
Available online at www.sciencedirect.com
COMPUTER
Computer Speech and Language 23 (2009) 389–405

www.elsevier.com/locate/csl

SPEECH AND

LANGUAGE
A unified framework of HMM adaptation with
joint compensation of additive and convolutive distortions

Jinyu Li *, Li Deng, Dong Yu, Yifan Gong, Alex Acero

Microsoft Corporation, One Microsoft Way, Redmond, WA 98052, USA

Received 17 June 2008; received in revised form 5 January 2009; accepted 1 February 2009
Available online 14 February 2009
Abstract

In this paper, we present our recent development of a model-domain environment robust adaptation algorithm, which
demonstrates high performance in the standard Aurora 2 speech recognition task. The algorithm consists of two main
steps. First, the noise and channel parameters are estimated using multi-sources of information including a nonlinear envi-
ronment-distortion model in the cepstral domain, the posterior probabilities of all the Gaussians in speech recognizer, and
truncated vector Taylor series (VTS) approximation. Second, the estimated noise and channel parameters are used to
adapt the static and dynamic portions (delta and delta–delta) of the HMM means and variances. This two-step algorithm
enables joint compensation of both additive and convolutive distortions (JAC). The hallmark of our new approach is the
use of a nonlinear, phase-sensitive model of acoustic distortion that captures phase asynchrony between clean speech and
the mixing noise.

In the experimental evaluation using the standard Aurora 2 task, the proposed Phase-JAC/VTS algorithm achieves
93.32% word accuracy using the clean-trained complex HMM backend as the baseline system for the unsupervised model
adaptation. This represents high recognition performance on this task without discriminative training of the HMM system.
The experimental results show that the phase term, which was missing in all previous HMM adaptation work, contributes
significantly to the achieved high recognition accuracy.
� 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Environment robustness in speech recognition remains an outstanding and difficult problem despite many
years of research and investment (Peinado and Segura, 2006). The difficulty arises due to many possible types
of distortions, including additive and convolutive distortions and their mixes, which are not easy to predict
accurately during recognizers’ development. As a result, the speech recognizer trained using clean speech often
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degrades its performance significantly when used under noisy environments if no compensation is applied
(Lee, 1998; Gong, 1995).

Different methodologies have been proposed in the past for environment robustness in speech recognition
over the past two decades. There are two main classes of approaches. In the first, feature-domain class where
no HMM information is exploited, the distorted speech features are enhanced with advanced signal processing
methods. Spectral subtraction (SS) (Boll, 1979) is widely used as a simple technique to reduce additive noise in
the spectral domain. Cepstral mean normalization (CMN) (Atal, 1974) removes the mean vector in the acous-
tic features of the utterance in order to reduce or eliminate the convolutive channel effect. As an extension to
CMN, Cepstral variance normalization (CVN) (Molau et al., 2003) also adjusts the feature variance to
improve automatic speech recognition (ASR) robustness. Relative spectra (RASTA) (Hermansky and Mor-
gan, 1994) employs a long span of speech signals in order to remove or reduce the acoustic distortion. All these
traditional feature-domain methods are relatively simple, and are shown to have achieved medium-level dis-
tortion reduction. In recent years, new feature-domain methods have been proposed using more advanced sig-
nal processing techniques to achieve more significant performance improvement in noise robustness ASR
tasks than the traditional methods. Examples include feature space nonlinear transformation techniques
(Molau et al., 2003; Padmanabhan and Dharanipragada, 2001), the ETSI advanced front end (AFE) (Macho
et al., 2002) and stereo-based piecewise linear compensation for environments (SPLICE) (Deng et al., 2000). In
Padmanabhan and Dharanipragada (2001), a piecewise-linear approximation to a nonlinear transformation is
used to map the features in the training space to the testing space. This is extended in Molau et al. (2003) with
further combination with other normalization technologies such as feature space rotation and vocal tract
length normalization to get satisfactory results. AFE (Macho et al., 2002) integrates several noise robustness
methods to remove additive noise with two-stage Mel-warped Wiener filtering (Agarwal and Cheng, 1999) and
SNR-dependent waveform processing (Macho and Cheng, 2001), and mitigates the channel effect with blind
equalization (Mauuary, 1998). SPLICE (Deng et al., 2000) assumes the distorted cepstrum is distributed
according to a mixture of Gaussian, and is cleaned by removing the correction vector determined by the
parameters in these Gaussians. Although these feature-based algorithms obtain satisfactory results, they usu-
ally perform worse than the model-based algorithms, which utilize the power of modeling.

The other, model-based class of techniques operates on the model (HMM) domain to adapt or adjust the
model parameters so that the system becomes better matched to the distorted environment. The most
straight forward way is to train models from the distorted speech. It is usually expensive to acquire sufficient
amounts of distorted speech signals. Hence, multi-style training (Lippmann et al., 1987) is designed to add
the different kinds of distortions on clean speech signals, and train models from these artificially distorted
signals. However, this method requires the knowledge of all the distorted environments and needs to retrain
models. In order to overcome these difficulties, model-domain methods have been developed that directly
adapt the models trained with clean speech to the distorted environments. Signal bias removal method
(Rahim and Juang, 1996) estimates the channel mean in a maximum likelihood estimation (MLE) manner,
and removes this channel mean from the Gaussian means in the HMMs. Maximum likelihood linear regres-
sion (MLLR) (Leggetter and Woodland, 1995; Cui and Alwan, 2005; Saon et al., 2001a) has also been used
to adapt the clean-trained model to the distorted environments. However, to achieve better performance the
MLLR method often requires significantly more than one transformation matrix, and this inevitably results
in demanding requirements for the amount of the adaptation data. Further, parallel model combination
(PMC) method (Gales and Young, 1992) relies on one set of speech models and another set of noise models
to achieve the goal of model adaptation using approximate log-normal distributions. Channel distortion is
not considered in the basic PMC framework. As an extension, PMC can address both the noise and channel
distortions in (Gales, 1995).

Differing from the several model-domain adaptation methods discussed above, the methods of joint com-
pensation of additive and convolutive distortions (JAC) (Moreno, 1996; Kim et al., 1998; Acero et al., 2000;
Gong, 2005) have shown their advantages by using a distortion model for noise and channel and using line-
arized vector Taylor series (VTS) approximation. The JAC-based algorithm proposed in Moreno (1996)
directly used VTS to estimate the noise and channel mean but adapted the features instead of the models.
In that work, no dynamic (delta and delta–delta) portions of the features were compensated either. The work
in Acero et al. (2000), on the other hand, proposed a framework to adjust both the static and dynamic
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portions of HMM parameters given the known noise and channel parameters. However, while it was men-
tioned in Acero et al. (2000) that the iterative expectation maximization (EM) algorithm (Dempster et al.,
1977) can be used for the estimation of the noise and channel parameters, no actual algorithm was developed
and reported.

A similar JAC-based model adaptation method was proposed in Kim et al. (1998), where both the static
mean and variance parameters in the cepstral domain are adjusted using the VTS approximation technique.
In that work, however, noise was estimated on the frame-by-frame basis. This process is complex and com-
putationally costly and the resulting estimate may not be reliable. Furthermore, no adaptation was made
for the delta or dynamic portions of HMM parameters, which is known to be important for high performance
robust speech recognition.

JAC developed in Gong (2005) directly estimates the noise and channel distortion parameters in the log-
spectral domain, adjusts the acoustic HMM parameters in the same log-spectral domain, and then converts
the parameters to the cepstral domain. However, no strategy for HMM variance adaptation has been given
in Gong (2005) and the techniques for estimating the distortion parameters involve a number of approxima-
tions, as analyzed in the later section.

Finally, the JAC method in Liao and Gales (2006) also adapts all the static and dynamic HMM parameters.
The recent study on uncertainty decoding (Liao and Gales, 2007) also intended to jointly compensate for the
additive and convolutive distortions.

In all the previous JAC/VTS work for HMM adaptation, the environment-distortion model makes the sim-
plifying assumption of instantaneous phase synchrony (phase-insensitive) between the clean speech and the
mixing noise. This assumption was relaxed in the work reported in Deng et al. (2004), where a new phase term
was introduced to account for the random nature of the phase asynchrony. And it was shown in Deng et al.
(2004) that when the noise magnitude is estimated accurately, the Gaussian-distributed phase term plays a key
role in recovering clean speech features by removing the noise and the cross term between the noise and
speech.

However, in contrast to the JAC/VTS approach that implements robustness in the model (HMM) domain,
the approach of Deng et al. (2004) was implemented in the feature-domain (i.e., feature enhancement instead
of HMM adaptation), producing inferior recognition results than the model-domain approach despite the use
of a more accurate environment-distortion model (phase-sensitive versus phase-insensitive models).

The research presented in this paper extends and integrates our earlier two sets of work: HMM adaptation
with the phase-insensitive environment-distortion model (Acero et al., 2000; Li et al., 2007) and feature
enhancement with the phase-sensitive environment-distortion model (Deng et al., 2004). The new algorithm
developed and presented in this paper implements environment robustness via HMM adaptation taking into
account phase asynchrony between clean speech and the mixing noise. That is, it incorporates the same phase
term in Deng et al. (2004) into the rigorous formulation of JAC/VTS of Li et al. (2007). We hence name our
new algorithm as Phase-JAC/VTS. In this work, both the static and dynamic mean and variance of the noise
vector and the mean vector of the channel are rigorously estimated on an utterance-by-utterance basis using
VTS. In addition to the novel phase-sensitive model adaptation, our algorithm differs from previous JAC
methods in two parts: dynamic noise mean estimation and the noise variance estimation.

The rest of the paper is organized as follows. In Section 2, we present our new Phase-JAC/VTS algorithm
and its implementation steps. Experimental evaluation of the algorithm is provided in Section 3, where we
show that our new algorithm can achieve 93.32% word recognition accuracy averaged over all distortion con-
ditions on the Aurora 2 task with the standard complex back-end, clean-trained model and standard MFCCs.
We summarize our study and draw conclusions in Section 4.

2. JAC/VTS adaptation algorithm

In this section, we first derive the adaptation formulas for the HMM means and variances in the MFCC
(both static and dynamic) domain using VTS approximation assuming that the estimates of the additive
and convolutive parameters are known. We then derive the algorithm which jointly estimates the additive
and convolutive distortion parameters based on VTS approximation. A summary description follows on
the implementation steps of the entire algorithm which were used in our experiments.
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2.1. Algorithm for HMM adaptation given the joint noise and channel estimates

Fig. 1 shows a model for degraded speech with both noise (additive) and channel (convolutive) distortions
(Acero, 1993). The observed distorted speech signal y[m] is generated from clean speech signal x[m] with noise
n[m] and channel h[m] according to
y½m� ¼ x½m� � h½m� þ n½m� ð1Þ
With discrete Fourier transformation, the following equivalent relations can be established in the spectral do-
main and the log-spectral domain by ignoring the phase, respectively:
Y ½k� ¼ X ½k�H ½k� þ N ½k� ð2Þ
The power spectrum of the distorted speech can then be obtained as
Y ½k�j j2 ¼ X ½k�j j2 H ½k�j j2 þ N ½k�j j2 þ 2 X ½k�j j H ½k�j j N ½k�j j cos hk; ð3Þ

where hk denotes the (random) angle between the two complex variables N[k] and (X[k] H[k]).

It is noted that Eq. (3) is a general formulation for JAC. If cos hk is set as 0, Eq. (3) will become
Y ½k�j j2 ¼ X ½k�j j2 H ½k�j j2 þ N ½k�j j2; ð4Þ

which is the formulation for most JAC methods (e.g., Moreno, 1996; Liao and Gales, 2006) that use power
spectrum as the acoustic feature.

If cos hk is set as 1, we will get
Y ½k�j j2 ¼ X ½k�j j2 H ½k�j j2 þ N ½k�j j2 þ 2 X ½k�j j H ½k�j j N ½k�j j; ð5Þ

i.e.,
Y ½k�j j ¼ X ½k�j j H ½k�j j þ N ½k�j j: ð6Þ

By using Eq. (6) as the distortion model, the JAC method (Li et al., 2007) uses magnitude spectrum as the
acoustic feature.

By applying a set of Mel-scale filters (L in total) to the power spectrum in Eq. (3), we have the l-th Mel
filter-bank energies for distorted speech, clean speech, noise and channel
eY ðlÞ�� ��2 ¼X

k

W ðlÞ
k Y ½k�j j2 ð7Þ

eX ðlÞ�� ��2 ¼X
k

W ðlÞ
k X ½k�j j2 ð8Þ

eN ðlÞ�� ��2 ¼X
k

W ðlÞ
k N ½k�j j2 ð9Þ

eH ðlÞ�� ��2 ¼PkW ðlÞ
k X ½k�j j2 H ½k�j j2eX ðlÞ�� ��2 ð10Þ
where the lth filter is characterized by the transfer function W ðlÞ
k P 0

P
kW ðlÞ

k ¼ 1
� �

.

Y[k] = X[k] H[k] + N[k]

h[m] x[m] y[m]

n[m] 

Fig. 1. A model for acoustic environment-distortion.
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The phase-factor aðlÞ of the lth Mel filter-bank is (Deng et al., 2004):
aðlÞ ¼
P

kW ðlÞ
k X ½k�j j H ½k�j j N ½k�j j cos hkeX ðlÞ�� �� eH ðlÞ�� �� eN ðlÞ�� �� : ð11Þ
Then, the following relation is obtained in the Mel filter-bank domain for the lth Mel filter-bank output (Deng
et al., 2004)
eY ðlÞ�� ��2 ¼ eX ðlÞ�� ��2 eH ðlÞ�� ��2 þ eN ðlÞ�� ��2 þ 2aðlÞ eX ðlÞ�� �� eH ðlÞ�� �� eN ðlÞ�� ��: ð12Þ
The phase-factor vector for all the L Mel filter-banks is defined as
a ¼ að1Þ; að2Þ; . . . ; aðlÞ; . . . aðLÞ
� �T

: ð13Þ
By taking logarithm and multiplying the non-square discrete cosine transform (DCT) matrix C to both sides
of Eq. (12) for all the L Mel filter-banks, the following nonlinear distortion model is obtained in the cepstral
domain:
y ¼ xþ hþ C log 1þ exp C�1 n� x� hð Þ
� �

þ 2a � exp C�1 n� x� hð Þ=2
� �� �

¼ xþ hþ gðx; h; nÞ;
ð14Þ
where
gðx; h; nÞ ¼ C log 1þ exp C�1ðn� x� hÞ
� �

þ 2a � exp C�1ðn� x� hÞ=2
� �� �

ð15Þ
and C�1 is the (pseudo) inverse DCT matrix. y, x, n and h are the vector-valued distorted speech, clean speech,
noise, and channel, respectively, all in the MFCC domain. The � operation for two vectors denotes element-
wise product, and each exponentiation of a vector above is also an element-wise operation.

It’s noted that a is treated as a fixed value in Eq. (14) for easy formulation. This is not as strict as the phase-
sensitive model in Deng et al. (2004), in which a is treated as a distribution. More detailed discussion of the
role of a can be found in Section 3.

Using the first-order VTS approximation (as was used in Acero et al., 2000) with respect to x, n and h, and
assuming the phase-factor vector a is independent of x, n and h, we have
y � lx þ lh þ gðlx; lh; lnÞ þ Gðx� lxÞ þ Gðh� lhÞ þ ðI � GÞðn� lnÞ ð16Þ

where
oy
ox

����
lx;ln;lh

¼ oy
oh

����
lx;ln;lh

¼ G; ð17Þ

oy
on
¼ I � G; ð18Þ

G ¼ I � Cdiag
exp C�1ðln � lx � lhÞ

� �
þ a � exp C�1ðln � lx � lhÞ=2

� �
1þ exp C�1ðln � lx � lhÞ

� �
þ 2a � exp C�1ðln � lx � lhÞ=2

� � !
C�1 ð19Þ
and diag(.) stands for the diagonal matrix with its diagonal component value equal to the value of the vector in
the argument. Each division of a vector is also an element-wise operation.

The mean of y can be obtained by taking the expectation of both sides of Eq. (16):
ly � lx þ lh þ g lx; lh; lnð Þ; ð20Þ
and ly , lx, lh, and ln are the mean vectors of the cepstral signal y, x, h, and n, respectively.
The variance of y can be obtained by taking the variance ‘‘operation” on both sides of Eq. (16):
Ry � GRxG
T þ ðI � GÞRnðI � GÞT : ð21Þ
Here, no channel variance is taken into account because we treat the channel as a fixed, deterministic quantity
in a given utterance.
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For the given noise mean vector ln and channel mean vector lh, the value of G(.) depends on the mean
vector lx. Specifically, for the kth Gaussian in the jth state, the element of G(.) matrix becomes
Gðj; kÞ ¼ I � C � diag
exp C�1ðln � lx;jk � lhÞ

� �
þ a � exp C�1ðln � lx;jk � lhÞ=2

� �
1þ exp C�1ðln � lx;jk � lhÞ

� �
þ 2a � exp C�1ðln � lx;jk � lhÞ=2

� � !
� C�1: ð22Þ
Then, the Gaussian mean vectors (the kth Gaussian in the jth state) in the adapted HMM for the degraded
speech become
ly;jk � lx;jk þ lh þ g lx;jk; lh; ln

� �
; ð23Þ
Note Eq. (23) is applied only to the static portion of the MFCC vector.
The covariance matrix Ry;jk in the adapted HMM can be estimated as a transformed sum of Rx;jk, the covari-

ance matrix of the clean HMM, and Rn, the covariance matrix of noise, i.e.,
Ry;jk � Gðj; kÞRx;jkGðj; kÞT þ I � Gðj; kÞð ÞRn I � Gðj; kÞð ÞT : ð24Þ

For the delta and delta/delta portions of MFCC vectors, the adaptation formulas for the mean vector and
covariance matrix are
lDy;jk � Gðj; kÞlDx;jk þ I � Gðj; kÞð ÞlDn; ð25Þ
lDDy;jk � Gðj; kÞlDDx;jk þ I � Gðj; kÞð ÞlDDn; ð26Þ
RDy;jk � Gðj; kÞRDx;jkGðj; kÞT þ I � Gðj; kÞð ÞRDn I � Gðj; kÞð ÞT ; ð27Þ
RDDy;jk � Gðj; kÞRDDx;jkGðj; kÞT þ I � Gðj; kÞð ÞRDDn I � Gðj; kÞð ÞT : ð28Þ
Readers are referred to the Appendix for the detailed derivations of these formulas.
In previous JAC methods (e.g., Acero et al., 2000; Liao and Gales, 2006), the dynamic noise means are not

included in the estimation of model dynamic mean parameters, i.e.,
lDy;jk � Gðj; kÞlDx;jk ; ð29Þ
lDDy;jk � Gðj; kÞlDDx;jk: ð30Þ
In contrast, we use dynamic noise means as shown in Eqs. (25) and (26). The reason to keep the dynamic
noise means is to address some non-stationary noise, which does not have zero means. This may also bring
potential risk if the dynamic noise means are indeed 0 and the ML estimation is not accurate. The perfor-
mance with or without dynamic noise means is compared in the Section 3.

2.2. Algorithm for re-estimation of noise and channel mean

The EM algorithm is developed as part of the overall JAC/VTS algorithm to estimate the noise and channel
mean vectors using the VTS approximation. Let Xs denote the set of states, Xm denote the set of Gaussians in a
state, ht denote the state index, and et denote the Gaussian index at time frame t. k and �k are the new and old
parameter sets for the noise and channel. The auxiliary Q function for an utterance is
Q kj�k
� �

¼
X

t

X
j2Xs

X
k2Xm

p ht ¼ j; et ¼ kjY ; �k
� �

� log p ytjht ¼ j; et ¼ k; kð Þ; ð31Þ
where pðytjht ¼ j; et ¼ k; kÞ � Nðyt;Dyt;DDyt; ly;jk;Ry;jk; lDy;jk;RDy;jk; lDDy;jk;RDDy;jkÞ is a Gaussian with mean
vector ½ly;jk; lDy;jk; lDDy;jk� (concatenated into one single vector) and covariance matrix ½Ry;jk;RDy;jk;RDDy;jk� (con-
catenated into a single block-diagonal matrix).

To simplify the formula, in the remainder of this section we use ctðj; kÞ to denote the posterior probability
for the kth Gaussian in the jth state of the HMM, i.e.,
ctðj; kÞ ¼ p ht ¼ j; et ¼ kjY ; �k
� �

: ð32Þ
To maximize the auxiliary function in the M-step of the EM algorithm, we take the derivative of Q with re-
spect to ln and lh, and set the derivatives to zero to obtain
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X
t

X
j2Xs

X
k2Xm

ctðj; kÞ I � Gðj; kÞð ÞT R�1
y;jk yt � ly;jk

� �
¼ 0; ð33ÞX

t

X
j2Xs

X
k2Xm

ctðj; kÞGðj; kÞ
T R�1

y;jk yt � ly;jk

� �
¼ 0: ð34Þ
To find the solution, we first approximate Eq. (20) using first-order VTS and obtain
ly;jk � lx;jk þ lh þ g lx;jk; lh; ln

� �
¼ lx;jk þ lh;0 þ g lx;jk; lh;0; ln;0

� �
þ Gðj; kÞ lh � lh;0

� �
þ I � Gðj; kÞð Þ ln � ln;0

� �
; ð35Þ
where ln;0 and lh;0 are the VTS expansion points for ln and lh, respectively.
After substituting the VTS approximation (35) into (33) with lh ¼ lh;0, the noise mean vector ln can be

solved, given its old estimate, as
ln ¼ ln;0 þ
X

t

X
j2Xs

X
k2Xm

ctðj; kÞ I � Gðj; kÞð ÞT R�1
y;jk I � Gðj; kÞð Þ

( )�1

X
t

X
j2Xs

X
k2Xm

ctðj; kÞ I � Gðj; kÞð ÞT R�1
y;jk yt � lx;jk � lh;0 � g lx;jk;lh;0; ln;0

� �� �( )
: ð36Þ
Similarly, by substituting (35) into Eq. (34) with ln ¼ ln;0, the channel mean vector is estimated as
lh ¼ lh;0 þ
X

t

X
j2Xs

X
k2Xm

ctðj; kÞGðj; kÞ
T R�1

y;jkGðj; kÞ
( )�1

X
t

X
j2Xs

X
k2Xm

ctðj; kÞGðj; kÞ
T R�1

y;jk yt � lx;jk � lh;0 � g lx;jk; lh;0; ln;0

� �� �( )
: ð37Þ
Eqs. (36) and (37) constitute each iteration of the EM algorithm. In the implementation, Eq. (37) is first used
to get lh, and then lh is plugged into Eq. (36) as lh;0 to obtain ln.

The delta and delta–delta mean of the noise vectors can be derived in a similar way as follows. Take the
derivative of Q (Eq. (31)) with respect to lDn and lDDn, and set the derivatives to zero to obtain
X

t

X
j2Xs

X
k2Xm

ctðj; kÞ I � Gðj; kÞð ÞT R�1
Dy;jk Dyt � lDy;jk

� �
¼ 0; ð38ÞX

t

X
j2Xs

X
k2Xm

ctðj; kÞ I � Gðj; kÞð ÞT R�1
DDy;jk DDyt � lDDy;jk

� �
¼ 0: ð39Þ
After substituting Eq. (25) into (38), the delta noise mean vector is updated as
lDn ¼ lDn;0 þ
X

t

X
j2Xs

X
k2Xm

ctðj; kÞ I � Gðj; kÞð ÞT R�1
Dy;jk I � Gðj; kÞð Þ

( )�1

X
t

X
j2Xs

X
k2Xm

ctðj; kÞ I � Gðj; kÞð ÞT R�1
Dy;jk Dyt � GlDx;jk � I � Gðj; kÞð ÞlDn;0

� �( )
: ð40Þ
Similarly, by substituting (26) into Eq. (39), the acceleration noise mean vector is estimated with
lDDn ¼ lDDn;0 þ
X

t

X
j2Xs

X
k2Xm

ctðj; kÞ I � Gðj; kÞð ÞT R�1
DDy;jk I � Gðj; kÞð Þ

( )�1

X
t

X
j2Xs

X
k2Xm

ctðj; kÞ I � Gðj; kÞð ÞT R�1
DDy;jk DDyt � GlDDx;jk � I � Gðj; kÞð ÞlDDn;0

� �( )
: ð41Þ
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2.3. Algorithm for re-estimation of noise variance

To re-estimate the D-dimension static noise variance vector r2
n ¼ r2

n;1; r
2
n;2; . . . r2

n;D

h iT
;Rn ¼ diagðr2

nÞ
	 


, we
take the derivative of Q function:
f ¼ oQ
or2

n

¼ 0: ð42Þ
f is a nonlinear function of r2
n, we expand it with VTS at point r2

n;0:
f ¼ fð Þr2
n;0
þ Hð Þr2

n;0
r2

n � r2
n;0

� �
; ð43Þ
where
H ¼ of

or2
n

¼ o2Q

o
2r2

n

: ð44Þ
Then Eqs. (42) and (43) can be combined as
oQ
or2

n

¼ fð Þr2
n;0
þ Hð Þr2

n;0
r2

n � r2
n;0

� �
¼ 0: ð45Þ
The solution to Eq. (45) is
r2
n ¼ r2

n;0 � Hð Þ�1
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The noise variance may be negative valued if Eq. (46) were directly applied. A common trick is used by the
transformation of
~r2
n ¼ log r2

n: ð47Þ

Then, ~r2

n can be updated with JAC/VTS without the positivity constraint according to
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Whether the result of parameter update in Eq. (48) is positive or negative, after applying the inverse transfor-
mation of
r2
n ¼ exp ~r2

n

� �
; ð51Þ
the final noise variance is guaranteed to be positive.
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The key to computing the parameter update is to compute the components in the first- and second-order
derivatives of Q w.r.t. ~r2

n shown in Eq. (48), which we describe below.
Let
G j; kð Þ ¼

g11ðj; kÞ g12ðj; kÞ g1Dðj; kÞ
g21ðj; kÞ g22ðj; kÞ g2Dðj; kÞ

gD1ðj; kÞ gD2ðj; kÞ gDDðj; kÞ

26666664

37777775 ð52Þ
and
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Then, the cth component in Eq. (49) can be obtained as
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and the (c, g)th component in Eq. (50) as
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The dynamic parts of noise variance can be updated in the same style:
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using a similar variable transformation to Eq. (47). Because the relationship between the distorted speech var-
iance and clean speech variance are the same for the static (Eq. (24)) and dynamic (Eqs. (27) and (28)) parts of
HMM parameters, the dynamic parts of the noise variance can be updated in essentially the same way as the
static noise variance, except for replacing the static parameters in (54) and (55) by the corresponding dynamic
counterparts.
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2.4. Algorithm implementation

The implementation steps for the JAC/VTS HMM adaptation algorithm described so far in this section
and used in our experiments are plotted in Fig. 2 and described in the following:

1. Read in a distorted speech utterance.
2. Set the channel mean vector to all zeros.
3. Initialize the noise mean vector and diagonal covariance matrix using the first and last N frames (speech-

free) from the utterance using sample estimates.
4. Compute the Gaussian- and a-dependent G(.) with (22), and update/adapt the HMM parameters with (23)–

(28).
5. Decode the utterance with the adapted HMM parameters.
6. Compute posterior probabilities of (32) and then re-estimate the static noise and channel mean using (36)

and (37), re-estimate the dynamic noise means using (40) and (41), and re-estimate the static and dynamic
noise variances using 46, 56 and 57 with transformation form of (47).

7. Compute the Gaussian- and a-dependent G(.) with (22), and update/adapt the HMM parameters with (23)–
(28).

8. Use the final adapted model to obtain the utterance output transcription.
9. Goto step 1.

A challenging problem in Phase-JAC/VTS is the setting of the phase-factor vector, a. In previous section,
we assumed a is independent of speech, noise, and channel. And in current implementation, each component
of a is also assumed to be a fixed, tunable value, a, i.e., eaðlÞ ¼ a. In the experiment section, varying values of a
are chosen to evaluate Phase-JAC/VTS.

The steps above are for one pass decoding and one-iteration EM re-estimation of all the noise and channel
parameters, as we have carried out in our experiments to be presented in the next section. If multiple-pass
decoding is desired, there would be a loop between Steps 5 and 7 and multiple-iteration EM for noise and
channel estimation would be implemented by looping between Steps 6 and 7.

In Liao and Gales (2006), a backing off method is used if the auxiliary Q function doesn’t increase. This is
claimed to be important for noise variance update since there is no guarantee the gradient-based update for-
mula will increase the auxiliary function. Similar process may be applied to our model parameter update for-
mulas. However, we found that it is not necessary to do this since in our experiment only 0.1% utterance may
decrease auxiliary function after model updating. We will discuss this in Section 3.

3. Experiments

The effectiveness of the Phase-JAC/VTS algorithm presented in Section 2 has been evaluated on the stan-
dard Aurora 2 task of recognizing digit strings in noise and channel distorted environments. The clean training
Fig. 2. Flowchart of JAC/VTS.
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set, which consists of 8440 clean utterances, is used to train the baseline MLE HMMs. The test material con-
sists of three sets of distorted utterances. The data in set-A and set-B contain eight different types of additive
noise, while set-C contain two different types of noise plus additional channel distortion. Each type of noise is
added into a subset of clean speech utterances, with seven different levels of signal to noise ratios (SNRs). This
generates seven subgroups of test sets for a specified noise type, with clean, 20 dB, 15 dB, 10 dB, 5 dB, 0 dB,
and �5 dB SNRs. The baseline experiment setup follows the standard script provided by ETSI (Hirsch and
Pearce, 2000), including the simple ‘‘backend” and the complex ‘‘backend” of HMMs trained using the
HTK toolkit.

The features are 13-dimension MFCCs, appended by their first- and second-order time derivatives. The
cepstral coefficient of order 0 is used instead of the log energy. The new Phase-JAC/VTS algorithm presented
in this paper is then used to adapt the above MLE HMMs utterance by utterance for the entire test set (Sets-A,
B, and C). The detailed implementation steps described in Section 2.4 are used in the experiments. We use the
first and last N ¼ 20 frames from each utterance for initializing the noise means and variances. Only one pass
processing is used in the reported experiments.

3.1. Experiments with simple backend

We first set a ¼ 2:5 and use simple backend to examine the effects of individual contributions of HMM
adaptation in the overall Phase-JAC/VTS algorithm. In the simple backend provided by ETSI (Hirsch and
Pearce, 2000), there are 11 whole-digit HMMs, one for each of the 11 English digits, including the word
‘‘oh”. Each HMM has 16 states, with simple left-to-right structure and no skips over states. Each state is mod-
eled by a Gaussian mixture model (GMM) with 3 Gaussians. All HMM’s covariance matrices are diagonal. In
addition, there are one ‘‘sil” and one ‘‘sp” model. The ‘‘sil” model consists of 3 states, and each state is mod-
eled by a GMM with 6 Gaussians. The ‘‘sp” model has only one state and is tied to the middle state of the ‘‘sil”
model.

Two systems are compared in Table 1. One uses dynamic noise means to contribute the model mean update
(Eqs. (25) and (26)), while the other doesn’t (Eqs. (29) and (30)). As shown in the second column of Table 1,
when only the HMMs’ static mean vectors are adapted (using Eq. (23)), the average accuracy is improved
from the baseline (no adaptation) of 58.70% to 73.34%. When the delta portion of the mean vectors is also to
adapted (using Eq. (25)), the accuracy further improves to 79.78%. Adding adaptation of the acceleration
(delta–delta) portion of the mean vectors (using Eq. (26)) gives even higher accuracy of 85.10%. Adapting
the static portion of the HMM variances (using Eq. (24)) improves the recognition accuracy to as high as
89.63%, which is further increased to 91.43% after adapting the delta portion of the HMM variances (using
Eq. (27)). With Eq. (28), the acceleration portion of variance adaptation increases to the final recognition
accuracy 91.70%. By comparing with the third column of Table 1, we can see that the system using dynamic
noise means is slightly better than its counterpart when only model mean update is considered, and is slightly
Table 1
Recognition accuracy of the baseline (clean-trained simple backend HMM system with no adaptation) and the several mean adapted
HMM systems. Different rows show the accuracy obtained using the JAC/VTS algorithm to adapt different subsets of the HMM
parameters. New adapted HMM parameters are gradually added to examine the detailed effects of the algorithm. The second column uses
adaptation Eqs. (23)–(28). The third column uses adaptation formulas Eqs. (23), (24), and (27)–(30). Recognition results from the standard
Aurora-2 test sets (A, B, C) are used in computing the accuracy.

Baseline & adapted HMM systems With dynamic noise means (%) Without dynamic noise means (%)

Baseline (MLE) 58.70 58.70
JAC adapting static mean 73.34 73.34
+JAC adapting delta mean 79.78 79.60
+JAC adapting acceleration mean 85.10 84.81
+JAC adapting static variance 89.63 89.55
+JAC adapting delta variance 91.43 91.46
+JAC adapting acceleration variance 91.70 91.82
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worse when model variance is also considered. It is clear that the dynamic noise means are not critical to the
performance of Phase-JAC/VTS system.

As discussed in Section 2.4, Liao and Gales (2006) believes that it is important for noise variance update
since there is no guarantee the gradient-based update formula will increase the auxiliary function. For the
whole 50050 test utterances, we compute the auxiliary Q function before and after model updating. Only
67 utterances have slight Q function value reduction. This small portion (0.1%) of utterances doesn’t affect
any performance. We simply use the original model parameter if the Q function value of an utterance drops
after model updating, and observe no WER difference.

3.2. Experiments with complex backend

In this subsection, we use complex backend to evaluate Phase-JAC/VTS to seek the best WER. In the com-
plex backend (Hirsch and Pearce, 2000), each digit HMM has 16 states, and each state is modeled by a GMM
with 20 Gaussians. The ‘‘sil” model consists of 3 states, and each state is modeled by a GMM with 36
Gaussians.

Varying values of a are chosen to evaluate Phase-JAC/VTS. The theory developed in Deng et al. (2004) has
shown that given true noise and channel parameters, the range of a value is between �1 and 1 in theory. To
take into account inaccuracy in the noise/channel estimates, we widened the range of the a value, which was
set up to 5 (with an interval of 0.25). The corresponding recognition accuracies (Accs) are plotted in Fig. 3.
The results are somewhat surprising in two ways. First, the optimal value is a ¼ 2:5, significantly beyond the
normal range between �1 and 1 (see detailed discussions below). Second, the recognition accuracy at a ¼ 2:5,
93.32%, is much higher than the use of phase-insensitive distortion model for JAC/VTS (equivalent to setting
a ¼ 0 in Fig. 3), demonstrating the critical role of the use of phase asynchrony between clean speech and the
mixing noise. Table 2 lists detailed test results for clean-trained complex backend HMM system after Phase-
JAC/VTS adaptation with the optimal a value.

The optimal performance achieved at a ¼ 2:5 seems to have contradicted the theory in Deng et al. (2004)
that a should be less than 1. We offer three possible reasons here. First, the theory in Deng et al. (2004) is built
on the basis that the correct noise and channel vectors are given. For Phase-JAC/VTS, the noise and channel
are estimated with possibly systematic biases, because the truncated VTS discards the second and all higher-
order terms. A larger a may be used partly to compensate for these biased estimates. (More detailed analyses
on this are provided in Deng (2007)). Second, by definition of (11), a is a random variable, due to the random
speech/noise mixing phase hk, instead of a deterministic one as used in this study. Extending the current work
by including variance of a may move the optimal range of a values back closer to the normal, expected range
of lower than one. Another possible reason is that a plays a role of domain combination (Thanks for the
reviewer’s input). If a is 0, we do the compensation in the power domain as Eq. (4). And the compensation
is performed in the magnitude domain if a is 1. As an extension, a ¼ 2:5 can be treated as doing compensation
in a domain that the spectrums are jY ½k�jb; jX ½k�jb; jH ½k�jb; jN ½k�jb with b < 1. The relationship of ‘‘phase” and
domain combination is a very interesting topic for future investigation.

Table 2 lists the detailed test results for clean-trained complex backend HMM system after the Phase-JAC/
VTS adaptation on all static, delta, and acceleration portions of the HMM mean and variance vectors.
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Fig. 3. Aurora 2 recognition accuracy for the Phase-JAC/VTS algorithm as a function of the a value.



Table 2
Detailed accuracy of clean-trained complex backend model using Phase-JAC/VTS ða ¼ 2:5Þ on the standard Aurora 2 task.

Clean training – Results

A B C Average

Subway Babble Car Exhibition Average Restaurant Street Airport Station Average Subway
M

Street
M

Average

20 dB 99.14 99.03 99.52 99.11 99.20 99.26 99.03 99.58 99.51 99.34 99.39 99.06 99.22 99.26
15 dB 98.99 98.55 99.05 98.86 98.86 98.77 98.67 99.25 99.07 98.94 98.86 98.58 98.72 98.84
10 dB 97.57 96.86 97.76 96.36 97.14 96.28 97.31 97.7 97.84 97.28 97.64 97.1 97.37 97.26
5 dB 94.23 90.75 94.84 92.41 93.06 90.85 92.38 93.89 93.34 92.62 94.6 92.11 93.35 93.01
0 dB 80.56 68.74 83.48 80.16 78.24 70.95 78.87 80.7 79.98 77.62 82.87 76.75 79.81 78.56

Average 94.10 90.79 94.93 93.38 93.30 91.22 93.25 94.22 93.95 93.16 94.67 92.72 93.70 93.32
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Because the standard evaluation is on the SNRs from 0 dB to 20 dB, we do not list the performance for clean
and �5 dB conditions.

Examining the results of Table 2 in detail, we see that the individual recognition accuracy for 20 dB, 15 dB,
10 dB, 5 dB, and 0 dB SNRs are 99.26%, 98.84%, 97.26%, 93.01%, and 78.56%, respectively. It is clear that the
performance degrades quickly for low SNRs despite the application of HMM adaptation. This is likely due to
the unsupervised nature of our current Phase-JAC/VTS algorithm. This makes the effectiveness of the algo-
rithm heavily dependent on the model posterior probabilities of Eq. (32). Under low-SNR conditions, the sit-
uation is much worse since the relatively low recognition accuracy forbids utterance decoding from providing
correct transcriptions. Consequently, the estimates of noise and channel under low-SNR conditions tend to be
less reliable, resulting in lower adaptation effectiveness. Hence, how to obtain and exploit more reliable infor-
mation for adaptation under low-SNR conditions is a challenge for the future enhancement of our current
JAC/VTS algorithm.

In Table 2, it is observed that the average recognition accuracy under the Babble noise conditions is the
lowest (90.79%). This observation is consistent with the mechanisms underlying our Phase-JAC/VTS algo-
rithm. Babble noise is known to be non-stationary. Phase-JAC/VTS algorithm assumes the noise in an utter-
ance is stationary. Therefore, it degrades the performance when the noise becomes non-stationary. How to
extend the current Phase-JAC/VTS algorithm to handle non-stationary noise is our future research direction.

It is interesting to compare the proposed JAC/VTS with other adaptation methods on the Aurora 2 task. In
a recent work (Hu and Huo, 2007), the JAC update formulas for static mean and variance parameters pro-
posed in Kim et al. (1998) and the update formulas for dynamic mean parameters in Acero et al. (2000)
are used to adapt clean-trained complex backend model, the accuracy measure reaches only 87.74%. This
again demonstrates the advantage of our newly developed JAC/VTS method.

In Cui and Alwan (2005), two schemes of MLLR are used to adapt models with the adaptation utterances
selected from test sets A and B. The adapted model is tested on test sets A and B; no result is reported for test
set-C. Even with as many as 300 adaptation utterances, the average Acc of set-A is only 80.95% for MLLR
scheme 1, and 78.72% for MLLR scheme 2. And the average Acc of set-B is 81.40% for MLLR scheme 1, and
82.12% for MLLR scheme 2. All of these accuracy measures are far below those (around 93%) obtained by our
method.

In Saon et al. (2001a), feature space MLLR (fMLLR) (Li et al. (2002); also known as constrained MLLR
(Gales, 1998) and its projection variant (fMLLR-P) (Saon et al., 2001b) are used to adapt the acoustic
features. The adaptation policy is to accumulate sufficient statistics for the test data of each speaker, which
requires more adaptation utterances. However, the adaptation result is far from satisfactory. For fMLLR,
the accuracy measures of sets A, B, and C are 71.8%, 75.0%, and 71.4%, respectively. For fMLLR-P, the
corresponding measures are 71.5%, 74.7%, and 71.1%, respectively.

By comparing the results obtained from MLLR (Cui and Alwan, 2005) and fMLLR (Saon et al., 2001a),
the advantage of Phase-JAC/VTS becomes clear. Phase-JAC/VTS only takes the current utterance for unsu-
pervised adaptation and achieves excellent adaptation results. The success of Phase-JAC/VTS is attributed to
its powerful physical environment-distortion modeling. As a result, Phase-JAC/VTS only needs to estimate
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the noise and channel parameters for each utterance. This parsimony is important since the statistics from that
utterance alone is already sufficient for the estimation (this is not the same for other methods such as MLLR).
The estimated noise and channel parameters then allow for ‘‘nonlinear” adaptation for all parameters in all
HMMs. Such nonlinear adaption is apparently more powerful than ‘‘linear” adaptation as in the common
methods of MLLR and fMLLR.

4. Conclusion

In this paper, we have presented our recent development of the Phase-JAC/VTS algorithm for HMM adap-
tation and demonstrated its effectiveness in the standard Aurora 2 environment robust speech recognition
task. The algorithm consists of two main steps. First, the noise and channel parameters are estimated using
a nonlinear environment-distortion model in the cepstral domain, the speech recognizer’s ‘‘feedback” informa-
tion (the posterior probabilities of all the Gaussians in speech recognizer), and the vector Taylor series (VTS)
linearization technique collectively. Second, the estimated noise and channel parameters are used to adapt the
static and dynamic portions of the HMM means and variances. This two-step algorithm enables joint com-
pensation of both additive and convolutive distortions (JAC). The algorithm distinguishes itself from all pre-
vious related work by introducing the novel phase term in JAC model of environmental distortion for on
HMM adaptation.

In the experimental evaluation using the standard Aurora 2 task, the proposed JAC/VTS algorithm has
achieved 93.32% word accuracy using the clean-trained complex HMM backend as the baseline system for
the model adaptation. This represents high recognition performance on this task for clean-trained simple
backend HMM system. The experimental results have shown that the value of the phase-factor vector is crit-
ical to the success of Phase-JAC/VTS.

Several research issues need to be addressed in the future to further increase the effectiveness of the algo-
rithm presented in this paper. First, a more effective ‘‘clean” model is expected to greatly increase the Phase-
JAC/VTS performance. While in the Aurora 2 task clean speech is used for training the clean speech HMM,
speaker variation can be reduced by using adaptive training. In the very recent work of Hu and Huo (2007),
one form of such adaptive training was developed and evaluated on the same Aurora 2 task as we are report-
ing in this paper, and a simpler version of the JAC/VTS technique than ours is used. With the new model
obtained by adaptive training over both clean and noisy speech data in the training set, the Aurora 2 recog-
nition accuracy increases dramatically from 87.74% of its JAC baseline to 93.10%. Comparing with the 87.74%
JAC performance in Hu and Huo (2007), our corresponding JAC performance of 93.32% accuracy is signif-
icantly better. This demonstrates the power of our proposed method. The gap between 87.74% and 93.10% in
Hu and Huo (2007) also shows the potentially huge gain that we may achieve if the ‘‘clean” model can be
adaptively trained from corrupted speech for use in the JAC/VTS algorithm. Second, as analyzed in the exper-
iments, Phase-JAC/VTS works well in the stationary environment. Improvement will be expected if the algo-
rithm is modified to work with non-stationary noisy environments. Third, the success of our Phase-JAC/VTS
algorithm relies on accurate and reliable recognizer’s ‘‘feedback” information represented by the posterior
probabilities. Under the condition of low-SNR, such ‘‘feedback” information tends to be unreliable, resulting
in poor estimates of noise and channel parameters. Overcoming this difficulty will be a significant boost to the
current Phase-JAC/VTS algorithm under low-SNR conditions. Fourth, the a value is chosen manually and is
set as same for all utterances in this study. An utterance-dependent strategy for setting a should be derived.
Fifth, the phase-factor vector, a, is set to have a constant a value for its every component. By examining Eqs.
(11) and (13), it is easy to see components of a have different values. Sixth, as analyzed in the experiment sec-
tion, biased estimates of noise and channel may result in the unusual optimal values of a. We need to examine
whether the a value fits the theoretically range as analyzed in Deng et al. (2004) after obtaining more reliable
estimates of noise and channel. Resolving the above issues, we expect to achieve greater effectiveness of the
Phase-JAC/VTS algorithm than what has been reported in this paper. Finally, it is interesting to investigate
whether Phase-JAC/VTS can be combined with discriminative training methods. Our preliminary experiments
showed that when a discriminative trained model was used to replace the MLE baseline model, Phase-JAC/
VTS can achieve even higher accuracy. However, it requires additional research work to combine Phase-JAC/
VTS with feature-based discriminative method (e.g., fMPE Povey et al., 2005).
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Appendix A. derivation of the adaptation formulas for the dynamic parameters in HMMs

For frame t in a distorted speech utterance, we have Eq. (16):
yðtÞ � lx þ lh þ g lx; lh; lnð Þ þ G xðtÞ � lxð Þ þ G hðtÞ � lhð Þ þ ðI � GÞ nðtÞ � lnð Þ: ð58Þ
To compute the delta value of the distorted cepstrum y, a set of linear weights wi are introduced accord-
ing to
DyðtÞ ¼
X

i

wiy t � ið Þ: ð59Þ
These weights satisfy the following constraint:
X
i

wi ¼ 0; ð60Þ
which ensures that the delta parameter corresponding to a constant static parameter series is zero. By applying
these weights to Eq. (58), we have
X

i

wiyðt � iÞ �
X

i

wilx þ
X

i

wilh þ
X

i

wig lx; lh; lnð Þ þ G
X

i

wixðt � iÞ � G
X

i

wilx

þ G
X

i

wi hðt � iÞ � lhð Þ þ I � Gð Þ
X

i

win t � ið Þ � I � Gð Þ
X

i

wiln: ð61Þ
Because ln, lh, lx do not vary with time t, and the channel vector h is a constant, with Eq. (60), we have
X
i

wilx ¼ 0; ð62ÞX
i

wilh ¼ 0; ð63ÞX
i

wig lx; lh; lnð Þ ¼ 0; ð64Þ

G
X

i

wilx ¼ 0; ð65Þ

G
X

i

wi hðt � iÞ � lhð Þ ¼ 0; ð66Þ

I � Gð Þ
X

i

wiln ¼ 0: ð67Þ
Hence, Eq. (61) becomes
X
i

wiyðt � iÞ � G
X

i

wixðt � iÞ þ ðI � GÞ
X

i

winðt � iÞ: ð68Þ
This gives the relationship between the delta values of the distorted speech cepstrum, the clean speech cep-
strum, and the noise according to
DyðtÞ � GDxðtÞ þ ðI � GÞDnðtÞ: ð69Þ
Taking the expectation for both sides of Eq. (69), we have
lDy � GlDx þ I � Gð ÞlDn: ð70Þ
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And taking the variance for both sides of Eq. (69), we obtain
RDy � GRDxG
T þ ðI � GÞRDnðI � GÞT : ð71Þ
For the delta–delta or acceleration value of distorted cepstrum y, we have the following definition:
DDyðtÞ ¼
X

i

wiDyðt � iÞ ¼
X

i

wi

X
p

wpy t � i� pð Þ
 !

¼
X

q

vqy t � qð Þ: ð72Þ
where the weight vq is formed by the product of wi and wp. Because the delta–delta cepstrum can be expressed
as a linear combination of the static cepstrum, the same derivation as before for delta cepstrum can be applied
to the delta–delta cepstrum to yield
lDDy � GlDDx þ ðI � GÞlDDn; ð73Þ
RDDy � GRDDxG

T þ ðI � GÞRDDnðI � GÞT : ð74Þ
Eqs. 70, 71, 73 and 74 are the general cases of Eqs. (25)–(28), which are for the specific k-th Gaussian in the j-
th state of the HMM.

Based on the approximation in Gopinath et al. (1995), the work in Acero et al. (2000) also proposed to
adjust both the static and dynamic portions of HMM parameters given the known noise and channel param-
eters. The adaptation formulas for static and dynamic portions of HMM parameters in Acero et al. (2000) are
derived with approximations of relating delta (and delta–delta) cepstrum with cepstrum derivatives as in Gopi-
nath et al. (1995). In contrast, we directly derived the adaptation formulations from the definition of delta (and
delta–delta) cepstrum with Eqs. (59) and (72).
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