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Abstract We consider the problem of resource allocation for data transfer between the base station

and the users within a cell of a wireless telecommunication network with infinite data queues for

each user. The aim is to study the tradeoff between the conflicting objectives of maximizing the

system throughput and the quality of service to an individual user. Using a policy improvement

approach based on Markov Decision Processes, we develop an intuitive and easy to implement index

policy. We also demonstrate its superior performance over the existing Proportional Fair Metric

Algorithm through simulation experiments.

1 Introduction

With the coming of third-generation wireless systems mobile internet users can obtain high data

rates in cellular systems. To effectively utilize the wireless capacity we require efficient methods for

assignment of wireless bandwidth to the various users using a common base station.

We start by considering a fixed set of N mobile data users in a wireless cell served by a single base

station. We focus on the downlink (base station to mobile) direction, since in many applications

such as web browsing, most of the data flow occurs in that direction. The base station maintains

a separate queue of data for each user. Time is slotted and in each time slot the base station can



transmit data to exactly one user. Let Rn
u be the channel rate of user u during time slot n, i.e.,

the amount of data that can be transmitted to user u during time slot n by the base station. How

this information is obtained by the base station is irrelevant for our purposes. We assume that the

base station knows at all time slots n a vector Rn = (Rn
1 , Rn

2 , . . . , Rn
N ). {Rn, n ≥ 0} is a stochastic

process that accounts for the random variation in data rates due to user mobility and other factors

such as propagation. Georgiadis, Neely and Tassiulas (2006) present a good framework for resource

allocation and related issues in this (and more general) setting.

An example of a resource allocation system widely known and used in practice is the CDMA2000

1xEV-DO system (Bender et al, 2000). There are two objectives to be fulfilled while scheduling

the data transfer. The first is to obtain a high data transfer rate. This can be achieved by serving

a user u in slot n whose channel rate Rn
u is the highest, i.e. following a myopic policy. However if

we follow the myopic policy, we run the risk of severely starving users whose channel rate is low for

a long time. The second objective then is to ensure that none of the users is severely starved. Thus

these are conflicting objectives and any good algorithm tries to achieve a “good” balance between

the two. Liu, Chong and Shroff (2001) present another algorithm that seeks to allocate resources

to maximize system throughput under some Quality of Service (QoS) constraints that ensure some

amount of fairness to each user. We shall comment on this algorithm later in section 5.

The outline of the rest of the paper is as follows. In section 2 we describe a popular algorithm

called Proportional Fair Algorithm (PFA) currently in use in the 1xEV-DO system. In section 3 we

formulate the bandwidth allocation problem as a Markov Decision Process under the assumption of

a fixed number of users in the cell. We develop the index policy as an approximation to the optimal

policy using one step of policy improvement algorithm. In section 4 we study the properties of the

Linear Index Policy (LIP) which is a special case of the index policies developed in section 3. We
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also extend it to the case of variable numbers of users (arriving in the cell according to a Poisson

process and staying for a random amount of time) in the cell. Finally, in section 5.2, we compare

the LIP with PFA by using simulation and show that LIP is superior to PFA.

2 Proportional Fair Algorithm

The Proportional Fair Algorithm (PFA) is currently used in the 1xEV-DO system. In this paper

we consider the case where every user always has data to transmit. The PFA aims to optimize a

given function of the throughput achieved by all the users. A commonly used objective function is

the Proportional Fair metric
∑

u log Qu, where Qu is a given measure of the long term throughput

achieved by user u. A useful characteristic of this metric is that although it is strictly increasing

in the throughput of each user, it prevents any user from being starved since log Qu → −∞ as

Qu → 0. The PFA is characterized by a single constant τ ∈ (0, 1) as explained below. Assume that

there are a fixed number N of users in the cell. Let v(n) be the user served in slot n. For each user

u, define Qu(0) = 1, and compute Qu(n) recursively as follows:

Qu(n + 1) =























(1 − τ)Qu(n) + τRn
u if u = v(n)

(1 − τ)Qu(n) if u 6= v(n),

(1)

see Andrews (1999). The constant tc = 1
τ

is a measure of the time a user can remain unserved

(Jalali et al, 2000). Clearly Qu(n) represents an exponentially filtered average service rate. The

PFA algorithm chooses to serve user v(n) in slot n where

v(n) = arg max
u

Rn
u

Qu(n)
. (2)

It can be proved that this algorithm maximizes
∑

u log Qu(n + 1) -
∑

u logQu(n) for each n (An-

drews, 1999). In the next section we describe our algorithm based on a Markov Decision Process

(MDP) approach.
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3 Index Policy for Scheduling Data Transfer

3.1 Introduction and Formulation as MDP

In this section we start with a stochastic model for {Rn, n ≥ 0} and formulate the scheduling

problem as an MDP. Let Xn
u be the state of user u at time n. This represents all the various

factors such as the position of the user in the cell, the propagation conditions etc that determine

the data rate received by u in time slot n. We assume that {Xn
u , n ≥ 0} is an irreducible Discrete

Time Markov Chain (DTMC) on state space Ω = {1, 2, . . . ,M} with Probability Transition Matrix

(PTM) P u = [pu
iu,ju

]. Let Rk be the fixed data rate (or channel rate) associated with state k ∈ Ω of

the DTMC. When Xn
u = k, the user u receives data from the base station at rate Rn

u = Rk. Let N

be the total number of users in the cell (assumed constant in this section) and X n = [Xn
1 , . . . , Xn

N ]

be the state vector of all the users. Clearly {Xn, n ≥ 0} is a DTMC on ΩN . We assume the users

behave independently of each other and that each user has ample data to transmit.

Let Y n
u be the “starvation age” (or simply “age”) of the user u at time n, defined as the time

elapsed (in number of slots) since the user u was served most recently. Thus, the age of the user is

zero at time n+1 if it is served in the nth time slot. Furthermore, for m ≥ 1, if the user was served

in time slot n and it is not served for the next m time slots, its age at time n + m is m − 1. Let

Y n = [Y n
1 , . . . , Y n

N ] be the age vector at time n. The base station (BS) serves exactly one user in

each time slot. Let v(n) be the user served in the nth time slot. The age variables change according

to

Y n+1
u =























Y n
u + 1 if u 6= v(n)

0 if u = v(n)

(3)

The “state of the system” at time n is given by (Xn, Y n) ∈ ΩNXZN , where Z = {0, 1, 2, . . .}. The

“state” is thus a vector of 2N components and we assume that it is known at the base station in

4



each time slot. After observing (Xn, Y n) the BS decides to serve one of the N users in the time

slot n. We need a reward structure in order to make this decision optimally. We describe such a

structure below. If we serve user u in the nth time slot, we earn a reward of Rn
u = RXn

u
for this

user and none for the others. In addition, there is a cost of Dl(y) if user l of age y is not served

in slot n. Clearly, we can assume Dl(0) = 0 since there is no starvation at age zero. Thus the net

reward of serving user u at time n is

RXn
u
−
∑

l 6=u

Dl(Y
n
l ). (4)

For convenience we use the notation

W n
u =

∑

l 6=u

Dl(Y
n
l ).

The problem of scheduling a user in a given time slot can now be formulated as a Markov Decision

Process (MDP). The decision epochs are {1, 2, . . .}. The state at time n is (Xn, Y n), where both

Xn and Y n are vectors of N components, whose evolution has been described above. The action

space in every state is {1, 2, . . . , N} where action u corresponds to serving the user u. The reward

in state (Xn, Y n) corresponding to action u is Rn
u−W n

u . Let the transition probability under action

u from (i, s) to (j, t) (i, j ∈ ΩN and s, t ∈ ZN ) be denoted by p((j, t)|(i, s), u). It is given by

p((j, t)|(i, s), u) =























p1
i1,j1

p2
i2,j2

. . . pN
iN ,jN

= pij if tu = 0 and tl = sl + 1 for l 6= u

0 otherwise.

(5)

Let VT (i, t) be the optimal reward starting from state (X 0, Y 0) = (i, t) at time 0 over time periods

0, 1, 2, . . . , T . If user u is served at time 0, the age vector in the next time slot is tu = (t1 +

1, . . . , tu−1 + 1, 0, tu+1 + 1, . . . , tN + 1). We also define

Wu(t) =
∑

l 6=u

Dl(tl).
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A standard Dynamic Programming (DP) argument then yields the following Bellman equation

VT (i, t) = max
u=1,2,...,N



Riu − Wu(t) +
∑

j

pijVT−1(j, t
u)



 , (6)

We wish to determine the action u = u(i, t) that maximizes limT→∞ VT (i, t)/T , i.e. the long run

average reward. It is well known (Puterman, 1994) that such a policy {u(i, t) : (i, t) ∈ ΩNXZN}

exists if there is a constant g and a bias function w(i, t) satisfying

g + w(i, t) = max
u

{Riu − Wu(t) +
∑

j

pijw(j, tu)}. (7)

Furthermore, any u that maximizes Riu − Wu(t) +
∑

j pijw(j, tu) over all u ∈ {1, . . . , N} is an

optimal action u(i, t) in state (i, t).

3.2 Policy Improvement Approach

In this section we use a policy-improvement approach to develop a heuristic scheduling policy. We

first describe the standard policy improvement algorithm (Puterman, 1994).

1. Let π0 be an arbitrary policy that chooses action π0(i, t) in state (i, t). Set n = 0.

2. Policy Evaluation Step: Compute the solution to

gn + wn(i, t) = Riu − Wu(t) +
∑

j

pijwn(j, tu), (i, t) ∈ ΩNXZN

where u = πn(i, t).

3. Policy Improvement Step: Let

πn+1(i, t) = arg max
u

{Riu − Wu(t) +
∑

j

pijwn(j, tu)}. (8)

If πn(i, t) maximizes the RHS, choose πn+1(i, t) = πn(i, t).

4. If πn+1 6= πn, set n = n + 1 and go to step 2. Else, STOP. πn+1 is the optimal policy.
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Under certain conditions (section 8.5.2, Puterman, 1994), one can show that this algorithm termi-

nates in a finite number of steps.

Next we describe how a heuristic policy can be developed using just one policy improvement

step. In each time slot, given the state (i, t) of the process, the aim is to compute for each user u

an index (i.e. a real number depending on (iu, tu)) that depends solely on the current state (iu, tu)

of that user. The heuristic scheduling policy then serves the user with the maximum index in each

time slot. Such policies are referred to as Index Policies (Weber, 1992, Glazebrook et al, 2002

and Opp et al, 2004) and, as we shall see in the context of this problem, perform very well. A

major contribution of this paper is the derivation of a closed form expression of the index for each

user. Further, although this index will be developed under our current assumptions of Markovian

evolution of the system and a constant number of users, we will see that our Index policy does not

use the parameters of the Markovian structure. Hence we believe that the policy will work well

even when this assumption is relaxed. The method of developing such an index policy involves

choosing an “appropriate” initial policy and modifying it by a single step of policy improvement

algorithm of the MDP. We discuss an appropriate initial policy in the next subsection.

3.3 Initial Policy

Consider a stationary state-independent policy that serves user u with probability pu in any time

slot. Here p1, . . . , pN are fixed numbers such that pu > 0,
∑

u pu = 1. Let

p = [p1, p2, . . . , pN ],

gp be the long run reward and

wp = {w(i, t), (i, t) ∈ ΩNXZN}
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be the bias vector for this policy satisfying the equation

gp + wp(i, t) =
∑

u

pu







Riu − Wu(t) +
∑

j

pijwp(j, t
u)







. (9)

The computation of gp is fairly straightforward and we give the main result in theorem 3.1. This

result will be used in subsection 3.5 for choosing the optimal pu, u = 1, . . . , N . Computing wp(i, t)

is not simple. However, as we shall see in the next subsection, we do not need to compute wp(i, t)

per se, but only the difference wp(j, t
u) − wp(j, t + e), where e = (1, . . . , 1) ∈ ZN .

Let πu = [πu
1 , . . . , πu

M ] be the steady state distribution of the Markov Chain {Xn
u : n ≥ 0},

u = 1, 2, . . . , N . Then, since M is finite, it is well known (Kulkarni, 1996) that πu exists and is the

unique solution to

πu = πuP u

M
∑

m=1

πu
m = 1.

We define

φu(pu) =

∞
∑

k=1

Du(k)(1 − pu)kpu, (10)

and

Au =
∑

m

πu
mRm. (11)

Then, the following theorem gives an expression for gp.

Theorem 3.1. We have

gp =

N
∑

u=1

[−φu(pu) + Aupu]. (12)

Proof. Since all the users are independent, the total average net reward gp is just the sum of the

average net reward accrued to each user. We first derive the total average reward earned and then

the total average cost incurred. Consider user u. In each time slot user u is served with probability
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pu. Clearly, the total average reward earned per unit time in steady state is

N
∑

u=1

Aupu. (13)

Note that the age process {Y n
u : n ≥ 0} is a regenerative process with Y n

u = 0 as the regeneration

point. Let Su denote the length of a regenerative cycle and Cu the cost accrued in one regenerative

cycle. Then, average cost is given by (Kulkarni, 1996)

E[Cu]

E[Su]
. (14)

Now the randomized policy implies that

Pr[Su = k] = (1 − pu)k−1pu,

for k = 1, 2, . . . and hence

E[Su] =
1

pu

. (15)

Recall that Du(0) = 0. Using Cu =
∑Su−1

l=0 Du(l), we get

E[Cu] =
∞
∑

k=2

[Du(1) + . . . + Du(k − 1)](1 − pu)k−1pu

which can be simplified to

E[Cu] =
∞
∑

k=1

Du(k)(1 − pu)k. (16)

Using (10), (14), (15) and (16), the total expected starvation cost per unit time in steady state is

N
∑

u=1

φu(pu) (17)

yielding (12) as the total net reward per unit time in steady state.

Corollary 3.2. Suppose Du(n) = Kun for n ≥ 0. Then φu(pu) is given by

φu(pu) = Ku

(

1 − pu

pu

)

. (18)
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Proof. Putting Du(tu) = Kutu in (10), we get

φu(pu) = Ku

∞
∑

k=1

k(1 − pu)kpu,

which reduces to (18), as required.

We thus have an initial randomized scheduling policy based on the probability vector p and an

expression for the long run reward per time slot for such a policy. In the next section we apply

the policy improvement step (step 3 in the policy improvement algorithm described in section 3.2)

once to obtain a better policy. We see later for the examples considered in section 5 that even this

one-step improved policy, for appropriate values of the parameters Ku, gives us throughput that is

close to the maximum possible throughput.

3.4 Policy Improvement Step

For a given (i, t) the policy improvement step seeks to maximize

Riu − Wu(t) +
∑

j

pijwp(j, t
u)

over all u ∈ {1, 2, . . . , N}. This is equivalent to maximizing

Iu(i, t) = Riu − Wu(t) +
∑

l

Dl(tl) +
∑

j

pij [wp(j, t
u) − wp(j, t + e)] , (19)

over all u ∈ {1, 2, . . . , N} since for a given (i, t), the additional term
∑

l Dl(tl) −
∑

j pijwp(j, t + e)

does not depend on u. The improved policy then serves the user with the highest index Iu(i, t). To

compute Iu(i, t), we need an expression for

wp(j, t
u) − wp(j, t + e), (20)

which we derive in the next theorem.

Theorem 3.3. Given the initial policy p and the reward structure in section 3.1, Iu(i, t) is given
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by

Iu(i, t) = Riu + Du(tu) +

∞
∑

k=1

(1 − pu)k−1[Du(tu + k + 1) − Du(k)]. (21)

Proof. We only need an expression for the difference in biases given in (20). Suppose we follow

the randomized policy and consider two sample paths of the {(Xn, Y n), n ≥ 0} process under this

policy denoted by {(Xn,m, Y n,m), n ≥ 0} for m = 1, 2. We assume that Y 0,1 = tu, Y 0,2 = t + e and

Xn,1 = Xn,2 for n ≥ 0. (22)

Let vm(n) be the user served in slot n sample path m. We assume that

v1(n) = v2(n) for n ≥ 0. (23)

Equations (22) and (23) state the manner in which the two sample paths are coupled. Now fix a

u ∈ {1, 2, . . . , N} and assume the user u has been served at time 0. Let S denote the time when

we next serve the user u, i.e. S = min{n > 0 : v1(n) = u}. Then recall that Y n,m
v denotes the age

of user v in time slot n along the sample path m ∈ {1, 2} and we have for n ≤ S

Y n,m
v = tv + 1 + n for v 6= u,m = 1, 2,

Y n,1
u = n, (24)

Y n,2
u = tu + 1 + n

and for n > S

Y n,1 = Y n,2. (25)

From (22), there is no difference in the rewards accrued by the two sample paths. Let C m
n , m = 1, 2

be the cost incurred by the path m in time slot n, and Cn = C1
n − C2

n be their difference. Then

(24), (25) and

Cn =

N
∑

v=1

[

Dv(Y
n,1
v ) − Dv(Y

n,2
v )

]

, (26)

11



implies that

Cn =























Du(tu + n + 1) − Du(n) for n ≤ S

0 for n > S.

(27)

Hence, given S = k,

wp(j, t
u) − wp(j, t + e) =

k
∑

n=1

Cn

Under the policy p we have,

Pr(S = k) = pu(1 − pu)k−1, for k ≥ 1. (28)

Then, we have

wp(j, t
u) − wp(j, t + e) =

∞
∑

k=1

pu(1 − pu)k−1 [{Du(tu + 2) + . . . + Du(tu + k + 1)} − {Du(1) + . . . + Du(k)}] .

Rearranging and simplifying, we get

wp(j, t
u) − wp(j, t + e) =

∞
∑

k=1

(1 − pu)k−1[Du(tu + k + 1) − Du(k)]. (29)

Further, using Wu(t) =
∑

l 6=u Dl(tl) =
∑

l Dl(tl) − Du(tu), and (29), Iu(i, t) is given by

Riu + Du(tu) +

∞
∑

k=1

(1 − pu)k−1[Du(tu + k + 1) − Du(k)],

as required.

Starting with the randomized policy the policy improvement step then yields the policy that

chooses action u in state (i, t) that maximizes {Iu(i, t), u = 1, 2, . . . , N}. Thus the improved policy

is an index policy. Specifically, we shall study the index policy with linear incremental cost, i.e.

Du(tu) = Kutu. The index for this policy is particularly simple and is given by the next corollary.

Corollary 3.4. Suppose Du(n) = Kun for n ≥ 0. Then the index is given by

Iu(i, t) = Riu + Kutu(1 +
1

pu

) +
Ku

pu

. (30)
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Proof. Putting Du(n) = Kun in (21), we get

Iu(i, t) = Riu + Kutu + Ku(tu + 1)

∞
∑

k=1

(1 − pu)k−1,

which simplifies to (30), as required.

An index policy based on the index (30) is called a Linear Index Policy (LIP). Clearly, the initial

policy p is arbitrary. This immediately begs the question: what p should one use? There are two

possible answers:

1. Choose pu = 1
N

for all u. In this case,

Iu(i, t) = Riu + Kutu(N + 1) + KuN. (31)

We call this policy Uniform Linear Index Policy (ULIP).

2. Choose the p that maximizes the long run average reward gp of the policy. We discuss the

methods of doing that in the next section and call the resulting policy Optimal Linear Index

Policy (OLIP).

3.5 Optimizing the Average Reward

In this section we see how an optimal value of p that maximizes gp can be obtained. We describe

a Lagrangian based algorithm to solve the following problem:

maximize gp

subject to
N
∑

u=1

pu = 1.

Define

LP =

N
∑

u=1

−φu(pu) + Aupu + θ(1 −
∑

pu),
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where θ is the Lagrangian multiplier. Differentiate w.r.t. pu (u = 1, 2, . . . , N) to get

−φ
′

u(pu) + Au = θ. (32)

It is easy to see that φu(·) is decreasing and φ
′

u(·) is an increasing function of pu and that

φ
′

u(pu) = −

∞
∑

k=0

(k + 1)(1 − pu)k{Du(k + 1) − Du(k)}.

In our specific case of linear incremental penalty, i.e., Du(n) = Kun, φu(pu) = Ku(1− pu)/pu from

(18), we get

φ
′

u(pu) =
Ku

p2
u

.

Using this, (32) yields

pu(θ) =

√

Ku

θ − Au

(33)

where pu is written as pu(θ) to emphasize its dependence on θ. But
∑N

u=1 pu(θ) = 1. So the optimal

pu(θ) subject to the given constraints can be obtained by solving for the optimal θ (call it θ∗) from

F (θ) =
N
∑

u=1

√

Ku

θ − Au

= 1 (34)

and putting θ = θ∗ in (33). It is clear that F (θ) is a decreasing function of θ and we can solve (34)

by bisection methods (Burden and Faires, 2000) if we can identify a θl and θh such that F (θl) > 1

and F (θh) < 1. The following theorem gives such θl and θh.

Theorem 3.5. Let

θl = maxu(Ku + Au) (35)

and

θh = maxu(KuN2 + Au). (36)

Then, assuming there are atleast two users u1, u2 such that Ku1 > 0,Ku2 > 0, F (θl) > 1 and

F (θh) < 1.
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Proof. Let

v = argmax(Ku + Au). (37)

Then pv(θl) = 1, pu(θ) > 0 for u satisfying Ku>0 and therefore F (θl)>1 since Ku>0 for at least

one u 6= v. Now from (36), for each u we have

√

Ku

θh − Au

<
1

N
(38)

yielding F (θh) < 1, as required.

In the next section, we describe the performance analysis methodology used in the paper.

4 Performance Analysis of LIP and PFA

As mentioned in the introduction the allocation algorithm strives to find the balance between

high throughput and low starvation age. Thus we can evaluate the performance of an allocation

algorithm by studying the following performance measures:

B = long run expected throughput per time slot,

ζ = long run expected starvation age of a user,

ρd = long run probability that a user is starved for longer than d time slots.

Having high throughput is important for the service provider to ensure full utilization of the existing

infrastructure and maximize profits. It is easy to see that both the long run expected starvation

age ζ and the long run probability of a user starving more than a predetermined number of slots ρd

are measures of the consistency of service, or fairness to users, and are directly related to customer

satisfaction. Therefore both ζ and ρd are measures of Quality of Service (QoS) to individual users.

In this and the next section “QoS level” refers to the (actual or estimated) value of either ζ or ρd.

We compare the LIP and PFA by plotting throughput against these two QoS levels for each of the
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two algorithms. Using the probability of delay of packets, that we are estimating by ρd, as a QoS

has been widely prevalent in the literature (Shakkottai (2003) and Eryilmaz (2005)).

In this section we study these three performance measures for the LIP and PFA algorithms. The

mean throughput B is clearly controlled using the parameter τ ∈ [0, 1] in the case of PFA and

Ku ∈ [0,∞) in the case of LIP. As an illustration of the effect of τ and Ku on the throughput,

we present three theorems corresponding to the extreme values of these parameters. For this

section and the next, we assume that all the users have the same PTM P with limiting distribution

π = [π1, . . . πM ], and that {Xn : n ≥ 0} is aperiodic. Furthermore, we assume that Ku = K for all

u ∈ 1, 2, . . . , N yielding pu = 1
N

for OLIP, since in this setting, using (33), pu = 1
N

optimizes the

average reward of the randomized policy. Thus under our assumptions of the user processes and

user parameters LIP is the same as ULIP and OLIP.

Theorem 4.1. Let τ → 1 in PFA and K → ∞ in LIP. Then, in the limit, both PFA and LIP

converge to the round-robin service rule, i.e., every user is served once every N slots and the limiting

throughput is

B =

M
∑

k=1

πkRk. (39)

Furthermore, in this limiting regime,

ζ =
N − 1

2
,

ρd =























0 if d > N − 1

N−1−d
N

if 0 ≤ d ≤ N − 1.

(40)

Proof. First, consider LIP with K → ∞. Then, from (31), Iu(i, t) = Riu +Ktu(1+N). As K → ∞,

the Riu term becomes insignificant. For sufficiently large K, an equivalent index is K(1 + N)tu,

i.e. the LIP serves the user with the lowest age. This leads to the round-robin service rule.
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Next, setting τ = 1 − h and letting h → 0 in (1) and (2) yields

Rn
u

Qu(n)
=























Rn
u

h(n−Y n
u )R

(n−Y n
u )

u

if u not served at n − 1

Rn
u

Rn−1
u

if u served at n − 1.

(41)

Clearly the quantity Rn
u/Qu(n) for the user served in slot n − 1 remains finite in slot n, but that

for other users (not served in slot n − 1) can become arbitrarily large (as h → 0) in slot n. Thus

in the limit as h → 0, the PFA doesn’t serve the same user in two consecutive slots. Furthermore,

for sufficiently small h, the quantities Rn
u

Qu(n) in (41) are in the same order as the ages Y n
u for

u ∈ {1, 2, . . . , N} . Thus, PFA too serves the user with the lowest age yielding the round-robin

service rule.

Now, since all users have the same PTM P , Rn
v(n) = Rk with probability πk for k ∈ {1, 2, . . . N}

as n → ∞. Further, since the state space of Xn is finite, {Rn
v(n), n ≥ 0} is ergodic, we get (39)

(Norris, 1997), as desired.

Finally, as a consequence of the round-robin rule, in any given slot n, the age vector for all the

N users is either (0, 1, . . . , N − 1) or a permutation of this sequence. Therefore,

ζ =
1

N
[1 + 2 + . . . + N − 1] =

N − 1

2
.

Similarly in any time slot, there is no user with age greater than d for d > N −1 and the number of

users with age greater than d for 0 ≤ d ≤ N −1 is equal to N −1−d, yielding (40), as required.

The maximum possible throughput is achieved by using what we call the “myopic policy” that

serves user v(n) = argmaxuRn
u in time slot n. The next theorem gives an expression for the

throughput achieved by the myopic policy. For the sake of notational convenience, let

αk = π1 + π2 + . . . + πk, and

qk = (αk)
N − (αk−1)

N

17



Theorem 4.2. Let τ → 0 in PFA and K → 0 in LIP. Then both PFA and LIP converge to the

myopic policy and the throughput of the myopic policy is given by

B =
M
∑

k=1

qkRk. (42)

Proof. K → 0 in (31) immediately shows that the LIP reduces to the myopic policy. Similarly,

letting τ → 0 in (2) shows that the PFA approaches the myopic policy.

We know that for n → ∞, Pr[Xn
u = k] = πk, 1 ≤ k ≤ M , for u ∈ {1, . . . , N}. Let

Un = max{Xn
1 , Xn

2 , . . . , Xn
N}.

Then,

Pr[Un ≤ k] = Pr[Xn
1 ≤ k]Pr[Xn

2 ≤ k] . . . P r[Xn
N ≤ k] = (αk)N .

Therefore,

qk = Pr[Un = k] = Pr[Un ≤ k] − Pr[Un ≤ k − 1] = (αk)
N − (αk−1)

N .

Clearly,

B =

M
∑

k=1

lim
n→∞

Pr[Un = k]Rk,

yielding

B =
M
∑

k=1

qkRk, (43)

as required.

In section 5.2, we also consider the dynamic population case where the users arrive in the cell

according to a Poisson process with rate λ and remain in the cell for a generally distributed time

with mean a. Let N(t) be the number of users in a dynamic cell at time t. Then {N(t), t ≥ 0} is

the number of customers in an M/G/∞ queue and the LIP index of (31) is modified for this case

18



as follows:

I(u, t) = Riu + Ktu(N(t) + 1). (44)

Using the results for the M/G/∞ queue (Kulkarni, 1996) we see that the number of users in steady

state is a Poisson random variable with parameter λa. The following theorem gives an expression

for the myopic policy throughput in this setting. We need the following notation:

sk = e−λa(1−αk) − e−λa(1−αk−1).

Theorem 4.3. The throughput of the myopic policy in the dynamic population case is given by

B =

M
∑

k=1

skRk. (45)

Proof. Let N represent the number of users in the cell in steady state. It is known that N is a

Poisson random variable with parameter λa. The myopic policy chooses the user to be served in a

given time slot independent of the starvation age. Therefore, from (43),

E[Throughput|N = n] =
M
∑

k=1

[(αk)
n − (αk−1)

n] Rk.

Since B = E[E[Throughput|N ]], we have

B =

M
∑

k=1

(

E
[

(αk)
N
]

− E
[

(αk−1)
N
])

Rk,

which yields (45) using E
[

zN
]

= e−λa(1−z) from standard probability theory (Gross and Harris,

1985).

The performance of LIP can be compared with that of PFA using plots of B vs ζ and B vs ρd for

both the policies as τ and K vary. Since analytical results are not available except for the extreme

values of these parameters we resort to simulation to estimate these quantities. This is done in the

next section.
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5 Simulation Results

We now use simulation to estimate B, ζ and ρd for the LIP and PFA for a given K and τ . We

begin by formulating the estimators for these parameters below.

5.1 The Estimators

Let L be the number of independent sample paths simulated and T be the number of slots in

each path. Let Rn,l

v(n) be the throughput in the nth slot of the lth sample path, l = 1, 2, . . . , L and

n = 1, 2, . . . , T . Then the estimator B̂ of B is given by

B̂ =
1

L

L
∑

l=1

(

1

T

T
∑

n=1

Rn,l

v(n)

)

. (46)

Let Y n,l
u be the age of the user u in the nth slot in sample path l, l = 1, 2, . . . , L;n = 1, 2, . . . , T .

Then we define the estimator ζ̂ of ζ as

ζ̂ =
1

L

L
∑

l=1

[

1

T

T
∑

n=1

(

1

N

N
∑

u=1

Y n,l
u

)]

. (47)

Similarly the estimator ρ̂d of ρd is given by

ρ̂d =
1

L

L
∑

l=1

[

1

T

T
∑

n=1

(

1

N

N
∑

u=1

1{Y n,l
u > d}

)]

, (48)

where

1{Y n,l
u > d} =























1 if Y n,l
u > d

0 otherwise.

(49)

In the dynamic population case estimators are obtained in a similar manner. The estimator B̄

for B is still defined by the right hand side of equation (46). The estimators ζ̄ of ζ and ρ̄d of ρd

however need to be modified to replace N with N(t) (t = 1, 2, . . . , T ) and at the same time exclude

contribution from the time slots for which N(t) = 0. Thus the estimates in the dynamic population
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case are given by

B̄ =
1

L

L
∑

l=1

(

1

T

T
∑

n=1

Rn,l

v(n)

)

,

ζ̄ =
1

L

L
∑

l=1





1

T

T
∑

t=1,N(t)>0





1

N(t)

N(t)
∑

u=1

Y t,l
u







 ,

ρ̄d =
1

L

L
∑

l=1





1

T

T
∑

t=1,N(t)>0





1

N(t)

N(t)
∑

u=1

1{Y t,l
u > d}







 .

It is worth noting that all these estimators are for long-run performance measures, and so we

need to collect samples only from the stationary region of the Markov Chain {X n, n ≥ 0} (and of

{N(t), t ≥ 0} in the dynamic population case). To ensure this, both in the constant and dynamic

population case, we start the simulation in the stationary distribution of the {X n, n ≥ 0} and the

{N(t), t ≥ 0} process. We plot estimate of B vs estimates of ζ and ρd for both the policies, and

see that for any given QoS level, the LIP produces higher throughput.

5.2 Simulation Parameters

We use the following set of available data rates (kbps) (Bender et al, [7]): R ={38.4, 76.8, 102.6,

153.6, 204.8, 307.2, 614.4, 921.6, 1228.8, 1843.2, 2457.6}. Thus, each Markov Chain {X n
u , n ≥ 0}

has M = 11 states. We use d = 100, T = 105 and

P = αI +
1 − α

M − 1
(D − I),

where I is an MXM identity matrix and D is an MXM matrix with all entries equal to 1. This

implies that the Markov Chain stays in a given state for Geometric(1 − α) number of time slots

and then moves to one of the remaining M −1 states with equal probability. Note that P is doubly

stochastic, and hence πk = 1/M = 1/11. Further, the length of a time slot is 1.67 ∗ 10−3 seconds

(Jalali, 2002). We choose α = 0.9999 implying that on the average the Markov Chain stays in one
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state for 104 time slots, i.e. 16.7 seconds, before changing states. To get the required plots we vary

K for LIP and τ for the PFA. The actual ranges are mentioned in the plots.

5.3 Constant Number of Users

We take samples from L = 100 sample paths of the Markov Chain. We conduct the simulation

for various values of N and display the plots of B̂ vs ζ̂ in figures 1(a) and 1(b). We obtain the

plots by running the LIP and PFA algorithms for a range of values of K (between 0.01 and 50)

and τ (between 0.5 and 1) respectively. Each point on the LIP and PFA plot corresponds to a

unique value of K and τ respectively. Both K and τ decrease as we move from left to right on the

curves. As expected, ζ̂ and B̂ decrease with τ and K. The points with the minimum ζ̂ correspond

to K = 50 and τ = 0.5, with both the curves approaching the throughput for the round-robin

policy (calculated to be 722.62 using (39)) as proved in theorem 4.1. Similarly, the points with the

maximum ζ̂ correspond to K = 0.01 and τ = 0.0001 with both LIP and PFA converging to the

throughput for the myopic policy (using (42), calculated to be 2121.31 for N = 10 and 2452.34 for

N = 50) as proved in theorem 4.2. As is clear from figure 1, LIP outperforms PFA significantly

over the entire range of ζ̂. Thus no matter what QoS level we choose for the users, using LIP

always results in better system throughput. Also PFA throughput converges to the myopic policy

throughput (this is the maximum throughput achievable) at a much slower rate than the LIP

throughput.

Similarly figure 2 shows the plots of B̂ vs ρ̂d for different values of N . As in the plots of figure 1,

each point on the LIP and PFA curves of the plots of figure 2 represents a unique value of K and

τ respectively. Both K and τ increase as we move from left to right on the curves. We see in both

figures 2(a) and 2(b) that for any given value of ρ̂d, the LIP throughput is significantly higher than

that of PFA. Thus LIP demonstrates better performance at all QoS levels. Further, even at very

22



high levels of ρ̂d, the PFA throughput does not approach the myopic policy throughput (which,

as noted above, is the maximal throughput). On the other hand, using LIP gives us an option of

achieving a throughput close to the myopic policy throughput for a high QoS level.

The substantial domination of the LIP plot for both the OoS measures clearly demonstrates the

superiority of LIP over PFA. Next, we consider the case when users can enter or leave the cell.

5.4 Poisson Arrival of Users

In this section, we assume users arrive according to a poisson process with rate λ. Once in the

cell, sojourn time of a user is exponentially distributed with mean a. Thus, in steady state the

number of users is a Poisson random variable with mean Navg = λa. The LIP index is given by

(44). We then serve the user with the maximum value of index I(u, t). For PFA, we initialize Qu

to 1 for a newly arriving user and Rn
u/Qu(t) is maximized among all the N(t) users present in the

cell at the beginning of the time slot t. Again, we consider L = 100 sample paths of the process

{(Xt, Y t), t ≥ 0} with T time slots in each sample path. We observe that in this setting, since users

also leave the system, the exponentially filtered data transfer rate Qu(·) in (2) does not always

smoothen out before their departure. As a result, the performance (neither B̄ nor ζ̄, ρ̄d) of PFA is

not monotonic in τ .

Considering the mean age measure of QoS first, we show in figure 3 plots of B̄ vs ζ̄. As in

subsection 5.3, the bottom left point corresponds to τ = 1 and K = 50 approaching the round-

robin policy (theorem 4.1), and the top right point corresponds to τ = 0.0001 and K = 0.01

approaching the myopic policy (theorem 4.2). The theoretical value computed for the round-robin

policy remains the same at 722.62. The values of the myopic policy throughput, however, are now

given by theorem 4.3, and we compute them to be 2078.31 for Navg = 10 and 2451.01 for Navg = 50.

For any given level of the QoS (any value of ζ̄), the LIP throughput is considerably more than the
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PFA throughput. It is also worth noting that with PFA we can never achieve QoS better than a

certain level, while LIP gives us the option to serve at all QoS levels.

Next we consider ρd as the QoS measure and plot B̄ vs ρ̄d for various combinations of Navg in

figure 4. On both the LIP and PFA curves, K and τ vary as in the plots of figure 3. Across the

entire achievable range of QoS, LIP throughput is much better than the PFA throughput.

The graphs corresponding to both the QoS measures demonstrate the significantly better per-

formance of the LIP algorithm. Another algorithm for resource scheduling in the setting of this

paper is suggested in Liu, Chong and Shroff (2001). However for the identical users case considered

in this section their algorithm reduces to the myopic policy. Hence we do not need to study it

separately.

6 Conclusion

In this paper we have used the MDP formulation and the policy improvement approach to develop

an Index policy for the data transfer problem in wireless telecommunication networks. The index

is a simple, intuitive, closed form expression and we have demonstrated its superior performance

over the existing PFA over a wide parameter space. Future extensions of this work can include

developing effective policies under the setting of a finite queue of data for each user and a non-

Markovian evolution of the state of the users.
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Figure 1: Throughput Vs Mean Starvation Age: Constant N. Each point on the LIP plot corre-
sponds to a value of K and on the PFA plot to a value of τ . K varies from 0.01 to 50, with the
throughput for K = 0.01 matching the myopic policy throughput closely. τ varies from 0.0001 to
0.5.

27



 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

T
hr

ou
gh

pu
t

Tail Probability of Starvation Age

LIP

PFA

τ=0.0001

τ=0.5

K=2

K=0.01

(a) N = 10

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

T
hr

ou
gh

pu
t

Tail Probability of Starvation Age

LIP

PFA

τ=0.0001

τ=0.5

K=0.6

K=0.01

(b) N = 50

Figure 2: Throughput Vs Probability of starvation for greater than d slots for LIP and PFA:
Constant N. Each point on the LIP plot corresponds to a value of K and on the PFA plot to a
value of τ . K varies from 0.01 to 2 for N = 10, and from 0.01 to 0.6 for N = 50. For bigger values
of K we have ρ̂d = 0, so we do not plot those points here. The throughput for K = 0.01 matches
the myopic policy throughput closely in all cases. τ varies from 0.0001 to 0.01. For bigger values
of τ we have ρ̂d = 0, so we do not plot the corresponding points here.
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Figure 3: Throughput Vs Mean Starvation Age for varying N . Each point on the LIP plot corre-
sponds to a value of K and on the PFA plot to a value of τ . K varies from 0.01 to 50, with the
throughput for K = 0.01 matching the myopic policy throughput closely. τ varies from 0.0001 to
0.5.
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Figure 4: Throughput Vs ρ̄d for varying N . τ varies from 0.0001 to 0.5. K varies from 0.01 to 3 in
4(a), from 0.01 to 2.5 in 4(b), and from 0.01 to 0.5 in 4(c). We have omitted all points corresponding
to bigger values of K because ρ̄d = 0 for those cases.
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