

Abstract— Multi-vehicle applications rely on the
dynamic allocation o f resources such as vehicles,
CPUs, bandwidth and storage, and must exhibit
robu stness to failures or to service degradation in
general.
We present a model for such applications, called the
service network model (SNM). The entities of this model
are services and service providers. Services are defined
by standard names and interfaces, and are described by
attributes. Service providers export services with
certain qu ality of service guarantees. They may also
need to import services from other providers.
An application is modeled as a directed graph, where
nod es represent service providers and edges represent
services imported by the source nod e and exported by
the destination no de. The problem is then to bu ild such
application g raphs dynamicall y, starting from logical
descriptions, and reconfigure them appropriately in
case of departures and arrivals of service providers.
We provide a middleware and an algorithm that solves
the above problem. Functions of the middleware include
pub lishing, finding and u sing service providers, as well
as completing an incomplete application graph with the
missing services.
We illustrate our approach with a case study involving a
multi-vehicle search mission.
Index Terms—service network model, service network
protocol suite, multi-vehicle search miss ion, distributed
applications, control

I. INTRODUCTION

The growing ubiquity of communication

networks is driving the development of systems of
unprecedented size and heterogeneity. We have in
mind systems such as unmanned air vehicle networks
(see [1]), net markets (see [2]), metropolitan
transportation management systems (see [3] and [4]),
and so on.

These systems consist of many resources
interacting to concurrently execute many tasks. More
interestingly, the set of resources and tasks are
dynamic. For example, in an unmanned air vehicle
network, vehicles leave and join the network, routers
go up and down, missions start and terminate. In a net
market, buyers and sellers join and leave the network,
and business transactions are constantly starting and
completing.

In classical control system design the
departure of a sensor or actuator would be treated as
a failure. It is dealt with by designing another

configuration to be adopted by the system in response
to failure detection. Events such as the sudden joining
of another actuator are inexpressible in traditional
control design formalisms. In the systems of interest
to us, such gross changes in the collection of sensors,
actuators, or controllers are part of normal business.
To treat each sensor departure as a failure to be
accounted for by a new design is too complex. We
shall also argue it is unnecessary.

We write this paper in pursuit of a new
organizational principle for these heterogeneous,
large-scale, multi-tasking systems. The principle
described here is called a service network
organization. Our objective is to find an organizational
paradigm that will scale to systems with thousands of
resources teaming for hundreds of tasks executing in
concert over a geographically extensive theatre of
operations. We also desire that the organization be
robust or survivable in the sense of gracefully
enhancing or degrading task execution in response to
the arrival or departure of resources.

For inspiration we have turned to the
organizational principles of the data transport Internet
and the World Wide Web. Service networking seeks
to organize large-scale systems in the way a routing
protocol organizes routers. A network of routers is
designed to execute packet delivery tasks. Each
packet delivery task is specified by a source and
destination address. The set of routers executing a
packet delivery task emerges dynamically from an
adaptive, distributed algorithm. Consequently, while
routers fail, as long as there are sufficiently many
routers and links, the packet delivery function
survives. Likewise, as new routers appear, the
allocation mechanism harnesses them to the packet
delivery function without centralization or synchrony.

A service network is a network of service
providers that offer services to each other and to
clients of the network. Service providers might be
compiled programs, servers, vehicles, databases,
hosts, etc. A service network client requests services.
The service network finds providers. Generally, the
providers need other services themselves to function.
Therefore they become service network clients in turn.
The set of providers changes. The service network
has resources and protocols to keep track of the set of
current service providers and match them to the
dynamically arising service requests.

A service network architecture for a multi-
vehicle search mission

Marco Zennaro, Jeff Ko, Raja Sengupta and Stavros Tripakis

CDC01-INV3104

The service network organization extends
middleware like JINI [15] or CORBA [14] to achieve its
objectives.

The paper is organized as follows. In Section
II we present the Service Network Model formally and
discuss the intuition behind it. We also state a
problem of automatically building service network
applications. In Section III we describe the middleware
and algorithms we provide for solving the service
network problem. In Section IV we illustrate our
approach through a multi-vehicle search-mission case
study. Section V concludes the paper.

II. SERVICE NETWORK MODEL

The Service Network Model (SNM) consists of

two basic entities: services and service providers. A
(service) provider exports a set of services, that is, it
implements each service and makes it available to
other providers. In general, for each service that it
exports, a provider p needs to use a set of other
services, exported by other providers. We say that p
imports these services. A service network consists of
a set of providers using the services of each other.

More formally, let S denote the set of
services, and P the set of providers. A function export:
P -> 2S maps each provider to the set of services that
it exports. A function import maps a provider p and a
service s in export(p) to a multiset of pairs of the form
(S’, P’) where S’ is a subset of S and P’ is a subset of
P, with the meaning that p needs some service in S’
and this service should be exported by some provider
in P’. This allows us to express constraints on the
quality of service requirements that a provider
importing a service imposes on the provider exporting
it. The fact that import(p,s) is a multiset allows us also
to express the fact that p may need two or more
providers of the same service in order to operate, for
example, a mission may require at least three
vehicles.

A service network can be represented as a
directed rooted graph G=(V, r, E), where V is a subset
of P, r is the root node, and E is a subset of VxSxV.
An edge (p,s,q) in E will represent the fact that p
exports s, q imports s, and q uses the service s of p.

We say that G is consistent if ∀ (p,s,q) ∈ G . s
∈ export(p) ∧ (∃ (S’,P’) ∈ import(q,s) . s ∈ S’ ∧ p ∈
P’). That is, if q uses service s of p, then indeed q
must import s and p must export s.

We say that G is complete if ∀q ∈ V . ∀ (S’,P’)
∈ import(q) . ∃ s ∈ S’ ∧ p ∈ P . (p,s,q) ∈ E. That is, all
providers importing some service are indeed using
some other provider that is exporting this service.

We say that G is connected if for every node p
in V there is a path from r to p.

Given two graphs G=(V, r, E) and G’=(V’, r’,
E’), we write G ⊆ G’ when V ⊆ V’ ∧ E ⊆E’.

The problem we are interested in can be
stated as follows.

Service network problem (SNP) definition: Given
an initial graph G0, find a graph G such that:

1. G0 ⊆ G.
2. G is consistent, complete and connected.
3. There exists no G’ which is consistent,

complete and connected, and such that
G0 ⊆ G’ ⊂ G. In other words, G is a
minimal solution.

In the following section, we provide an

algorithm that solves the service network problem.
The above formulation abstracts away from

details such as how exactly an interface is specified,
what exactly is a service provider, and how does a
provider uses a service exported by another provider.
The answers to the above questions depend on the
underlying implementation platform(s). Here, we give
a few concrete examples of possible realizations. The
following sections provide the details on our current
choice of implementation, as well as a concrete
example of using the above setting.

Services can represent anything from a Java
interface, to a yellow-pages entry. Services may have
attributes (included in templates in JINI) which can be
assigned values upon requesting the service. For
example, a search service might have attributes
precision and speed, with values high or low and fast
or slow, respectively. We can represent all these in
our setting, by creating a separate service s in S, for
each service with different attribute values (we could
also incorporate directly attributes in our setting, and
indeed need to do it in case the attribute values are
infinite, but chose not to do it here for the sake of
simplicity).

One important thing to note about services is
that they have to be standardized, at least within the
scope of a service network. Indeed, since there is no
formal semantics associated with a service, only its
name and attributes carry its meaning, in an
conventional way. Therefore, search might mean
different things in different contexts, and will probably
have to be refined into something much more precise,
for instance, MissingPersonAerialSearch. The same is
true for the interfaces, where only the name of
functions and arguments carries the meaning.

Similar needs have emerged in other contexts
as well. For instance, in the RosettaNet project (see
[5]) where every “Partner Interface Process” (i.e. every
interaction between two entities) is standardized. In
RosettaNet a XTM DTD fixes the interface and the
syntax (see [6]) of every method, and the semantic is
precisely described by an automaton and by a
description.

We chose to abstract from the above issues
of standardization, which we believe will be resolved
by the industrial and technological needs. In our
setting, it is assumed that when a provider exports s

and another provider imports s, they “know” they are
talking about the same service.

Service providers are implementations of
services. They can represent physical resources such
as a workstation, an intelligent vehicle, and so on, or
logical resources, such as a compression filter or
complex search algorithm, or combinations of both,
such as a reliable transmission protocol running on a
physical network.

Service providers may also have attributes,
for instance, cost, taking values in USD per hour1.

Again, for the sake of simplicity, we choose to
represent attributes implicitly, by creating different
“copies” of a provider, which can provide, say, the
same service with different attributes at different
costs. Such situations can be readily incorporated in
our model without changing the results. The fact that
the importer of a service may place restrictions on the
exporters that it wants to use for that service, can be
modeled in the function import. In the example above,
if the importer wants to use only the inexpensive
versions of the exporter of s, it will define the pair
(S’,P’) such that P’ contains only the inexpensive
“copies” of the exporters.

Although it may appear that the set of
providers in the above setting is static, this need not
be the case in practice. Indeed, it is possible to treat
dynamic changes (e.g., failures) in the following way.
Whenever some provider departs, this results in the
graph G becoming incomplete. We can therefore
invoke the algorithm again, starting from G’ (G without
the failed node). If we manage to complete G’, then
the failed provider has been replaced by some new
one. If not, we might need to “roll back” and start from
scratch (i.e., from G0).

We are currently working on improvements on
the above technique, where the “roll back” is limited to
an autonomous subset of the graph.

III. SERVICE NETWORK SUITE

In this section, we describe the Service

Network Suite (SNS), which is a set of primitives we
have built in order to facilitate the design and
development of service network applications. These
primitives allow service providers to “publish”
themselves, as well as to search for and use other
providers. The most elaborate primitive implements
the algorithm to solve the service network problem
formulated in the previous section. The suite uses the
JavaSpaces [11,12] and Java technologies, and the
algorithm to solve the SNP is currently written in
Prolog. The structure of the suite is shown in figure 1.

We use the term client to refer to an entity
(e.g., program) that is external to the service network,
or to a service provider that uses the suite in order to

1 It is important to standardize the particular meaning and
semantic of the attributes in order to avoid what is happened
with the last Polar Mars Lander (see [9]).)

find and use the services of other providers. The
clients communicate with the suite via a Java API.
Prolog engines process the requests. A number of
JavaSpaces are used as knowledge bases that store
the necessary information on the services in the
network.

Service providers use the primitive publish to
register with the suite, informing it of the services they
implement and their attributes, if any. As a side tool,
we have also developed a compiler, which
automatically converts a Java class into a
“publishable” service provider.

Fig. 1: service network suite architecture

There are five primitives offered to clients:

locate, notify, connect, create, solve and repair.
Locate takes as input the specification of a

service (with constraints on its attributes, if any) and
returns all published providers that export this service
with these attributes.

Notify takes the same input as locate, and
results in notifications being sent to the caller
whenever a service provider offering the specified
service is published.

Connect allows the importer of a service to be
connected to the exporter of this service. After being
connected, the importer can start using the service.

For load-balancing purposes, our
implementation distinguishes between two types of
service providers: running and dormant. Running
providers are implemented as servers that run
constantly, waiting for clients to use their service.
Dormant providers are mere implementations of a
service (e.g., Java classes implementing an interface),
but they need an execution platform in order to run.2 A
client can recognize whether a provider is dormant or
not, and in case it is, the client uses create to spawn a
temporary active version of the provider. The suite is
responsible for finding free computation resources
where the newly spawned provider is to be run, and
also for freeing the resources when the provider is not
used anymore.

Solve takes as input an initial graph G0 and
solves the SNP described in the previous section.

2 In our case, this execution platform is in fact implemented
as a provider itself, offering the run service.

Solving the SNP means that a graph G is found, the
providers in this graph are connected, and dormant
providers (if any) are created.

Repair relies on solve to complete a graph
whenever a provider departs, as discussed in Section
II.

We provide a language, the Service Network
Language (SNL) to specify requests (i.e. a graph like
G0). A request in SNL is defined by the BNF grammar
in figure 2.

user_request

�
 ‘ (‘ command_list ,

 topological_constraint_list ‘)’

command_list

�
 command, command_list

command_list
�

 nil

command

�
 ‘ import’ ‘ (‘ importer_provider,

service, exporter_provider, service_constraint_list,
exporter_constraint_list ‘)’

importer_provider

�
 provider

exporter_provider
�

 provider

provider

�
 provider unique identifier

provider
�

 __
service

�
 service unique indentifier

service
�

 __

service_constraint_list

�
 service_constraint,

service_constraint_list
service_constraint_list

�
 nil

provider_constraint_list

�
 provider_constraint,

provider_constraint_list
provider_constraint_list

�
 nil

service_constraint

�
 comparator ‘ (‘ service,

 attribute, value ‘)’
provider_constraint

�
 comparator ‘(‘ provider,

 attribute, value ‘)’

attribute
�

 string
comparator

�
 ‘equal’ | ‘ lesser’ | ‘greater’

value
�

 integer | string | ……

topological_constraint_list

�

topological_constraint,
topological_constraint_list

topological_constraint_list
�

 nil

topological_constraint

�
 ‘uses’ ‘ (‘

importer_provider, exported_service,
exporter_provider, service_constraints_list,
provider_constraints_list ‘)’

Fig. 2: a BNF for the user and services request in SNL

In the service network problem a request is a

graph G0 as stated in the previous section. G0 = (V, r,
E) can be mapped into a SNL request (commands,
topological_constraints):

(P,S) ∈ import(r,*) ⇔

 import(Importer, Serviceid, Exporter,

Service_constraints, Exporter_constraints)∈
 commands ∧
 P = subset(� , serviceid, service_constraints) ∧
S = subset(� , exporter, exporter_contraints)

(P,S) ∈ import(t,*), t ∈ V, t ≠ r ⇔
 uses(Importer, Serviceid, Exporter,
 Service_constraints, Exporter_constraints) ∈

topological_constraints ∧
S = subset(� ,serviceid, service_constraints) ∧
P = subset(� ,exporter, exporter_constraints)

∀ providers_set ∈ V . ¬∃ (importer, service, exporter) ∈ E
. exporter ∈ providers_set ⇒
 uses(__, __, __, __, provider_constraints) ∧
 provider_set = subset(� ,exporter, exporter_constraints)

where � is the set that contains all the services, � is
the set of all the providers and the subset operator
extracts a subset of � (resp. �), given the service
(resp. provider) unique identifier and a set of
constraints on its attributes. In the SNL language
subsets are not enumerated but described using
identifiers and attributes.
Example: In the multi-vehicle search scenario (see
Section IV), the initial graph consists of a single
provider MC (mission control), exporting the service
mission, and importing a search service, without any
attribute constraints:

G0 = {(MC)}
Import(MC, mission) = (�	��

����� � �)

where �	���
����� is the set of search services. Figure 3
illustrates this graphically.

 In SNL, this request will be described as
shown in figure 4.

Apart from the “user request”, that is, the

initial graph plus topological constraints, each provider
can have its own requirements, for each service that it
exports. These requirements are called service

No topological
constraints

No constraints
on the service
provider

No constraints
on the service

((import(mc, search, __, {}, {})), {})

Fig. 4: the request expressed in SNL

MC

?

search

Fig. 3: the request in the SN model

requests, are expressed in SNL, and are deposited by
the provider when it publishes the service.

The algorithm that implements solve is written
in PROLOG. A simplified version of this algorithm is
given in figure 5. This is not the most efficient way to
implement solve, however, we omit the more
elaborate version for the sake of readability.

Solve(Request, Solution) |-
 complete(Request, [], Solution).

Complete((Import_list, Constraint_list),
 Partial_Solution, Solution) |-
 process_import_list(Import_list, {}, Partial_solution,
 Solution),
 process_constraints(Constraint_list, Solution).

process_import_list([], __, X,X,).
process_import_list([import(Importer, Service, Exporter,
 Service_constraints, Exporter_constraints) | []], Exporters_list,
 Partial_Solution, Solution) |-
 process_import(Importer,Service, Exporter,
 Service_constraints, Provider_constraints,
 Partial_solution, Solution),
 not member(Exporter, Exporter_list).

process_import_list([import(Importer, Service, Exporter,
 Service_constraints, Exporter_constraints) | T], L,
 Partial_Solution, Solution) |-
 T isnot [],
 process_import(Importer,Service, Exporter,
 Service_constraints, Provider_constraints,
 Partial_solution, Improved_partial_solution),
 not member(Exporter_Exporter_list),
 append((Exporter,Service), Exporter_list, New_list)
 process_import_list(T, New_list,
 Improved_partial_solution, Solution)

process_import(Importer,Service,Exporter,Service_constraints,
 Exporter_constraint, Partial_solution, Solution) |-
 member((__,Service,Exporter)),
 check_service(Service, Service_constraints),
 check_provider(Exporter,Exporter_constraints),
 append(Importer,Service, Exporter), Partial_solution,
 Solution).
process_import(Importer,Service,Exporter,Service_constraints,
 Exporter_constraint, Partial_solution, Solution) |-
 locate(Service,Provider_list,Service_constraints,
 Exporter_constraints),
 member(Exporter, Provider_list),
 append((Importer,Service,Exporter),Partial_solution,
 Improved_partial_solution),
 unfold(Service,Exporter,Improved_partial_solution,
 Solution).

unfold(Service,Exporter,Partial_solution,Solution) |-
 get_service_request(Service,Exporter,Request),
 complete(Request,Partial_solution,Solution)

process_constraints([], __).
process_constraints([uses(Importer,Service, Exporter,
 Service_constraints, Provider_constraints) | T], Solution) |-
 member((Importer,Service,Exporter), Solution),
 check_service(Service, Service_constraints),
 check_provider(Provider,Provider_constraints),
 process_constraints(T)

Fig.5: a simplified algorithm for the service network problem

Solve gets a request and unifies Solution with
a consistent, complete, minimal and connected graph

that satisfies the user request. The PROLOG program
uses the JavaSpaces, in order to locate service
providers and get their service requests. The two
corresponding PROLOG clauses are locate and
get_service_request. The first unifies the Provider_list
with the list of providers that offer the specified
services and satisfy the constraints.

 get_service_request is used to retrieve from
the knowledge base the service request deposited
when a service is published.

The program given in Figure 5 also handles
multiple requests of the same service, making sure
the providers satisfying these requests are different.

Example: We end this section by a simple example
that illustrates the execution of our algorithm.
Suppose that the knowledge base contains the
entities in figure 6 (the attributes are not in the table in
order to simplify the problem):

Provider Service Service Request

p1 search {{import(p1,sweep,__,{},{}}, {}}
h1 sweep {{},{}}
h2 sweep ({},{})

Figure 6: a simple knowledge base

Let us suppose that the client calls solve on

the request of figure 4:

solve(((import(mc, search, __, {}, {})), {}), Solution)

 The PROLOG interpreter will try to satisfy this
predicate using the only solve rule. It will unify the
variable Request with the user request and will try to
satisfy:

complete(Request,[], Solution))

 At this point the complete rule is used. The
empty set is unified with the partial solution and it will
try to satisfy the two sub-goals:

process_imports(Import_list, {}, Partial_solution,
Solution),
process_constraints(Constraint_list, Solution).

 Since the request does not contain any
topological constraints, the second clause is satisfied
because of the fact process_constraints([], __). As for
the first clause, since Exporter_list is empty the not
member subgoal is trivially true. The interpreter will
use the second process_import_list rule to satisfy the
subgoal since the first one does not apply.

process_import(mc,search,Exporter,{}, {}, {}, Solution)

At this point the interpreter will try the first
process_import rule: it will check if there are some
providers in the partial solution built so far (i.e. the

empty set) that offer the requested service. This rule
is necessary to ensure minimality. Since this rule fails,
the second rule is tried:

locate(search,Provider_list,{},{}),
member(Exporter, Provider_list),
append((mc,search,Exporter),{},
 Improved_partial_solution),
unfold(search,Exporter,{}, Improved_partial_solution).

The locate expression is always true and links
the PROLOG interpreter with the knowledge base.
The provider list is unified with the list of providers that
offer the search service in the network (in this
example {p1}). The second expression unifies
Exporter with p1. Then a new partial solution is built.
We add the edge (mc, search, p1) to our solution. The
unfold rule is called to ensure completeness. The only
unfold rule is then used to satisfy it:

get_service_request(Service,Exporter,Request),
complete(Request,Partial_solution,Solution)

The first expression links PROLOG with the
knowledge base. It returns the service requests that
were deposited at the moment of the publication. The
clause complete is called to complete the sub-graph
rooted in the provider of the search service. We have
reduced the problem by one level.

Similarly complete will be satisfied using the
process_import_list second rule, that will in turn be
satisfied using the process_import third rule, since
there are no services in the network that offer the
sweep service.

locate(sweep,Provider_list2,{},{}),
member(Exporter2, Provider_list2),
append((p1,sweep,Exporter2),{},
 Improved_partial_solution),
unfold(sweep,Exporter2,{},Improved_partial_solution).

Now, locate will unify Provider_list2 with
{h1,h2}. Member will unify Exporter2 with h1. If the
interpreter rolls back (i.e. if there is something wrong
with h1) it will unify Exporter2 with h2. The partial
solution is improved. A new edge is added:
(p1,sweep, h1). The unfold sub-goal ensures
completeness. It is satisfied by expanding these two
sub-goals:

get_service_request(sweep,h1,Request),
complete(Request,Partial_solution,Solution)

The sweep service does not rely on any
service and so its request is a couple of empty lists.
The complete is satisfied by these two sub-goals:

process_imports({}, Partial_solution, Solution),
process_constraints({},, Solution)

 The second is trivially true. The first is true
and is the tail of the recursion. Partial_solution is
unified with Solution by the factprocess_import_list({},
X,X).
 The final solution is shown in figure 7.

Fig.7: the solution of the first example generated by our
algorithm

IV. CASE STUDY: A MULTI-VEHICLE SEARCH

The scenario is as follows: an enemy robot

has invaded the territory and mission control (MC)
wants to locate it. For that, MC relies on a search
service. MC provides the coordinates of the area to
search and a description of the enemy robot.

The search service divides the territory into
sectors. It coordinates multiple vehicles based upon
what they currently see and what they found in the
past. We currently use a random search algorithm (a
more intelligent algorithm is given in [10]). The search
providers rely on sweep services and on a reliable
data storage to share information (a probability map
for the intelligent search).

Fig. 8: the multi-vehicle search scenario

The helicopters offer the sweep service. They

receive the coordinates of the area to sweep and
report their findings to the reliable storage provider.

It is straightforward to adapt this mission to
other types of vehicles: the only requirement is that
the new vehicles also export a sweep service. The
remaining components of the network do not need
any modification.

MC

p1

h1

search

sweep

The reliable storage stores all information collected by
the sweepers and computed by the search service. If
the search service crashes the mission does not need
to be restarted since all information is reliably stored.
Currently, we use a single JavaSpace as a reliable
storage provider.

The Transaction Manager service is used by
the JavaSpace and by the sweepers to maintain data
consistency.

The service network looks has the structure
shown in Figure 9. The nodes with a “?” correspond to
the unknown service providers that the solve primitive
is supposed to fill in. This is done by giving the user
request and the service requests of each provider.

We first give the service requests in SNL.

The provider of the search service, call it sp, publishes
the following:

Service Name: search
Service Request: ({import(sp, sweep, __,{},{}),
 import(sp, sweep, __,{},{}),
 import(sp, sweep, __,{},{}),
 import(sp, reliable_storage, __,{},{}},
 {})

Each provider of sweep service publishes:

Service Name: sweep
Service Request:({import(self,reliable_storage, __),
 import(self,transaction_manager,__)},
 {})
where self denotes the specific provider.

A reliable storage provider publishes:

Service Name: reliable_storage
Service request: ({
 import(self,transaction_manager,__,{},{})},
 {})

A transaction manager service provider publishes:

Service Name: transaction manager
Service Request: ({},{})

The mission-control request that triggers the
construction of the service network will be:

({import(mission_control,search,__,__,{},{}},{})

 With this request, MC is not interested in how
the search service is provided. If it wants to specify an
exact set of helicopters, for instance {h1, h2, h3}, that
must be used to conduct the search, then the request
will be:

({import(mission_control,search,__,__,{},{}},
{uses(__,__,h1,{},{}), uses(__,__,h2,{},{}),
uses(__,__,h3,{},{})})

Fig. 9: the NS model we developed for the multi-vehicle
search

V. CONCLUSIONS AND FUTURE WORK

We have presented a model called Service

Networks which we believe is appropriate for dynamic
heterogeneous distributed applications, in particular,
those involving multi-vehicle operation scenarios. We
have developed a middleware based on Java and
JavaSpaces technology, and an algorithm, for
automatically building and reconfiguring service
networks. We have illustrated our approach with a
multi-vehicle search-mission scenario.

A lot of work remains to be done, in particular
in terms of algorithms. Our Prolog implementation
given here is simple and understandable enough, but
not very efficient. The algorithms can be specialized
and implemented in far more efficient ways in an
imperative language. Also, the repair method is
currently far from satisfactory. We are currently
working on improving it, by limiting the “roll back” to
autonomous subsets of the incomplete graph.

Another issue involves the execution of
multiple solve processes in parallel. This is inevitable
if we want our approach to be scalable. The issue that
arises in that case has to do with the concurrent
allocation of resources. Indeed, some providers may
represent physical resources that cannot be
replicated. Therefore, some concurrent reservation
mechanism is necessary, so that such a provider can
participate in the solution of multiple instances at the
same time, although it will be allocated to at most one
solution at the end. As a straightforward rule, the
provider can be locked, so that it can be used by at
most one instance at a time. However, more efficient
techniques are needed in general.

MC

?

search

? ? ?

sweep

?

?

transaction
manager

reliable storage

REFERENCES

[1] http://robotics.eecs.berkeley.edu/bear/
[2] “ The B2B Internet Report: Collaborative
Commerce”, C. Phillips, M. Meeker, Morgan Stanley
Dean and Whittier, April 2000
[3] http://transacct.eecs.berkeley.edu
[4] “ Freeway performance measurement system
(PeMS) shows big picture”, Chen, Chao; Jia,
Zhanfeng; Petty, Karl; Shu, Jun; Skarbardonis,
Alexander; Varaiya, P. P., Intellimotion. Vol. 9, no. 2,
pag. 8-8,12, 2000
[5] www.rosettanet.org
[6] http://www.w3.org/XML
[7] SHIFT Tutorial: A first course for SHIFT
programmers, Tunc Simsek,
http://www.eecs.berkeley.edu/~simsek
[8] A theory of hierarchical, distributed systems, P.
Varaiya and T. Simsek, ONR review, Los Angeles,
CA. July 1998.
[9] http://mars.jpl.nasa.gov/msp98/lander
[10] Hespanha, Kim, Sastry “Multiple-Agent
Probabilistic Pursuit-Evasion Games”, Proc. Of the
38th Conf. On Decision and Contr., Dec 1999
[11] Freeman, Hupfer, Arnold “Javaspaces Principles,
Patterns, and Practice” Sun publications, Addison-
Wesley 1999
[12]
http://www.sun.com/jini/specs/jini1.1html/jsTOC.html
[13] Wolfson, Jajodia, Huang “An adaptive Data
replication Algorithm”, ACM Transactions on
Database Systems, Vol. 22, No. 2, June 1997, Pages
255-314
[14] http://www.corba.org
[15] http://www.jini.org

