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Signal processing refers to a variety of operations that
can be carried out on a continuous (analog) or discrete
(digital) sequence of measurements in order to enhance
the quality of information it is intended to convey. In the
analog domain, electronic signal processing can encompass
such operations as amplification, filtering, integration,
differentiation, modulation/demodulation, peak detection,

and analog-to-digital (A/D) conversion. Digital signal
processing can include a variety of filtering methods
(e.g. polynomial least-squares smoothing, differentiation,
median smoothing, matched filtering, boxcar averaging,
interpolation, decimation, and Kalman filtering) and
domain transformations (e.g. Fourier transform (FT),
Hadamard transform (HT), and wavelet transform (WT)).
Generally the objective is to separate the useful part of the
signal from the part that contains no useful information
(the noise) using either explicit or implicit models that
distinguish these two components. Signal processing at
various stages has become an integral part of most modern
analytical measurement systems and plays a critical role in
ensuring the quality of those measurements.

1 INTRODUCTION

The reliability of analytical results is vitally dependent
on the quality of the measurements leading to their
determination. Signal processing refers to a variety of
operations that can be carried out on a continuous or
discrete sequence of measurements in order to enhance
the quality of information they are intended to convey.
The term ‘signal’ is ordinarily applied to a sequence of
measurements that are related by some ordinal variable,
such as time or wavelength, and usually obtained via
electrical transduction. Operations can be carried out on
a continuous electrical signal (analog signal processing)
or on discretely sampled numerical values (digital signal
processing). Generally, the objective is to separate the
desired part of the signal (the pure signal, which is
correlated to some physical or chemical property of
interest) from the unwanted part of the signal, or noise.
Often, the term ‘signal processing’ implies that operations
are carried out in real time, or as the data are acquired,
but this is not a requirement. The distinction between
signal processing and other forms of data analysis is
often open to interpretation, but usually signal processing
emphasizes alternative representations of the sequence
of measurements as opposed to the direct extraction of
secondary information such as analyte concentrations or
chemical structures.

The goal of this article is to provide an overview of
signal processing methods used in analytical chemistry
with an emphasis on their capabilities, weaknesses, and
practical implementation. Although both analog and
digital signal processing are discussed, a much greater
emphasis is placed on the latter because of its greater
relevance to the practicing analytical chemist. Owing to
the scope of the subject area, some topics will no doubt be
neglected or underemphasized, but an attempt has been
made to balance coverage with the importance to the field.
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2 CHEMOMETRICS

2 OVERVIEW

2.1 History

Historically, signal processing in analytical chemistry can
be regarded as originating with the first quantitative
analytical measurements, such as the end-point of a
titration, the potential of an electrochemical cell, or
the absorbance of a solution at a single wavelength.
Such scalar quantities are now sometimes referred to
as zero-order measurements, with reference to the fact
that a scalar is a zero-order tensor. Rudimentary signal
processing consisted of averaging replicate measurements
or damping the response of electrical signals, but these
were rather simplistic approaches when compared to
today’s more sophisticated methods.

The evolution of modern signal processing in analytical
chemistry can be traced to three parallel developments.
The first was the emergence of analytical instruments
capable of producing first-order data, or a vector
(first-order tensor) of measurements. The development
of instruments such as chromatographs and scanning
spectrometers meant that the signal from an instrument
could no longer be considered static, but rather changed
in a regular fashion with some variable such as time
or wavelength, thereby requiring more flexible signal
processing methods that could remove the noise without
distorting the pure signal. A second important influence
was the appearance of the analog-to-digital converter
(ADC) and the computers that drove them. This opened
the door to more versatile digital signal processing
methods. Finally, there was the parallel development
of efficient digital signal processing algorithms, such as
the Savitzky–Golay (SG) implementation of polynomial
least-squares filters,.1/ and the Cooley–Tukey algorithm
for the fast Fourier transform (FFT),.2/ which are still
among the most highly cited papers in the literature. Such
algorithms made the practical implementation of signal
processing methods a reality.

Although first-order instruments are still the mainstay
of analytical chemistry, second-order instruments which
provide a matrix of data, such as chromatographs with
multichannel detection and tandem mass spectrometers,
are now routinely employed, and higher-order instru-
ments are commonplace. These, combined with ever
more powerful computational platforms, have advanced
modern signal processing to yet another level.

2.2 Definitions and Notation

Throughout this article, the term ‘signal’ will be used
to refer to either a continuous or discrete measurement
sequence which consists of a pure or undistorted signal
corrupted by noise. The signal is implicitly measured as a
function of some other variable which will be referred to

as the ordinal variable because it correlates directly with
the sequence order. Traditionally, this variable is time,
but other variables such as wavelength or applied voltage
(which may or may not be correlated with time), can be
employed without loss of generality. References to repre-
sentation of the signal in the ‘time domain’ will therefore
refer to this the original measurement sequence even if
the ordinal variable is not time. Likewise, references to
‘frequency domain’ representations (section 3) will refer
to a FT (section 6) into the inverse domain of the ordinal
variable.

The term ‘noise’ is used to refer to unwanted fluctua-
tions from the pure signal that obscure its measurement.
This definition is quite general and means that what is
considered noise can vary with the situation. If a signal
consists of contributions from two sources, A and B, then
B is considered noise if one is looking for A, and vice
versa. Noise, especially random noise, is often character-
ized by its root-mean-square (rms) amplitude (continuous
signals) or by its standard deviation (discrete signals).

Most of this article concerns digital signal processing
methods where the signal is a vector of discrete mea-
surements, usually made on equal intervals of the ordinal
variable referred to as the sampling interval, ts. The recip-
rocal of this interval will be referred to as the sampling
frequency, fs. (Again, analogous definitions hold when
the ordinal variable is not time.) In vector notation, the
signal x is the result of combining the pure signal vector
x0 with the noise vector e (Equation 1):

x = x0 Y e .1/

Throughout this article, boldface lower case letters are
used to represent vectors (assumed to be column vectors
unless otherwise indicated). Scalar quantities will be
represented by lower case italic letters and matrices
by boldface upper case letters. Transposes of vectors
or matrices will be indicated with a superscript ‘T’ and
inverses of matrices with a superscript ‘�1’. The identity
matrix will be designated ‘I’.

3 SIGNALS AND NOISE

3.1 Signals and Signal Domains

The features that distinguish a signal from a random
series of measurements are: the measurements have
a definite order, and the measurements are generally
correlated in the time domain. For a discrete signal
undistorted by noise, x0 D [x0

1 x0
2 x0

3 . . .], the correlation
of two measurements is described by their covariance
(Equation 2),

cov.x0
1, x0

2/ D E.x0
1x0

2/ .2/
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where ‘E’ denotes the expectation value. To say that two
measurements are correlated means that knowing one
allows us to say something about the other. Although the
covariance among measurements in a sequence is not gen-
erally known, some knowledge of its characteristics may
be known, and it is these characteristics that are often used
to distinguish the pure signal from the noise. For example,
if the pure signal changes relatively slowly, it exhibits long-
range correlations which may not be present in the noise.

Although signals are usually presented in the time
domain, the same information can be conveyed by
transforming them in alternate domains. The most useful
of these is the frequency domain. For a continuous
signal, this transformation can be accomplished by using a
spectrum analyzer, a device that consists of a continuous
series of electronic bandpass filters. The signal, which
must be repetitively applied to the input of the device,
is filtered by the spectrum analyzer and the rms signal
at each frequency is determined. In essence, the power
of the signal is plotted as a function of frequency to give
a power spectrum. In the age of discrete signals, this
approach is rarely used anymore, instead being replaced
by the discrete FT, which is the digital counterpart of
the analog spectrum analyzer. FTs are discussed in more
detail in section 6 but, because of their importance to
signal processing, they are introduced here. All of the
information conveyed in the original signal is carried in
the FT, but it is represented in the frequency domain
rather than the time domain. This allows the composition
of the signal in terms of sinusoidal frequencies to be
analyzed, providing more direct information about the
correlations in the time domain. Slowly varying signals
in the time domain will have significant low-frequency
components, and the shape of the power spectrum
conveys important information about optimal signal
processing methods. Figure 1 shows some simple signals
and their FTs. The first example shows that a pure sinusoid
gives rise to a single peak in the frequency domain. In
contrast, the sharp edges of the square wave in the second
example lead to high-frequency components in the FT.
The last two examples demonstrate that more slowly
varying signals have fewer high frequency components.

3.2 Noise

The noise in an analytical signal can be classified in
a number of ways, including (a) its distribution, (b) its
source, (c) its characteristics in the time domain, and
(d) its characteristics in the frequency domain. Because
different classifications are used in different situations
and they are not all mutually exclusive, it is necessary
to understand the different cases and how they relate to
signal processing. In doing so, it is helpful to imagine
a signal from which we could subtract the pure signal

Signal Fourier transform

0 100

Time (s)
10

Frequency (Hz)

Figure 1 FTs of some simple signals.

component leaving only the noise or, alternatively, a
situation in which the pure signal is zero so that we are
measuring only noise, as shown in Figure 2(a).

If we were to plot a histogram of the magnitude of
the noise for a large number of measurements, we might
obtain a distribution such as that shown in Figure 2(b).
By far the most common noise distribution (assumed or
measured) for analytical measurements is the normal,
or Gaussian, distribution, shown by the solid line in the
figure. The reason for this is the central limit theorem
which, simply put, states that if a measurement is the sum
of a series of values drawn from arbitrary distributions,
the distribution of the measurement will approach a
normal distribution as the length of the series approaches
infinity. As, in an analytical instrument, the observed
noise is a consequence of many smaller random events,
the central limit theorem can be rationalized to hold.
Other noise distributions (e.g. uniform, log-normal) are
also observed but are much less common. One other type
which is common, however, is the Poisson distribution,
which is observed in cases where the signal arises from
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Figure 2 Representations of white noise: (a) noise sequence in the time domain, (b) distribution, (c) autocorrelation function,
(d) FT.

a collection of discrete events, such as photons striking
a photomultiplier tube. However, in reality a histogram
constructed from Poisson noise would look essentially
the same as the normal distribution in most cases. The
distinction is in how the magnitude of the noise (i.e. its
standard deviation) changes with signal intensity. The
standard deviation of Poisson noise will increase with the
square root of the signal intensity. To say that noise has
a normal distribution, however, does not imply anything
about how its magnitude changes with signal intensity. In
this sense, the Poisson distribution can be regarded as a
special case of the normal distribution.

In some cases noise is classified according to its domi-
nant source. Such classifications often imply information
about the distribution or temporal characteristics of the
noise. For example shot noise, also called Schottky noise
or quantum noise, arises in detectors based on discrete
events, such as photons striking a photomultiplier, and
exhibits a Poisson distribution. Shot noise is a type of
fundamental noise because it originates from the ran-
dom statistical nature of the events themselves and not
from any deficiencies of the instrument. This type of
noise dominates in cases where the number of events is

relatively small, such as in fluorescence measurements.
Johnson noise is another type of fundamental noise that
arises from the random thermal motion of electrons in
resistors. Flicker noise is considered to be a type of non-
fundamental or excess noise in which the magnitude of
the noise is directly proportional to the signal amplitude,
hence it is often referred to as proportional or mul-
tiplicative noise. Flicker noise is often associated with
variations in source intensity in absorption spectroscopy
and can have distinctive frequency characteristics (see
below). Other types of noise include interference noise
(electrical, optical or other interferences that arise at spe-
cific frequencies, such as 60 Hz line interference), detector
noise (a general term referring to instruments in which
the limiting noise, such as shot noise or thermal noise,
occurs at the detector), amplifier-readout noise (the noise
observed for the readout circuitry when the input signal
is zero) and quantization noise (observed when measure-
ment precision is limited by the A/D conversion step).

In the time domain, noise can be classified in two
ways: correlated and uncorrelated. Uncorrelated, or
independent, noise implies that the noise observed at
one point in the series of measurements is not related
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in any way to that at other points. If we consider the
sequence of noise to be represented by the vector [e1 e2

e3 . . .], then the covariance between the first two noise
elements can be represented by Equation (3),

s12 D E.e1e2/ .3/

and will be zero for uncorrelated noise. In many applica-
tions, independent and identically distributed noise with
a normal distribution, or iid normal noise, is assumed,
implying uncorrelated noise with a Gaussian distribu-
tion and equal variances at all channels. However, in
reality correlated noise is commonplace, arising from var-
ied sources such as temporal variations in spectroscopic
source intensities, spatial correlations (cross-talk) in array
detectors, thermal variations and electronic filtering. Sig-
nal processing itself can turn uncorrelated noise into
correlated noise, a fact that can be important for subse-
quent data analysis methods. The correlation of a noise
sequence can be examined through its autocorrelation
function. This is obtained through an element-by-element
multiplication of the noise sequence by a time shifted
version of itself and averaging the results of the n multipli-
cations. This is repeated for each time shift. Uncorrelated
noise should give a single spike at zero time delay, with
the products averaging to zero everywhere else. This is
demonstrated in Figure 2(c).

The complete characterization of the correlation
among elements of a noise vector of length n is given
by the error covariance matrix  (Equation 4):

 D


s2

1 s12 Ð Ð Ð s1n

s12 s2
2 Ð Ð Ð s2n

...
...

. . .
...

s1n s2n Ð Ð Ð s2
n

 .4/

where the diagonal elements represent the noise variances
and the off-diagonal elements (zero for uncorrelated
noise) represent the covariance. If a noise sequence
is a stationary process, then its statistical properties
remain constant throughout the sequence, which means
s12 D s23 D s34 and so on. The terms ‘homoscedastic’ and
‘heteroscedastic’ are also used to indicate whether the
variance of the noise remains constant or changes with
the position in the series, respectively.

As with the signal, the characteristics of the noise
can be examined in the frequency domain by using a
spectrum analyzer or the FT. The result is called the
noise power spectrum (NPS) and it conveys important
information about the time domain correlations of the
noise. Uncorrelated noise is referred to as white noise and,
analogous to white light, it contains equal contributions
at all frequencies. This is the type of noise that is often
assumed or hoped for when designing or implementing

signal processing methods, but exceptions are very
common. The NPS for the white noise in Figure 2(a) is
shown in Figure 2(d). Note that because of the stochastic
nature of noise, the NPS is not perfectly flat.

Often purely white noise is corrupted by pink noise
or 1/f noise. This noise, also known as drift in the time
domain and arising from flicker noise, has a NPS which
varies as the reciprocal of the intensity. The dominance at
low frequencies is indicative of correlated noise in the time
domain. The third type of noise readily identified in the
NPS is interference noise, which appears as spikes at the
corresponding frequencies and often higher harmonics.
Figure 3 illustrates a typical correlated noise sequence
and its representative autocorrelation function and NPS.
Note the slow decay of the autocorrelation function
indicating that the noise is not white. Both 1/f noise
and interference noise are apparent in the NPS. It should
be noted that, in order to obtain a clear representation of
the autocorrelation function and the NPS in this case, it
was necessary to average results from 20 noise sequences,
because a single noise sampling does not usually give a
clear indication of its characteristics.

3.3 Signal Averaging

One of the most effective ways to separate the pure signal
from the noise is through the use of signal averaging.
True signal averaging, as opposed to boxcar averaging
or smoothing (section 5), requires a repetitive signal
sequence. A common example is the fluorescence or
phosphorescence decay curve generated by pulsing a
laser or flash lamp repetitively. Each experiment (pulse)
results in a signal that can be added to the next, and
the total sum can be averaged over the number of
experiments. Unlike most of the methods described here,
which take advantage of signal correlation within a single
experiment, signal averaging exploits signal correlation
at a given time channel for repeated experiments. For
this reason, it is discussed here, separately from the other
techniques.

In order for signal averaging to be effective and
useful, a number of conditions need to be met. First,
the noise should be uncorrelated between corresponding
time channels for successive experiments or else it will
not be effectively removed. (Note that correlation of
noise within an experiment is not important.) A second
requirement is that the shape of the signal needs to
be truly repetitive in the time domain. Translation of
the signal or changes in its profile (other than scaling)
due to poor synchronization or changes in the process
will lead to an unrepresentative average, although noise
should be reduced. Finally, the duration of the experiment
needs to be short enough to make signal averaging
practical.
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Figure 3 Representations of correlated noise: (a) noise sequence in the time domain, (b) distribution, (c) autocorrelation function,
(d) FT.

When these conditions are met, signal averaging can be
particularly advantageous because: (a) the signal-to-noise
ratio (SNR) improves by a factor of

p
n, where n is the

number of repetitions, and (b) there is no distortion in
the profile of the signal. In contrast, most of the methods
discussed in the sections that follow have the potential to
distort the shape of the signal.

4 ANALOG SIGNAL PROCESSING

4.1 Overview

As virtually all instrumental methods involve some form
of electrical transduction of a particular phenomenon
into a continuous signal, analog signal processing is
as universal as it is diverse. Such processing begins
the moment the quantity being measured is converted
into some electrical property such as current or voltage
(assuming that it did not originate in that form) and
continues until the final measurements are recorded
in digital or analog form. This obviously opens up a
tremendous range of topics, the detailed coverage of
which is beyond the scope of this article. However, there
has been a gradual shift over the years which has placed

an increasing emphasis on digital signal processing over
analog signal processing. One reason for this is that access
to the analog signal in modern instruments has become
more restricted and more often the chemist is presented
with data that have already been digitized, as evidenced
by the demise of the chart recorder from most analytical
labs. A second reason is that improvements in the speed
and storage capacity of digital components have removed
many of the limitations of early devices. Finally, digital
processing of results has the advantage that it can be
carried out any time after the data are required, whereas
this is not true for analog signal processing.

On this basis, it could be argued that a detailed com-
prehension of analog signal processing is less important
now than it once was, although it is still essential to under-
stand the basic capabilities and limitations of this stage of
processing, because it will always precede the generation
of digital information and can be the ‘weak link in the
chain’ if care is not taken. For this reason, a brief cover-
age of electronic signal processing methods is presented
here, with a special emphasis on two aspects which are
closely related to digital processing, analog filters and
A/D conversion.

The electronic manipulation of signals can be divided
into methods which are based on passive or active
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Figure 4 (a) Symbolic representation of an operational ampli-
fier. (b) A noninverting amplifier with gain.

circuits. Passive circuits (those consisting only of simple
components such as resistors, capacitors or diodes) do
not require an external power source (other than the
signal itself) whereas active circuits do. Although passive
circuits are normally much simpler than active circuits,
their capabilities are severely limited by comparison.

Most complex manipulations of electronic signals are
based on operational amplifiers, active circuit elements
employed for a wide variety of linear and nonlinear
operations. A basic operational amplifier, represented
symbolically in Figure 4(a), is essentially a high gain
(typically 105) differential amplifier. By taking advantage
of the high gain in negative feedback, the two inputs
(referred to as the inverting (�) and noninverting (C)
inputs) and the output can be configured into a wide
range of useful circuits using passive components. As an
example, the configuration for a simple fixed-gain voltage
amplifier (gain D Vout/Vin D .R1 C R2//R2) is shown in
Figure 4(b).

The number of electronic operations that can be carried
out on electrical signals is too extensive to cover here, but
a brief summary of some important operations is given
in Table 1. More details on analog signal processing can
be found in appropriate references on the subject..3 – 5/

Analog filters and A/D conversion are also covered in
more detail in sections 4.2 and 4.3.

4.2 Analog Filters

One of the simplest operations that can be carried
out to improve signal quality is the application of an
electronic filter. As the object of signal processing is
to distinguish the pure signal from the noise, a means

Table 1 Summary of some common analog signal processing applications

Operation or circuit Description

Domain conversion Conversion of an analog signal between domains, such as current-to-voltage,
resistance-to-voltage, time-to-amplitude, A/D.

Amplification Multiplication of an analog signal by a constant factor called the gain.
Sometimes coupled with domain conversion.

Inversion Changes the sign of an analog signal.
Addition/subtraction Two or more signals are added/subtracted.
Multiplication/division Two signals are multiplied/divided by one another. Often used with

modulation (see below).
Other mathematical

operations
Includes logarithm, antilogarithm, absolute value, reciprocal, etc.

Integration/differentiation Integrals or derivatives of analog signals.
Modulation Process by which the property (e.g. amplitude or frequency) of a carrier

wave, typically a high frequency sinusoid or square wave, is modified to
convey information about an analog signal of interest. Demodulation is
used to recover the original analog signal.

Comparator Circuit that compares two voltages and produces one of two outputs,
depending on which signal is larger.

Pulse height discriminator Circuit that detects the presence of pulses with a peak amplitude within a
certain threshold region.

Peak detector Circuit that follows an analog signal until it reaches a peak value and then
holds that value for a certain time period.

Sample-and-hold amplifier Circuit that samples an analog voltage at a particular point in time and holds
the value until further processing, normally A/D conversion, is completed.

Boxcar integrator Circuit used to measure a rapidly changing but repetitive signal by sampling
it after a particular delay time and holding the sampled measurement.
Often the delay time is scanned to obtain the time profile of the signal.

Lock-in amplifier One type of circuit used to demodulate analog signals (see above).
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is generally sought to distinguish the two. As noted
in section 3, this distinction can often be made in the
frequency domain. Typically, white noise has a flat NPS,
whereas a slowly varying signal will have most of the
information at low frequencies. Therefore, a filter that
removes high-frequency components from a noisy signal,
called a low-pass filter, will retain most of the information
about the pure signal while eliminating much of the
noise. However, drift and offset noise (low frequency)
may be dominant features in the noise, and a high-pass
filter may be more effective, provided there are sufficient
high-frequency components in the signal. In another
scenario, the signal may be modulated at a particular
frequency and it may be necessary to use a band pass
filter to isolate the components of interest. Finally, if
interference noise, such as 60 Hz noise, is a problem, it
may be removed using a notch filter. The ideal transfer
functions for each of these types of filter is shown in
Figure 5. The transfer function gives the amplification or
gain of the filter as a function of the frequency of the
input and ideally should be unity within the pass band
and zero in the stop band.

As shown in section 5, analog filters bear many
similarities to digital filters, but it is important to
understand the former for several reasons. First, analog
filters evolved before digital filters and there is substantial
overlap of terminology. Second, although digital filters
are becoming more widely used, analog filters are often a
more effective way to eliminate noise near the source and
are essential to limit the noise bandwidth in any digital
data acquisition system. Finally, although they share
similarities in their characteristics, transfer functions for
digital and analog filters are significantly different.

Analog filters can be classified as either active or
passive. Passive filters use only resistive (i.e. resistors)
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Figure 6 Simple passive RC low-pass and high-pass filters.
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Figure 7 (a) Transfer function and (b) Bode plot for a simple
low-pass RC filter with a cut-off frequency of 100 Hz.

and reactive (i.e. capacitors and inductors) components,
whereas active filters employ operational amplifiers as
well. Figure 6 shows examples of simple low-pass and
high-pass resistor–capacitor (RC) filters. In principle,
filters could also be constructed using resistors and
inductors, but inductors tend to be more bulky, expensive
and less ideal, so in practice capacitors are more
commonly used. The transfer function for a simple low-
pass filter is shown in Figure 7(a). The gain is given by the
ratio of the capacitive reactance to the total impedance
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(Equation 5):

gain D Vout

Vin
D XC

Z
D 1/.2pfC/√

R2 C 1/.2pfC/2

D 1√
.2pf RC/2 C 1

.5/

Here XC is the capacitive reactance, Z is the total
impedance of the circuit, f is the frequency in hertz,
R is the resistance in ohms, and C is the capacitance in
farads. Note that the voltages referred to in this equation
are not instantaneous voltages, but rather peak or rms
values for inputs of a fixed frequency, as analog filters
usually impose a phase shift on the original signal. More
commonly, the frequency response of a filter is shown
with a Bode plot, in which logarithmic scales are used on
both axes. The voltage gain on the vertical axis is normally
expressed in decibels (dB), given by Equation (6):

gain(dB) D 20 log
(

Vout

Vin

)
.6/

A Bode plot for a simple low-pass filter is shown in
Figure 7(b). The frequency cut-off is usually taken to
be the point at which the capacitive reactance equals
the resistance, i.e. Vout/Vin D 1/

p
2. This corresponds

to a gain of �3.01 dB, and so the operational cut-off
frequency is usually referred to as the ‘3 dB point’. The
cut-off frequency depends on the product RC and, for the
simple low pass filter shown in Figure 6, this is given by
Equation (7):

fcut-off D 1
2pRC

.7/

After the cut-off frequency, the Bode plot shows a linear
region which has a slope of �20 dB per decade, more
gradual than the ideal case shown in Figure 5. In order
to provide a steeper slope, the order of a filter has to be
increased. The filter order, also referred to as the number
of poles, is the number of reactive components required
for each cut-off frequency. Therefore, a first-order low-
or high-pass filter such as the ones above requires only
one capacitor, whereas a band-pass filter would require
two. The higher the order of the filter, the more one can
approach the ideal filter with a sharp transition between
the pass band and the stop band. Practical limitations
related to loading and other factors restrict the number of
poles that can be used with passive filters, however, and
active filters are normally used when more sophisticated
filters are required.

The use of operational amplifiers in active filters allows
greater flexibility in filter design. The design of active
filters is well beyond the scope of this article, but
fortunately, in those cases where a chemist may wish

fcut-off
RC

Butterworth

Chebyshev

10 100 1000
−20

−10

0

G
ai

n 
(d

B
)
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Figure 8 Frequency response (Bode plot) for passive (RC) and
active (Butterworth and Chebyshev) filters.

to incorporate an active filter, standard designs have
been developed..3 – 7/ An active filter is classified not only
according to its order, but also according to the way
it optimizes a variety of other parameters, such as the
steepness of the transition region, the flatness of the
pass band, and its phase characteristics. Two of the most
common types are the Butterworth, or maximally flat,
filter and the Chebyshev, or equal ripple, filter. As shown
in Figure 8, the frequency response of the Butterworth
filter is very flat in the pass band, but its transition region
is not as steep as the Chebyshev filter, which exhibits
ripples in the pass band. The design for this active filter
is shown in Figure 9. Note that the difference between
the two filter types lies simply in the selection of the
components and that the ripple can always be decreased
at the expense of sharpness. The implementation of these
filters is made even simpler through the use of integrated
circuits incorporating switched capacitor filters that allow
the cut-off frequency to be set simply with a reference
clock signal.

From a digital signal acquisition perspective, perhaps
the most important kind of filter is the anti-aliasing filter.
When a signal is converted from the analog domain
into the digital domain, it must be sampled at discrete
and normally equally spaced time intervals, t. The
sampling frequency is given by fs D 1/t, and restricts the

−

+Vin

Vout

C1

C2

R1

R2R3

C3

Figure 9 A third-order active filter.
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Figure 10 An illustration of aliasing in which open circles indicate sampled points. Parts (a) and (b) represent signals below the
Nyquist frequency which are not aliased. The solid lines in (c) and (d) represent signals above the Nyquist frequency which are
aliased to lower frequencies (dashed lines).

upper limit of signal frequencies that can be accurately
represented in the transition from A/D information. More
specifically, any components of the signal with frequencies
above the Nyquist frequency will have their components
aliased to lower frequencies. The Nyquist frequency, fN,
is given by Equation (8):

fN D fs

2
D 1

2t
.8/

The phenomenon of aliasing is shown in Figure 10, where
four different sinusoids are sampled at a frequency of
1 Hz (i.e. fN D 0.5 Hz). The first two signals shown are
below the Nyquist frequency and the sampling reflects
their variations accurately. However, the last two signals
are above the Nyquist frequency and aliased back to
lower frequencies (Figure 10).

The importance of an anti-aliasing filter, which is
simply a low-pass filter with a cut-off near the Nyquist
frequency, has to do with the noise bandwidth of the
analog signal. If noise components are present above the
Nyquist frequency and no filtering is applied, this noise
will be aliased back to lower frequencies and appear in the
acquired signal. As no information at frequencies higher
than the Nyquist frequency can be accurately extracted
anyway, it is wise to always use an anti-aliasing filter to
reduce noise in a digitally acquired signal. Also note that
this noise can only be removed in the analog domain and
digital filtering cannot help once the noise is aliased to
lower frequencies.

4.3 Analog-to-digital Conversion

A/D conversion refers to the process by which a
continuously variable analog signal, usually a voltage,
is converted into a discrete numerical value with a fixed
precision. In most modern analytical instruments, A/D
conversion is a key step in the signal processing sequence.
Although this process is generally transparent to the user,
an understanding of the principles involved can be useful
in practice.

As digital logic circuits are based on binary states, the
digital representation of a measurement is made in the
binary, or base 2, number system, consisting of a series
of binary digits, or bits. Thus the number 27 in base 10
would be represented by the following 8 bits, or byte, in
base 2:

2710 D 0001 10112

D 1.24/C 1.23/C 1.21/C 1.20/

Alternatively, binary coded decimal (BCD) can be used
in which each series of 4 bits (sometimes called a nibble)
represents a decimal digit:

2710 D 0010 0111 (BCD)

For n bits, a binary representation gives the numbers
from 0 to 2n � 1, whereas a BCD representation gives a
smaller range, from 0 to 10n/4 � 1. To include the sign
with a binary number several strategies can be employed.
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In the offset binary notation, a value of 2n�1 is subtracted
from the binary number to give the signed result. In
the sign magnitude notation, the most significant bit
(MSB) (the left-most bit) is used to represent the sign
(0 D positive, 1 D negative). Finally, the most practical
representation from a mathematical point of view is the
2’s complement representation. In this case, a number is
negated by inverting the original bits and adding 1. The
8-bit representations of the number �27 using each of
these notations is given below.

�2710 D 0110 0101 (offset binary)

D 1001 1011 (sign magnitude binary)

D 1110 0101 (2’s complement binary)

A/D conversion is facilitated using a largely self-
contained circuit, the ADC. In addition to binary
coding issues, important ADC parameters from a signal-
processing perspective include precision, accuracy, linear-
ity, monotonicity, and speed. The precision of an ADC is
directly related to the number of bits in the digital output,
but increased precision also means decreased conversion
speed for a given type of ADC. Typically, 8-bit converters
are used in applications where speed is more critical than
precision, whereas precision applications can use as many
as 16 or 20 bits. For many scientific applications, a 12-bit
ADC is a good compromise, with a precision of 1 part in
4095, or 0.02%. It is important that the precision of the
ADC is better than the standard deviation of the noise
in the measurement, or else the dominant source of noise
will be the quantization (or digitization) noise arising
from rounding of the result. As the quantization noise
is always fixed at a value corresponding to the least sig-
nificant bit (LSB), its relative contribution increases for
small values. In some cases, this problem can be addressed
through autoranging, in which small signals are amplified
in the analog domain prior to conversion. This is most
important when the amplitude of the noise increases with
the signal.

The accuracy of an ADC refers to the closeness of
the converted value to the expected value based on the
range of the ADC and the reference voltage. Linearity
is an indication of the constancy of the proportionality
of the digital output to the analog voltage over the full
range of conversion, and in some cases may be more
important than the actual accuracy. In a plot of the digital
output versus the analog input, linearity is often specified
as the maximum deviation from the straight line drawn
between zero and the full scale output, or alternatively the
best-fit straight line. Monotonicity is a specification that
requires an increasing analog input to give an increasing
digital output with no missing codes over the full range,
and likewise for decreasing inputs. These specifications

(accuracy, linearity, and monotonicity) are primarily a
function of the ADC design and the quality of the
components used.

In addition to being discrete in the measurement
domain, analog signals are also discrete in the time
domain, and the required conversion speed, or sam-
pling frequency, will depend on the application. It is
essential that all of the important signal characteris-
tics in the frequency domain fall below the Nyquist
frequency, fN (section 4.2). The speed of an ADC is
primarily a function of the type of converter used,
although it is also dependent on factors such as the num-
ber of bits and clock frequency. Although the design
of new ADCs is an ongoing process driven by con-
sumer electronics, most are variations on five basic
types: (1) parallel, (2) tracking, (3) successive approxima-
tion, (4) integration, and (5) voltage-to-frequency (V/F)
conversion.

The fastest and conceptually simplest ADC is the
parallel ADC, often referred to as a flash converter. In this
circuit, the input voltage is simultaneously compared with
2n reference values and logic circuits use the closest match
to produce the digital output. This brute-force approach
can provide conversion speeds under 10 ns, but is not
component efficient, requiring 2n voltage comparators.
As a consequence, this type of ADC is usually expensive
and limited to 8 bits, although hybrid circuits referred to
as half-flash converters, can increase the precision.

Other relatively fast circuits are based on the use
of a digital-to-analog converter (DAC) to provide an
analog voltage for comparison with the input voltage.
The digital value passed to the DAC is systematically
changed until its analog output matches as closely as
possible the input voltage. At that point, the digital
input to the DAC is taken to be the digital output
of the ADC. Differences exist in the way that these
devices change the digital values for comparison. In a
tracking ADC, a simple counter is used to increment
or decrement the digital value until a match is found.
A block diagram for a simple tracking ADC is shown
in Figure 11. Depending on the change in the voltage,
the conversion time for this type of ADC could range
from 0 to 2n clock cycles for an n-bit converter.
The successive approximation ADC operates on the
same basic principle as the tracking ADC, but has a
fixed conversion time of only n clock cycles. This is
accomplished by replacing the counter with circuitry that
uses an efficient binary search algorithm to split the
digital range in two for each comparison. Successive
approximation ADCs have typical conversion times
ranging from 1 to 100 µs and are among the most common
converters in use.

The remaining two types of ADCs are relatively slow by
comparison. Integrating ADCs are based on the use of a
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Figure 11 Block diagram of a simple tracking ADC.

fixed current to charge a capacitor through a resistor.
The digital result is obtained by timing the period
necessary for the capacitor to reach the input voltage.
This basic strategy, termed a single slope integrating
ADC, suffers from a dependence on accurate and stable
circuit components and has been replaced by the dual
slope (or even quad slope) integrating ADC. The dual
slope ADC is also based on charge integration, but
uses a charge–discharge cycle to cancel the effects of
component variations. This type of ADC is known
for its accuracy, stability, monotonicity, low cost and
noise rejection characteristics and has been used in
a large number of precision applications where speed
is not critical. Typical conversion rates are around 10
conversions per second. In many applications, the dual
slope ADC has been replaced by the V/F converter. This
device simply produces a series of pulses whose frequency
is proportional to the input voltage applied, with typical
maximum frequencies in the range from 10 kHz to 1 MHz.
To complete the conversion to a binary number, a
counter is attached to the pulsed output and counted
for a fixed period of time. Precision can be improved
by counting for a longer period. In addition to low cost,
simplicity, and good linearity, the V/F converter has the
advantage that its output can be transmitted in serial over
a single line, simplifying remote data acquisition. Like the
integrating ADCs, however, this type of ADC is relatively
slow.

Although the analyst typically has very little control
over the type of A/D conversion that is used in a particular
instrument, this is the first stage of all subsequent digital
signal processing, so it is important to recognize the
strengths and weaknesses of these devices. Further details
on the design and application can be found in a number
of references..3 – 5,7 – 8/

5 DIGITAL FILTERING

5.1 Introduction

Because digital filters are among the most widely used
methods for signal processing in analytical chemistry,
much of this article is dedicated to describing their
implementation and operation. The term ‘filter’ is a
reference to the similarities they share with their
electronic counterparts. In both cases, the data are
presented to the filter in a sequential fashion and the
distinction between pure signal and noise is often made
on the basis of differences in power spectra. Strictly
speaking, however, a filter uses only information from
the past up to and including the current point in obtaining
an estimate of the current point. Although this is true for
electronic filters, it does not hold for most digital filters,
which use points before and after the measurement of
interest to form an estimate. Thus, they may be more
properly classified as smoothers or smoothing filters,
but all three terms are used in the literature. The
term ‘filter’ is used in a general way throughout this
section, incorporating both smoothers and other types of
filters.

Digital filtering can be performed either in real-time
or in a post-acquisition mode. The advantage of the
former is that it can be transparent to the user and
optimized at the time of instrument design. Fast digital
signal processors (DSPs) are available for performing
common signal processing operations and can be built
into the instrument itself. A disadvantage of this approach
is that it removes some flexibility and may obscure
some of the features of the original data. For these
reasons, real-time digital filtering is often kept to a
minimum and much signal processing is carried out
in post-acquisition mode. Therefore, it is important to
appreciate the advantages and limitations of different
types of digital filters. A complete coverage of the subject
of digital filters is well beyond the scope of this article.
The objective here is to present some of the terminology
and describe some of the digital filters commonly
used in analytical chemistry. For readers seeking more
information on the subject, there is abundant literature
available..9 – 19/

5.2 Filter Types

In general terms, a digital filter could be defined simply
as an operation that is carried out on a contiguous subset
of the original signal sequence to produce an estimate of
a value in the filtered signal sequence. This is illustrated
in Figure 12. For conventional digital filters, the filtering
operation consists of the convolution of a series of filter
coefficients with the signal, but this approach is by no
means universal. Digital filters are therefore classified
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Digital filter

Figure 12 General operation of a digital filter.
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Figure 13 Operation of (a) nonrecursive and (b) recursive
digital filters.

in a number of ways according to the manner of their
operation.

The most common type of digital filter employed
in analytical chemistry is the nonrecursive filter, also
referred to as the finite impulse response (FIR) filter
because its response to an impulse (delta) function will
always fall to zero at some point in time. As illustrated
in Figure 13(a), nonrecursive filters use the conventional
approach of convoluting a set of filter coefficients with the
sequence of measurements to produce the filtered signal.
If zi represents the filtered value for measurement i, it is
determined mathematically by Equation (9):

zi D
q∑

jDp

cjyiCj .9/

where the c terms are the filter coefficients and the y
terms are the original measurements. Most often, the

filter coefficients are arranged symmetrically around the
point to be estimated so that p D �q, but this is not
a requirement. Nonrecursive filters have good stability
and are relatively easy to design. A simple example
of a nonrecursive filter is a five-point moving average
filter, which averages the five points around a central
value (two on either side plus the point itself) to obtain
its estimate. The coefficients in this case would be
c�2 D c�1 D c0 D c1 D c2 D 0.2.

Recursive filters differ from nonrecursive filters in that
they make use of previously filtered values to estimate
the current measurement, as shown in Figure 13(b).
Mathematically, this can be represented by Equation (10),

zi D
q∑

jDp

cjyiCj C
s∑

kDr

dkziCk .10/

where z represents the filtered measurement, y is the
unfiltered measurement, and c and d are the filter
coefficients. Note that the indices r and s must be
less than zero, as the filter coefficients dk can only be
applied to previously filtered values. In practice, many
nonrecursive filters are designed to function in real time
and so also limit the maximum value of q to be zero to
make them physically realizable (i.e. they do not make
use of future values). A simple example of a recursive
digital filter is integration using the trapezoid rule, which
gives (Equation 11):

zi D 1
2 .yi�1 C yi/C zi�1 .11/

This corresponds to coefficients c�1 D 0.5, c0 D 0.5 and
d�1 D 1. Recursive digital filters are also known as
infinite impulse response (IIR) filters because it is
possible for a single impulse input to influence filter
output values indefinitely, as illustrated in this exam-
ple. These filters can be used for normal smoothing
operations in addition to integration, and have the advan-
tage that they provide more efficient filters with fewer
coefficients than nonrecursive filters. However, recur-
sive filters are more difficult to design and have more
complex properties than their nonrecursive counter-
parts, so they have not been widely used in analytical
chemistry.

It is not required that digital filter coefficients remain
constant throughout a sequence of measurements. In
some cases, the coefficients may change in response
to variations in another external input or the signal
itself. These kinds of filters are called adaptive filters.
Such filters are used, for example, in removing noise
from audio signals using external measurements of noise
characteristics. Chemical applications of this type of
filter are rare, although digital processing of modulated
signals, such as modulated sources in atomic absorption
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spectroscopy, could be considered to be a simple form of
adaptive filtering.

Filters can also be classified according to the types of
results they are intended to produce. Smoothing filters
are intended to reproduce the pure signal and suppress
the noise, whereas derivative filters are intended to
estimate the derivative (first, second, or higher) of the
pure signal. In other cases, one may wish to increase the
apparent sampling frequency of a set of data, filling in
points for esthetic or practical reasons (e.g. locating a
peak maximum). This can be done using an interpolation
filter, although care should be taken when applying such
approaches. In contrast, in cases where the signal is highly
oversampled, one may wish to reduce the volume of data
while improving its quality by using a decimation filter.

Some types of digital filters do not follow the usual pat-
tern of smooth convolution of a set of filter coefficients
with the data, but are considered digital filters never-
theless. In boxcar averaging, for example, the signal is
divided into subsets of n measurements which are aver-
aged to produce a single result, as shown in Figure 14. As
this reduces the total number of points, it is one type of
decimation filter. Another rarely used but very useful fil-
ter is the median filter. Although this filter should be used
with care because of its nonlinear transformation of the
data, it is particularly effective at removing spikes or out-
liers from a measurement sequence. These outliers may
arise, for example, from cosmic rays striking a photode-
tector or bubbles passing through a detector flow-cell. The
median filter works by sorting the data within a window
of length n and choosing the median value as the filtered
estimate, thus automatically eliminating outliers unless
they occur in clusters. An example of the application of
the median filter is shown in Figure 15.

Because of their dominance in chemical applications
the main emphasis of this article is on nonrecursive
digital filters, particularly polynomial least-squares filters,
although some discussion of Kalman filters is also
presented.

Figure 14 Illustration of boxcar averaging.

Figure 15 A noisy peak (upper curve) before and (lower curve)
after filtering with a median filter. Note the removal of spikes.

5.3 Polynomial Least-squares Smoothing Filters

By far the most widely applied digital filter in analytical
chemistry is the polynomial least-squares smoothing filter.
These filters are more commonly known to analytical
chemists as SG filters, a reference to their introduction
into the analytical chemistry literature by Savitzky and
Golay in 1964..1/ Although these filters were known in
the field of signal processing prior to this, the SG paper
made their utility known to chemists at a time when
the digital acquisition of signals was becoming more
commonplace. In addition, the paper presented tables
of precalculated coefficients for different types of filters.
At the time, computational efficiency was poor, so the
authors presented the coefficients as integers with a
normalization factor rather than as a series of floating
point numbers.

Among the advantages of the SG filters are their
simplicity and versatility. Application of these filters
assumes that a local region of the data set (i.e. the
filter window) can be fit to a low-order polynomial, and
the central point within that window is estimated by
performing such a fit. This is illustrated in Figure 16 for
first- and second-order polynomials. Fitting the data in
this way should model the correlations in the pure signal
while reducing the influence of random noise fluctuations.
Furthermore, when the measurements are evenly spaced
in the time domain, the fitted estimate of the central point
can be obtained simply by multiplying the points in the
window by a set of precalculated coefficients, thus making
the fit equivalent to a nonrecursive digital filter.

The original tables published by SG had a number of
errors that were later corrected in the literature,.20/ but it
is now just as simple to calculate the coefficients for a given
application, so the tables are seldom used. To illustrate
how this is done, consider the design of a second-order
polynomial smoothing filter using a five-point window.
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Figure 16 Illustration of polynomial smoothing as a least-
squares fitting procedure.

The model to be fit is Equation (12):

y D b0 C b1xC b2x2 .12/

Equation (13) is the equivalent matrix form:


y1

y2

y3

y4

y5

 D


1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

1 x4 x2
4

1 x5 x2
5


[b0

b1

b2

]
.13/

which can be expressed as (Equation 14):

y = Xb .14/

In these expressions, x represents the time or other
ordinal variable, while X is the matrix containing the
basis functions for the polynomial fit. It is important to
note that the fitted values obtained for y are independent
of the scale of x and, if the time interval between
each measurement is equal (as is usually the case),
we can arbitrarily set x D [�2 �1 0 1 2 ], giving
Equation (15):

X D


1 �2 4
1 �1 1
1 0 0
1 1 1
1 2 4

 .15/

The least-squares solution for the vector of regression
coefficients, b, is well known from linear algebra to be
(Equation 16):

b D .XTX/�1XTy D Ay .16/

The matrix A is a 3ð 5 matrix which can be regarded as
being composed of three row vectors, a1, a2, and a3; as in

Equation (17):

A D
[ a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

]
D
[ a1 !
 a2 !
 a3 !

]
.17/

Note that the intercept coefficient for the fit, b0, is
obtained from Equation (18),

b0 D a1y D a11y1 C a12y2 C Ð Ð Ð C a15y5 .18/

Also note that, as x D 0 for the central point in the five
point sequence, Equation (19) holds:

Oy3 D b0 C b1.0/C b2.0/2 D b0 D a1y .19/

Therefore, because of the way the problem has been set-
up, the estimate of the central point in the sequence is
obtained simply by multiplying each measurement by the
corresponding element in a1. In other words, the digital
filter coefficients are simply the first row of the matrix
.XTX/�1XT, i.e. c D a1.

The above reasoning holds for polynomial smoothing
filters of any length and any order. All that is required
to determine the filter coefficients is to set up the
matrix of basis functions, X, perform the calculation in
Equation (16) using a spreadsheet or other software, and
extract the first row of the resulting matrix. Polynomial
smoothing filters are convenient for improving the
appearance and SNR of many signals and have the added
advantage over electronic filters that different types of
filters can be applied after the signal has been recorded.

One of the drawbacks of polynomial smoothing filters
is sometimes referred to as the edge effect. As the filters
are designed to obtain an estimate of the central point in
a window, there will be points at the beginning and end of
a measurement vector that cannot be estimated with the
symmetric filter. For example, with the five-point filter
described above, two points could not be filtered at each
end of the data sequence. Several options are available
to deal with this problem. The simplest is either to drop
these points from the data set, or leave them in the
data set unfiltered. Another possibility, if only baseline
data occurs at the limits of the measurement vector, is
to use the points at one end of the data set to filter
those at the other. For example, to estimate y1 with the
five-point filter, we could use the sequence (yn�2, yn�1,
y1, y2, y3). Finally, we could employ what are sometimes
referred to as initial point filters or extended sliding
window filters,.21,22/ designed to estimate values other
than the central point of a sequence. The coefficients for
these filters are easily obtained by simply shifting the X
matrix accordingly. For example, to obtain coefficients to
estimate the first point of a five point sequence with a
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second-order smooth, we would use Equation (20):

X D


1 0 0
1 1 1
1 2 4
1 3 9
1 4 16

 .20/

All other aspects of the problem are the same. Although
this is an elegant way to solve the problem, it requires
several sets of filter coefficients to handle the points at
the edges of the data and the noise rejection and signal
distortion characteristics of these filters are not identical
to the symmetric filters..23/

The selection of smoothing filter parameters (order,
number of points) for a given application is often a
matter of trial and error and intuition. Obviously, one
would like to obtain the maximum noise reduction with
the minimum amount of distortion. Although the best
noise reduction occurs with wider filters (more points),
wider filters also limit the ability of the chosen function
to obtain a good local model for a changing signal. In
general, noise rejection improves and signal distortion
increases as the width of the signal increases and the
order of the filter decreases. It should be noted, however,
that as a consequence of the mathematics, smoothing
filters for orders 0 and 1 are identical, as are those for
orders 2 and 3, and so on. To determine the amount of
noise reduction a filter will provide, there is a very simple
relationship (Equation 21):

s2
filtered

s2
unfiltered

D
q∑

jDp

c2
j .21/

Thus the ratio of the variance of the noise in the filtered
signal to that in the unfiltered signal is simply the sum
of the squared filter coefficients. This equation applies to
any type of nonrecursive digital filter, but is only valid in
cases where the signal exhibits white noise.

Although Equation (21) is useful for describing the
amount of noise reduction, it provides no information
about the extent of signal distortion. To this end, it is
often more useful to examine the response of a digital
filter in the frequency domain in much the same way as
for an electronic filter. For a symmetric smoothing filter,
the frequency response is given by Equation (22),

H.f / D
∣∣∣∣∣

m∑
kD�m

ck cos
(

kpf
fN

)∣∣∣∣∣ .22/

where H.f / is the amplitude gain of the filter at frequency
f , ck represents the filter coefficients, and fN is the
Nyquist frequency. Note that this does not apply to
unsymmetric smoothing filters, such as the initial point
filters, because these filters also involve a phase shift,
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Figure 17 Frequency response (transfer function) for an
11-point quadratic smoothing filter.

but alternative expressions are available..23/ Figure 17
shows the frequency response for an 11-point quadratic
smoothing filter, plotted as a function of f/fN to make
it universal. As expected, the amplitude gain is unity
at low frequencies and drops off at higher frequencies.
Unlike simple electronic filters, however, the gain of
these filters does not smoothly approach zero, but instead
oscillates around a number of nodes that are related
to the size and order of the filter. Furthermore, if the
frequency response were plotted beyond the Nyquist
frequency, the function would simply reflect itself as
signals were aliased to lower frequencies, reaching a
gain of unity once again at the sampling frequency. If
one has some idea of the amplitude spectrum of the
signal to be filtered, plots such as Figure 17 can be
very useful in assessing the degree of signal distortion
that will result from filter application. The amount of
noise rejected can be also ascertained from the ratio of
the area under the NPS before and after multiplication
by the filter frequency response. Clearly, this type of
filter will be effective when white noise is present, but
will be less effective for 1/f (drift) noise, as the noise
exists predominantly at low frequencies. It should also
be noted that even if white noise was present before
filtering, measurement noise will become correlated after
filtering.

Of course, whenever a digital filter is applied to
experimental data, there will be changes in the shape
of the signal. In certain cases where parameters of
the signal such as peak height, area or width are
important in themselves, consideration must be given
to the consequences of applying a digital filter. Generally,
for signals which exhibit the same shape, the effects
in the time domain (e.g. width at half-maximum) will
be the same, whereas effects on the amplitude (e.g.
peak height/area) will be linear with the magnitude of
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the signal. The reader is referred to a useful, although
somewhat empirical, study by Enke and Nieman for more
details on these effects..16/

5.4 Derivative Filters

The numerical differentiation of signals with respect to
time (or other ordinal variable) is a common practice
in analytical chemistry. This procedure can be used, for
example, to locate the position of a peak maximum, to
determine the end-point of a titration, or to highlight
poorly defined features in a signal sequence (e.g. the
shoulder on a peak). These can be regarded as qualitative
applications in the sense that one is looking for the
location of specific points in the signal derivative
(e.g. the maximum or zero values) but not using the
derivative sequence for further calculations. Quantitative
applications, in which the differentiated signal is used
for purposes such as calibration, have become more
common in recent years. Because the derivative of a
function is unaffected by the addition of a constant,
differentiation proves valuable for methods which exhibit
a baseline shift (offset) between samples. Likewise,
if sample measurements are plagued with a baseline
that changes linearly with the ordinal variable (drift),
calculation of the second derivative can solve the problem.

One serious problem with signal differentiation is the
selective amplification of high-frequency noise. Because
the derivative of a signal is, by definition, its rate of
change, the more rapidly varying components of a signal,
including noise, are amplified to a greater extent than
the more slowly changing features typically associated
with the pure signal. Because of this, derivative filters
(first, second or higher) are most useful for signals
which exhibit relatively small amounts of high-frequency
noise compared to the low-frequency contributions, i.e.
cases where 1/f or drift noise dominates. A classic
example of this is near infrared (NIR) spectroscopy,
where second derivatives are routinely calculated prior
to quantitative analysis. Although NIR measurements
are widely characterized in the literature as having very
high SNRs, these measurements suffer from serious noise
problems in the form of baseline offset and drift, but
traditional SNR calculations normally do not incorporate
these components. Fortunately, the characteristics of NIR
spectra make them almost ideal benefactors of derivative
filtering.

The noise amplification characteristics of derivative
filters can be better understood by examining the transfer
function in the frequency domain. As shown in Figure 17,
the gain of a smoothing filter is typically unity at low
frequencies and falls off at high frequencies. In contrast,
Figure 18 shows that the gain of a true derivative filter
increases linearly with frequency. This can be easily

0.0 0.2 0.4 0.6 0.8 1.0

0 ..5

1.0

1 ..5

2.0

2 ..5

G
ai

n

Normalized frequency (f/fN)

True derivative

Difference operator

3-point linear

11-point linear

Figure 18 Frequency response (transfer function) for various
types of derivative filters.

confirmed by recognizing that (Equation 23),

d.sinwt/
dt

D w coswt .23/

where w D 2pf is the angular frequency. As a signal in the
time domain can be represented as the sum of a series of
sines and cosines (section 6.2) it is clear the calculation of
the derivative amplifies a signal component by a factor of
w and also gives rise to a 90° phase shift. The consequence
of this is that the excessive amplification of high-frequency
noise components generally makes the calculation of the
true derivative for practical measurements useless (and is
the reason why the term ‘true’ is used instead of ‘ideal’).
In practice, most derivative filters implicitly combine the
derivative calculation with a low-pass filter to reduce the
contribution of high frequency components.

The simplest method for calculating a signal derivative,
and one which can be described as a simple digital filter,
is the difference operator, defined by Equation (24),

Oy0i D
yiC1 � yi

t
.24/

where Oy0i represents the estimate of the derivative
of the function at point i, and t is the sampling
interval. The transfer function for this type of filter
is shown in Figure 18. It is clear that the frequency
response for a simple difference operator matches that
of the true derivative closely except at very high
frequencies. This type of filter provides no low-pass
filtering, however.

An alternative way of calculating derivatives is to use
a slight modification of the polynomial least-squares
filters described in section 5.2. If we carry out the
least-squares fit in the same manner as the previous
example for a five-point quadratic model, the estimate
of the derivative for the central point is given by
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Equation (25),

Oy00 D
d
dx
.b0 C b1x0 C b2x2

0/ D b1 C 2b2x0

D b1 C 2b2.0/ D b1 .25/

Therefore, the derivative estimate of the central point is
simply the first-order coefficient of the fit. In a manner
analogous to Equation (18), this is obtained by simply
multiplying the second row of the A matrix by the
windowed measurement vector y. This means that the
coefficients of the derivative filter are given by the second
row of A (c D a2) as opposed to the first row of A for the
smoothing filter. Likewise, the filter coefficients for the
second derivative are given by the third row of A, and so
on. It is clear then, that there is a simple, common path
to the calculation of polynomial filters of various types.

A number of characteristics of derivative filters calcu-
lated in this way should be noted. First, unlike smoothing
filters, the calculation of numerically correct derivatives
requires consideration of the sampling interval. The
adjusted coefficients necessary to obtain the correct scale
are given by Equation (26),

cadjusted D coriginal p!
.t/p

.26/

where p is the order of the derivative. In many cases, this
scaling is ignored, because it is only the relative changes in
the derivative that are important. A second characteristic
of these derivative filters that should be apparent from
the mathematics is that the determination of coefficients
for a pth order derivative requires at least a pth order
polynomial. Also, as with smoothing filters, there is a
duplication of coefficients for adjacent polynomial orders,
although the pairing shifts with each higher derivative.
For example, for the first derivative, the filter coefficients
for the linear and quadratic polynomials are the same,
whereas the quadratic and cubic coefficients are the same
for the second derivative.

The polynomial filters described here are symmetric in
the sense that there are an equal number of coefficients
on either side of the central point (in fact, a first-
derivative filter is better described as antisymmetric, as
c�i D �ci). As with smoothing filters, it is possible to
develop derivative filters for the edges of a window, but
the usual precautions regarding the quality of estimates
apply. For symmetric first-derivative filters, the frequency
response is given by,

H.f / D
∣∣∣∣∣

m∑
kD�m

ck sin
(

kpf
fN

)∣∣∣∣∣ .27/

Equation (27) is a slight modification of Equation (22),
where the substitution of sine for cosine results from the
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Figure 19 Result of the application of various types of
derivative filters to a noisy peak, shown above: (a) difference
operator, (b) 3-point linear derivative filter, (c) 11-point linear
derivative filter.

90° phase shift brought about by the derivative filter. The
frequency responses for 3-point and 11-point first-order
derivative filters are shown in Figure 18 for comparison
with the true derivative and difference operator. Note
that although the transfer functions for the polynomial
filters match the true derivative at low frequencies,
there is significant attenuation at high frequencies due
to the low-pass filtering. The effects of this low-pass
filtering are clearly seen in Figure 19, which shows the
application of three types of derivative filters to a noisy
signal. Because of the effect of high-frequency noise on
derivative filter response, it is a common practice by some
to first apply a smoothing filter to the data, but Figures 18
and 19 demonstrate that if the derivative filter is properly
designed, this practice is redundant.

5.5 Kalman Filters

The Kalman filter is a recursive linear least-squares
estimator with the capability of estimating the parameters
associated with a system model in real time..17 – 19/ It is
not so much a filter in the conventional sense as it is a
means for carrying out linear least-squares in a recursive
fashion. The estimates it provides are not the smoothed
measurements, but rather the parameters associated
with the linear model, or the state parameters. These
parameters are sometimes considered to represent a
state vector in an n-dimensional state space (n D number
of parameters). Once the state parameters have been
estimated, it is possible to generate a smooth curve for
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the measurements from the model, but this is usually a
secondary objective.

A simple example of recursive estimation in a manner
similar to the Kalman filter is the calculation of a mean
from a series of measurements as the measurements are
being acquired. It is usual to start with an estimate of the
mean equal to the first measurement, i.e. Om1 D x1. Once a
second measurement was acquired, the estimate could be
improved by using Om2 D 1/2 Om1 C 1/2x2. In general, after
the ith measurement, Equation (28) would hold:

Omi D i� 1
i
Omi�1 C 1

i
xi .28/

As each new measurement is assimilated into the
estimation, the quality of the parameter estimate
improves. It is apparent that Equation (28) has the form
of a recursive filter whose coefficients are changing with
each measurement. An advantage of recursive estimation
is that continuous updates of the parameter(s) of inter-
est are obtained with each new measurement. Although
this could also be done in batch mode, the recursive
formulation is computationally more efficient.

The general model which is covered by the Kalman
filter can be described by Equations (29) and (30):

xkC1 D Fkxk C wk .29/

zk D Hkxk C vk .30/

In these equations, xk represents the nð 1 vector
of parameters to be estimated (the state vector) at
measurement interval k and zk represents the mð 1
vector of measurements at interval k. The first equation
describes how the state vector is expected to change from
one measurement interval to the next and contains both
systematic and stochastic terms. The nð n state transition
matrix, F, describes the systematic linear transformation,
whereas the vector of random variables, w, represents the
stochastic change. Each element of w is assumed to be
derived from a zero-mean white-noise sequence and w is
characterized by an nð n covariance matrix Q.

Equation (30) describes how the state parameters are
translated into a measurement or observation vector. The
linear relationship is described by the mð n observa-
tion matrix, H. There is also a random noise component
assumed for the observations, represented by the vector
v. The elements of this vector are also assumed to com-
prise a white-noise sequence and the covariance of noise
in the measurement vector is described by the mðm
covariance matrix, R.

The basic algorithm for the Kalman filter is shown in
Figure 20, although several variants exist. The application
of this algorithm is best described through a simple
example. Suppose, for the purposes of illustration, we are
using an absorption spectrometer to monitor a reaction

Initial estimates
of xk

− and Pk
−

Step 1:
Calculate Kalman gain
Kk = Pk 

−      Hk
T(Hk Pk

− Hk
T+ Rk )−1

Step 4:
Project ahead
xk

−
+1 = Fk xk

Pk
−

+1
= FkPkFk

T + Qk 

Step 2:
Update state vector
xk = xk

−+ Kk (zk − Hkxk
−)

Step 3:
Update parameter covariance matrix
Pk = (I − KkHk)Pk(I − KkHk)T + KkRkKk

T

Figure 20 Basic algorithm for the Kalman filter.

in which two absorbing species, A and B, are reacting
independently to form nonabsorbing products by first-
order kinetics. The defining Equation (31) is:

z.t/ D A.t/ D CAeAe�kAt C CBeBe�kBt C v.t/ .31/

where A.t/ is the absorbance at time t, CA and CB

represent the initial concentrations of the two species,
eA and eB are their molar absorptivities, and kA and kB

are their first-order decay constants. Assuming that all
quantities are known except the initial concentrations
which are to be estimated, this is a linear problem
(Equations 32):

x.t/ D
[

CA

CB

]
; H.t/ D [eAe�kAt eBe�kBt] .32/

A simulated data set was generated using CA D 0.2 mM,
CB D 0.5 mM, eA D 1000 M�1 cm�1, eB D 1500 M�1 cm�1,
kA D 0.1 s�1, kB D 0.3 s�1, and a noise level of 0.02
absorbance units (AU). These data, showing the mea-
sured points and the curve with no error, are presented
in Figure 21(a). The objective of the Kalman filter is to
provide estimates of CA and CB as each new measurement
is made.

To initiate the Kalman filter prior to step 1, we
need an estimate of the state parameters and the error
covariance matrix, P, describing the uncertainty in those
parameters. Assuming we have no prior knowledge, we
use Equations (33):

x�1 D
[

0
0

]
; P�1 D

[
1010 0
0 1010

]
.33/

The superscript ‘�’ indicates that these are the estimates
before we have assimilated the first measurement. As we
have no prior knowledge of the parameters, the diagonal
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Figure 21 Results from the application of the Kalman filter
to the first-order kinetic data described in the text. (a) The
solid line shows the true absorbance decay curve and the points
indicate the noisy measurements made. (b) The evolution of
estimates for the initial concentrations of components A and B
by the Kalman filter.

elements (variances) of the covariance matrix are set to
very large values. In order to estimate the Kalman gain,
K, in step 1, the observation matrix, H, can be calculated
from Equation (32). As the measurement, z, is a scalar in
this case, the measurement error covariance matrix, R, is
simply equal to the variance of the measurements. Thus,
at t D 0.5 s, Equations (34) hold:

H1 D [951.2 1291.1]; R1 D .0.02/2 D 0.0004 .34/

With these values, the nð 1 Kalman gain vector for this
iteration is Equation (35):

K1 D
[

3.699ð 10�4

5.020ð 10�4

]
.35/

In step 2 of the algorithm, the difference between the
actual observation, zk, and the observation predicted by
the current state parameters, Hkxk, is calculated. This
difference is sometimes called the innovation and is like
an ordinary residual except that it is calculated using
the current rather than the final parameter estimates.
The Kalman gain vector, K, determines how much the
innovation is weighted in updating the state parameter
estimates. It is also used in the third step of the algorithm

to update the error parameter error covariance matrix, P,
following integration of the new measurement. Using the
first observation of 0.846 AU gives Equations (36):

x1 D
[

0.313

0.425

]
ð 10�3; P1 D

[
6.5 �4.8

�4.8 3.5

]
ð 109 .36/

Note that because only one measurement has been
processed and there are two parameters to be estimated,
neither x nor P can be regarded as reliable at this point.

In step 4, the state vector and its covariance matrix
are projected ahead to the next measurement interval.
This requires a knowledge of F and Q, which are trivial
in this example. As the state parameters here are static
(i.e. x 6D f.t/), the state transition matrix, F, is simply
the identity matrix. This would not be the case, for
example, if the state parameters were the concentrations
at time t, rather than the initial concentrations, but the
modifications to H and F would be straightforward in that
case. Likewise, we are assuming no random variation in
the initial concentrations, so the state vector covariance
matrix, Q, is equal to zeros. The role of Q in a more
complex application is to allow for random variation in the
state parameters over time. As an example, suppose that
instead of absorbance, we were measuring total pressure
in a gas phase reaction which was subject to random
temperature fluctuations between measurements. This
would effectively change the initial pressures we were
trying to estimate.

The iterations of the Kalman filter continue in this
way until all of the measurements have been processed.
For the example presented here, Figure 21(b) shows the
concentration estimates as a function of time with the
final estimates:

CA D 0.186š 0.019 mM

CB D 0.522š 0.023 mM

The uncertainties are the standard deviations of the
parameters from P. Note that these converge to values
close to the true concentrations. It should also be noted
that these are essentially the same estimates that would
have been obtained by linear least-squares implemented
in batch mode.

Although Kalman first introduced this filter in 1960,.24/

applications in chemistry were not abundant until the
late 1970s and early 1980s. However, many of these
applications employed the Kalman filter mainly as a
recursive implementation of simple least-squares, such
as the example above, and did not exploit its full
capabilities. For instance, given spectra of mixture
components, the Kalman filter can be used to estimate
component concentrations as a spectrum was being
scanned. Although this offered certain advantages such
as speed and the ability to terminate an experiment
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when the desired precision was achieved, developments
in instrumental and computational efficiency have made
these benefits less significant. The potential exists for
more effective utilization of the algorithm, however.

At least two modifications of the basic Kalman
filter have also appeared in the analytical chemistry
literature. The extended Kalman filter.25/ has been
used to model nonlinear systems (e.g. the estimation
of rate constants in the example above) through a
linearization of the equations but, like most nonlinear
methods, convergence can be slow and subject to initial
estimates. Often, several passes are needed, defeating the
advantages of recursion. A more successful application
has been the adaptive Kalman filter,.26/ which examines
the innovations sequence to detect model errors and
effectively turns the filter off in those regions by using an
inflated measurement variance estimate. This allows the
filter to be applied in situations where strict adherence to
the model is not a certainty.

5.6 Other Filters

This section has only scratched the surface of digital filter
design, focusing on those filters which are most commonly
implemented in analytical chemistry. The reader should
be aware that nonrecursive filters with more desirable
transfer characteristics, such as a flatter stop band, can
be designed with relatively little additional effort, and is
referred to appropriate texts on the subject..9 – 11/ Even
more flexibility can be achieved with recursive filters,
with characteristics analogous to the Butterworth and
Chebyshev designs described earlier for analog signal
processing. The popularity of polynomial least-squares
filters appears to be a consequence of their intuitive
simplicity and the fact that, although not necessarily
optimal, they are sufficient for many applications.

g(t )

h(t )

g(t ) × h(t )

Noisy signal

Pure signal shape

Filtered signal

Time

Figure 22 Illustration of the application of a matched filter
(h.t/) to a noisy signal (g.t/).

The subject of optimal filtering is revisited in the next
section with the Weiner filter in the Fourier domain. In
terms of optimal filtering in the time domain, however,
one additional filter, the matched filter, deserves mention
because it often appears in the analytical literature. With
a matched filter, the filter coefficients are obtained simply
by normalizing the shape of the pure signal. This is
illustrated in Figure 22 with a noisy Gaussian. For white
noise, the matched filter is optimal in the sense that it
produces the largest SNR, interpreted as the maximum
value divided by the baseline noise. Unfortunately, it
requires an advance knowledge of the signal shape and
has the undesirable consequence of broadening the peak.
The optimality of the matched filter derives from its
connection to regression. This connection, as well as the
relationship between Kalman filtering and regression, has
been described by Erickson et al..27/

6 DOMAIN TRANSFORMATIONS

6.1 Introduction

In the context of signal processing, a domain transfor-
mation can be defined as a mathematical or physical
process that converts a sequence of measurements into
an alternative representation which retains all of the
information in the original sequence. A domain transfor-
mation is distinguished from a simple domain conversion,
such as scaling or current-to-voltage conversion, in that
it involves a redefinition of the ordinal variable. As such,
the procedures are comparatively complex.

There are two principal reasons why domain trans-
formations are used in chemistry. The first is so that
information can be represented in a form commonly
used for interpretation. A familiar example is Fourier
transform infrared (FTIR) spectroscopy in which the
signal, collected by means of an interferometer in the
time domain, must undergo a transformation in order to
represent it as the familiar plot of transmittance versus
wavenumber. The second use of domain transformations
is to allow certain operations to be carried out on signals
with greater ease. As the objective of signal processing
is to separate the pure signal from the noise, transfor-
mations which provide a better distinction between these
two elements of the signal are useful.

Although there are a large number of possible domain
transformations that can be employed, this section will
focus on three which have been particularly useful in
analytical chemistry: the FT, the WT and the HT.

6.2 Fourier Transforms

Without a doubt, the most widely encountered domain
transformation in chemistry is the FT. In addition to being
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a useful stand-alone signal processing tool, the FT has
become an integral part of many instrumental methods
(FTIR, FT/NMR (nuclear magnetic resonance), FTRS
(Fourier transform Raman Spectroscopy) and FTMS
(Fourier transform mass spectrometry))..28,29/ Although
the FT can be applied to both continuous and discretely
sampled functions, it is the latter which dominates
instrumental applications and will be the focus of this
section. The section begins with a basic description
and simple illustration of the principles of the FT and
concludes with some examples of its application to signal
processing. Abundant supplementary information can be
found in the literature..13,14,28 – 34/

The fundamental principle behind the discrete FT is
that any signal sampled at equal intervals in the time
domain can have the sampled points reproduced by
the addition of a finite number of sinusoids at defined
frequency intervals with variable amplitude and phase.
This is illustrated in Figure 23 with the simple example of a
sampled square wave. Figure 23(a) shows the square wave
with the sampled points and the reconstruction using the
combination of sinusoids. Although the reconstruction
does not match the square wave exactly, it does reproduce
the sampled points exactly, which is its only requirement.
If the square wave were sampled more frequently, a larger
number of sinusoids would be required for reconstruction.
Figure 23(b) shows the individual sinusoids added to give
the reconstruction, including the DC (direct current)
offset (sine wave with frequency of zero).
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10 15 20
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Figure 23 (a) Illustration of the reconstruction of a sampled
square wave with a sum of sinusoids. (b) The individual sinusoids
used for the reconstruction.

Although two cycles of the square wave are shown in
Figure 23 for clarity, the FT is based on a single cycle of
10 points. The reconstruction of the sampled points from
the sinusoid terms can be represented as

h.t/ D
N/2∑
nD0

Cn cos
(

2pnfst
N
C fn

)
.37/

In Equation (37), h.t/ represents the reconstructed signal
at time t, fs is the sampling frequency, N is the number of
points sampled, and Cn and fn represent the amplitude
and phase of the nth sinusoid, which has a frequency
of fn D .n/N/fs. Note that an equivalent representation
using sines rather than cosines could have been written
simply by adding 90° to fn, but a cosine expansion is
more consistent with FT calculations. For the example
in Figure 23, the coefficients Cn and phase angles fn are
given in Table 2 (a sampling interval of 1 s was assumed).
Several points should be noted here. First, two sets of
amplitudes and angles are given in the table to illustrate
an ambiguity in this type of representation – the same
result can be obtained by changing the sign of any of the
coefficients and shifting the corresponding phase angle
by 180°. A second important point is that, whichever set
of values is used, there are 12 parameters provided to
describe the sinusoids (6 amplitudes and 6 phase angles).
Given that we are representing 10 points in the time
domain, it would seem that an excessive number of
parameters is needed to describe the signal in the Fourier
(frequency) domain. However, this is misleading, because
the mathematical restrictions can always fix the phase
angles for 0 Hz and the Nyquist frequency (0.5 Hz in this
case) to be 0°. Therefore, an equal number of values can
be used to represent the signal in both domains. Finally, it
should be noted that the periodic nature of the sinusoidal
basis functions will give rise to a periodic reconstruction
even if the original signal is not periodic. This does not
mean that nonperiodic signals cannot be transformed, but
it should be kept in mind that the FT will treat them as if
they are periodic. Discontinuities in amplitude between
the beginning and the end of a signal sequence will be
reflected in the high frequency components of the FT.

The ambiguity which arose in the amplitude/phase
representation of the FT can be resolved by exploiting

Table 2 Amplitudes and phase angles for simple FT example

n 0 1 2 3 4 5
fn (Hz) 0 0.1 0.2 0.3 0.4 0.5
Cn 0.5 �0.647 0 �0.247 0 �0.1
fn (o) 0 �72 0 �36 0 0
Cn 0.5 0.647 0 0.247 0 0.1
fn (o) 0 108 0 144 0 180
An 0.5 �0.2 0 �0.2 0 �0.1
Bn 0 0.616 0 0.145 0 0
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the fact that a phase shifted sinusoid can be represented as
a linear combination of sine and cosine terms. Therefore,
an equivalent form of Equation (37) is Equation (38):

h.t/ D
N/2∑
nD0

An cos
(

2pnfst
N

)
C Bn sin

(
2pnfst

N

)
.38/

For the square wave example, the coefficients An and
Bn are also given in Table 2. Although the phase angle
has been removed, the same number of parameters as
before is required to describe the signal, but there is no
ambiguity. The basic objective of the FT is to obtain the
coefficients An and Bn. Mathematically, this is done by
separating the sine and cosine terms through complex
arithmetic, recalling Euler’s relationship (Equation 39):

e�iq D cos q� i sin q .39/

where i D p�1.
The discrete FT is mathematically defined as follows.

Given a series of N measurements in the time domain, hk,
where k D 0 . . .N � 1, the N complex coefficients of the
FT, Hn, where n D 0 . . .N � 1, are given by Equation (40):

Hn D
N�1∑
kD0

hke2pikn/N .40/

This calculation results in N real coefficients and N
imaginary coefficients which are related to the coefficients
An and Bn in Equation (38). However, the total number
of coefficients here is 2N, whereas the total number in
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Figure 24 FT of the sampled square wave in Figure 23(a)
(one cycle of 10 points only) showing the real and imaginary
components and the mapping of points to the frequency domain.

Equation (38) was N C 2, which suggests that there is
some redundancy. This arises because the FT produces
coefficients at both positive and negative frequencies.
This is illustrated in Figure 24 which shows the actual FT
of the sampled square wave in Figure 23. Both the real
and imaginary parts of the FT are shown and the labels
on the x axis indicate the correspondence between the
coefficient number, n, and the frequency. Note that 0 Hz
(DC) and the Nyquist frequency (fN) are represented only
once in the mapping, whereas both positive and negative
values are shown for other frequencies. Furthermore,
there is a symmetry between the positive and negative
frequencies such that Equation (41) holds:

H.�f / D H.f /Ł .41/

where the asterisk indicates the complex conjugate. This
symmetry arises from the fact that hk is a real function
and has no imaginary components.

The representation of the real and imaginary parts
of the FT as shown in Figure 24 is an unambiguous
presentation of the transform and is the one used in
calculations, but it is not normally the one shown in
practice. Typically, figures show an amplitude spectrum or
a power spectrum and (less frequently) a phase spectrum.
Unfortunately, there is a great variability in the scaling
and presentation of these spectra, so caution needs to be
employed in their interpretation. One way to calculate
the amplitude spectrum is to calculate the modulus of H
directly (Equation 42):

Amp.f / D
√

real.H.f //2 C imag.H.f //2

D
√

H.f /H.f /Ł D jH.f /j .42/

The results of this calculation for the square wave
example are shown in Figure 25(a), where the frequency
values have also been properly ordered. Because of the
symmetry of the figure for real data, the amplitude
spectrum is often represented as simply the right-hand
side, excluding negative frequencies. If this were done
here, it is clear that the amplitude spectrum would not
be consistent with the values given in Table 2. There
are three reasons for this. First, the amplitude spectrum
calculated in this way will always give positive values
because of the ambiguity in the sign of the square root.
Second, there is a scaling factor of 1/N needed to go
between Figure 25(a) and Table 2. This scaling factor
normally appears in the inverse Fourier transform (IFT),
defined by Equation (43):

hk D 1
N

N�1∑
nD0

Hne�2pikn/N .43/

(Note that the IFT is essentially the same as the forward
FT except for the sign change and the scaling factor.)
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Figure 25 Alternative representations of the FT of the sampled square wave in Figure 23(a). Parts (a) and (b) are different
representations of the amplitude spectrum sometimes used; (c) is the power spectrum and (d) is the phase spectrum.

Finally, in order to arrive at an amplitude consistent
with Table 2, it is necessary to combine positive and
negative frequencies (except for DC and fN). Thus
an alternative definition of the amplitude spectrum
(nonnegative frequencies only) is Equations (44):

Amp.0/ D 1
N
jH.0/j

Amp.f / D 1
N
.jH.f /j C jH.�f /j/ D 2

N
jH.f /j

Amp.fN/ D 1
N
jH.fN/j .44/

This representation of the amplitude spectrum is shown
in Figure 25(b) and, except for the signs, is consistent with
the data in Table 2.

The power spectrum (or power spectral density func-
tion) is often used in place of the amplitude spectrum.
As its calculation involves squaring the amplitudes, the
same scaling inconsistencies exist here as for the ampli-
tudes, so care should be taken. The power of the signal
in the two domains is related through Parseval’s theorem

(Equation 45):

N�1∑
kD0

jhkj2 D 1
N

N�1∑
nD0

jHnj2 .45/

One method to arrive at a valid power spectrum is to use
a set of equations similar to those given in Equation (44)
for the amplitude, replacing amplitude with power by
squaring each of the modulus terms and each N. This gives
the power spectrum in Figure 25(c). It can be verified
that the sum of the elements is equal to 0.5, which is
equal to the mean squared value of the signal in the
time domain. There are other aspects to the calculation
of power spectra, such as windowing methods to prevent
leakage among frequencies and improve the quality of the
spectral estimation, but these will not be described here.

Although there are some variations in the manner
of calculation of amplitude and power spectra, these
are not especially serious when the FT is used for
descriptive purposes. The phase spectrum, which plots
the phase angle as a function of frequency, is less
useful than the amplitude spectrum in most instances.



SIGNAL PROCESSING IN ANALYTICAL CHEMISTRY 25

The phase spectrum for the current example is shown
in Figure 25(d). As the negative frequencies contain
redundant information by symmetry, only the positive
half of the phase spectrum is shown. The phase angles are
calculated from Equation (46):

f.f / D tan�1
(

imag.H.f //
real.H.f //

)
D arg.H.f // .46/

As in the amplitude calculation, this equation will have
an ambiguity due to the fact that the angle calculated
will always be between �90° and C90°. Table 2 indicates
that, in this case, positive amplitudes should produce
phase angles outside this range, but this is clearly not
reflected in the phase spectrum. Therefore, although the
amplitude/power and phase spectra are the most common
descriptive forms of the FT, the indeterminacy of the
resultant parameters means that they cannot actually be
used to regenerate the original signal in most cases. It
should also be noted that Equation (46) involves the ratio
of two numbers and this can cause problems in the phase
angle calculation when both terms are very close to zero,
since round-off error leads to an arbitrary phase angle.
Although this is of no importance in the final result (the
amplitude of the frequency component is zero), it can
complicate the interpretation of the phase spectrum.

As already noted, the calculation of the discrete FT
can be carried out using Equation (40), but for most real
applications involving a substantial number of data points,
the application of this equation is impractical due to the
large number of operations required (on the order of N2).
For this reason, few applications employed the FT until
the mid-1960s, when the FFT algorithm was popularized
by Cooley and Tukey..2/ The FFT greatly reduced the
number of operations required (of the order of N logN)
and made transformations practical for a wide variety of
problems. Although beautifully elegant in its partitioning
of the problem, a somewhat annoying requirement of
the original algorithm was that it required the number of
points to be equal to a power of two. Improvements on the
original algorithm have largely removed this restriction
(although they are not quite as efficient), and FTs are now
calculated with ease for most signals of moderate length
using a variety of software packages.

One of the principal applications of the FT is the
conversion of data recorded by instruments such as
FTIR spectrometers, where it is needed to transform the
measurements from the time domain to the frequency
domain (or vice versa) before it can be interpreted in
the conventional way. In addition to this, the FT is used
for a great many signal manipulation purposes, such as
smoothing, deconvolution, and interpolation. Some of
these applications are now illustrated.

A great deal of the utility of the FT in signal processing
derives from the convolution theorem, which states that

the convolution of two signals in the time domain is
equivalent to the element-by-element multiplication of
the functions in the frequency domain. Mathematically,
if g and h are functions in the time domain and G and H
are the corresponding functions in the frequency domain,
Equation (47) holds:

g.t/ Ł h.t/ D IFT[G.f /H.f /] .47/

where the asterisk indicates the convolution of the two
functions and IFT indicates the inverse transform. As
digital filtering is the convolution of filter coefficients with
a noisy signal, this immediately leads to an application
in Fourier smoothing. The difference here is that we can
specify the transfer function of the filter exactly through
its FT. This is illustrated in Figure 26 with the smoothing
of a noisy Gaussian. The FT of the noisy signal is first
calculated and then both the real and imaginary parts are
multiplied by the ideal transfer function which sets all of
the high frequencies where there is no significant signal

x x

IFT

FT

Real Imaginary

Figure 26 Fourier filtering of a noisy signal.
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contribution to zero. Note that both positive and negative
frequencies must be included in this multiplication, which
is why the transfer function looks somewhat different than
that shown earlier. After the multiplication is carried out,
an IFT is applied to the result to give the smoothed signal
in the time domain.

Although this procedure works very well, it has some
drawbacks. First, it is slower than a digital filter and cannot
be done in real time because the entire signal is required.
Second, artifacts such as the oscillations near the tails of
the peak are often observed due to the sharp transition
of the transfer function. More severe distortion can result
if the cut-off frequency is moved closer to the signal
components, but there will be less noise reduction if it is
moved to higher frequencies. To avoid this characteristic
of the ideal filter, a more gradual decrease in the transfer
function is often employed. Such a function is sometimes
referred to as an apodization function. If the FT of the
pure signal is designated as S and that of the noise as N,
it can be shown that the transfer function of the optimal,
or Weiner, filter  is given by Equation (48):

.f / D jS.f /j2
jS.f /j2 C jN.f /j2 .48/

This is the transfer function that will give the optimal
reproduction of the true signal in the least-squares sense.
The difficulty with applying this filter is in the estimation
of S.f / and N.f / for the pure signal and noise, but that is
beyond the scope of this article.

In addition to convolution, the FT can aid in the decon-
volution of two signals. If h represents the convolution of
two signals, f and g in the time domain (h D f Łg), where
g is known, the deconvoluted signal f can be obtained
through an element-by-element division in the frequency
domain (Equation 49):

f .t/ D IFT
[

H.f /
G.f /

]
.49/

This is illustrated in Figure 27 where a simulated spectral
doublet has been convoluted with the slit function of
the spectrometer which smears the two peaks. Through
Fourier deconvolution, it is seen that the original line
shape can be recovered. Practically speaking, there are
a number of difficulties associated with this procedure.
First, one of the convolution functions needs to be known
in advance. Second, the division presents problems when
the denominator in Equation (49) is close to zero and
adjustments need to be made in this case. Depending
on how this is done, artifacts such as those apparent in
the baseline of the deconvoluted spectrum of Figure 27
can result. Finally, the presence of noise can lead to
additional complications in the deconvolution. In a best-
case scenario, however, this type of deconvolution can be

∗ IFT(H/G)

G(f )FTg(t )
(slit)

(spectrum)
f(t )

h(t )
FT

H(f )

Figure 27 Convolution of a spectral doublet with a slit function
followed by Fourier deconvolution to recover the original line
shapes.
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Figure 28 Fourier interpolation of an undersampled signal by
a factor of four. Note that the FT has been padded with 24 zeros
in both the positive and negative frequency regions to give a
total of 64 points.

used to improve the resolution of the instrument after the
measurements have been obtained.

As a final example of the use of the FT in signal
processing, Figure 28 shows an example of function
interpolation. This procedure, which has been referred
to as the zoom FT, is based on the fact that the
Nyquist frequency is directly related to the sampling
frequency. If the FT of a signal is padded with zeros
at the frequency limit where there is little signal
contribution, the Nyquist frequency can be increased,
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and consequently the sampling interval decreased. This
essentially interpolates the function between existing
measurements. Although this approach has been used in
certain applications, such as locating the peak maxima in
undersampled mass spectrometry peaks, it should be used
with caution because the zero-padding makes implicit
assumptions about the form of the function between the
original points which may be erroneous.

6.3 Wavelet Transforms

Although a more recent development than the FT,
the WT approach is gaining increased acceptance as a
signal processing tool for the analytical chemist. The first
applications in the chemical literature of the WT as a
denoising, smoothing and data compression procedure
appeared in the early 1990s, and their frequency of
mention has increased steadily. The utility of the
WT for noise reduction purposes rests largely on its
decomposition of the signal into successive levels of high-
and low-frequency components. In data compression
applications the decimation filter property of the WT
is useful, effectively reducing the number of elements
needed to represent the signal with minimal loss of
information. Numerous algorithms for the WT have been
devised, with the most popular being the recursive form
of the discrete wavelet transform (DWT) attributable to
Mallat,.35/ the generalization of which is known as the
wavelet packet transform (WPT)..30,36/ An increasing
number of software packages are now available for
performing DWTs and WPTs as well as related functions
in a relatively straightforward manner.

Like the FT, the WT converts the data into a more
useful domain for signal processing by projecting the
observed signal onto a set of orthogonal basis functions. In
the FT, the signal is projected into the frequency domain
using sinusoids as the basis functions. In the frequency
domain, the basis functions are localized, but when
transformed to the time domain the functions extend
globally along the time axis. In contrast, the WT uses
basis functions that are both localized in the frequency
and time domains to project the data into the wavelet
domain. The WT, therefore, has perhaps a more intuitive
appeal for some who routinely deal with signals that are
time localized, such as chromatographic or spectroscopic
measurements. A very readable introduction to denoising
and compression of chemical signals using wavelets
has been written in tutorial fashion by Walczak and
Massart..37/

In the popular DWT pyramid algorithm of Mallat,.35/ a
recursive decomposition of the signal is performed using
both high- (H) and low-pass (L) filter matrices which are
rectangular (each n/2ð n, if the observed signal vector
x has n elements). The coefficients of these decimation

filters depend on the family of wavelets that are used;
the Daubechies family appears to be the most popular
in chemical applications. The portion of the signal that
passes through the low-pass filter is typically called the
mth-level approximation to x, am, and the portion of the
signal that is rejected by L (passes through the high-
pass filter) is referred to as the mth-level detail in x,
dm (dm can be considered to be the information in am�1

not included in the approximation am). As H and L are
decimation matrices with a down-sampling rate of two,
the number of elements in both a and d drops by a half at
each level of approximation (an effective doubling of the
sampling interval). The algorithm requires the number of
measured channels in the signal vector to be a power of
two, although this requirement can be side-stepped with
zero-padding. Edge effects can often result from the filter
convolutions; however, signals that are not of a length 2J

(J is an integer) can be zero-padded on both ends of the
signal vector to sterilize the distortion.

The DWT algorithm is logistically summarized in
Figure 29(a). Clearly, the detail at a given level is not
used in subsequent approximation steps of the pyramid
algorithm, because am is only approximated from am�1,
and the possibility exists that important information was
rejected by the low-pass filter and resides in the detail
vector. When the detail vectors are also incorporated into
the decomposition, the WPT algorithm results (illustrated
in Figure 29b). The structure of the L and H filters
used in the decomposition is shown in Figure 30 for
the Daubechies-4 wavelet (four coefficients). Note that
the coefficients for H are the same as for L except that
the order is reversed and alternate signs are changed.
Normally, the L and H matrices are concatenated and
multiplied by the concatenated basis vectors at each level.
With this approach, the arrangement of L and H matrices
will change at each level, as shown in Figure 31.

With the decomposition of the original signal accom-
plished, it is possible to examine the coefficients of the
approximation and detail levels. This is analogous to
examining the coefficients of a Fourier decomposition,
except that the wavelet decomposition is arranged in
two dimensions – time and frequency. As in Fourier
denoising applications, it is desirable to eliminate or
reduce coefficients believed to be associated with noise,
and retain coefficients reflecting information in the origi-
nal signal. In the WPT, however, not only must coefficients
be selected in the frequency realm, but also in the level
of approximation. In order to determine the appropriate
basis vectors for reconstruction of the signal, it is useful to
examine the approximation and detail vectors resulting
from the transform. A simple example of denoising using
the WPT is presented in Figure 32. In this example, the
WPT has only been carried out to two levels for purposes
of illustration. At level 2, it is apparent that three of the
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Figure 29 Illustration of (a) the DWT and (b) the WPT.

four vectors contain little useful information, so these are
set to zero before the inverse wavelet transform (IWT)
is carried out, resulting in a reduction in the noise. It
should be noted that no attempt was made to optimize
the denoising in this example, and decompositions to
additional levels may have allowed further improvement.
Denoising with the WT involves more options than that
for the FT, such as the selection of a set of basis functions,
the level of decomposition used, and the choice of basis
vectors to set to zero.

Because of the wide range of possibilities, algorithmic
methods of basis selection have been proposed, with the
most intuitive and successful using the minimum entropy
(or maximum information) condition of Coifman and
Wickerhauser..38/ Best-basis selection according to the
minimum entropy condition proceeds on the principle
that the most useful basis vectors will be those that

n = Number of channels in signal

n /2L =

c1 c2 c3 c4

c4 −c3 c2 −c1

n = Number of channels in signal

n /2
H =

Figure 30 Illustration of the L and H matrices (four coeffi-
cients) used in the WPT to generate the approximation (a) and
detail (d) vectors, respectively, at successive levels of resolution.
For the Daubechies-4 wavelet, the coefficients are c1 D 0.4830,
c2 D 0.8365, c3 D 0.2241, and c4 D �0.1294. Note that the coef-
ficients will not change for different levels of resolution, but the
size of the filter matrix will depend on n, the number of channels
in the signal at the previous level of resolution.

contain the most information, and informative vectors will
tend to be those which have some large coefficients and
some small ones. The coefficients of uninformative basis
vectors will largely be the same. The minimum entropy
condition in best-basis selection is typically applied
by seeking the basis vectors which have the greatest
number of coefficients above a preset threshold value..39/

Another method of selecting the best basis vectors is
the minimum description length (MDL) method..40,41/

The MDL is primarily used when data compression is
desired, and proceeds on a version of the principle of
parsimony, seeking the basis vectors which contain the
most information in the fewest coefficients.

With the best set of basis vectors selected from the
full decomposition, additional signal adjustment can be
made by using hard or soft thresholding measures on the
remaining coefficients. In hard thresholding, coefficients
above a preset threshold are retained, whereas coef-
ficients below this level are discarded. Soft thresholding
can also entail zeroing of coefficients below the threshold,
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Figure 31 Arrangement of the L and H filter matrices through
the first three levels of the WPT.

but coefficients above the threshold are also typically
shrunk towards zero by an amount inversely propor-
tional to their magnitude. Evidently the selection of the
threshold value is crucial in these procedures, and several
methods exist for estimating the optimal threshold value,
including estimating the threshold based on the level of
noise,.42/ and setting the threshold as a percentage of the
largest coefficient..43/ Typical hard, and soft thresholding
functions are shown in Equations (50) and (51):

hard thresholding:

cnew D
{

0, if jcoldj < T
cold, if jcoldj ½ T

.50/

soft thresholding:

cnew D
{

0, if jcoldj � T
sign.cold/.jcoldj � T/ if jcoldj > T

.51/

As an alternative to using threshold values to select
relevant coefficients, wavelet smoothing can be achieved
by simply discarding detail vectors and performing the

WT

a1

a2

d1

d2 a2 d2

WTWT

Set to zero 

IWT

Figure 32 Simple illustration of signal denoising using the
WPT.

inverse WPT from the desired approximation vectors.
Although this technique has the potential to achieve
greater compression ratios, it is a perilous operation
when one lacks knowledge of the location of relevant
information in the wavelet decomposition – some useful
information may well be contained in some detail vectors.
With this possibility looming, it is generally recommended
that wavelet smoothing by discarding detail vectors be
reserved for situations in which extensive knowledge of
the signal allows for educated detail removal.

With basis selection, and coefficient adjustment com-
plete, it is possible to approximate the original signal
in the original resolution. This domain is revisited by
passing the selected basis vectors back through the high-
and low-pass filters. To make the filters interpolation
rather than decimation filters, the conjugates of H, and
L are employed. Based on the orthonormality of the
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Figure 33 Illustration of signal denoising using Coifman’s
best-basis selection algorithm and coefficient adjustments
using hard thresholding: (a) original simulated noisy spectrum,
(b) denoised spectrum using the Daubechies-4 wavelet (inset),
and (c) denoised spectrum using the Coiflet-3 wavelet (inset).

two matrices, the conjugates of H and L are equivalent
to the transposes. Therefore the IWT proceeds straight-
forwardly through the up-sampling filters HT and LT

(transposes of the matrices in Figure 31) until the desired
resolution is achieved, with the denoised signal resulting.

Figure 33 illustrates the utility of the WT in signal
denoising using a simulated spectrum. White noise was
added at a level corresponding to snoise D 0.1, giving the
noisy spectrum in Figure 33(a). The first wavelet chosen
for the transform was the Daubechies-4 (c1 D 0.4829, c2 D
0.8365, c3 D 0.2241, c4 D �0.1294). Best-basis selection
was performed using the minimum entropy procedure of
Coifman, and hard thresholding was used on the chosen
basis vectors. The results of the overall wavelet denoising
with the Daubechies-4 wavelet are shown in Figure 33(b).
To illustrate the effect that different wavelet families can
have, the Coiflet-3 wavelet was also used, and the results
shown in Figure 33(c). In practice, a comparison would
more probably be made between different members of a
family to find the best result.

6.4 Hadamard Transforms

Like other transform methods, the HT can be thought
of as a transformation from one space to another,
with a Hadamard matrix acting as the transformation
matrix..44 – 47/ HTs are one method of gaining the Felgett
advantage, or multiplex advantage, as it is often called.

The multiplex advantage is a statistical gain in SNR as
a result of simultaneously measuring multiple spectral
resolution elements. In contrast to dispersive methods,
in which a single spectral element is measured at a time,
multiplex methods measure several coincident spectral
elements simultaneously. In order for the multiplex design
to prove beneficial from an SNR perspective, the noise in
the signal must be considered to be independent of the
strength of the incident radiation (i.e. detector noise is
the overwhelming noise source). If this condition is met,
simple propagation of error reveals that the SNR of a
multiplex instrument, relative to a dispersive instrument
is
p

N, where N is the number of spectral elements that
impinge on the detector at any one time.

Although FT spectrometers are perhaps the best known
instruments to utilize the multiplex advantage, the HT
spectrometer is also a valuable option. The principles of
the HT are based on the concept of Hadamard matrices.
As noted above, the benefit of the HT stems from
propagation of measurement error into the estimated
spectral values. If one observation is made with an
inherent detector error of e, then the error in the estimated
value is e. However when we wish to estimate several
unknowns we can reduce the error associated with a
particular estimate by measuring groups of unknowns
together in a well-designed fashion. We can subsequently
use systems of linear equations to solve for the estimates,
and decrease the error in those estimates in the process.
The classic analogy is to a weighing scheme for several
unknown objects. In the example sketched here, four
objects are weighed in experiment A one at a time, with a
detector noise level of 0.1. (Experiment A is analogous to
a dispersive spectrometer.) In experiment B, two or three
objects are weighed together at any one time, although we
still only have four total measurements to estimate each
individual object’s mass. (Experiment B is analogous to a
single detector HT spectrometer.)
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Here the xi terms represent the observed reading on the
scales, and the mi terms represent the estimated mass of
the ith object. Through propagation of error, it is relatively
easy to show that if the measurement uncertainties for
the xi terms are independent and given by sx, then the
uncertainties in the masses will be given by Equation (52),

s2
m1

s2
m2

...

 D s2
xdiag [.WWT/�1] .52/

where ‘diag’ indicates extraction of the diagonal elements.
Solution of this equation using sx D 0.1 gives sm D 0.1
for all masses in experiment A, whereas the values for
experiment B are 0.067, 0.088, 0.088, 0.088 for m1 –m4,
respectively. Clearly, noise reduction in the estimates has
occurred via the multiplex advantage.

In HT spectrometers, the weighing design matrix as
shown above is embodied by a mask (Hadamard mask)
that physically impedes the incidence of some spectral
elements while letting others pass through to the detec-
tor. Whereas early HT instruments used a moving mask,
the current inclination is toward stationary masks whose
codes are changed using electrooptical devices. In true HT
spectrometers, light is not only blocked from the coagulat-
ing detector, but it is also reflected back to a subtracting
detector, such that the measured total intensity is the
difference of the adding and subtracting detectors. The
weighing matrix in these scenarios, H, is a series of 1 and
(�1) values representing which elements are subtracted
and which are added. These matrices are designed based
on Hadamard mathematics. When this arrangement is
used, the SNR enhancements observed in FT instruments
can be achieved. In practice the HT instruments are
difficult to construct to the required specifications and
thus single-detector instruments are principally used. The
weighing matrix used in these systems is the S matrix,
and the elements are similar to the weighing matrices
shown above (zeros and ones). S matrices can be easily
constructed from Hadamard matrices by removing the
first row and column of H and changing all �1 elements
in H to zeros in the S matrix. Although closely related to
the Hadamard matrices, S-matrix methods do not afford
the same enhancement in the SNR as H-matrix methods
because, with N spectral elements, only .N C 1//2 may
be measured at any one time.

Like the interferogram resulting from the Michelson
interferometer, the encodegram is the resulting signal
output from a Hadamard mask experiment. The encode-
gram relates the radiative flux reaching the detector with
the position of the Hadamard mask. To convert this sig-
nal in the Hadamard domain to the desired frequency
domain the inverse HT is used. Given the properties of
S (orthonormal rows/columns and square) this is easily

accomplished by convolution of the encodegram with the
inverse of S, i.e. S�1 D ST.

With the use of electrooptic Hadamard masks come
new problems with the standard HT. Although these
stationary masks remove the problem associated with
the continuously moving parts of the FT instru-
ments, nonidealities in the opacity or transmissive-
ness of the mask require adjustments to the weighing
matrices..47/

When noise is independent of the signal intensity, as
is the case when detector noise dominates, Hadamard
multiplexing can prove a useful method of improving
the SNR of the spectral estimates. In true Hadamard
multiplexing noise reduction follows the general formula
of Equation (53):

sHT D sp
N

.53/

where sHT is the standard deviation of the estimated
elements using HT methods, s is the standard deviation
of the detector output (equivalent to the noise level in the
same experiment using a monochromator), and N is the
number of spectral elements to be estimated. However,
most HT instruments employ S matrix methods which, at
best, allow reduction of the uncertainty of the estimate
according to Equation (54):

sHT D 2
p

N
N C 1

s ³ 2sp
N

.54/

Although the HT has found some utility in analytical
applications and is likely to continue to do so in
situations for which multiple channel detection or FT
methods are unfeasible, its implementation has not been
extensive. With the increasing prominence and quality of
multichannel detection systems, the multiplex approach
of the HT to signal processing is likely to have limited
future utility.

7 HIGHER-ORDER SIGNAL PROCESSING

The bulk of this article centers on signal processing meth-
ods for first-order data sets – those cases where the signal
can be represented as a vector of measurements. In recent
years, however, there has been an increased emphasis on
the use of higher order data in analytical chemistry. This
is particularly true for second-order data sets (matrices of
measurements), but increased use of third-order data is
also apparent in the literature. This phenomenon can be
attributed to three main factors: (a) the demand for new
kinds of analytical information and more efficient analyti-
cal methods; (b) the increased availability of multichannel
detectors, such as photodiode arrays and charge-coupled
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devices, as well as rapid scanning instruments; and (c) the
development of chemometric methods capable of dealing
with multidimensional data. Techniques such as multi-
variate calibration and pattern recognition are now used
routinely, and their application has led to the increased
need for signal processing for higher-order data.

In discussing signal processing for higher-order data, it
is necessary to make the distinction between the order
of the data and the order of the signal. A defining
characteristic of a signal is that it exhibits correlation in
the ordinal variable for some domain, so a higher-order
signal should exhibit correlation in the ordinal variable for
each dimension. For example, a collection of spectra from
different samples for a multivariate calibration or pattern
recognition study would not normally exhibit correlations
among the samples, and so this second-order data set
can be regarded as a collection of first-order signals. In
contrast, spectra obtained during a chromatography or
kinetics experiment would result in second-order signals
in a second-order data set, because there would be a
relationship among the spectra in the time domain.
Other combinations are also possible. For instance, if
fluorescence emission–excitation spectra were collected

for an arbitrary series of samples, we would have second-
order signals composing a third-order data set.

For data sets that are composed of first-order signals,
signal processing is generally restricted to first-order
methods such as those already described. Nevertheless,
such signal processing can still have effects across multiple
orders and for that reason may be regarded as even
more important for higher-order data than for the first-
order case. For example, the presence of a variable
baseline offset or drift between sample spectra can be
detrimental to multivariate calibration methods, but this
effect can be minimized by derivative filtering in the
spectral domain. The application of such techniques
prior to data analysis falls under the subject area
of data preprocessing, and includes such methods as
mean-centering, baseline subtraction, scaling, smoothing,
differentiation, and domain transformation. Choice of
an appropriate preprocessing method can be critical and
often determines the success or failure of a multivariate
analysis application. A complete discussion of these
methods is beyond the scope of this article; however,
many appropriate texts on chemometrics give more
information..13,48 – 50/
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Figure 34 Illustration of the calculation of filter coefficients for a 3ð 3 quadratic filter with an interaction term.
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For signals that are truly higher order, first-order signal
processing methods can still be used, but other options are
also available. In large part, these are extensions of the
first-order methods which have already been discussed.
In the case of second-order signals, for example, there
are two-dimensional (2D) smoothing methods, 2D FTs
and 2D WTs. The application of these techniques can
offer greater power and flexibility since the characteristics
of the signals in both dimensions can be exploited.
For example, in the case of spectra collected during a
chromatography experiment (a spectrochromatogram),
filtering using a nine-point moving average filter in either
the time or spectral dimension requires convoluting
each signal vector with a 1ð 9 smoothing vector.
However, 2D smoothing could use a convolution of
the full matrix with a 3ð 3 smoothing matrix and
the same level of noise reduction would be achieved
(in the case of a moving average filter) with less
distortion. Understandably, the use of 2D techniques
introduces greater complexities in terms of computation,
implementation, interpretation and optimization than
their one-dimensional (1D) counterparts, but these can
be overcome.

As most higher-order signal processing methods are
extensions of their 1D counterparts, a detailed discus-
sion is not presented here. However, one example of 2D
smoothing is presented as an illustration. In this example,
a 3ð 3 polynomial smoothing filter is used. To demon-
strate the design, a quadratic filter with an interaction
term was chosen, with the corresponding Equation (55):

Oy D b0 C b1x1 C b2x2 C b3x2
1 C b4x2

2 C b5x1x2 .55/

where x1 and x2 represent the two ordinal variables. The
generation of filter coefficients requires the unfolding
of matrices representing the ordinal variables and the
process is illustrated in Figure 34. The resulting smoothing
coefficients are (Equation 56)

C D
�0.111 0.222 �0.111

0.222 0.556 0.222

�0.111 0.222 �0.111

 .56/

The result of the application of this filter to the
noisy fluorochromatogram of a mixture of pyrenes in
Figure 35(a) is shown in Figure 35(b). Although some
noise reduction results, it is not as great as that obtained
with a simple 3ð 3 moving average filter, as shown in
Figure 35(c). It is clear that the 2D filter involves the
same trade-off between noise reduction and distortion as
the 1D filters, but the optimization in the 2D case involves
a greater number of options, such as the size and order
in each dimension and the inclusion of interaction terms.
So far, unlike first-order methods, there have not been

(a)

(b)

t λ(c)

Figure 35 Application of a 2D smoothing filter to noisy
data from a chromatogram with multiwavelength fluorescence
detection: (a) original data, (b) data filtered with a 3ð 3
quadratic filter, (c) data filtered with a 3ð 3 moving average
filter.

extensive studies on the relationship between second-
order signal processing methods and the signals they are
applied to in chemistry, but this is likely to change as
higher-order data become more prevalent.

8 CONCLUSIONS

This article provides a general description of some of the
signal processing tools commonly employed in analytical
chemistry. As a general principle, it is apparent that all
signal processing methods make assumptions about the
models for signals and for noise in order to distinguish the
two. The power of a particular method in a given applica-
tion depends on the nature of the assumptions made (very
general or very restrictive) and the extent to which they
are valid. It is also true that the use of signal processing
methods is a double-edged sword. Although the quality of
information may be enhanced, it is also possible to distort
the signal to the point where results become unreliable.
Clearly, a knowledge of the nature of signals, noise and
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the capabilities of signal processing methods is essential.
For this reason, a significant portion of this article is ded-
icated to the practical aspects of implementing different
methods and their effects on signals.

Developments in signal processing applications to
analytical measurements will no doubt continue, par-
ticularly for digital signals. Although some methods, such
as polynomial smoothing and FT-related techniques, will
continue to permeate all areas of analytical chemistry,
other methods, such as Kalman filtering and HTs, have
found more specialized niches. The impact of WTs is
evidence of the ongoing research in signal processing
applications. Undoubtedly, future developments will
exploit greater computational abilities and present new
challenges in application and interpretation. As noted in
the previous section, applications to higher-order meth-
ods will be a focus of research. In any case, it is apparent
that, whether it is the enhancement of fuzzy images from
atomic microscopes or the removal of background signals
in remote sensing from space, signal processing methods
will continue to play a key role in all aspects of analytical
chemistry.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the research support
of the Natural Sciences and Engineering Research
Council of Canada (NSERC) and the Dow Chemical
Company. Prof. L. Ramaley is thanked for his helpful
comments.

ABBREVIATIONS AND ACRONYMS

A/D Analog-to-digital
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DSP Digital Signal Processor
DWT Discrete Wavelet Transform
FFT Fast Fourier Transform
FIR Finite Impulse Response
FT Fourier Transform
FTIR Fourier Transform Infrared
FTMS Fourier Transform Mass Spectrometry
FTRS Fourier Transform Raman

Spectroscopy
HT Hadamard Transform
IFT Inverse Fourier Transform
IIR Infinite Impulse Response

IWT Inverse Wavelet Transform
LSB Least Significant Bit
MDL Minimum Description Length
MSB Most Significant Bit
NIR Near Infrared
NMR Nuclear Magnetic Resonance
NPS Noise Power Spectrum
RC Resistor–Capacitor
rms root-mean-square
SG Savitzky–Golay
SNR Signal-to-noise Ratio
V/F Voltage-to-frequency
WPT Wavelet Packet Transform
WT Wavelet Transform
1D One-dimensional
2D Two-dimensional
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