
Analysis of the SSL 3.0 protocol

David Wagner Bruce Schneier
University of California, Berkeley Counterpane Systems

daw@cs.berkeley.edu schneier@counterpane.com

Revised April 15, 1997

Abstract

The SSL protocol is intended to provide a practi-
cal, application-layer, widely applicable connection-
oriented mechanism for Internet client/server com-
munications security. This note gives a detailed
technical analysis of the cryptographic strength of
the SSL 3.0 protocol. A number of minor flaws in
the protocol and several new active attacks on SSL
are presented; however, these can be easily corrected
without overhauling the basic structure of the pro-
tocol. We conclude that, while there are still a few
technical wrinkles to iron out, on the whole SSL 3.0
is a valuable contribution towards practical commu-
nications security.

1 Introduction

The recent explosive growth of the Internet and the
World Wide Web has brought with it a need to se-
curely protect sensitive communications sent over
this open network. The SSL 2.0 protocol has be-
come a de facto standard for cryptographic protec-
tion of Web http traffic. But SSL 2.0 has several
limitations—both in cryptographic security and in
functionality—so the protocol has been upgraded,
with significant enhancements, to SSL 3.0. This new
version of SSL will soon see widespread deployment.
The IETF Transport Layer Security working group
is also using SSL 3.0 as a base for their standards
efforts. In short, SSL 3.0 aims to provide Internet
client/server applications with a practical, widely-
applicable connection-oriented communications se-
curity mechanism.

This note analyzes the SSL 3.0 specification
[FKK96], with a strong focus on its cryptographic
security. We assume familiarity with the SSL 3.0
specification. Explanations of some of the crypto-
graphic concepts can be found in [Sch96].

The paper is organized as follows. Section 2 briefly
gives some background on SSL 3.0 and its predeces-
sor SSL 2.0. Sections 3 and 4 explore several possible
attacks on the SSL protocol and offer some technical
discussion on the cryptographic protection afforded
by SSL 3.0; this material is divided into two parts,
with the SSL record layer analyzed in Section 3 and
the SSL key-exchange protocol considered in Sec-
tion 4. Finally, Section 5 concludes with a high-level
view of the SSL protocol’s strengths and weaknesses.

2 Background

SSL is divided into two layers, with each layer us-
ing services provided by a lower layer and provid-
ing functionality to higher layers. The SSL record
layer provides confidentiality, authenticity, and re-
play protection over a connection-oriented reliable
transport protocol such as TCP. Layered above the
record layer is the SSL handshake protocol, a key-
exchange protocol which initializes and synchronizes
cryptographic state at the two endpoints. After the
key-exchange protocol completes, sensitive applica-
tion data can be sent via the SSL record layer.

SSL 2.0 had many security weaknesses which SSL 3.0
aims to fix. We briefly describe a short list of the
flaws in SSL 2.0 which we have noticed. In export-
weakened modes, SSL 2.0 unnecessarily weakens the
authentication keys to 40 bits. SSL 2.0 uses a weak
MAC construction, although post-encryption seems
to stop attacks. SSL 2.0 feeds padding bytes into the
MAC in block cipher modes, but leaves the padding-
length field unauthenticated, which may potentially
allow active attackers to delete bytes from the end
of messages. There is a ciphersuite rollback at-
tack, where an active attacker edits the list of ci-
phersuite preferences in the hello messages to in-
visibly force both endpoints to use a weaker form
of encryption than they otherwise would choose;



this serious flaw limits SSL 2.0’s strength to “least
common denominator” security when active attacks
are a threat. Others have also discovered some of
these weaknesses: Dan Simon independently pointed
out the ciphersuite rollback attack, Paul Kocher
has addressed these concerns [Koc96], and the PCT
1.0 protocol [PCT95] discussed and countered some
(though not all) of these flaws.

3 The record layer

This section considers the cryptographic strength of
the record layer protocol, and assumes that the key-
exchange protocol has securely set up session state,
keys, and security parameters. Of course, a secure
key-exchange protocol is vital to the security of ap-
plication data, but an examination of attacks on the
SSL key-exchange protocol is postponed until the
next section.

The SSL record layer addresses fairly standard prob-
lems that have received much attention in the cryp-
tographic and security literature [KV83], so it is rea-
sonable to hope that SSL 3.0 provides fairly solid
protection in this respect. As we shall see, this is
not far from the truth. We consider confidentiality
and integrity protection in turn.

3.1 Confidentiality: eavesdropping

The SSL protocol encrypts all application-layer data
with a cipher and short-term session key negotiated
by the handshake protocol. A wide variety of strong
algorithms used in standard modes is available to
suit local preferences; reasonable applications should
be able to find an encryption algorithm meeting the
required level of security, US export laws permit-
ting. Key-management is handled well: short-term
session keys are generated by hashing random per-
connection salts and a strong shared secret. Inde-
pendent keys are used for each direction of a con-
nection as well as for each different instance of a
connection. SSL will provide a lot of known plain-
text to the eavesdropper, but there seems to be no
better alternative; since the encryption algorithm is
required to be strong against known-plaintext at-
tacks anyway, this should not be problematic.

3.2 Confidentiality: traffic analysis

When the standard attacks fail, a cryptanalyst will
turn to more obscure ones. Though often maligned,
traffic analysis is another passive attack worth con-
sidering. Traffic analysis aims to recover confidential
information about protection sessions by examining
unencrypted packet fields and unprotected packet
attributes. For example, by examining the unen-
crypted IP source and destination addresses (and
even TCP ports), or examining the volume of net-
work traffic flow, a traffic analyst can determine
what parties are interacting, what type of services
are in use, and even sometimes recover information
about business or personal relationships. In prac-
tice, users typically consider the threat of this kind
of coarse-grained tracking to be relatively harmless,
so SSL does not attempt to stop this kind of traf-
fic analysis. Ignoring coarse-grained traffic analysis
seems like a reasonable design decision.

However, there are some more subtle threats posed
by traffic analysis in the SSL architecture. Bennet
Yee has noted that examination of ciphertext lengths
can reveal information about URL requests in SSL-
or SSL-encrypted Web traffic [Yee96]. When a Web
browser connects to a Web server via an encrypted
transport such as SSL, the GET request containing
the URL is transmitted in encrypted form. Exactly
which Web page was downloaded by the browser
is clearly considered confidential information—and
for good reason, as knowledge of the URL is of-
ten enough for an adversary to obtain the entire
Web page downloaded—yet traffic analysis can re-
cover the identity of the Web server, the length of
the URL requested, and the length of the html data
returned by the Web server. This leak could often al-
low an eavesdropper to discover what Web page was
accessed. (Note that Web search engine technology
is certainly advanced enough to catalogue the data
openly available on a Web server and find all URLs
of a given length on a given server which return a
given amount of html data.)

This vulnerability is present because the ciphertext
length reveals the plaintext length.1 SSL includes
support for random padding for the block cipher
modes, but not for the stream cipher modes. We
believe that SSL should at the minimum support
the usage of random-length padding for all cipher
modes, and should also strongly consider requiring

1This is strictly speaking only true of stream ciphers, but
they are currently the common case. With block ciphers,
plaintexts are padded out to the next 8-byte boundary, so
one can only recover a close estimate of the plaintext length.



it for certain applications.

3.3 Confidentiality: active attacks

It is important that SSL securely protect confiden-
tial data even against active attacks. Of course, the
underlying encryption algorithm should be secure
against adaptive chosen-plaintext/chosen-ciphertext
attacks, but this is not enough on its own. Recent
research motivated by the IETF ipsec (IP security)
working group has revealed that sophisticated active
attacks on a record layer can breach a system’s confi-
dentiality even when the underlying cipher is strong
[Bel96]. It appears that the SSL 3.0 record layer re-
sists these powerful attacks; it is worth discussing in
some depth why they are foiled.

One important active attack on ipsec is Bellovin’s
cut-and-paste attack [Bel96]. Recall that, to achieve
confidentiality, link encryption is not enough—the
receiving endpoint must also guard the sensitive data
from inadvertent disclosure. The cut-and-paste at-
tack exploits the principle that most endpoint ap-
plications will treat inbound encrypted data differ-
ently depending on the context, protecting it more
assiduously when it appears in some forms than in
others.2 The cut-and-paste attack also takes advan-
tage of a basic property of the cipher-block chaining
mode: it recovers from errors within one block, so
transplanting a few consecutive ciphertext blocks be-
tween locations within a ciphertext stream results in
a corresponding transfer of plaintext blocks, except
for a one-block error at the beginning of the splice.
In more detail, Bellovin’s cut-and-paste attack cuts
an encrypted ciphertext from some packet contain-
ing sensitive data, and splices it into the ciphertext
of another packet which is carefully chosen so that
the receiving endpoint will be likely to inadvertently
leak its plaintext after decryption. For example, if
cut-and-paste attacks on the SSL record layer were
feasible, they could be used to compromise site secu-
rity: a cut-and-paste attack on a SSL server-to-client
Web page transfer could splice ciphertext from a sen-
sitive part of that html transfer into the hostname
portion of a URL included elsewhere in the trans-
ferred Web page, so that when a user clicks on the
booby-trapped URL link his browser would interpret

2In the ipsec world, encrypted data to TCP user ports is
not protected by the operating system nearly as strongly as
encrypted data to the system TCP login or telnet port. For a
SSL-protected Web connection, the client browser will guard
the path portion of a URL more carefully than the hostname
portion, as the hostname portion may subsequently appear
unencrypted in DNS queries and IP source addresses, whereas
the path portion of a URL is encrypted via SSL.

the decryption of the spliced sensitive ciphertext as
a hostname and send a DNS domain name lookup
for it in the clear, ready for capture by the eaves-
dropping attacker. Cut-and-paste attacks, in short,
enlist the unsuspecting receiver to decrypt and in-
advertently leak sensitive data for them.

SSL 3.0 stops cut-and-paste attacks. One partial
defense against cut-and-paste attacks is to use in-
dependent session keys for each different context.
This prevents cutting and pasting between differ-
ent connections, different directions of a connection,
etc. SSL already uses independent keys for each di-
rection of each incarnation of each connection. Still,
cutting and pasting within one direction of a transfer
is not prevented by this mechanism. The most com-
prehensive defense against cut-and-paste attacks is
to use strong authentication on all encrypted pack-
ets to prevent enemy modification of the ciphertext
data. The SSL record layer does employ this defense,
so cut-and-paste attacks are completely foiled. For a
more complete exposition on cut-and-paste attacks,
see Bellovin’s paper [Bel96].

The short-block attack is another active attack
against ipsec which can be found in Bellovin’s paper
[Bel96]. The short-block attack was originally ap-
plied against DES-CBC ipsec-protected TCP data
when the final message block contains a short one-
byte plaintext and the remainder of it is filled by
random padding. One guesses at the unknown plain-
text byte by replacing the final ciphertext block
with another ciphertext block from a known plain-
text/ciphertext pair. Correct guesses can be rec-
ognized by the validity of the TCP checksum: an
incorrect guess will cause the packet to be silently
dropped by the receiver’s TCP stack, but the cor-
rect guess will cause a recognizable ACK to be re-
turned. Knowledge of the corresponding plaintext
for a correctly guessed replacement ciphertext block
enables the enemy to recover the unknown plaintext
byte. Because the receiving ipsec stack ignores the
padding bytes, the short-block attack requires about
28 known plaintexts and 28 active online trials to re-
cover such an unknown trailing byte. Many distract-
ing technicalities have been significantly simplified;
see Bellovin’s paper [Bel96] for more details.

There are no obvious short-block attacks on SSL.
The SSL record layer format is rather similar to
the old vulnerable ipsec layout, so it is admit-
tedly conceivable that a modified version of the at-
tack might work against SSL. In any case, standard
SSL-encrypting Web servers probably would not be
threatened by a short-block type of attack, since



they do not typically encrypt short blocks. (Note,
however, that a SSL-encrypting telnet client should
demand particularly robust protection against short-
block attacks, as each keystroke is typically sent in
its own one-byte-long packet.)

In summary, our analysis did not uncover any active
attacks on the confidentiality protection of the SSL
3.0 record layer.

3.4 Message authentication

In addition to protecting the confidentiality of ap-
plication data, SSL cryptographically authenticates
sensitive communications. On the Internet, active
attacks are getting easier to launch every day. We
are aware of at least two commercially available soft-
ware packages to implement active attacks such as
IP spoofing and TCP session hijacking, and they
even sport a user-friendly graphical interface. More-
over, the financial incentive for exploiting commu-
nications security vulnerabilities is growing rapidly.
This calls for strong message authentication.

SSL protects the integrity of application data by us-
ing a cryptographic MAC. The SSL designers have
chosen to use HMAC, a simple, fast hash-based con-
struction with some strong theoretical evidence for
its security [BCK96]. In an area where several ini-
tial ad-hoc proposals for MACs have been cryptan-
alyzed, these provable security results are very at-
tractive. HMAC is rapidly becoming the gold stan-
dard of message authentication, and it is an excellent
choice for SSL. Barring major unexpected cryptan-
alytic advances, it seems unlikely that HMAC will
be broken in the near future.

We point out that SSL 3.0 uses an older obsolete ver-
sion of the HMAC construction. SSL should move
to the updated current HMAC format when conve-
nient, for maximal security.

On the whole, SSL 3.0 looks very secure against
straightforward exhaustive or cryptanalytic attacks
on the MAC. SSL 2.0 had a serious design
flaw in that it used an insecure MAC—though
post-encryption saved this from being a direct
vulnerability—but SSL 3.0 has fixed this mistake.
The SSL MAC keys contain at least 128 bits of en-
tropy, even in export-weakened modes, which should
provide excellent security for both export-weakened
and domestic-grade implementations. Independent
keys are used for each direction of each connection
and for each new incarnation of an connection. The
choice of HMAC should stop cryptanalytic attacks.

SSL does not provide non-repudiation services, and
it seems reasonable to deliberately leave that to spe-
cial higher-level application-layer protocols.

3.5 Replay attacks

The naive use of a MAC does not necessarily stop
an adversary from replaying stale packets. Replay
attacks are a legitimate concern, and as they are
so easy to protect against, it would be irresponsi-
ble to fail to address these threats. SSL protects
against replay attacks by including an implicit se-
quence number in the MACed data. This mecha-
nism also protects against delayed, re-ordered, or
deleted data. Sequence numbers are 64 bits long, so
wrapping should not be a problem. Sequence num-
bers are maintained separately for each direction of
each connection, and are refreshed upon each new
key-exchange, so there are no obvious vulnerabili-
ties.

3.6 The Horton principle

Let’s recall the ultimate goal of message authenti-
cation. SSL provides message integrity protection
just when the data passed up from the receiver’s
SSL record layer to the protected application exactly
matches the data uttered by the sender’s protected
application to the sender’s SSL record layer. This
means, approximately, that it is not enough to ap-
ply a secure MAC to just application data as it is
transmitted over the wire—one must also authenti-
cate any context that the SSL mechanism depends
upon to interpret inbound network data. For lack of
a better name, let’s call this “the Horton principle”
(with apologies to Dr. Seuss) of semantic authenti-
cation: roughly speaking we want SSL to

“authenticate what was meant, not what
was said.”

To phrase it another way,

Eschew unauthenticated security-critical
context.

This design principle is hardly original; Abadi and
Needham [AN96] gave a version of it in the context
of building secure protocols. The Horton principle
is essentially a restatement of their Principle 1 in
terms of requirements for record-layer message au-
thentication.



Figure 1: Analysis of security-critical context

encrypted fragment∗∗

↓ [read key∗, read IV (1)]
padded compressed fragment

↓ [cipher type∗ (2)]
SSLCompressed.fragment

↓ [CompressionMethod∗]
SSLPlaintext.fragment

↓ [ContentType∗∗,
↓ ProtocolVersion,
↓ SSLPlaintext.length∗∗]

“meaning”

Notes:

∗ Denotes session state synchronized by the key-
exchange protocol.

∗∗ Protected by the MAC.

(1) read IV is initially taken from the session state,
then taken from the last ciphertext block of the
previous encrypted fragment.

(2) For block ciphers, padding is removed from the
end of the padded fragment.

SSL 2.0 suffered from at least one flaw along these
lines: the SSL 2.0 MAC covered padding data but
not the length of the padding, so an active attacker
was free to manipulate the cleartext padding length
field to compromise message integrity. An analysis
checking SSL 2.0’s compliance with the Horton prin-
ciple would have uncovered this flaw. With this mo-
tivation, we undertake an informal analysis of SSL
3.0 following the guidelines of the Horton principle.

The SSL record layer depends on a lot of context
to interpret, decrypt, decompress, de-multiplex, and
dispatch data from the wire. It is instructive to
follow the chain of this processing of inbound net-
work data, catalogue all the security-critical context
which this processing depends on, and check to en-
sure that the critical context has been authenticated.
This ensures that we have applied the MAC prop-
erly to all security-relevant items and fulfilled the
Horton principle. Because the encrypted fragment
field is authenticated by the MAC, we will assume
that that field is trustworthy, and follow its trans-
formation into application data (“meaning”). The
right-justified bracketed items in Figure 1 identify
security-critical context used in each step of process-
ing.

Figure 1 indicates that SSL 3.0 follows the Hor-
ton principle fairly closely. One minor excep-
tion is that the integrity of the ProtocolVersion
field is not protected. (We refer specifically to
the SSLCiphertext.ProtocolVersion field in the
record layer, not the ClientHello.client version
field from the handshake protocol; the latter
is protected, but the former is not.) If the
ProtocolVersion field is ever used by SSL, it should
be authenticated; if not, it should not be present in
the packet format. Also, it is worth mentioning that
the final result of the inbound processing is a stream
of bytes from the application data stream, and mes-
sage boundaries are not preserved. Any applica-
tion that relies on message boundaries—such as a
UDP-based program—will have to impose a higher-
layer message length protocol on top of SSL. On
the whole, though, our “Horton principle”-inspired
analysis revealed no major weaknesses, to SSL 3.0’s
credit.

3.7 Summary

In summary, the protection of application data by
the SSL record layer is, on the whole, quite good.
The preceding section indicated a few small areas of
concern, but they should be considered minor and
the exception to the rule.

4 The key-exchange protocol

This section considers the security of the SSL hand-
shake protocol as well as other SSL meta-data trans-
port. The design of a secure key-exchange protocol
is a thorny endeavor. There is a significant amount
of complexity involved, so the discovery of a few
weaknesses should not prove surprising. The follow-
ing analysis describes a number of shortcomings of
the SSL meta-data protection mechanisms, mostly
in areas that have seen recent changes. The SSL 3.0
key-exchange protocol appears to be a significant ad-
vance over SSL 2.0, but it still bears a few scars from
growing pains.

4.1 Overview of the handshake flow

The SSL 3.0 handshake-protocol message flow in-
volves the client and server negotiating a common
ciphersuite acceptable to both parties, exchanging
random nonces, and the client sending an encrypted
pre master secret. Then each endpoint derives



a master secret from the pre master secret and
verifies that their protocol runs match by authen-
ticating all messages with the master secret. As-
suming that the check succeeds, both generate ses-
sion keys from the master secret and proceed to
send cryptographically-protected application data.
The SSL protocol also includes a more lightweight
session resumption protocol which allows two par-
ties who have already exchanged a master secret
to generate updated session keys and start a new
connection with those parameters.

4.2 Ciphersuite rollback attacks

The SSL 2.0 key-exchange protocol contained a seri-
ous flaw: an active attacker could silently force a do-
mestic user to use export-weakened encryption, even
if both endpoints supported and preferred stronger-
grade algorithms. This is known as a ciphersuite
rollback attack, and it can be performed by editing
the cleartext list of supported ciphersuites sent in
hello messages. SSL 3.0 fixes this vulnerability by
authenticating all the handshake protocol messages
with the master secret, so such enemy tampering
can be determined at the end of the handshake and
the session terminated if necessary.

We describe the SSL 3.0 mechanism for prevent-
ing modification of handshake protocol messages in
more detail. There are several generic vulnerabili-
ties in this part of the SSL handshake protocol, so
some introduction is in order. All the initial hand-
shake protocol messages are sent, unprotected, in
the clear. Instead of modifying the parameters in
use at the moment, the key-exchange protocol mod-
ifies a pending session state. After the negotiation
is complete, each party sends a short change ci-
pher spec message, which simply alerts the other
to upgrade the status of the pending session state to
current. The new session state is used starting with
the next message, though the change cipher spec
message is unprotected.3 Immediately following the
change cipher spec comes the finished message,
which contains a MAC on all the handshake pro-
tocol messages keyed by the master secret. (For
peculiar non-security reasons, the change cipher
spec and alert messages are not authenticated in
the finished message.) The 48-byte master secret
is never disclosed; instead, session keys are gener-

3More precisely, it is protected with the old session state,
which initially is set up to provide no protection. The discus-
sion ignores the complicating case of a handshake protocol
execution which changes cryptographic parameters on a con-
nection that already has some protection in effect.

ated from it. This ensures that even if the session
keys are recovered, the master secret will remain
secret, so the handshake protocol messages will be
securely authenticated. The finished message is it-
self protected with the newly established ciphersuite.
Neither party is supposed to accept application data
until it has received and verified a finished message
from the other party.

4.3 Dropping the change cipher spec
message

One quirk of the SSL key-exchange protocol is that
the change cipher spec message is not protected
by the message authentication in the finished mes-
sage. This can potentially allow the cryptanalyst to
get a foot in the door. We recall the normal SSL
message flow:

. . .
1. C → S : [change cipher spec]
2. C → S : [finished:] {a}k
3. S → C : [change cipher spec]
4. S → C : [finished:] {a}k
5. C → S : {m}k
. . .

where {·}k represents the keyed cryptographic trans-
forms used by the record layer, m denotes a plaintext
message sent after the key-exchange is finished, and
a represents the finished message’s authentication
code, which is obtained by computing a symmet-
ric MAC on the previous handshake messages (ex-
cluding the change cipher spec message). Note
that before the receipt of a change cipher spec
message, the current ciphersuite offers no encryp-
tion or authentication and the pending ciphersuite
includes the negotiated ciphersuite; upon receiving a
change cipher spec message, implementations are
supposed to copy the pending ciphersuite to the cur-
rent ciphersuite and enable cryptographic protection
in the record layer.

We describe an attack that takes advantage of the
lack of protection for change cipher spec mes-
sages. We assume the special case where the ne-
gotiated ciphersuite includes only message authen-
tication protection and no encryption. The active
attacker intercepts and deletes the change cipher
spec messages, so that the two endpoints never up-
date their current ciphersuite; in particular, the two
endpoints never enable message authentication or
encryption in the record layer for incoming packets.
Now the attacker allows the rest of the interaction to



proceed, stripping off the record layer authentication
fields from finished messages and session data. At
this point there is no authentication protection for
session data in effect, and the active attacker can
modify the transmitted session data at will. The
impact is that, when an authentication-only trans-
form is negotiated, an active attacker can defeat the
authentication protection on session data, transpar-
ently causing both parties to accept incoming session
data without any cryptographic integrity protection.
We summarize the attack flow:

. . .
1. C →M : [change cipher spec]
2. C →M : [finished:] {a}k
2′. M → S : [finished:] a
3. S →M : [change cipher spec]
4. S →M : [finished:] {a}k
4′. M → C : [finished:] a
5. C →M : {m}k
5′. M → S : m
. . .

Remember, in this flow {m}k denotes the transmis-
sion of a message m along with a message authenti-
cation field keyed by k; given {m}k it is easy to strip
off the MAC field and recover m, since no encryp-
tion is in use here. Note moreover that the attacker
can easily replace the unprotected session data m in
flow 5′ by forged data of his choice.

It is worth pointing out what happens when the ne-
gotiated ciphersuite includes encryption. Then the
client’s finished message is sent encrypted, but the
server expects to receive it unencrypted, so it does
not suffice to strip off the MAC field—instead, the
attacker must recover the encryption key k and de-
crypt {a}k to obtain a. Therefore the attack will
be foiled when the negotiated ciphersuite includes
strong encryption. In the intermediate case where
weak encryption (such as a 40-bit exportable mode)
is used, the attacker may be able to carry out this
attack if it possible to perform an online exhaustive
keysearch to recover the short encryption key.4 In

4A note about the amount of known plaintext available is
in order. When a block cipher mode (such as 40-bit RC2 or
40-bit DES) is in use, there will be 4 bytes of known plain-
text in the header of the finished message and another 4–8
bytes in the padding fields, so enough known text is available.
For unpadded 40-bit stream cipher modes, there is only the
4 bytes of known plaintext in the finished message header;
if the client immediately sends encrypted session data after
sending the finished message (as is allowed in Section 7.6.9
of the SSL 3.0 specification) then enough additional known
plaintext will probably be available to uniquely recover the
stream cipher key; otherwise, about 28 possible 40-bit keys
will be suggested, and the attacker must settle for a 2−8

chance of success.

all fairness, real-time online exhaustive keysearch of
a 40-bit cipher is currently out of reach for many ad-
versaries, although advances in computation power
may make it a more serious threat in the future.

The simplest fix is to require that a SSL implemen-
tation receive a change cipher spec message be-
fore accepting a finished message. (Indeed, there
is some language in the specification which could be
interpreted to mandate this restriction, although it
is not entirely clear.) Some readers might complain
that this requirement ought to be obvious with a mo-
ment’s reflection, even if it is not explicitly stated in
the SSL specification. We cannot fault such clar-
ity of vision. However, we settle for the observation
that at least one implementation has fallen for this
pitfall. After performing the theoretical analysis, we
examined Netscape’s SSLRef 3.0b1 reference source
code for SSL 3.0. Indeed, the necessary check is
not made there; though we have not actually imple-
mented the attack, it appears that SSLRef 3.0b1 will
fall to a change cipher spec dropping attack when
an authentication-only ciphersuite is negotiated. Af-
ter learning of this attack, a SSLRef implementor
fixed the flaw [Die96]; SSLRef 3.0 Final is immune
to this attack.

A more radical fix would include the change ci-
pher spec message in the the finished message’s
message authentication calculation. This would re-
quire a change to the SSL specification; however, it
also would have the advantage of being more robust
in face of implementation flaws.

At the least, we recommend that future SSL docu-
ments include a warning about this pitfall. Explic-
itness is a virtue.

4.4 Key-exchange algorithm rollback

The SSL 3.0 handshake protocol also contains
another design flaw. A server can send short-
lived public key parameters, signed under its long-
term certified signing key, in the server key ex-
change message. Several key-exchange algorithms
are supported, including ephemeral RSA and Diffie-
Hellman public keys. Unfortunately, the signature
on the short-lived parameters does not protect the
field which specifies which type of key-exchange al-
gorithm is in use. Note that this violates the Horton
principle: SSL should sign not just the public pa-
rameters but also all data needed to interpret those
parameters.

For convenience, we reprint the relevant SSL 3.0



data structures from the the server key exchange
message here.

enum { rsa, diffie_hellman, ... }
KeyExchangeAlgorithm;

struct {
opaque rsa_modulus;
opaque rsa_exponent;

} ServerRSAParams;
struct {

opaque dh_p;
opaque dh_g;
opaque dh_Ys;

} ServerDHParams;
struct {

select (KeyExchangeAlgorithm) {
case diffie_hellman:

ServerDHParams params;
Signature signed_params;

case rsa:
ServerRSAParams params;
Signature signed_params;

}
} ServerKeyExchange;

The KeyExchangeAlgorithm value is implicitly de-
rived by each endpoint from the negotiated cipher-
suite. The signed params field contains the server’s
signature on a hash of the relevant ServerParams
field (namely, either ServerDHParams
or ServerRSAParams according to the value of the
KeyExchangeAlgorithm variable), but the signature
does not cover the KeyExchangeAlgorithm value.
Therefore, by modifying each endpoint’s view of the
negotiated ciphersuite and thus affecting the (un-
signed) KeyExchangeAlgorithm field, we can abuse
the server’s legitimate signature on a set of Diffie-
Hellman parameters and fool the client into thinking
the server signed a set of ephemeral RSA parame-
ters.

We should point out that particularly cautious im-
plementation might not be fooled by such tricks,
if they check the length of the ServerParams field
carefully. For example, SSLRef 3.0b1 is paranoid
enough that it would detect such an attack. How-
ever, in general, the specification is silent on the
matter, and some compliant implementations could
easily be vulnerable.

If the implementation can be fooled, an active at-
tack can be constructed. Perform a ciphersuite
rollback attack to coerce the server into using the
ephemeral Diffie-Hellman key exchange algorithm,
while the client uses ephemeral RSA keying. With

this change, the two endpoints will each think they
have successfully negotiated a ciphersuite—but their
ideas of the negotiated ciphersuite will differ. Unless
implementors are exceptionally foresighted or para-
noid, the server’s Diffie-Hellman prime modulus p
(dh p) and generator g (dh g) will probably be in-
terpreted by the client as a correctly signed short-
lived RSA modulus p (rsa modulus) with exponent
g (rsa exponent). Watch as the client encrypts the
pre master secret with the bogus RSA values. In-
tercept the RSA encrypted value kg mod p; recover
k, the PKCS encoding of the pre master secret,
by taking g-th roots, which can be done efficiently
since p is prime. Now that the pre master secret
is compromised, it is easy to spoof the rest of the
key exchange, including forging finished messages,
to both endpoints. Thereafter one can decrypt all
the sensitive application data transmitted or forge
fake data on that SSL connection. All cryptographic
protection has been wholly defeated.

We summarize this attack in the following attack
flow (omitting many irrelevant fields and messages):

[client hello:]
1. C →M : SSL RSA ...
1′. M → S : SSL DHE RSA ...
[server hello:]
2. S →M : SSL DHE RSA ...
2′. M → C : SSL RSA ...
[server key exchange:]
3. S →M : {p, g, y}KS
3′. M → C : {p, g, y}KS
[client key exchange:]
4. C →M : kg mod p
4′. M → S : gx mod p
. . .

At the end of the key-exchange, the client’s value of
the pre master secret is k, while the server’s value
is gxy mod p where x was chosen by the attacker M ;
of course, both of these are known to the attacker
M , and all secrets are derived from these values,
so all subsequent cryptographic transforms offer no
protection against M .

The key-exchange algorithm rollback attack serves
to illustrate the dangers of a flexible ciphersuite ne-
gotiation algorithm. In the worst case it is possible
to end up with “least common denominator secu-
rity”, where SSL is only as secure as the weakest
key exchange algorithm (or weakest ciphersuite) sup-
ported.



4.5 Anonymous key-exchange

Our examination of SSL 3.0 revealed a minor am-
biguity in the specification for anonymous Diffie-
Hellman key-exchange. For clarity, we reprint the
questionable definition from the SSL 3.0 specifica-
tion:

digitally-signed struct {
select (SignatureAlgorithm) {

case anonymous: struct { };
case rsa:

opaque md5_hash[16];
opaque sha_hash[20];

case dsa:
opaque sha_hash[20];

}
} Signature;

As written, a straightforward reading of the docu-
ment appears to indicate that the server should sign
an empty structure when anonymous key-exchange
is in use. An earlier version of this paper included a
critical analysis based on that erroneous interpreta-
tion. However, we have since been informed [Die96]
that our original understanding of the specification
was faulty: the SSL 3.0 designers intended that the
signature be omitted entirely when the server was
anonymous, and implementors have followed this
route.

Still, typos like these reduce the robustness of the
SSL 3.0 specification. To prevent confusion, we rec-
ommend that this small oversight be fixed. For ex-
ample, the following change would avoid the ambi-
guity:

select (SignatureAlgorithm) {
case anonymous: struct { };
case rsa:

digitally-signed struct {
opaque md5_hash[16];
opaque sha_hash[20];

}
case dsa:

digitally-signed struct {
opaque sha_hash[20];

}
} Signature;

4.6 Version rollback attacks

SSL 3.0 implementations will likely be flexible
enough to accept SSL 2.0 connections, at least in

the short-term. This threatens to create the poten-
tial for version rollback attacks, where an opponent
modifies a SSL 3.0 client hello to look like a SSL
2.0 hello message and proceeds to exploit any of the
numerous SSL 2.0 vulnerabilities.

Paul Kocher designed an intriguing strategy to de-
tect version rollback attacks on SSL 3.0. Client im-
plementations which support SSL 3.0 embed some
fixed redundancy in the (normally random) RSA
PKCS padding bytes to indicate that they support
SSL 3.0. Servers which support SSL 3.0 will refuse to
accept RSA-encrypted key-exchanges over SSL 2.0-
compatibility connections if the RSA encryption in-
cludes those distinctive non-random padding bytes.
This ensures that a client and server which both sup-
port SSL 3.0 will be able to detect version rollback
attacks which try to coerce them into using SSL 2.0.
Moreover, old SSL 2.0 clients will be using random
PKCS padding, so they will still work with servers
that support SSL 2.0.

Paul Kocher’s clever countermeasure stops version
rollback attacks, even in the face of active attacks.
The central fact which makes it work is that RSA is
the only key-exchange algorithm supported by SSL
2.0; if SSL 2.0 servers supported Diffie-Hellman key-
exchange, the padding-redundancy trick would not
be sufficient.

While Kocher’s defense seems to stop version roll-
back attacks in normal circumstances, we remain
somewhat concerned that it might interact adversely
with session resumption. The specification does not
forbid or discourage SSL 2.0-compatible SSL servers
from accepting a SSL 2.0 client hello request to
resume a session which was originally initiated with
SSL 3.0 (or vice versa). This could potentially have
subtle and obscure implications. Analysis appears
non-trivial, and though we are not aware of any at-
tacks, we are left with a distinct lack of confidence
in our attempt at analysis. The issue here is pro-
tocol and implementation robustness, and we are
concerned that this may represent a portion of SSL
where robustness is below-average.

There is room for further examination of the po-
tential interactions between session resumption and
version rollback attacks. Lacking a comprehensive
analysis, though, there is a natural defensive mea-
sure: servers supporting both SSL 2.0 and SSL 3.0
should not let clients mix SSL versions across session
resumption. Implementations can easily achieve this
by strictly segregating the SSL 2.0 and SSL 3.0 ses-
sion caches. In any case, this will be irrelevant in
the long term when servers stop accepting SSL 2.0



Figure 2: master secret usage
message usage
certificate verify

hash = adhoc-MAC(master secret,
handshake messages)

finished
hash = adhoc-MAC(master secret,
handshake messages + sender)

change cipher spec
key block = expand-keys(
master secret,
ServerHello.random +
ClientHello.random, . . .)

connections.

4.7 Safeguarding the master secret

Ensuring that the master secret remains truly
secret is tremendously important to the security
of SSL. All session keys are generated from the
master secret, and the protection against tamper-
ing with the SSL handshake protocol relies heavily
on the secrecy of the master secret. Therefore, it
is important that the master secret be especially
heavily guarded. In protocol design, this means that
usage of the master secret should be greatly lim-
ited.

Figure 2 lists all of the places where the
master secret is used. Each item in the list
can be used to recover a relation involving the
master secret and some known plaintext.

An enemy can collect unlimited amounts of known
plaintext for the master secret-keyed MAC trans-
formation found in the finished message. The in-
formed adversary opens many simultaneous connec-
tions via client hello messages requesting the re-
sumption of the targeted session. For each such con-
nection, the server will pick a random nonce, calcu-
late a MAC with the master secret, and send it
back encrypted in a finished message. The clever
adversary should leave all those connections open
without responding to the server’s finished mes-
sage: sending incorrect data on any of the connec-
tions will cause a fatal alert which makes the ses-
sion unresumable. In this way, the opponent can
collect great amounts of known plaintext hashed
with the master secret. If some cryptanalyst dis-
covers an attack on adhoc-MAC() which uses much
known plaintext to recover the secret key, the cur-
rent SSL protocol could become unsafe. A strongly

robust handshake protocol should probably limit the
amount of known text that is available to a crypt-
analyst.

The pre master secret is at least as impor-
tant to protect, for compromise of it would also
reveal the master secret. One way that an
attacker may acquire more known text hashed
with a master secret is to replay the origi-
nal RSA-encrypted ciphertext which contained the
pre master secret. The attacker will not be able
to complete the SSL handshake protocol with this
replayed RSA ciphertext, but it may be possible
to get the server to send a finished message con-
taining some known plaintext hashed with the mas-
ter secret. This will only be possible if the server
is pipelined enough to send a finished message af-
ter receiving the client key exchange message
but before receiving a client finished message.5

This trick would be impossible if the client’s and
server’s random nonces were bound more tightly to
the pre master secret in the RSA key-exchange—
perhaps a hash of the nonces should be included in
the RSA encryption input.

4.8 Diffie-Hellman key-exchange

SSL 3.0 includes support for ephemerally-keyed
Diffie-Hellman key-exchange. Since Diffie-Hellman
is the only public key algorithm known which can
efficiently provide perfect forward secrecy, this is
an excellent addition to SSL. In a SSL 3.0 Diffie-
Hellman key-exchange, the server specifies its Diffie-
Hellman exponent as well as the prime modulus and
generator. To avoid server-generated trapdoors, the
client should be careful to check that the modulus
and generator are from a fixed public list of safe
values. The well-known man-in-the-middle attack is
prevented in SSL 3.0 by requiring the server’s Diffie-
Hellman exponential to be authenticated. (Anony-
mous clients are not required to possess a certifi-
cate.) There is no support for higher-performance
variants of Diffie-Hellman, such as smaller (160-bit)
exponents or elliptic curve variants.

4.9 The alert protocol

SSL includes a small provision for sending event-
driven alert messages. Many of these indicate fa-

5This behavior is apparently not prohibited by the SSL
3.0 specification, but David Brownell has indicated [Bro96]
that any server exhibiting this behavior would probably not
be interoperable with today’s clients.



tal error conditions and instruct the recipient to im-
mediately tear down the session. For instance, the
close-notify alert message indicates that the sender
is finished sending application data on the connec-
tion; since alert messages are normally authenti-
cated, this prevents a truncation attack. As another
example, reception of any packet with an incorrect
MAC will result in a fatal alert.

4.10 MAC usage

The SSL 3.0 handshake protocol uses several ad-
hoc MAC constructions to provide message integrity.
The security of these MACs has not been thoroughly
evaluated. We believe that SSL 3.0 should consis-
tently use HMAC whenever a MAC is called for;
ad-hoc MACs should be avoided.

4.11 Summary

The SSL handshake protocol has several vulnera-
bilities and worrisome features, especially in areas
which have seen recent revision. These are only trou-
blesome when active attacks are a concern. Further-
more, these are not universal weaknesses: different
implementations may or may not be vulnerable. A
flaw in a protocol does not necessarily yield a vulner-
able implementation. Nonetheless, if the specifica-
tion does not explicitly warn of an attack (or prevent
it directly), it seems reasonable to offer constructive
criticism.

5 Conclusion

This security analysis has dedicated the greatest
amount of time to shortcomings of the SSL 3.0 pro-
tocol, but that was purely for reasons of exposi-
tion. One would be hard-pressed to find any cor-
relation between the amount of space required to
explain a technical point and its importance or sever-
ity. Therefore, it is worth putting the previous sec-
tions in perspective, reviewing the big picture, and
summarizing the security of SSL 3.0.

In general SSL 3.0 provides excellent security against
eavesdropping and other passive attacks. Although
export-weakened modes offer only minimal confiden-
tiality protection, there is nothing SSL can do to
improve that fact. The only change to SSL’s protec-
tion against passive attacks worth recommending is
support for padding to stop traffic analysis of GET

request lengths.

This analysis has revealed a number of active attacks
on the SSL 3.0 protocol (though some implementa-
tions may not be vulnerable). The most important
new attacks are change cipher spec-dropping and
KeyExchangeAlgorithm-spoofing. The SSL specifi-
cation should be changed to warn of these new at-
tacks. Fortunately, it is not hard to patch up the
small flaws which allowed these attacks, and several
possible fixes were listed.

The analysis has also revealed several ways in which
the robustness of the SSL protocol can be improved.
Many remarks were not inspired by direct vulner-
abilities, but still are worth considering for future
versions of SSL. Many of the pitfalls in SSL 3.0 were
found in areas that have seen recent revision.

It is important not to overstate the practical signifi-
cance of any of these flaws. Most of the weaknesses
described in this note arise from a small oversight
and can be corrected without overhauling the basic
structure of the protocol. Of course, they are still
worth fixing.

SSL 2.0 was subject to quite a number of active
attacks on its record layer and key-exchange pro-
tocol. SSL 3.0 plugs those gaping holes and thus
is considerably more secure against active attacks.
SSL 3.0 also provides much better message integrity
protection in export-weakened modes—the common
case—than SSL 2.0 did: SSL 2.0 provided only 40-
bit MACs in those modes, while SSL 3.0 always uses
128-bit MACs. Finally, SSL 3.0 improves a number
of non-security aspects of SSL, such as flexible sup-
port for a wide variety of cryptographic algorithms.
It seems fair to conclude that SSL 3.0 qualifies as a
significant improvement over SSL 2.0.

In short, while there are still a few technical wrin-
kles to iron out, on the whole SSL 3.0 is a valuable
step toward practical communications security for
Internet applications.

6 Acknowledgements

We are deeply grateful to Mart́ın Abadi, who
pointed out a number of mistakes in an earlier ver-
sion of this paper, for his corrections as well as sev-
eral enlightening discussions. Paul Kocher kindly
provided constructive criticism and many valuable
comments; we are greatly indebted to him. Thanks
also to Tim Dierks for additional corrections, and to
David Brownell for his helpful implementation ex-



perience. Of course, any mistakes in this paper are
solely our responsibility.

References

[AN96] M. Abadi and R. Needham, “Prudent
Engineering Practice for Cryptographic
Protocols”, IEEE Transactions on Soft-
ware Engineering, 22(1):2–15, January
1996.

[BCK96] M. Bellare, R. Canetti, and H.
Krawczyk, “Keying Hash Functions for
Message Authentication,” Advances in
Cryptology—CRYPTO ’96 Proceedings,
Springer-Verlag, 1996, pp. 1–15.

[Bel96] S. Bellovin, “Problem Areas for the
IP Security Protocols”, Proceedings of
the Sixth USENIX Security Symposium,
Usenix Association, 1996, pp. 205–214.
ftp://ftp.research.att.com/dist/
smb/badesp.ps.

[Bro96] D. Brownell, personal communication,
October 1996.

[Die96] T. Dierks, personal communication,
November 1996.

[FKK96] A. Freier, P. Karlton, and P. Kocher,
“The SSL Protocol Version 3.0”,
ftp://ftp.netscape.com/pub/review/
ssl-spec.tar.Z, March 4 1996, Inter-
net Draft, work in progress.

[Koc96] P. Kocher, personal communication,
1996.

[KV83] V. Voydock and S. Kent, “Security
Mechanisms in High-Level Network Pro-
tocols”, ACM Computing Surveys, v. 5,
n. 2, June 1983, pp. 135–171.

[PCT95] J. Benaloh, B. Lampson, D. Simon, T.
Spies, and B. Yee, “Microsoft Corpora-
tion’s PCT Protocol”, October 1995, In-
ternet Draft, work in progress.

[RSA93] RSA Data Security, Inc., “Public-Key
Cryptography Standards (PKCS),” Nov
93.

[Sch96] B. Schneier, Applied Cryptography, 2nd
Edition, John Wiley & Sons, 1996.

[Yee96] B. Yee, personal communication, June
1996.


