
Abstract

For over two millennia, Aristotle's logic has ruled over the thinking of

western intellectuals. All precise theories, all scienti�c models, even mod-

els of the process of thinking itself, have in principle conformed to the

straight- jacket of logic. But from its shady beginnings devising gambling

strategies and counting corpses in medieval London, probability theory

and statistical inference now emerge as better foundations for scienti�c

models, especially those of the process of thinking and as essential ingre-

dients of theoretical mathematics, even the foundations of mathematics

itself. We propose that this sea change in our perspective will a�ect vir-

tually all of mathematics in the next century.
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1 Introduction

This paper is based on a lecture delivered at the conference \Mathematics to-
wards the Third Millennium", held at the Accademia Nazionale dei Lincei, May
27-29, 19991. I would like to congratulate the seven very enterprising and very
energetic Professors from the University of Rome, Tor Vergata, all women, who
conceived and orchestrated that meeting. I am especially impressed by their
achievement in getting a dozen mathematicians to speak, not about the latest
advances in their �eld but to address larger issues and talk about ideas as well
as theorems. Their invitation tempted me to try to formulate more clearly some
ideas that I've been trying to put together for the last ten years. I could not
resist the great fun of formulating a long term view out of them which is, no
doubt, simplistic and which certainly stretches beyond my area of expertise.
To quantify the hubris of this talk, let me borrow Karen Uhlenbeck's statistic
de�ned in her talk at this conference: I wish to make assertions which cover
some 2400 years; take as a yardstick the length of my own research experience
{ about 40 years; thus the hubris quotient of this talk is 60!

This paper is a meant to be a polemic which argues for a very fundamental
point: that stochastic models and statistical reasoning are more relevant i) to
the world, ii) to science and many parts of mathematics and iii) particularly
to understanding the computations in our own minds, than exact models and
logical reasoning. My points will be laid out as follows: in x2, I will argue
that all mathematics arises by abstracting some aspect of our experience and
that, alongside the mathematics which arises from objects and their motions in
the material world, formal logic arose, in the work of Aristotle, from observing
thought itself. However, there can be other ways of abstracting the nature of

1This paper is reproduced here with the permission of the Accademia. References below
to \other talks" all refer to this conference.
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our thinking process and one of these leads to probability and statistics. In
x3, I will give a quick look at the 2400 years since Aristotle, noting some high
points in the development of these two strands. Precise logic-based models and
precise logic-based mathematics have held the high ground and deeply in
u-
enced our thinking. Stochastic theories emerged much more slowly and only in
the last century have begun to show their real depth. In x4, I want to look at
the standard reductionist approach to probability. The basic object of study
in probability is the random variable and I will argue that it should be treated
as a basic construct, like spaces, groups and functions, and it is arti�cial and
unnatural to de�ne it in terms of measure theory. In x5, we pursue this point
further and, building on inspiring work of Jaynes and Freiling, propose that
probabilities and random variables can be built into the foundations of mathe-
matics, resulting in a more intuitive and powerful formalism. In x6, we look at
the impact of stochastic models on mainstream mathematics, especially on the
theory of ordinary and partial di�erential equations. We argue that stochastic
di�erential equations are more fundamental and relevant to modeling the world
than deterministic equations. Finally, in x7, we return to modeling thought
and examine recent stochastic approaches to arti�cial intelligence, vision and
speech. We ask: do these o�er a better chance of success, e.g. at duplicating
human abilities with a computer, than logic based approaches. I believe so,
although this is not yet clear.

I also have to confess at the outset to the zeal of a convert, a born-again believer
in stochastic methods. Last week, Dave Wright reminded me of the advice I had
given a graduate student during my algebraic geometry days in the 70's: `Good
grief, don't waste your time studying statistics { it's all cookbook nonsense'.
I take it back! I would like to warmly thank some of the many people who
have helped me either through discussions of these ideas or with the details
of this article, especially Shlomo Sternberg, Rohit Parikh, Persi Diaconis, Ulf
Grenander, Stuart Geman, David Fowler, and Stephen Stigler.

2 The taxonomy of mathematics

I want to begin by setting probability and statistics in their places as a part
of mathematics. First, I want to quote a de�nition of what is mathematics
due to Davis and Hersh in their very penetrating book \The Experience of
Mathematics" (Davis-Hersh, 1980, p.399): `The study of mental objects with

reproducible properties is called mathematics.' I love this de�nition because
it doesn't try to limit mathematics to what has been called mathematics in
the past but really attempts to say why certain communications are classi�ed
as math, others as science, others as art, others as gossip. Thus reproducible
properties of the physical world are science whereas reproducible mental objects
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are math. Art lives on the mental plane (the real painting is not the set of dry
pigments on the canvas nor is a symphony the sequence of sound waves that
convey it to our ear) but, as the post-modernists insist, is reinterpreted in new
contexts by each appreciator. As for gossip, which includes the vast majority of
our thoughts, its essence is its relation to a unique local part of time and space.

Expanding on the Davis and Hersh de�nition, one can ask what are the var-
ious primitive elements of human experience which lead to the diverse types
of reproducible mental objects, which in turn embody the great divisions of
mathematics? The classical subdivisions of mathematics are geometry, algebra,
and analysis. Let's look at each of them and try to name the corresponding
experiences and the resulting mental objects.

Geometry is the most obvious: an infant at the age of 3-6 months is working
intensely at integrating the two senses of vision and touch with its own simple
muscular movements, learning that moving its hand and arm appropriately leads
to the sensation of gripping the rattle and the sight of its displacement. Put
succinctly, let me say that the perception of space (through senses and muscular
interaction) is the primitive element of our experience on which geometry is
based. One of the simplest mental objects this leads to is `the stretched string'
as Davis and Hersh call it, the origin of ruler and compass constructions. The
paradigmatic object of its formal study is a space M made up of points with
various sorts of structure.

Analysis, I would argue, is the outgrowth of the human experience of force and
its children, acceleration and oscillation. An example is the falling of the apple
onto Newton's head. This primitive experience gives rise to the paradigmatic
mental object consisting of a function and its derivatives, originally functions
describing some physical quantity evolving in time.

Algebra seems to stem from the grammar of actions, i.e., the fact that we carry
out actions in speci�c orders, concatenating one after the other, and making
various `higher order' actions out of simpler more basic ones. The simplest
example, the one �rst acquired by children, is counting itself, which may be part
of the grammar of dexterous manipulations if piling pebbles in heaps is used
or part of the grammar of language when words are used. The paradigmatic
mental object here is a set of things with a law of composition.

Enough for the `classical' divisions of mathematics. I believe there is a fourth
branch of human experience which creates reproducible mental objects, hence
creates math: our experience of thought itself through our conscious observation
of our mind at work. Instead of observing the world and �nding there the
germs of geometry and analysis, or observing our actions and �nding algebra,
we observe our mind at work. In the hands of Aristotle, this lead to the creation

4



of formal logic in which propositions are the basic mental objects. Logic was
the reproducible formalization constructed to model the raw stream of thoughts
passing through our consciousness.

But is this right? The alternate view for which I will argue is that thought is
the weighing of relative likelihoods of possible events and the act of sampling
from the `posterior', the probability distribution on unknown events, given the
sum total of our knowledge of past events and the present context. If this is
so, then the paradigmatic mental object is not a proposition, standing in all
its eternal glory with its truth value emblazoned on its chest, but the random
variable x, its value subject to probabilities but still not �xed. We will focus on
random variables in x4. The simplest example where human thinking is clearly
of this kind may well be the case where the probabilities can be made explicit:
gambling. Here we are quite conscious that we are weighing likelihoods (and
even calculating them if we are mathematically inclined). If we accept this, the
division of mathematics corresponding to this realm of experience is not logic
but probability and statistics.

3 A brief history of logic vs. statistics

It is entertaining to make a timeline and trace some of the high points in the
evolution of these two con
icting views of the nature of thought. Starting in
the high period of ancient Athens, here are some quotes from Plato, put into
the mouth of Socrates:

If Theodorus, or any other geometer, were prepared to rely on plausi-

bility when he was doing geometry, he'd be worth absolutely nothing.

(The dialog with Theaetetus, 162e, c. 360 B.C.)

In the Republic VII, 529c, Plato goes a bit far even for the tastes of the purest
contemporary mathematicians by arguing that astronomers are better o� not

looking at the stars (?!):

The sparks that paint the sky, since they are decorations on a visible

surface, we must regard, to be sure, as the fairest and most exact

of material things; but we must recognize that they fall far short of

the truth .... both in relation to one another and as vehicles of the

things they carry and contain. These can be apprehended only by

reason and thought, but not by sight. .... It is by means of problems,

then, as in the study of geometry, that we will pursue astronomy too,
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and we will let be the things in the heavens, if we are to have a part

in the true science of astronomy.

In the same vein, it is interesting that some of the worst mistakes made by
Aristotle arose because, although he wrote extensively about biology, he never
consulted practising physicians such as Hippocrates and his school for real data
about the human body. Thus he believed that the heart, not the brain, was the
seat of thought, something readily disproven by observing the e�ects of trauma
to the brain (see the excellent article by Charles Gross (1995)).

Skipping ahead to the Renaissance, Cardano (1500-1571) is a remarkable �gure.
On the one hand, because of his book Ars Magna, 1545, he is often called the
inventor of i. He appears to be a superb practitioner of the formalismof algebra,
following the consequences of its logical rules a bit further than those before him.
But he was also an addicted gambler and wrote the �rst analysis of the laws
of chance in Liber de Ludo Aleae, which, however, he was ashamed to publish!
It did not appear until 1663, about the time Jacob Bernoulli began to work.
In the 17th century, we �nd Newton and Leibniz squarely in the logic camp,
Newton believing that Euclidean geometry was the only reliable language for
trustworthy proofs and Leibniz foreshadowing modern AI in his PhD thesis De
Arte Combinatoria. In the stat camp, we have true empiricists beginning to
gather and analyze statistics. Graunt assembled his mortality tables in London
(see �gure 1 from the year 1665) and Jacob Bernoulli proved the law of large
numbers, justifying the use of empirical estimates.

The Reverend Thomas Bayes lived in the 18th century (1701 or 1702-1761). He
argued for the introduction of a priori (or `prior') probabilities, probabilities that
one assigns to unknown events based on experience of related but not identical
events or just expressing a neutral agnostic view. These probabilities should
then be modi�ed by new observations, leading to better and better a posteriori

probabilities as data is accumulated. To demonstrate the central importance
of Bayes's work, let me describe the lead article in the Business Section of
the L.A. Times of 10/28/96. It featured a picture of Bayes with the headline
\The future of software may lie in the obscure theories of an 18th century
cleric named Thomas Bayes". The article went on to say, \Asked recently
when computers would �nally begin to understand human speech, Gates began
discussing the critical role of `Bayesian systems'. ... Is Gates onto something?
is this alien-sounding technology Microsoft's new secret weapon?" In speech
recognition, the prior probabilities may be generic models of human speech and
the posterior probabilities the much more accurate model of one person's speech
after training. Although the Times labelled them `obscure theories', a growing
school of researchers today (myself among them) believes Bayesian statistics is
the key to the e�ective use of statistical inference in complex situations.
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Figure 1: Graunt was one of the �rst people to realize the usefulness of empirical
data: here is a week in the life and death of medieval London (photograph
courtesy of Stephen Stigler).

Gauss is interesting because of his immense abilities both in pure logical deduc-
tion and in applied statistics. Indeed, he invented the method of least squares
to deal with redundant but inaccurate data, leading to the rediscovery of Ceres,
and proved the central limit theorem which justi�ed the method. Perhaps his
most famous hypothesis testing experiment was to test the euclidean nature
of our 3-dimensional world. He did this by measuring the three angles in the
triangle formed by the 3 peaks of Brocken, Hohehagen and Inselsberg: it came
out 14.85 arc-seconds higher than �, but within experimental error of �. The
logic camp 
ourished in the rest of the 19th century, with Dedekind's cuts to
arithmetize the real numbers, Boole's logic, Frege's formalization of predicate
calculus and Cantor's formalization of set theory. It is not uninformative to
reproduce here a high point of this school: Russell and Whitehead's demon-
stration that 1+1=2 (this is Theorem 110.643 of Principia Mathematica). See
�gure 2 and note their comment on the result in the next paragraph! But the
gathering of empirical statistics also 
ourished in the 19th century, notably in
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Figure 2: A crowning achievement in the reductionist approach to the founda-
tions of mathematics. The above theorem occurs some thousand odd pages into
the monumental work Principia Mathematica of Russell and Whitehead, build-
ing purely on logic and set theory. Reproduced with permission of Cambridge
University Press.

the hands of Francis Galton, who liked to measure so much about people that
he is not now considered very `politically correct'2.

Moving to our century, I think the most signi�cant trend has been the devel-
opment of more complex and truly interesting probability models with much
deeper applications to the sciences. Thus Galton was pretty much limited to
�tting Gaussian distributions to scalar or low-dimensional data sets. A huge
leap was made when Gibbs introduced very high-dimensional probability mod-
els in physics, e.g. for gases, starting statistical mechanics. Keynes wrote both
on the foundations of probability and of economics and sought to clarify what
was the correct use of probabilistic reasoning in the real world. Wiener applied
stochastic methods to signal prediction and control theory. Shannon applied
stochastic methods to data compression and identi�ed the key role played by
the entropy of a probability distribution. Grenander applied stochastic methods
�rst to algebraic structures and later to the patterns they create in the world,
especially in vision. All these together have given us powerful tools and inspiring
examples of applied stochastic methods.

While all these really exciting uses were being made of statistics, the majority of
statisticians themselves, led by Sir R.A. Fisher, were tying their hands behind
their backs, insisting that statistics couldn't be used in any but totally repro-
ducible situations and then only using the empirical data. This is the so-called
`frequentist' school which fought with the Bayesian school which believed that

2A personal note: my grandfather, Alfred A. Mumford, was a physician at Manchester
Grammar School for many years and fascinated by the correlations he observed in the metic-
ulous measurements and health records he made of the boys. (Mumford-Young 1923) is cited
in the classical statistics textbook of Snedecor and Cochran.
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priors could be used and the use of statistical inference greatly extended. This
approach denies that statistical inference can have anything to do with real
thought because real-life situations are always buried in contextual variables
and cannot be repeated. Fortunately, the Bayesian school did not totally die,
being continued by DeFinetti, E.T. Jaynes, and others. I will describe some
of Jaynes's ideas below. The new applications of Bayesian statistics to vision,
speech, expert systems and neural nets have now started an explosive growth
in these ideas.

4 What is a `random variable'?

This is actually a quote from David Kazhdan: when he transplanted
Gel'fand's seminar to Harvard, he called it the `Basic Notions Seminar' and
asked everyone to describe a notion they knew best which everyone should
learn. He gave Persi Diaconis the topic which is the title of this section. I like
his idea: a random variable is not such an easy thing to describe. It is the core
concept in probability and statistics and, as such, appears in many guises. Let's
make a list:

� There are empirical random variables. These arise, for example, by taking
a sample of people and tabulating their heights and weights; taking a
random image and measuring the intensity of its pixels; taking a sample
of stocks and tabulating their prices; throwing a dart at a dart board and
measuring where it lands.

� There are elementary random variables. For example, a random sample
from a �nite set with the uniform distribution; a random normally dis-
tributed real number; a random sample from Brownian motion.

� There are truly complex random variables. One example would be the
solution of a stochastic PDE with a white noise driving term. Another
would be a random manifold created by some construction using elemen-
tary random elements of some kind. Gromov described some of these in
his lecture.

� A doctor's diagnosis can be viewed as a random sample from his posterior
probability distribution on the state of your body, given the combination
of a) his personal experience, b) his knowledge from books, papers and
other doctors, c) your case history and d) your test results. See the very
in
uential article (Lauritzen-Spiegelhalter 1988).

� A novel can be viewed as a random sample from the author's posterior
probability distribution on stories, conditioned on all the things the author
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has observed or learned about the nature of the real world. This will be
developed in the last section.

� It can be viewed as an unde�ned operation in the axiomatization of math-
ematics: see the next section.

� Perhaps an observation in quantum mechanics is a `non-commutative ran-
dom variable', if we use the perspective A. Connes discussed in his talk?

When probability is built on top of measure theory, the usual formal de�nition
of a random variable with values in a set X is that it is a measurable function
x : 
 ! X from a probability space 
 to X. The probability space itself,
however, usually plays almost no role and x acts as though it is a 
oating
member of the set X (like a generic point in algebraic geometry). Thus, i) for
empirical random variables, 
 is essentially unknowable; ii) for the elementary
random variables, 
 = X; iii) for the complex random variables, 
 is some
big product of the probability spaces from which all the random elements in
the construction have been drawn; iv) for the novelist or doctor, 
 is the full
probability model that he/she has constructed of how the world works.

There are two approaches to developing the basic theory of probability. One
is to use wherever possible the reduction to measure theory, eliminating the
probabilistic language. Then 
 is dropped and X is endowed with the measure
p(x) or p(x)dx given by the direct image under the map x of the probability
measure on 
. The other is to put the concept of `random variable' on center
stage and work with manipulations of random variables wherever possible. Here
is one example contrasting these two styles.

Consider the concept of `in�nite divisibility' (ID) of a real-valued random vari-
able x. One can be classical and denote the probability density of x by p(x).
Then x is ID if, for every n, there is a probability density qn(x) such that
p = qn � � � � � qn (n factors qn). Alternately, one can say that, for every n,
x � y1 + � � �+ yn where yi are independent identically distributed random vari-
ables (and � means having the same law).

This is little more than a simple change of notation but consider what happens
when you state the Levy-Khintchine theorem in the two corresponding ways.
The �rst way of stating this theorem says that x is ID if and only if the Fourier
transform p̂(�) of p(x) can be written:

p̂(�) = e
ia��b�2�c

R �
ei�y�1� i�y

1+y2

�
d�(y)

:

The second way writes the same condition directly in terms of the random
variable x as follows:

x � a+ bxnormal + c
X

(xi � convergence factor ci):
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where xnormal is a standard normal variable and fxig are a Poisson process from
a density �. Now these look quite di�erent! For my part, I �nd the second way
of stating the Levy-Khintchine theorem in�nitely clearer: making the random
variables explicit tells you the real stochastic meaning of the result.

5 Putting random variables into the foundations

The reductionist approach de�nes random variables in terms of measures, which
are de�ned in terms of the theory of the reals, which are de�ned in terms of set
theory, which is de�ned on top of predicate calculus. I'd like to propose instead
that it should be possible to put random variables into the very foundations of
both logic and mathematics and arrive at a more complete and more transparent
formulation of the stochastic point of view. I do not have a complete formulation
of this, but a sketch which draws on two sources I �nd very provocative. The �rst
is the development by E.T. Jaynes of the foundations of Bayesian probability
and statistics (Jaynes 1996-2000); the second is a beautiful stochastic argument
due to Christopher Freiling to disprove the continuum hypothesis (Freiling 1986).

First Jaynes: as we have seen, the probability space 
 needed for the random
variables in applications like medical diagnosis is impossible to pin down pre-
cisely. Too many fragments of experience may guide the physician and we can
never make his/her probability table explicit. This problem was at the root of
the frequentist's complaint about Bayesian methods. Jaynes has, I believe, the
most convincing answer. His theory starts with the assumption that agents like
us assign to various events A plausibilities which lie in some unknown linearly
ordered set, call it P`. In fact, we assign plausibilities not only to events by
themselves, but also to conditional events { if B is known to happen, then what
is the plausibility of A as well being true? Denote this plausibility by

p(AjB) 2 P`:
Jaynes's result is that with a few reasonable axioms, one can deduce that there
is an order isomorphism P` �= [0; 1] under which p becomes a probability distri-
bution on the algebra of A's (in particular, p(AjB) = p(A^B)=p(B)). We may
summarize this result as saying that probabilities are the normative theory of
plausibility, i.e., if we enforce natural rules of internal consistency on any home-
spun idea of plausibility, we end up with a true probability model. For details,
see his fascinating book (Jaynes 1996-2000, chapters 1,2) which apparently is
going to �nally appear posthumously.

This leads to the following proposal for a stochastic predicate calculus. It should
have the syntax of standard predicate calculus except that we have two kinds
of variables in it: the ordinary predicates and constants and quanti�able free
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variables x but also a set of random constants x. In addition, it comes with
a truth value function p mapping all formulas F without free variables to real
numbers between 0 and 1. If the formula F has only ordinary variables in it,
then p(F ) 2 f0; 1g. Formal semantics for this theory would make the random
constants functions on probability spaces so that a formula would de�ne a subset
of the product of these spaces, hence have a probability.

Stochastic formal number theory would be expressive enough to add an axiom
of continuity for p:

p (9nF (n)) = l:u:b:m p ((9n � m)F (n)) :

We also want axioms giving us the basic elementary random variables. Thus
if N is the predicate de�ning natural numbers, Bernoulli random variables are
given by the meta-axioms:

(8a 2 P`)(9xa) 3 N (xa) ^ [p(xa = 0) = 1� a] ^ [p(xa = 1) = a] :

In fact, one wants countable families of independent Bernoulli variables. In the
same vein, the basic axiom of stochastic analysis should be the existence of the
continuum de�ned by i) a predicate C, ii) a linear ordering < (c1; c2) of numbers
c1; c2 for which C(c) is true, iii) a random x0 satisfying p(C(x0)) = 1, and iv)
�nally an axiom:

(8a 2 P`; a 6= 0; 1)(9!c) 3 C(c) ^ [p(< (x0; c)) = a]

In english, what we have in mind is that we can order the continuum in such
a way that its one-sided intervals give all possible probabilities between 0 to
1 exactly once, i.e., loosely speaking, a continuum is exactly a thing you can
throw darts at. The dart game (formally, Lebesgue measure on (0; 1)) is given
by the basic random variable x0, which connects syntactic real number variables

12



to semantic plausibility value variables through the above axiom. This embeds
measure theory into the very foundations of the theory.

This leads us to the stunning result of Christopher Freiling (1986): using the
idea of throwing darts, we can disprove the continuum hypothesis. Why his
theorem is not universally known and considered on a par with the results of
G�odel and Cohen, I do not know. Here is the argument in classical language
(see �gure 3). Two dart players independently throw darts at a dartboard. If
the continuum hypothesis is true, the points P on the surface of a dartboard
can be well-ordered so that for every P , the set of Q such that Q < P , call
it SQ, is countable. Let players 1 and 2 hit the dart board at points P1 and
P2. Either P1 < P2 or P2 < P1. Assume the �rst holds. Then P1 belongs
to a countable subset SP2 of the points on the dartboard. As the two throws
were independent, we may treat throw 2 as taking place �rst, then throw 1.
After throw 2, this countable set SP2 has been �xed. But every countable set is
measurable and has measure 0. Thus the probability of throw 1 landing on SP2
is 0. The same argument shows that the probability of P2 landing on SP1 is 0.
Thus almost surely neither happened and this contradicts the assumption that
the dartboard is the �rst uncountable cardinal!

So what is `wrong' with this? We have treated random variables, throws of
the dart, as real things! If we try to rewrite this argument in classical measure
theory, we will need to assume that the graph of the well-ordering is measurable,
which, of course, should not be done. So do we throw out the proof? Freiling
used the argument to motivate a new axiom of set theory which disproves the
continuum hypothesis. I believe we should go much further: his `proof' shows
that if we make random variables one of the basic elements of mathematics,
it follows that the C.H. is false and we will get rid of one of the meaningless
conundrums of set theory. The continuum hypothesis is surely similar to the
scholastic issue of how many angels can stand on the head of a pin: an issue
which disappears if you change your point of view.

This calls for the most di�cult part of this proposed reformulation of the foun-
dations: we need to decide how to de�ne stochastic set theory. Clearly we must
drop either the axiom of choice or the power set axiom. But the existence of
random objects is a sort of axiom of random choice and my belief at this point
is that it is better to drop the power set axiom. What mathematics really
needs, for each set X, is not the huge set 2X but the set of sequences XNin X.
Moreover, since p(x0 2 A) 2 P` must be de�ned for every subset A of C, it is
necessary that every de�nable subset of C is measurable. This is not my area
but it seems to me that the results of (Shelah and Woodin, 1990) make this
not obviously inconsistent or unworkable! It would be exciting to pursue this
approach.
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Figure 3: Two dart players face o�. This led C. Freiling to his argument against
the continuum hypothesis (drawing by I. Trotts).
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6 Stochastic methods have invaded classical

mathematics

It may be useful to look at the degree to which many areas of classical mathe-
matics have been transformed and deepened by the use of stochastic methods.

Graph theory is a clear example from the area of combinatorics. The invasion
started with Erd�os's introduction of random graphs with a �xed number of
vertices and edges, which led to the beautiful discovery of the phase transition
phenomenon: that the random graph becomes connected almost surely within a
very narrow band of edge numbers. An interesting example is use of stochastic
methods to construct graphs with given degree and girth (the minimum size of
a cycle) which are roughly of the minimum possible order. This approach is
now called the `probabilistic method', described, e.g., in (Spencer, 1994). In
another direction, there is the elegant theory of random branching processes,
which developed from the question of how likely it is that a given line of descent
of the nobility would become extinct.

Perhaps the most convincing case for the importance of stochastic methods is
in the theory of ODE's and PDE's. Di�erential equations were developed to
model nature with the full understanding that every speci�c equation was a
partial representation of reality that modeled some e�ects but not others. The
original case was, of course, the 2-body problem and Newton's laws of motion.
This predicted wonderfully planetary motion and, with perturbations, models
the full set of planets for moderate periods of time (e.g., maybe 108 years). But
going out further (maybe to 109 years), the unmodeled e�ects begin to add up
and the approximation is not useful. So where does this leave the mathematical
study of the 3-body problem? It makes the classical deterministic analysis of the
3-body gravitational equations about as relevant to the world as the continuum
hypothesis! A major step in making the equation more relevant is to add a
small stochastic term. Even if the size of the stochastic term goes to 0, its
asymptotic e�ects need not. It seems fair to say that all di�erential equations
are better models of the world when a stochastic term is added and that their
classical analysis is useful only if it is stable in an appropriate sense to such
perturbations.

What is more important to the mathematician is that the nature of the analysis
of a di�erential equation shifts when they are considered stochastically. For clas-
sical di�erential equations with well-behaved solutions, it generally makes little
di�erence whether we add a stochastic term or not: an attractive �xed point
remains an attractive �xed point (though it gets a bit `blurred' { the solution
will jiggle around the �xed point a bit). But when the equation leads to some
sort of `chaotic' or turbulent behavior, we get a very di�erent and hopefully
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much more satisfactory picture of the equation through its stochastic analysis.
Instead of focussing on describing the pathologies of the strange attractors to
which the classical solution tends asymptotically, the center of attention is now
the existence of an invariant probability measure in which almost all solutions
spend their whole lives. This idea originated in statistical mechanics, in the
study of Brownian motion and the Ising model. Unfortunately, many of the
`results' in these theories are either heuristically justi�ed by physicist-style rea-
soning or are still in the stage of dreams (as discussed in the talk of Talagrand).
What we hope will happen, and has been proven at least in some cases, is that
almost all random orbits have similar structure which can be described in great
detail and which give real insight into the di�erential equation.

A startlingly beautiful successful example is the analysis of the stochastic
Burger's equation by Weinan E, Y. Sinai and others (E et al, 1997). Whereas
the usual Burger's equation can develop a huge mess of shocks, in the periodic
stochastic case, there turns out to be almost surely one and only one shock
wave which persists for all time (past and future) and which absorbs all other
shocks3. The grand challenge (as our funding agencies like to say) is to analyze
the stochastic Navier-Stokes equation, possibly leading to an understanding of
turbulence, as discussed in Fe�erman's talk.

Mathematical physics has lept ahead of pure mathematics in the use of stochas-
tic methods: a central element in string theory is the introduction of random
Riemann surfaces via a probability measure on the moduli space and Hawking
has considered random topologies on space-time.

7 Thinking as Bayesian inference

I want to conclude with some description of the area that I know best: the mod-
eling of thought as a computational process. I want to begin by contrasting the
idea of reasoning with logic and reasoning with likelihoods with two examples.
The example of the use of logic is an amusing syllogism taken from the Boston
Driver's Handbook. The reader may entertain himself/herself by checking the
logic!

3I am sorry that this group is not into computer simulations, so I cannot show you here
an impressive simulation.
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Premises:
a) Tolstoi was a genius,
b) Tolstoi can only be truly appreciated by geniuses,
c) No genius is without some eccentricity,
d) Tolstoi sang the blues,
e) Every eccentric blues singer is appreciated by some half-wit,
f) Eccentrics think they own the road.

)
Consequence: There is always some half-wit who thinks he owns
the road.

Although absurd, I think this syllogism points out well the fact that precise
reasoning is seldom appropriate in real life { generalizations usually apply only
in various contexts with various degrees of plausibility and stringing many of
them together is bound to create nonsense. Thus (d) for instance might be
considered an acceptable metaphor and (f) is acceptable common usage meant
to apply only to a certain class of eccentrics (possibly disjoint from the eccentrics
in (c)). But it makes no sense to reason with them logically. Contrast the above
with Judea Pearl's example of common-sense reasoning from his book (Pearl
1988):

a) Watson phones Holmes in his o�ce and states the burglar alarm
in Holmes's house is going o�. Holmes prepares to rush home.
b) Holmes recalls Watson is known to be a practical joker hence
doubts his statement.

)
c) Holmes phones Mrs. Gibbon, another neighbor. She is tipsy and
rants about crime, making Holmes think she has heard the alarm.
d) Holmes remembers the alarm manual said it might have been
triggered by an earthquake.
e) Holmes realizes that if there had been an earthquake, it ought
to be mentioned on the radio.

)
f) Holmes turns on his radio to check.

In Pearl's analysis, Holmes's mental processes are modeled by a `Bayesian net',
shown in �gure 4. Such a net is a directed graph whose nodes represent events
which may or may not be true. The edges represent causation and have con-
ditional probabilities attached to them. This set of conditional probabilities is
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Radio report ? Watson’s statements Gibbon’s response

on/off ??

Burglar Alarm

Burglary ??Earthquake ??

Figure 4: The Bayesian belief net for Pearl's anecdote about Holmes's burglar
alarm.

called the `prior', the probabilistic information that Holmes brings to the table
before his phone rings. In the �gure there are 6 vertices representing the 2
known events { the testimony of Watson and Gibbons { and 4 events whose
occurence Holmes is weighing. At each stage of his thinking, Holmes has some
evidence { vertices whose truth value is known { and has his priors and needs
to compute the `posterior', the updated probabilities of all the events, given the
evidence. Note how his reasoning goes up and down in this graph, seeking to �x
better probabilities to the unknown events by, e.g., phoning Mrs. Gibbons and
by turning on his radio. See Pearl's book, p.42-52, for details on this example
and the algorithm for `belief updating'.

One of the central problems in understanding thinking has been to formalize
inductive learning. Although logic o�ers a system for formalizing deduction, in-
duction has been much harder to understand from a logical perspective. I believe
by far the most convincing formal de�nition of induction is the one discovered
by Leslie Valiant and now known as the `PAC' (or `probably approximately cor-
rect') model. I want to give this de�nition in full because it also illustrates how
probabilistic methods extend naturally to learning as well as inference.

Here is the setup: 
 is a set of possibilities and C is a class of predicates
P : 
 ! f0; 1g. One of the P 2 C is true and the problem is to estimate
the true P on the basis of examples (y; P (y)). The class C is said to be PAC-
learnable if there is an algorithm which computes a guess P̂D : 
! f0; 1g from
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n examplesD = (y1; � � � ; yn;P (y1); � � � ; P (yn)) and which satis�es the following:

8�1; �2 9n 8 prob. distr. � on 


y1; � � � ; yn 2 
; iid wrt � ) ProbD
�
Proby(P̂D(y) 6= P (y)) < �2

�
> 1� �1:

Note what this means: you have no idea which examples are common and which
are rare in real life, but what you must rely on is that your learning examples
are drawn from the same distribution as your test examples. Then there is small
probability �1 of being given really misleading examples; but, if you are given
typical examples, then you only make �2 errors after seeing enough examples. I
�nd this very convincing as the `right' way to formalize inductive learning.

Returning to thinking as a whole, which includes learning models, storing mod-
els, and reasoning from models, let's consider the hypothesis that thinking is
accomplished by constructing probability models and using Bayesian inference.
I believe there are three major obstacles that have to be overcome to make it
plausible that this can work in real situations and not just in toy examples like
that of Pearl. The �rst is that in the real world, there are millions of random
variables to be considered and full probability tables for all possible values of
these variables are much much too huge to be stored. We need some restricted
class of probability models which seem expressive enough to model reality but
which are succinct enough to be storeable. Secondly, we have to show inference
at reasonable speed is feasible with such models. Thirdly, we have to show that
the parameters in these classes of probability distributions are PAC-learnable.
This is a tall order but major work has been done and some very interesting
progress seems to be being made.

Gibbs made the �rst major step to creating huge but workable probability mod-
els. His idea is to consider models such that the logarithm of the probability is
the sum of terms each involving only a small number of random variables at a
time:

Prob(fxkg) = 1

Z
e�

P
C EC(xC)

where Z is a constant, xC = fxk j k 2 Cg and the sets C are supposed to be
`small' sets of the variables. Such `Gibbsian' models have been extremely widely
used in AI, vision, speech, and neural networks. In the continuous domain, such
models may be viewed as natural generalizations of Gaussian models: Gaussian
models are precisely those such that log-probability is the sum of terms involving
only two variables at a time and of the form axi; bx

2
i or cxixj. But general

Gibbsian models may be highly non-Gaussian, non-parametric, and with mixed
continuous and discrete variables.

Wavelet expansions of images of the real world are examples which lead directly
to non-Gaussian Gibbs probability distributions. The key reason wavelet expan-
sions are preferred to, e.g., Fourier expansions, for images is that the wavelet
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J(x) I(�(x)) I(x) J(��1(x))

Figure 5: Example from the work P. Hallinan on aligning faces by di�eomor-
phisms. The two faces are given by images I and J and the warping is given by
the map �. Reproduced with permission by AKPeters.

coe�cients of natural images are sparse. This means that typically a relatively
small number of the wavelet coe�cients are large and most are near zero. More
explicitly, they behave as though sampled from a non-Gaussian distribution like

p(I) = 1
Z
e�a

P
�

p
jc�j where c� are the wavelet coe�cients of the image I.

Gibbsian models alone do not seem to be expressive enough for the full real
world: it seems that the needed probability models must also incorporate `dy-
namic links', further variables which bind or compose parts into wholes in a
grammatical fashion. Some of these variables identify `slot �llers', e.g., pointers
to the word which is the subject of a sentence or the point on the retina is the
nose of a face being perceived. Other links are needed to group related objects
like things with common motion or the pixels imaging the same object in the
left and right eyes. Developing probability models with such dynamic links is a
major area of research today.

Face recognition is a simple example where dynamic link variables may be used.
One can seek to identify faces by forming a universal `template' face and warp-
ing this template onto all perceived faces by a suitable di�eomorphism, called
the `rubber mask technique' by (Widrow 1973). Di�ering illumination also
causes large changes in the image of a face, so the random variables in this
model are both the coordinates of the warping applied to reference points in
the template and shading coe�cients expressing how the face is illuminated.
The log-probability is then a sum of terms expressing the goodness of �t of the
warping of the observed image with a sum of templates representing faces under
di�erent lighting conditions (Hallinan et al. 1999). Some examples are shown
in �gure 5.

Is it practical to make inferences on the basis of these complex models? Very
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Figure 6: Example from the work of M. Isard and A. Blake on tracking moving
faces in a cluttered environment using particle �ltering. On the right are the im-
ages; on the left are smoothed multi-modal probability distributions estimating
the conditional probability of a face at each location, given the present and past
image sequence. Reproduced with permission of Kluwer Academic Publishers.

often, the inference one wants to make is to �nd the MAP estimate for the
relevant unobserved random variables xS, with the probability distribution con-
ditioned on all observations cxT . Here MAP stands for `MaximumA Posteriori'
probability, the most probable set of values of these variables and we are seeking:

argmaxxSp(xS j cxT ):
This is an optimization problem and there are three basic techniques for solving
or approximately solving such problems: gradient descent, dynamic program-
ming, and Monte Carlo Markov chains. Unfortunately, they all run into prob-
lems when the model gets complex: gradient descent gets lost in local optima;
dynamic programming only works when there is a natural linear ordering of the
variables, decoupling non-adjacent variables; and Monte Carlo Markov chains
tend to be very slow. Nonetheless, these have been the workhorses in the �eld
until recently. Speech recognition, for example, got where it is by total reliance
on dynamic programming techniques and is weak where these methods fail.

A new idea to tame stochastic methods has recently been explored by several
groups. This has been called `particle �ltering' and `factored sampling' (Grenan-
der et al., 1991), (Gordon et al., 1993), (Kanizawa et al., 1995) and (Blake-Isard,
1996), and is a Monte Carlo method which works by computing with a moderate
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sized sample fx(�)S g (perhaps 100 or 1000 �'s) from the distribution, not just
with one sample at a time as in Monte Carlo Markov chains. The point is to
make a weak approximation:

p(� j cxT ) �X
�

w��x(�)
S

which is to say, for some class of nice random variables f on our probability
space:

Exp(f j cxT ) �X
�

w�f(x
(�)
S ):

The hope is that many multi-modal probability distributions can be approx-
imated by weighted samples in this way, at least for the random variables of
interest. More than that, one hopes that maintaining this sample will allow
the robust merging of new data into a situation where a previously less likely
option is changed into the most likely option. An example showing the success-
ful tracking of multiple moving people, from the work of Blake and Isard, is
shown in �gure 6. Standard classical techniques, like the Kalman �lter, based
on Gaussian models, typically fail in cases like this.

This discussion has been aimed at giving a 
avor of research in the application
of stochastic methods to modeling intelligent behaviour. This is very much
an on-going enterprise. All too often, various schools studying the problem
of modeling thought have announced that they had the key and that the full
solution of reproducing intelligent behaviour was just a matter of a few more
years of research! As all these pronouncements in the past have 
opped, I refrain
from making any claims now except to say that the ideas just sketched seem to
me on the right track.

My overall conclusion is that I believe stochastic methods will transform pure
and applied mathematics in the beginning of the third millenium. Probability
and statistics will come to be viewed as the natural tools to use in mathematical
as well as scienti�c modeling. The intellectual world as a whole will come to view
logic as a beautiful elegant idealization but to view statistics as the standard
way in which we reason and think.
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