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Abstract 
 

1Technology in the field of digital media generates 
huge amounts of non-textual information, audio, video, 
and images, along with more familiar textual information.  
The potential for exchange and retrieval of information is 
vast and daunting.  The key problem in achieving efficient 
and user-friendly retrieval is the development of a search 
mechanism to guarantee delivery of minimal irrelevant 
information (high precision) while insuring relevant 
information is not overlooked (high recall).  The 
traditional solution employs keyword-based search.  The 
only documents retrieved are those containing user 
specified keywords.  But many documents convey desired 
semantic information without containing these keywords. 
One can overcome this problem by indexing documents 
according to meanings rather than words, although this 
will entail a way of converting words to meanings and the 
creation of ontology.  We have solved the problem of an 
index structure through the design and implementation of 
a concept-based model using domain-dependent 
ontology.  Ontology is a collection of concepts and their 
interrelationships, which provide an abstract view of an 
application domain. We propose a new mechanism that 
can generate ontology automatically in order to make our 
approach scalable. For this we modify the existing self-
organizing tree algorithm (SOTA) that constructs a 
hierarchy from top to bottom. Furthermore, in order to 
find an appropriate concept for each node in the 
hierarchy we propose an automatic concept selection 
algorithm from WordNet called linguistic ontology.  

To illustrate the effectiveness of our automatic 
ontology construction method, we have explored our 
ontology construction in text documents. The 
Reuters21578 text document corpus has been used. We 
have observed that our modified SOTA outperforms 
hierarchical agglomerative clustering (HAC).  
 
1. Introduction 
                                                 
1 This study was supported in part by gift from Sun and the 
National Science Foundation grant NGS-0103709. 

The development of web technology generates huge 
amounts of non-textual information, such as audio, video, 
and images, as well as more familiar textual information.  
The potential for the exchange and retrieval of 
information is vast, and at times daunting.  In general, 
users can be easily overwhelmed by the amount of 
information available via electronic means. The transfer of 
irrelevant information in the form of documents (e.g. text, 
audio, video) retrieved by an information retrieval system 
and which are of no use to the user wastes network 
bandwidth and creates user frustration.  This condition is a 
result of inaccuracies in the representation of the 
documents in the database, as well as confusion and 
imprecision in user queries, since users are frequently 
unable to express their needs efficiently and accurately. 
These factors contribute to the loss of information and to 
the retrieval of irrelevant information.  Therefore, the key 
problem to be addressed in information selection is the 
development of a search mechanism which will guarantee 
the delivery of a minimum of irrelevant information (high 
precision), as well as insuring that relevant information is 
not overlooked (high recall).  

The traditional solution to the problem of recall and 
precision in information retrieval employs keyword-based 
search techniques.  Documents are only retrieved if they 
contain keywords specified by the user.  However, many 
documents contain the desired semantic information, even 
though they do not contain user specified keywords.  This 
limitation can be addressed through the use of query 
expansion mechanisms.  Additional search terms are 
added to the original query based on the statistical co-
occurrence of terms [13].  Recall will be expanded, but at 
the expense of deteriorating precision [15]. In order to 
overcome the shortcomings of keyword-based technique 
in responding to information selection requests we have 
designed and implemented a concept-based model using 
ontologies [12, 16].  This model, which employs a domain 
dependent ontology, is presented in this paper.  Ontology 
is a collection of concepts and their interrelationships, 
which can collectively provide an abstract view of an 
application domain [7, 8]. 

There are two distinct problem/tasks for an ontology-
based model: one is the extraction of semantic concepts 
from the keywords and the other is the actual construction 
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of the ontology. With regard to the first problem, the key 
issue is to identify appropriate concepts that describe and 
identify documents.  In this it is important to make sure 
that irrelevant concept will not be associated and matched, 
and that relevant concepts will not be discarded. With 
regard to the second problem, we would like to construct 
ontology automatically. In this paper we address these two 
problems together by proposing a new method for the 
automatic construction of ontology.  

Our method constructs ontology automatically in 
bottom up fashion. For this, we first construct a hierarchy 
using some clustering algorithms. Recall that if documents 
are similar to each other in content they will be associated 
with the same concept in ontology. Next, we need to 
assign a concept for each node in the hierarchy. For this, 
we deploy two types of strategy and adopt a bottom up 
concept assignment mechanism. First, for each cluster 
consisting of a set of documents we assign a topic based 
on a modified Roccchio algorithm for topic tracking [3]. 
However, if multiple concepts are candidate for a topic we 
propose an intelligent method for arbitration.  Next, to 
assign a concept to an interior node in the hierarchy we 
use WordNet, a linguist ontology [5]. Descendent 
concepts of the internal node will also be identified in 
WordNet.  From these identified concepts and their 
hypernyms we can identify a more generic concept that 
can be assigned as a concept for the interior node.  

With regard to the hierarchy construction, we would 
like to construct ontology automatically. For this we rely 
on a self-organizing tree (SOTA [4]) that constructs a 
hierarchy from top to bottom. We modify the original 
algorithm, and propose an efficient algorithm that 
constructs hierarchy with better accuracy as compared to 
hierarchical agglomerative clustering algorithm [1].  
To illustrate the effectiveness of the method of automatic 
ontology construction, we have explored our ontology 
construction in the text documents. The Reuters21578 text 
document corpus has been used. We have observed that 
our modified SOTA out performs agglomerative 
clustering in terms of accuracy.  The main contributions of 
this work will be as follows: 

•  We propose a new mechanism that can be used 
to generate ontology automatically to make our 
approach scalable. For this we modify the 
existing self-organizing tree (SOTA) algorithm 
that constructs a hierarchy from top to bottom.  

•  Furthermore, to find an appropriate concept for 
each node in the hierarchy we propose an 
automatic concept selection algorithm from 
WordNet, linguistic ontology.  

Section 2 discusses related works. Section 3 describes 
ontology and their characteristics. Section 4 presents our 
automatic ontology construction mechanism. Section 5 
presents preliminary result.  Section 6 contains our 
conclusion and possible areas of future work.   

2. Related work  
 

Historically ontology has been employed to achieve 
better precision and recall in the text retrieval system [11].  
Here, attempts have taken two directions, query expansion 
through the use of semantically related-terms, and the use 
of conceptual distance measures [13, 16]. 

For the construction of ontology, the above papers 
assume manual construction; however, only a few 
automatic methods are proposed [14, 17, 18]. Elliman et 
al. [18] propose a method for constructing ontology to 
represent a set of web pages on a specified site. Self-
organizing map is used to construct hierarchy. In our case 
we modify self-organizing tree and label nodes in the 
hierarchy. Bodner et al. propose a method to construct 
hierarchy based on statistical method (frequency of 
words). Hoothe et al. [17] propose various clustering 
techniques to view text documents with the help of 
ontology.  Note that a set of hierarchies will be 
constructed for multiple views only; not for ontology 
construction purpose. 

 
3. Ontology for information selection 
 

Ontology is a specification of an abstract, simplified 
view of the world that we wish to represent for some 
purpose [6, 7, 8].  Therefore, ontology defines a set of 
representational terms that we call concepts.  Inter-
relationships among these concepts describe a target 
world.  Ontology can be constructed in two ways, domain 
dependent and generic.  CYC [9], WordNet [5], and 
Sensus [10] are examples of generic ontology. WordNet is 
a linguistic database formed by synsets—terms grouped 
into semantic equivalence sets, each one assigned to a 
lexical category (noun, verb, adverb, adjective). Each 
synset represents a particular lexical concept of an English 
word and is usually expressed as a unique combination of 
synonym sets. In general, each word is associated to more 
than one synset and more than one lexical category. A 
domain-dependent ontology provides concepts in a fine 
grain, while generic ontology provides concepts in coarser 
grain. The ontology is described by a directed acyclic 
graph (DAG). Here, each node in the DAG represents a 
concept (see Figure 1).  In general, each concept in the 
ontology contains a label name and a vector.  A vector is 
simply a set of keywords and their weights.  Furthermore, 
the weight of each keyword of a concept may not be 
equal.  
 
4. Automated ontology constructions 
 

We would like to build ontology automatically from a 
set of text documents. If documents are similar to each 
other in content they will be associated with the same 
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concept in ontology. For this first we would like to use a 
hierarchical clustering algorithm to build a hierarchy. 
Then we need to assign concept for each node in the 
hierarchy. For this, we deploy two types of strategy and 
follow bottom up concept assign mechanism. First, for 
each cluster consisting of a set of documents we assign a 
topic based on a modified Roccchio algorithm for topic 
tracking. However, if multiple concepts are candidates for 
a topic we propose an intelligent method to arbitrate them. 
Next, to assign concept to the interior node in the 
hierarchy, we use WordNet, a linguist ontology. 
Descendent concepts the internal node will be identified in 
WordNet.  From these identified concepts and their 
hypernyms we can identify more generic concept that can 
be assigned as a concept for the interior node.  
 
4.1. Hierarchy construction 
 

We would like to partition a set of documents S= {D1, 
D2… Dn} into a number of clusters C1, C2… Cm. where a 
cluster may contain more than one documents. 
Furthermore, we would like to extend our hierarchy into 
several levels.  

 
4.1.1. Modified SOTA.  SOTA is specifically designed 
for molecular bio-sequence classification and 
phylogenetic analysis. Inspired by the self-organized tree 
structure and low time complexity we develop a modified 
self-organizing tree for automatic ontology construction, 
which is called MSOT. 

 
Figure 1. Ontology construction A) SOTA. B) MSOT. 
Although MSOT is similar to SOTA, it differs in two 
ways. First, in SOTA, during expansion, only one cell, 
which has the maximum resources (the average of the 
distance s of the input data assigned to the cell from cell 
vector), will be selected for expansion. On the other hand, 
in MSOT more than one cell may be selected for 
expansion, depending on their resources (see Figure 1). 
Here cells whose resources exceed a threshold will 
participate in the expansion. Thus, the aspect of threshold 
plays an important role here. Expansion of more than one 
node allows the algorithm to grow a tree quickly. In other 
words, convergence may be quicker. Second, in SOTA 

during the expansion phase of a selected cell two new 
cells will be created. Furthermore, initially each new cell 
will replicated with the same reference vector of the 
selected cell. Now, input data associated with selected cell 
will be distributed between two new cells; the reference 
vector of each new cell will be updated. Therefore, no 
other input data will be considered for the distribution of 
within two new cells, (i.e., locally). On the other hand, in 
MSOT more than one cell may be selected, and two new 
cells will be created for each selected cell. Now the 
question is how we can distribute input data of selected 
cells among these new created cells. One approach is that 
input data of each selected cell will be distributed to two 
new created children cells, which are similar to the SOTA 
approach. The other approach is aggressive; input data of 
selected cells will be distributed among all their children 
new cells when selected cells are K level apart. In other 
words, in the tree when selected cells are separated by K 
level, input data of any of theses selected cells will be 
distributed to any of their newly created children cell.  
Note that if K=1, the latter approach is simply turned into 
the former approach. In general we call this K Level 
Distribution (KLD). After distributing each input data, 
winning cell and neighbor reference vector will be 
updated.  
The pseudo code for the algorithm is as follows: 
 Step 1: [Initialization] initialize as like as 
SOTA—one node with two cells. 
 Step 2: [Distribution] distribute each input data x 
between newly created cells; we find the best match cell 
which is known as winning cell (using KLD), then update 
the reference vector w of winning cell i and its neighbors 
same as SOTA using the following function: 
 )()( ii wxtw −×=∆ ϕ   (1) 

Where ϕ(t) is the learning function: 
 )()( tt ηαϕ ×=   (2) 

η(t) is learning function; α is a learning constant; and t is 
the discrete time coordinate. The winning cell, the 
ancestor node and the sibling cell have different learning 
rate αw, αm and αs, and αw   > αm > αs. 
 Step 3: [Error] while error of the entire tree is 
greater than a threshold go to Step 2.  
 Step 4: [Expand] for each cell, calculate 
resource, and check whether it exceeds a threshold. If yes, 
change this selected cell as node, and create two new 
children  cells from it.  If there are no more cells for 
expansion, the system is converged; else go to Step 2. 
 Step 5: prune the tree and delete a cell that does 
not have any input on it. 
 
4.2. Concept assignment 
 

After building a hierarchy of nodes we will assign a 
concept for each node in the hierarchy. For this, we 
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propose a bottom up mechanism for assigning concepts.  
Concepts associated with documents will be assigned to 
leaf nodes in the hierarchy. Interior node concepts will 
then be assigned based on the concepts in the descendent 
nodes. For each cluster consisting of a set of documents 
we will assign a topic based on a modified Rocchio 
algorithm for topic tracking. Second, we will associate 
this topic with an appropriate concept (synset) in 
WordNet.   Third, the concept of an internal node is 
obtained from concepts of its children nodes and their 
hypernyms as they in WordNet.   
 
4.1.1. Concept assignment for leaf nodes. Topic 
tracking is used for the assignment of a concept in each 
leaf node. For this, a topic based on a Rocchio algorithm 
will first be assigned for each document. Second, we will 
determine the distinct topics that appear in each leaf node. 
Recall that a leaf node may be associated with a number 
of different documents. Now, if only a single topic 
appears in a leaf node, we will simply assign this topic as 
a concept in the leaf node. However, if more than one 
topic appears in a leaf node, a majority rule will be 
applied. Thus, a majority of documents of a leaf node will 
be associated with a specific topic and this topic will be 
assigned as a concept to this leaf node. On the other hand, 
in cases in which the majority rule cannot be applied, we 
will choose a more generic concept from WordNet using 
all the topics, and this generic concept will be assigned 
(see Section 4.2.2). 
 
4.2.1.1. Topic tracking. Here we will determine a topic 
for each document. For this we assume we have a set of 
predefined topic categories.  The topic categories are 
trained by a set of documents previously assigned to 
existing topics. Each topic is represented by a keyword.  
Here we assume that only one topic is assigned per 
document. This is because a document can be associated 
with at most one node in the hierarchy.  

We will consider the classic Rocchio algorithm for 
topic tracking [2, 3]. The basic idea of Rocchio algorithm 
is to construct a document vector to represent the 
document and a topic vector for each topic. Documents 
with the same topic have the same topic vector. For a 
given topic the topic vector is the topic representative 
vector of the documents assigned to this topic category. 
To determine a topic for a document, the similarity 
between a document and a topic vector is measured using 
the cosine product. We will choose the topic for the 
document which this calculation of similarity gives the 
maximum value.  

The document vector is built by weighting all the 
words in documents with the tf (d, w) * idf(w) value. The 
term frequency tf is the number of times word w occurs in 
a document. The document frequency df(w) is the number 
of documents in which the word w occurs at least once. 

The inverse documents frequency idf(w) is defined as 
follows:  

)
)(

log()(
wdf

N
widf =      (3) 

N is the total number of documents. The word with higher 
tf*idf weighting means it is an important index term for 
the document.  
In the classical Rocchio algorithm the topic vector (t) is 
built by combining the document vectors (d) of the 
training documents.  

∑
⊂

=
Td

dt
ρϖ      (4) 

Where T represents topic and d represents document. 
We propose a new approach to constructing a topic 

vector by using self-organizing map (SOM).  A node in 
the SOM’s output map represents each topic category. To 
construct the topic vector, the node is trained by training 
documents that belong to that topic. The reference vector 
of the node is the centroid vector of these trained 
document vector, constructed by a nonlinear regression. 
This reference vector will then be the topic vector.  

Once topic vectors have been constructed we will use 
the cosine similarity between document vector and topic 
vector (see Equation 5). 
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4.2.1.2. Concept sense disambiguation. It is possible 
that a particular keyword may be associated with more 
than one concept in WordNet. In other words, association 
between keyword and concept is one:many, rather than 
one:one.  For example the keyword “gold” has 4 senses in 
WordNet and the keyword “copper” has five senses in 
WordNet. We need to disambiguate concepts and choose 
the most appropriate. 

For disambiguation of concepts we apply the same 
technique (i.e., cosine similarity measure) used in topic 
tracking.  To construct a vector for each sense we will use 
a short description that appears in WordNet.  
 
4.2.2. Concept selection for non-leaf nodes. To assign a 
concept to an internal node in the tree we need to consider 
similar cases. If two children of a node have the some 
concept we merely assign that concept to the parent node. 
If two children have a different concept but one concept 
belongs to the majority we will assign this majority 
concept to the parent node. And if there is no majority 
concept we will find an appropriate concept for parent 
node using WordNet. We will find all the parent senses of 
two children topic concept. Then we will select the least 
general concept sense and assign it to the parent node. If 
there is no parent sense we will not make any assignment. 
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5. Preliminary result 
 
5.1 Experimental setup 
 

We have explored our ontology construction using text 
documents. The Reuters21578 text document corpus was 
used. There are 135 topics assigned to the Reuters 
documents.  We selected 2003 documents from this 
corpus distributed across 15 topics. Furthermore, each 
document has only one topic. 180 of these documents 
were used for topic tracking training. Note that documents 
are not distributed across topics uniformly. In other 
words, one given topic may have more documents as 
compared to another. Thus, the greater the number of 
documents in a given topic, the greater the number of 
training documents employed. 
For document processing we have extracted keywords 
(terms) from documents by removing stop words. Second, 
using the Porter stemming technique we have determined 
word stems. Third, we have constructed a document 
vector for each document using tf*idf.  
 
5.2 Results 
 

First, we will present the results for the topic tracking 
algorithm. Second, we will present the clustering results of 
HAC and MSOT. Finally, we will report the performance 
of our concept selection mechanism for each node in 
hierarchy.  
 
5.2.1. Topic tracking algorithm comparison. For the 
classical Rocchio algorithm, we first constructed a topic 
vector for each topic. The weight of each term in a topic is 
simply the summation of weights of the term in the 
training documents.  Next, we have sorted terms based on 
weight in descending order. Then we have used first l 
(=100, 200, 400) keywords to reduce dimensionality. 

In the Rocchio algorithm using SOM we have 
constructed an l dimension reference vector for each topic 
using the above technique. However, the weight of the 
term will be assigned randomly. The reference vector of a 
topic will be updated using SOM whenever a document is 
associated with that topic.  

We have observed the same result (91% recall, 90% 
precision for l=400; see [19] for more details) for these 
two algorithms. 
 
5.2.2. Optimizing of MSOT parameter. In our 
experiment we varied αw (i.e., =0.25, 0.2, 0.15) and αs 

(i.e., =0.025, 0.02, and 0.015). Furthermore, αm is set as 
0.5 of αw, η(t) is set as 1/t, and KLD is set to 3 (see 
Section 4.1.1). Thus, we got total 9 combinations, and for 
each combination, we calculated E. E measure is defined: 

rp
rpE

11

2
1),(

+
−=    (6) 

Where p and r are the Precision and Recall of a cluster. 
Note that E (p,r) is simply one minus harmonic mean of 
the precision and recall; E (p,r) ranges from 0 to 1 where 
E (p.r) =0 corresponds to perfect precision and recall, and 
E (p.r) corresponds to zero precision and recall. Thus, the 
smaller the E measure values the better the quality of a 
cluster.  
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Figure 2. E measure of MOST on various parameters. 
In Figure 2 X and Y axis represent αw and average E 
measure of MOST respectively for a fixed αs. When αw 

=0.2 and αs=0.02 we get the lowest E (= 0.073) which is 
the best case on our data set. 
 
5.2.4. Hierarchy construction comparisons. We have 
compared MSOT with group-average link HAC. We have 
used the original topic of the Reuters news items to 
evaluate the result of these cluster algorithms. Since 
αw=0.2 αm=0.1 and αs=0.02 give least error (E), we used  
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Figure 3.  Comparison of MSOT and HAC 

these values. Note that documents are only associated with 
leaf nodes. We have observed that the boundary of a 
cluster is very clear and clean in MSOT. Furthermore, 
MSOT gives a better result than HAC (see Figure 3). In 
all topics MSOT have low E measure than HAC. Finally, 
the average E of MSOT is 0.073 while the average E of 
HAC is only 0.181. 
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5.2.5. Automated ontology construction result. Since 
MSOT gives better cluster accuracy we have used it to 
construct a hierarchy. Figure 4 shows the part of ontology. 
Leaf nodes “gold” and “copper” are associated with a set 
of documents. To assign a concept for their parent node 
we have used WordNet to find the more generic concept, 
“asset.” Various types of inter-relationships between 
nodes are blurred in our ontologies; types of 
interconnections are ignored. This is because our prime 
concerned is to facilitate information selection rather than 
to deduct new knowledge.  

   
Figure 4.  Part of ontology 

 
6. Conclusions and future work  
 

In this paper we have proposed a potentially powerful 
and novel approach for the automatic construction of 
ontologies. The crux of our innovation is the development 
of a hierarchy, and the concept selection from WordNet 
for each node in the hierarchy. For developing a 
hierarchy, we have modified the existing self-organizing 
tree (SOTA) algorithm that constructs a hierarchy from 
top to bottom. We would like to extend this work in the 
following directions. First, we would like to do more 
experiments for clustering techniques. Next, we would 
like to address this ontology construction in the domain of 
software component libraries. 
 
7. References 
 
[1] Ellen M. Voorhees.  “Implementing Agglomerative 
hierarchic clustering algorithms for use in document 
retrieval” Information Processing & Management, Vol 22, 
No.6 pp 465-476 1986. 
[2] J. Racchio. “Relevance Feedback in Information 
Retrieval”, In the SMART Retrieval System: Experiments 
in Automatic Document Processing, Chapter 14, pages 
313-323, Prentice-Hall Inc. 1971 
[3] Thorsten Joachims. “A Probabilistic Analysis of the 
Rocchio Algorithm with TFIDF for Text Categorization”. 
Logic J. of the IGPL, 1998. 
[4] Joaquin Dopazo, Jose Maria Carazo. “Phylogenetic 
Reconstruction Using an Unsupervised Growing Neural 
Network That Adopts the Topology of a Phylogenetic 

Tree.  Joural of Molecular Evolution  Vol 44, 226-233 
1997. 
[5] G. Miller, “WordNet: A Lexical Database for 
English”, in Proc. of Communications of CACM, Nov 
1995. 
[6] M. A. Bunge, “Treatise on Basic Philosophy: 
Ontology: The Furniture of the World”, Reidel, Boston, 
1977. 
 [7] T. R. Gruber, “Toward Principles for the design of 
Ontologies used for Knowledge Sharing”, in Proc. of 
International Workshop on Formal Ontology, March 
1993. 
[8] Y. Labrou and T. Finin, “Yahoo! as Ontology: Using 
Yahoo! Categories to Describe Documents,” in Proc. of 
The Eighth International Conference on Information 
Knowledge Management, pp. 180-187, Nov 1999, Kansas 
City, MO. 
[9] D. B. Lenat, “Cyc: A Large-scale investment in 
Knowledge Infrastructure”, Communications of the ACM, 
pp. 33-38, Volume 38, no. 11, Nov 1995. 
[10] B. Swartout, R. Patil, K. Knight, and T. Ross, 
“Toward Distributed Use of Large-Scale Ontologies,” in 
Proc. of The Tenth Workshop on Knowledge Acquisition 
for Knowledge-Based Systems, Banff, Canada, 1996. 
[11] N. Guarino, C. Masolo, and G. Vetere, “OntoSeek: 
Content-based Access to the Web,” IEEE Intelligent 
Systems, Volume 14, no. 3, pp. 70-80, 1999. 
[12] Latifur Khan “Ontology-based Information Selection, 
“ Ph.D. Thesis, University of South California, 2000. 
[13] A. F. Smeaton and V. Rijsbergen, “The Retrieval 
Effects of Query Expansion on a Feedback Document 
Retrieval System”. The Computer Journal, vol. 26, No.3, 
pp239-246, 1993. 
[14] R. Bodner and F. Song, “Knowledge-based 
Approaches to Query Expansion in Information 
Retrieval,” in Proc. of Advances in Artificial Intelligence, 
pp. 146-158, New York, Springer. 
[15] H. J. Peat and P. Willett, “The Limitations of Term 
Co-occurrence Data for Query Expansion in Document 
Retrieval Systems,” Journal of ASIS, vol. 42, no.5, 
pp.378-383, 1991. 
[16] L. Khan and D. McLeod, “Audio Structuring and 
Personalized Retrieval Using Ontology,” in Proc. of IEEE 
Advances in Digital Libraries, Library of Congress, pp. 
116-126, Bethesda, MD, May 2000. 
[17]Dave Elliman, J. Rafael G. Pulido. “Automatic 
Derivation of On-line Document Ontology”. International 
Workshop on Mechanisms for Enterprise Integration: 
From Objects to Ontology, Budapest, Hungary, Jun 2001. 
[18] A. Hotho, A. Mädche, A., S. Staab, “Ontology-based 
Text Clustering,” Workshop Text Learning: Beyond 
Supervision, 2001.  
[19] Feng Luo and L. Khan, “Ontology construction for 
information selection”, Technical Report, Computer 
Science Department, University of Texas at Dallas. 2002 

Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’02) 
1082-3409/02 $17.00 © 2002 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


