
Ontology Construction for Information Selection

Latifur Khan and Feng Luo
Department of Computer Science

University of Texas at Dallas
Richardson, TX 75083-0688

Email: [lkhan, luofeng]@utdallas.edu

Abstract

1Technology in the field of digital media generates
huge amounts of non-textual information, audio, video,
and images, along with more familiar textual information.
The potential for exchange and retrieval of information is
vast and daunting. The key problem in achieving efficient
and user-friendly retrieval is the development of a search
mechanism to guarantee delivery of minimal irrelevant
information (high precision) while insuring relevant
information is not overlooked (high recall). The
traditional solution employs keyword-based search. The
only documents retrieved are those containing user
specified keywords. But many documents convey desired
semantic information without containing these keywords.
One can overcome this problem by indexing documents
according to meanings rather than words, although this
will entail a way of converting words to meanings and the
creation of ontology. We have solved the problem of an
index structure through the design and implementation of
a concept-based model using domain-dependent
ontology. Ontology is a collection of concepts and their
interrelationships, which provide an abstract view of an
application domain. We propose a new mechanism that
can generate ontology automatically in order to make our
approach scalable. For this we modify the existing self-
organizing tree algorithm (SOTA) that constructs a
hierarchy from top to bottom. Furthermore, in order to
find an appropriate concept for each node in the
hierarchy we propose an automatic concept selection
algorithm from WordNet called linguistic ontology.

To illustrate the effectiveness of our automatic
ontology construction method, we have explored our
ontology construction in text documents. The
Reuters21578 text document corpus has been used. We
have observed that our modified SOTA outperforms
hierarchical agglomerative clustering (HAC).

1. Introduction

1 This study was supported in part by gift from Sun and the
National Science Foundation grant NGS-0103709.

The development of web technology generates huge
amounts of non-textual information, such as audio, video,
and images, as well as more familiar textual information.
The potential for the exchange and retrieval of
information is vast, and at times daunting. In general,
users can be easily overwhelmed by the amount of
information available via electronic means. The transfer of
irrelevant information in the form of documents (e.g. text,
audio, video) retrieved by an information retrieval system
and which are of no use to the user wastes network
bandwidth and creates user frustration. This condition is a
result of inaccuracies in the representation of the
documents in the database, as well as confusion and
imprecision in user queries, since users are frequently
unable to express their needs efficiently and accurately.
These factors contribute to the loss of information and to
the retrieval of irrelevant information. Therefore, the key
problem to be addressed in information selection is the
development of a search mechanism which will guarantee
the delivery of a minimum of irrelevant information (high
precision), as well as insuring that relevant information is
not overlooked (high recall).

The traditional solution to the problem of recall and
precision in information retrieval employs keyword-based
search techniques. Documents are only retrieved if they
contain keywords specified by the user. However, many
documents contain the desired semantic information, even
though they do not contain user specified keywords. This
limitation can be addressed through the use of query
expansion mechanisms. Additional search terms are
added to the original query based on the statistical co-
occurrence of terms [13]. Recall will be expanded, but at
the expense of deteriorating precision [15]. In order to
overcome the shortcomings of keyword-based technique
in responding to information selection requests we have
designed and implemented a concept-based model using
ontologies [12, 16]. This model, which employs a domain
dependent ontology, is presented in this paper. Ontology
is a collection of concepts and their interrelationships,
which can collectively provide an abstract view of an
application domain [7, 8].

There are two distinct problem/tasks for an ontology-
based model: one is the extraction of semantic concepts
from the keywords and the other is the actual construction

Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’02)
1082-3409/02 $17.00 © 2002 IEEE

of the ontology. With regard to the first problem, the key
issue is to identify appropriate concepts that describe and
identify documents. In this it is important to make sure
that irrelevant concept will not be associated and matched,
and that relevant concepts will not be discarded. With
regard to the second problem, we would like to construct
ontology automatically. In this paper we address these two
problems together by proposing a new method for the
automatic construction of ontology.

Our method constructs ontology automatically in
bottom up fashion. For this, we first construct a hierarchy
using some clustering algorithms. Recall that if documents
are similar to each other in content they will be associated
with the same concept in ontology. Next, we need to
assign a concept for each node in the hierarchy. For this,
we deploy two types of strategy and adopt a bottom up
concept assignment mechanism. First, for each cluster
consisting of a set of documents we assign a topic based
on a modified Roccchio algorithm for topic tracking [3].
However, if multiple concepts are candidate for a topic we
propose an intelligent method for arbitration. Next, to
assign a concept to an interior node in the hierarchy we
use WordNet, a linguist ontology [5]. Descendent
concepts of the internal node will also be identified in
WordNet. From these identified concepts and their
hypernyms we can identify a more generic concept that
can be assigned as a concept for the interior node.

With regard to the hierarchy construction, we would
like to construct ontology automatically. For this we rely
on a self-organizing tree (SOTA [4]) that constructs a
hierarchy from top to bottom. We modify the original
algorithm, and propose an efficient algorithm that
constructs hierarchy with better accuracy as compared to
hierarchical agglomerative clustering algorithm [1].
To illustrate the effectiveness of the method of automatic
ontology construction, we have explored our ontology
construction in the text documents. The Reuters21578 text
document corpus has been used. We have observed that
our modified SOTA out performs agglomerative
clustering in terms of accuracy. The main contributions of
this work will be as follows:

• We propose a new mechanism that can be used
to generate ontology automatically to make our
approach scalable. For this we modify the
existing self-organizing tree (SOTA) algorithm
that constructs a hierarchy from top to bottom.

• Furthermore, to find an appropriate concept for
each node in the hierarchy we propose an
automatic concept selection algorithm from
WordNet, linguistic ontology.

Section 2 discusses related works. Section 3 describes
ontology and their characteristics. Section 4 presents our
automatic ontology construction mechanism. Section 5
presents preliminary result. Section 6 contains our
conclusion and possible areas of future work.

2. Related work

Historically ontology has been employed to achieve
better precision and recall in the text retrieval system [11].
Here, attempts have taken two directions, query expansion
through the use of semantically related-terms, and the use
of conceptual distance measures [13, 16].

For the construction of ontology, the above papers
assume manual construction; however, only a few
automatic methods are proposed [14, 17, 18]. Elliman et
al. [18] propose a method for constructing ontology to
represent a set of web pages on a specified site. Self-
organizing map is used to construct hierarchy. In our case
we modify self-organizing tree and label nodes in the
hierarchy. Bodner et al. propose a method to construct
hierarchy based on statistical method (frequency of
words). Hoothe et al. [17] propose various clustering
techniques to view text documents with the help of
ontology. Note that a set of hierarchies will be
constructed for multiple views only; not for ontology
construction purpose.

3. Ontology for information selection

Ontology is a specification of an abstract, simplified
view of the world that we wish to represent for some
purpose [6, 7, 8]. Therefore, ontology defines a set of
representational terms that we call concepts. Inter-
relationships among these concepts describe a target
world. Ontology can be constructed in two ways, domain
dependent and generic. CYC [9], WordNet [5], and
Sensus [10] are examples of generic ontology. WordNet is
a linguistic database formed by synsets—terms grouped
into semantic equivalence sets, each one assigned to a
lexical category (noun, verb, adverb, adjective). Each
synset represents a particular lexical concept of an English
word and is usually expressed as a unique combination of
synonym sets. In general, each word is associated to more
than one synset and more than one lexical category. A
domain-dependent ontology provides concepts in a fine
grain, while generic ontology provides concepts in coarser
grain. The ontology is described by a directed acyclic
graph (DAG). Here, each node in the DAG represents a
concept (see Figure 1). In general, each concept in the
ontology contains a label name and a vector. A vector is
simply a set of keywords and their weights. Furthermore,
the weight of each keyword of a concept may not be
equal.

4. Automated ontology constructions

We would like to build ontology automatically from a
set of text documents. If documents are similar to each
other in content they will be associated with the same

Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’02)
1082-3409/02 $17.00 © 2002 IEEE

concept in ontology. For this first we would like to use a
hierarchical clustering algorithm to build a hierarchy.
Then we need to assign concept for each node in the
hierarchy. For this, we deploy two types of strategy and
follow bottom up concept assign mechanism. First, for
each cluster consisting of a set of documents we assign a
topic based on a modified Roccchio algorithm for topic
tracking. However, if multiple concepts are candidates for
a topic we propose an intelligent method to arbitrate them.
Next, to assign concept to the interior node in the
hierarchy, we use WordNet, a linguist ontology.
Descendent concepts the internal node will be identified in
WordNet. From these identified concepts and their
hypernyms we can identify more generic concept that can
be assigned as a concept for the interior node.

4.1. Hierarchy construction

We would like to partition a set of documents S= {D1,
D2… Dn} into a number of clusters C1, C2… Cm. where a
cluster may contain more than one documents.
Furthermore, we would like to extend our hierarchy into
several levels.

4.1.1. Modified SOTA. SOTA is specifically designed
for molecular bio-sequence classification and
phylogenetic analysis. Inspired by the self-organized tree
structure and low time complexity we develop a modified
self-organizing tree for automatic ontology construction,
which is called MSOT.

Figure 1. Ontology construction A) SOTA. B) MSOT.
Although MSOT is similar to SOTA, it differs in two
ways. First, in SOTA, during expansion, only one cell,
which has the maximum resources (the average of the
distance s of the input data assigned to the cell from cell
vector), will be selected for expansion. On the other hand,
in MSOT more than one cell may be selected for
expansion, depending on their resources (see Figure 1).
Here cells whose resources exceed a threshold will
participate in the expansion. Thus, the aspect of threshold
plays an important role here. Expansion of more than one
node allows the algorithm to grow a tree quickly. In other
words, convergence may be quicker. Second, in SOTA

during the expansion phase of a selected cell two new
cells will be created. Furthermore, initially each new cell
will replicated with the same reference vector of the
selected cell. Now, input data associated with selected cell
will be distributed between two new cells; the reference
vector of each new cell will be updated. Therefore, no
other input data will be considered for the distribution of
within two new cells, (i.e., locally). On the other hand, in
MSOT more than one cell may be selected, and two new
cells will be created for each selected cell. Now the
question is how we can distribute input data of selected
cells among these new created cells. One approach is that
input data of each selected cell will be distributed to two
new created children cells, which are similar to the SOTA
approach. The other approach is aggressive; input data of
selected cells will be distributed among all their children
new cells when selected cells are K level apart. In other
words, in the tree when selected cells are separated by K
level, input data of any of theses selected cells will be
distributed to any of their newly created children cell.
Note that if K=1, the latter approach is simply turned into
the former approach. In general we call this K Level
Distribution (KLD). After distributing each input data,
winning cell and neighbor reference vector will be
updated.
The pseudo code for the algorithm is as follows:
 Step 1: [Initialization] initialize as like as
SOTA—one node with two cells.
 Step 2: [Distribution] distribute each input data x
between newly created cells; we find the best match cell
which is known as winning cell (using KLD), then update
the reference vector w of winning cell i and its neighbors
same as SOTA using the following function:
)()(ii wxtw −×=∆ ϕ (1)

Where ϕ(t) is the learning function:
)()(tt ηαϕ ×= (2)

η(t) is learning function; α is a learning constant; and t is
the discrete time coordinate. The winning cell, the
ancestor node and the sibling cell have different learning
rate αw, αm and αs, and αw > αm > αs.
 Step 3: [Error] while error of the entire tree is
greater than a threshold go to Step 2.
 Step 4: [Expand] for each cell, calculate
resource, and check whether it exceeds a threshold. If yes,
change this selected cell as node, and create two new
children cells from it. If there are no more cells for
expansion, the system is converged; else go to Step 2.
 Step 5: prune the tree and delete a cell that does
not have any input on it.

4.2. Concept assignment

After building a hierarchy of nodes we will assign a
concept for each node in the hierarchy. For this, we

Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’02)
1082-3409/02 $17.00 © 2002 IEEE

propose a bottom up mechanism for assigning concepts.
Concepts associated with documents will be assigned to
leaf nodes in the hierarchy. Interior node concepts will
then be assigned based on the concepts in the descendent
nodes. For each cluster consisting of a set of documents
we will assign a topic based on a modified Rocchio
algorithm for topic tracking. Second, we will associate
this topic with an appropriate concept (synset) in
WordNet. Third, the concept of an internal node is
obtained from concepts of its children nodes and their
hypernyms as they in WordNet.

4.1.1. Concept assignment for leaf nodes. Topic
tracking is used for the assignment of a concept in each
leaf node. For this, a topic based on a Rocchio algorithm
will first be assigned for each document. Second, we will
determine the distinct topics that appear in each leaf node.
Recall that a leaf node may be associated with a number
of different documents. Now, if only a single topic
appears in a leaf node, we will simply assign this topic as
a concept in the leaf node. However, if more than one
topic appears in a leaf node, a majority rule will be
applied. Thus, a majority of documents of a leaf node will
be associated with a specific topic and this topic will be
assigned as a concept to this leaf node. On the other hand,
in cases in which the majority rule cannot be applied, we
will choose a more generic concept from WordNet using
all the topics, and this generic concept will be assigned
(see Section 4.2.2).

4.2.1.1. Topic tracking. Here we will determine a topic
for each document. For this we assume we have a set of
predefined topic categories. The topic categories are
trained by a set of documents previously assigned to
existing topics. Each topic is represented by a keyword.
Here we assume that only one topic is assigned per
document. This is because a document can be associated
with at most one node in the hierarchy.

We will consider the classic Rocchio algorithm for
topic tracking [2, 3]. The basic idea of Rocchio algorithm
is to construct a document vector to represent the
document and a topic vector for each topic. Documents
with the same topic have the same topic vector. For a
given topic the topic vector is the topic representative
vector of the documents assigned to this topic category.
To determine a topic for a document, the similarity
between a document and a topic vector is measured using
the cosine product. We will choose the topic for the
document which this calculation of similarity gives the
maximum value.

The document vector is built by weighting all the
words in documents with the tf (d, w) * idf(w) value. The
term frequency tf is the number of times word w occurs in
a document. The document frequency df(w) is the number
of documents in which the word w occurs at least once.

The inverse documents frequency idf(w) is defined as
follows:

)
)(

log()(
wdf

N
widf = (3)

N is the total number of documents. The word with higher
tf*idf weighting means it is an important index term for
the document.
In the classical Rocchio algorithm the topic vector (t) is
built by combining the document vectors (d) of the
training documents.

∑
⊂

=
Td

dt
ρϖ (4)

Where T represents topic and d represents document.
We propose a new approach to constructing a topic

vector by using self-organizing map (SOM). A node in
the SOM’s output map represents each topic category. To
construct the topic vector, the node is trained by training
documents that belong to that topic. The reference vector
of the node is the centroid vector of these trained
document vector, constructed by a nonlinear regression.
This reference vector will then be the topic vector.

Once topic vectors have been constructed we will use
the cosine similarity between document vector and topic
vector (see Equation 5).

∑∑

∑

==

=

×

×
=

n

k
jk

n

k
ik

n

k
jkik

dd

dd
djdiSimilarity

1

2

1

2

1

)()(

)(
),(ρρ

ρρ
 (5)

4.2.1.2. Concept sense disambiguation. It is possible
that a particular keyword may be associated with more
than one concept in WordNet. In other words, association
between keyword and concept is one:many, rather than
one:one. For example the keyword “gold” has 4 senses in
WordNet and the keyword “copper” has five senses in
WordNet. We need to disambiguate concepts and choose
the most appropriate.

For disambiguation of concepts we apply the same
technique (i.e., cosine similarity measure) used in topic
tracking. To construct a vector for each sense we will use
a short description that appears in WordNet.

4.2.2. Concept selection for non-leaf nodes. To assign a
concept to an internal node in the tree we need to consider
similar cases. If two children of a node have the some
concept we merely assign that concept to the parent node.
If two children have a different concept but one concept
belongs to the majority we will assign this majority
concept to the parent node. And if there is no majority
concept we will find an appropriate concept for parent
node using WordNet. We will find all the parent senses of
two children topic concept. Then we will select the least
general concept sense and assign it to the parent node. If
there is no parent sense we will not make any assignment.

Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’02)
1082-3409/02 $17.00 © 2002 IEEE

5. Preliminary result

5.1 Experimental setup

We have explored our ontology construction using text
documents. The Reuters21578 text document corpus was
used. There are 135 topics assigned to the Reuters
documents. We selected 2003 documents from this
corpus distributed across 15 topics. Furthermore, each
document has only one topic. 180 of these documents
were used for topic tracking training. Note that documents
are not distributed across topics uniformly. In other
words, one given topic may have more documents as
compared to another. Thus, the greater the number of
documents in a given topic, the greater the number of
training documents employed.
For document processing we have extracted keywords
(terms) from documents by removing stop words. Second,
using the Porter stemming technique we have determined
word stems. Third, we have constructed a document
vector for each document using tf*idf.

5.2 Results

First, we will present the results for the topic tracking
algorithm. Second, we will present the clustering results of
HAC and MSOT. Finally, we will report the performance
of our concept selection mechanism for each node in
hierarchy.

5.2.1. Topic tracking algorithm comparison. For the
classical Rocchio algorithm, we first constructed a topic
vector for each topic. The weight of each term in a topic is
simply the summation of weights of the term in the
training documents. Next, we have sorted terms based on
weight in descending order. Then we have used first l
(=100, 200, 400) keywords to reduce dimensionality.

In the Rocchio algorithm using SOM we have
constructed an l dimension reference vector for each topic
using the above technique. However, the weight of the
term will be assigned randomly. The reference vector of a
topic will be updated using SOM whenever a document is
associated with that topic.

We have observed the same result (91% recall, 90%
precision for l=400; see [19] for more details) for these
two algorithms.

5.2.2. Optimizing of MSOT parameter. In our
experiment we varied αw (i.e., =0.25, 0.2, 0.15) and αs

(i.e., =0.025, 0.02, and 0.015). Furthermore, αm is set as
0.5 of αw, η(t) is set as 1/t, and KLD is set to 3 (see
Section 4.1.1). Thus, we got total 9 combinations, and for
each combination, we calculated E. E measure is defined:

rp
rpE

11

2
1),(

+
−= (6)

Where p and r are the Precision and Recall of a cluster.
Note that E (p,r) is simply one minus harmonic mean of
the precision and recall; E (p,r) ranges from 0 to 1 where
E (p.r) =0 corresponds to perfect precision and recall, and
E (p.r) corresponds to zero precision and recall. Thus, the
smaller the E measure values the better the quality of a
cluster.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.15 0.2 0.25

winner learning constant

E

sibling learning contant = 0.025
sibling learning contant = 0.02
sibling learning contant = 0.015

Figure 2. E measure of MOST on various parameters.
In Figure 2 X and Y axis represent αw and average E
measure of MOST respectively for a fixed αs. When αw

=0.2 and αs=0.02 we get the lowest E (= 0.073) which is
the best case on our data set.

5.2.4. Hierarchy construction comparisons. We have
compared MSOT with group-average link HAC. We have
used the original topic of the Reuters news items to
evaluate the result of these cluster algorithms. Since
αw=0.2 αm=0.1 and αs=0.02 give least error (E), we used

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
cq

ui
si

tio
n

C
oc

oa

C
of

fe
e

C
op

pe
r

C
ot

to
n

C
pi

C
ru

de

E
ar

n

G
ol

d

In
te

re
st

Jo
bs

R
ub

be
r

S
ug

ar

V
eg

et
ab

le

W
pi

A
ve

ra
ge

E(MSOT) E(HAC)

Figure 3. Comparison of MSOT and HAC

these values. Note that documents are only associated with
leaf nodes. We have observed that the boundary of a
cluster is very clear and clean in MSOT. Furthermore,
MSOT gives a better result than HAC (see Figure 3). In
all topics MSOT have low E measure than HAC. Finally,
the average E of MSOT is 0.073 while the average E of
HAC is only 0.181.

Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’02)
1082-3409/02 $17.00 © 2002 IEEE

5.2.5. Automated ontology construction result. Since
MSOT gives better cluster accuracy we have used it to
construct a hierarchy. Figure 4 shows the part of ontology.
Leaf nodes “gold” and “copper” are associated with a set
of documents. To assign a concept for their parent node
we have used WordNet to find the more generic concept,
“asset.” Various types of inter-relationships between
nodes are blurred in our ontologies; types of
interconnections are ignored. This is because our prime
concerned is to facilitate information selection rather than
to deduct new knowledge.

Figure 4. Part of ontology

6. Conclusions and future work

In this paper we have proposed a potentially powerful
and novel approach for the automatic construction of
ontologies. The crux of our innovation is the development
of a hierarchy, and the concept selection from WordNet
for each node in the hierarchy. For developing a
hierarchy, we have modified the existing self-organizing
tree (SOTA) algorithm that constructs a hierarchy from
top to bottom. We would like to extend this work in the
following directions. First, we would like to do more
experiments for clustering techniques. Next, we would
like to address this ontology construction in the domain of
software component libraries.

7. References

[1] Ellen M. Voorhees. “Implementing Agglomerative
hierarchic clustering algorithms for use in document
retrieval” Information Processing & Management, Vol 22,
No.6 pp 465-476 1986.
[2] J. Racchio. “Relevance Feedback in Information
Retrieval”, In the SMART Retrieval System: Experiments
in Automatic Document Processing, Chapter 14, pages
313-323, Prentice-Hall Inc. 1971
[3] Thorsten Joachims. “A Probabilistic Analysis of the
Rocchio Algorithm with TFIDF for Text Categorization”.
Logic J. of the IGPL, 1998.
[4] Joaquin Dopazo, Jose Maria Carazo. “Phylogenetic
Reconstruction Using an Unsupervised Growing Neural
Network That Adopts the Topology of a Phylogenetic

Tree. Joural of Molecular Evolution Vol 44, 226-233
1997.
[5] G. Miller, “WordNet: A Lexical Database for
English”, in Proc. of Communications of CACM, Nov
1995.
[6] M. A. Bunge, “Treatise on Basic Philosophy:
Ontology: The Furniture of the World”, Reidel, Boston,
1977.
 [7] T. R. Gruber, “Toward Principles for the design of
Ontologies used for Knowledge Sharing”, in Proc. of
International Workshop on Formal Ontology, March
1993.
[8] Y. Labrou and T. Finin, “Yahoo! as Ontology: Using
Yahoo! Categories to Describe Documents,” in Proc. of
The Eighth International Conference on Information
Knowledge Management, pp. 180-187, Nov 1999, Kansas
City, MO.
[9] D. B. Lenat, “Cyc: A Large-scale investment in
Knowledge Infrastructure”, Communications of the ACM,
pp. 33-38, Volume 38, no. 11, Nov 1995.
[10] B. Swartout, R. Patil, K. Knight, and T. Ross,
“Toward Distributed Use of Large-Scale Ontologies,” in
Proc. of The Tenth Workshop on Knowledge Acquisition
for Knowledge-Based Systems, Banff, Canada, 1996.
[11] N. Guarino, C. Masolo, and G. Vetere, “OntoSeek:
Content-based Access to the Web,” IEEE Intelligent
Systems, Volume 14, no. 3, pp. 70-80, 1999.
[12] Latifur Khan “Ontology-based Information Selection,
“ Ph.D. Thesis, University of South California, 2000.
[13] A. F. Smeaton and V. Rijsbergen, “The Retrieval
Effects of Query Expansion on a Feedback Document
Retrieval System”. The Computer Journal, vol. 26, No.3,
pp239-246, 1993.
[14] R. Bodner and F. Song, “Knowledge-based
Approaches to Query Expansion in Information
Retrieval,” in Proc. of Advances in Artificial Intelligence,
pp. 146-158, New York, Springer.
[15] H. J. Peat and P. Willett, “The Limitations of Term
Co-occurrence Data for Query Expansion in Document
Retrieval Systems,” Journal of ASIS, vol. 42, no.5,
pp.378-383, 1991.
[16] L. Khan and D. McLeod, “Audio Structuring and
Personalized Retrieval Using Ontology,” in Proc. of IEEE
Advances in Digital Libraries, Library of Congress, pp.
116-126, Bethesda, MD, May 2000.
[17]Dave Elliman, J. Rafael G. Pulido. “Automatic
Derivation of On-line Document Ontology”. International
Workshop on Mechanisms for Enterprise Integration:
From Objects to Ontology, Budapest, Hungary, Jun 2001.
[18] A. Hotho, A. Mädche, A., S. Staab, “Ontology-based
Text Clustering,” Workshop Text Learning: Beyond
Supervision, 2001.
[19] Feng Luo and L. Khan, “Ontology construction for
information selection”, Technical Report, Computer
Science Department, University of Texas at Dallas. 2002

Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’02)
1082-3409/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

