtosisZ3.19;
Fig. 2B). The slightly higher skewness of the maze distribution
mirrors the fact that, during self-motion, hippocampal
pyramidal neurons with a place field on the track are very
active, whereas cells without a place field are nearly silent. The
population patterns of log-firing rates are less correlated
between different epochs than was the case for firing rates
(maze vs. pre-sleep: r2Z0.056 Fig. 2C, maze vs. post-sleep:
r2Z0.12 Fig. 2D, pre-sleep vs. post-sleep: r2Z0.21 Fig. 2E).
The scatter plots in Fig. 2C–E show that the weight of high
firing rate cells in the correlation is reduced, and reveal an
absence of between-epoch correlations for low firing rate cells.

3.4. Firing rate patterns decorrelate in time

The assumption in the cross-validation scheme used here is
that firing rates in the first and last 10 min of the pre-sleep
epoch do not contain correlations besides the baseline
correlation due to the variability across cells in intrinsic
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excitability. This means that any transient correlation in the
firing rates would have to decay in a time shorter than 10 min.
To test this, firing rates were calculated for 1 min time bins.
The correlations were computed between the obtained
population vectors. The average correlation for time bins at a
lag t is shown in Fig. 3. In fact, correlation decays to about 0.85
in 10 min, still remaining at values higher than the correlations
observed between sleep 1 and sleep 2 for time lags comparable
with the duration of the sleep epochs. A dual exponential

functions fits the auto-correlogram curve with time constants of
1.7 and 33 s, decaying to a baseline value of rZ0.56.

3.5. Reactivation of firing rate modulations

Fig. 4A shows the correlation present in a recorded
pyramidal cell population between the maze modulation
variable XMS1 and the sleep 2 modulation variable XS2S1. The
two variables were very strongly correlated (reactivation
correlation; r2Z0.56, p!10K6). No correlation was found
when the role of sleep 1 and sleep 2 were switched
(preactivation control): Fig. 4B shows the correlation between
the maze modulation variable (with respect to sleep 2), XMS2

and the sleep 1 modulation variable, XS1S2 (control preactiva-
tion; r2Z0.012, pO0.55). The effect is consistent and is
observed in all three experiments, with the reactivation
correlation larger than the control correlation in a large
majority of experimental sessions (Fig. 4C–F), 11 out of 13
sessions for Experiment A, 13 out of 16 sessions in Experiment
B, 22 out of 27 sessions for the Maze 1 phase of Experiment C,
22 out of 27 sessions for the Maze 2 phase of Experiment C).

3.6. Firing rate reactivation is stronger during sharp waves

Some features of firing rate reactivation resemble closely
what was observed for the reactivation of cell-pair correlations.
Kudrimoti et al. (1999) showed that the reactivation of zero-lag
cell-pair correlations was stronger during sharp wave events
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than in the inter-sharp wave periods. Fig. 5 shows that firing
rate reactivation follows a similar pattern. For all three
experiments the reactivation correlation was stronger during
sharp waves than in inter-sharp waves periods. Interestingly,
the control preactivation correlation was higher in the inter-
sharp wave periods.

3.7. Time course of firing rate reactivation

Kudrimoti et al. (1999) also showed that cell-pair
correlation reactivation decreased during the 20 min of the
post-experience sleep session. Similarly, a downward trend is

observed for all three experiments analyzed here, as shown in
Fig. 6, most clearly for Experiment C.

3.8. Correlation between firing rate reactivation and cell-pair
correlation reactivation in some experimental conditions

Sleep reactivation fluctuates substantially across exper-
imental sessions, because it reflects features of the ongoing
brain dynamics on which the experimenter has very little
control.

If firing rate reactivation and the correlation measures of
reactivation are both indices of the same underlying
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physiological phenomena, it is plausible that these two
measures will covary across experimental sessions. This was
the case in two experimental conditions: for the ‘cue-poor’
track in Experiment A (Fig. 7A) and for one of the two rats in
Experiment B (Fig. 7B), where a correlation significant at the
p!0.05 was observed between the reactivation correlation and
the explained variance measure of cell-pair correlation. No
correlation was observed in the other cases.

3.9. Modeling reactivation induced by synaptic plasticity
and by excitability changes

Firing rate modulations and cell-pair correlations are two
different characterizations of ensemble activity, both showing
experience-induced reactivation, and as seen above, possibly
related to each other. The theory of attractor networks suggests
a simple theoretical scenario in which the reactivation of these
two measures indeed arise as a consequence of the same

mechanisms. As shown by Shen and McNaughton (1996),
experience-dependent plasticity acting on the synapses of a
recurrent network can induce reactivation in simulated
spontaneous activity. During experience, plasticity will act
on a synaptic matrix that is already formed, and that may
already encode attractor configurations. The activity during the
maze session may reflect configurations that are already
encoded by the synaptic matrix (Kesner and Rolls, 2001;
Samsonovich and McNaughton, 1997). Those attractors most
active during the maze session may then be tagged, so that they
correspond, in a neural network analogy, to deeper energy
minima, and would therefore occur more often during
subsequent spontaneous activity. The more frequent appear-
ance of those configurations would increase both the firing rate
of the cells participating in the attractor and the correlation
between them, thus generating the reactivation both of firing
rate modulations and of cell-pair correlations. These possibi-
lities were investigated with the help of simulations of a
recurrent network of threshold-linear neurons.

Fig. 8 shows, as demonstrated by Amit and Brunel (1997)
and by van Vreeswijk and Sompolinsky (1998), that
randomness in the synaptic matrix is sufficient to generate
the variability in baseline average firing rates across cell
populations. In the simulations, the cells in pattern xl were
tagged as active during behavior. Fig. 9 shows the effect of
synaptic modifications strengthening that pattern: The average
overlap between the pattern xl and the spontaneous activity
configurations increases as a function of the synaptic
potentiation parameter a (Fig. 9A).

Consequently, the firing rate of the cells participating in xl

increases with a, whereas the average firing rate of the other
cells stays unmodified (Fig. 9B), and the correlation between
those cells increases as well (Fig. 9C). This shows that
synaptic plasticity may cause reactivation both of correlations
and firing rate modulations. Conversely, experience may
induce activity-dependent changes in cell excitability.
Simulations show that, in the model, this is enough to tag
that attractor so that it will present itself more often during
spontaneous activity (Fig. 10A), that the cell participating in
the attractor are more spontaneously active (Fig. 10B), and
that cell-pair correlation between cells in the attractor are
increased as well (Fig. 10C).
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4. Discussion

We investigated the dynamics of pyramidal cell firing rates
in rats during a sleep–maze–sleep paradigm. We found that (1)
firing rates are highly correlated across all sessions; (2) cell
populations that increase firing rate over baseline during maze
running also reactivate during later sleep; (3) The correlation of
maze and post-behavior sleep firing rates was strongest during
sharp waves, and decayed with time since maze running, over a
timescale of approximately 20 min.

A variety of experimental and statistical approaches have
previously been applied to the question of reactivation. In early
work, Pavlides and Winson (1989), recording from cell pairs,
found that neurons for which the rat was physically constrained
to the place field fired at elevated rates in subsequent sleep.
Subsequently, Wilson and McNaughton (1994) showed that
neuronal pairs showing elevated correlations during behavior
continued to exhibit them in subsequent sleep (see also
Kudrimoti et al., 1999). Other studies have investigated
reactivation of the temporal order of neuronal pairs or spike
sequences (Lee and Wilson, 2002; Louie and Wilson, 2001;
Nadasdy, Hirase, Czurko, Csicsvari, & Buzsaki, 1999; Skaggs
andMcNaughton, 1996). Firing rates were investigated in more
detail by Hirase, Leinekugel, Czurko, Csicsvari, and Buzsaki

(2001), showing a difference in correlation structure between
familiar and novel environments.

This body of work, accumulated over a decade, together
constitutes a strong case for memory-trace reactivation;
however, the precise nature of the reactivation process remains
unclear, at both the single cell and assembly levels.
Reactivation is likely a complex and highly variable process,
requiring novel statistical approaches. In this paper, we have
seen some of the analytic complications that can arise, even
when only looking at mean firing rates.

This difficulty arises in part from the nature of the statistical
paradigm. In the traditional Neyman-Pearson approach,
inferences are made by refutation of a null hypothesis. The
primary difficulty is not in satisfactorily refuting a null
hypothesis, but rather in precisely stating a null hypothesis of
no reactivation, that does not require unjustified assumptions.
Even in the simple firing rate framework considered here,
assumptions are required, such as the lack of correlation
between sleep sessions 1a and 1b. One can also conceive of
ways the null hypothesis may be violated without bona fide
memory-trace reactivation, such as an imbalance in the number
of sharp waves amongst sleep sessions. Furthermore, other
technical concerns may arise, such as electrode drift (although
in our case this would only lead to a Type I error if it occurred
precisely between the sleep 1 and maze epochs) or spike-
sorting errors (Quirk andWilson, 1999), which are known to be
especially severe during sharp waves (Harris, Henze, Csicsvari,
Hirase, & Buzsaki, 2000). These concerns are to some extent
ameliorated by the reduction in reactivation seen after
swapping pre- and post-behavior sleep sessions (‘preacti-
vation’). Preactivation might indicate neural processes reflect-
ing genuine anticipation: while reactivation was strongest
during sharp wave events, preactivation was strongest in inter-
sharp wave periods, suggesting that reactivation might occur
during sleep and/or inactive behavior, whereas preactivation
might be associated with epochs of greater activity. Alter-
natively, preactivation could be an indication of statistical
issues requiring further clarification, even in the simple case of
firing rates. We suspect that these concerns apply also to more
complex analyses that have investigated synchrony patterns
and temporal sequences.

Interestingly, some details of our results mirror the results of
correlation and sequence-based analyses. In particular, we
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observe a similar time course (reactivation decays during a
20 min period following behavior), and see more reactivation
during sharp waves. Furthermore, we find that sessions
showing higher rate reactivation also show higher cross-
correlation reactivation.

Apart from this phenomenological similarity we do not, at
present, have definitive arguments demonstrating that all the

measures of reactivation considered here are manifestations of
the same underlying phenomenon. Recently, reactivation of
cross-correlations has been found in some experimental
conditions to depend on NMDA receptor functionality (Stanis
et al., 2004), suggesting it may be at least partly caused by
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synaptic plasticity. In principle at least, firing rate reactivation
may originate from simpler processes, for example from
experience dependent changes in neuronal excitability (Zhang
and Linden, 2003). Processes of this kind, while probably
important in many kinds of learning, are unlikely to be able to
store and process a large amount of information, of the order of
magnitude required by spatial/episodic memory in the
hippocampus. At most, they may provide a total information
storage capacity of the order of N bits, where N is the number of
neurons. On the other hand, the storable information in the
synaptic matrix with a Hopfield like rule is of the order of the
number of synapses (probably about three orders of magnitude
larger than the number of neurons in the hippocampus; (Amit,
1989; Battaglia and Treves, 1998; Treves, 1990).

A possible unifying framework may be found in the cell
assembly concept and the theory of attractor networks. In our
simple simulation, the role of experience is only to select one
(or more) of some pre-wired attractors, in analogy to what
proposed as a model for working memory in the absence of
synaptic plasticity by Kesner and Rolls (2001). The attractor is,
in essence, the cell assembly proposed by Hebb (Amit, 1994;
Harris, 2005; Hebb, 1949; McNaughton and Morris, 1987) as
the indivisible unit of brain function. It is also, in our view, the
indivisible unit of reactivation and consolidation processes.
Several different microscopic processes, at the cellular and/or
synaptic level, might shape these assemblies or to prime pre-
wired assemblies so that they will be more likely to activate in
later spontaneous activity. In the model explored here, both
Hebbian synaptic plasticity and experience dependent spike
facilitation could successfully prime the cell assemblies
elicited by experience. The reactivation of those cell
assemblies reproduced both the firing rates and the correlation
structure observed during experience, so that in this case firing
rate and correlation measures are indeed indices of the same
phenomenon.

A rate model, such as that used here, cannot reproduce the
fine details of the temporal dynamics or the precise structure of
cross-correlations (see e.g. Shen and McNaughton, 1996), for
which a spiking neuron model is probably necessary. On the
other hand, this simple simulation protocol addresses the issue
of how the network responds to random noise, as a possible
model of spontaneous activity, by analyzing the set of fixed-
point activity configurations reached by the network in the
presence of each realization of an uncorrelated, uniform
random noise. In particular, the synaptic structure of the
network will introduce correlations in the neuronal responses
to the uncorrelated noise input and those correlations can be
seen as a model of at least some plasticity related aspects of the
measured experimental cross-correlations (Goldberg, Rokni, &
Sompolinsky, 2004; Shen and McNaughton, 1996).

In reality, synaptic plasticity, spike facilitation and other
microscopic phenomena may intervene differentially in
different conditions, so that rate and correlation measures
may actually not be perfectly correlated, as it was observed
here under some conditions. We hope that the study of the
interaction between cellular mechanisms and cell assembly

reactivation can take advantage of statistical tools such as those
proposed here.
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