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Sensitivity and Bias - an introduction to Signal Detection Theory 
 

Aim   To give a brief introduction to the central concepts of Signal Detection Theory and its 
application in areas of Psychophysics and Psychology that involve detection, identification, 
recognition and classification tasks. The common theme is that we are analyzing decision-making 
under conditions of uncertainty and bias, and we aim to determine how much information the decision 
maker is getting. 
 
Objectives   After this session & further reading you should: 
•  be acquainted with the generality and power of SDT as a framework for analyzing human 
performance 
• grasp the distinction between sensitivity and bias, and be more aware of the danger of confusing 
them 
• be able to distinguish between single-interval and forced-choice methods in human performance 
tasks 
•  be able to calculate sensitivity d’ and criterion C from raw data 
 
Key references     
N A Macmillan & C D Creelman (1991) "Detection Theory: A User's guide"  Cambridge University 

Press (out of print, alas) 
Green DM, Swets JA (1974) Signal Detection Theory & Psychophysics (2nd ed.) NY: Krieger 
Illustrative papers 
Azzopardi P, Cowey A (1998) Blindsight and visual awarenss. Consciousness & Cognition 7, 292-

311. 
McFall RM, Treat TA (1999) Quantifying the information value of clinical assessments with signal 

detection theory. Ann. Rev. Psychol. 50, 215-241. [ free from http://www.AnnualReviews.org ] 
 

Single-interval and forced-choice procedures Fig.1

Single-interval, 'yes-no' trials

N

time
or

S

Task: Did the trial contain the 
signal, S (Yes) or the noise N 
(No)? 
 
Performance measures: 
Percent Correct, P(c) 
or  
Discriminability index, d'

d' = [z(H) - z(F)] 
 
P(c) = 0.5 +(H-F)/2

S
Trial type

N

Resp
"Yes"

"No"

Hit rate, 
H

False 
alarms, F

Misses 
1-H

Correct 
rejections, 

1-F

A

 



Signal Detection Theory 2 PG Research Methods 

2 alternative forced-choice trials
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1. Introduction 
Example 1  Suppose I'm interested in knowing whether people can detect motion to the right better 
than to the left. I set up an experiment where faint dots move left or right at random on different trials. 
Each observer does lots of trials responding 'right' or 'left' on each trial, and I tally the results. I find 
that people are 95% correct on rightward trials (they say 'right' on 95% of trials when motion was 
rightward) but only 60% correct on leftward trials. The difference is significant by some suitable test. 
Am I justified in concluding that people really are better at rightward motion? If not, why not? 
 
Example 2  Suppose I have invented a fancy computerized method of recognizing tumours in X-ray 
plates. I want to know whether the method is better than doctors can do by intuition and experience. I 
create a series of test plates, 100 with tumours, 100 without, and then test the doctors and my machine. 
The doctors get 80% correct for plates with tumours, and 80% correct without. The machine gets 98% 
correct with tumours, and 62% correct without. Thus average performance is 80% correct for doctors 
and for my gizmo. Does this mean both methods equally good ? Or is the machine better because it 
hardly misses any tumours?  Or is it worse because it gives more false positives (38% to the doctors' 
20%), which may be alarming to patients and cause unnecessary surgery ?  
 
Table 1 
Doctors' performance    Automated recognition 

 Signal Signal 
 Present Absent Present Absent 

"Yes" 80 20 "Yes" 98 38 
"No" 20 80 "No" 2 62 

 p(Hit) p(FA) p(Hit) p(FA) 
 0.800 0.200 0.980 0.380 
    
 z(Hit) z(FA) z(Hit) z(FA) 
 0.842 -0.842 2.054 -0.305 
    

Sensitivity, d' =  1.683  Sensitivity, d' =  2.359  
Criterion, C =  0.000  Criterion, C =  -0.874  
P(correct)= 0.800  P(correct)= 0.800  
 
We may have views on the relative importance of 'hits' (correct 'yes' responses), 'misses' (saying 'no' 
when it should be 'yes') and 'false alarms' (incorrect 'yes' responses), and this may vary with the 
context of our problem. But can we characterize the information value of the two methods 
independently of these value judgements ? Signal Detection Theory (SDT) offers a framework and 
method for doing this, and in general for distinguishing between the sensitivity or discriminability (d') 
of the observer and their response bias or decision criterion (C) in the task.  
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Fig. 2

Rudiments of signal detection theory (SDT)
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2. Rudiments of Signal Detection Theory 
Examples 1 and 2 above illustrate the ‘single-interval task’ (Fig.1). Only one stimulus ‘event’ is 
presented per trial (signal, S, or non-signal, N) and the task is to classify the event as S or N. Hence the 
data fall into a 2x2 contingency table (Fig. 1). SDT envisages that stimulus events generate internal 
responses (X) that vary from occasion to occasion. The responses to S and N have different mean 
values (Fig. 2) and standard SDT supposes that both are normally distributed with the same variance 
(“the equal variance assumption”). This may not be so, but it’s a nice simple model to start with. The 
variance will depend on both external and internal noise factors.  
 The variable X is the decision variable that forms the basis for the observer’s decision on each 
trial. The observer has a statistical decision to make: given a response value X, was it more likely to 
have arisen from the N or S distribution?  The reliability of performance on this task will depend on 
how separate the 2 distributions are. Much overlap => poor discrimination; little overlap => good 
discrimination. The discriminability (or ‘sensitivity’) can be quantified by d’ - defined as the 
separation between the two means expressed in units of their common standard deviation (z-units).  
 
3. Estimating d’ 
 SDT may so far sound rather abstract - but the power of SDT arises when we see how 
sensitivity d' can be estimated from experimental data on Hit rate and False alarm rate (Fig. 1). First 
we need to grasp how these response rates (probabilities) are converted into a z-score (Fig.3) and then 
see how the z-scores are used to give us d’ (Fig.4). 
 
 
Fig.3
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Fig. 3.  Note in (B) that z(P) is a simple, but nonlinear transformation of the probability P. Note also from the 
symmetry of the functions that z(1-P) = -z(P). 

 
Note from fig. 4A that : d' = z(CR) + z(H).  Also: CR + F =1, hence CR = 1-F, and so z(CR) = z(1-F). 
From fig. 3 we have z(1-F) = -z(F), therefore z(CR) = -z(F).   Hence: d' = z(H) - z(F) 
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Thus d' is the difference between the z-transformed probabilities of hits and false alarms. It is also the 
sum of z-transformed probabilities of hits and correct rejections. It is NOT the hit rate, nor z(Hits), nor 
z(P(c)). All these vary with criterion; d' doesn't. This is so central I’ll repeat it: d' = z(H) - z(F). 
 If z(H) increases while z(F) goes down, this means sensitivity (d') is increasing, e.g because 
stimulus intensity has been increased (or subject has learned to do better on the task).  
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P

Fig.5
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4. The decision criterion C 
If z(F) and z(H) shift up or down together equally, then their separation (d') clearly stays constant; the 
common change in z(F) and z(H) reflects a criterion shift, given by the position of the midpoint 
between z(F) and z(H) (Fig. 5). Thus:     C = - [z(H) + z(F)]/2 
 
An increase in z(H) and z(F) reflects a lower, more relaxed criterion for saying 'Yes'; the midpoint 
shifts to the right; C <0. If the observer uses a stricter criterion the midpoint shifts to the left; C>0. 
When C=0 the criterion is midway between the S and N distributions of Fig. 2. Here the observer is 
said to be ‘unbiassed’. Table 1 shows calculations for example 2. The (imaginary) doctors are 
unbiassed, but my gizmo is biassed in favour of ‘yes’ responses. Note that P(correct) = 0.8 in both 
cases, but d’ is higher for the machine. How come? SDT implies that if we use P(c) as our measure of 
sensitivity we will always under-estimate the true sensitivity (d’) when bias is present. This can be 
quite gross if bias is large (Fig. 6). 
 
5. Discussion - some general points about single-interval data & interpretation 
(i) Hit rate (proportion of correct Yes responses) is a poor guide to psychophysical sensitivity, because 
it confounds sensitivity (d') and criterion (C). Azzopardi & Cowey (1998) give an interesting, critical 
discussion of this in relation to the clinical observation of 'blindsight' after damage to visual cortex, 
and the problem of assessing 'awareness'. Asking "were you aware of it?" is a biassed yes-no task. 
(ii) Estimating sensitivity in a single-interval experiment requires the combination of two performance 
measures -  Hits (H; correct yes responses) and False Alarms (F; incorrect yes responses), or 
equivalently Hits and Correct rejections (Fig. 4A).   
 
(iii) "Percent Correct" (average of H and CR) is not a bad index of sensitivity if bias (C) is not too 
extreme. In symbols: 2.z[P(c)] = 2.z[(H+CR)/2] = d' (approximately, or exactly if C=0.) 
 
(iv) If the criterion is centrally placed (C=0; no bias) then even the hit rate is OK, because z(H) = -z(F) 
in this case; hence d' = 2.z(H). But how do we know C=0 if we don't analyze it properly? 
 
(v) Quite often, single-interval experiments are mistakenly thought to be 2AFC. E.g. in my example 1 
on each trial a stimulus either moves left or right, and the observer has to report the direction in a 
'forced-choice' between left or right. This is not a 2AFC design, because only a single stimulus interval 
is presented per trial. It is a yes-no experiment in disguise (eg Right = Yes, Left = No). The good news 
is that if there is little or no directional bias in the responses, as may be the case in a simple detection 
experiment, then P(c) and d' measure the same thing (see iii).   
 
But some experiments may induce large biases, eg by presenting a visibly moving priming stimulus 
before the test interval.  This was done by Raymond & Isaak (1998, Vision Res. 38, 579-589, 
"Successive episodes produce direction contrast effects in motion perception"). They found that a 
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same-direction prime greatly increased the 'threshold' for  detecting motion coherence in dynamic 
random-dot displays, while an opposite-direction prime greatly decreased it. But unfortunately their 
measure of  threshold performance was "71% correct", ie. hit rate H of 0.71 in  a single interval task, 
not P(c) = 0.71. The most likely account of the symmetrical increases and decreases of "threshold" 
produced by the primes is in terms of criterion shift, not sensitivity change. As H and F go up, so 
'correct rejections' (CR = 1-F) go down; the two kinds of correct-response rates move in opposite 
directions as the criterion changes. Thus if separate thresholds are (inappropriately) derived from H 
and from CR then they will go up and down symmetrically, as found by Raymond & Isaak.  
 
The solution to problems of this kind is to use a genuine 2-interval forced-choice design, and measure 
P(c) or d', as in Fig. 1B 
 
(vi) Sensory psychophysics has tended to concentrate on d' as the real measure of interest, while 
treating criterion effects a psychological nuisance. However, SDT makes no prescription that C is 
psychological rather than sensory. Michel Treisman has done much in recent years to restore interest 
in C by developing a 'criterion-setting theory' recently applied to spatial frequency discrimination by 
Lages and Treisman (1998, Vision Res. 38, 557-572; see refs therein). 

 
Fig. 6 (from Azzopardi & Cowey, 1998) 


