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ABSTRACT
Mining software repositories at the source code level can pro-
vide a greater understanding of how software evolves. We
present a tool for quickly comparing the source code of dif-
ferent versions of a C program. The approach is based on
partial abstract syntax tree matching, and can track sim-
ple changes to global variables, types and functions. These
changes can characterize aspects of software evolution use-
ful for answering higher level questions. In particular, we
consider how they could be used to inform the design of a
dynamic software updating system. We report results based
on measurements of various versions of popular open source
programs, including BIND, OpenSSH, Apache, Vsftpd and
the Linux kernel.

Categories and Subject Descriptors
F.3.2 [Logics And Meanings Of Programs]: Semantics
of Programming Languages—Program Analysis

General Terms
Languages, Measurement

Keywords
Source code analysis, abstract syntax trees, software evolu-
tion

1. INTRODUCTION
Understanding how software evolves over time can im-

prove our ability to build and maintain it. Source code
repositories contain rich historical information, but we lack
effective tools to mine repositories for key facts and statistics
that paint a clear image of the software evolution process.

Our interest in characterizing software evolution is mo-
tivated by two problems. First, we are interested in dy-
namic software updating (DSU), a technique for fixing bugs
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or adding features in running programs without halting ser-
vice [4]. DSU can be tricky for programs whose types change,
so understanding how the type structure of real programs
changes over time can be invaluable for weighing the merits
of DSU implementation choices. Second, we are interested in
a kind of “release digest” for explaining changes in a software
release: what functions or variables have changed, where the
hot spots are, whether or not the changes affect certain com-
ponents, etc. Typical release notes can be too high level for
developers, and output from diff can be too low level.

To answer these and other software evolution questions,
we have developed a tool that can quickly tabulate and sum-
marize simple changes to successive versions of C programs
by partially matching their abstract syntax trees. The tool
identifies the changes, additions, and deletions of global vari-
ables, types, and functions, and uses this information to re-
port a variety of statistics.

Our approach is based on the observation that for C pro-
grams, function names are relatively stable over time. We
analyze the bodies of functions of the same name and match
their abstract syntax trees structurally. During this process,
we compute a bijection between type and variable names in
the two program versions. We then use this information to
determine what changes have been made to the code. This
approach allows us to report a name or type change as single
difference, even if it results in multiple changes to the source
code. For example, changing a variable name from x to y

would cause a tool like diff to report all lines that formerly
referred to x as changed (since they would now refer to y),
even if they are structurally the same. Our system avoids
this problem.

We have used our tool to study the evolution history of a
variety of popular open source programs, including Apache,
OpenSSH, Vsftpd, Bind, and the Linux kernel. This study
has revealed trends that we have used to inform our de-
sign for DSU. In particular, we observed that function and
global variable additions are far more frequent than dele-
tions; the rates of addition and deletion vary from program
to program. We also found that function bodies change
quite frequently over time, but function prototypes change
only rarely. Finally, type definitions (like struct and union

declarations) change infrequently, and often in simple ways.

2. APPROACH
Figure 1 provides an overview of our tool. We begin by

parsing the two program versions to produce abstract syntax
trees (ASTs), which we traverse in parallel to collect type
and name mappings. With the mappings at hand, we detect



AST 1

Parser

Parser

AST 2

Program version 1

Program version 2

Facts Processor
Type Matchings

Bijection Computation
Changes

&
Statistics

Change

DetectorName Matchings

Figure 1: High level view of AST matching

typedef int s z t ;
int count ;
struct f oo {

int i ;
f loat f ;
char c ;

} ;
int baz ( int a , int b ) {

struct f oo s f ;
s z t c = 2 ;
s f . i = a + b + c ;
count++;

}

int counter ;
typedef int s i z e t ;
struct bar {

int i ;
f loat f ;
char c ;

} ;
int baz ( int d , int e ) {

struct bar sb ;
s i z e t g = 2 ;
sb . i = d + e + g ;
counter++;

}
void b i f f (void ) { }

Figure 2: Two successive program versions

and collect changes to report to the user, either directly or
in summary form. In this section, we describe the matching
algorithm, illustrate how changes are detected and reported,
and describe our implementation and its performance.

2.1 AST Matching
Figure 2 presents an example of two successive versions

of a program. Assuming the example on the left is the
initial version, our tool discovers that the body of baz is
unchanged—which is what we would like, because even though
every line has been syntactically modified, the function in
fact is structurally the same, and produces the same out-
put. Our tool also determines that the type sz t has been
renamed size t, the global variable count has been renamed
counter, the structure foo has been renamed bar, and the
function biff() has been added. Notice that if we had done
a line-oriented diff instead, nearly all the lines in the pro-
gram would have been marked as changed, providing little
useful information.

To report these results, the tool must find a bijection be-
tween the old and new names in the program, even though
functions and type declarations have been reordered and
modified. To do this, the tool begins by finding function
names that are common between program versions; our as-
sumption is that function names do not change very often.
The tool then uses partial matching of function bodies to
determine name maps between old and new versions, and
finally tries to find bijections i.e., one-to-one, onto submaps
of the name maps.

We traverse the ASTs of the function bodies of the old and
new versions in parallel, adding entries to a LocalNameMap
and GlobalNameMap to form mappings between local vari-
able names and global variable names, respectively. Two
variables are considered equal if we encounter them in the
same syntactic position in the two function bodies. For ex-
ample, in Figure 2, parallel traversal of the two versions of
baz results in the LocalNameMap

a↔ d, b↔ e, sf↔ sb, c↔ g

and a GlobalNameMap with count ↔ counter. Similarly,

procedure GenerateMaps(V ersion1, V ersion2)
F1 ← set of all functions in Version 1
F2 ← set of all functions in Version 2
global TypeMap← ∅
global GlobalNameMap← ∅
for each function f ∈ F1 ∩ F2

do

8<:AST1 ← AST of f in Version 1
AST2 ← AST of f in Version 2
Match Ast(AST1, AST2)

procedure Match Ast(AST1, AST2)
local LocalNameMap← ∅
for each (node1, node2) ∈ (AST1, AST2)

do

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

if (node1, node2) = (t1 x1, t2 x2) //declaration

then


TypeMap← TypeMap ∪ {t1 ↔ t2}
LocalNameMap← LocalNameMap ∪ {x1 ↔ x2}

else if (node1, node2) = (y1 := e1 op e′
1, y2 := e2 op e′

2)

then

8>>>>><>>>>>:

Match Ast(e1, e2)
Match Ast(e′

1, e′
2)

if isLocal(y1) and isLocal(y2) then
LocalNameMap← LocalNameMap ∪ {y1 ↔ y2}
else if isGlobal(y1) and isGlobal(y2) then
GlobalNameMap← GlobalNameMap ∪ {y1 ↔ y2}

else if . . .
else break

Figure 3: Map Generation Algorithm

we form a TypeMap between named types (typedefs and
aggregates) that are used in the same syntactic positions
in the two function bodies. For example, in Figure 2, the
name map pair sb ↔ sf will introduce a type map pair
struct foo↔ struct bar.

We define a renaming to be a name or type pair j1 → j2
where j1 ↔ j2 exists in the bijection, j1 does not exist in the
new version, and j2 does not exist in the old version. Based
on this definition, our tool will report count → counter

and struct foo → struct bar as renamings, rather than
additions and deletions. This approach ensures that consis-
tent renamings are not presented as changes, and that type
changes are decoupled from value changes, which helps us
better understand how types and values evolve.

Figure 3 gives pseudocode for our algorithm. We accumu-
late global maps TypeMap and GlobalNameMap, as well as
a LocalNameMap per function body. We invoke the routine
Match Ast on each function common to the two versions.
When we encounter a node with a declaration t1 x1 (a dec-
laration of variable x1 with type t1) in one AST and t2 x2

in the other AST, we require x1 ↔ x2 and t1 ↔ t2. Sim-
ilarly, when matching statements, for variables y1 and y2

occurring in the same syntactic position we add type pairs
in the TypeMap, as well as name pairs into LocalNameMap
or GlobalNameMap, depending on the storage class of y1

and y2. LocalNameMap will help us detect functions which
are identical up to a renaming of local and formal variables,
and GlobalNameMap is used to detect renamings for global
variables and functions. As long as the ASTs have the same
shape, we keep adding pairs to maps. If we encounter an
AST mismatch (the break statement on the last line of the
algorithm), we stop the matching process for that function
and use the maps generated from the portion of the tree
that did match.



------- Global Variables ----------
Version1 : 1
Version2 : 1
renamed : 1

------- Functions -----------------
Version1 : 1
Version2 : 2
added : 1
locals/formals name changes : 4

------- Structs/Unions ------------
Version1 : 1
Version2 : 1
renamed : 1

------- Typedefs -----------------
Version1 : 1
Version2 : 1
renamed : 1

Figure 4: Summary output produced for the code in Figure 2

The problem with this algorithm is that having insufficient
name or type pairs could lead to renamings being reported
as additions/deletions. The two reasons why we might miss
pairs are partial matching of functions and function renam-
ings. As mentioned previously, we stop adding pairs to maps
when we detect an AST mismatch, so when lots of functions
change their bodies, we miss name and type pairs. This
could be mitigated by refining our AST comparison to re-
cover from a mismatch and continue matching after detect-
ing an AST change. Because renamings are detected in the
last phase of the process, functions that are renamed don’t
have their ASTs matched, another reason for missing pairs.
In order to avoid this problem, the bijection computation
and function body matching would have to be iterated until
a fixpoint is reached.

In practice, however, we found the approach to be re-
liable. For the case studies in section 3, we have manually
inspected the tool output and the source code for renamings
that are improperly reported as additions and deletions due
to lack of constraints. We found that a small percentage
(less than 3% in all cases) of the reported deletions were ac-
tually renamings. The only exception was an early version
of Apache (versions 1.2.6-1.3.0) which had significantly more
renamings, with as many as 30% of the reported deletions
as spurious.

2.2 Change Detection and Reporting
With the name and type bijections in hand, the tool vis-

its the functions, global variables, and types in the two pro-
grams to detect changes and collect statistics. We categorize
each difference that we report either as an addition, deletion,
or change.

We report any function names present in one file and not
the other as an addition, deletion, or renaming as appro-
priate. For functions in both files, we report that there is
a change in the function body if there is a difference be-
yond the renamings that are represented in our name and
type bijections. This can be used as an indication that the
semantics of the function has changed, although this is a
conservative assumption (i.e., semantics preserving trans-
formations such as code motion are flagged as changes). In
our experience, whenever the tool detects an AST mismatch,
manual inspection has confirmed that the function seman-

/ : 111
include/ : 109

linux/ : 104
fs.h : 4
ide.h : 88
reiserfs_fs_sb.h : 1
reiserfs_fs_i.h : 2
sched.h : 1
wireless.h : 1
hdreg.h : 7

net/ : 2
tcp.h : 1
sock.h : 1

asm-i386/ : 3
io_apic.h : 3

drivers/ : 1
char/ : 1

agp/ : 1
agp.h : 1

net/ : 1
ipv4/ : 1

ip_fragment.c : 1

Figure 5: Density tree for struct/union field additions
(Linux 2.4.20 vs. 2.4.21)
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Figure 6: Performance

tics has indeed changed.
We similarly report additions, deletions and renamings of

global variables, and changes in global variable types and
static initializers.

For types we perform a deep structural isomorphism check,
using the type bijection to identify which types should be
equal. We report additions, deletions, or changes in fields
for aggregate types; additions, deletions, or changes to base
types for typedefs; and additions, deletions, or changes in
item values for enums.

Our tool can be configured to either report this detailed
information or to produce a summary. For the example
in Figure 2, the summary output is presented in Figure 4.
In each category, Version1 represents the total number of
items in the old program, and Version2 in the new program.
For brevity we have omitted all statistics whose value was 0
e.g., enums, etc.

Our tool can also present summary information in the
form of a density tree, which shows how changes are dis-
tributed in a project. Figure 5 shows the density tree for
the number of struct and union fields that were added be-
tween Linux versions 2.4.20 and 2.4.21. In this diagram,
changes reported at the leaf nodes (source files) are propa-
gated up the branches, making clusters of changes easy to
visualize. In this example, the include/linux/ directory
and the include/linux/ide.h header file have a high den-
sity of changes.

2.3 Implementation
Our tool is constructed using CIL, an OCaml framework
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Figure 7: Function and global variable additions and deletions
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for C code analysis [3] that provides ASTs as well as some
other high-level information about the source code. We have
used it to analyze the complete lifetime of Vsftpd (a “very
secure” FTP server, see http://beasts.vsftpd.org/) and
OpenSSH (daemon); 8 snapshots in the lifetime of Apache
1.x; and portions of the lifetimes1 of the Linux kernel (ver-
sions 2.4.17, Dec. 2001 to 2.4.21, Jun. 2003) and BIND
(versions 9.2.1, May 2002 to 9.2.3, Oct. 2003).

Figure 6 shows the running time of the tool on these ap-
plications (we consider the tool’s results below), plotting
source code size versus running time.2 The top line is the
total running time while the bottom line is the portion of the
running time that is due to parsing, provided by CIL (thus
the difference between them is our analysis time). Our algo-
rithm scales roughly linearly with program size, with most
of the running time spent in parsing. Computing changes
for two versions of the largest test program takes slightly
over one minute. The total time for running the analysis
on the full repository (i.e., all the versions) for Vsftpd was
21 seconds (14 versions), for OpenSSH was 168 seconds (25
versions), and for Apache was 42 seconds (8 versions).

3. CASE STUDY: DYNAMIC SOFTWARE
UPDATING

This section explains how we used the tool to characterize
software change to guide our design of a dynamic software
updating (DSU) methodology [4]. We pose three questions
concerning code evolution; while these are relevant for DSU,
we believe they are of general interest as well. We answer

1Analyzing earlier versions would have required older ver-
sions of gcc.
2Times are the average of 5 runs. The system used for exper-
iments was a dual Xeon@2GHz with 1GB of RAM running
Fedora Core 3.

these questions by using the output of our tool on the pro-
grams mentioned above, which are relevant to DSU because
they are long-running.

Are function and variable deletions frequent, relative
to the size of the program?When a programmer deletes
a function or variable, we would expect a DSU implementa-
tion to delete that function from the running program when
it is dynamically updated. However, implementing on-line
deletion is difficult, because it is not safe to delete functions
that are currently in use (or will be in the future). There-
fore, if definitions are rarely deleted over a long period, the
benefit of cleaning up dead code may not be worth the cost
of implementing a safe mechanism to do so. Figure 7 illus-
trates how OpenSSH, Vsftpd, and Apache have evolved over
their lifetime. The x-axis plots time, and the y-axis plots the
number of function and global variable definitions for vari-
ous versions of these programs. Each graph shows the total
number of functions and global variables for each release,
the cumulative number of functions/variables added, and
the cumulative number of functions/variables deleted (dele-
tions are expressed as a negative number, so that the sum
of deletions, additions, and the original program size will
equal its current size). The rightmost points show the cur-
rent size of each program, and the total number of additions
and deletions to variables and functions over the program’s
lifetime.

According to the tool, Vsftpd and Apache delete almost
no functions, but OpenSSH deletes them steadily. For the
purposes of our DSU question, Vsftpd and Apache could
therefore reasonably avoid removing dead code, while do-
ing so for OpenSSH would have a more significant impact
(assuming functions are similar in size).

Are changes to function prototypes frequent?Many DSU
methodologies cannot update a function whose type has
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Figure 9: Classifying changes to types

changed. If types of functions change relatively infrequently,
then this implementation strategy may be able to support a
large number of updates. Figure 8 presents graphs similar
to those in Figure 7. For each program, we graph the total
number of functions, the cumulative number of functions
whose body has changed, and the cumulative number of
functions whose prototype has changed. As we can see from
the figure, changes in prototypes are relatively infrequent for
Apache and Vsftpd, especially compared to changes more
generally. In contrast, functions and their prototypes have
changed in OpenSSH far more rapidly, with the total num-
ber of changes over five years roughly four times the current
number of functions, with a fair number of these resulting in
changes in prototypes. In all cases we can see some changes
to prototypes, meaning that supporting prototype changes
in DSU is a good idea.

Are changes to type definitions relatively simple?In
most DSU systems, changes to type definitions (which in-
clude struct, union, enum, and typedef declarations in C
programs) require an accompanying type transformer func-
tion to be supplied with the dynamic update. Each existing
value of a changed type is converted to the new represen-
tation using this transformer function. Of course, this ap-
proach presumes that such a transformer function can be
easily written. If changes to type definitions are fairly com-
plex, it may be difficult to write a transformer function.

Figure 9 plots the relative frequency of changes to struct,
union, and enum definitions (the y-axis) against the number
of fields (or enumeration elements for enums) that were added
or deleted in a given change (the x-axis). The y-axis is pre-
sented as a percentage of the total number of type changes
across the lifetime of the program. We can see that most
type changes affect predominantly one or two fields. An ex-
ception is OpenSSH, where changing more than two fields
is common; it could be that writing type transformers for
OpenSSH will be more difficult. We also used the tool to
learn that fields do not change type frequently (not shown
in the figure).

4. RELATED WORK
A number of systems for identifying differences between

programs have been developed. We discuss a few such sys-
tems briefly.

Yang [5] developed a system for identifying “relevant” syn-
tactic changes between two versions of a program, filtering
out irrelevant ones that would be produced by diff. Yang’s
solution matches parse trees (similar to our system) and
can even match structurally different trees using heuristics.
In contrast, our system stops at the very first node mis-
match in order not to introduce spurious name or type bi-
jections. Yang’s tool cannot deal with variable renaming

or type changes, and in general focuses more on finding a
maximum syntactic similarity between two parse trees. We
take the semantics of AST nodes into account, distinguish
between different program constructs (e.g., types, variables
and functions) and specific changes associated with them.

Horwitz [1] proposed a system for finding semantic, rather
than syntactic, changes in programs. Two programs are
semantically identical if the sequence of observable values
they produce is the same, even if they are textually differ-
ent. For example, with this approach semantics-preserving
transformations such as code motion or instruction reorder-
ing would not be flagged as a change, while they would in
our approach. Horwitz’s algorithm runs on a limited subset
of C that does not include functions, pointers, or arrays.

Jackson and Ladd [2] propose a differencing tool that an-
alyzes two versions of a procedure to identify changes in
dependencies between formals, locals, and globals. Their
approach is insensitive to local variable names, like our ap-
proach, but their system performs no global analysis, does
not consider type changes, and sacrifices soundness for the
sake of suppressing spurious differences.

5. CONCLUSION
We have presented an approach to finding semantic dif-

ferences between program versions based on partial abstract
syntax tree matching. Our algorithm uses AST matching to
determine how types and variable names in different versions
of a program correspond. We have constructed a tool based
on our approach and used it to analyze several popular open
source projects. We have found that our tool is efficient and
provides some insights into software evolution.

We have begun to extend the tool beyond matching ASTs,
to measure evolution metrics such as common coupling or
cohesion [6]. We are interested in analyzing more programs,
with the hope that the tool can be usefully applied to shed
light on a variety of software evolution questions.

6. REFERENCES
[1] S. Horwitz. Identifying the semantic and textual

differences between two versions of a program. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), pages 234–245, June 1990.

[2] D. Jackson and D. A. Ladd. Semantic diff: A tool for
summarizing the effects of modifications. In Proceedings
of the IEEE International Conference on Software
Maintenance (ICSM), pages 243–252, Sept. 1994.

[3] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer.
CIL: Intermediate Language and Tools for Analysis and
Transformation of C Programs. Lecture Notes in
Computer Science, 2304:213–228, 2002.

[4] G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and
I. Neamtiu. Mutatis Mutandis: Safe and flexible
dynamic software updating. In Proceedings of the ACM
SIGPLAN/SIGACT Conference on Principles of
Programming Languages (POPL), pages 183–194,
January 2005.

[5] W. Yang. Identifying Syntactic differences Between
Two Programs. Software - Practice and Experience,
21(7):739–755, 1991.

[6] E. Yourdon and L. L. Constantine. Structured Design,
2nd Ed. Yourdon Press, New York, 1979.


