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Abstract

The goal of the Cyclone project is to investigate how to make a low-level C-like lan-
guage safe. Our most difficult challenge has been providing programmers control over
memory management while retaining safety. This paper describes our experience trying
to integrate and use effectively two previously-proposed, safe memory-management mech-
anisms: statically-scoped regions and tracked pointers. We found that these typing mech-
anisms can be combined to build alternative memory-management abstractions, such as
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reference counted objects and arenas with dynamic lifetimes, and thus provide a flexible
basis. Our experience—porting C programs and device drivers, and building new appli-
cations for resource-constrained systems—confirms that experts can use these features to
improve memory footprint and sometimes to improve throughput when used instead of, or
in combination with, conservative garbage collection.

Key words: memory management, unique pointers, reference counting, memory safety,
regions, reaps, Cyclone

1 Introduction

Low-level languages such as C provide a degree of control over space, time, and
predictability that high-level languages such as Java do not. But the lack of safety
for C has led to many failures and security problems. The goal of our research is
try to bring the “Mohammad of safety” to the “mountain of existing C code.”

Toward that end, we have been developing Cyclone [1], a safe dialect of C. Cyclone
uses a combination of programmer-supplied annotations, an advanced type system,
a flow analysis, and run-time checks to ensure that programs are safe. At first, we
relied entirely on heap allocation and the Boehm-Demers-Weiser (BDW) conser-
vative garbage collector to reclaim memory. BDW [2] interoperates with legacy
libraries and supports polymorphism without needing run-time type tags.

The BDW collector is convenient, but it does not always provide the performance
or control needed by low-level systems applications. In previous work [3], we de-
scribed an integration of BDW with safe stack allocation and LIFO arena alloca-
tion; in both cases all objects are deallocated at once when the relevant scope is
exited. A region-based type-and-effect system based upon the work of Tofte and
Talpin [4] ensured safety while providing enough polymorphism for reusable code
to operate over data allocated anywhere. In practice, we found that supporting stack
allocation was crucial for good performance, and our system was able to infer most
region annotations for porting legacy C code that used stack allocation. We found
that LIFO arenas are useful when callers know object lifetimes but only callees
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can determine object sizes. Unfortunately, LIFO arenas suffer from several well-
known limitations that we encountered repeatedly. In particular, they are not suited
to computations such as event loops in server programs.

Since then, we have explored the integration of tracked pointers into our memory-
management framework. Our tracked pointers are closely related to typing mech-
anisms suggested by others, including linear types [5], ownership types [6], alias
types [7], and capability types [8]. The critical idea in these proposals is to make
it easy to track the state of an object locally by restricting aliasing. For example,
Cyclone’s tracked pointers include unique pointers. A value with a unique-pointer
type is guaranteed to be the only (usable) reference to an object. Such objects can
be explicitly deallocated at any program point, and a modular flow analysis ensures
that the dangling pointer is not subsequently dereferenced.

Tracked pointers are not a novel idea, but we found many challenges to implement-
ing them in a full-scale safe language, where they must be integrated with other
features such as exceptions, garbage collection, type abstraction, the address-of op-
erator, undefined evaluation order, etc. To our knowledge, no one has attempted to
address all these features in a full-scale language implementation.

We found great synergy between tracked pointers and regions. In particular, we use
the LIFO region machinery to support a form of “borrowed” pointers [9], which
goes a long way in easing the burdens of tracking. We also use unique pointers
as capabilities for building further memory-management abstractions. In particu-
lar, unique pointers control access to a form of dynamically-scoped arenas [10],
and a slight extension supports reference-counted objects. Finally, tracked pointers
naturally combine with regions to support safe reaps in which objects can either
be deallocated individually or freed all at once; reaps can be useful for tuning the
inherent space-time tradeoff between individual and bulk deallocation [11].

In this paper, 1 we describe our support for tracked pointers and the extensions
they enable; the Cyclone manual has further detail. 2 We then discuss our expe-
rience using these facilities to build or port a few target applications, including a
multimedia overlay network, a web server, a Scheme interpreter, an ftp server, an
image-manipulation program, two numerical-analysis applications and three Linux

1 This work is based on an earlier work [12]: Experience with safe manual memory-
management in Cyclone, in ISMM ’04: Proceedings of the Fourth International Symposium
on Memory Management, (c) ACM, 2004. http://doi.acm.org/10.1145/1029873.1029883
This paper improves on the framework presented in the conference version by strictly sep-
arating pointer tracking and regions; this permits unique or reference-counted pointers to
any region, and enables supporting reaps [11], which we discuss in some detail. The expo-
sition has been generally revised and improved. All experimental results reported in [12]
have been revised to use the new framework, and we additionally present experience with
porting three Linux device drivers and one scientific application to Cyclone.
2 http://www.eecs.harvard.edu/~greg/cyclone/
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device drivers. These applications were chosen for one of three reasons : they are
structured as (infinite) loops with loop-carried state and are thus not well-suited
for LIFO arenas; they might be used as subroutines on resource-limited platforms,
such as cell-phones or other embedded systems; they are used in settings in which
garbage collection is infeasible or undesirable. In most of these applications, we
were able to reduce, if not eliminate, the need for garbage collection. We also saw
dramatic improvements in working-set size, and, for one application, an improve-
ment in throughput.

Thus, the contributions of this paper are two-fold:

(1) We show that the addition of tracked pointers to a region-based language pro-
vides a flexible basis for safe manual memory management, which can com-
plement or replace garbage collection.

(2) We confirm that the resource requirements of some important applications
can be significantly improved through manual memory management and that
Cyclone’s safety restrictions do not prevent this improvement.

2 Regions in Cyclone

A region is a logical container for objects that obey some memory-management
discipline. For instance, a stack frame is a region that holds the values of the vari-
ables declared in a lexical block, and the frame is deallocated when control-flow
exits the block. As another example, the garbage-collected heap is a region, whose
objects are individually deallocated by the collector.

In Cyclone, each region is given a compile-time name, either explicitly by the pro-
grammer or implicitly by the compiler. For example, the name of the heap region
is ‘H, and the region name for the stack frame of a function foo is ‘foo. If ‘r is
the name of a region, and an object o with type T is allocated in ‘r, then the type
of a pointer to o is written T* @region(‘r), or T*‘r for short. To ensure that pro-
grams never dereference a pointer into a deallocated region, the compiler tracks a
conservative approximation of (a) the regions into which a pointer can point, and
(b) the set of regions that are still live at each program point. This is implemented
using a type-and-effects system in the style of Tofte and Talpin [4].

Cyclone supports region polymorphism, which lets functions and data structures
abstract over the regions of their arguments and fields. By default, Cyclone as-
sumes that pointer arguments to functions point into arbitrary regions, but that all
these regions are live (the assumption of liveness is enforced at each call-site). A
unification-based algorithm infers instantiations for region-polymorphic functions
and the regions for local variables. This drastically cuts the number of region an-
notations needed for programs (we include explicit annotations in our examples for
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FILE *infile = ...

if ( get_tag(infile) == HUFFMAN_TAG ) {

region<‘r> h;

struct code_node<‘r> *‘r huffman_tree;

huffman_tree = read_huffman_tree(h, infile);

read_and_decode(infile, huffman_tree, symbol_stream, ...);

/* region freed here */

} else ...

Fig. 1. LIFO Arena example.

clarity). Cyclone also supports region subtyping based on region lifetimes, which
combines with region polymorphism to make for an extremely flexible system. In
practice, we have found few (bug-free) examples where stack-allocation could not
be easily ported from C to Cyclone.

2.1 LIFO Arenas

This basic region system easily supports a form of arenas that have stack-like last-
in-first-out (LIFO) lifetimes, but also support dynamic allocation. 3 A LIFO arena
is created with a lexically-scoped definition:

{ region<‘r> h; ... }

The definition has two elements. First, it defines the name of the new arena as
region ‘r. Second, it defines a region handle h with which to allocate memory in
the new arena, by calling rmalloc(h,...). The handle h has type region_t<‘r>, 4

and rmalloc, given a handle of this type, will return a pointer to memory stored in
‘r; i.e., having type T* ‘r for some type T. We implement arenas as a list of pages
acquired from the heap. Each call to rmalloc attempts to allocate memory within
the current page (using pointer-bumping), or else allocates a new page. When the
declaring lexical scope concludes all allocated pages are freed.

We have found that arenas work well for situations where data’s lifetime is scoped,
but the caller does not know how much space to pre-allocate on its stack frame.
Consider the example in Figure 1 (adapted from the Epic benchmark in Section 4).
If the image in infile is compressed using Huffman encoding, then the huffman

3 A prior paper [3] referred to LIFO arenas as dynamic regions due to their dynamic sizes;
in this paper we use the term region more generally, using arena to signify a region sup-
porting dynamic allocation, and LIFO to signify scoped lifetime.
4 The syntax region_t<‘r> h declares a variable h whose type is region_t<‘r>, while
region<‘r> h defines a region ‘r and a variable h as a handle for that region, which has
type region_t<‘r>. The former declaration would be illegal if region ‘r were not already
defined in the surrounding scope, e.g., by an arena definition.
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tree is deserialized from the file by read_huffman_tree into a code_node tree
allocated in region ‘r. This tree is used to decompress the remaining file contents
into the symbol_stream array. The tree is not needed beyond the if block in which
its region is defined, and is freed with that region when control exits the block.
Obviously, statically allocating space for the tree would be problematic since the
tree’s size depends on the contents of infile.

Unfortunately, the LIFO restriction on arena lifetimes can limit their applicability.
We often wanted to deallocate an arena before the end of its scope. This was par-
ticularly problematic for loops: if one pushes the arena declaration inside the loop
then a fresh arena is created and destroyed for each iteration. Thus, no data in the
arena can persist across iterations unless they are copied to an arena declared out-
side the loop. But then all data placed in an outer arena would persist until the loop
terminates. For loops that do not terminate, such as a server request loop or event
loop, the LIFO restriction can lead to unbounded storage requirements.

3 Tracked Pointers

Often the limitations of stack allocation and LIFO arenas can be conveniently over-
come by using the heap region, whose contents are periodically garbage collected.
However, garbage collection (GC) may not always meet an application’s perfor-
mance needs. For example, embedded systems, OS kernels, and network servers
sometimes require bounds on space consumption, pause times, or throughput that
may be hard to achieve with GC. Therefore, we extended Cyclone with a suite
of mechanisms that would permit manual object deallocation without imposing a
LIFO restriction. Our goal is not necessarily to eliminate GC, but rather to provide
programmers with better control over tuning the space and time requirements of
their programs.

In general, ensuring that manual deallocation is safe requires precise informa-
tion regarding which pointers may alias other pointers. Though there are impres-
sive analyses that compute such aliasing information [13], they usually require the
whole program to achieve any level of accuracy. An alternative solution is to re-
strict or avoid aliasing altogether, so that reasoning about type-states can be done
locally. One extreme is to require that objects which are deallocated be referred to
by only a single alias-free pointer, i.e. the pointer is unique. In what follows, we de-
scribe how we incorporated unique pointers into Cyclone. Using basic support for
tracking unique pointers, we have implemented safe per-object deallocation, ref-
erence counting, reaps [11], and arenas with non-scoped lifetimes. Tables 1 and 2
at the end of this Section (page 19) summarize Cyclone’s memory-management
constructs.
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3.1 Basics

A pointer into any region can be designated a unique pointer. For now, we consider
unique pointers into the heap; Section 3.4 considers unique pointers into other re-
gions. A pointer’s type is qualified by its aliasability: the \A aliasability designates
aliasable (non-unique) pointers, whereas \U designates unique pointers. We write
T* @aqual(\U) (or T*\U for short) to classify a unique pointer to an object of
type T. For brevity, in this paper we assume that pointers without an explicit region
annotation point to the heap (‘H); those without an explicit aliasability are freely
aliasable (\A). A unique pointer into the heap is created by calling malloc and can
be deallocated via free.

We use an intraprocedural, flow-sensitive, path-insensitive analysis to track when a
unique pointer becomes consumed, in which case the analysis rejects a subsequent
use of the pointer. We chose an intraprocedural analysis to ensure modular checking
and a path-insensitive analysis to ensure scalability. To keep the analysis simple, a
copy of a unique pointer in an assignment is treated as consuming the pointer. This
ensures that there is at most one usable alias of a unique pointer at any program
point. Here is an example:

int *\U q = p; // consumes p

*q = 5; // OK: q is not consumed here

free(q); // consumes q

*p = *q; // illegal: p and q have both been consumed here

The first assignment aliases and consumes p, while the call to free consumes q.
Therefore, the attempts to dereference p and q in the last statement are illegal.
Dereferencing a (non-consumed) unique pointer does not consume it since it does
not copy the pointer, as the first dereference of q shows. By default, we assume
that functions do not consume their arguments. A function type augmented with
an attribute consume(i) indicates that the ith parameter is consumed; the type of
free has such an attribute; see for example Figure 3. Our analysis rejects a function
that consumes parameters unless the appropriate consume attributes appear in the
function’s type.

We allow unique pointers to be placed in containers that might have multiple aliases
(e.g., a global variable or an aliasable object). This must be handled with care.
Consider the example in Figure 2. The function bar allocates a unique pointer p,
and then an aliasable pointer pp that points to p. 5 Within the function bad, pointers
x and y are aliases, so that p’s storage is freed in the first statement via x, and then
incorrectly accessed in the second statement via y. Cyclone rejects this program, as
described below.

5 The type int*\U*\A is parsed (int*\U)*\A; i.e., an aliasable pointer to a unique
pointer.
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int bad(int *\U*\A x, int *\U*\A y) {

free(*x);

**y = 1; // dangling pointer dereference!

}

int bar() {

int *\U p = malloc(sizeof(int));

int *\U*\A pp = malloc(sizeof(int *));

*p = 1;

*pp = p;

bad(pp,pp);

}

Fig. 2. Pitfall of accessing unique pointers in shared objects.

In many systems, reading a unique pointer is treated as a destructive operation that
overwrites the original copy with NULL, so as to preserve the uniqueness invariant.
This fixes the above example because reading *x would store NULL, so the access
through y would result in a (safe) null pointer exception. Cyclone has pointer types
that do not admit NULL as a value, so destructive reads are not permissible in gen-
eral. Therefore, we provide an explicit swap operation (“:=:”) that allows one to
swap one unique object for another (including NULL where permitted). We require
the use of swaps whenever a field that holds a unique pointer value is to be read
from within a shared structure, irrespective of whether or not the field admits the
NULL value. Though notationally less convenient than a destructive read, we found
that programming with swaps made us think harder about where NULL-checks were
needed, and helped eliminate potential run-time exceptions. Using swap, we can
correct the body of bad to be

int *\U xp = NULL;

(*x) :=: xp;

free(xp);

**y = 1; // NULL pointer exception

Reads to unique pointers must always be via a unique path u, having the form

u ::= x | u.m | u->m | *u

where x is a local variable 6 and u is a unique pointer. With this restriction, it is easy
to verify that at any program point, there is at most one usable copy of any unique
value. Furthermore, by making swap atomic, this property holds even if multiple
threads were to execute init concurrently.

6 We also require that the address of x has not been taken.
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3.2 Borrowing Unique Pointers

Unique pointers make it easy to support explicit deallocation, but often force awk-
ward coding idioms to maintain uniqueness. For example, we forbid pointer arith-
metic on unique pointers, since doing so could let the user call free with a pointer
into the middle, rather than the front, of an object, confusing the allocator. 7 As an-
other example, we often want to pass a unique pointer to a library function without
consuming it, even though the function may create benign, temporary aliases.

Most systems based on uniqueness or ownership have some way of creating “bor-
rowed” pointers to code around these problems. A borrowed pointer is a second-
class copy of a unique pointer that cannot be deallocated and cannot escape. This
ensures that if we deallocate the original pointer, we can invalidate all the borrowed
copies, or else we can prevent deallocating the original while borrowed copies ex-
ist. In Cyclone, a pointer is borrowed using an explicit alias declaration, similar to
Walker and Watkins’ let-region [14], and the LIFO region machinery prevents
the borrowed pointer from escaping.

fft_state *\U fft_alloc(int n, int inv);

void fft(fft_state *‘r st,...);

void fft_free(fft_state *\U st) consume(1);

void do_fft(int numffts, int inv) {

fft_state *\U x = fft_alloc(nfft,inv);

for (i=0;i<numffts;++i) {

let alias<‘s> fft_state *‘s a = x;

fft(a,...);

}

fft_free(x);

}

Fig. 3. Pointer borrowing example.

Consider the example in Figure 3 (adapted from the KissFFT benchmark). The
do_fft function allocates a unique pointer x to hold the state of the transform,
performs the specified number of FFT’s, and then frees the state. The declaration

let alias<‘s> fft_state *‘s a = x; ...

introduces a fresh region name, ‘s, and an alias a for x that appears to be a pointer
into region ‘s. Note that the aliasability \U does not appear on the type of a. This
indicates that within the scope of the alias declaration (which is the entire loop
body), we may freely copy a and pass it to functions that expect aliasable param-

7 An allocator supporting such deallocations would let us remove this restriction, though
the fact that C allows pointers just beyond allocated objects may complicate matters.
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eters. However, because ‘s is a fresh name, a cannot escape; i.e., it cannot be
assigned to any variables defined outside the scope of the alias, such as a global
variable, since those variables cannot be typed as having the region ‘s. While a is
live, the original unique pointer x is temporarily consumed. This prevents the object
to which it refers from being deallocated. At the end of the block, a and its copies
will be unusable, since the region ‘s will not be in scope. Thus, no usable aliases
can survive the exit from the block, and we can safely restore the type-state of x
to be an unconsumed, unique pointer, permitting it to be freed with fft_free. In
short, regions provide a convenient way to temporarily name unique pointers and
track aliasing for a limited scope.

We provide a limited but extremely convenient form of alias-inference around
function calls to simplify programming and cut down on annotations. In particular,
whenever a function expecting an aliasable pointer (such as fft) is called with a
unique pointer as an argument, the compiler will attempt to wrap an alias decla-
ration around the call, thereby allowing the argument to be freely duplicated within
the callee. As a result, we can rewrite do_fft as:

void do_fft(int numffts, int inv) {

fft_state *\U x = fft_alloc(nfft,inv);

for (i=0;i<numffts;++i) {

fft(x,...);

}

fft_free(x);

}

and the compiler will insert the appropriate alias declaration for x.

3.3 Reference Counting

Even with borrowing, unique pointers can be used only to build tree-like data struc-
tures with no internal sharing or cycles. While GC or LIFO arenas may be reason-
able options for such data structures, another alternative often employed in sys-
tems applications is reference counting. For example, reference counting is used in
COM and the Linux kernel, and is a well-known idiom for C++ and Objective C
programs.

We found we could elegantly support safe reference counting by building on the
discipline of unique pointers. This has two advantages: first, we introduce almost
no new language features, rather only some simple run-time support. Second, the
hard work that went into ensuring that unique pointers coexisted with conventional
regions is automatically enjoyed for reference-counted objects.

An additional aliasability, \RC for reference-counted, is used to qualify pointers
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to reference-counted objects; when allocated, these objects are prepended with a
hidden reference-count field. As with unique pointers, the flow analysis prevents
the user from making implicit aliases. Instead, a pointer of type T *\RC must be
copied explicitly by using the (built-in) alias_refptr function, which increments
the reference count and returns a new alias, without consuming the original pointer.
This function has the type

‘a *\RC‘r alias_refptr(‘a *\RC‘r);

The syntax ‘a denotes a Cyclone type variable which different callers can instanti-
ate with different (word-sized) types [15], [16]. All type variables and region names
that appear in function declarations are universally quantified implicitly, so this
function can take as its argument a reference-counted pointer to a value having any
word-sized type, stored in any region. Following the call, the passed-in pointer and
the returned one both serve, in effect, as explicit capabilities for the same object.
A reference-counted pointer is destroyed by the drop_refptr function. This con-
sumes the given pointer and decrements the object’s reference count at run-time; if
the count becomes zero, the memory is freed.
void drop_refptr(‘a *\RC) consume(1);

void cmd_pasv(struct conn *\RC‘H c) {

struct ftran *\RC f;

int sock = socket(...);

f = alloc_new_ftran(sock,alias_refptr(c));

c->transfer = alias_refptr(f);

listen(f->sock, 1);

f->state = 1;

drop_refptr(f);

}

Fig. 4. Reference counting example.

Consider the example in Figure 4, adapted from the Betaftpd benchmark. In Betaftpd,
conn structures and ftran structures mutually refer to one another, so we chose to
manage them with reference counting. Therefore, we must explicitly alias c when
allocating f to point to it. Likewise, we alias f explicitly to store a pointer to it in
c. Once the sock connection is established, we no longer need the local copy of f
so we drop it explicitly, leaving the only legal pointer to it via the one stored in c.

Thus, treating reference-counted pointers as if they were unique forces program-
mers to manipulate reference counts explicitly. While this is less convenient than
automatic reference counting, it requires almost no additional compiler support.
Furthermore, the constraints on unique pointers ensure that an object is never pre-
maturely deallocated, and the flow analysis warns when a pointer is potentially
“lost.” Finally, we can use the alias construct to borrow a reference-counted
pointer to achieve a form of explicit, deferred reference counting [17]. Thus, the
programmer has complete control over where reference counts are manipulated.
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3.4 Reaps

So far we have discussed only unique and reference-counted pointers to heap-
allocated objects, but Cyclone supports tracked pointers into other regions, includ-
ing LIFO arenas. This lets us deallocate some objects in an arena individually, and
deallocate the rest of the objects en-masse, with the entire arena. Berger et al. [11]
have shown that this strategy can improve space/time performance over traditional
arenas, and introduced reaps to support it. Cyclone supports a safe form of reaps.

A Cyclone pointer type written out in full has the form

T* @aqual(‘q) @region(‘r),

where T is the pointed-to type, ‘q is the pointer’s aliasability (e.g., \U, \RC, \A),
and ‘r is its region (e.g., ‘H, or a LIFO arena name). Objects that are referred to
by a pointer with \U aliasability can be manually deallocated at any time within
the lifetime of the region ‘r, and all remaining objects in region ‘r are deallocated
at its end. Reference counted objects (those objects referred to by pointers with
\RC aliasability) may also be deallocated prior to the destruction of the entire region
as a result of decrementing the reference count. Thus, the lifetime of the region is
an upper bound on the lifetime of the object.

Cyclone’s general allocation routine is

rqmalloc(r,q,sz),

where r is a region handle, q is an aliasability handle, and sz is the amount of
space to allocate (the type of rqmalloc is explained in detail in Section 3.6). An
aliasability handle has type aqual_t<‘q>, where ‘q is the aliasability of the pointer
to be returned. Cyclone provides three aliasibility handle constants:

unique_qual : aqual_t<\U>

refcnt_qual : aqual_t<\RC>

alias_qual : aqual_t<\A>

Thus rqmalloc(h,refcnt_qual,sizeof(int)) allocates a reference-counted in-
teger into the region with handle h. The other allocation routines are defined in
terms of rqmalloc: malloc(e) is shorthand for

rqmalloc(heap_region,alias_qual,e)

and rmalloc(h,e) is shorthand for rqmalloc(h,alias_qual,e).

The functions rfree(r,e) and rdrop_refptr(r,e) deallocate objects. If r has
type region_t<‘r>, then for rfree we require e to have type T *\U‘r, and for
rdrop_refptr we require e to have type T *\RC‘r. The free and drop_refptr
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functions are just shorthands.

We present a simplified example here, taken from the MediaNet benchmark, that
illustrates one use of reaps.

void connectSend(region_t<‘r> r, cmpt_t<‘r> c,

conn_t<‘H> cn : single(‘r)){

struct InportFn *f =

rqmalloc(r,unique_qual,sizeof(struct InportFn));

f->fun = writeData;

f->env = cn;

f :=: c->outports[0];

rfree(r,f);

}

(The single(‘r) annotation can be ignored for now; it will be revisited in Sec-
tion 3.8.) Here, c is a component used to perform a stream transformation, and
r is the region in which c and its auxiliary data is allocated. The component’s
outports array is a list of closures that are invoked with the result of the trans-
formation; each closure implemented as a struct InportFn. The connectSend

function is invoked for a component whose output closure has been made invalid
by a failed network connection. Therefore, it is replaced by a new closure f, whose
function writeData will operate on the new, valid connection cn. The old closure
is swapped out and freed using rfree. Reaps are a useful paradigm for this ex-
ample: in the general case, all component data will be freed at once, but repeated
network connections will not cause the arena to grow too large.

We modified Cyclone’s arena implementation to use (a modified version of) the
bget 8 allocator to implement rfree. When an arena is created, the system allo-
cator allocates a chunk of memory from which bget allocates and frees individual
objects. Bget consumes two header words per object to record the size of the allo-
cated object, and a pointer to the previous free block. Allocations are implemented
by pointer bumping until a deallocation occurs. When objects are deallocated, ad-
jacent freed chunks are aggregated and chained into a free list which is used to
serve further allocation requests. Bget acquires more memory from the system if no
chunk in the free list is sufficiently large, and frees all the chunks when the arena
is deallocated. Note that this allocation strategy is required only for reaps; stan-
dard arenas still use a simple pointer-bumping allocation scheme. To distinguish
between the two, reaps are allocated using the construct reap<‘r> h as opposed
to region <‘r> h. This distinction is also important for ensuring that rfree is
sound in the presence of subtyping; we cover this issue in depth in Section 3.8.

8 http://www.fourmilab.ch/bget/
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3.5 Potential Memory Leaks

In general, our analysis does not prevent a programmer from forgetting to free a
unique or reference-counted pointer (though it will never allow access through a
pointer that has been freed). This is for flexibility and usability. For example, at
join points in the control-flow graph, our analysis conservatively considers a value
consumed if there is an incoming path on which it is consumed. In particular, if p
is not consumed and we write:

if (rand()) free(p);

then the analysis treats p as consumed after the statement. In this situation, p will
leak in the case that true-branch is not taken. As other examples, when we store a
unique pointer into a shared object, we may overwrite another live unique pointer.
Or when freeing an object referred to by a unique pointer, we may have forgotten to
free pointers it contains. Finally, we permit casting a unique pointer to an aliasable
one (which obviously cannot be freed).

We considered signalling errors in these cases, as in Vault [18], but found that using
exception handlers (to which there are many control-flow paths) and storing unique
pointers within shared containers generated too many false alarms. Fortunately, the
region into which a unique pointer points serves as a safety-net: if it is the heap,
then the leaked object will be GCed, or if it is an arena, then the object will be
collected when the arena is freed.

3.6 Polymorphism

In general, the interaction of unique pointers with subtyping and region polymor-
phism requires some care, as the following function illustrates:

‘a copy(‘a x) { return x; }

The copy function simply returns its pointer argument as its result. Consider a call
to copy with a unique pointer:

int *\U y, *\U z = malloc(sizeof(int));

y = copy(z);

free(z);

*y = 1; // ERROR!

When calling copy, z is not consumed, but a copy of it is returned and stored into
y. Thus the caller can free z and then erroneously use y. To prevent this situation,
we need to distinguish between polymorphic values that can be copied (i.e., in the
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body of the copy function) and those that cannot.

To this end, we distinguish between the aliasability of polymorphic values by em-
ploying a form of bounded polymorphism [19] over the aliasabilities of a type.
An upper bound on the aliasability of all types that may instantiate a type variable
is specified following the type variable. For instance, ‘a\A represents all aliasable
boxed types (boxed types are pointer types and int; unboxed types include all types
that are not word-sized, such as a struct type) such as int* or int*\U*\A while
‘a\U represents all unique boxed types such as int*\U, or int*\A*\U. Notice that
the bound refers only to the outer-most aliasability on a type variable, since only
that aliasability should affect how a value is copied.

In our above example, the copy function would be typed as:

‘a\A copy(‘a\A x);

This indicates that ‘a can only be instantiated with aliasable pointers, and so would
forbid the call copy(a) above, as a is unique. (Type variables ‘a have an aliasable
bound \A by default and need not be annotated explicitly as we have done here.)
As another example, consider the type of rqmalloc, introduced earlier:

‘a*@aqual(‘q) @region(‘r) rqmalloc(region_t<‘r> r,

aqual_t<‘q> q,

sizeof_t<‘a> s);

Thus, rqmalloc allocates an object in the region ‘r, returning a pointer of aliasabil-
ity ‘q.

3.7 Dynamic Arenas

Just as regions make unique pointers more flexible (thanks to the alias construct),
we found we can use unique pointers to provide a more flexible form of arenas that
avoids the LIFO lifetime restriction. The basic idea is to use a unique pointer as a
capability or “key” for the arena. The operation new_ukey() creates a fresh arena
‘r and returns a unique key for the arena. This key is represented as a unique pointer
and has type uregion_key_t<‘r>. Accessing the arena requires possession of the
key, as does deallocating the arena, which is performed by calling free_ukey().
Since the key is consumed when the arena is destroyed, and there are no aliases to
the key, the arena can no longer be accessed.

Rather than requiring the key be presented on each allocation or pointer-dereference
into the arena, we provide a lexically-scoped open construct that temporarily con-
sumes the key and allows the arena to be freely accessed within the scope of the
open. The key is then given back upon exit from the scope.
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trie_t<‘r> trie_lookup(region_t<‘r> r, trie_t<‘r> t,

char *‘H buff) {

switch (t->children) ... // dereferences t

}

int ins_typedef(uregion_key_t<‘r> k,

trie_t<‘r> t, char *‘H s ; {}) {

{ region<‘r> h = open(k); // may access ‘r, not k

trie_t<‘r> t_node = trie_lookup(h,t,s);

...

} // k unconsumed, ‘r inaccessible

return 0;

}

Fig. 5. Dynamic Arena example.

Consider the example in Figure 5, adapted from the Cyclone compiler’s lexer. The
function ins_typedef takes a unique key to some arena ‘r, along with a pointer
t to a trie_t stored in ‘r. The annotation “; {}” on the function’s prototype is
an empty “effect.” The fact that it is empty effectively denotes that ‘r need not be
live when the function is called (see our earlier paper [3] or the Cyclone manual for
more detail on effects). Within the body of ins_typedef, t may not be derefer-
enced until it can be shown that the region of t is live. (By default, when no effect
is indicated, all regions mentioned in a prototype are assumed to be live; the heap
region ‘H is always live.) Introducing ‘r into the set of live regions is accomplished
by the following mechanism for opening an arena. Within the function, the arena is
opened via region h = open(k), which adds ‘r to the set of accessible regions.
Thus, t can be dereferenced, and the call to trie_lookup is safe. The handle h

permits the user to perform additional allocation into the arena if desired. To pre-
vent the arena from being freed while it is in use, the key k is temporarily consumed
until the scope concludes, at which time it can be safely destroyed.

Clearly, open and alias are related. Both provide a way to “pin” something tem-
porarily and give it a name for a particular scope. In the case of alias, a single
object is being pinned, whereas in the case of open, an arena is being pinned. Pin-
ning prevents the object(s) from being deallocated throughout the scope, and the
region name is used to prevent pointers to the object(s) from escaping the scope.
Thus, while lexically-scoped, LIFO arenas can be limiting, lexically-scoped region
names have proven invaluable for making unique pointers and dynamic arenas work
well in practice.

As a simple generalization, we support reference-counted arenas, which use reference-
counted pointers as keys instead of unique pointers. It is the key that is reference-
counted, so accessing objects in the arena just requires using the open construct
with the reference-counted key, as above. When the last reference to a key is
dropped, the key and the associated region are deallocated.
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3.8 Subtyping

To provide greater flexibility and to promote reuse of code, we support two forms
of subtyping over the qualifiers of a pointer: first, subtyping over the alias qualifiers
of a pointer; and second, subtyping over the region qualifiers of a pointer.

To support alias qualifier subtyping, we include a fourth aliasability qualifier called
top which is super-type of the other three qualifiers. None of the other qualifiers
are subtypes of each other. The type of a pointer to an object of type S of top-
aliasability is denoted S*\T. Such pointers must obey the aliasing restrictions of
unique aliasbility pointers, but their referents may not be deallocated.

Subtyping for region qualifiers is defined in terms of the lifetimes of the regions.
We say that a region ‘r outlives a region ‘s if the lifetime of ‘r is strictly greater
than the lifetime of ‘s. In such a case, it is permissible to use a pointer of type
T *‘r where a T *‘s is expected. The outlives relation induces a partial order on
region names. The heap is not oulived by any other region, and, by default, outlives
all other regions. LIFO arenas outlive each other according to the LIFO ordering.
Dynamic arenas can only outlive other regions when they are open; they may be
outlived by only the heap.

A consequence of the outlives relation is that a pointer declared to be of type T *‘r

may be aliased both by pointers declared to be of type T *‘a, where ‘a outlives
‘r, as well as by pointers declared to be of type T *‘b, where ‘b is outlived by
‘r. This relationship is illustrated by the program in Figure 6, where, at some point
during the execution of the function, a, b, and c may all be aliases of each other.

int region_subtype(uregion_key_t<‘dyn> k, int *‘H c) {

region<‘dyn> dyn = open(k);

int *‘dyn a;

{ region<‘r> r;

int *‘r b;

if(*c) a = c; //‘H outlives ‘dyn

else a = rmalloc(dyn, 0);

b = a; //‘dyn outlives ‘r

}

}

Fig. 6. An illustration of region subtyping.

The outlives relation poses a problem when it is applied to reaps. The implemen-
tation of rfree (introduced in Section 3.4) requires both a region handle and the
pointer to the object to be deallocated to be passed as arguments. We further require
that the object to be deallocated reside in the region referred to by the handle. The
outlives relation allows this constraint to be violated, as in the example below.
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region<‘r> r;

int *\U ‘H p = rmalloc(heap_region, unique_qual, 0);

rfree(r, p); // BAD!

Since the heap outlives all other regions, the region subtyping rules permit p to be
used in place of a int *\U‘r pointer. Clearly, the object to be deallocated in the
call to rfree does not reside in the region ‘r.

There are a number of solutions to this problem. One option is a dynamic check to
ensure that pointer passed to rfree actually points to a location within the specified
region. To avoid the run time overhead, we opted to refine the type system so as to
statically guarantee that the pointer passed to rfree points within the appropriate
region. This is achieved by limiting the use of the region subtyping for reaps.

The type of rfree is:

void rfree(region_t<‘r>, ‘a *\U ‘r : single(‘r)) consume(2);

This type states that rfree expects a region handle and a pointer of unique aliasabil-
ity as arguments. The construct single(‘r) specifies that the region ‘r may not be
outlived by any other region. Finally, the attribute consume(2) is a post-condition
on the function which states that the pointer passed in the second argument is no
longer live, i.e., the referent has been deallocated.

The heap region is clearly satisfies this constraint: single(‘H) is always true since
the heap is not outlived by any other region. For the other cases, recall that we
know which regions may have individually-deallocatable objects: they were de-
clared with the form reap<‘r> r. 9 This declaration introduces an assertion of the
form single(‘r) into the type-checking environment, which prevents the use of
the outlived-by relation for any pointer to ‘r. It also allows the single constraint
in the type of rfree to be proved. This is why the prototype for the MediaNet ex-
ample from Section 3.4 required the single(‘r) constraint in its prototype: this is
necessary to be able to correctly call rfree.

3.9 Summary

The addition of unique pointers to our region framework gives us a number of
memory-management options, which are summarized in Tables 1 and 2. Clearly,
programmers have a variety of options, particularly in choosing how to deallocate
objects. However, we emphasize that the easy default of using the garbage collector

9 We impose a similar requirement on the creation of dynamic arenas that support the
deletion of individual objects—the key for such an arena must be created using the function
new_reap_ukey.
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Region Variety Allocation Deallocation GC

Per Object Whole Region

Stack static no on exit of

LIFO Arena for unique lexical scope no

Dynamic Arena dynamic and refcnt manual

Heap pointers never yes
Table 1
Summary of Memory-Management Options in Cyclone.

is always available. As the alias restrictions indicate, a particular choice essentially
trades ease of use for better control over object lifetime. Each choice encodes a
sound static discipline. Only reference counting and swaps have run-time cost.

4 Applications

Table 3 describes the benchmark programs with which we experimented. For pro-
grams we ported from C (Boa, Betaftpd, Epic, KissFFT, Cfrac, 8139too, i810 audio,
and pwc) it shows the non-comment lines of code of the original program, and then
the changes due to porting to Cyclone without the use of any manual memory
management mechanisms, and then the additional changes needed to use manual
mechanisms. For the first five programs, in the absence of manual memory man-
agement we used heap allocation, managed by GC. The next three C programs are
Linux device drivers—for these, we could not link a garbage collector into the ker-
nel, so the non-manual versions heap-allocate but never free anything; we provide
this figure only to illustrate the additional (programming) effort of using manual
techniques.

The other programs (MediaNet, CycWeb, and CycScheme) were written directly
in Cyclone. The final column indicates which manual mechanisms we used. For all
programs other than MediaNet, we could easily eliminate the need for GC. This
section presents our experience using Cyclone to port or write these programs,
considering first the standalone C programs, then the device drivers, and finally
the Cyclone-only programs. Performance experiments for these programs are pre-
sented in the next section.

4.1 Standalone C programs

The process of porting from C to Cyclone is made easiest by placing all dynamically-
allocated data in the heap region and letting the GC take care of recycling the data.
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Function/Syntax Description

rqmalloc Generic allocation (§3.4, §3.6)

rmalloc, malloc (\A) Aliasable pointer allocation (§2.1, §3.4)

free, rfree (\U) Unique pointer deallocation (§3.1, §3.4)

alias_refptr, drop_refptr,
rdrop_refptr

(\RC) Increment/decrement reference counts (§3.3)

new_ukey,new_rckey Allocate dynamic arenas (§3.7)

new_reap_ukey,
new_reap_rckey

Allocate dynamic reaps (§3.4,§3.8)

free_ukey,free_rckey Free dynamic arenas or reaps (§3.7)

e1 :=: e2 Swap contents of e1 and e2 (§3.1)

let alias<‘r> T x = e; s Temporarily alias tracked pointer e as x in s (§3.2)

region<‘r> h; s Make LIFO arena with handle h, live in s (§2.1)

reap<‘r> h; s Make LIFO reap with handle h, live in s (§3.4,§3.8)

region<‘r> h = open(d); s Make dynamic arena with key d accessible via han-
dle h within s (§3.7)

Table 2
Summary of Memory Management Functions and Syntax.

Most of the changes involve differences between C and Cyclone that are not related
to memory management, such as introducing fat pointer annotations. (Fat point-
ers carry run-time array-bounds information with them to support dynamic bounds
checks when pointer arithmetic cannot be statically verified.) To take advantage
of the new manual facilities, we roughly performed two actions. First, we distin-
guished data with scoped lifetime from other data. Second, for those data structures
with a non-scoped lifetime, we identified their aliasing behavior to determine which
mechanism to use.

Objects with Scoped Lifetime When data structures have scoped lifetimes, we
can either allocate them in a LIFO arena, or we can allocate them in the heap as
unique pointers, and use the alias construct to allow temporary aliasing until they
can be freed. For example, in both Epic and KissFFT, we merely had to change a
declaration from something like

T* q_pyr = malloc(...);

to instead be

T*\U q_pyr = malloc(...);
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Program Description Non-comment Lines of Code Manual

C Cyc Cyc (+manual) mechs

Boa web server 5217 ± 286 (5%) ± 98 (1%) U

Cfrac integer factorization 3143 ± 183 (5%) ± 784 (25%) UD

Betaftpd ftp server 1164 ± 219 (18%) ± 238 (22%) UR

Epic image compression 2123 ± 218 (10%) ± 117 (5%) UL

KissFFT fast Fourier transform 453 ± 74 (16%) ± 25 (5%) U

8139too RealTek Ethernet driver 1972 ± 971 (49%) ± 312 (14%) UD

i810 audio Intel sound driver 2598 ± 1500 (57%) ± 318 (10%) RD

pwc Philips webcam driver 3755 ± 1373 (36%) ± 1024 (26%) RD

MediaNet streaming overlay network 8715 ± 320 (4%) URLD

CycWeb web server 667 U

CycScheme scheme interpreter 2523 ULD

U = unique pointers R = ref-counted pointers L = LIFO regions D = dynamic arenas
Table 3
Benchmark Programs.

All alias statements were inferred automatically when calling functions that wished
to alias the array (see Figure 3). For Epic, we also used a LIFO arena to store a Huff-
man compression tree that was used during the first phase of the compression. This
required changing the prototypes of the creator functions to pass in the appropriate
arena handle, in addition to adding various region annotations (see Figure 1).

Objects with Dynamic Lifetime If we wish to manage a data structure manually
using unique pointers, it cannot require aliases. For example, Boa stores the state
of each request in a request structure, illustrated in Figure 7. Because these form
a doubly-linked list, we cannot use unique pointers. Even if we were to remove the
next and prev fields and store request objects in a separate (non-unique) list,
we could not uniquely allocate requests because they contain internal aliases. For
example, the header field identifies the HTTP header in an internal buffer.

next
prev
header
pathname
...

buf

Fig. 7. Request data structure in Boa.
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In the case of Boa, request objects are managed by a custom allocator. Through-
out its lifetime, a request moves between a blocked queue and a ready queue, and
when complete, the request moves onto a free list to be reused. Therefore, we can
continue to use this allocator and simply heap-allocate the requests since they will
never be freed by the system allocator. Some internal elements of the request, such
as the pathname (shown with open-headed arrows in the figure) were not aliased
internally, so they could be uniquely allocated and freed when the request was
complete.

Betaftpd also used doubly-linked lists, one for open sessions and one for transfers
in progress. Furthermore, there are cross-links between session and transfer ob-
jects. Thus, reference-counted pointers seemed like the best safe option that avoided
garbage collection. As Table 3 shows, this required changing 22% of the code. The
reason is that all reference counts are managed manually, so we had to insert many
calls to alias_refptr and drop_refptr along with the addition of annotations.
While largely straightforward, we were forced to spend some time tracking down
memory leaks that arose from failing to decrement a count. The warnings issued by
the compiler were of little help, since there were too many false positives. However,
we remark that the original program had a space leak along a failure path that we
were able to find and eliminate.

Cfrac also required significant changes. The original C program used application-
level reference counting, but we found it both more natural and more efficient to use
a combination of dynamic arenas and unique pointers. The program is structured
around a few long running loops that dynamically allocate data with each iteration.
However, only a small amount of the allocated state is carried over to the next
iteration. The Cyclone version allocates within a dynamic region and, prior to the
next iteration of the loop, copies the relevant state to a new dynamic region before
freeing the old one. A large portion of the changes were due to the need to pass the
region handle to functions so that no allocation is performed in the heap.

Note that because the changes to legacy code did not change the underlying data
structures or logic of the application (though we did sometimes change how data
structure memory was managed), we generally avoided introducing application-
level bugs while porting. Straightforward testing worked well, using the original
C program as the ground truth, though the inherent “danger” of changing existing
code cannot be completely eliminated.

4.2 Linux Device Drivers

We ported to Cyclone three device drivers, for Linux version 2.4.21. The basic
process has two parts. First, we must port the code within the driver to be safe,
and second, we must give Cyclone types to functions defined in the kernel that are
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called by the driver. This latter task was made simpler by a custom tool written
to ensure that the Cyclone type is representation consistent with the C type it is
meant to represent. In some cases, we could not call kernel functions directly while
remaining type safe, but rather needed to write wrapper functions that performed
extra checks.

Much of the effort involved in porting the code within a device driver to Cyclone
is due to ensuring that array accesses are within bounds, particularly accesses to
I/O buffers. While in a standalone application we could quickly and easily use fat
pointers for this purpose, this was rarely an option in the kernel. This is because
we were constrained to preserve the layout of many kernel data structures, using
one word for a pointer, where fat pointers would require three words. As a result,
we had to use more stylized and verbose idioms (in particular, a form of dependent
products [20]) to permit the compiler to prove that array accesses were always in
bounds.

Choosing a manual memory management strategy for device drivers was also made
more challenging by the kernel environment. Compared to porting an application
program, there were three challenges. First, it is generally infeasible, and arguably
undesirable, to use garbage collection in the kernel. Second, it is not possible to
redefine the representation of data structures passed to and from the kernel. Finally,
device drivers use pointer arithmetic extensively to access and modify buffers.
Pointers to arbitrary offsets within these buffers are also often maintained. This
sometimes makes using tracked pointers difficult or impossible.

In the end, we found that dynamic arenas containing aliasable pointers, coupled
with occasional use of unique and reference-counted pointers, often worked the
best. Most drivers allocate a data structure that is opaque to the kernel, though it
may be referenced by kernel data structures. We typically changed this structure to
include a dynamic arena handle, using that to store any allocated memory. When the
device is unloaded, the dynamic arena is freed. We adapted the Cyclone runtime to
use the kernel allocation functions (kmalloc and vmalloc) for obtaining and freeing
region pages; this and other runtime support (e.g., to support exceptions and bounds
checking) was provided by an additional module implemented in C.

In addition to using kernel memory, a device driver may also manipulate I/O mem-
ory that resides on the device. To ensure that this memory is managed correctly, we
wrote wrappers for the routines that allocate and release I/O buffers, reusing some
of the infrastructure of dynamic arenas. In particular, the allocation wrapper returns
the allocated buffer together with a capability, in the form of a dynamic arena’s key,
that establishes the availability of the buffer. As long as the key is live, the I/O mem-
ory is live; when the deallocation wrapper frees the memory, it consumes the key
as well.

Figure 8 shows Cyclone prototypes from 8139too that illustrate this idiom. The
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typedef struct pci_mem { <‘r> // "Exists ‘r"

uregion_key_t<‘r> *key;

char *‘r buf;

} pci_mem_t;

// Cyclone prototype for external C function:

char *‘H pci_alloc_consistent(pci_dev_t hwdev, int len,

dma_addr_t addr);

// Cyclone wrapper for pci_alloc_consistent:

pci_mem_t cyc_pci_alloc(pci_dev_t, int, dma_addr_t);

Fig. 8. Usage of dynamic arenas to represent I/O memory.

C kernel function pci_alloc_consistent allocates a buffer from memory that
resides on the device. The type of this function asserts that the return value is a
pointer into the heap. We also want to be able to support the deletion of the buffer,
say when the driver is unloaded. The driver, however, maintains many aliases to
arbitrary offsets within the allocated buffer. Hence it is not possible to treat the
returned value as a unique pointer to the allocated data.

To support safe deallocation, we define a Cyclone wrapper cyc_pci_alloc for
pci_alloc_consistent. The wrapper models each buffer allocated in I/O mem-
ory as if it resided in a distinct dynamic arena. Within the wrapper, the memory
returned from cyc_pci_alloc is packaged along with a “dummy” dynamic arena
key as a pci_mem_t object. The dynamic region name ‘r is existentially quanti-
fied, indicated by the <‘r> syntax in the struct declaration, where the scope of ‘r
is the entire declaration. By giving the key and the pointer the same region name,
code wishing to use the allocated buffer may only do so if the key is live. This is
done by “unpacking” the pci_mem_t object, and then performing an open on the
dynamic region key, as in the example of Figure 5. Within the scope of the open,
the buf pointer can be legally accessed. Finally, to implement safe deallocation,
we wrap the device memory’s deallocation function, pci_free_consistent, and
within that function consume the key. This prevents the freed pointer from being
dereferenced beyond that point, since the key no longer be opened.

4.3 Cyclone Applications

In addition to porting C programs, we have written three Cyclone programs from
scratch that use our manual mechanisms.

CycWeb CycWeb is a simple, space-conscious web server that supports concur-
rent connections using non-blocking I/O and an event library in the style of libasync
[21] and libevent [22]. The event library lets users register callbacks for I/O events.

24



A callback consists of a function pointer and an explicit environment that is passed
to the function when it is called. The event library uses polymorphism to allow call-
backs and their environments to be allocated in arbitrary regions. For the library,
this generality is not overly burdensome: of 260 lines of code, we employ our swap
operator only 10 times across 10 functions, and never use the alias primitive ex-
plicitly. The web server itself (667 lines) has 16 swaps and 5 explicit aliases.

For the rest of the application, we also chose to use unique pointers. When a client
requests a file, the server allocates a small buffer for reading the file and sending
it to the client in chunks (default size is 1 KB). Callbacks are manually freed by
the event loop when the callback is invoked (they must be re-registered if an entire
transaction is not completed); each callback is responsible for freeing its own envi-
ronment, if necessary. As we see in the next section, this design allows the server
to be reasonably fast while consuming very little space.

MediaNet MediaNet [23] is an overlay network with servers that forward packets
according to a reconfigurable DAG of operations, where each operation works on
the data as it passes through. For better performance, we eschew copying packets
between operations unless correctness requires it. However, the dynamic nature of
configurations means that both packet lifetimes and whether packets are shared
cannot be known statically.

struct StreamBuff { <i::I>
... // three omitted header fields

tag_t<i> numbufs;

struct DataBuff<\RC> bufs[numbufs];

};

struct DataBuff<‘q> {

unsigned int ofs;

byte ? ‘q buf;

};

Fig. 9. MediaNet packet data structures.

We use a data structure called a streambuff for each packet, similar to a Linux
skbuff, shown in Figure 9. The packet data is stored in the array bufs. Note that
bufs is not a pointer to an array, but is flattened directly within StreamBuff. Thus
StreamBuff elements will vary in size, depending on the number of buffers in the
array. The numbufs field holds the length of bufs. The notation <i::I> introduces
an existential type variable of integer kind (I) [15], and is used by our type system
to enforce the correspondence between the numbufs field and the length of the
bufs array in a fashion similar to Xi and Pfenning’s Dependent ML [20]. We often
used this paradigm in our device driver ports as well.

Databuffs store packet data. The buf field points to an array of the actual data.
The ? notation designates a fat pointer to a dynamically-sized buffer. The ofs field
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indicates an offset, in bytes, into the buf array. This offset is necessary since pointer
arithmetic is disallowed for unique and reference-counted pointers.

Each StreamBuff object is allocated in the heap with unique aliasability. When a
packet must be shared, a new streambuff is created, whose array points to the same
databuffs as the original (after increasing their reference counts). This approach
allows for quickly appending and prepending data to a packet, and requires copying
packet buffers only when they are both shared and mutated.

An example using streambuffs is shown in Figure 10. Here, three individual stream-
buffs A, B, and C share some underlying data; unique pointers have open arrow-
heads, while reference-counted ones are filled in. This situation could have arisen
by (1) receiving a packet and storing its contents in A; (2) creating a new buffer B
that prepends a sequence number 1234 to the data of A; and (3) stripping off the
sequence number for later processing (assuming the sequence number’s length is 4
bytes). Thus, C and A are equivalent. When we free a streambuff, we decrement
the reference counts on its databuffs, so they will be freed as soon as possible.

A buffer with data

1234

0 4 00 0 ...... ...

A B C

Fig. 10. Pointer graph for three streambuffs.

MediaNet’s DAG of operations is stored in a dynamic arena. We were able to treat
this dynamic arena as a reap in which we allocated objects representing connec-
tions. In the event a connection fails the object is deleted from the reap.

An earlier version of MediaNet stored all packet data in the heap, using essen-
tially the same structures. One important difference was that databuffs contained
an explicit refcnt field managed by the application to implement copy-on-write
semantics. Unfortunately, this approach yielded a number of hard-to-find bugs due
to reference count mismanagement. Our language support for reference counting
eliminated the possibility of these bugs, and further let us free the data immedi-
ately after its last use. As shown in Table 3, moving to explicit unique pointers
and dynamic regions was not difficult; only 4% of the code had to be changed.
The majority of these changes were in two utility files. Out of nearly 9000 non-
comment lines, we used swap 74 times and alias 67 times, of which 67% were
automatically inferred.

CycScheme Using a combination of our dynamic arenas and unique pointers,
Fluet and Wang [24] have implemented a Scheme interpreter and runtime system
in Cyclone. The runtime system includes a copying garbage collector in the style
of Wang and Appel [25], written entirely in Cyclone. All data from the interpreted
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program are allocated in a dynamic arena, and when the collector is invoked, the
live data are copied from one arena to another, and the old arena is then deallocated.
Since both arenas must be live during collection but their lifetimes are not nested,
LIFO arenas would not be sufficient. Further details on CycScheme’s performance
and implementation can be found in Fluet and Wang’s paper.

5 Performance Experiments

To understand the benefit of our proposed mechanisms, we compared the perfor-
mance of the GC-only versions of our sample user-level applications to the ones
using manual mechanisms. Where our applications were ported from C, we also
compare the performance of the Cyclone ports to the original C versions. Our mea-
surements exhibit three trends. First, we found that elapsed time is similar for the
GC and manual versions of the programs. Indeed all our benchmark programs,
other than MediaNet, have execution time performance virtually the same for the
GC and non-GC cases. In the case of MediaNet, judicious use of manual mecha-
nisms significantly reduced the reliance on GC (but did not eliminate it entirely),
improving performance. Second, we found that we could significantly reduce mem-
ory utilization by using manual mechanisms. In the cases where the benchmark was
ported from C, the use of manual techniques caused the memory consumed by the
Cyclone program to be close to that of the C program. Finally, we observed that the
increase (if any) in elapsed time for the Cyclone version of a program, relative to
its C counterpart, is largely due to the overhead of bounds checking.

In this section we carefully discuss the performance of the Boa, CycWeb, and Me-
diaNet servers. We found these to be the most interesting programs from a resource
management point of view; measurements for the remaining programs can be found
in Section 5.3. We ran our performance experiments on a cluster of dual-processor
1.6 GHz AMD Athlon MP 2000 workstations each with 1 GB of RAM and run-
ning Linux kernel version 2.4.20-20.9smp. The cluster is connected via a Myrinet
switch.

We used Cyclone version 0.9 which, along with the benchmarks, is publicly avail-
able [26]. By default, Cyclone programs use the Boehm-Demers-Weiser (BDW)
conservative collector [2], version 6.4, for garbage collection and manual dealloca-
tion. BDW uses a mark-sweep algorithm, and is incremental and generational. We
used the default initial heap size and heap-growth parameters for these experiments.
We disabled padding in the gc allocator and disabled support for Java. All other
configuration options were the default. When programs do not need GC, they are
compiled with the Lea general-purpose allocator, 10 version 2.7.2. Cyclone com-
piles to C. All C code was compiled with gcc version 3.2.2, at optimization level

10 http://gee.cs.oswego.edu/dl/html/malloc.html
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5.1 Boa and CycWeb

We measured web server throughput using the SIEGE web benchmarking tool 11

to blast Boa with repeated requests from 6 concurrent users for a single file of
varying size for 10 seconds. (We chose 6 users because we observed it maximized
server performance.) The throughput results are shown in Figure 11—note the non-
zero y-axis. This shows three versions of Boa—C, Cyclone using GC, Cyclone
without GC (labeled “unique”)—and the single version of CycWeb. We plot the
median of 15 trials (the variance was insignificant, and is not shown). For Boa, the
Cyclone versions are roughly 2% slower than the C version, with the difference
between them negligible (often within the range of error or close to it). Thus, for
the performance metric of throughput, removing the GC has little payoff. CycWeb
is optimized for memory footprint instead of speed, but is only 10–11% slower than
Boa in C.

Avoiding GC has greater benefit when considering memory footprint. Figure 12
depicts three traces of Boa’s memory usage while it serves 4 KB pages to 6 con-
current users. The first trace uses GC only, while the others make use of unique

11 http://joedog.org/siege/
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pointers. The second (unique+GC) uses BDW as its allocator (thus preventing in-
advertent memory leaks), while the third uses the Lea allocator. 12 The x-axis is
elapsed time, while the y-axis plots memory consumed. The graph shows mem-
ory used by aliasable and unique pointers into the heap, as well as the total space
reserved by the allocator (i.e., acquired from the operating system).

The working set size of all versions is similar, and is dominated by the heap region
since the majority of memory is consumed by the heap-allocated request struc-
tures. The GC version’s footprint fluctuates as request elements are allocated and
collected (there are 23 total GCs in this case). To ensure reasonable performance,
the collector reserves a fair amount of headroom from the OS: 468 KB. By contrast,
the unique versions have far less reserved space, with the Lea allocator having little
more than that required by the application. We have done memory traces with other
file sizes and levels of concurrent access and found the trends to be similar. Very
little data is managed as unique pointers (it is not really visible in the graph)—only
about 50 bytes per request. In the GC case, this same data is allocated in the heap,
and accumulates until eventually collected.

Turning to CycWeb, which uses only the Lea allocator and no garbage collector, we
see that we have succeeded in minimizing memory footprint: the working set size
is less than 6.5 KB. This is proportional to the number of concurrent requests—we
process at most 6 requests at a time, and allocate a 1 KB buffer to each request.

5.2 MediaNet

All the versions of Boa perform very little allocation per transaction, thanks to
the use of a custom allocator. The benefit of the allocator depends in part on the
fact that request objects are uniformly-sized: allocations merely need to remove
the first element from the free list. The same approach would work less well in
an application like MediaNet, whose packets vary widely in size (from a tens of
bytes to tens of kilobytes). Avoiding excessive internal fragmentation would require
managing multiple pools, at which point a general-purpose allocator seems more
sensible, which is what we used. However, we found that this choice can lead to
significant overhead when using GC.

In a simple experiment, we used the TTCP microbenchmark 13 to measure Medi-
aNet’s packet-forwarding throughput and memory use for varying packet sizes.
We measured two configurations. GC+free is MediaNet built using unique and
reference-counted pointers for its packet objects (as described above), while GC only
stores all packet objects in the garbage-collected heap.

12 The throughput of both versions is essentially the same, so only one line is shown in
Figure 11.
13 http://ftp.arl.mil/~mike/ttcp.html
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Figure 13 plots the throughput, in megabits per second, as a function of packet
size (note the logarithmic scale). Each point is the median of 21 trials in which
5000 packets are transferred; the variance was insignificant. The two configurations
perform roughly the same for the smallest packet sizes, but GC only quickly falls
behind as packets reach 256 bytes. The GC+free curve peaks at 2 KB packets, while
the GC only case never reaches this point; GC+free achieves 60% better throughput
in the best case. This experiment illustrates the benefit of being able to free a packet
immediately. While more sophisticated garbage collectors could well close the gap,
the use of manual mechanisms can only be of help. Moreover, even advanced GCs
will do less well when packet lifetimes vary due to user processing in the server;
our use of reference counting allows packets to be shared and freed immediately
when no longer of interest.

Figure 14 illustrates the memory usage of MediaNet when forwarding 50,000 pack-
ets, each of size 4KB. This graph has the same format as the graph in Figure 12;
only heap-allocated data is shown (the dynamic region in which the configuration
is stored never changes and so is uninteresting). The GC only configuration stores
all data as aliasable (GC’ed) pointers, and so exhibits a sawtooth pattern with each
peak roughly coinciding with a garbage collection (there were 551 total on this run).
The GC+free configuration uses and reserves far less memory: 131 KB as opposed
to 840 KB for reserved memory, and 16.6 KB as opposed to 438 KB of peak used
memory. There is about 10 KB of initial heap-allocated data that remains through-
out the run, and the reference-counted and unique data never consumes more than
a single packet’s worth of space, since each packet is freed before the next packet
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is read in. This can be seen in the close-up at the right of the figure. The topmost
band is the aliasable data (the reserved space is not shown), while the feathery band
below it is the reference-counted data, with the unique data at the bottom.

5.3 Other Benchmarks

Test C Cyclone GC Cyclone Manual

Time Mem Time Mem Time Mem

Epic 0.70 12.5M 1.11 (1.61) 22.3M (1.78) 1.11 (1.61) 12.5M (1.0)

KissFFT 1.33 394K 1.40 (1.05 ) 708K (1.80) 1.41 (1.06) 392K (0.99)

Betaftpd 4.00 6.2K 4.00 (1.0) 192K (30.1) 4.00 (1.0) 8.2K (1.32)

Cfrac 8.75 284K 15.23 (1.74) 1.44M (5.19) 14.53 (1.66) 706K (2.49)

8139too 334 27.7K 333(0.99) 31.8K (1.14)
Table 4
Benchmark performance.

The elapsed time measurements of the other benchmarks (reported in seconds) are
presented in Table 4. All numbers reported are the median of eleven trials. The
variance is not significant. We show the elapsed time relative to the C version in
parentheses. To benchmark Epic we used it to encode a 20MB image file; KissFFT
came with a benchmarking program and we used it to perform 10,000 transforms;
Betaftpd was benchmarked by performing one hundred transfers of a 1MB file us-
ing wget; Cfrac was used to factor five 30-digit numbers chosen arbitrarily; 8139too
was benchmarked by performing a 3GB transfer using TTCP, where only the sender
used the device driver.

In general, the table shows trends consistent with the server applications discussed
earlier: (1) Cyclone’s run time performance is relatively close to that of C; (2) rel-
ative to versions that use a GC, Cyclone programs tuned to use manual techniques
have significantly lower memory usage, close to that of the C original. In one case
(Cfrac) we observed an improvement in elapsed time when comparing to the GC
case.

Betaftpd is mostly I/O-bound and its timing behavior is therefore insensitive to
porting to Cyclone. This is also the case for the 8139too Ethernet driver benchmark.
We do not report performance benchmarks for the other two drivers except to note
that no noticeable degradation was observed in common usage.

The slowdown of the remaining Cyclone programs relative to C is due, in large part,
to dynamic bounds checks for array accesses. For Epic, KissFFT, and Cfrac, we
also measured the elapsed time of the manual version with bounds checks disabled.
KissFFT exhibited identical performance to the C version, and Epic actually got
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faster by about 10%. Cfrac was still about 40% slower, as compared to 66% with
bounds checks enabled. As described in Section 4.1, Cfrac performs the additional
work of copying loop-carried state from one dynamic region to another, and we
suspect this is a large part of the remaining overhead.

For the standalone programs, the memory usage reported in Table 4 (column “Mem”)
is the maximum size of the heap’s reserved space during a program run (in bytes).
We show the footprint relative to the C version in parentheses. In the best case,
(Betaftpd) using manual memory management results in a 23-fold reduction in
memory usage compared to using GC, and in one case the reduction amounts to
10 MB of memory (Epic). For most programs, the Cyclone manual version and the
C version have roughly the same memory requirements. The worst case is Cfrac,
which is more than twice the size of the C version, though still roughly half that of
the Cyclone GC version. We suspect the additional overhead is due to the need to
copy between arenas with each loop iteration. All the C and manual Cyclone ver-
sions of the user-level benchmarks use the Lea allocator. None of the four bench-
marks used reaps, so bget was disabled and a pointer bumping allocator was used
for region allocations. For the Ethernet driver we report the memory usage as the
size of the module reported by the lsmod command. The difference is due to the
greater code size of the Cyclone version.

In summary, this section has demonstrated performance trends that are consistent
with other studies comparing GC and manual memory management [27,28]: mem-
ory footprint can be reduced, sometimes significantly, and elapsed time can oc-
casionally be improved, particularly when allocation occurs on the critical path.
Overall, we believe there is value in using safe manual mechanisms on their own,
and as an effective complement to GC. They give programmers more control over
the performance of their programs, in many cases without undue programming bur-
den, and without need to compromise safety.

6 Related Work

The ML Kit [29] implements Standard ML with (LIFO) arenas. Type inference
is used to allocate data into arenas automatically. Various extensions have relaxed
some LIFO restrictions [30,31], but unique pointers have not been considered.

The RC language and compiler [32] provide language support for reference-counted
regions in C. However, RC does not prevent dangling pointers to data outside of re-
gions and does not provide the safety guarantees of Cyclone.

Use-counted regions [33] are similar to our dynamic arenas, except there are no
alias restrictions on the keys and there is an explicit “freeregion” primitive. Freeing
an accessible (opened) region or opening a freed region causes a run-time excep-
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tion. The remaining problem is managing the memory for the keys. One solution,
also investigated in an earlier Cyclone design, is to allocate one region’s key in an-
other region, but the latter region typically lives so long that the keys are a space
leak (although they are small). A second solution allows a key to be allocated in the
region it represents by dynamically tracking all aliases to the key and destroying
them when the region is deallocated. This approach requires more run-time support
and cannot allow keys to be abstracted (via polymorphism, casts to void*, etc.).

Work on linear types [5], alias types [7,34], linear regions [14,35], and uniqueness
types [36] provide important foundations for safe manual memory management on
which we have built. Much of this foundational work has been done in the context
of core functional languages and does not address the range of issues we have.

Perhaps the most relevant work is the Vault project [18,37] which also uses re-
gions and unique pointers via linearity [5]. Unique pointers allow Vault to track
sophisticated type states, including whether memory has been deallocated. To re-
lax the uniqueness invariant, they use novel adoption and focus operators. Adoption
lets programs violate uniqueness by choosing a unique object to own a no-longer-
unique object. Deallocating the unique object deallocates both objects. Compared
to Cyclone’s support for unique pointers in non-unique context, adoption prevents
more space leaks, but requires hidden data fields so the run-time system can deallo-
cate data structures implicitly. Focus (which is similar to Aiken et al’s restrict [38]
allows adopted objects to be temporarily unique. Compared to swap, focus does
not incur run-time overhead, but the type system to prevent access through an un-
known alias requires substantially more user annotations because it must ensure a
non-local invariant.

Unique pointers and related restrictions on aliasing have received considerable at-
tention as extensions to object-oriented languages. Clarke and Wrigstad [6] provide
an excellent review of related work and propose a notion of “external uniqueness”
that integrates unique pointers and ownership types. Prior to this work, none of
the analogues to Cyclone’s alias allowed aliased pointers to be stored anywhere
except in method parameters and local variables, severely restricting code reuse.
Clarke and Wrigstad use a “fresh owner” to restrict the escape of aliased pointers,
much as Cyclone uses a fresh region name with alias. Ownership types differ
from our region system most notably by restricting which objects can refer to other
objects instead of using a static notion of accessible regions at a program point.

Little work on uniqueness in object-oriented languages has targeted manual mem-
ory management. A recent exception is Boyapati et al.’s work [39], which uses
regions to avoid some run-time errors in Real-Time Java programs [40]. As is com-
mon, this work uses “destructive reads” (an atomic swap with NULL) and relies on
an optimizer to eliminate unnecessary writes of NULL on unique paths. Cyclone
resorts to swaps only for unique data in non-unique containers, catching more er-
rors at compile time. Few other projects have used swap instead of destructive
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reads [41,42]. Alias burying [9] eschews destructive reads and proposes using static
analysis to prevent using aliases after a unique pointer is consumed, but the details
of integrating an analysis into a language definition are not considered.

Berger et al. introduced the idea of a reap [11], which is an arena that supports
individual deallocation in addition to the traditional bulk deallocation. Our reaps
are safe (avoiding dangling pointer dereferences), and additionally support object
deallocation by reference counting.

7 Conclusions

Cyclone supports a rich set of safe memory-management idioms:

• Stack/LIFO arenas: work well for lexically-scoped lifetimes.
• Dynamic arenas: work well for aggregated, dynamically allocated data.
• Uniqueness: works well for individual objects as long as multiple references are

not needed within data structures.
• Reference counting: works well for individual objects that must be shared, but

requires explicit reference count management.
• Reaps: work well in resource constrained situations and for temporary storage

of dynamically allocated data.
• Garbage collection: provides simple, general-purpose memory management.

Programmers can use the best idioms for their application. In our experience, all
idioms have proven useful for improving some aspect of performance.

This array of idioms is covered by the careful combination of only two linguistic
features: regions with lexically-scoped lifetimes and unique pointers. Unique point-
ers give us the power to reason in a flow-sensitive fashion about the state of objects
or arenas and to ensure that safety protocols, such as reference counting, are en-
forced. Regions work well for stack allocation and give us a way to overcome the
burdens of uniqueness for a limited scope.

Nonetheless, there are many open issues that require further research. For instance,
our approach to uniqueness is affine [43], in the sense that a unique pointer can be
used at most once before it is consumed. This prevents dangling pointer derefer-
ences, but permits memory leaks. In contrast, a linear approach requires pointers
to be used exactly once, eliminating possible leaks and perhaps avoiding the need
for GC altogether. However, we found that the linear interpretation generated too
many false type errors in the presence of exceptions and global data.

Another area where further work is needed is in tools to assist the porting pro-
cess. We generally found that developing new code in Cyclone was easier because
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we could start with the invariants for a particular memory-management strategy in
mind. In contrast, porting legacy code required manually extracting these invariants
from the code. Our hope is that we can adapt tools from the alias and shape analysis
community to assist programmers in porting applications.
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