Parallel Combination of Abstract Interpretation and
Model-Based Automatic Analysis of Software

Patrick Cousot
Ecole Normale Supérieure
DMI, 45, rue d’Ulm
75230 Paris cedex 05
France

cousot@dmi.ens.fr

http://www.ens.fr/~cousot

Abstract

Formal methods combining abstract interpretation and model-

checking have been considered for automated analysis of
software.

A first category concerns symbolic methods where proper-
ties of the system are approximated using abstract domains.
In this case, one considers approximated representations of
sets of states.

A second category concerns abstract model checking where
the semantics of an infinite transition system is abstracted
to get a finite approximation on which temporal-logic/u-
calculus model checking can be directly applied. In this
other case, one considers approximated representations of
sets of transitions.

The objective of this paper is to develop a third comple-
mentary possibility of interaction between abstract interpre-
tation and model-checking based software analysis methods.

Here no approximation is made on sets of states or sets
of transitions. Instead one performs an analysis of the sys-
tem by abstract interpretation. This information is used to
restrict the space of states and transitions which need to be
explored during the verification process. The computational
overhead of computing an abstract interpretation of a model
to be checked can be avoided by doing the computation in
parallel with the model checking and using intermediate ab-
stract interpretation results as they become available.

AAS’97
First ACM SIGPLAN Workshop
on Automatic Analysis of Software
Paris, France, 14 January 1997

and

91

Radhia Cousot
CNRS & Ecole Polytechnique
LIX
91440 Palaiseau cedex
France

rcousot@lix.polytechnique.fr

http://lix.polytechnique.fr/~radhia

1 Introduction

In the design and development of software using model-
based automatic analysis — such as model checking or state
space exploration — one is confronted with high complexity
for very large systems and undecidability as soon as one has
to consider infinite sets of states. Consequently, all proper-
ties of all systems cannot be automatically verified in finite
or reasonable time. Some form of approximation has to be
considered. For example syntax-driven proof techniques ul-
timately rely on some form of assistance from the user. Al-
though one can prove very precise assertions with an interac-
tive automatic theorem prover, the technique is necessarily
approximate in the sense that the output of the theorem-
prover may not be understandable by the user and/or the
user’s answers may mislead the theorem-prover into dead-
ends. Model-checking [Clarke et al. 1983] places no re-
striction on verifiable properties (CTL*, p-calculus and the
like) but consider only (quasi)-finite state systems. Program
analysis by abstract interpretation [Cousot and Cousot 1977,
1979; Cousot 1996] places no restriction on systems/pro-
gramming languages (which can be imperative, functional,
logic, object-oriented, parallel) but places restrictions on
verifiable properties since abstract properties are necessarily
approximate. Both model-checking and abstract interpreta-
tion have benefited from mutual cross-fertilization. In par-
ticular model-checking can now consider infinite-state sys-
tems whereas in abstract interpretation it is common to con-
sider properties significantly more complex than safety/in-
variance (see e.g. Dams et al. 1994; Fernandez 1993; Halb-
wachs 1994 and Steffen 1991).

We would like to consider here abstract model-based au-
tomatic analysis that is the model-based automatic analysis
methods which are related to abstract interpretation and
suggest further possible interactions.

First, symbolic verification [Burch et al. 1992; Henzinger
et al. 1992; Daws et al. 1996] makes use of a compact sym-
bolic formula representation of (the characteristic function

of) sets of states. For example, the symbolic formula can
be encoded by BDDs [Akers 1978; Bryant 1986] or by affine
inequality relations [Cousot and Halbwachs 1978]. Such ab-
stract domains are of very common use when abstract in-
terpretation is applied to program static analysis. Some
symbolic abstract domains satisfy the chain condition [Karr
1976] and this directly guarantees the finite convergence of
the analysis. However, most symbolic domains are very
large or infinite so that, if one does not want to aban-
don the formal verification for lack of space or time, some
form of widening [Cousot and Cousot 1992c] must ultimately
be used to enforce rapid convergence of the analysis al-
gorithms. Examples of widenings are given by Halbwachs
1993, 1994 for affine inequality relations and Mauborgne
1994 for BDDs. In this case, one does not consider a faithful
symbolic description of the software properties but instead
an approximation of sets of states. The corresponding loss
of information may be without consequences for the verifi-
cation [Henzinger and Ho 1995; Jackson 1994]; else it fails.

In a second form of reduction by abstraction, one con-
siders exact properties of an approximate semantics. More
precisely, one does not consider a faithful description of
the software runtime behavior but instead an approxima-
tion of this semantical behavior. Once again, abstract in-
terpretation has been used to obtain such sound approxi-
mations. Here, the main idea for model checking or state
exploration of infinite or very large finite transition sys-
tems is to use an abstract conservative finite transition sys-
tem on which existing algorithms designed for finite au-
tomata are directly applicable. In this context, conserva-
tive means upper-approximation for safety (V) properties
and lower-approximation for liveness (3) properties. This
semi-verification idea was first introduced by [Clarke et al.
1992] and progressively refined to cope with wider classes
of temporal-logic [Kelb 1994; Dams et al. 1994; Cleaveland
et al. 1995] or p-calculus formulee [Graf and Loiseaux 1993;
Loiseaux et al. 1995; Cridlig 1995, 1996]. Partial-order ap-
proaches can be understood in this way, the loss of infor-
mation being in this case without consequences on the com-
pleteness [Valmari 1993].

We would like here to suggest a new third possible in-
teraction between abstract interpretation and model-based
automatic analysis of infinite systems [Cousot 1995]. Tt is
based on the remark that although the transition system is
infinite, all behaviors considered in practice may be finite
e.g. when there 1s a termination requirement, or more gen-
erally a liveness requirement excluding infinite behaviors. In
this case, abstract interpretation may be used, on the infinite
state system, to eliminate the impossible potentially infinite
behaviors. In the favorable case, this preliminary analysis
by abstract interpretation may be used to restrict the states
which must be explored to a finite number. Even in the
case of finite but very large state spaces, the method can be
useful to reduce the part of the state graph which need to
be explored for verification, in parallel with this verification,
that is at almost no cost in time.

2 Combining Abstract Interpretation and
Model-Checking

The general idea is to improve the efficiency of symbolic
model checking algorithms for verifying concurrent systems
by using properties of the system that can be automatically
inferred by abstract interpretation.

92

t

Z %)
ST

O——O
Figure 1: A (finite) transition system (o:state, —:transition)

o#»o O t O

le) O

2\\‘0 2\‘0

O O P O O
pre[t]P o ol P Ol o | post[t]P

O :39) O ~O

0 0 O/ @)

a) pre-image b) post-image
(a) p & (b)p &

Figure 2: Pre- and post-image

2.1 Transition Systems

The considered (real-time) concurrent system is assumed to
be modeled by a transition system, that is tuple (S, ¢, I, F)
where S is the set of states, t C S x .S is the transition rela-
tion, I C S is the set of initial states and F C S is the set
of final states. There is no finiteness restriction on the set .S
of states. Moreover initial and final states must be under-
stood in a broad sense. For a terminating program this can
be the states in which execution can start and end. For a
non-terminating process this can be respectively the states
in which a resource is requested and those in which it has
later been allocated. For simplicity, we assume that initial
and final states are disjoint (I N F' = @). An example of
transition system is given in Figure 1. Such transition sys-
tems have been used to introduce abstract interpretation in
alanguage independent way, since they model small-step op-
erational semantics of programs [Cousot and Cousot 1979].

The complement =P of a set of states P C S'is {s € 5 |
s ¢ P}. The left-restriction P |t of a relation t to P C S
is {{(s, sy € t | s € P}. The composition of relations is
tor = {{s, s"Y|3s' € S: (s, sy etn(s' s"yer}. The
tterates of the transition relation ¢ are defined inductively
by © =15 = {(s, s) | s € S} (that is identity on states
S) and "*! 240t for m > 0. The reflexive transitive

closure t* of the transition relation ¢ is t* = U 1",
n>0

The pre-image pre[t] P of a set P C S of states by a tran-
sition relation ¢ is pre[{] P = {s | 3s' : (s, s') € t As' € P}.
The post-image post[t] P of a set P C S of states by a tran-
sition relation ¢ is post[t] P = {s' |Is:s € PA(s, s') € t}.
This is illustrated in Figure 2(a) and Figure 2(b). We have

c

the least fixpoint characterizations pre[t*] P =1fp~ AX ® PU

(a) Minimum delays

.—»

L :

(b) Ascendants of the final states pre[t*] F'

Figure 3

pre[t] X and post[t*] P = lfpg AX e P U post[t] X (see e.g.

Cousot 1978, 1981).

2.2 Minimum Delay Problem

The minimum delay problem (see e.g. Halbwachs 1993) con-
sists in computing the length ¢ of (i.e. number of edges in)
a shortest path from an initial state in / to a final state in

F.

- min{n |Is € I,s' € F: (s, s’y € 1"}

. A
min (Z) =

00
An example of transition system and corresponding mini-
mum delays is given in Figure 3(a).

The following symbolic model checking minimum delay
algorithm is due to Campos et al. 1995:

procedure minimuml (I, F);
R =1
n := 0;
stable := (RN F # 0);
while —stable do
R’ := RUpost[t] R;

n:=n-+1;
stable :== (R = R') V(R' N F £ 0);
R:= R/

od;
return if (RN F # 0) then n else oo;

An example of execution trace of the “minimum1” algorithm
is given in Figure 4(a). In order to consider infinite state
sets, it is necessary to enforce finite convergence. Abstract
model checking techniques, with abstractions of transitions,
are not applicable since they would lead to erroneous re-
sults. Only a lower or upper bound of the minimum delay

93

(b) Algorithm “minimum?2”

Figure 4: Execution trace of minimum algorithm

can be obtained in this way. Classical symbolic methods for
speeding up model checking algorithms such as BDDs to en-
code boolean formulas representing sets of states, the tran-
sition relation, and so on or “on-the-fly” property checking,
without state graph generation are applicable in this case.
However, there is a serious potential inefficiency problem
because of useless exploration of dead-end states which are
reachable but cannot lead to a final state. These dead-end
states are marked © in Figure 4(a).

However, we can still use abstract interpretation to cut
down the size of the model-checking search space by deter-
mining a super-set A of the ascendants of the final states
(the principle of determination of A by abstract interpreta-
tion will be precisely defined in Section 4.1):

pre[t”] P C A,

as illustrated in Figure 3(b), which can then be used to
restrict the exploration of the transition graph for computing
the minimum delay. The revisited minimum delay algorithm
is now:

procedure minimum? (I, F);
R =1

n = 0;

stable := (RN F # 0);

while —stable do

R':= RU|(post[t] RN A) |;

n:=n-+1;
stable :== (R = R') V(R' N F £ 0);
R .= R';

od;
return if (RN F # 0) then n else oo;

A trace of this algorithm “minimum2” is given in Figure

a(b).

w w
\TN
oN Ok O

Ut

(a) Maximum delays

/%

O T O O
| /
(b) Descendants of the initial states I

which are ascendants of the final
states F’

Figure 5

Observe that:

— any upper-approximate solution pre[t*] ' C A can be used
in algorithm “minimum2”;

— the upper approximation A of pre[¢t*] F which is used in
the loop can be different at each iteration; and

—in the worst possible case, when the analysis by abstract
interpretation is totally unfruitful, we have A = S in which
case algorithm “minimum?2” simply amounts to algorithm
“minimum1”.

2.3 Maximum Delay Problem

The mazimum delay problem consists in computing the length
m of (i.e. number of edges in) a longest path from an initial
state in [/ to a final state in F:

m

= max{n|3sc s € F:(s, sy e (=F11)"}
PaN

max I¥ oo

An example of maximum delays is given in Figure 5(a). The
following mazimum delay algorithm has been proposed by
Campos et al. 1995:

procedure maximuml (I, F);

R = S;

n = 0;

R := (S - F),

while (R# R'ARNT #0) do
R' = R;
n:=n-+1;

R :=pre[{] R n (S — F);
od;

return if (R’ = R) then oo else n;

94

(b) Algorithm “maximum?2”

Figure 6: Execution trace of maximum algorithm

An example of execution trace of the “maximuml” algo-
rithm is given in Figure 6(a). Although this is left un-
specified by Campos et al. 1995, the correctness of this
maximum]1 delay algorithm relies on several hypotheses. First
the sets of initial states I and final states F' must be nonempty
and disjoint. Second, there exists at least one path from
some initial state to some final state. Third, there is no
path starting from an initial state, ending in a blocking
state (with no successor by the transition relation) never
passing through a final state. Fourth and finally, there is no
infinite or endless cyclic path starting from an initial state
and never passing through a final state. If one of these hy-
potheses is not satisfied, the algorithm maximuml returns
an upper bound of the maximal path length.

Once again abstraction of the transition system would
also provide an upper bound of the maximal path length
hence would be incorrect. Exact symbolic methods have a
potentially serious inefficiency problem because of useless
exploration of dead-end states (marked © in Figure 6(a))
which are not reachable from initial states or cannot lead to
a final state. Observe that partial-order methods [Valmari
1993], which are based on the fact that in concurrent sys-
tems, the total effect of a set of actions is often independent
of the order in which the actions are taken, would locally
reduce the number of considered paths, but would not per-
form a global elimination of the remaining paths that are
useless for the verification.

Once again an automatic analysis by abstract interpre-
tation can determine a super-set U of the descendants of
the initial states I which are ascendants of the final states
F (the principle of determination of U by abstract interpre-
tation will be precisely defined in Section 4.3):

U D post[t"]I Nnpre[t"] F

{s|3s' €1,s" € F: (s, s) €t™ n{s, sy €t*}

The set of descendants of the initial states I which are ascen-
dants of the final states F' is illustrated by Figure 5(b). This
leads to a revisited maximum delay algorithm, as follows:

procedure maximum? (I, F);
R =5
n = 0;
R=|(U-F)|;
while (R ZR'ARNI #0) do
R' = R;
n:=n-+1;
R:=pre[t] R' 0 |(U - F)|;
od;
return if (R’ = R) then oo else n;

An example of execution trace of the “maximum?2” algo-
rithm is given in Figure 6(b). Observe that any upper-
approximation post[¢*]I N pre[t*] F C U of the descendants
of the initial states I which are ascendants of the final states
F is correct, since in the worst possible case, when U = 5,
algorithm “maximum?2” simply amounts to “maximuml”.
Moreover, a different upper approximation U of post[t*]1 N
pre[t*] F' can be used at each iteration in the loop. Notice
also that this restriction idea applies both to exhaustive and
on-the-fly state space exploration techniques.

In the case of symbolic model-checking, say with BDDs
(or polyhedra), the intersection pre[t] R’ N (U — F') may be
a BDD (or polyhedra) of much greater size than pre[t] R’,
although it describes a smaller set of states. In this case, the
computation of the intersection is not mandatory, the infor-
mation being still useful for simplifying the BDD (or polyhe-
dra), e.g. by pruning, in order to reduce its size. Several such
operators have been suggested such as the cofactor [Touati
et al. 1990], constrain [Coudert, Berthet, and Madre 1990]
or restrict [Coudert, Madre, and Berthet 1990] operators on
BDDs and the polyhedron simplification of [Halbwachs and
Raymond 1996].

3 Classical Abstract Interpretation Prob-
lems

Finding upper (or dually lower) approximations of the sets
of:
— descendants post[t*]] of the initial states I [Cousot
1981];
— ascendants pre[t*] F of the final states F' [Cousot 1981];
and
— descendants post[t*] 1 N pre[t*] F of the initial states
I which are ascendants of the final states F' [Cousot
1978; Cousot and Cousot 1992a];
are classical problems in abstract interpretation with appli-
cations to:
— optimizing compilers;
— parallelization, vectorization, partial evaluation, pro-
gram transformation;
— abstract debugging, and the like.
The following example of PASCAL program analysis of the
descendants of the initial states using an interval approxima-
tion of set of possible values of variables [Cousot and Cousot
1977; Cousot 1981] has been given by Bourdoncle 1993. All
comments { ...} have been generated automatically by the
analyzer. They clearly show that non-trivial information

95

about the infinite state space (in this case run-time values
of variables at each program points) can be determined au-
tomatically by abstract interpretation:

program Variant_of_function_91_of_McCarthy;

var X, Y : integer;
function F(X : integer) : integer;
begin
if X > 100 then
F:=X - 10
{ F € [91, maxint - 10] }
else
F = F%F(F(F(X + 33))));
{ F e [91, 931 }
{ F € [91, maxint - 10] }
end;
begin
readln(X);
Y := F(X);
{Y € [91, maxint - 10] }
end.

It has been proved automatically that the result of F is neces-
sarily greater than or equal to 91, if the call ever terminates.

The following example of approximation of the descen-
dants of the initial states which are ascendants of the final
states using interval analysis has also been given by Bour-
doncle 1993. The comment {% true? %} has been included
by the programmer. It is an intermittent assertion specifying
the final states in that it stipulates that program execution
should definitely terminate.

program Variant_of_function_91_of McCarthy;

var X, Y : integer;
function F(X : integer) : integer;
begin
if X > 100 then F := X — 10
clse F = F(F(F(F(F(F(E(F(F(F(X + 90)))))))));
end;
begin
readln(X);

= F(X);
{% true? %}
end.

The other comment { X > 100 } has been automatically
generated by the abstract debugger (for short, the other
automatically generated comments are not shown). If not
satisfied, the program must necessarily go wrong either be-
cause of an inevitable run-time error (such as out of mem-
ory) or because of certain nontermination. This is precisely
the case because of cycles such as F(100) — F(190) — F(180)
— F(170) — F(160) — F(150) — F(140) — F(130) — F(120)
— F(110) — F(100) — and so on. The intended constant
was not 90 but 91! This shows that the restriction of the
set of states of a transition system to those that lie on a
path from an initial state to a final state by a preliminary
abstract interpretation can cut down infinite paths.

4 Parallel Combination of Abstract Inter-
pretation and Model Checking

Abstract interpretation is a theory of semantic approxima-
tion [Cousot 1996]. Here approximation means logical im-
plication i.e. subsets of states inclusion. Moreover the se-
mantics to be approximated is the forward collecting seman-
tics post[t*] I, the backward collecting semantics pre[t*] F'

[Cousot 1978; Cousot and Cousot 1979] or the descendants
post[t*] I N pre[t*] F' of the initial states I which are ascen-
dants of the final states F' [Cousot 1978; Cousot and Cousot
1992a]. We briefly recall how the upper-approximations D
of post[t*]I, A of pre[t*] F and U of post[t*]I N pre[t*] F
can be automatically computed by abstract interpretation.
This is necessary to show how intermediate abstract inter-
pretation results can be used, as they become available, to
reduce the size of the state space to be explored during par-
allel model-checking.

4.1 Forward Program Analysis by Abstract

Interpretation

In order to obtain an upper approximation D of post[t*]]

= lfpg AX e] Upost[t] X one considers a Galois connection

P
<$O(S)a g> o <La E>
that is, by definition, a pair of maps a € p(S) — L and
v € L — p(S) from the powerset p(S) ordered by subset
inclusion C into the poset (L, C) of abstract properties’
partially ordered by C such that:

VP Ep(S):VQeL: a(P)CQ <= P CH~(Q).

It follows that o and 4 are necessarily monotonic. Moreover
any concrete property P € p(.5) has a best (i.e. most precise)
upper approximation a(P) in L, such that P C y(a(P)).
¥

We write {(p(S), C) == (L, C) when « is surjective (or
equivalently + is injective or o o v = 1 is the identity on
L). In this case, the poset (L, C) is necessarily is a complete
lattice (L, C, 1, T, U, U) with a(p(S)) = L. a(P) should
be machine-representable which, in general, may not be the
case of P.

The appropriate choice of the abstract domain L is prob-
lem dependent. The design and composition of convenient
abstract domains has been extensively developed in the ab-
stract interpretation literature and will not be further con-
sidered here. For example, Clarke et al. 1992, Cleaveland
et al. 1995, Dams et al. 1994 and others implicitly consider
the Galois connection {p(S5), C) {p(A), C), where S'is
the set of concrete states and A is the set of abstract states,
is necessarily of the form o(X) = {h(z) | z € X} and 7(Y)
2 (x| h(z) € Y} where h € S — A is the approxima-
tion mapping. If k is surjective (as assumed e.g. in Jackson
1994), then so is a whence {p(S5), C) T‘L» (p(A4), C).

We then use the fact that if (M, <, 0, V) is a cpo, the
pair {a, v) is a Galois connection (M, <) % (L,), T €
M +m— M and 7" € L —m— L are monotonic and
VyeL:aoT ov(y)<THy) then lip™ T < v(Ifp= T*) and
equivalently cy(lfpj T) C lfpE T* see Cousot and Cousot
1979. So let F € L —m— L be such that o o (AXe T U

post[t] X) o v E F, pointwise. The transfinite iteration
sequence F° = a(@), Fort = F(F%, F> = I_l F? for limit
5<A

—
o

. . . . c
ordinals is ultimately stationary and converges to lfp~ F.

1Weaker models of abstract interpretation can be considered
[Cousot and Cousot 1992b], which are mandatory when considering
abstract properties with no best approximation [e.g. Cousot and Halb-
wachs 1978].

96

This directly leads to an iterative algorithm which is finitely
convergent when [satisfies the ascending chain condition®.
In general however, the iterates ¢, § > 0 do not con-

c . .

verge to Ifp~ F in finitely many steps, so that one must
resort to a widening operator which can be used both to
upper-approximate inexisting lubs [as in e.g. Cousot and
Halbwachs 1978] and to enforce finite convergence of in-
creasing iterations [Cousot and Cousot 1977]. The widen-
ing operator V € L x L + L should be an upper bound
(that is Ve,y € L : @ C ¢ Vy and Vo,y € L : y C
¢ V y) and enforce finite convergence (for all increasing
chains z° C «! C ... C z' C ... the increasing chain de-
fined by ¢° = 2°,..., ¢! is not strictly
increasing).

= ¢ Vit

The upward iteration sequence with widening is F° 2
a(B), FH 2 Fif F(F') C F' and FH 2 FP 7 F(F
otherwise. It is ultimately stationary and its limit F is a
sound upper approximation of lfpE F in that lfpE FCF.

If T(ﬁ) C F and the iterates 70 2 F, Fitt 2 F(F%)
and F* £ |_| F? for limit ordinals do not finitely converge,
we use a nzfr<rgwing operator A to speed up the convergence.

A narrowing operator A € Lx L — Lissuch thatVz,y € L :

tCy= ¢ CxAyLC yand for all decreasing chains z° J
1 i+l _
Y =

#' O ... the decreasing chain defined by y° = z°, ..
y' Azt s not strictly decreasing.

So,if F(X)=XLC T(ﬁ) C F then the downward itera-
tion sequence with narrowing is defined by F° = ﬁ, Fitl 2
FUif F(F') = F' and Ft1 2 F' A F(F*) otherwise. This
iteration sequence is ultimately stationary and its limit F
is a sound upper approximation of the fixpoint X C F C
F which is better than the one F obtained by widening. In
conclusion lfpE F C F C F so that by monotony post[t*]]
= lfpg AX e TUpost[t] X C ~(F) C 7(]:-) It follows that
we can choose the upper approximation D of post[t*]] to
be D 2 ~(F).

As already mentioned design of the abstract algebra (L,
C, L T,um ¥V, A fi,..., fn) and of the transformer

F (usually composed out of the primitives fi, ..., f,) are
problem dependent and will not be further considered here.

4.2 Backward Program Analysis by Ab-
stract Interpretation

The situation is similar for computing an upper approxima-
tion A of pre[t*] F = lfpg AX e FUpre[t] X using B € L —
m— [, such that a o (AX ® FUpre[t] X) o v C B, pointwise”.
One first uses an upward iteration sequence with widening
converging to B followed by a downward iteration sequence
with narrowing converging to B such that lfpE BC BLC
B whence by monotony pre[t*] F = lfpg AX e F Upre[t] X
C v(B) C 4(B).
approximation A of pre[t*] F' to be A = ~(B).

It follows that we can choose the upper

2Any strictly ascending chain zg C #1 C --- of elements of L is
necessarily finite.

3 More generally one could consider a different abstract domain for
backward analysis, the generalization being immediate.

4.3 Combining Forward and Backward Pro-
gram Analysis by Abstract Interpreta-
tion

In order to upper approximate post[t*] I N pre[t*] F', we use

F which is AX ® I Upost[t] X up to abstraction and B which

is AY epre[t{]Y U F up to abstraction. The following ap-

proximation sequence is always more precise than or equal
to F M B [Cousot 1978; Cousot and Cousot 1992a]:

— U° is the limit of the upward iteration sequence with
widening for F and 7° is the limit of the corresponding
downward iteration sequence with narrowing®;

— U?™1 s the limit of the upper upward iteration se-
quence with widening for AX ¢ (U?"MF(X)) and U?"*?
is the limit of the corresponding downward iteration
sequence with narrowing;

— U?*2 is the limit of the upward iteration sequence
with widening for AX ¢ (I72"+1 M B(X)) and "2 is
the limit of the corresponding downward iteration se-
quence with narrowing.

Observe that the sequence U°, [7°, ..., 72+ {72t [j2nt2
U?"*2 . is a descending chain and the concretization of
any element in this sequence is a C-upper approximation of

post[t*] 1 N pre[t*] F'.

4.4 Parallel Abstract Interpretation and
Model Checking

We are now in position to explain how the verification by
model-checking can interact in parallel with the analysis of
the system by abstract interpretation.

Consider for example algorithm “maximum?2”. Execu-
tion of algorithm “maximum2” is started in parallel with
the computation of the upper approximation sequence T,
Ue, o, ..., Ul gEntlogrend2 g2nd2 0 At each
iteration of the main loop in “maximum2”, one can chose U
as the element in this sequence which is currently available®.
Observe that if the lattice I does not satisfy the descending
chain condition®, this approximation sequence may be infi-
nite. We can enforce finite convergence using a narrowing
as suggested in [Cousot 1978; Cousot and Cousot 1992a] or
more simply stop the computation as soon as the parallel
asynchronous execution of “maximum2” terminates.

Finally, it should be observed that initially the model
checking algorithm manipulates small sets while the infor-
mation T I e | g ... provided by abstract interpre-
tation is rough. While the parallel computations go on, the
model checking algorithm manipulates larger and larger sets
while the information U provided by abstract interpretation

.yt gyttt Q Ut J U t? O is more and
more precise, so that the restriction is more efficient. It fol-
lows that the parallel strategy is adequate since the precise
information will be available when most strongly needed.

4Depending of the considered problem, it might be semantically
equivalent but more efficient to start with B instead of F.

5Observe that all iterates of the downward iteration with narrow-
ing to compute U* from U* could also have been included in this
sequence.

6Any strictly descending chain g J ¢y 3 - -
necessarily finite.

of elements of L is

97

In the case of algorithm “minimum?2”, the first iterates
B° =0, B, ... of the upward iteration sequence with widen-
ing for B are not upper approximations of pre[t*] F. It fol-
lows that one has to choose A = S while waiting for their
limit B to be computed. Once available, one can use the
iterates B = B, B!, ...of the corresponding downward iter-
ation sequence with narrowing as successive values of A in
“minimum2”. However, while waiting for B to be available,
the successive values of A can be chosen as the downward
iterates for the greatest fixpoint gfp~ B since they are all

. . [
upper approximations of Ifp~ B and better than 5.

5 Conclusion

Existing combinations of model-checking and abstract inter-
pretation have been concerned with the symbolic represen-
tation of abstract properties and the approximation of the
state transition relation, in both cases with or without loss
of information. Building upon [Cousot 1995], we have pro-
posed another form of combination which, by a preliminary
analysis of the system (in forward, backward or combined
direction) or better, in parallel with verification, one can
reduce the size of the part of the state graph that has to
be explored (in the other direction) for verification by ex-
haustive or on-the-fly model-checking. The combination is
at almost no cost since the parallel execution of the abstract
interpreter and the model checker is asynchronous, abstract
properties being used by the model checker as they become
available. Other forms of restrictions have been proposed
by Halbwachs and Raymond 1996 which are amenable to
parallelization in a similar way.

This method, which makes no approximation on the states
and transitions of the model, is nevertheless partial since it
is not guaranteed that the reduction always leads to a fi-
nite state exploration sub-graph. Because of its precision, it
should be tried first or in parallel. In case of computational
verification costs which remain prohibitive despite the re-
striction, one can always later resort to the more classical
property and transition abstraction.

Remarkably enough, the method then remains applicable
to the more abstract model of properties and/or transitions.
Indeed, by Cousot and Cousot 1992c, the abstract interpre-
tation of the refined model will always be more precise than
the analysis of the abstract model. Consequently the prelim-
inary analysis has not been done for nothing. It follows that
the idea can always be applied, and thanks to an abstract in-
terpretation performed in parallel with the model-checking
verification, should have a marginal cost only.

Similar restriction ideas apply to bisimulation equiva-
lence checking [see e.g. Bouajjani et al. 1992; Fernandez
1993]. They seem indispensable to cope with infinite state
systems, real-time systems [Halbwachs 1994] and hybrid sys-
tems [Halbwachs et al. 1994], in particular to take possible
values of variables, messages, queues, and the like into ac-
count, which would be a significant step in the automated
analysis of software.

Acknowledgments

We thank the anonymous AAS 97 referees for their com-
ments.

References

AKERS, 5. 1978.
put. C-27, 6.

Bouajiani, A., FERNANDEZ, J.-C., HatBwacHs, N., RaymonDp, P., AND
Rater, C. 1992, Minimal state graph generation. Sci. Com-
put. Prog. 18, 247-269.

BourponNcLE, F. 1993. Abstract debugging of higher-order imper-
ative languages. In Proc. PLDI, pp. 46-55. ACM Press.

BryanT, R. 1986. Graph-based algorithms for boolean function
manipulation. IEEE Trans. Comput. C-35, 8.

BurcH, J., CLarRkE, E.,, McMmLan, K., DL, D., anp Hwang, L.

Binary decision diagrams. IEEE Trans. Com-

1992. Symbolic model checking: 1020 states and beyond. Inf.
& Comp. 98, 2, 142-170.
Campos, 5., CLaRkE, E., MARRERO, W., AND MINEA, M. 1995.

Verus: A tool for quantitative analysis of finite-state real-time
systems. In Proc. ACM SIGPLAN 1995 Workshop on Lan-
guages, Compilers & Tools for Real-Time Systems (La Jolla,
Calif., jun 21-22, 1995), pp. 75-83.

CLARKE, E., EmERsoN, E., anD SisTLa, A. 1983, Automatic ver-
ification of finite-state concurrent systems using temporal logic
specifications. In 10th popL (jan 1983). ACM Press.

CLARKE, E., GRUMBERG, ., AND Long, D. 1992. Model checking
abstraction. In 19" POPL (Albuquerque, N.M., 1992), pp. 343~
354. ACM Press.

CLEAVELAND, R., IVER, P., AND YANKELEVITCH, D. 1995. Optimal-
ity in abstractions of model checking. In A. MycrorFT Ed., Proc.
SAS’95, Glasgow Uk, 25-27 sep 1995, LNCS 983, pp. 51-63.
Springer- Verlag.

CouperT, O., BERTHET, C., AND MADRE, J. 1990. Verification of
synchronous sequential machines based on symbolic execution.
In J. Strakis Ed., Proc. Int. Work. on Automatic Verification
Methods for Finite State Systems, Grenoble, France, 1989,
LNCS 407, pp. 365-373. Springer- Verlag.

CouperT, (., MADRE, J., AND BERTHET, C. 1990. Verifying tempo-
ral properties of sequential machines without building their state
diagrams. In E. CLARKE AND R. KursHAN Eds., Computer Atded
Verification ’90, Number 3 in DIMACS Volume Series, pp. 75—
84. AMS.

Cousor, P. 1978. Méthodes itératives de construction et
d’approximation de points fixes d’opérateurs monotones sur un
treillis, analyse sémantique de programmes. Ph. D. thesis, Uni-
versité scientifique et médicale de Grenoble, Grenoble, FRA.

CousoT, P. 1981. Semantic foundations of program analysis. In
3. MucHNICK AND N. Jongs Eds., Program Flow Analysts: Theory
and Applications, Chapter 10, pp. 303-342. Prentice-Hall.

CousoT, P. 1995, Abstract model checking, invited lecture. In 7th
Int. Conf. CAV ’95 (Liége, BEL, 5 jul 1995).

CousoT, P, 1996. Abstract interpretation. Symposium on Models
of Programming Languages and Computation, ACM Comput.
Surv. 28, 2, 324-328.

Cousor, P. anp Cousor, R. 1977. Abstract interpretation: a uni-
fied lattice model for static analysis of programs by construction
or approximation of fixpoints. In 4th POPL (Los Angeles, Calif.,
1977), pp. 238-252. ACM Press.

Cousor, P. anp Cousotr, R. 1979, Systematic design of program
analysis frameworks. In 6" popL (San Antonio, Texas, 1979),
pp. 269-282. ACM Press.

CousoT, P. anp CousoT, R. 1992a.
application to logic programs. J. Logic Prog. 137, 2-3, 103-179.

Cousort, P. anD CousoT, R, 1992b. Abstract interpretation frame-
works. J. Logic and Comp. 2, 4 (aug), 511-547.

Cousot, P. anp Cousor, R. 1992c. Comparing the Galois con-
nection and widening/narrowing approaches to abstract interpre-
tation, invited paper. In M. BRUYNOOGHE anND M. WiRsiNG Eds.,
Proc. Int. Work. PLILP ’92, Leuven, BEL, 13-17 aug 1992, LNCS
631, pp. 269-295. Springer-Verlag.

CousoT, P. aND Hanpwachs, N. 1978,
ear restraints among variables of a program. In sth popL (Tuc-
son, Ariz., 1978), pp. 84-97. ACM Press.

CriDLIG, R. 1995, Semantic analysis of shared-memory concurrent
languages using abstract model-checking. In Proc. PEPM 95, La
Jolla, Calif. (21-23 jun 1995). ACM Press.

Abstract interpretation and

Automatic discovery of lin-

"The editor of JLP has mistakenly published the unread-
able galley proof. For a correct version of this paper, see
http://www.enz . fr/"cousot.

98

OriDLIG, R. 1996. Semantic analysis of concurrent ml by abstract
model-checking. In B. STEFFEN aND T. MARGARIA Eds., Proc. Int.
Work. on Verification of Infinite State Systems, vol. MIP-9614
(aug 1996). Universitat PassauGer.

Dams, D., GrRuMmBERG, 0., aND GERTH, R. 1994 Abstract
interpretation of reactive systems: Abstractions preserving
VYCTL*, 3CTL* and CTL*. In E. QupEROG Ed., Proc. IFIP
WGE2.1/WG2.2/WGE2.3 Working Conf. on Programming Con-
cepts, Methods and Calculi (PROCOMET), IFIP Transactions
(jun 1994). North-Holland/Elsevier.

Daws, C., OLIVERO, A., TRIPAKIS, 3., AND YOVINE, S. 1996. The tool
KRONOS. In R. ALUR, T. HENZINGER, aND E. SoNTAG Eds., Hybrid
Systems III, Verification and Control, LNCS 1066 (1996), pp.
208-219. Springer-Verlag.

FERNANDEZ, J.-C. 1993. Abstract interpretation and verification
of reactive systems. In P. Cousor, P. FaLaschi, G. FILE, aND
A. Rauzy Eds., Proc. BTd Int. Work. WSA’98 on Static Analy-
sts, Padova, 1TA, LNCS 724, pp. 60-71. Springer-Verlag.

CrarF, S. aND LotsEaux, C. 1993. A tool for symbolic program ver-

ification and abstraction. In C. CourcouBaTis Ed., Proc. 5t e,
Conf. CAV’93, Elounda, GRE, LNCS 697, pp. 71-84. Springer-
Verlag.

Hawbwachs, N. 1993. Delays analysis in synchronous programs. In
C. CourcouBatis Ed., Proc. 5t Int. Conf. CAV ’93, Elounda,
GRE, LNCS 697, pp. 333-346. Springer-Verlag.

Hawbwachs, N. 1994. About synchronous programming and ab-
stract interpretation. In B. LE CHARLIER Ed., Proc. SAS’94, Na-
mur, BEL, 20-22 sep 1994, LNCS 864, pp. 179-192. Springer-
Verlag.

HavLswacHus, N., Proy, J.-}i)‘, AND Ravmonp, P, 1994, Verification
of linear hybrid systems by means of convex approximations. In
B. LE CHARLIER Ed., Proc. SAS 94, Namur, BEL, 20-22 sep 1994,
LNCS 864, pp. 223-237. Springer- Verlag.

HavLpwacHs, N. aND RavyMonD, P. 1996. On the use of approxi-
mations in symbolic model checking. Tech. rep. SPECTRE L21
(jan), VERIMAG laboratory, Grenoble, France.

HENZINGER, T. anD Ho, P.-H. 1995, Algorithmic analysis of non-

linear hybrid systems. In P. WorpER Ed., Proc. 7P It Conf.
CAV '95, Liege, pEL, LNCS 939 (3-5 jul 1995), pp. 225-238.
Springer-Verlag.

HENZINGER, T., NIcoLLIN, X., SiFakis, J., aND YOVINE, S.
Symbolic model-checking for real-time systems. In Proc.
LICS’92. IEEE Comp. Soc. Press.

JacksoN, D. 1994. Abstract model checking of infinite specifica-

tions. In M. NaFTALIN, T. DENVIR, AND M. BERTRAN Eds., 2nd pat
Symp. of Formal Methods Europe FME ’94: Industrial Bene-
fit of Formal Methods, Barcelona Esp, LNCS 873, pp. 519-531.
Springer-Verlag.

Karr, M. 1976. Affine relationships among variables of a program.
ACTAI2 6, 133-151.

KEeLB, P. 1994. Model checking and abstraction: A framework ap-
proximating both truth and failure information. Technical report,
University of Oldenburg.

Lowseaux, C., GRaF, 5., SIFAKIS, J., BouaniaNi, A., AND BENSALEM, S.
1995. Property preserving abstractions for the verification of
concurrent systems. Formal Methods in System Design 6, 1.

MAUBORGNE, L. 1994. Abstract interpretation using TDGs. In
B. LE CHARLIER Ed., Proc. SAS 94, Namur, BEL, 20-22 sep 1994,
LNCS 864, pp. 363-379. Springer- Verlag.

STEFFEN, B. 1991. Data flow analysis as model checking. In T. ITo
AND A. MeYER Eds., Proc. Int. Conf. TACS ’91, Sendai, JPN, pp.
346-364. Springer-Verlag.

Touati, H., Savo), H.,, LN, B., BRavToN, R., AND SANGIOVANNI-
VINCENTELLI, S. 1990. Implicit state enumeration of finite
state machines using BDDs. In A. SANGIOVANNI-VINCENTELLI AND
S. Goto Eds., Proc. Int. Conf. ICCAD 90 (Santa Clara, Calif.,
nov 1990), pp. 130-133. IEEE Comp. Soc. Press.

VaLMAaRI, A. 1993. On-the-fly verification with stubborn sets. In

C. CourcouBatis Ed., Proc. 5t e Conf. CAV ’93, Elounda,
GRE, LNCS 697, pp. 397-96. Springer- Verlag.

1992.
5th

