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Abstract
To improve the current real-world deployments of
Stackelberg security games (SSGs), it is critical
now to efficiently incorporate models of adversary
bounded rationality in large-scale SSGs. Unfor-
tunately, previously proposed branch-and-price ap-
proaches fail to scale-up given the non-convexity of
such models, as we show with a realization called
COCOMO. Therefore, we next present a novel
cutting-plane algorithm called BLADE to scale-up
SSGs with complex adversary models,with three
key novelties: (i) an efficient scalable separation or-
acle to generate deep cuts; (ii) a heuristic that uses
gradient to further improve the cuts; (iii) techniques
for quality-efficiency tradeoff.

1 Introduction
Recent deployments of attacker-defender Stackelberg secu-
rity games (SSGs), such as for the US Federal Air Mar-
shals Service (FAMS) or the US Coast Guard [Tambe, 2011]
have led to significant research in integrating richer models
of human (adversary) decision-making into SSGs [Pita et al.,
2010; Yang et al., 2011]. These bounded rationality mod-
els [McKelvey and Palfrey, 1995; Camerer, 2011] step be-
yond assumptions of perfect adversary rationality in many
SSG applications. In fact, a recent SSG application, the US
Coast Guard’s PROTECT system for randomized patrolling,
uses one such adversary model: the quantal response (QR)
model [McKelvey and Palfrey, 1995; Shieh et al., 2012].

This paper focuses on scaling up SSG algorithms inte-
grated with any of a family of discrete choice models [Train,
2003], an important class of bounded rationality models of
adversary decision making, of which QR is an important
representative. Unfortunately, algorithms for handling such
bounded rationality models in SSGs fail when faced with
massive scale. These algorithms [Yang et al., 2012], require
explicit enumeration of defender strategies, which is not fea-
sible in massive-scale SSGs such as with the FAMS or the
US Coast Guard in bigger ports. Previous work has provided
branch-and-price (BnP) [Barnhart et al., 1994] as a key tech-
nique to avoid explicit enumeration of defender strategies in
SSGs [Jain et al., 2010]; however, how well BnP would han-
dle bounded rationality models is an unknown.

To address this shortcoming in previous work, our first con-
tribution investigates the effectiveness of BnP in SSG algo-
rithms handling bounded rationality. As we illustrate via a
BnP algorithm called COCOMO, the non-convexity of the ob-
jective function given bounded rationality adversary models
creates enormous hurdles in scale-up.

The second and main contribution of this paper is then a
new algorithm called BLADE, which for the first time illus-
trates an efficient realization of the cutting-plane approach in
SSGs [Kelley, 1960; Boyd and Vandenberghe, 2008]. The
cutting-planes approach iteratively refines the solution space
via cuts. Our key hypothesis is that with these cuts, BLADE
can successfully exploit the structure of the solution space of
defender strategies – generated due to the bounded rational-
ity adversary models in SSGs – whereas BnP approaches are
blind to this structure. BLADE is based on three novel ideas.
First, we present a separation oracle that can effectively prune
the search space via deep cuts. More importantly we show
that to handle massive scale SSGs, not only must this sepa-
ration oracle itself use a secondary oracle but that this two-
level hierarchy of oracles is efficient. Second, we provide a
novel heuristic to further speed-up BLADE by exploiting the
SSG objective function to improve its cuts. Third, BLADE
provides a technique for quality-efficiency tradeoff. As we
experimentally demonstrate, BLADE is significantly more ef-
ficient than COCOMO.

2 Background and Notation
We consider an SSG [Conitzer and Sandholm, 2006; Yin et
al., 2010] where a defender has a total ofM resources to pro-
tect a set of targets T = {1, . . . , |T |} from an attacker. Given
a target i, the defender receives reward Rdi if the adversary
attacks a target that is covered by the defender; otherwise,
the defender receives penalty P di . Correspondingly, the at-
tacker receives penalty P ai in the former case and reward Rai
in the latter. SSGs may be non-zero-sum, but Rdi > P di and
Rai > P ai for all i.

We denote the jth defender pure strategy asAj , which is an
assignment of all the security resources. Aj is represented as
a column vector Aj = 〈Aij〉T , where Aij indicates whether
target i is covered by Aj . For example, in an SSG with 4 tar-
gets and 2 resources, Aj = 〈1, 0, 0, 1〉T represents the pure
strategy of assigning one resource to target 1 and another to
target 4. Let A = {Aj} be the set of feasible assignments



of resources, i.e., the set of defender pure strategies. The de-
fender’s mixed-strategy can then be represented as a vector
a = 〈aj〉, where aj ∈ [0, 1] is the probability of choosing Aj .

A more compact representation of the defender’s mixed-
strategy is x = 〈xi〉, where xi =

∑
Aj∈A ajAij is the

marginal probability that a security resource will be assigned
to target i [Kiekintveld et al., 2009]. Given xi, the expected
utility of the defender if target i is attacked is Udi (xi) =
xiR

d
i + (1− xi)P di and the adversary’s is Uai (xi) = xiP

a
i +

(1− xi)Rai .
Our formulation exploits this compact marginal represen-

tation, but must then convert this representation to a mixed
strategy over the actual defender pure strategies (i.e., 〈aj〉).
Such conversion in the presence of resource assignment con-
straints is NP-hard [Korzhyk et al., 2010]; yet such con-
straints abound in security problems. For example, when air
marshals are scheduled to protect two flights out of 100, not
all
(
100
2

)
schedules are feasible. There are spatio-temporal

constraints: the air marshal’s two flights have to be con-
nected, e.g., an air marshal cannot fly from Los Angeles to
New York and then from Chicago to Seattle. Furthermore,
there might be user-specified constraints [An et al., 2010]:
FAMS might want to cover 50% of the flights to Chicago.
Thus, the defender’s optimization problem can be written as
follows:

P1:{max
x

∑
i∈T

Udi (xi)qi(x) | x ∈ Xf ≡ Xf1 ∩ Xf2}

Xf1 :={x | x =
∑
Aj∈A

ajAj ,
∑
j

aj = 1, aj ∈ [0, 1]} (1)

Xf2 :={x | Bx ≤ b} (2)
We denote the objective function in P1 as F (x). In F (x),
Udi (xi) is the defender’s expected utility if the adversary
chooses target i; and qi(x) is the probability that the adversary
chooses target i. qi(x) depends on the model used, e.g., as-
suming a QR model of the adversary, qi(x) is a logit function
of x. This leads to a nonlinear fractional optimization prob-
lem [Yang et al., 2011], which in general is NP-hard [Vava-
sis, 1995]. Furthermore, Xf represents the feasible region of
the marginal coverage vector, which is defined by the inter-
section of Xf1 which encompasses the spatio-temporal con-
straints, and Xf2 which encompasses the user-specified linear
constraints on the marginals. Therefore, Xf = Xf1 ∩ Xf2.

3 Generalized PASAQ
Before discussing scale-up, we generalize the existing al-
gorithms to solve SSGs integrated with bounded rationality
models, as they are specialized to the QR model. More specif-
ically, we generalize PASAQ, the fastest current algorithm to
compute optimal defender strategy against a QR adversary
model [Yang et al., 2012]. In PASAQ, the objective function
of P1 is

F (x) =
∑
i

qi(x)Udi (xi) =
∑
i

eλU
a
i (xi)∑

j e
λUaj (xj)

Udi (xi)

QR is a representative of a more general form of the dis-
crete choice model [Train, 2003; Goeree et al., 2005] for ad-
versary response as shown in Equation (3). In SSGs, typi-
cally fi(xi) ≥ 0,∀xi ∈ [0, 1] is a monotonically decreasing

function of xi, indicating that as the defender’s marginal cov-
erage on target i increases, the probability that the adversary
chooses this target decreases, e.g., in QR, fi(xi) = eλU

a
i (xi)

is an exponentially decreasing function of xi.

qi(x) =
fi(xi)∑
i fi(xi)

(3)

G-PASAQ generalizes PASAQ to solve P1 with the general
form of qi(x) in Equation (3). As with PASAQ, G-PASAQ
solves this non-linear fractional optimization problem using
binary search. At each step of the binary search it solves a
non-convex optimization problem whose objective is a sum
of nonlinear functions of marginal variables xi. Approxi-
mating each of these single-variable nonlinear functions as
a piecewise-linear function withK segments, the non-convex
problem is approximated by the MILP shown in Equation (4)
- (9); this MILP solved in each iteration of the binary search.

min
x,z

∑
i∈T

(r − P di )(fi(0) +
K∑
k=1

γikxik)−
∑
i∈T

αi

K∑
k=1

µikxik

(4)
s.t. 0 ≤ xik ≤ 1/K, ∀i, k = 1 . . .K (5)

zik/K ≤ xik, ∀i, k = 1 . . .K − 1 (6)
xi(k+1) ≤ zik, ∀i, k = 1 . . .K − 1 (7)

zik ∈ {0, 1}, ∀i, k = 1 . . .K − 1 (8)
x ∈ Xf (9)

The objective function in Equation (4) is a piecewise linear
approximation of

∑
i∈T (r − P di )fi(xi) −

∑
i∈T αixifi(xi)

where αi = Rdi − P di is a constant, γik is the slope of fi(xi)
in the kth segments and µik is the corresponding slope of
xifi(xi). The range of each xi is divided into K segments,
and xi is replaced by the variables {xik, k = 1 . . . k} such
that xi =

∑K
k=1 xik. {zik, k = 1..K} in Equation (6)-(8)

are integer variables that decide the particular segment that
xi lies in. For example, assumingK = 5, there are 5 possible
sets of values for {zik} that satisfy the constraints in Equation
(6)-(8). If we set {zi,1..3 = 1; zi,4 = 0}, then xi is in the
fourth segment, i.e., xi ∈ [0.6, 0.8]. Equation (9) defines the
feasible regions for x. More details are in [Yang et al., 2012].

4 COCOMO– A Branch-and-Price Algorithm
G-PASAQ assumes that the set of defender pure
strategies (A) can be explicitly enumerated.

Level 1  

(x1)

Level 2  

(x2)

x1∈[0, 0.5] x1∈[0.5, 1]

x2∈[0, 0.5]

x2∈[0.5, 1] x2∈[0, 0.5]

x2∈[0.5,1]

{ xi ∈[0,1]}

Figure 1: Branching Tree

In massive SSGs,A
cannot be enumer-
ated; COCOMO
(COlumn genera-
tion for COmplex
adversary MOdels)
attempts in such
cases to use the
branch-and-price
approach to scale-
up G-PASAQ. COCOMO exploits the fact that the integer
variables in G-PASAQ represent the particular piecewise
linear segments each marginal xi belongs to and defines



a branching tree shown in Figure 1. Initially at the root
node, all the integer variables are relaxed to be continuous,
indicating that none of the xi are set to any fixed ranges.
The ith level in the tree is associated with marginal xi. If
each marginal is divided into K segments, each node has K
children. For example, in Figure 1, the two nodes at level 1
are associated with the two possible ranges of marginal x1:
the left node sets x1 ∈ [0, 0.5], realized by setting z11 = 0;
the right node sets x1 ∈ [0.5, 1], realized by setting z11 = 1.
As we move deeper, more integer variable values are set. The
tree has a depth of |T | and K |T | nodes in total.

COCOMO starts from the root node in the branching queue
and iterates until the queue is empty. In each iteration, the top
node in the branching queue is first branched into a set of
children. For each child node, the upper bound (UB’) and the
lower bound (LB’) are estimated. If the two bounds are not
close enough, the node is added to the branching queue. CO-
COMO keeps a record of the best lower bound solution (L̃B)
found so far, and uses that to prune all the unvisited nodes in
the branching queue. In the end, the defender strategy asso-
ciated with this best lower bound is returned as the solution.

Upper Bound Estimation: To generate tighter upper
bounds, we run G-PASAQ at each node of COCOMO, where
the values of some variables zik are set to either 0 or 1 (see
Figure 1). We obtain the upper bound by relaxing the rest
of the integer variables to be continuous, resulting in an LP
called UpperBound-LP. UpperBound-LP cannot escape
the large number of variables aj and Aj ; hence we apply the
standard column generation technique: we start by solving
UpperBound-LP with a subset of columns, i.e., defender
strategies Aj , and iteratively add more columns with nega-
tive reduced cost. Let’s first rewrite Equation (9) based on
the definition of Xf from Equation (1) and (2).∑

k=1..K

xik −
∑
Aj∈A

ajAij = 0, ∀i ∈ T (10)

∑
Aj∈A

aj = 1, aj ≥ 0, Aj ∈ A (11)

∑
i∈T

Bmi
∑

k=1..K

xik ≤ bm, ∀m (12)

The reduced cost of column Aj is ωTAj − ρ, where ω and ρ
are the duals of Equation (10) and (11) respectively. Given the
optimal duals of the current iteration of UpperBound-LP, a
separate Slave process provides a new column with the mini-
mum reduced cost; the process iterates until convergence.

Slave: Given the spatio-temporal constraints, the Slave can
often be formulated as a minimum-cost integer flow problem
on a polynomial-sized network, e.g., [Jain et al., 2010] pro-
vide such a Slave formulation with application to the FAMS
domain.

Lower Bound Estimation: A subset of the columns
will be generated while solving the UpperBound-LP. The
lower bound of the same node is computed by running G-
PASAQ with this subset of columns.

5 BLADE– A Cutting-Plane Algorithm
Despite our effort for efficiency in COCOMO, the need to run
column generation at each of the K |T | nodes ultimately leads

to its inefficiency. BLADE (Boosted piecewise Linear Ap-
proximation of DEfender strategy with arbitrary constraints)
uses the cutting-plane approach to scale-up G-PASAQ, and
avoids running column generation at each node. Algorithm
1 presents BLADE. The Master is a modified version of P1
with a relaxed defender strategy space, defined by the set of
boundaries H̃x ≤ h̃. In Line (2), (H̃, h̃) is initialized with
the user-specified constraints, (B, b). The solution found by
the Master, i.e., x̃, provides an upper bound (UB) of the solu-
tion for P1. In each iteration, the Separation Oracle checks
whether or not x̃ ∈ Xf . If so, the optimal solution of P1 has
been found; otherwise, a new cutting plane Hlx ≤ hl is re-
turned to further restrict the search space in the Master. The
Separation Oracle also returns a feasible solution xf ‘clos-
est’ to the infeasible solution x̃, which provides a lower bound
(LB = F (xf )) of the solution for P1. In Line (9), we improve
our lower bound estimation to further speed up the algorithm.
The algorithm terminates when UB and LB are close enough,
i.e., UB− LB ≤ ε.

Algorithm 1: BLADE

1 Input: {Rdi , P di , Rai , P ai }, (B, b), ε;
2 (H̃, h̃)← (B, b), feasible← false;
3 UB←M,LB← −M ;
4 while UB− LB > ε do
5 (UB, x̃)← Master(H̃ , h̃);
6 (feasible, Hl, hl, xf )← SeparationOracle(x̃);
7 H̃ ← H̃ ∪Hl, h̃← h̃ ∪ hl;
8 if feasible 6= true then
9 (LB, xl)← LowerBoundEstimator(H̃, h̃) ;

10 return xl;

5.1 Master
We first reformulate P1 by representing its feasible region
using the set of bouandries instead of the extreme points:

P1.1:{max
x
F (x) | Hx ≤ h;Bx ≤ b; 0 ≤ xi ≤ 1,∀i ∈ T }

H is a N -by-|T | matrix, where N is the number of linear
boundaries of the convex hull. Each row, Hlx ≤ hl, rep-
resents a linear boundary of Xf1. In the presence of user-
specified constraints, Bx ≤ b is added to the boundary set of
Xf , as defined in Equation (2). However, we cannot directly
solve P1.1 because H and h are not initially given.

In BLADE, the Master solves P1.1 using G-PASAQ with
a subset of the boundaries of Xf . More specifically, Equation
(9) is rewritten as Equation (12) and (13):∑

i∈T
H̃li

∑
k=1..K

xik ≤ h̃l, ∀l (13)

(H̃, h̃) in Equation (13) represents the subset of the bound-
aries for Xf . The solution of Master, denoted as x̃, then
provides an upper bound on the solution of P1.1: F (x̃) ≥
F (x∗), where x∗ denote the optimal solution of P1.1. As the
algorithm keeps refining the feasible region by adding new
boundaries to the Master, this upper bound gets tighter.



Given x̃ as the relaxed solution from the Master, we check
whether it belongs to Xf . If so, we have found the optimal
solution of P1.1. Otherwise, we further restrict the feasible
region in the Master via a cut to separate the current infeasible
solution and the original feasible region.

5.2 Separation Oracle
One standard approach for checking feasibility and generat-
ing cutting planes is to apply Farkas’ Lemma, as in [Papadim-
itriou and Roughgarden, 2008]. However, the resulting cut-
ting planes are not guaranteed to be deep cuts that touch the
feasible region and therefore eliminate as much of the infeasi-
ble region as possible. Instead, we use a norm-minimization
approach for the Separation Oracle in BLADE, which effi-
ciently checks the feasibility of x̃, and generates a deep cut to
separate Xf from an infeasible x̃. Additionally, our approach
finds a feasible point that is closest to x̃, allowing us to com-
pute a lower bound on the optimal objective.

Check Feasibility: The Separation Oracle checks the fea-
sibility of x̃ by minimizing its distance to the feasible region.
If the minimum distance is 0, x̃ is within the feasible region.
We choose 1-norm to measure the distance between x̃ and
any feasible point, as 1-norm leads to a Linear Program (LP),
which allows the use of column generation to deal with large
defender strategy space. We first show the Min-1-Norm LP
in Equation (14)-(18),

min
a,z

∑
i∈T

zi (14)

s.t. z +Aa ≥ x̃ (15)
z−Aa ≥ −x̃ (16)
−BAa ≥ −b (17)∑
Aj∈A

aj = 1, aj ≥ 0, ∀Aj ∈ A (18)

In the above LP, a marginal coverage is represented by the set
of defender pure strategies: Aa. Constraint (17) and (18) en-
forces that Aa satisfies both the spatio-temporal constraints
and the user-specified constraints. The 1-norm distance be-
tween the given marginal x̃ and Aa is represented by vector
z. This is obtained by combining Constraints (15) and (16):
−z ≤ |Aa − x̃| ≤ z. The objective function minimizes the
1-norm of z, therefore the 1-norm distance between x̃ and any
given feasible marginal is minimized.

Lemma 1. Given a marginal x̃, let (z∗, a∗) be the optimal
solution of the corresponding Min-1-Norm LP. x̃ is feasible
if and only if

∑
i∈T z

∗
i = 0. Furthermore, Aa∗ provides the

feasible marginal with the minimum 1-norm distance to x̃.

Generate Cut: If x̃ is infeasible, we need to further re-
strict the relaxed region in the Master. Theoretically, any hy-
perplane that separates x̃ from the feasible region could be
used. In practice, a deep cut is preferred. Let w, v, g and u
be the dual variables of Constraints (15), (16), (17) and (18)
respectively; and let y = w− v.

Lemma 2. Given an infeasible marginal x̃, let (y∗, g∗, u∗) be
the dual values at the optimal solution of the corresponding
Min-1-Norm LP. The hyperplane (y∗)T x−(g∗)Tb+u∗ = 0

separates x̃ and Xf :

(y∗)T x̃− (g∗)Tb + u∗ > 0 (19)

(y∗)T x− (g∗)Tb + u∗ ≤ 0, ∀x ∈ Xf (20)

Proof. The dual of the Min-1-Norm LP is:

max
y,u,g

x̃T y− bT g + u (21)

s.t. AT y−ATBT g + u ≤ 0 (22)
1 ≥ y ≥ −1, g ≥ 0 (23)

Equation (19) can be proved using LP duality. Since x̃ is
infeasible, the minimum of the corresponding Min-1-Norm
LP is strictly positive. Therefore, the maximum of the dual
LP is also strictly positive.

We now prove the contrapositive of Equation (20):

(y∗)T x− (g∗)T b + u∗ > 0⇒ x is not feasible

Given any x′, there is a corresponding LP with the same for-
mulation as that in Equation (21)-(23). Let (y′, u′, g′) be the
optimal solution of this LP. Note that, (y∗, u∗, g∗) is a feasible
solution of this LP. Therefore,

(y′)T x− (g′)T b + u′ ≥ (y∗)T x− (g∗)T b + u∗ > 0

This indicates that the minimum 1-norm distance between x
and Xf is strictly positive. Hence, x is infeasible.

Lemma 3. Equation (20) is a deep cut that touches the fea-
sible convex hull Xf .

Proof. For simplicity, we consider the cases without user-
specified constraints. The cut in Equation (20) then becomes
(y∗)T x + u∗ ≤ 0. Let aj be the dual of the jth constraint in
Equation (22) and a∗ = 〈a∗j 〉 be the dual at the optimal solu-
tion of LP in Equation (21)-(23). According to the LP duality,
Aa∗ is the optimal solution of the Min-1-Norm LP. There-
fore, Aa∗ is the feasible marginal with the minimum 1-Norm
distance to x̃. Furthermore, ∀a∗j > 0, the corresponding con-
straint in Equation (22) is active, i.e. (y∗)TAj + u∗ = 0.
Hence, the extreme point Aj is on the cutting-plane.

Therefore, by solving either the Min-1-Norm LP or its
dual LP, the Separation Oracle can not only check the feasi-
bility of a given marginal, but also generate a deep cut. We
choose to solve the dual LP in Equation (21)-(23), since it
gives the constraint directly as shown in Equation (20). How-
ever, since in our case the set of the defender’s pure strategies
is too large to be enumerated, the constraints of the LP cannot
be enumerated.We solve the LP using a constraint generation
approach, outlined in Algorithm 2. Specifically, we solve the
LP in Equation (21)-(23) with a subset of constraints first, and
use a Secondary Oracle to check whether the relaxed solution
violates any of the other constraints.

Secondary Oracle: The secondary oracle is executed at
Line (6) in Algorithm 2. If any constraint in Equation (22) is
violated, the oracle returns the one that is most violated, i.e.,
Al with the most negative value of the LHS of Equation (22);
otherwise, we have found the optimal solution of the LP. The
secondary oracle is similar to the Slave in COCOMO.



Algorithm 2: Separation Oracle

1 Input: {Rdi , P di , Rai , P ai }, (B, b), x̃, A(0);
2 A← A(0), Al ← A1;
3 while Al 6= ∅ do
4 A← A ∪Al;
5 (y∗, u∗, g∗)← Solve-Separation-Oracle-LP(A);
6 Al ←SecondaryOracle(y∗, u∗, g∗);
7 return (y∗, u∗, g∗);

5.3 WBLADE
The convergence of BLADE depends on how fast the cuts gen-
erated by the Separation Oracle approximate the feasible set
around the optimal solution of P1.1. We propose WBLADE,
which modifies the Separation Oracle by changing the norm
used to determine the distance toXf for one that takes the ob-
jective function into account, to bias the cut generated toward
the optimal solution. Formally, given the solution x̃ from the
Master, instead of searching for the feasible point with the 1-
norm distance, which is uniform in all dimensions, we modify
the objective function of the Min-1-Norm LP in Equation
(14) as: ∑

i∈T
(∇iF (x̃) + ξ)zi (24)

where ∇iF (x̃) is the gradient of objective function F (x) at
point x̃ with respect to xi; ξ is a pre-defined constant to ensure
that∇iF (x̃)+ ξ > 0,∀i so the objective remains a norm. We
refer to this modified LP as Min-Weighted-Norm LP.
Lemma 4. A marginal x̃ is feasible if and only if the minimum
of the corresponding Min-Weighted-Norm LP is 0.

Proof. We already showed that zi ≥ 0 represents the ab-
solute difference between x̃ and the feasible point Aa on
the ith dimension. Combining with ∇iF (x̃) + ξ > 0,∀i,
we have

∑
i(∇iF (x̃) + ξ)zi ≥ 0. According to Lemma

1, x̃ is feasible if and only if the minimum of
∑
i zi is 0.

Hence, if there exists (z∗, a∗) such that
∑
i z
∗
i = 0, we have∑

i(∇iF (x̃) + ξ)z∗i = 0; and vice versa.

To provide some intuition into why tighter bounds can be
obtained by solving Min-Weighted-Norm LP, we con-
sider the case when ∇iF (x̃) > 0 and x̃ ≥ Aa. First we
note that these are typical situations in security games, where
having more defense resources tends to benefit the defender.
This is the case even if the attacker is boundedly rational, as
in the quantal response model. Therefore for most values of
x̃ the gradient∇iF (x̃) will be positive. As a result, a solution
x̃ of the relaxed problem solved by the master will tend to use
more resources than what is feasible, i.e., x̃ ≥ Aa. These
properties are confirmed in our numerical experiments.

Then, if we have ∇iF (x̃) > 0 and x̃ ≥ Aa, the
Min-Weighted-Norm LP is equivalent to minimizing
∇F (x̃) · (x̃−Aa) and hence also to maximizing

F (x̃) +∇F (x̃)(Aa− x̃) (25)

Equation (25) is the first-order Taylor approximation of F (x),
maximizing which should provide a good lower bound if x̃ is
close to the feasible region.
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Figure 2: Minimizing weighted 1-norm distance

Regarding the cuts generated, since ∇F (x̃) > 0 we can
take ξ = 0. In this case the Min-Weighted-Norm LP is
looking for the projection point in Xf on the highest level-set
perpendicular to∇F (x̃). The cut generated, therefore, will be
this highest level-set perpendicular to ∇F (x̃). Since the gra-
dient points in the direction of maximum increase of its func-
tion, for sufficiently smooth functions and sufficiently close
projection point, points with higher function values than the
projection point would be eliminated by this cut. Figure 2(b)
demonstrates an example: the shaded polyhedron represents
the feasible region Xf . Given the infeasible point x′ and its
gradient ∇F (x′), the solid line perpendicular to ∇F (x′) ap-
proximates the level-set of F (x). Therefore, the half-space on
the direction of∇F (x′) of that line would tend to have points
with higher value of F (x) than the other half-space. This sug-
gests that such a cut would prune more infeasible points with
high objectives, leading to a tighter upper bound. Confirming
this intuition, Figure 2(a) shows that over 30 random samples
the upper-bound decreases faster in WBLADE: x-axis marks
iterations in time, y-axis plots the upper bound.

5.4 Quality and Runtime Trade-off
The feasible point returned by the Separation Oracle pro-
vides a lower bound on P1.1. A better lower bound can
be achieved by solving a restricted version of P1.1 (Line 9
in Algorithm 1). This can be done by replacing Xf1 with
the convex hull formed by the subset of defender pure strate-
gies generated in solving the Separation Oracle. These up-
per and lower bounds allow us to trade off between solution
quality and runtime by controlling the threshold ε: as soon
as UB − LB ≤ ε the algorithm returns the feasible solution
associated with LB, which is guaranteed to be within ε of the
optimal objective.

6 Experimental results
In this section, we compare COCOMO and BLADE assum-
ing two different bounded rationality models. We take FAMS
as our example domain. For each setup, we tried 30 game
instances. In each game, payoffs Rdi and Rai are random inte-
gers from 1 to 10, while P di and P ai are random integers from
-10 to -1; the feasible schedules for each unit of resources
are generated by randomly selecting 2 targets for each sched-
ule (we assume that each air marshal can cover 2 flights on a
single trip, similar to [Jain et al., 2010]). In all experiments,
the deployment-to-saturation (d:s) ratio is set to 0.5, which is
shown to be computationally harder than any other d:s ratio
[Jain et al., 2012]. Furthermore, we set the number of piece-
wise linear segments to be 15 for each fi(xi), given that 10



0

10

20

30

40

50

60

20 40 60 80

R
u

n
ti

m
e

 (
m

in
s)

 

# of Targets 

CoCoMo 

wBLADE 

(a) 20% User
Constraints,Threshold=0.02

0

10

20

30

40

50

60

10% 20% 30% 40% 50%

R
u

n
ti

m
e

 (
m

in
s)

 

User-specefied Constraints 

CoCoMo 

wBLADE 

(b) 60 Targets, Threshold=0.02

0

10

20

30

40

50

60

0.4 0.2 0.1 0.05 0.02 0.01

R
u

n
ti

m
e

 (
m

in
s)

 

Threshold 

CoCoMo 

wBLADE 

(c) 60 Targets, 20% User
Constraints

0

1

2

3

4

00.20.40.6

R
u

n
ti

m
e 

(m
in

s)
 

Solution Quality (Threshold) 

40 targets

50 targets

60 targets

(d) Runtime vs Solution Quality

Figure 4: Comparing COCOMO and BLADE, QR Model

segments provide a sufficiently good approximation [Yang et
al., 2012]. The results were obtained using CPLEX v12.2 on
a standard 2.8GHz machine with 4GB main memory.

The BEST BLADE Given the two versions of BLADE,
one with the non-weighted Separation Oracle and an-
other with the weighted Separation Oracle, we inves-
tigate whether it would be more effective to combine
them such that two cuts are generated in each iteration.
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Figure 3: Runtime Comparison
of the BLADE family

While this combined
version CBLADE could
generate more cuts per
iteration reducing the
total number of itera-
tions, the runtime of
each iteration might be
longer. Our first set
of experiment investi-
gates the efficiency of
the three BLADE algo-
rithms. Figure 3 shows
the average runtime of these three algorithms with different
number of targets. WBLADE achieves the shortest runtime,
as shown in Figure 3. Furthermore, although on average
CBLADE takes less iterations to converge, it generates more
cuts than both BLADE and WBLADE. For example, with 60
targets, CBLADE takes 17 iterations on average to converge,
while WBLADE and BLADE take 23 and 29 iterations respec-
tively. However, the total cuts generated by CBLADE is 34 (2
cuts per iteration) which is more than WBLADE and BLADE.
Given this result, we will use WBLADE as the representative
of the BLADE family in the rest of the experiments.

Quantal Response Model Figure 4(a), 4(b) and 4(c)
present the average runtime of COCOMO and WBLADE as-
suming a QR model of the adversary with λ parameter set
to 0.76, as in [Yang et al., 2011]. In the experiment, we set
50 minutes as the runtime limit. The dashed line in the fig-
ures indicates that at that point at least some game instances
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Figure 5: Runtime Comparison, QR-Sigmoid model

were not completed within this time limit; and the absence
of any markers afterward implies the trend continues. CO-
COMO cannot scale to 80 targets, as shown in Figure 4(a). In
Figure 4(b), we vary the amount of user-specified constraints
(i.e. percentage of the number of targets) while fixing the
number of targets to be 60. The constraints were randomly
generated inequalities of the marginal coverage vector 〈x〉.
Increasing the amount of user-specified constraints doesn’t
impact the runtime of WBLADE, but significantly slows down
COCOMO. We then vary the threshold from 0.4 to 0.01 as
shown in Figure 4(c). COCOMO is only able to converge
when the threshold is larger than 0.05;in comparison, the run-
time of WBLADE slowly increases as the threshold decreases.
Thus, WBLADE obtain much better solution quality within
significantly shorter amount of time than COCOMO.

We further investigate the tradeoff between solution qual-
ity and runtime of WBLADE and show the result in Figure
4(d). We gradually increase the solution quality by decreas-
ing the threshold under different number of targets, illustrat-
ing runtime-quality tradeoff.

A More Complex Bounded Rationality Model We now
set fi(xi) = 1

1+e−λixi
, a more complex model than QR.We

investigate the impact of model complexity on the runtime
of COCOMO and WBLADE. Figure 5(a) and 5(b) display
the runtime comparison of COCOMO and WBLADE. As
shown in Figure 5(a), while COCOMO could not finish run-
ning within 50 minutes in any of the settings, the runtime of
WBLADE was less than 7 seconds for 20 targets. In Figure
5(b), we show that the runtime of BLADE gradually increases
as the threshold decreases. In comparison, COCOMO is only
able to finish running when the threshold is sufficiently large
(≥ 0.4) leading to poor solution quality. Thus, as the bounded
rationality model becomes more complex, BLADE’s advan-
tage over COCOMO is further magnified.

7 Summary
SSGs and their applications have emerged as a thriving
area of research, but scalability, particularly in the pres-
ence of complex adversary models remains an open chal-
lenge. BLADE is today the only algorithm that can handle
large-scale SSGs given bounded-rationality adversary mod-
els, and for the first time provides an efficient realization of
the cutting-plane approach within SSGs.
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