562

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 4, APRIL 2004

Level Set Analysis for Leukocyte
Detection and Tracking
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Abstract—We propose a cell detection and tracking solution
using image-level sets computed via threshold decomposition.
In contrast to existing methods where manual initialization is
required to track individual cells, the proposed approach can
automatically identify and track multiple cells by exploiting the
shape and intensity characteristics of the cells. The capture of the
cell boundary is considered as an evolution of a closed curve that
maximizes image gradient along the curve enclosing a homoge-
neous region. An energy functional dependent upon the gradient
magnitude along the cell boundary, the region homogeneity within
the cell boundary and the spatial overlap of the detected cells is
minimized using a variational approach. For tracking between
frames, this energy functional is modified considering the spatial
and shape consistency of a cell as it moves in the video sequence.
The integrated energy functional complements shape-based
segmentation with a spatial consistency based tracking technique.
We demonstrate that an acceptable, expedient solution of the
energy functional is possible through a search of the image-level
lines: boundaries of connected components within the level sets
obtained by threshold decomposition. The level set analysis can
also capture multiple cells in a single frame rather than iteratively
computing a single active contour for each individual cell. Results
of cell detection using the energy functional approach and the level
set approach are presented along with the associated processing
time. Results of successful tracking of rolling leukocytes from a
number of digital video sequences are reported and compared
with the results from a correlation tracking scheme.

Index Terms—Cell detection, level set, tracking.

1. INTRODUCTION

HE OBJECTIVE of this application is to detect and track

rolling leukocytes within the microvasculature using video
microscopy. Rolling leukocytes are slow-moving (relative to the
blood flow) activated white blood cells involved in the inflam-
matory process. In the focus study used to demonstrate the ef-
ficacy of cell identification and tracking, rolling leukocytes are
observed in vivo using transillumination of living specimens.
The study is targeted at the analysis of the inflammatory process
and the validation of anti-inflammatory drugs [2], [5]. In order to
track a cell and measure the cell velocity and acceleration (two
parameters related to the activation level of the cell in the inflam-
matory process), the first task is to segment the cells from the in-
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dividual frames of the sequence. Here, we have used image-level
set techniques to identify the cells.

Level set analysis from threshold decomposition is a tech-
nique that has been utilized in several interesting applications
[8], [13]. In the present context, level set analysis provides
the advantage of identifying multiple cells in a single frame.
Identification of a blood cell is posed as the minimization of an
energy functional incorporating image gradient and intensity
homogeneity within the closed contour encompassing the cell.
The leukocytes in subsequent frames are tracked using the
spatial and shape coherency of the cells in the video sequence.
Given an identified cell, we attempt to delineate a closed con-
tour in the next frame that minimizes the energy functional
quantifying the inter-frame spatial and intensity coherency.

Egmont-Petersen er al. have generated synthetic leukocyte
images to train a neural network that detects leukocytes in con-
tact with the vessel wall of microvasculature [6]. In our proposed
method we have also used the cell geometry information to find
the best image-level set that represents a leukocyte. However,
our focus is not restricted to leukocytes in contact with the vessel
wall, viz. with the endothelium. All cells in motion, as opposed
to adherent cells, are of interest in our study, since our research
team is investigating the mechanism of leukocyte rolling.

Deformable templates are used to segment cells in [7]. The
segmentation process proceeds in three sequential steps. In the
first step, edges are detected. Next, cell templates are initialized
automatically on or near the cells by a Hough transform. Finally,
the local deformations of the initialized templates are performed
to fine tune the cell segmentation using the detected edges in the
first step. In contrast, the method presented here integrates edge
detection, cell segmentation, and tracking into a single model.

Sato et al. have detected leukocyte motion from the image
sequence by observing the image intensities on a spatial path
parallel to and near the vessel contour [14]. Their search for
cells is limited for the ones that are only rolling along the static
vessel contour. They have designed a direction (cells flowing
from south-west to north-east) and shape (known width of the
leukocyte) sensitive filter and a grouping process that combines
thresholded regions of the spatiotemporal image to a cell. The
static cell boundary information helps in grouping the cell
regions. However, the process is constrained because of the
fact that the cells in contact with the vessel wall show spatially
restricted motion whereas our approach addresses unrestricted
movement of blood cells within the vessel wall.

Wu et al. segmented live cell images from the background
by first identifying a region that contains a cell using a global
threshold [17]. This is followed by localized thresholding
within the restricted region containing a cell. It is assumed
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that the intensity histogram in this localized region is bimodal.
The most vulnerable part of the algorithm in [17] is the use
of a single global threshold, which is not robust for intravital
(in vivo) image analysis, where contrast, focus, and transil-
lumination vary widely. However, individual pixel sensitive
local thresholding may be used to extract cell shape given the
intra-regional consistency of white blood cells. The area mor-
phology based technique that we have proposed to detect cells
(see Section III) uses exhaustive! local thresholding imple-
mented through decomposition of image matrix into a stack of
binary images. The components representing cells are selected
based on cell shape characteristics. The advantage of the use
of area morphology over conventional gray-level morphology
is that the former does not distort the cell shape dictated by a
structuring element used in conventional morphology [1].

In contrast to the morphological or stacking use of the term
“level set,” level sets are also used in creating a surface that con-
tains a zero-level set representing a curve [15]. In this spirit,
geodesic active contours have been used for segmentation and
tracking problems [10]. For our intravital video with poor con-
trast, occlusions, and inconsistent background, segmentation via
a single global active contour is insufficient. Often, the rolling
leukocytes change contrast from light-on-dark to dark-on-light,
and the endothelium (vessel wall) moves due to respiration by
the mouse, leading to increased image blur and background mo-
tion. Since we are using transillumination to view the venules,
other tissue (e.g., muscle) may occlude the venule of interest
and may lead to increased image clutter.

Ray et al. have used parameterized active contours to track
rolling leukocytes [11]. The shape and size sensitive “snakes”
improve upon the accuracy provided by traditional centroid and
correlation trackers. However, their snake tracker requires time-
consuming manual initialization for each individual cell and
does not permit automated counting of cells (to measure leuko-
cyte flux, etc.). If the cells were identified first manually, the cell
walls could be found using a balloon or “pressure force” snake
[4]. Here, we are proposing an integrated technique that com-
bines identification and segmentation. With the snake tracking
technique in [11], the computational complexity increases lin-
early with the numbers of cells tracked. In the proposed method,
multiple cells are identified and tracked in a unified approach
from a single-level set representation of the entire image frame.
We present an integrated energy functional representing image
segmentation and tracking and propose a minimization scheme
using variational calculus for the energy functional. We show
that a satisfactory and computationally attractive solution is ten-
able by restricting the solution space to the boundaries of con-
nected components in the image-level sets.

In the next section, we present the development of the en-
ergy functional to detect a cell. A computationally inexpensive
alternative, using level set analysis, is discussed in Section III.
The tracking algorithm is developed in Section IV, and results
and discussion are presented in Section V, in which a number of
digital video sequences are analyzed by the proposed method
and a competing approach. Finally, conclusions are given in
Section VL.

IExhaustive in the sense that all intensities present in the image are used.

II. CELL MORPHOLOGY AND DETECTION

In this section, we exploit cell morphology to develop an en-
ergy functional that quantifies the solution quality of a given
curve that delineates a cell. For the application to leukocytes ob-
served in vivo, the segmentation should identify leukocyte-like
shapes and ignore nonhomogeneous background fluid (which,
in this imagery, is both corpuscular and of plasma). Fig. 1(a)
and (b) are two typical leukocyte images—a bright cell and a
dark cell. The differing mean intensities are due to defocus,
occluding matter (mostly red blood cells) and phase contrast.
In each case, the cells contain a homogeneous cytoplasm en-
veloped by a mostly distinct boundary. The two specific features
of the cell intensity profiles include:

1) atypical boundary envelope in which the intensity profile
is different from the cell cytoplasm and from the back-
ground, if not the entire boundary but at least for a signif-
icant part of the border;

2) the leukocyte shapes are nearly circular, except for
teardrop-like deformation encountered when in contact
with the endothelium [5].

The first step toward extracting leukocyte shape is to find a
closed contour that satisfies a leukocyte shape prior and min-
imizes an energy functional for image segmentation. In the next
section, we construct this energy functional.

A. Construction of the Energy Functional

In general, the problem of image segmentation that detects
homogeneous region with distinct boundary can be viewed as
the placement of a closed curve that maximizes image gradient
at its boundary and intensity homogeneity for its interior. Given
a parameterized curve C;(s) = [X(s),Y(s)], s € [0,1], that
separates objects from the background, the energy functional
for leukocyte capture should minimize

1

E(C /g |VI]) ds—n// (z,y)dzdy. (1)

0 ©(Ci)

Here, the first term fo (IVI])ds integrates image gradient
along the curve C;. The function g(k) is a monotonically
increasing function; for example, the classical error function
where g(k) — 1 when k& — oo and g(0) = 0. One desirable
characteristic of g(k) is that its value should be normalized
between [0,1] so that it can be on par with the scale of other
terms in the energy functional. A characteristic of the error
function is that the value is close to unity beyond certain value
of the argument. Thus, a very high gradient magnitude arising
out of clutter (such as the strong vessel wall edge) is not given
preference over cell edges in the energy functional. Thus, we
select g(k) = (2//7) fok e~ dt.

In the second term of (1), [ f ©) H(x,y)dzdy represents
the homogeneity of the image region ©(C;) bounded by the
curve C;. Region-based strategies for active contour models are
discussed extensively in [12]. Here, we relate this homogeneity
term to the likelihood of a cell in the following way. Let i be
image intensity within a cell corrupted by additive zero-mean
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(a) (b)

(a) Bright leukocyte subimage. (b) Dark leukocyte subimage.

Fig. 1.

Gaussian i.i.d. noise of variance o2. Then the likelihood of the
cell given an instance of the contour is as follows:

> Uy

(z,y)€p(C:)

p(I|C;) o exp —w’y. @

Thus, taking the logarithm of (2) and interpreting it in the contin-
uous image domain yields the following definition for H(z,y):
2
Ha,y) = -TED 20 3)

o

Similar image-region-based terms have been utilized by Chan
and Vese [3] and Yezzi et al. [18] for image segmentation. In
their approach, image statistics, both inside and outside of the
active contour, are considered. In the present case, we only con-
fine our attention to the intensities inside the curve, as the exte-
rior includes the moving background containing clutter.

In the experiments, we estimate pu to be the
average intensity within the region, ©(C;) u =
(f Joion) I(.?:, y)dzdy/ [ [,y dwdy). This implicit choice of
1 is not motivated toward leukocytes appearing dark or bright.
Such a choice also eliminates the requirement to determine
the parameter value for y by some explicit means. From (1)
and (3), it is evident that o2 is absorbed in the weighting
parameter x in (1). The parameter « in (1) is the weight that
controls the relative importance of boundary gradient versus
the cytoplasm homogeneity in minimizing F. Following the
tracking experiments on training sequences, we set the value
of the parameter « that yields minimum tracking errors (with
respect to manual tracking output, i.e., the ground truth). For
scenes with significant clutter (> 20 cells per 100 pm venule)
and poor contrast, the importance of homogeneity is increased,
while for well-contrasted scenes, the gradient magnitude has
the higher discriminative power.

In the proposed model, we utilize a speed function for the level
set curve that is attracted to the cell cytoplasm. The intensity
distribution of the cell cytoplasm is unimodal as approximated
using a Gaussian distribution. The level set model introduced in
[10] uses a mixture model with either a Gaussian or Laplacian
approximation. The difficulty of using such a mixture model
analysis in the proposed case is that the background (other than
the cell cytoplasm) is not spatially uniform due to the presence of
erythrocytes, inactivated leukocytes, and inhomogeneous blood
plasma. With a number of training samples from numerous
frames at different locations in and around the activated (rolling)
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white blood cells, we have observed that it is difficult to ascertain
a specific mixture distribution model. Also, as the appearance of
a deformable white blood cell may change from light-on-dark
to dark-on-light due to illumination, the assumption of a global
prior probability distribution is not appropriate. Rather, it is
more appropriate to search for a homogeneous cell cytoplasm
(albeit light or dark).

The energy functional is minimized over different possible
configurations of C;. For the problem of cell detection, we as-
sume that more than one cell cannot partially overlap another.
So even though two cells can be mutually osculating, the curves
representing leukocytes can neither be intersecting nor circum-
scribed into one another. Adding this constraint in (1) to guide
the evolution of curve C;, we can write

1

/g [VI]) ds—n// x,y)dxdy

0 p(Ci)
. N

+ / / > xj(z,y) | dedy “
o(C) \I=Li#t

where the function x; is the characteristic function for the
4t curve representing a leukocyte boundary and is defined as

follows:

| 1, if(z,y) € 9(C)
Xi(z.y) = {0, otherwise ©

where p(C};) is the region bounded by curve C; and N is the
total number of leukocytes detected in the image. If a pixel (z, y)
belongs to multiple curves delineating potential cells, ¥y ; in-
creases. The summation is minimized in the case that there is
no overlap between cell boundaries. Note that the need for the
nonoverlapping constraint in the energy functional is crucial,
and is comparable to a “hard” constraint. We do not need any
additional weight for this component as its value varies linearly
with the number of overlapping contours (cells) and with the
overlapping area, which is significant compared to the other
components of the energy functional.
Then, (4) can be written in the form

1

- [aqviyas— [ [ s@wizay  ©

0 ©(Ci)
where
N
flay) = rHzy) - [ > x@w]|]. @
=1,

Given that leukocytes have a specific range of possible areas and
possible deviation from circularity, the energy functional in (6)
can be further modified as

e(Ci) = 6 (|p(Cy)[, C(Ci)) E(C). (8)

Here, we define a delta function 6(-) that has compact sup-
port and has unit value where amin < |p(Ci)| < @max and
¢min < ((C;) < Cmax- The circularity measure ¢(-) is the

slenderness defined as the ratio of area over perimeter squared.
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Since leukocytes are roughly circular in shape and have a spe-
cific slenderness measure, this feature is required for recogni-
tion in addition to the area constraint. From the known leukocyte
shape, the area bound {ain, @max } and the circularity bound
{Cmin» Cmax } are estimated according to established physical
models [14].

In the next section we discuss the minimization for the energy
functional in (6).

B. Solution of the Energy Functional

The energy functional in (6) is minimized by solving the
respective Euler—Lagrange equation as detailed in the Ap-
pendix A. The first variation of energy minimization process
for (6) is given by

SE 9 Y,
51 =~ g ¢ IVIXL Y - f(G Y)Y ©)
SF 0 Y. X;, Y)X
v, =~ gyt (VIR YD + f(Xi, Yi) X,

(10)

where the function f is given in (7). Given that (Y27 -X i) =
n(X;,Y;) the unit outward normal to the curve at C; = (X;,Y;),
the solution for energy minimization is an iterative process
where the initial curve is perturbed along local normal direction
minimizing the rate of change in energy defined by (9) and
(10). A geometric curve evolution equation can be formed
using &1 = P, + F|V®P|, where @, is the geometric
representation of the curve at n'! iteration and F is the speed
function [15]. With the solution derived in (9) and (10), the
update equation of the curve capturing leukocyte shape is given
by

1 = Oyt 1 (—f (2. 9) VR~ Vg ((VI(2,9)]) (2., ,))

(11)
where ¢, is the time step. A similar speed function is also derived
in [10]. It can be shown that the curve evolution equation in [10]
is a special case of (11) excluding the region homogeneity term
and introducing a contour regularity term in the edge gradient
part of the energy function in (1).

We are utilizing the gradient descent method to minimize
(4). Such a method is known to converge to a local minimum.
Note that the energy is bounded given that the intensity range
is bounded and the image domain is finite. The discrete im-
plementation of (4), viz. (11), is performed with the level set
method, which again is known to be a numerically stable iter-
ative process when the Courant—Friedrichs—-Levy (CFL) condi-
tion involving the time step size ¢ is met [15]. In practice, the
convergence with such a method is achieved by keeping account
of the change in ®,, in (11) that embeds the evolving level set;
although the speed of convergence is dependent on the choice
of the time step size ¢, in (11).

In Section IV, we demonstrate the extraction of leukocytes
through evolution of an initial curve following (11). The draw-
back of the curve evolution process is the computational expense
associated with extracting multiple cells in multiple images. In
the next section, we show that an alternate acceptable solution
of this proposed minimization is possible through level set
morphology.

III. CELL DETECTION USING LEVEL SET ANALYSIS

To explore a computationally efficient solution space for
the energy functional (6), we consider only the boundaries of
connected components within the image-level sets that satisfy
shape, boundary and region homogeneity constraints detailed
in Section II. Before we present this approach, let us explore
the properties of the level set decomposition.

A. Level Set Morphology

A complete representation of a digital intensity image is
achieved through binary umbrae of the image. A binary umbra
is extracted using a threshold decomposition of the image
for a particular image intensity level. We refer to this binary
umbra containing connected components as an image-level set.
Naturally, the binary umbra contains collection of connected
components that constitute objects in the image. The boundaries
of these connected components are referred to as level lines. By
analyzing the size and shape of connected components in each
level set (i.e., by examining the level set morphology), objects
of interest can be extracted.

Let 2 C R2 be the image domain and I: Q2 — [0,T],T" € R
be an image for which the level set at intensity level A € [0,T]
is given by

Iy ={(z,y) € Q: I(z,y) > \}. (12)

The reconstruction of the original image I is possible through
stacking of image-level sets I

I(z,y) =sup{A: A el (z,y) € IL}. (13)

Therefore, every level set contains connected regions of 1’s and
0’s where the connectivity is defined in usual 4- or 8-connec-
tivity sense. Henceforth, by connected component we refer to
connected regions of 1’s.

Fig. 2(a) and (b) is the corresponding level line image for
Fig. 1(a) and (b), respectively. For clarity, the level lines are
plotted in the intervals of 20 intensity levels in the range of
0-255. Certainly, the leukocyte shape profile is embedded in
any one or many of these level lines. Note that by construction,
level lines are always closed contours.

We can define area operators on image-level sets [1]. An
area-open operator removes connected components of area less
than the pre-specified scale from all the level sets of the image.
An area-close operator performs identical operation on the com-
plements of the level sets. The sequential concatenation of area
open followed by area close for area a is known as area open-
close operation: I6aea. While area open flattens small bright
objects, area close removes small dark objects from the image.
As proposed in the next section, we can use the area morphology
operations to quickly eliminate components that are not within
the possible range of cell sizes.

B. Implementation Using Level Set Analysis

We argue that level set analysis provides an improvement
in terms of curve initialization and computational complexity.
The entire analysis of (6) assumes a single closed contour. In
a given image frame, however, there exist multiple leukocytes
that need to be detected. A search process through the level lines
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Fig. 2.

(a) Level lines of Fig. 1(a). (b) Level lines of Fig. 1(b).

accommodates simultaneous detection of multiple leukocytes.
Note that the contour evolution process of (11) depends on the
gradient magnitude maxima, the interior homogeneity and the
absence of overlap between multiple contours. The level lines
inherently satisfy these properties. By construction, a level
line is always a single pixel-thick closed contour and exists
for every nonzero image gradient. So, a search for gradient
magnitude maxima is equivalent to searching within the level
lines. Also, by definition, level lines do not intersect each other.
Thus, level lines as leukocyte boundaries satisfy the constraint
for nonoverlapping of cells added in (4). Of course, the use of
level lines does not preclude actual cell overlap. As explained
in previous section, the area open close operator can be used
to remove connected components less than a desired size from
every level set of the image. In this context, the area open-close
operator serves to remove objects with scale less than that
of the white blood cells. This also increases internal region
homogeneity. By computing the residue of an area open-close
operator with a large scale, we can also eliminate objects that
are larger than the cell scale.

The start of the minimization process of (6) requires the spec-
ification of an initial curve. This initialization is performed man-
ually. The use of level lines, in contrast, precludes any explicit
use of initialization as minimization is evaluated for every can-
didate level line.

Another advantage of using level lines is that the leukocyte
shape specific information as specified in (8) can be derived
directly from the connected components present in the level sets,
thereby pruning the solution space and further reducing the ex-
pense. And, since the solution space is bounded by the level sets,
the convergence of the minimization process is guaranteed. Fur-
thermore, the exact boundary of the connected component at a
particular level set is never distorted, which maintains edge fi-
delity and localization. Next we describe the actual implemen-
tation of this process on a discrete grid.

The algorithm for minimization of the energy functional (4)
within the level lines is given by the following.

1) In order to eliminate subscale and above-scale compo-
nents from I, use area morphology and obtain images
Amin gnd Amax;

a) Amin = T16amin®amin.
b) A™® = I0max®Umax-
2) Define a set of level sets that contains all components
of image A™™ those are not in A™*, That is, LY*! =
AYIn g AP where level set Ly is derived from image
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level sets AK‘:“ and AY™* of images Amin apd Amax
respectively, at intensity level \;.

3) For every level set Lmed label connected components
C)” from Lmod and its complement such that overlap-
plng components from different level sets have the same
index j.

4) If cppin < ¢ (Cj‘) < Cmax evaluate F using (4) for the
connected component CJ)‘

5) Assign E;‘ as the energy value for the leukocyte repre-
sented through C J)‘

6) For each cell index j, find the connected component C]’-\i
representing the cell such that E]’\ < E;\" VA, € T,

k # 1.

Overall, considering only the dominant image processing op-
erations, the level set analysis provides a satisfactory solution in
O(p) time where p is the total number of intensity levels present
in the image in contrast to the O(n2k) complexity of the curve
evolution (where k is the total number of leukocytes present in
the frame and n? is the number of pixels in the image). In fact,
for the level set analysis approach, there is no need to investi-
gate all the intensity levels present in the image. From the ex-
pected intensity features of the cell, a subset of the intensities
representing the bright and the dark cells should capture the cell
geometry.

However, excessive background clutter and object overlap
may require pre-processing of level sets in order to extract the
cells. We discuss this process in the next section.

C. Filtering Within Level Sets

It may be necessary to pre-filter the level sets depending on
the clutter and in-homogeneity present in the image frame. A
typical example of a leukocyte is shown in Fig. 3(a). The corre-
sponding level lines (in the intervals of 20 intensity levels) are
shown in Fig. 3(b). Notice that even with the presence of a def-
inite cell, the level lines are connected in such way that the cell
region may not meet the area and circularity constraints defined
in (8). Therefore, a need exists to reshape the connected com-
ponents in order to separate the cell boundary from the back-
ground. A natural process would be to let the level lines evolve
depending on the curvature [15]. The evolution a level line ex-
pressed through the zero-level set of a surface ¥ from iteration
n to iteration n + 1 can be expressed as

Ut = Ut V(U7 (14)

where the curvature of the level line is given by ¢ and time step
t,. The initial ¥° is the signed distance function for a given
initial surface typically the image matrix in this case. Fig. 3(c)
is an example level line extracted from Fig. 3(b) that contains a
leukocyte shape. The evolution of this shape after 200 iterations
at the speed proportional to its curvature is shown in Fig. 3(d).
Clearly, there is a significant amount of edge distortion, even
though a closed, approximately circular contour is obtained.

A computationally attractive alternative to this level line evo-
lution process is possible with minimum shape distortion of
level lines. In this case, the level line can be either of convex
shape or of concave shape. The question of extraction of leuko-
cytes from the clutter comes only in case of concave shape as
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(c) (d)

Fig. 3. (a) Original black cell in cluttered background. (b) Level lines of
Fig. 3(a). (c) The level line containing potential leukocyte. (d) Level line of
Fig. 3(c) after curve evolution.

shown in Fig. 3(c). For a concave shape, the maximum con-
cavity point on the level line is detected from the convex hull of
the shape. These points are the maximum distance points on the
level line from the bitangent joining concavity entrance points
[9].

Refer to Fig. 4(a). For the closed curve P, H is the maximum
height point for the concavity bounded by the bitangent FF
on the convex hull. The corresponding neck points are H and
G having a distance less than the diameter of the leukocyte.
The correspondence between neck points is established based
on the neck width, the minimum distance between neck points.
For a single concavity on the contour, the distance between the
neck point and the curve boundary in normal direction is taken
as width of the neck. The leukocyte shape can be extracted by
splitting adjoining convex boundaries at the neck width. Note
in this case that there is no distortion in the level line except for
the line representing the neck width.

A formalization of this process is possible using distance
transform. Given that the level line is embedded in a two-
dimensional (2-D) image matrix, the distance transform of the
corresponding level line have minima on the level line and
increasing as we move inwards with respect to level line. Note
that by construction all the level lines are closed nonintersecting
contours. Therefore, a constraint on the distance transform
values will shrink the level line. This constraint parameter is the
neck width. If a new contour is now drawn with the maximum
width limiting to the neck width, concavities can be split into
convex shapes.

Let L be the level set in which we want to isolate the leuko-
cyte from clutter. Let D denote the distance transform of the
complement of L as follows:

D = dist(~ L). (15)

(@) (b) (©)

Fig. 4. (a) For the closed contour P, points E and F are concavity entrance
points on the convex hull of P and H is the concavity height point at maximum
distance from EF. Corresponding to two concavities H and G are two neck
points. (b) Level line of Fig. 3(c) after constraining distance transform space
by the amount of the neck width. (c) The re-grown contour of Fig. 4(b).

If [ is the distance between corresponding pair of neck points,
we generate the eroded-level set image M as follows:

1, if D(z,y) >

16
0, else. (16)

M (:L'v y) = {

7
Note that M also has a closed contour that is disconnected from
the rest of the level line at the neck points. The eroded-level line
can be re-grown using dilation by the same [ /2 distance. For the
level line in Fig. 3(c), the modified contour after constraining
the distance transform according to the neck width is shown
in Fig. 4(b). The corresponding dilated level line is shown in
Fig. 4(c).

Given a set of curves in an image corresponding to potential
cell boundaries, we can address the correspondence of the set
of curves with corresponding curves in subsequent frames.
In the next section, we present the tracking technique that
establishes the correspondence between identified leukocyte
contours in consecutive frames.

IV. TRACKING

The problem of leukocyte tracking in multiple image frames
can be cast as the problem of maximizing a similarity measure
between level sets in consecutive frames. Given the search space
used in Section III, the process of establishing correspondence
is now reduced between selected connected components repre-
senting potential leukocytes.

We can attack the tracking problem as the detection of a
closed-level line in the n'" frame given the best description
of leukocyte boundary in (n — 1)t! frame. Therefore, in the
current frame, we would like to minimize the energy associ-
ated with leukocyte boundary detection as suggested by (6) and
then match that boundary with that of the previous frame. Then
the energy functional for quantifying the solution quality of
tracking is

E(Cz) = %(Ecur - lg’prev)2 + Econs (17)
where
1
/g [VI|) ds—n// H(z,y)dxdy  (18)
0 ©(Ci)

and F..ns can be taken as the difference of cell centroid
position (Teur, Yeyy) in the current frame and that in the
previous frame (Tprev,Yprey) Plus the overlap minimizing
term for multiple cell tracking: Feons = ||(Teur, Jeur) —
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Fig. 5. (a) The initial curve on the bright cell image of Fig. 1(a). The curve is
evolved following solution of the objective function (6) in Section II-B. (b) After
1000 iterations. (c) After 2000 iterations. (d) After 3200 iterations. (e) Using
area morphology-based level set analysis method.

(Tprev7yprev)||2+ f f@(C1)(Z;V=1,]9é1 Xi ($7 y))dxdy The
gradient magnitude and homogeneity energy evaluated at
the current frame is F.,, while that of the previous frame is
Eprev. Minimization of their difference in (17) ensures shape
consistency of the leukocyte as one move along frame. To
maintain spatial coherency in video frames captured typically
at 25 fps, it is reasonable to assume that between frames cell
movements are marginal. For a fast rolling cell at 30 pm/s, the
cell moves only 3 pixels per frame using 320 x 240 images
at 30 fps. While tracking multiple cells, the correspondences
between cells are established through evaluation of minimum
spatial distance between cell centroids in consecutive frames.
Since, the centroid coordinates can be expressed as the ratio of
moments about the x- and y-axis with respect to the area of the
shape respectively, then E.,s is given by

N
Econs = / > xilwy) | dedy
0(C) J=1,5#1
2
1 _
+ A // (T — Tprev)dzdy
©(Ci)
2
1 _
+ 5 (4 = Gprev)dady (19)

©(Ci)

where A is the area of the evolved curve. Following derivation
in Appendix B, the curve update equation in line with the devel-
opment in (11) is given by

Dpy1 =0, + 1 ((Ecur - EpreV) (—KH(:I:, y)|V<I)|

—Vg ([VI(z,y)]) Pz, By)) + g(,y)[VE])  (20)

where % is the time step.

In the next section, we show the result of cell detection and
tracking on a number video sequences and compare them with
established approaches.

(d) (e)

Fig. 6. (a) The initial level curve on the dark cell image of Fig. 1(b) that is
evolved as per derivation in Section II-B. (b) After 1000 iterations. (c) After
2000 iterations. (d) After 2700 iterations. (e) Using level set analysis method.

V. RESULTS AND DISCUSSION

The video sequences are recorded via transillumination of the
mouse cremaster at 25 fps frame rate using a Pixelfly digital
camera. The frame resolution is 640 x 480 pixels where the
pixel to micron ratio is 4.94 pixels/um in the horizontal direc-
tion and 4.68 pixels/pm in the vertical direction. In the present
implementation of the software, the user specifies a region for
segmentation and subsequent tracking. Note that the region typ-
ically contains multiple cells. The tracking result with the tra-
jectories of each cells as the tracking progresses are shown in
an accompanying window.

We begin with the extraction of typical leukocyte shapes
shown in Fig. 1(a) and (b), respectively. Fig. 5(a)—(d) shows the
progression of an initial curve toward the shape of the bright
blood cell. The initial curve is modified as per the solution (11)
of the energy functional (6). The initialization is done with a
rectangular curve as shown in Fig. 5(a), and Fig. 5(b), (c), and
(d) are the positions of the initial curve after 1000, 2000, and
3200 iterations, respectively. For implementation in the digital
space, a curvature smoothness term is added to the solution. The
corresponding processing times in MATLAB implementation
are 5.1, 10.4, and 16.8 s for Fig. 5(b), (c), and (d), respectively.
The leukocyte shape extraction using area morphology-based
level set method is shown in Fig. 5(e) and the corresponding
processing time is 1.06 s. Clearly, a reasonably good shape
extraction is achieved with the level set searching process in a
computationally inexpensive way.

The identical result is obtained for the dark cell in Fig. 1(b).
The evolution of an initial closed curve as per the solution of
the energy functional (6) developed in Section II-B is shown in
Fig. 6(a)—(d). While Fig. 6(a) is the initial curve, Fig. 6(b), (c),
and (d) show the curve evolution after 1000, 2000, and 2700
iterations with the processing times of 6.9, 13.85, and 19.11 s,
respectively. The result obtained using level set method, shown
in Fig. 6(e), has captured the dark cell in only 1.2 s.

The result of level set curve-evolution process using only
edge gradient term and without utilizing the region homogeneity
terms of (1) on identical cells of Fig. 5(a) and (6a) are shown in
Figs. 7(a) and (b), respectively. In both cases, even after 2500
iterations, the cell morphology cannot be extracted.
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(b)

Fig. 7. Level set curve evolution after 2500 iterations without using the region
homogeneity term for (a) the bright and (b) the dark cells.

(b)

Fig. 8. (a) Original image containing four cells. (b) Contour extracted using
the level set approach.

Fig. 9. (a) Original image containing one bright cell and a dark cell where the
bright cell is partially occluded by the dark cell. (b) Contour extracted using the
level set approach.

Next, we investigate the accuracy of segmentation in case of
multiple cells. Fig. 8(a) is an image containing four white cells.
The segmented image using the level set approach is shown in
Fig. 8(b). In the second image in Fig. 9(a), where a dark cell
is almost occluding a bright cell, the level set approach could
separate the cells with closed contours despite their proximity,
as shown in Fig. 9(b). Note that our approach is successful in
extracting the shape even though the dark cell cytoplasm is con-
nected to the inhomogeneous background.

The third image of Fig. 10(a) contains multiple leukocytes.
The segmented result is shown in Fig. 10(b). We can see that all
but one dark cell is extracted through the segmentation process.

Overall, as the level lines are inherently guaranteed to be
single-pixel thick closed contours, the analysis of cell mor-
phology is easily facilitated. For example, the area, centroid,
and orientation of a cell can easily be evaluated from level lines
that do not require post-processing such as edge thinning and
linking, as do detected edges.

Fig. 10. (a) Original image containing multiple cells. (b) Contour extracted
using the level set approach.

(b)

(a)—(c): Tracking result for the first, fifth, and tenth frames,

Fig. 11.
respectively. In each case, initialization is done using the rectangular zero-level
set function.

Fig. 12.
captures the cell shape after 90 iterations. (c), (d) The zero-level sets of (b) and
(c) are deformed to capture the shape in the fifth and tenth frame, respectively.

(a) Identical initialization as in Fig. 11(a). (b) The zero-level set

A representative tracking result using the level set approach
is presented for a ten-frame sequence. In the first case, the cell
under consideration is segmented in each frame separately with
initialization using rectangular zero-level set function. So, no
additional tracking related constraints are added to segment the
cell. The result of such segmentation is shown in Fig. 11(a)—(c).
For segmentation, the corresponding contour iterations are 110,
80, and 80 for the first, second, and third frames shown, re-
spectively. In Fig. 12, the same sequence is initialized in the
first frame similar to Fig. 11(a). The initialization for the entire
sequence is shown in Fig. 12(a). Fig. 12(b) shows the correct
extraction of cell shape for the first frame after 110 iterations.
Fig. 12(c) and (d) is successful cell detection for the fifth and
tenth frame after deforming the zero-level set of Fig. 12(b) and
(c) after 90 and 80 iterations, respectively.

Tracking results are provided in comparison with a standard
correlation tracker. Note that the correlation tracker requires
manual initialization within the first frame. This initialization
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TABLE 1
AVERAGE NUMBER OF FRAMES TRACKED FOR FOUR TEST SEQUENCES

Method % Frames tracked
Sequence 1 | Sequence 2 | Sequence3 | Sequence 4
Level set 88 85 91 96
Correlation 71 68 81 72
TABLE 1I
RMSE FOR NUMBER OF FRAME TRACKED FOR FOUR TEST SEQUENCES
Method RMSE
Sequence 1 | Sequence2 | Sequence3 | Sequence 4
Level set 6.2 4.9 7.5 32
Correlation 9.6 14.9 13.1 8.3

process identifies the leukocyte center in the first frame and cre-
ates a template of the leukocyte. In the second frame, a search
window is identified and the normalized cross-correlation is
maximized to locate the cell position. The same procedure is re-
peated for subsequent frames. For more information on the use
of correlation trackers for tracking leukocytes in vivo, see [2].

In contrast to the correlation tracker, the proposed level set
tracker is automatic and does not require initialization. The
proposed level set tracker is not affected by slight deformations
or rotations of the leukocyte observed within an intravital video
sequence. While the correlation tracker performs template
matching separately for individual leukocytes, the tracking via
level set segmentation occurs simultaneously and uniformly
for all leukocytes. We utilize the following two measures to
compare the results.

1) Average number of frames successfully tracked in each
sequence is calculated. For each cell, the number of
frames tracked is recorded and these results are averaged
using number of cells tracked in each frame. A frame is
considered as successfully tracked if the measured cell
center is within one cell radius of the manually recorded
cell center.

2) The root mean square errors (rmse) of the cell center po-
sitions in tracked frames are estimated with respect to the
ground truth provided by human.

In this paper, we report the results from four digital se-
quences. The results for the average number of frame tracked
are given in the Table I while the rmse of the cell center position
with respect to ground truth is shown in Table II. In each case,
we have tracked 25 frames and the rmse is averaged over 25
frames. In both counts, level set tracker performance is better
than the correlation tracker without even requiring any expert
initialization.

VI. CONCLUSIONS

The proposed technique utilizes image-level lines to capture
multiple rolling leukocytes. In contrast to level set functions
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where an initialized level curve is evolved for image segmen-
tation that is sensitive to local image gradient and noise, a
set of level lines is efficiently examined in terms of shape,
size, internal homogeneity, and overlap with other segments.
Cell tracking is implemented through spatial consistency and
intensity coherency among the detected cells in the consecutive
frames. A major contribution is the construction of a unified
energy function to integrate segmentation and tracking. An
acceptable and computationally attractive solution is introduced
using image-level set analysis. The results show considerable
improvement over the existing correlation tracker. A major
advantage for the proposed tracker is that it does not require any
manual initialization, as opposed to the existing cell tracking
systems.

APPENDIX A

Selecting £y = Jo (IVI|)ds = jo (X,Y)ds, the corre-
sponding Euler equations are obtained frorn the first variation
of the energy functional [16]

6E; 0 oT
X —ax X Y) =50
6E1 0 oT
Sy “ayl(XY)= 3 (A.D)

The computational complexity of evaluating the region inte-
gral for the energy component F, can be minimized applying
Green’s theorem and converting the region integral into a line
integral. The region integral for f(z,y) in (6) can be written as

e [ e | ()

p(Ci(s))

dX Y
_/ <PE+st>ds (A.2)
0
where P and Q are P = —(1/2) fo f(X,t)dt and
Q = (1/2) J, X f(t,Y)dt, respectively, such that
f(X,)Y)=(0Q/0X)— (8P/8Y) Therefore the energy com-
ponent £ can be expressed as Fy = fo (s,X,Y, X, Y)ds,
where G(s,X,Y,X,Y) = PX + QY with X = (dX/ds),

= (dY/ ds) Again applying the variational principle, the
following Euler equations are derived by equating the first
variation to zero:

6By G _d (9G
5X ~ 0X  ds\ox)
0Fy O0G d [(0G
w5 = (A9
The solution of (A.3) can be further reduced as
6By _0G _d (9G\ 9P . 0Q. dP
86X 09X  ds \9X T oX 0X ds
oP oQ - oP . 9P .
=ox X tax? “ax X oy
oQ oP
(ﬁ — W) Y = f(X, Y)Y (A4
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Similarly, we have So, combining (B.1) and (B.3), we find the following Euler
6B, 0G d (aa) _OP . 0Q. dQ equation:
§Y gg ds8 oY , oY ; oY ds (Beur — Eprev) (=Vg (IVI(X,Y)])
S R s > S —RH(X,Y)n(X,Y)) +¢(X.Y)n(X,Y) =0, (B4
0 P\ . . i i
= — (8—?( - 8_Y> X =—f(X,Y)X. (A5) where g(z,y) is defined as
.. N
Therefore, combining the terms for energy F; and F, from 1 _
(A.1),(A.4) and (A.5), the first variation of energy minimization 9(X,Y) :' Z ‘XJ'(X’ Y)+ A / / (% = Tprey)drdy
process for (6) is given by J=1.5#i (Cy)
OF 0 .
== - Zg(VI(X,Y)]) - (X, Y)Y _ vfr, _
%X %xg (IVI(X,Y)]) = f(X,Y) X(X—xprev)—}—z / / (Y —Tprev)dzdy| (Y —Fprev) (B.5)
E .
v o a—y!](|VI(X7 V) + f(X.Y)X (A6 #(C4)
where the function f is given in (7).
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