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Abstract. In this paper; we describe an advanced simulation environment which is used to examine, validate, andpredict the performance 
of mobile wireless network systems. This simulation environment overcomes many of the limitations found with analytical models, experi- 
mentation, and other commercial network simulators available on the market today We identify a set of components which make up mobile 
wireless systems and describe a set offlexible modules which can be used to model the various components and their integration. These 
models are developed using the Maisie simulation language. By modeling the various components and their integration, this simulation envi- 
ronment is able to accurately predict the performance bottlenecks of a multimedia wireless network system being developed at UCLA, deter- 
mine the trade-offpoint between the various bottlenecks, andprovide performance measurements and validation of algorithms which are not 
possible through experimentation and too complexfor analysis. 

1. Introduction 

When developing mobile wireless network systems (i.e., wireless 
networking algorithms, node architectures, and network infrastruc- 
tures), the designer is presented with numerous design alternatives. 
There are numerous factors which can impact the analysis, perfor- 
mance and validation of these design alternatives. These. factors 
range from having to support different patterns of node mobility to 
integrating the traffic generators, networking algorithms, and oper- 
ating system capabilities. 

A few operating system kernels and languages have been 

designed to support wireless and mobile communication [1], and a 
number of protocols have been devised to solve the numerous 
topology setup and maintenance, media access control, and trans- 
mission problems in the mobile environment [ll]. Commercial 
radios designed to be hooked up with laptops for wireless multime- 
dia transmissions are available in the market. Thus although solu- 
tions to different facets of the wireless mobile information system 
design are appearing, relatively little effort has been devoted to 
understanding the performance impact of the interactions among 
different components of the system. 

Traditionally, analysis, simulation and measurement have all 
been used to evaluate the performance of network protocols and 
multimedia systems. Measurement-based approaches are useful 
only after the system has been deployed. Although they offer the 
most accurate evaluations of performance problems, they are often 
inadequate because it may be infeasible to modify the deployed sys- 
tem to experiment with a large range of design parameters. Even 
when such modifications are feasible, the cost of the necessary soft- 
ware and hardware modifications may be exorbitant. Analytical 
models offer the opportunity to quickly examine a large parameter 
space to identify efficient configurations; however for complex sys- 
tems with many interacting components, analytical models may 
either be inaccurate or computationally intractable. For complex, 
heterogenous systems, simulations are often the only realistic alter- 
native to performance prediction. 

* This work was supported in part by the Advanced Research 
Projects Agency, ARPAICSTO, under Contract J-FBI-93- 112 Com- 
puter Aided Design of High Performance Wireless Networked Sys- 
tems. 

The primary drawback with detailed simulation models is that 
they are frequently slow. Experience with many existing network 
simulators has shown that a performance study of wireless proto 
cols for even small networks (tens of nodes) can take many days; 
running such simulations for networks involving a large number of 
mobile elements is clearly infeasible. Recent experience with paral- 
lel execution of models for personal communication systems has 
shown that parallelism offers significant potential to improve the 
execution time for these models; it is likely that these techniques 
can also be exploited to improve the execution time for simulation 
models of wireless networks. This paper describes such an environ- 
ment. 

The rest of the paper is organized into several sections. We begin 
with a description of the primary components which make up 
mobile wireless systems in section 2. Section 3 describes the new 
simulation environment used to analyze performance of such sys- 
tems. We see how the environment and various models of the sys- 
tem are built using an existing message-passing based simulation 
language called Maisie. Section 4 presents the results of a simula- 
tion study to evaluate the performance of a specific mobile wireless 
multimedia system that is being designed at UCLA. Experiments to 
validate the simulation are also presented. In section 5 we see the 
related work in this area and then the conclusion and acknowledg- 
ments are found in sections 6 and 7 respectively. 

2. Mobile Wireless Systems 

There are numerous ways to design and examine mobile wireless 
systems. In order to provide a common reference model to analyz- 
ing these systems, we break the system down into three integrated 
levels: network, node, and algorithm. The network level is used to 
describe the architecture of the network and details of each node 
such as its communication capability, location, and impact on the 
network. The node level is used to describe. the details of the node 
such as its hardware and software capabilities and interaction such 
as with the operating system and among algorithms. The algorithm 
level describes the details of a specific algorithm or layer of the pro- 
tocol stack. 
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2.1 Mobile Wireless Networks 
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Figure 1: Mobile Wireless Networks 

In figure. 1 we see an example of a mobile wireless network. This 
network is composed of not only a static wired backbone and a few 
wireless cells, but also a set of nodes which am able to support 
instant infrastructure, and multi-hop packet radio networks. We 
include throughout this paper the study of instant infrastructure net- 
works, nodes and their algorithms since support for this architecture 
requires additional flexibility upon the simulation environment and 
illustrates the complex environment mobile wireless network sys- 
tems can operate in. 

The network nodes shown in figure 1 are comprised of numerous 
software clomponents which can be used to support self-configur- 
ing, multihop, multimedia networking architectures and can be 

added to the capability of each node as shown in figure 2. 

2.2 Mobile Wireless Nodes 

The design of mobile wireless nodes/terminals have been studied 

by various groups [17][14]. In this section we describe the compo- 
nents which make up the node architecture and the implementation 
of the network control functions, multimedia suppon communica- 
tion substcates, and the interfaces between them. The node func- 
tionality, as shown in figure 2, is supported in the nodes being 
developed in the Wireless Adaptive Mobile Information System 
(WAMIS) research project at UCLA [ 141. These nodes are used as a 
test-bench For experimentation and validation. 

In the following subsections, we will describe various compo- 
nents and algorithms which make up this typical instant infrastruc- 
ture node’s functionality. 

2.2.1 Applications 

Applications are needed for interaction between the system and 
the user. Multimedia support is necessary not only for acquisition 
and presentation of video, speech, and data but also for coding/ 
decoding for efficient transmission through the wireless network. 
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Figure 2: Node Functionality 

The standard set of TCP/IP protocol suite applications support 
text based services like remote login or file transfers. New applica- 
tions am now appearing which support multimedia (Netscape and 
video conferencing applications). In order to see the effect and 
demonstrate multimedia over mobile wireless networks, a video 
conferencing application was developed on the test-bench. This 
application (VideoTALK) brings together video, which uses UDP, 
and data, which uses TCP, into a single application on the laptop. In 
order to test the performance of the system, testing tools were 
developed to measure throughput, delay, packet loss, and track 
adaptive parameters in the communication device (radio) such as 
code, power, and spreading factor (i.e. chips/bit). A topology ana- 
lyzer program (TOPO) was developed which can be used in the 
simulation environment or in the implemented system to graphi- 
cally analyze the virtual topology of the wireless multihop s&net. 

2.2.2 Operating System 

The operating system is responsible for integrating all these net- 
work control components together. There are numerous operating 
systems available today such as Microsoft Windows, PC-Disk 
Operating System, Mac OS, and UNIX which can have a big 
impact on the node’s capabilities and performance. However, these 
systems are not designed for ease of programmability or flexibility 
in the implementation and validation of networking algorithms and 
thus do not lend themselves to a flexible mobile wireless network 
system test-bench. An operating system is desired which is compat- 
ible with existing platforms today but still provides functionality 
such as multi-tasking and packet processing capability useful to 
network control algorithms and can be easily modeled in the simu- 
lation environment. A network operating system is able to function 
on a layer on top of an existing native operating system and provide 
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the required network functionality and services. A public domain 
network operating system, NOS (also known as KA9Q developed 
by Phil Kam), has readily available source code and meets the flex- 

ibility requirements[5]. We use this network operating system in 

our test-bench [Figure 31. It runs on top of DOS and includes its 

Figure 3: Network Operating System Components 

own multitasking scheduler. The benefit of this multitasking operat- 
ing system is that each algorithm or protocol necessary to support 
this network can be developed as its own process. The multitasking 
kernel allows these algorithms and protocols to multitask, sharing 
the CPU, and yet provide semantics such as wait and signal sema- 
phores for inter-process (inter-algorithm) communication. Time 
processing routines, such as TDMA, are able to sleep a process for 
a defined period of time, and can be used to allow other protocols 
and algorithms to run without halting or consuming unnecessary 
CPU processing time. Memory buffers (mbufs as found in BSD 
UNIX system buffers) are used to minimize overhead by allowing 
memory blocks to be linked together for performing encapsulation, 
packetization, etc. 

Our current test-bench uses a NEC Versa 486 33Mhz laptop and 
a docking station to support custom interfaces and hardware. The 
WAMIS Network Operating System is able to run on any laptop as 

long as that laptop supports DOS and the required interface cards. 
A Packet Interface (PI) card is used as the network interface card to 
integrate the wireless communication hardware into the system. In 
order to provide a standard interface to the network operating sys- 
tem, a packet driver interface is used. The packet driver interface is 
based upon FTP’s packet driver specification. This interface allows 
various network interface cards (like the PI card or a PCMCIA 
card) to be used in place of one another without having to change 
the details of the network operating system in order to support a 
new or different communication substrate. A packet driver is loaded 
which corresponds to the correct Network Interface Card (NIC) and 
its capability. There are also other communication hardware driv- 
ers/interfaces such as the NDIS or ODI drivers which can be used to 
integrate the communication hardware with the operating system. 

2.3 Multimedia Support 

Various multimedia hardware support, such as speech (DSP) and 
video (Frame Grabber) cards, is now available for laptops. As more 
multimedia devices are made available for the mobile wireless net- 

work nodes, the greater impact and demand on the performance, 
capabilities and functions will have on the design and integration of 
such systems. The system integration and networking support 
issues and analysis will become critical since these multimedia 
devices place greater demands on the system architecture, such as 
bus bandwidth, and networking services, such as virtual circuits. 

2.4 Wireless Communication Hardware 

There are numerous wireless radio modems commercially avail- 

able [lo]. Many of the algorithms being designed for mobile wire- 
less systems are built to support a particular device/manufacturer. 
Algorithms which are not designed for a specific radio face the 
problem of trying to predict the performance of their algorithms 
over such a wide parameter space of available radio alternatives. 
The best way to validate over a wide parameter space of various 
radios, is to utilize the models of the various radios in the simula- 
tion environment and do experimentation with those which are fea- 
sible to experiment with. 

The UCLA WAMIS test-bench not only supports commercially 
available radios, such as the Proxim RangeLan 2, but also uses a 
specialized direct sequence spread spectrum radio designed and 
implemented at UCLA [8][9]. This radio is used to support instant 
infrastructure networking through adaptive hardware control and 
feedback with the networking algorithms. This radio is currently 
able to operate at speeds from 7 to 32 Kbps depending on the 
spreading factor desired. Although other radios are able to support 
higher data rates, this radios provides a unique ability to control 
various hardware parameters such as the spreading (chips/bit), 
code, power, and even acquisition time. In Table 1 we can see the 
spreading factor (chips/bit), data rate, and acquisition time trade- 
off. It should take anywhere from 500 to 1000 data bits to acquire 

chips Data Optimistic Conservative 
Per Rate ACQ ACQ 
bit (kbps) Time Time 

31 32.258 15.5 ms 31 ms 

63 15.873 31.5 ms 63 ms 

127 7.824 63.5 ms 127 ms 

Table 1: UCLA Radio Parameters 

the signal so a preamble is sent before each packet according to the 
desired acquisition time. Since the radio transmits at a fixed rate of 
I Mchips/sec. and we are able to vary the number of chips/bit, then 
we are able to achieve the various data rates as described above. 
The reason one would not always necessarily want to use the fastest 
data rate is that the lower the spreading, the less resilience to noise 
and interference. By using more chips/bit (slower data rate) we are 
able to have more capacity of the network and less interference. It is 
up to the network control algorithms, with development and analy- 
sis support from the simulation environment, to determine what 
these parameters should be set at for optimum network efftciency. 

197 



2.5 Mobile Wireless Algorithms 2.5.3 Instant Infrastructure Subnetwork Control 

2.5.1 Tra:nsport and Internetworking Control 

Since internetworking requires compatibility with existing net- 
works and TCP/IP is so widely used through the Internet. the TCPI 
IP protocol suite has been implemented without need for modifica- 
tions. Since the Internet Protocol can be used in conjunction with 
various communication substrates, much of the new mobile wire- 
less algorithm development takes may place below the network 
layer. The network layer is responsible for supporting various com- 
munication substrates such as internet routing, segmentation, etc. 
Above the network layer, the transport protocols (TCP and UDP) 
provide the required support for end-to-end reliability, congestion 
control, etc. These transport protocols interact with the applications 
described in the: previous section by using sockets to buffer the bit 
stream so packetization can take place. Additional services are also 

being developed to support multimedia over mobile hosts [ 131 

The functionalities which support instant and recontigurable net- 
works are new and have been added into the TCP/IP stack (Figure 
3) on the UCLA test-bench. Many of the proposed schemes for sup- 
porting instant and reconfigurable network topologies are based 
upon TDMA to control channel contention. A clustering algotlthm 

[ 1 I] was implemented which is heavily based on TDMA control 
and synchronization to test the feasibility and overhead of imple- 
menting this functionality in software. 

2.6 Link Layer Control 

Although wireless communication is useful to support mobile 
communication, wired connections can support much higher band- 
width and are less prone to errors then wireless radios. Therefore, 
wired connections should be utilized whenever possible. Wired 
connections, such as ethernet, can utilize standard communication 
hardware, such as a PCMCIA card, for networking. In order to sup- 
port a combination of wired and wireless communication, provide 
wireless multihop functionality, and support instant infrastructure 
networking, a node needs to be able to function in three different 

modes (gateway, multihop, or end node) as shown in figure 4. A 
node functions as a gateway when both wired and wireless connec- 
tions are available. In the gateway mode, it will forward packets 
between the wired and wireless domains as necessary. In the multi- 
hop mode, it will follow the sub-network routing protocol to pro- 
vide wireless multihop communication within the subnet. Other 
mobile wireless network systems are not be focused on instant 
infrastructure networks, but upon support mobility throughout the 
intemet. 

Algorithms developed for link layer control fall into a separate 
category from other networking algorithms. These algorithms are 
usually not implemented inside the operating system, they usually 
exist in hardware or programmable processors as part of the NC. 
For maximum flexibility, simplicity of implementation, and provide 
a path between simulation and implementation, these algorithms 
could be implemented as part of the other algorithms in the operat- 
ing system. To experiment and determine where an algorithm 
should be implemented, the simulation environment can utilize 
models or actual code of the link layer control algorithms. 

The link layer control components typically include algorithms 
such as media access control (e.g., CDMA, TDMA, and CSMA/ 
CA). The link and mobility control layer shown in figure 2 supports 
a new function unique to instant infrastructure mobile wireless net- 
working. Mobility support is provided by setting appropriate hard- 
ware parameters such as the CDMA code or transmit power level 
dynamically. Measurements such as Signal to Interference Ratio 
(SIR) are fed back from the radio into the link control algorithms to 
do power control and minimize the power consumption of the I.ink, 
reduce interference, and provide admission control such as 
described in [7]. 

3. Simulation Environment 
2.5.2 Mobile IP 

The IETF Working Group for Mobile IP has developed an Inter- 

net Draft fo:r IP Mobility Support [ 121. Much of the focus of this 
group has been on protocol functionality and standards not on per- 
formance analysis. By incorporating the Mobile IP type protocol 
into this simulation environment, feedback can be provided to ven- 
dors interest,ed providing implementations of these protocols on its 
performance as a function of various mobility environments, net- 
work connectivity substrates (wireless & wired), and various trafftc 
loads. The Mobile IP protocol can also be integrated with numerous 
other system components. 

The analysis of the Mobile IP protocols in this simulation envi- 
ronment will be useful to validate and enhance the simulation envi- 
ronment an’d prototyping implementation path. In addition to 
protocol designers, the prototype can provide immediate feedback 
to other groups in industry and academia that are developing proto- 
cols in conjunction with Mobile IP to support other network and 
operating system functionalities. 

We have designed a general purpose parallel environment for the 
simulation of mobile wireless network systems and provide an 
implementation path for networking algorithms. The simulation 
environment can be used to evaluate the effectiveness and perfor- 
mance of algorithms as a function of the application requirements, 
mobility patterns, and radio characteristics. The simulator is being 
built on top of an existing message-passing based parallel simula- 
tion language called Maisie [3]. The Maisie simulation envi:ron- 
ment has been implemented on a variety of workstations, on 
networks of workstations and on distributed memory multicomput- 
ers like the IBM SPl and on a shared memory Spare 1000. In the 
following sections we will see how the simulation environment is 
supported by the Maisie simulation language and the various mod- 
ules. 

3.1 Mobile System Simulation Modules 

The modeling environment is designed to allow the primary 
components of the wireless network system to be simulated at dif- 
ferent levels of details. Thus, it might be useful to initially have an 
approximate but fast model of a11 components and then refine the 
details of some of the components that appear to be the primary ibot- 
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tleneck(s). Our aim is to decompose the model in order to allow 
maximum flexibility in experimentation with alternative implemen- 
tations of a given functionality (e.g. mobility patterns of the node) 
as well as to support a ‘plug and play’ capability that generates 
composite models constructed from pieces that model system com- 
ponents at widely differing levels of detail. 

- - - - - - - - - - - - - L,;~;“; 

Figure 4: Common Reference Model 

Since one is able to use the simulation with very simplistic 
grossly simplified models for various aspects of communication, 
the coding time to develop a model is very quick. One can simply 
right a few lines of Maisie code to represent a networking protocol. 
Maisie is an ideal language to develop models of networking proto- 
cols since it is a message-passing based discrete-event driven simu- 
lation language. The network algorithm and protocol models can 
then be iteratively refined to C source code which can be actually 
used in the final implementation. 

Our model of the mobile, wireless network system is broken 
down into three levels with the following primary components: 

l Node Mobility Models (MOM) 
l Channel Models (CHM) 

l Wireless Radio Models (RFM) 
l Operating System Models (OSM) 

9 Application-specific traffic models (SOURCEM) 
l Network Algorithm Models (NAM) 

The MOM components are responsible for movement patterns of 
the nodes such as the speed in which the nodes move and their 
motion pattern such as brownian random motion or drift. The CHM 
components are responsible for the transmission media including 
the range in which two nodes are able to communicate with each 
other, and environmental effects such as multi-path fading, shadow- 
ing, and interference. 

The RFM components are responsible for the physical layer 
modeling of the radio frequency modem and includes the raw chan- 
nel bandwidth, modulation techniques, and acquisition delaysThe 
OSM simulates the relevant portion of the operating system, such 
as the WAMIS Network Operating System (WAMISNOS) kernel, 
and is involved in interfacing with the application (e.g. delivery of 
incoming messages) or with the network (e.g. transmission of 
remote messages). The OSM components include multi-tasking 
process scheduling, packet manipulation routines, time control, and 
interfacing such as between the SOURCEM and NAM and between 
NAM and RFM. 

The SOURCEM components can be broken down into the source 
and destination streams (e.g.: hard disk, keyboard, camera, screen, 
microphone, or speaker) corresponding to the voice, video and data 
traffic, the control of these streams via the application, and the 
transport mechanism (e.g.: TCP, UDP, or Virtual Circuits) which 
the application chooses to use. The NAM components are broken 
down into internetwork models such as IP, instant infrastructure 
subnetwork control such as clustering, and mobility control such as 
power control, logical link control, and media access control. 

These components can be viewed as fitting in with the reference 

model as shown in Figure 5. 

MOM 

OSM 

Figure 5: OS1 Network View 

Before getting into examples of how the various models can be 
developed using Maisie. under section 3.3, a brief overview of the 
Maisie simulation language is provided in the following section. 

3.2 The Maisie Language 

A Maisie program is a collection of entity definitions and C func- 
tions. An entity definition (or an entity type) describes a class of 
objects. An entity instance, henceforth referred to simply as an 
entity, represents a specific object in the physical system and may 
be created and destroyed dynamically. An entity is created by the 
execution of a new statement and is automatically assigned a 
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unique identifier on creation. For instance, the following statement 
creates a ne’w instance of a manager entity and stores its identifier in 
variable r I. 

rl = new manager{ N); 
An entity can reference its own identifier using the keyword self. 

Entities communicate with each other using buffered message-pass- 
ing. Maisie defines a type called message, which is used to define 
the types of messages that may be received by an entity. Definition 
of a message-type is similar to a struct; the following declares a 
message-type called req with one parameter (or field) called count. 

message req (int count; }; 
Every entity is associated with a unique message-buffer. A mes- 

sage is deposited in the message buffer of an entity by executing an 
invoke state:ment. The following statement will deposit a message 
of type req with time stamp clock()+t, where clock is the current 
value of the simulation clock, in the message buffer of entity ml. 

invoke ml with req(2) [after t] 
If the after clause is omitted, the message is time stamped with 

the current simulation time. If required, an appropriate hold state- 
ments (described subsequently) may be executed to model message 
transmission. times or a separate entity may be defined to simulate 
the transmission medium. An entity accepts messages from its mes- 
sage-buffer by executing a wait statement. The wait statement has 
two components: an optional wait-time (t3 and a required resume- 
block. If tC is omitted, it is set to an arbitrarily large value. The 
resume-block is a set of resume statements, each of which has the 
following form: 

mtype(mi) [st bi] statementi; 
where mi is a messagstype, bi an optional boolean expression 

referred to as a guard, and statementi is any C or Maisie statement. 
The guard is a side-effect free boolean expression that may refer- 
ence local variables or message parameters. If omitted, the guard is 
assumed to be the constant true. The message-type and guard are 
together referred to as a resume condition. A resume condition with 
message-type mi and guard bi is said to be enabled if the message 
buffer contains a message of type mi, which if delivered to the 
entity would cause bi to evaluate to true; the corresponding message 
is called an enabling message. 

With the ,wait-time omitted, the wait statement is essentially a 
selective receive command that allows an entity to accept a particu- 
lar message only when it is ready to process the message. For 
instance, the following wait statement consists of two resume state- 
ments. The resume condition in the first statement ensures that a 
req message is accepted only if the requested number of units are 
currently available (the requests are serviced in first-fit manner). 
The second resume statement accepts a free message: 

wait until 
( mtype(frq) st (unils >= msgnq.counr) 
I’ signal requa:ter that request is granted *I 
or mtype(frecb I* n:turn units to the pool *I 

I 

Maisie also provides a number of pre-defined functions that may 
be used by an entity to inspect its message buffer. For instance, the 
function qsize(mt) returns the number of messages of type mtin the 
buffer. A special form of this function called qempty(mt) is 
defined, which returns true if the buffer does not contain any mes- 
sages of type mt, and returns false otherwise. In general, the resume 

condition in a wait statement may include multiple message-types, 
each with its own boolean expression. This allows many complex 
enabling conditions to be. expressed directly, without requiring the 
programmer to describe the buffering explicitly. 

If two or more resume conditions in a wait statement are enabled, 
the time stamps on the corresponding enabling messages are com- 
pared and the message with the earliest time stamp is removed and 
delivered to the entity. If no resume condition is enabled, a timeout 
message is scheduled for the entity tC time units in the future. The 
timeout message is canceled if the entity receives an enabling res- 
sage prior to expiration of tr; otherwise, the timeout message is sent 
to the entity on expiration of interval tc Thus the wait statement can 
be used to schedule conditional events. A hold statement is pro- 
vided to unconditionally delay an entity for a specified simulation 
time. For instance, the statement hold(t) will suspend the corre- 
sponding entity for t units in simulation time. 

3.3 Simulation Environment Models 

The simulation environment models are broken down into two 
categories: global and local. The global models are responsible: for 
modeling the interaction among the nodes at the network level. The 
global models include the mobility (MOM) and channel (CHM) 
models. The local models are responsible for modeling the fimc- 
tionality inside a node. In order from one local model in a node to 
communicate with another node’s local model, communication 
using the global models must take place. One local model is able to 
communicate and integrate with other local models as long as they 
are kept on the same node. 

We now look at the details of what some of the responsibility of 
each module is and an example model of one of the components. 

3.3.1 MOM 

The mobility models include, but are not limited to, the following 
components: 

l tracking location of the nodes 
l speed of the nodes 
l direction of motion 

In order for the channel model to track the location, and thus 
have the channel model be able to determine which nodes are able 
to send packets to each other, the x and y coordinates of each nodes 
are tracked. Since the mobility model is responsible for tracking the 
location of each node, a node can not simply update its position 
locally but must send a message to the mobility model to have it 
update the nodes new location so the channel model which is coor- 
dinating communication in that area can utilize the node’s locadon 
information. 

In order to model speed (such as stationary, walking speed, run- 
ning speed, driving speed, or even flying speed) and direction of 
motion (such as drift or a semi-random walk), the channel model 
can select a random step size which it is able to move within. Once 
the new position is selected and forced to remain within the space 
(grid) of the simulation, its new position is updated. 
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To get a feeling for an example model of mobility, the following 
Maisie fragment shows how the speed (MOVINGJANGE) of a 
mobile can be modeled with a semi-random direction. 
or mtype(move) 

I 
id=msg.move.id; 
pnsition[i&r = posirion[id].x- 

(int)lrand48()%(MOVlNG~~NGE*2+I)+MOVING_RANGE: 
pfsifion[idJ.y = position[idJ.y- 

(int)lrand4s()%(MOVINGRANG~~NG~2+l~~OVlNG_RANGE: 
if(posifinn[id&O) position[idl.* 
if(yosirion[i~.y<O)posiIion[i~.~~; 
if@osition[id]~max-xr;r) 

posirion[id].x=mu.r~; 
if(posifiun[idl.y>mc) 

position[idJ.j=mux-y; 

3.3.2 CHM 

The channel model is responsible for determining which nodes 
are able to communicate with each other and what the received 
information or quality of information should look like. The CHM 
components can include, but are not limited to, the following: 

l Distance/Range 
l Shadowing (such as Log-normal) 
l Attenuation (such as Free-Space) 
l Multi-path (such as Raleigh Fading) 

Once the channel models determine the effects of transmitting 
data through the wireless channel, the radio RFM models can inter- 
act in a realistic manner. 

In the following Maisie fragment, we see how the channel model 
is able to determine which nodes a broadcast packet should be 
received by. The actual packet (message) is sent to the appropriate 
node via the invoke statement. 

mtype(brwdccrrr) 

I 

for (i=j; i<=nwn&le~; i++) 
if (i != b.id) 
if (scyt(pow((double)@osirion[b.id]~ - posifion[il.x). 2.0) + pow((double)@osi- 

riun[b.idl.y-pusirion[l~.y). 2.0)) <(double) COMhfJANGE) 
invdte pkrdnvfi] wlthp~in(b.idb.info]; 

1 

When a packet is to be transmitted, the time lapse from when the 
receiver gets the packet is scheduled in the channel model by the 
hold routine in Maisie. 

hold(TXTIME); 

The modulation technique used, whether it be DSSS or Fre- 
quency Hop Spread Spectrum (FHSS), both effect the simulation 
environment. In a DSSS modem, the amount of spreading (chips/ 
bit) of the original signal, or in a FHSS modem, the number of fre- 
quency bands which overlap, and thus the number of available 
(CDMA) codes affect the usefulness and reliability of the wireless 
channel (CHM) and simulation as a whole. 

The transmit time (TXTIME) is actually determined by the RFM. 3.3.4 OSM 

3.3.3 RFM 

The RFM module is a local model which is responsible for the 
data link and physical layer modeling inside the node layer of the 
radio frequency modem, and includes, but not limited to, the fol- 
lowing components: 

l Link Level Media Access Control Algorithm 
l NIC Interfacing Overhead 
l Acquisition Delays 
l Raw Bandwidth (Data Rate) 
l Modulation Techniques (Spread Spectrum Direct 

Sequence or Spread Spectrum Frequency Hop) 

Any time a packet is to be sent over the wireless channel, the 
media access control algorithm is responsible for determining if or 
when that packet can be transmitted. A common media access con- 
trol algorithm is the Carrier Sense Multiple Access/Collision 
Avoidance algorithm such as found in the IEEE 802.11 specifica- 
tion. This will impose a delay and bandwidth overhead for every 
packet sent. This algorithm can be modeled inside the simulation 
environment to not only test feasibility and performance but also to 
see the implication on other aspects of the node and network. The 
analyst could also choose not to model the CSMA/CA algorithm 
itself but simply provide a metric in the RFM as the setup time 
before a packet can be transmitted and include this as part of the 
signal acquisition time (preamble). 

Other link level control algorithms such as CRC checking, pre- 
amble, bit stufftng, etc. can be modeled at various levels of details. 
The model can include the details of the bits being transmitted or 
model this overhead by holding the RFM from being able to trans- 
mit for the period of time it would take to do such link level control 
processing. 

The raw bandwidth affects how long it takes for a packet or bits 
in the packet to propagate to the next node dependent on certain 
parameters of the radio being used. Given the packet size, we can 
use the data rate to model how long it will take, for the packet to be 
transmitted through the wireless channel. 

For the UCLA radio described, the RFM parameters include 
50ms for acquisition of each packet, IOms for tail processing on 
each packet, and a raw channel rate of 32 Kbps. The actual trans- 
mission time through the air can be determined in conjunction with 
the channel model since the transmission time (TXTIME) can be 
calculated as follows: 

(1) 
PkrSize l 8 

TXTIME = AcqTime + DaraRate + TailTime 

The Operating System Model has three primary components: 
l kernel model 
l application interface model 
l network interface model 

The kernel model provides the basic functionality needed to sim- 
ulate a multi-tasking OS kernel. It models a (dynamic) set of inter- 
acting processes, where each process is simulated by a Maisie 
entity and the interprocess communication and synchronization is 
simulated by appropriate message communication among the corre- 
sponding entities. Henceforth, we use the term ‘kernel entity’ to 
mean a Maisie entity that is simulating a NOS kernel process. 
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The KP9Q kernel uses interrupts to interface with many of its 
drivers; hence the kernel entity used in the simulation environment 
models also supports interrupts. The entity may (dynamically) 
specify the set of enabled interrupts. A common source of interrupts 
in tbe kernel is the arrival of a packet for the corresponding entity. 
We present a short Maisie fragment to illustrate the handling of an 
interrupt called ‘pktin’ by a kernel entity called ‘wproc’. The wait 
statement on the following fragment models an interruptible activ- 
ity. The time specified in the wait statement is initially set to t, 
which models its execution time in the absence of any interrupts. If 
an interrupt: (pktin) is received during this interval, the entity sus- 
pends normal operation, executes a pre-specified routine to handle 
the interrupt, and suspends itself for ti time units, where ti models 
the time taken to execute the interrupt handling routine in the phys- 
ical kernel.. Note that this model assumes interrupts cannot be 
nested, because a hold statement is used to simulate service of the 
interrupt. It is possible to instead use an interruptible wait statement 
to model nested interrupts. After executing the hold statement, the 
entity again executes the wait statement with an updated wait-time 
to complete the simulation of the original activity. For simplicity all 
time units are expressed as integers in this fragment. The function 
clocks) returns the current value of the simulation clock. 

;llt;; wpmc(id,pkrdrvr,ipalgptrJ 

ename pktdrw 
ename ipalgptr; 

1 
messagepktin(int pkttype; int /en; int id; int info;) pkr; 
int newlm. remtime. m~imr; 

for C;) 
( endtime=eloek()ttc; 

remtime=tc; 

fa(;;) 
wait remtime until 
( mtyp4pktin) 

( pkt=mq.pktin; 
newlenqlkt.len-HEADER-SIZE; 

if @kt.pktt~pe==clurtJype) 
clust~t~tgkr(idncighborl_cvn_ch 

pkt. idpktinfo); 

if (pkt.pkttype==ip-type) 
ip_got,At(id,newlenpkt. idpkxinfo, 

pktdrwipulgptr); 

remtime=mndtimr-cbck(); 
hold(ti); 

1 
Oc mlype(timcout) be& 

The application interface model interacts with the SOURCEM 
model to both accept a message for delivery to another node and 
also to deliver an incoming message. In either case, the kernel pro- 
vides the interface needed by the application to the network and 
simulates the software delays that are typically suffered by the mes- 
sage as it passes through the kernel of an operational OS. This delay 
can be sim,ulated either by doing a detailed (and hence timecon- 
suming) simulation of the various kernel modules, or approximated 
by simply delaying the message by a randomly distributed value, 
where the distribution is chosen to reflect the aggregated behavior 
of various kernel modules. 

Similarly, the network interface model will determine the trans- 
mission mode of the message (e.g., datagram or bit stream) and pro- 
vide the message to the NAM in an appropriate format from the 
network interface. A driver such as the packet interface driver is 
typically used as the NIC interface. Note that the kernel delay:; can 
be simulated either in the application or the network inte:rface 
model (or both), depending on the analyst and the application being 
simulated. 

3.3.5 SOURCEM 

The SOURCE Models are composed of, but not limited to, the 
following components: 

l source & destination streams 
l application control 
l end-to-end transport mechanisms 

One of the primary uses of the mobile wireless network nodes are 
to exchange data, voice, or video. The input or source of the data 
voice, or video usually comes from either the hard disk, memory, 
keyboard, microphone, or camera. The output or destination usually 
goes to either the hard disk, memory, screen, or speaker. Depending 
upon the analyst’s need, it is typically not required that the actual 
data, voice, or video images be sent from one source stream TV the 
destination but rather modeled based upon certain characteristics. 
The characteristics modeled for the hard drive and memory include 
read and write access time, models of the voice streams include the 
rate and silence charactedstics, and models of the video stream usu- 
ally include the frame size, frame rate, and other control informa- 
tion such as frame delimiters. 

The application control component is responsible for controlling 
the source and destination streams in conjunction with the transport 
protocols. The application affects the environment such as by deter- 
mining if, when, and what data, video, or speech should be sent. 
Typical applications used in the mobile wireless system imple- 
mented include the standard TCP/IP applications such as mF’ and 
telnet along with custom multimedia applications such as a video 
conferencing (VTALK) application. 

In order to deliver the streams of data, video, and speech an end- 
teend transport mechanism is used. These protocols typically 
include TCP and UDP for data and usually virtual circuits for multi- 
media in order to provide bandwidth allocation. vpical functional- 
ity of the transport protocols include providing flow control, error 
detection and possible retransmission of lost or corrupted data, and 
acknowledgment of data received. As an example, we can see in the 
following Maisie fragment the functionality of TCP and RP used 
in a file transfer to send data, check for acknowledgments of sent 
data, and retransmit lost packets upon a time-out. 

for (i=MSS;i<FILE3Z&MSS;i=i+MSS) 

-wait RTO until /’ RTO = Round-aip Time&t *I 
I 
mtyp+ck); I* Packet Received *I 
or m(ype(timewt) /* PHI a ACK Lost *I 

i=i-MSS; I* Resend last packet l / 
t 
P Genaate frp packet *I 
sen$acket@ktdrvr,f*_ty~, id, 0. i. MSS); 

I’ Type. Prom, To. Info. Len *I 
num+3s37v[irl]+; 
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In order to model the source and destination streams, application 
control, and transport mechanism, traffic generators are used to 
generate the data streams corresponding to the voice, video, or data 
traffic expected to be generated by the different types of applica- 
tions. Table 2 lists a set of example applications. For each applica- 

APP~. Trans. =I== FI-P TCP 

speech V.C. 

- 
Pkt. Tl-dfiC 

Size Burstyness 

Large LOW 

Small 

Small 

Large 

Large 

Small 

High 

High 

LOW 

LOW 

High 

Goal 

Max. 

Throughput 

Min. 

Delay 

Min 
Delay 

Mi3JC 
Throughput 

Max. 

throughput 

Delay & 
Throughput 

Table 2: SOURCEM Characteristics 

tion, the transport protocol that is commonly used, typical packet 
size, traffic type, and metric to be optimized is listed. 

3.3.6 NAM 

The network algorithm model components are the focus for those 
developing wireless and mobile networking algorithms. We break 
the Network Algorithms Models into the following layers: 

l Network Layer 
l Sub-Network Layer 
l Data Link Layer 

The network layer components include the internetworking func- 
tionality. The Internet Protocol is commonly used either in its 
entirety or just a model of IP to provide functions such as domain 
addressing, routing, segmentation, and reassembly. Other protocols 
modeled in this layer include the ICMP for control messages and 

Mobile IP [12] for mobility tracking and support of roaming 
through the intemet. 

The wireless subnet, whether it be a base station and its clients or 
a wireless multihop cluster are found in the sub-network layer. The 
subnetwork layer models are used to model the topology creation 
(instant infrastructure), reconfigurability, adaptive channel assign- 
ment (CDMA), and wireless multihop routing. 

As an example of a NAM, below is a Maisie fragment for the 
clusterhead election algorithm found in [ 1 I]. The basic idea of the 
algorithm is that between any two nodes that can communicate, the 
node with the lowest ID should become the clusterhead with the 

restriction that two clusterheads can not communicate directly; 
however, they can communicate via a gateway by multi-hopping 
between the two clusters. 

entity clusf~mc( idp~dn’r.neighbor.l_um_chJ 
int id, 
ename yktdrvr. I* From OSU *I 
int *neighbor. 
int*I-am-ch; 
( 
fa w 
I 
hold(RESET~T/MEOC/l-); 

/* Reset neighbor and clusterhead tables l / 
for (i=l; i<=N; i*) 
I 

ncighbor[i]=- I ; 
I-urn-ch[i]=O; 

1 

I* Send “I’m here” msg to all neighbas l / 
invoke pkrdrvr with brvudcurr( id, 0 ) ; 

I* Wait to hear responses from neighbars l / 
hdd(RESPONSE-TIM@; 

/* Run the Clusterhead election alg. *I 
I-am-ch[idj = I ; 
for(i=l;i<id;i++) 

if ((f_~_ch[ij=I)a&(n~i~~~~i]=l)) 
( /-urn-ch[idj = 0; break; ) 

/* Broadcast Clustering Packet Update ‘l 
I’ Info (1) = Not CH; info(2) = CH *I 
invoke pkrdrvr with 

bro&rrct( idl-am-ch[idl+l ); 

1’ 

The algorithm works by first clearing out the table of everyone 
who it can talk to. Then all nodes broadcast a message to inform 
everyone else who their neighbors are. Starting with the lowest pos- 
sible ID, with the lowest ID. It assigns those nodes as clusterheads 
where each next highest node can only be a clusterhead if none of 
its neighbors that it received a broadcast packet from is not a clus- 
terhead. This is done iteratively until all nodes know if they are a 
clusterhead or not. Each node also knows who its neighbors are. 
Each node does not have any global knowledge of the topology. 

The data link layer models are used to provide mobility and link 
level control such as power control [7] (utilizing various power lev- 
els available on the radio and adapting the SIR measurement), 
media access control via a TDMA based time frame[ 1 I], error con- 
trol such as the spreading factor which the radio transmits on, the 
CRC functions, and possibly even the Reed-Solomon forward error 
correction, and lastly the logical link control such as providing a 
hop by hop based acknowledgment scheme such as described in 

[W 

3.4 Real-time Control and Feedback 

In order to provide feedback and interactive control, the control 
parameters in the simulation can be changed in real-time [6]. As the 
user modifies a parameter (e.g., speed of a mobile), graphical feed- 
back as to the effect of the change is provided to the user. 
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Figure 6: Simulation Real-time Topology Display 

In our example study, the simulation runs about ten times faster 
then real-time. This is a dramatic increase in speed compared to 
other simulation packages. If the user desires, a Maisie hold0 func- 
tion can be used to slow down the simulation clock to match up 

with the real-time clock [2]. 

3.4.1 Control Parameters 

The interactive buttons at the top of the screen can be used for 
either exiting the simulation, stepping through the next interaction 
of the clusterhead election algorithm after moving the nodes, or 
continuously running through the algorithms and moving the nodes. 
The increase and decrease power buttons are used by the channel 
model to determine the maximum range of the nodes. The increase 
and decrease speed buttons are used to change the number of steps 
each node can move on the grid at each iteration of the simulation. 

The user is able to interactively control several simulation 
parameters including: 

l CPULoad 
l Communication range (transmit power) in units as 

defined by the user 
l Location - User can click and move a node in real-time 

while simulation is running 
l Speed - Maximum numbers of units a node may move 

per time unit 
l Connection Availability - Can connect/disconnect com- 

munication device from node 

The user is a.ble to define custom system control parameters as 
desired. 

3.4.2 Topology Display 

This graphical output is used to analyze the connectivity, see the 
virtual topology, and view parameters of the simulation. Although 
topology display is not required for performance analysis, it is often 
useful for testing, debugging, and demonstrating the network con- 
nectivity algorithms. 

4. Example Study 

Admittedly these are very elementary models for the very power- 
ful simulation environment described, but allows us to illustrate the 
interaction of the various models in the simulation environment. We 

provide results and comparisons from experimentation and simula- 
tion of a point to point file transfer over a wireless network to dN:ter- 
mine where the bottlenecks lie in the node performance. 

Actual measurements were done using 2 486-based laptops 
hooked up with the UCLA designed radios running WAMISNOS to 
provide a point to point wireless link. WAMISNOS is a customized 
network operating system which includes the complete TCP/IP pro- 
tocol suite, several custom protocols and algorithms for adaptive 
instant infrastructure wireless networking, customizable parameters 
for the various algorithms, and performance hooks and measure- 
ment tools for analysis. A file transfer (1.5 Megabytes) was done 
using the FTP application which uses TCP The application and pro- 
tocols used are the same ones used throughout the Internet on vari- 
ous systems, however customization of the TCP parameters was 
done to maximize the possible efficiency and surface node perfor- 
mance limitations. 

4.1 Simulation Models 

We have developed several simple modules in this simulation 
environment to model the functionality and performance of the var- 
ious components including the network operating system (O!;M), 
RP application and TCP transport protocol (SOURCEM), network 
algorithm header effect and Maximum Transmission Unit (MITU) 
limitations (NAM), two wireless radio modems (RFM), and the 
reliability of the wireless channel (CHM). 

4.1.1 OSM 

In order to model the performance of the WAMIS Network Oper- 
ating System (WAMISNOS) running on the 486 laptop, experimen- 
tation was done to find out the average processing time for 
incoming and outgoing packets. In section 4.3.4 we will examine 
how the measurements were done in more detail and their effect. 
We found that the average time for the transmitter to transmit the 
next packets once it received the ACK was around Sms, whereas 
the response time from when a packet arrived into WAMISNOS on 
the receiver side until an ACK could be generated averaged around 
37ms. Since the source had to receive the ACK and transmit the 
packet, in order to estimate the input processing time of a packe:t for 
the OSM, we found the average processing time to be 23ms 
((37+8)/2). 

For every packet received we would enforce a Maisie hold of 
23ms for WAMISNOS processing and similarly we would hold for 
23ms for every packet sent out through WAMISNOS. 

4.1.2 SOURCEM & NAM 

The modeling of the file transfer application and TCP prolocol 

are done in the SOURCEM module as we saw in section 3.3.5 and 
the various parameters are shown in Table 3. 

Parameters in TCP which are customizable or tunable include: 
the backoff algorithm (exponential or linear), initial round trip time 
(KIT), maximum segment size (MSS), and the window size 
(WINDOW). The backoff algorithm is designed to provide conges- 
tion control throughout the network. The most fair algorithm used 
is an exponential backoff algorithm. However, since congestion 
would not occur in a point to point file transfer (only 1 link) this 
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backoff algorithm was replaced with a linear backoff algorithm. 
The round trip time is used for determining what the time-out 
should be for retransmitting lost packets. This round trip time is 
based upon an adaptive algorithm which is constantly measuring 
and adapting to the current round trip time. A stability parameter is 
specified which weights the current round trip time with the aver- 
age round trip time. Since TCP is responsible for packetizing the 
data bit stream, the maximum segment size specifies the maximum 
packet (segment) size which TCP can generate. IP uses a MTU 
which specifies the largest packet that can be sent over a particular 
network or link. If the segment size is larger then the packet size 
then IP does segmentation and reassembly of the packet. So, we set 
the MSS to be 40 bytes less (to compensate for headers) then the 
MTU. Finally, the window size specifies how much data can be out- 
standing before an acknowledgment is required. The benefit of hav- 
ing a large window is to handle the case when the latency of the 
path is significant compared to the bandwidth. That is, if you can tit 
more than 1 packet on the path at a time, then it is useful to have a 
window so the bit pipe can be filled. For our wireless radios, the 
latency is insignificant compared to the bandwidth so the window 
should be set to equal the MSS. 

Description 

SOURCEM TCP Backoff 
Algorithm 

Value 

Linear 

SOURCEM File Size 1751560 Bytes 

SOURCEM MSS 3960 Bytes 

NAM MTU 4000 Bytes 

NAM Header Size 71 Bytes 

Table 3: SOURCEM & NAM Parameters 

The effects of customization on the performance is significant. 
With standard parameters used on most TCP/lP implementations, 
the overhead with UCLA’s Radio approaches 99% (depending upon 
link errors, back-off algorithm, etc.) Given that customization can 
be achieved through better integration of the protocols and link 
level implementation, the question which this paper addresses is 
where are the remaining bottlenecks. 

4.1.3 RFM 

The UCLA Direct Sequence Spread Spectrum Modern/Radio 
used in experimentation and simulation operates at a fixed chip rate 
of l.O32Mchips/sec. With a spreading factor of 32chips/bit, it is 
able to achieve a data rate of 32.258 Kbits/sec. A packet interface 
card is used to connect the radio with the computer and a packet 
driver is used to connect the packet interface card with the WAMIS 
Network Operating System. The various rates and customized 
parameters for this experiment are shown in table 4.: 

Based upon the radio experiments with indoor channel models, 
we found the average packet loss to be around 0.15. A packet is lost 
any time the CRC checksum fails, the radio fails to acquire the sig- 
nal in time, or there. is data corruption such as from interference or 
background noise. 

r Acquisition Time -1 20&-q 

1 Tail Time I lams 1 

Media Access Control 

CHM Packet Loss Rate 

CSMA 

.15 

Table 4: UCLA Radio & WAMISNOS Parameters 

4.2 Validation 

Table 5 compares the performance of the FTP application as pre- 
dicted by the simulation model with actual measurements. We find 

Data Bytes 

Sim. 

175 1560 

Exper. 

175 1560 

I Packets In I 444 I I 589 

;I 
Table 5: Simulation & Experimentation Comparison 

the simulation results come close to those found in experimenta- 
tion. The majority of the difference lies in the accuracy of the TCP 
model. A fixed RTO (Retransmission Timeout) was used for every 
packet that was lost whereas in the experiment, TCP determines 
this parameter dynamically. We also found that through experimen- 
tation the packets were not always filled as was in the simulation. 
This can probably be attributed to the stream processing functions 
in WAMISNOS which could be modeled in the simulation environ- 
ment as part of the SOURCEM. 

4.3 Performance Bottleneck Analysis 

Table 6 presents a breakdown of the various sources of overhead 
in the FTF application as determined by experimental measure- 
ments. We first examine the sources for each component and subse- 
quently compare the experimental results with the simulation 
results. 

4.3.1 SOURCEM Efficiency 

When using the UCLA Radio for the file transfer of the 
1.7Megabyte file it took 942.71 seconds (as reported by the applica- 
tion), with an overall throughput of 1,858 Bytes&c. or 14,864 bits/ 
sec. This means that the efftciency of the file transfer was about 
46%. We use the following calculation to determine the efficiency: 

FileSize Bits 
ChannelRate x Byte 

TotalTime = Efficiency 
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- 

c 

Description 

1. User Data Transmission (Efficiency) 
- 

2. Acquisition Time 
- 

3. Time-outs (Packet Loss) 
- 

4. CPU Processing (Rx + TX) 

5. TCPLIP/WAMIS Headers 

6. Tail Time 
- 

% 

46.0 

24.6 

19.8 

2.8 

2.2 

1.2 

7. Misc. (H/W Proc, CRC Checking, Bit Stuffing...) 
- 

Table 6: Performance Breakdown 

3.4 

We see that the largest percentage of our breakdown is the user 
data (efficiency) which is 46%. At first this seems very good that 
the user is able to achieve 46% utilization of the link bandwidth, 
however the link bandwidth is only 32Kbits/sec so the user is able 
to achieve 14.7Kbps. If we were able to increase the channel rate, 
even at the cost of decreasing the link efficiency, we could achieve 
a better user throughput. This means that the largest bottleneck in 
getting better performance is the limitation in the transmission rate 
(raw channel rate) of the radio (32Kbits/sec.). 

4.3.2 RFM Acquisition Time 

The second major bottleneck is the acquisition (25%). Each time 
a packet is transmitted the radio has to go through an acquisition of 
the channel which is done by adding on 200ms worth of preamble 
data to the beginning of each packet. It is possible to shorten this 
preamble time but the error rates and thus retransmission of the data 
increase dramatically causing overall poorer performance. Besides 
modifying the required time to acquire the channel, this overhead 
can be reduced by decreasing the number of packets transmitted. 
The larger the packet size, the lower the number of packets, and 
thus the less overhead for acquiring all the packets. One of the 
major factors enforcing the packet size is the bandwidth-delay 
trade-off. Ety increasing the packet size, we can reduce overhead 
and increase bandwidth but at the cost of delays (and having to 
retransmit more data). To keep the delays and memory require- 
ments for storing packets to a minimum, the packet size (MTU) is 
constrained to 4K in the current UCLA Radio-WAMISNOS imple- 
mentation. 

The overhead for acquisition was calculated using the following: 
AcqTime 

TuraliVunrPkrs (TX + Rx) x - 
(3) - 

Pkt 
TotalTime = AcqOverHead 

WAMISNOS includes the ability to monitor and the number of 
WAMIS Packets, IP Packets, and TCP segments sent and received 
at each node. ‘The numbers of TCP segments sent and received 
make up the TotalNumPkts since no segmentation was necessary in 
IP (which would cause generation of more packets), and there were 
not any WAMIS control algorithms running which would generate 
additional pack.ets to the radio. There were 569 data packets sent 

and 589 acknowledgment packets sent. Each packet had a 2tXhns 
header and the total time for the file transfer was 942.71 seconds or 
24.6%. 

Tail time is similar to acquisition time; it is the amount of post- 
amble used on each packet. This is required to ensure that the 
packet is completely sent out before the carrier signal is drclpped. 
Experimentation shows that 1Oms is an adequate tail time. The tail 
time overhead can be calculated similar to the acquisition tim.e and 
is found to be 0.012 of the total raw bandwidth. 

4.3.3 SOURCEM Time-outs & CHM Packet Loss 

Note that 19.8% of the throughput is lost due to time-outs. Time- 
outs occur when a packet is lost (the receiver fails to lock onto the 
packet or one or more bit errors occur causing the CRC check to fail 
and the packet to be discarded) and then the sender must wait for 
the time-out period to occur (failure to get an acknowledgment) 
before the packet is retransmitted. The variable time-out period is 
called the RTO and varies based upon the measured round trip time 
of data flowing across the path and then a weighting is done for sta- 
bilization. The base RTO varies around 2200 milliseconds. When a 
packet loss does occur, the linear backoff algorithm would increase 
in the time before the next packet is transmitted. The time-out starts 
increasing linearly as several packet losses occur in a row. If an 
exponential backoff algorithm were used, the RTO would have 
grow exponentially at this point rather than linearly, making the 
throughput dramatically worse. 

The following calculation was used as an estimation of the time- 
out overhead. 

NumPktsLost x RTO 
TotalTime (ms) = TimeoutOverHead 

During this test, there were 85 packets that had to be retransmit- 
ted and the average base RTO was around 22OOms so we find Tim- 
eoutOverHead to be 19.8%. 

4.3.4 OSM Processing 

Not as significant as the first three overheads, CPU Processing 
does make an impact on the performance using the UCLA Radio. 
Different CPU Processing is done when a packet is either trammit- 
ted or received at a node. 

The Transmitter (TX) is responsible for taking the bit stream and 
forming the packets, and putting the header information on it. We 
use a hook in the WAMISNOS system which allows us to watch at 
what time (in milliseconds) when an acknowledgment of a packet 
comes in from the packet driver into WAMISNOS and until the 
next packet is transmitted from WAMISNOS to the packet driver. 
We found that the average time is 8ms. If we multiply the number 
of packets sent (569) by the amount of proca;sing time (8ms) per 
packets, we find the transmitter CPU processing overhead to be 
4.5seconds or 0.5% of the total overhead., 

The receiver (Rx) has to check and remove all the header infor- 
mation from the packet and verify that the data is correct (passing 
the CRC check) and create a response (acknowledgment) to the 
sender informing that the data was received correctly. It was mea- 
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sured using the trace facility built into WAMSNOS that the time 
from when a packet first arrives in WAMISNOS from the packet 
driver until the acknowledgment goes out WAMISNOS back to the 
packet driver around 37ms. Since the TCP/IP protocols and the 
WAMIS Network Operating System are both competing for CPU 
time, along with other applications, protocols, etc., this number can 
have a high variance, so much that it would impact the performance 
of any time critical algorithms which needed to run at a particular 
time, such as TDMA. Since 589 packets were.received and each 
had to be processed (37ms/pkt) the total overhead imposed by the 
receiver CPU processing was 21.8sec or 2.3% of the overall band- 
width. 

The total CPU Processing time is the sender’s overhead (0.5%) 
plus the receiver’s overhead (2.3%) which totals 2.8%. as is found 

in Table 6. 

4.3.5 NAM Headers 

The application, FTP, uses TCP as its reliable connection ori- 
ented transport protocol. The TCP protocol packetizes the bit 
stream into segments and encapsulates it with a TCP control header. 
This TCP header is usually around 20 bytes. The TCP header con- 
tains information such as the source and destination port (applica- 
tion), the sequence and acknowledgment number, a 16 bit 
checksum, and some miscellaneous flags. TCP sends the segment 
down to the IP protocol which encapsulates the segment into a 
packet and puts on its own header of approximately 20 bytes. The 
IP header contains information such as the total length of the 
packet, a 16-bit checksum, an identification field, and source and 
destination IP addresses. From here, IP sends the packet down to 
the WAMIS algorithms which puts on an additional 31 byte header 
which contains information such as the source and destination hard- 
ware node address, code and power control information, SIR con- 
trol information, etc. The total TCPIIP/WAMIS headers are usually 
around 7 1 bytes. 

There were 569 data packets sent and 589 acknowledgment 
packets sent and at 71 bytes per packet, the total time used up (over- 
head) in transmitting header information was about 20.4 seconds 
(2.2%). 

4.3.6 Miscellaneous 

There are a number of other miscellaneous factors which add to 
the total overhead (3.4%). It was not possible using the current 
analysis and software tools to determine the exact processing time 
by the software below the WAMIS Network Operating System. 
This includes the time for the packet driver to activate, calculation 
of a CRC check for the packet, and Carrier Sense Multiple Access. 
The packet has a start of packet (STX) and end of packet (ETX) 
marker so the receiver will know the exact beginning and ending of 
the packet. Bit stuffing is used to ensure that none of the data inside 
the packet would look like one of these delimiters. Then the data 
has to be sent out of the packet interface card to the modem and 
from there the processing can take place to send it out to the trans- 
mitter. The opposite process has to take place on the receiving end. 

This overhead was not measured but is the remaining of the over- 
heads which had not been compensated for in the analysis above. 

4.4 Extending Analysis through Simulation 

We found that through customization of TCP parameters, we 
were able to achieve a link efftciency of 46% (14.8Kbps) using 
UCLA’s Radio with WAMISNOS. As shown in Table 7. the three 

t 
Description 

1. Data Bandwidth 

2. Acquisition lime 

3. Packet Loss 

& Time-outs 

4. CPU Processing 

5. Protocol Headers 

6. Tail Time 

8. Other 

Table 7: Perform lnce Comparison & Validation 

19.8 I 17.0 I 

1.2 I 1.0 I 

3.4 I 4.4 I 

largest bottlenecks in this system are 1) the raw channel rate, 2) 
acquisition delays, and 3) time-outs in TCP caused by bit errors and 
packet losses in the link. We also see that the simulation environ- 
ment breakdown is very similar to that found through experimenta- 
tion. 

As technology advancement will allow higher channel rates, 
other system components will impact the effective data rate. By 
using this simulation environment to test parameter space which is 
not possible with current technology, we can see in Graph 1, the 
trade-off between the effective data rate improvement as the raw 
channel rate increases. 

Raw Channel Rate (Kbps) 

Graph 1: Effective Data Rate vs. Raw Channel Rate 

Various system bottlenecks are preventing the linear growth of 
the effective data rate as a function of the raw chalnnel rate. In 
Graph 2, we see how the CPU Overhead becomes a dominant factor 
of the raw channel rate around 7OOKbps and thus the decline in the 
data bandwidth efficiency when the CPU processing time is fixed at 
around 23ms per packet. 
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Raw Channel Rate (Kbps) 

Graph 2: Bottleneck vs. Channel Rate 
As technology will also advance the CPU performance, we can 

see in Graph 3 the tradeoff between the CPU Overhead and Data 

45 40 35 30 25 20 15 10 5 0 
Processing Delays (ms) 

Graph 3: Bottleneck vs. Processing Delay 

Bandwidth efticiency of the channel as CPU processing delays (per 
packet) decrease and the channel rate remains fixed at 1Mbps. 
When the CPU processing delays fall below 17ms per packet, the 
channel rate starts becoming the larger bottleneck. 

5. Related Work 

There are several different network simulators currently on the 
market. These simulators have primarily been used for design and 
performance evaluation of networking algorithms. The problem 
with these simulators is the lack of full flexibility for customization 
such as modeling the operating system kernel or system interfacing 
found in the implemented system. 

Many existing commercial network evaluation tools suffer from 
the following limitations which are addressed in this simulation & 
prototyping environment: 

l Most tools are not tailored for wireless protocols and 
have awkward and inadequate interfaces for specifying 
wireless and mobility related parameters. 

l Models generated by existing tools are often of little use 
in generating working implementations of the protocols. 
For instance, the finite state machines used to specify 
the protocols in OPNET must be manually re-coded to 
design an operational prototype. This leads to unneces- 
sary duplication of resources and is also error prone. 

l As yet, no common reference model exists for most 

. 

. 

6. 

mobile and wireless parameters such as performance 
measurements. 
Existing prototyping tools do not provide a way to 
incorporate operational protocols into the modeling 
environment. An important component of the simulation 
environment is backporting of existing software and 
protocols into the simulation environment for scaling 
studies and validation as well as for testing inter-opera- 
tion with novel protocols. 
Existing simulation tools are extremely slow. Models 
with even a relatively small number of mobile devices 
(e.g., personal communication systems) can take hours 
of execution time on contemporary workstations. Scal- 
ability studies involving hundreds, and perhaps thou- 
sands of these devices, are practically impossible using 
these tools. 

Conclusion 

This paper described a software architecture for a simulation 
environment for mobile, wireless network systems. The environ- 
ment provides clearly delineated modules to model each of the pri- 
mary components of the system: network operating system, traffic 
models, protocol models of the network, data, and physical link I.ev- 
els, radio models, and mobility patterns. The environment has been 
used to perform a number of studies: this paper described only one 
simple study that used the NOS. radio, and channel models to eval- 
uate a point-to-point file transfer protocol over a wireless network. 
A companion paper submitted to this conference [Gerla, Tsai, Wu] 
used the protocol and mobility models to evaluate the performance 
of a clusterhead election algorithm as a function of channel chalac- 
teristics. We plan to integrate the two preceding models to study the 
performance of the protocols as a function of the radio and NOS 
characteristics. 

The simulation environment was designed using an existing sim- 

ulation language call Maisie [3]. Maisie has been implemented on 
both sequential and parallel architectures including distributed 
memory machines like the IBM SF’2 and shared-memory multipro- 
cessor machines like the Sun Spare 1000. The experiments reported 
in this study used only the sequential Maisie implementations. F’ar- 
allel Maisie implementations have yielded significant performance 
improvements for a number of applications that include circuit-sim- 
ulation [4], queueing networks [2], and data parallel programs. ‘We 
intend to explore the viability of the parallel implementation in 
improving the performance of simulation models for wireless net- 
works such as those described in this paper. We are also currently 
extending this simulation environment to support nomadic comput- 
ing issues [15]. 
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