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ABSTRACT 

 

Snakes, or active contours, have been widely used in image 

processing applications. Typical roadblocks to consistent 

performance include limited capture range, noise sensitivity, 

and poor convergence to concavities. This paper proposes a 

new design for the snake external force, called vector field 

convolution (VFC), to address these problems. Qualitative 

and quantitative comparisons with the gradient vector flow 

(GVF) external force are presented in this paper to show the 

advantages of this innovation. 

 

Index Terms — Image processing, image segmentation, 

image shape analysis, object detection 

 

 

1. INTRODUCTION 

 

Snakes [1] (a.k.a. active contours) have been widely used 

for image segmentation [2] and tracking [3, 4]. Snakes can 

deform on the image domain and capture a desired object 

boundary. The snake evolution is achieved via minimizing 

an energy functional subject to physically meaningful 

constraints. The energy functional usually contains two 

terms: an internal energy, which constrains the smoothness 

and tautness of the surface, and an external energy, which 

attracts the surface to the features of interest. 

An external force design for snakes called gradient 

vector flow (GVF) [5] and its improved version in [6] were 

introduced to accommodate a large capture range and to 

enable faithful representation of curve concavities. 

Although GVF has been widely used, there are some 

disadvantages, such as noise sensitivity, parameter 

sensitivity, high computational cost and the esoteric 

relationship between the capture range and parameters.  

In this paper, we present a novel external force 

implementation for snakes called vector field convolution 

(VFC). This external force field is calculated by convolving 

a vector field kernel with the edge map derived from the 

gray-level or binary image. Snakes that use the VFC 

external force are termed VFC snakes. Similar to the GVF 

approach, instead of being formulated using the standard 

energy minimization framework, VFC snakes are 

constructed by way of a force balance condition.  

Advantages of VFC snakes over GVF snakes are 

insensitivity to noise and initialization, flexibility of 

changing the capture range in a meaningful way, and 

reduced computational cost. Those advantages are 

demonstrated by examples and comparisons with GVF 

snakes in Section 4. 

 

2. BACKGROUND 

 

An active contour is represented by a parametric curve 

( ) ( ) ( ),s x s y s=   x , [ ]0,1s ∈ , that deforms through the 

image domain to minimize the energy functional  
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where α  and β  are weight parameters representing the 

smoothness and tautness degrees of the contour, 

respectively, and ( )s′x  and ( )s′′x  are the first and second 

derivatives of ( )sx  with respect to s. extE  denotes the 

external energy, the value of which is small at the features 

of interest [5]. To minimize (1), the contour must satisfy the 

Euler equation  

( ) ( ) ext 0s s Eα β′′ ′′′′− − ∇ =x x  (2) 

where ∇  is the gradient operator. This can be considered as 

a force balance equation 

int ext 0+ =F F  (3) 

where ( ) ( )int " s "" sα β= −F x x  is the internal force to 

constraint the contour smoothness and extext
E= −∇F  is the 

external force to attract the contour toward the features of 

interest. 

The gradient vector flow (GVF) field is the vector field 

( ) ( ) ( ), , , ,x y u x y v x y=   v  that minimizes the energy 

functional  
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GVFE u v f f dxdyµ = ∇ + ∇ + ∇ − ∇
 ∫∫ v  (4) 

where extf E= −  is an edge map derived from the image, 

and µ  is a weight parameter controlling the degree of 

smoothness of the GVF field. As shown in [5], the GVF 

field has a large capture range and the ability to progress 

into concavities. Although the GVF field has several desired 

properties, there are still several unsolved problems, such as 



the sensitivity to the parameters, the obscure relationship 

between the capture range and the parameters, the capture 

range sensitivity to noise, especially impulse noise, and 

expensive computational cost.  

In this paper, we present a new design for a static 

external force that does not depend on the position of the 

active contour or change over time. This new external force, 

called vector field convolution (VFC), is calculated by 

convolving a vector field kernel with the edge map derived 

from the image. This novel external force has not only a 

large capture range and ability to converge to concavities, 

but also better robustness to noise and initialization, 

flexibility of changing the force field, and reduced 

computational cost. 

 

3. VECTOR FIELD CONVOLUTION 

 

We define a vector field kernel ( ) ( ) ( ), , , ,x y s x y t x y=   k  

in which all the vectors point to the origin 

( ) ( ) ( ), , ,x y m x y x y=k n  (5) 

where ( ),m x y  is the magnitude of the vector at ( ),x y  and 

( ),x yn  is the unit vector pointing to the origin 

( ) [ ], ,x y x r y r= − −n  (6) 

where 
2 2

r x y= +  is the distance from the origin, except 

that ( ) [ ]0,0 0,0=n  at the origin. A desirable external force 

should have an important property: a free particle placed in 

the field should be able to move to the features of interest, 

such as edges. If the origin is considered as the feature of 

interest, this vector field possesses this desirable property.  

The vector field convolution (VFC) external force 

( ) ( ) ( ), , , ,x y u x y v x y=   v  is given by calculating the 

convolution of the vector field kernel ( ),x yk  and the edge 

map ( ),f x y  generated from the image ( ),I x y   
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where ∗  denotes convolution. Since edge map ( ),f x y  is 

larger near the image edges, edges contribute more to the 

VFC than homogeneous regions. Therefore, the VFC 

external force can move free particles to the edges.  

The VFC field is strongly dependent on the magnitude 

of the vector field kernel ( ),m x y . By considering the fact 

that the influence from the feature of interest should be less 

as the particles are further away, the magnitude should be a 

decreasing function of distance from the origin. We propose 

two types of magnitude functions, given as 

( ) ( )1 ,m x y r
γ

ε
−

= + , (8) 
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Fig. 1. Top (bottom) row, from left to right: convergence of GVF 

(VFC) snake, streamlines generated from GVF (VFC) field, and 

zoomed GVF (VFC) field within the concavity. 

 

where γ  and σ  are positive parameters to control the 

decrease, ε  is a small positive constant to prevent division 

by zero at the origin. ( )1 ,m x y  is inspired by Newton's law 

of universal gravitation in physics, which can be viewed as 

a special case with 2γ =  and 0ε = . The influence of 

features of interest decreases as γ  increases. The magnitude 

function ( )2 ,m x y  is Gaussian-like, where σ  can be  

viewed as the scale parameter. The influence of features of 

interest increases as σ  increases. Note that the external 

force proposed in [7] is a special case of ( )1 ,m x y  with 

2γ = . 

 

4. RESULTS AND ANALYSIS 

 

Several examples in this section demonstrate desirable 

properties of the VFC snakes. The GVF snakes have gained 

tremendous popularity due to their ability to address a few 

difficulties appeared in previous instantiations of the active 

contour. Therefore, we also compare the VFC snake results 

with the GVF snake results. The magnitude function used in 

those experiments is ( )1 ,m x y  with 2.4γ = .  

 

4.1. Capture Range and Convergence to Concavity 
 

We use the U-shape example, which is also shown in [5], in 

our experiment. As shown in Fig. 1, both the VFC snake 

and the GVF snake have a large capture range and 

concavity converge property. The two force fields are barely 

distinguishable from each other in this example; especially 

the vectors within the concavity in both force fields have a 

downward component to attract the snakes to the concavity.  

In practical implementation, the capture range of the 

GVF field is determined by two parameters: the smoothness 

parameter µ and the number of iterations. Although we 



know that the capture range increases as µ and the number 

of iterations increase, there is no specified relationship 

available to the user. In contrast, the capture range of the 

VFC field is determined by the maximum distance between 

any non-zero vector and the origin in the vector field kernel. 

 

4.2. Initialization 
 

As we see in Fig. 1, the snakes can be initialized far away 

outside the object for both the VFC snakes and the GVF 

snakes. Fig. 2 shows a set of initialization placed across and 

inside the boundary, with which both snakes converge. 

 

4.3. Noise Sensitivity 
 

To test the noise sensitivity of GVF snakes and VFC snakes, 

we add impulse noise to the U-shape image in Fig. 1. Fig. 3 

illustrates the noisy image with initial snakes plotted in dash 

lines. The GVF snake in Fig. 3(a) fails to converge to the U-

shape because it is distracted by local impulse noise. 

Although a better initialization provides an improved result 

in Fig. 3(b), the GVF snake does not capture some boundary 

features precisely, such as the concavity and bottom right 

portion, which are distorted by the Gaussian filter. However, 

the Gaussian filter is necessary to suppress the noise for the 

GVF snakes. The VFC snake converges to the desired 

features without using Gaussian filter, shown in Fig. 3(c). 

To quantify the accuracy of the results, the root mean square 

error (RMSE) of the snake is calculated. The error of a point 

in the snake is defined by the minimum distance between 

the point and U-shape in the noise-free image. These results 

reveal the superior robustness to noise afforded by VFC.  

In other words, the capture range of GVF snakes is 

significantly affected by the noise, while the capture range 

of VFC snakes is not. The reason is that GVF only diffuses 

the gradient vectors without considering the “strength” of 

the features. On the other hand, strong or large features 

contribute more to the VFC field than weak and small 

features. We demonstrate this sensitivity in Fig. 4, where 

the input image consists of an impulse surrounded by a 

circle. From the streamlines generated from GVF and VFC, 

we can see white rings, which are the watersheds for capture 

ranges. The area outside the rings is the capture range for 

the circle, and the one inside is the capture range for the 

noise. As may be observed in the Fig. 4, noise has a 

diminished impact on the VFC field, compared to the 

response of the GVF field. 

 

4.4. Flexibility 
 

The magnitude function can be modified to provide a 

tailored VFC field. We can add an anisotropic term to 

obtain a VFC field similar to the motion gradient vector 

flow (MGVF) proposed in [3], which incorporates the 

motion direction inside the GVF energy to track cells. The 

modified VFC magnitude function is given as  

 

   
Fig. 2. Initializations with which both snakes converge. 

 

   
(a) RMSE = 3.20 (b) RMSE = 0.64 (c) RMSE = 0.53 

Fig. 3. Impulse noise corrupted U-shape image with the initial 

snake (dash line) and the result (solid line); (a) and (b) the GVF 

snakes using edge map ( ) ( ) ( )5, , ,f x y G x y I x y= − ∗ , where 

( ),G x yσ  is a 2D Gaussian function with standard deviation σ ; 

(c) the VFC snakes using edge map ( ) ( ), ,f x y I x y= − . 

 

   
(a) (b) (c) 

Fig. 4. (a) Circle with an impulse at the center; streamlines 

generated from (b) GVF field and (c) VFC field. 
 

 

( ) ( ) ( )3 , , , , 1, 2
i

m x y c x y m x y i= =  (10) 

where ( ),c x y  is the anisotropic term. In this experiment, 

( ),c x y  is given as 

( ) ( ), 1 2 ,c x y x y= −  d ni  (11) 

where d  is a unit vector representing the motion direction, 

i  denotes the vector dot product. If ( ),x yn  and d have the 

same direction, ( ),c x y  is close to 1; if they have opposite 

direction, ( ),c x y  is close to 1/3. Therefore, the resulting 

VFC is biased in the motion direction.  

Fig. 5(a) shows a synthetic cell image with a displaced 

initialization. The GVF snake fails to capture the proper 

boundary because of the isotropic force field, shown in Fig. 

5(c). Fig. 5(b) shows that the VFC snake succeeds by using 

anisotropic magnitude function, where the motion direction 

is [ ]1,0= −d . The resulting anisotropic VFC force field is 

illustrated in Fig. 5(d). This example demonstrates that the 

VFC could be easily modified for different applications. 



Table 1. CPU time and capture range for a 5112 image. 

Number of iterations 128 256 512 

CPU time (seconds) 4.47 8.88 22.6 GVF 

Capture range (pixels) 127 174 231 

Kernel size (pixels) 127 255 511 

CPU time (seconds) 1.31 1.86 2.36 VFC 

Capture range (pixels) 90 181 362 

 

4.5. Real Image Results 
 

We apply the VFC snakes to noisy magnetic resonance (MR) 

images of human ankles. As shown in Fig. 6(a), the GVF 

snake is stuck in the interior and does not converge to edges. 

The reason can be found in Fig. 6(c) – the GVF snake tends 

to move in the vertical direction because there is no 

horizontal force component in the center area. Again, this is 

caused by the nature of GVF – gradient vector diffusion. In 

contrast, the VFC snake converges to the concavities on the 

bottom-right precisely, shown in Fig. 6(b). We also note 

that the GVF snake converges if the initialization is closer 

to the boundary. This anecdotal case exemplifies the 

robustness to initialization afforded by the VFC approach. 

 

4.6. Computational cost 
 

If we represent the vectors with complex numbers, the VFC 

field can be calculated by convolving a complex function 

with a real function. This convolution can be implemented 

via the fast Fourier transform (FFT), which can significantly 

reduce the computational expense when the kernel size is 

large. The computational cost of GVF mainly depends on 

the number of iterations, while the expense of VFC mainly 

depends on the size of the vector field kernel. Table 1 

compares the computational cost and capture range of VFC 

with GVF. A 511 x 511 image, which has an intensity of 

one at the center and is zero–valued elsewhere, is used as 

the edge map. The capture range is defined as the maximum 

distance between a non-zero vector in the force field and the 

center. From Table 1, we may observe that GVF requires 3 

to 10 times more computational expense than VFC with a 

similar capture range. This experiment was based on a Dell 

Precision 330 work station with P4 1.6GHz CPU, 1GB 

RAM and MATLAB code. 

 

5. CONCLUSION 

 

A novel external force for active contours, called the vector 

field convolution (VFC), has been introduced. The field is 

calculated by convolving a vector field with the edge map 

generated from the image. We have shown that the VFC 

snakes converge to boundary concavities, and have large 

capture ranges, similar to the GVF snakes. Furthermore, the 

VFC snakes are more robust to noise and initialization, 

more flexible, and less expensive than GVF snakes. 

(a) 

 

(c) 

 

(b) 

 

(d) 

 
Fig. 5. An ellipse representing a synthetic cell with initial snakes 

(dash lines) and results (solid lines) using (a) GVF and (b) VFC; 

streamlines generated from (c) GVF field and (d) VFC field. 

 

(a) 

 

(c) 

 

(b) 

 

(d) 

 
Fig. 6. MR image of a human ankle with initial snakes (dash 

lines) and results (solid lines) using (a) GVF and (b) VFC; 

streamlines generated from (c) GVF field and (d) VFC field. 
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