
Adaptive Sampling for Marine Microorganism
Monitoring

Bin Zhang, Gaurav S. Sukhatme and Aristides A. G. Requicha
Computer Science Department

University of Southern California
Los Angeles, CA 90089

Email: binzhang@cs.usc.edu, gaurav@usc.edu, requicha@usc.edu

Abstract— We describe the design and construction of
an underwater sensor actuator network to detect extreme
temperature gradients. We are motivated by the fact that
regions of sharp temperature change (thermoclines) are a
breeding ground for certain marine microorganisms. We
present a distributed algorithm using local communication
based on binary search to find a thermocline by using a
mobile sensor network. Simulations and experiments using
a mote test bed demonstrate the validity of this approach.
We also discuss the improvement in energy efficiency using
a submarine robot as a data mule. Comparisons between
experimental data with and without the data mule show that
there are considerable energy savings in the sensor network
due to the data mule.

I. INTRODUCTION

With advances in processor and radio technologies, low-
price wireless sensor and actuator networks are becoming
available. With this new technology, a large number of
low cost sensors and actuators can be deployed to provide
focused in-situ sensing. The integration of local processing
and storage allows nodes within such a network to not only
provide raw data but also draw inferences and provide high
level information. Wireless sensor networks have many ap-
plications, such as habitat monitoring [2] [10], battle field
target tracking, in-situ exploration of gaseous biosignatures
[4] and chemical plume tracking[8]. In this paper, we
focus on a particular application: Marine Microorganism
Monitoring, which we introduce next.

Microorganisms such as Phytoplankton are exceedingly
small (2-3µm) and are distributed in the ocean at varying
spatial scales. It is not practical to locate them by measur-
ing their density everywhere. Both from the point of view
of locating marine microorganisms, and from the point of
view of studying their behavior, it is beneficial to study how
their numbers and location are correlated with chemical
(e.g. nutrient concentration) and physical parameters (e.g.
temperature, light intensity) in the marine environment.
There are two major factors that are important to the growth
of microorganisms: light intensity and nutrients. In the
ocean, the former comes from above (sunlight) and the
latter comes from below. At a certain depth, there is a
good balance between light intensity and nutrients, and the
density of certain microorganisms may be expected to be
high. In the ocean, such a region could be a thermocline, a
zone where seawater temperature drops rapidly. This sharp
change in temperature acts as natural barrier to nutrient

diffusion.
Given the hypothesis that marine microorganisms bloom

at a thermocline (a physically measurable phenomenon),
we focus on the detection and localization of a thermocline
in an underwater environment. We propose a decentral-
ized approach - distributed binary search - to localize a
thermocline using a wireless sensor actuator network. The
spatial gradient of temperature induces a scalar field over
all locations underwater. Formally a thermocline is a level
set of this field (a locus of points in the environment) with
the property that no other level set has a greater value.
In practice we look for a family of level sets whose field
values exceed some pre-specified threshold.

This paper presents two key achievements:

1) We describe an adaptive sampling algorithm based
on binary search for the network to reliably detect
a thermocline. The algorithm is based purely on
local communication, and has been implemented and
tested in experiments underwater.

2) We experimentally establish and characterize the
network energy savings due to the usage of a robot
submarine as a data mule for the sensor network.

II. THE ADAPTIVE SAMPLING ALGORITHM:
DISTRIBUTED BINARY SEARCH

Our goal is to develop an algorithm for sensor networks
working underwater where communication range is very
limited. Given the immense size of the ocean and the tiny
size of microorganisms, it is not practical to achieve high
sampling density by increasing the density of sensors. By
allowing the nodes to move, we can achieve high resolution
with significantly lower sensor density.

The basic idea of our approach is sampling by divide
and conquer. In this paper we address the problem in
one dimension, namely depth. Suppose we have n nodes
deployed in a vertical array where the topmost node is
connected to the external world (is an ’edge node’). Each
node has its own processor, memory, temperature sensor
and radio. However, the communication range is limited
and each node can only communicate with its nearby
nodes. Each node also has a pressure sensor. Since the
change of water pressure is linear in the change of depth,
by measuring the pressure around it, the node is able to
estimate its depth. We also assume that nodes are able to

change their depth. This can be achieved by change the
buoyancy of the node.

The search space is 1D, and is divided into regions.
Every node uses its ability to move to explore one such
regions. The process is refined by splitting regions into
halves i.e. binary search. Each node communicates with its
neighbors and tries to persuade them that the thermocline
lies within its search region. A process of data aggregation
is enacted on the route from each node to the user to
combine the conclusions (about the thermocline location)
arrived at by the various nodes.

A. Binary Search

Binary search is exploited to find local temperature
gradient maxima. At initialization, each node ni collects
temperature data at both end points of its search space,
i.e., the upper-most point and lower-most point. The tem-
perature and the depth at each point, tt, tb, pt and pb,
are noted. Then, the node changes its depth and moves to
pt+pb

2
, where it collects a new temperature reading t and

depth p. The new point divides the search space of node
ni into two parts, the upper part and the lower part. The
differences between the new reading and the two previous
readings are calculated.

∆tt = |tt − t| (1)

and
∆tb = |tb − t|. (2)

If ∆tt > ∆tb, the lower part is discarded, and tb, pb are
replaced by t, p. Otherwise, the upper part is discarded,
and tt, pt are replaced. The remaining part of the search
region is the new search region. This process is repeated
until termination conditions are satisfied (based on sensing
resolution).

B. Data Aggregation

Data Aggregation [9] is an important approach to im-
prove the energy efficiency for sensor networks, which is
critical if the sensor networks need to operate continuously
for a long time without human attendance. Instead of
sending raw data directly to users, some data processing is
done ’in network’, and only the processed data is sent back.
Normally, the size of the latter is much less than that of
the former. We define four messages for data aggregation:

BUILD-ROUTING-TREE
REGISTRATION
QUERY-MAX-GRADIENT
GRADIENT-REPORT

Messages BUILD-ROUTING-TREE and REGISTRA-
TION are used to temporarily build a tree expanding all
the nodes in the network. BUILD-ROUTING-TREE is
used to initialize the process while REGISTRATION is
used to build the tree. QUERY-MAX-GRADIENT is the
original query from the user and is used to query nodes on
maximum gradient. The last message is the most important,

and it is the basis of data aggregation. The format of
GRADIENT-REPORT is as follows:

typedef struct {
short pos;
short tempDiff;
short id;
short posDiff;
short temp;

} Gradient_t;

typedef struct {
char num;
Gradient_t gradients[MAX_NUM];
short discardThreshold;
short discardAreaSize;
short crc;

} ReportGradient;

This message indicates the maximum gradient
(tempDiff), its location (pos), the node who found
it (id) and current resolution (posDiff). MAX_NUM
defines the maximum number of max gradient one
message can report.

In our approach, before data aggregation starts, a rout-
ing tree needs to be built. On receiving an initialization
message from a user, one node, such as node A in
fig1(a), sends the message BUILD-ROUTING-TREE with
its own ID and the boundaries of its search space to
its neighbors to initialize the construction of the routing
tree. We assume that each node already knows its search
space and the reliable communication range under water
before run time. Any node receiving that message, for
example node B, would first check the maximum distance
between A and B. If the maximum distance is less than
the reliable communication range and B does not have
a parent, it sends the message REGISTRATION to node
A. If the message successfully reaches node A, node B
sets A as its parent. Otherwise, node B will wait for
another BUILD-ROUTING-TREE message. On receiving
the message REGISTRATION, node A would put node
B in its child list. Then node B forwards the message
BUILD-ROUTING-TREE to its own neighbors and waits
for REGISTRATION messages. If a node does not receive
any registration, it is a leaf. Finally, a tree is built and the
node which received the query from users would be the
root, as shown in fig1(b).

Though nodes are able to move, each of them moves just
within a small area, i.e. individual search space. The edge
of the routing tree only exists between two nodes between
which the maximum distance is less than the reliable
communication range. So, the movement of the nodes
would not affect routing tree, and hence the routing tree
would be valid throughout the execution of the algorithm.

Besides the parent id and child list, each node also
keeps three other variables: selectedChildList, ∆td,
and ∆pd. selectedChildList keeps the list of active
children. Together with ∆pd, ∆td define the maximum
temperature gradient discarded in the past. ∆td is initial-

A

B C

D E

F

(a)

A

B C

D E

F

(b)

A

B C

D E

F

(c)

Fig. 1. Different stage of Distributed Binary Search 1(a) The topology
of the sensor network, which demonstrates which nodes can communicate
with each other 1(b) The topology of the sensor network after the routing
tree has been built. The nodes without connection now would ignore the
messages from each other even if they actually can receive the message
from the other 1(c) After several steps, most nodes would be inactive,
and only the node within who may find the thermocline would remain
active.

ized to 0.
When a node in the network (say B) receives a query

message QUERY-MAX-GRADIENT, it forwards the mes-
sage to its children. At the same time, it starts the lo-
cal maximum gradient search. However, it just executes
one step, and then waits for responses from its children.
After it receives replies from its children, node B com-
pares the conclusions of its children and its own. The
reply from children has the format of MAX-GRADIENT-
REPORT. As mentioned above, the message has the field
discardThreshold and discardAreaSize, which
together provide the estimation of the greatest temperature
gradient discarded by this child or its children. Node B
first updates its own fields ∆pd and ∆td. If

∆td

∆pd

<
discardThreshold

discardAreaSize
(3)

it replaces ∆td and ∆pd with discardThreshold
and discardAreaSize. Then, node B updates its own
format based on the report from its children and its own
observation. The candidate thermoclines would be exam-
ined, including the one calculated by node B itself. Any
one whose gradient is less than ∆td

∆pd

would be discarded.
If the remained thermoclines are more than the report can
accommodate, those with the greater temperature gradient
will be kept. Then the report is sent to node B’s parent.

The reason to keep track of the maximum discarded
temperature gradient is to suppress unnecessary local max-
imum search and messaging. Suppose node B discarded a
subregion SB , where the estimated temperature gradient
is ∆pB . When node B discarded the subregion SB , it is
assumed that the area with estimated gradient ∆pB can not
be the area with global maximum gradient. So, any other
area with estimated gradient less than that can not have
the global maximum gradient, either, and it is safe to drop
those areas. In this way, many nodes will be suppressed and
become inactive. That is, they would stop local maximum
searching and negotiation. If they do not have to forward
messages from root to the active nodes, the inactive nodes
can go to sleep, saving energy.

After sending out the message GRADIENT-
REPORT to its parents, node B updates the variable

selectedChildList. If the data from a child of B
(say D) is actually forwarded by node B as part of its
report, node D would be on the list of selected children.
When a new query comes, node B would forward the
query to the selected children.

C. Overall Approach

The whole mechanism for thermocline detection is as
follows. When a user needs to locate the thermocline,
he sends an initialization command to any one of the
nodes. The node which receives the command broadcasts
the message BUILD-ROUTING-TREE, and begins to build
the routing tree. Finally, a tree is built with that node as
root. Then, every node will explore the upper-most point
and the lower-most point of its search regions to initialize
tt, pt, tb and pb. At this point the user can send the
query to find the thermocline. The root of the routing tree
will forward the message. Any node which receives this
query start a local binary searching and also forwards the
message to its children. On finishing one step of local
search, each node waits for its children to reply to the
query. By combining the reply from children and its own
data, each node sends its report to its parent. The node
would also keep track of the selected child list. Finally,
there is one report from the root to the user. This process is
repeated, every successive report has a better resolution on
the thermocline location than the previous one. When the
preset resolution is achieved, or there is no improvement
of the resolution, the algorithm stops.

D. Improvement with a Data Mule

After the first one or two steps of the distributed binary
search, most nodes become inactive. However, they have
to be awake if they are on the path from the active nodes
to the root of the routing tree since they are needed to
forward messages from the active node to the users. When
binary search is running, the nodes in the network can be
divided into three groups, as shown in 1(c). The nodes
labeled black are active nodes while the white ones are
inactive nodes and may go to sleep. The gray nodes are
the nodes which are not active but lie on the path from an
active node to the root. Those nodes must keep awake to
forward messages. If we can create a short cut from the
active nodes to the root, all other nodes can go to sleep,
and energy can be saved.

Because radio signals attenuate rapidly underwater, long
range communications may not be achieved by using radio.
One way to solve this problem is to use sound instead radio
for communication. Another way is to use a messenger, a
robotic node that can move itself autonomously. This robot
would move from the neighborhood of the root to the active
node, and forward the messages from one to another, thus
acting as a data mule. Motion consumes energy; but we
assume that a process exists to recharge the robot when it
surfaces, and do not analyze it further here. Given such a
process we ask if the introduction of a data mule reduces
energy consumption of the static network.

400 450 500 550 600

0

20

40

60

80

100

120

temperature

de
pt

h
(c

m
)

(a)

0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

100

120

gradient
de

pt
h

(c
m

)

(b)

−20 −10 0 10 20
0

5

10

15

Error (mm)

nu
m

be
r

(c)

Fig. 2. 2(a) simulated temperature profile 2(b) simulated temperature
gradient alone the depth and 2(c) the summary of 30 simulations with
different thermoclines. Y axis indicates the number of simulations, and
the X axis indicates the errors.

III. SIMULATIONS

In this section, we discuss the simulations of the dis-
tributed binary search. In our simulation, 4 nodes were
deployed alone one vertical line. Each node has the abilities
mentioned in section 2, such as communication, limited
mobility. The reliable communication range is set to be
70 cm, and the width of the search space of each node
is 30 cm. The temperature profile was simulated by the
following formula

T =
kT

1 + exp(kZ · (Z − Z0))
(4)

where T is temperature, Z is depth, Z0 is the center of
the thermocline and kT and kZ are scaling parameters. In
our simulation, kT and kZ are 200 and 0.02 respectively.
Fig 2(a) demonstrate the typical temperature profile and fig
2(b) demonstrates the temperature gradient versus depth.

At the beginning of each simulation, the 4 nodes are at
depth 0, 30, 60, and 90 cm and waiting for commands.
A client program start the algorithm by sending the query
messages to one of the 4 nodes. the simulation was repeated
30 times and each time we chose a different thermocline.
To be more specific, the center of the thermocline, Z0,
changed from 20 cm to 50 cm. We collect the estimated
depth of the thermocline and compare it with the actual
one, Z0. Fig 2(c) demonstrated the distribution of the
estimation errors.

From fig 2(c), we see that the errors of 50% estimations
were less than 5mm, and those of 90% estimations were

Nodes

Base
station

Water

Diver

(a)

Linear
Actuator

Node1

Node4

Node3

Node2 Tank

(b)

Fig. 3. (a) A schematic of the test bed and (b) The experimental test
bed

less than 15mm. Given the kT , kZ above, the maximum
gradient alone the depth is 1. When |Z − Z0| < 15,
the gradient is greater than 0.9778. That is, the gradient
difference is less than 2.22%. So, the error of ±15 is
acceptable.

IV. EXPERIMENTS

A. Experimental Setup

We have built an experimental test bed (fig 3) to vali-
date the distributed binary search algorithm. The test bed
consists of 5 Mica2 motes, one PC and one linear actuator
with controller.

Motes [6] were designed at UC Berkeley to provide a
platform for research on sensor networks. Mica2 is one
of the new versions, and it consists of an 8-bit atmel AT-
Mega128L microcontroller, 128k flash memory, CC1000
radio working at the frequency of 433MHz. Each mote
has seven 10-bit multiplex ADC channels. By attaching

different sensor boards, one mote is able to access different
sensors, such as light sensors, thermistors or accelerators.
Our test bed uses the basic sensorboard, which consists of
one light sensor and one thermistor.

The configuration of the test bed is shown in fig 3. Four
of the five motes are attached to a rigid tether, which
is, in turn, attached to the linear actuator. Each mote
can communicate with its neighbors over the radio, and
hence they compose a simple wireless sensor network.
However, no mote can talk to all other motes underwater
since the communication range of the radio reduces greatly
underwater. For example, the top mote can not send a
message to the bottom one directly. The fifth mote is the
base station, which serves as the bridge between the PC and
the sensor network. The PC is an interface between users
and the network. During the experiments, a client program
running on PC would start the algorithm and refine the
estimation of the thermocline by sending QUERY-MAX-
GRADIENT to the sensor network.

In section 2, we assumed that each node of the sensor
network has a pressure sensor to measure the depth. We
also assumed that each node has limited mobility. However,
in our test bed, none of those node has pressure sensor,
and it is obvious that all the nodes in the network share
one degree of freedom. To implement the distributed binary
search on our test bed, following methods are taken so that
our test bed can simulate the system mentioned previously.
When a node needs to move to a certain depth, it sends
the PC a message, Motion-Command, which indicates the
destination of the node. If this node is the only active
node, on receiving the message, PC would control the
linear actuator and move the node to that depth. After the
movement is done, a message would be sent from the PC to
the node to indicate that its requirement was fulfilled. We
name this message as Motion-Done. However, there may
be two or more active nodes. In this case, the Motion-
Command messages are put in a queue. The PC picks one
command from the queue each time, executes it and then
send Motion-Done message to the node which sent the
command.

The message Motion-Done contains information on cur-
rent position of linear actuator. Since all the nodes are
attached to the linear actuator, given the position of one
node on the linear actuator and the position of the linear
actuator, it is easy to compute the depth of the node. This
is the way how each node measure its depth.

To save energy, message Motion-Done is actually com-
bined with the message QUERY-MAX-GRADIENT, and
the message Motion-Command is combined with the mes-
sage GRADIENT-REPORT. In summary, the algorithm
implemented on the test bed goes in the following way:
After the routing tree is built, the client program send the
QUERY-MAX-GRADIENT, which contains the initial po-
sition of the linear actuator, to the sensor network through
the root of the routing tree. On receiving this message,
each node calculates its current depth. Then, every node
reads its thermistor and compute the gradient. After the
interaction among the nodes, the reports from some nodes

Fig. 4. Temperature profile drawn with the data collected by taking the
temperature readings every 30 mm

would arrive the PC. the client program would extract
current estimation of thermocline from those messages. It
also collects the Motion-Commands of those nodes and
put them in the queue. After the PC executes the first
Motion-Command, it would send the another QUERY-
MAX-GRADIENT message to corresponding node. On
receiving this message, the node calculates its current
depth, and proceed one more step of the algorithm. When
PC receive the message GRADIENT-REPORT from this
node, it append the extracted destination to the rear of the
queue, and execute the Motion-Command at the front of
the queue.

Our algorithm is implemented atop TinyOS [6] and
SMAC [13]. TinyOS is the operating system developed
for motes; it provides a task scheduler as well as an API
to the hardware, such as radio and ADC. SMAC is an
implementation of radio stack [13]. With SMAC, the radio
is put to sleep automatically, and the size of the message
can be varied. All the experiments were carried in a tank
filled with water. A thermocline was created by a heater
in the tank. The heater was put in the water just beneath
the surface so that water temperature is not constant along
depth. As shown in fig 4, at depths between 200mm
and 400mm, the temperature dropped rapidly, which is a
thermocline.

B. Experimental Results

First, we conducted a series of experiments to test
whether the distributed binary search is able to reliably
localize the thermocline in the tank. 24 experiments were
carried, and fig 5 shows the results of 4 of those experi-
ments.

In each picture, the experimental results are shown as
four curves with error bars. Each curve corresponds to one
node. At each step of the binary search, every active node
reports back where it believes the thermocline is, and the
width of the thermocline. Each point on the curve is a
candidate location of a thermocline and the associated error
bar is the reported width. Inactive nodes do not report, and

0 1 2 3 4 5 6 7

0

200

400

600

800

1000

1200

steps

de
pt

h
(m

m
)

(a)

500 550 600 650

0

200

400

600

800

1000

1200

thermistor reading

de
pt

h
(m

m
)

(b)

0 2 4 6 8

0

200

400

600

800

1000

1200

steps

de
pt

h
(m

m
)

(c)

500 550 600 650

0

200

400

600

800

1000

1200

thermistor reading

de
pt

h
(m

m
)

(d)

0 2 4 6 8

0

200

400

600

800

1000

1200

steps

de
pt

h
(m

m
)

(e)

500 550 600 650

0

200

400

600

800

1000

1200

thermistor reading

de
pt

h
(m

m
)

(f)

0 2 4 6 8

0

200

400

600

800

1000

1200

steps

de
pt

h
(m

m
)

(g)

500 550 600 650

0

200

400

600

800

1000

1200

thermistor reading

de
pt

h
(m

m
)

(h)

Fig. 5. Results of 4 experiments. The figures on the left are the output
of the distributed binary search, and the figures on the right demonstrate
the corresponding temperature profile.

hence the corresponding curves terminate. At the beginning
of the process, every node is active, and all of them report
back. In addition, all nodes initially report the width of
thermocline as that of its search space. After the first step,
only 2 nodes are active. That is why there are 4 curves
at the beginning, but only 2 curves left after the first step.
Those 2 nodes would continue competing with each other
until one of them becomes inactive or resolution reaches
the preset threshold. The former case means that all the
nodes in the network agreed that the thermocline is within
the search space of only the active node. For example, in all
of the four experimental trials shown, all the nodes finally
agreed that the thermocline is within the search space of
node 1. Depending on the temperature profile, the steps
needed by the node to reach that agreement may vary. For
example, it took the nodes 3 steps in the experiment carried

out at 5(c), while it only took 2 steps in other experiments.

C. Improvement with a Robotic Data Mule

As discussed in section 2, a data mule can create a short
cut from the base station to the active nodes. A series of
experiments were conducted to measure the energy saved
by using a data mule.

A robotic mote-based submarine (6) was developed in
our lab [1], and it was used in our test bed as a data mule.
The submarine is composed of a plastic container, a linear
actuator controlling a cylinder, a pressure sensor and a
Mica2 mote. The mote measures the pressure reading and
controls the linear actuator. By changing position of the
piston in the cylinder, the mote can change the buoyancy
and hence can move the submarine up or down. The
submarine is capable of depth regulation.

In sensor networks, the majority of the energy is actually
consumed by the radio. According to the data sheet of
Mica2, the current draw for full mode cpu is 8 mA
while that for sending message is 27 mA. Therefore, the
number of messages passed between nodes indicates the
energy consumption, and hence indicates the life of the
sensor network. We counted the number of messages sent
and received by each nodes in two scenarios. In one
scenario, the settings of the experiments are the same as the
experiments described in the previous section. In another
scenario, the data mule was used to reduce the number of
messages exchanged.

Table 1 shows the experiments results. The experiment
with the data mule was repeated 3 times and the numbers
shown in the table are averages. The last row of the table
shows the number of messages broadcasted, which are not
counted as the received messages of individual nodes.

From the data we collected, it is obvious that the data
mule reduced the number of messages exchanged between
nodes, and hence saved the energy consumed. Most of
the messages reduced belong to node 3 or node 4. In our
experiments, node 4 is the node that is closest to the base
station, and it is able to communicate with the base station
directly. Node 2 and node 3 can communicate with node 4
directly but node 1 need node 3 to forward the messages
to node 4. The thermocline is within the search space of
node 1, and node 1 is the active node throughout the whole
experiment. When there is no data mule, all the messages
from and to node 1 must go though node 3 and node
4. So, in the first scenario, node 3 and node 4 sent and
received lots of messages. When the data mule is used, a
short cut was created between the base station and node 1.
In this case, node 3 and node 4 did not send or receive any
messages after the first step, when they became inactive.
Finally, the messages sent and received by them reduced
to almost half compared to the previous scenario.

V. DISCUSSION

A. Interpreting the Experimental Results

In the experiments described above, the outputs of the
distributed binary search are all from one node. However,
this may not always happen. In certain cases, more than one

(a) (b)

Fig. 6. The robotic mote-based submarine

TABLE I
NUMBER OF MESSAGES EXCHANGED

No Data Mule Used One Data Mule Used
Nsent Nreceived Nsent Nreceived

Node1 9 8 9.33 8
Node2 4 8 8 11.67

Node3 14 23 3.67 8.33
Node4 28 26 18 16.67

Data Mule NA NA 8 11.33
Base Station 10 12 9 11.33

All N/A 12 N/A 12.33

node may report even if the resolution limit is reached, or
the difference between estimated gradient of the two sub-
search space is so small that the nodes can not distinguish
them with their 10-bit ADC. For example, in the simulation
where Z0 = 300, both GRADIENT-REPORT messages
from node 1 and node 2 keep reaching basestation till the
end of the algorithm.

There are two interpretations for the case when more
than one node reports at the end of the algorithm. The first
interpretation is that there are more than one thermocline
and their gradient values are almost the same. In that
case, the nodes which reported are likely located far from
each other, and the reported areas are not adjacent to each
other. The other interpretation is that the thermocline is
at the border to adjacent search areas. The simulation
mentioned above is one example. In that case, those areas
are adjacent to each other. With a clustering algorithm, this
interpretation can be done automatically.

B. Analysis of the Number of Message Exchanged

If we assume that all the nodes in the network are
attached to one rod, and each node can only exchange
messages with its immediate neighbors, then the number
of messages exchanged between nodes can be calculated.

During the initialization phase, BUILDING-ROUTING-
TREE and INITIALIZATION need to be injected into
the network. Those two messages flood the network, and
any node receiving them forwards them. Additionally,

each node which gets the BUILDING-ROUTING-TREE
message needs to send at least one REGISTRATION
message. One exception is the node connected directly
to base station, and that node does not send the message
REGISTRATION. In our test bed, the PC needs to inform
each node of its position and hence 2 messages are injected,
one for the uppermost point and one for the lowermost
point. During the initialization phase, the node need to
move itself twice, the top position and bottom position,
and 2 messages would be sent from nodes to the PC. So,
during the initialization phase, each node, other than the
one that communicates to the base station directly, would
send 2 + 2 + 2 = 6 messages.

Next we consider the binary search phase. At each step,
one message informing node position is sent from the
base station to active nodes and one MAX-GRADIENT-
REPORT would be sent from the active nodes to the base
station. If there is no data mule, every message is sent
multi-hop. Those nodes between the active nodes and base
station would receive and send 2 messages at each step. An
active node would only receive one and send one message
if it is not on the path from other active nodes to the base
station. Those inactive nodes not on the path do not have
to receive or send any message. So, the nodes which need
to forward messages between its children and its parent
would send and receive most messages. If we assume that
before the end of binary search, m nodes were selected as
active nodes, and the i-th active node reported ki times.
The max number of messages sent and received by one
node are

Nreceived = 6 +
m∑

i

2ki (5)

Nsent = 6 +
m∑

i

2ki (6)

If there is a data mule, one short cut would be created
between the active nodes and the base station. In this
case, there are no nodes except the messenger on the
path between the active nodes and the base station, and
the nodes that would send and receive most messages are
the active nodes. Because those nodes would send and
receive one message at each step, the maximum number
of messages sent and received by one node are

Nreceived = 6 + k (7)

Nsent = 6 + k (8)

where k = max(k1, k2, ..., km). Therefore, the data
mule reduce the number of messages exchanged between
nodes. The longer the system runs, the more the active
nodes, the more messages reduced by the data mule, and
the more energy saved. We reiterate that this does not imply
a net savings in energy - after all the data mule needs to
be recharged from time to time. However we believe this
is desirable (easier logistically to charge one robot instead
of many nodes).

VI. RELATED WORK

The problem most similar to the one studied here is
edge detection, which has been studied for decades in
the computer vision [5] community. Several approaches
have been developed. However, given the density of the
samples in images and without the constraint of energy
consumption, gradient of any point can be calculate easily
and the resolution is high.

Another similar problem, tracking chemical plumes, has
been studied by [8]. A dual-space approach has been
proposed to estimate the boundary of the chemical plumes.
However, that approach is a centralized algorithm and all
the node need to send the raw data to a computer before
the algorithm can be executed.

Recently, [3] proposed three approaches for edge de-
tection using a sensor network. The first approach is a
statistical approach while the other two are based on a
high pass filter and a classifier respectively. In all three
approaches, each sensor gathers information from its neigh-
bors, and independently determine whether it is on the edge
of an event. One assumption taken by all those approaches
is that every node in the network is able to detect a
given event just by its own sensor reading. Unfortunately,
this assumption is not always true. For example, in the
case of thermocline localization, it is impossible to define
high temperature and low temperature since they may
corresponds to the same thermistor reading in different
places.

An approach based on hierarchical structure of “clus-
terheads” was proposed by [11] to estimate the bound-
ary. With the hierarchical structure, fine resolution would
be achieved alone the boundary, while the resolutions
in homogeneous regions are coarse. However, with all
the sensors static, the resolution of the boundary is still
bounded by the density of sensors.

Data aggregation used in this paper is a well known
method in sensor networking to reduce energy consump-
tion. The idea of building a routing tree is due to the
TinyDB work [9]. However, no history information was
kept in TinyDB, and every query is flooded throughout the
whole network. This is not an efficient way to locate a
thermocline. So, we exploited the idea to keep historical
information and only forward the query to the nodes which
have the potential to affect the results. This is similar to
the reinforcement on the path from source to sink used in
Directed Diffusion [7].

VII. CONCLUSION AND FUTURE WORK

We have described an adaptive sampling algorithm based
on binary search for the network to reliably detect a
thermocline. The algorithm is based purely on local com-
munication, and has been implemented and tested in ex-
periments underwater. We have experimentally established
and characterized the network energy savings due to the
usage of a robot submarine as a data mule for the sensor
network.

A limitation of the present approach is that it assumes
a static thermocline. This is not unreasonable, since the

thermocline created in the tank moves gradually (over a
period of a few hours). However, after the thermocline
moves, the whole algorithm needs to be executed again to
re-locate it. We are working on a revised implementation
of the algorithm, which would track the change of the
thermocline with only a few relevant nodes involved. We
are also working on extending the algorithm to generalized
3D sensor networks.

ACKNOWLEDGMENT

The authors thank Carl Oberg, Vitaly Bokser and Gaurav
Sharma for their help with the test bed and Prof. David
Caron and Beth Stauffer for their comments. This work
is funded in part by grants CCR-0120778, EIA-0121141,
IIS-0133947 from the National Science Foundation.

REFERENCES

[1] V. Bokser, C. Oberg and G. Sukhatme, and A. Requicha. A Small
Submarine Robot for Experiments in Underwater Sensor Networks
International Federation of Automatic Control Symposium on Intel-
ligent Autonomous Vehicles, November, 2004.

[2] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton and J. Zhao.
Habitat Monitoring: Application Driver for Wireless Communications
Technology. 2001 ACM SIGCOMM Workshop on Data Communica-
tions in Latin America and the Caribbean, Costa Rica, April 2001.

[3] K. Chintalapudi and R. Govindan. Localized Edge Detection in
Sensor Fields. In IEEE Sensor Network Protocols and Applicatons
Workshop, May 2003.

[4] K. A. Delin and S. P. Jackson. Sensor Web for In Situ Exploration
of Gaseous Biosignatures. In Proceedings of IEEE Aerospace Con-
ference, March, 2000.

[5] D. A. Forsyth and J. Ponce, Computer Vision: A Modern Ap-
proach,2nd ed, Prentice Hall, 2003.

[6] J. Hill, R. Szewezyk, A. Woo, S. Hollar, V. Culler, K. Pister. System
Architecture Directions for Network Sensors. In Proceedings of the
0th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS-IX), Cambridge,
MA, Nov, 2000.

[7] C. Intanagonwiwa, R. Govindan and D. Estrin. Directed Diffusion: A
Scalable and Robust Communication Paradigm for Sensor Networks.
In Proceedings of the Sixth Annual International Conference on
Mobile Computing and Networks (MobiCOM 2000), Boston,
Massachusetts, August 2000.

[8] J. Liu, P. Cheung, L. Guibas and F. Zhao, A Dual-Space Approach
to Tracking and sensor Management in Wireless Sensor Networks,
Palo Alto Research Center Technical Report P2002-10077, March,
2002.

[9] S. Madden, R. Szewczyk, M. J. Franklin and D. Culler, Supporting
Aggregate Queries Over Ad-Hoc Wireless Sensor Networks. 4th
IEEE Workshop on Mobile Computing Systems and Applications,
Callicoon, NY, June 2002

[10] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, J. Anderson.
Wireless Sensor Networks for Habitat Monitoring. In the 2002 ACM
International Workshop on Wireless Sensor Networks and Applica-
tions, WSNA ’02, Atlanta GA, September 28, 2002.

[11] R. Nowak and U. Mitra. Boundary Estimation in Sensor Networks:
Theory and and Methods. In Second International Workshop on
Information Processing in Sensor Networks (IPSN), 2003.

[12] G. S. Sukhatme, D. Estrin, D. Caron, M. Mataric and A. Requicha.
Proposed Approach for Combining Distributed Sensing, Robotic
Sampling, and Offline Analysis for in situ Marine Monitoring. In
Proc. Advanced Environmental and Chemical Sensing Technology -
SPIE 2000, Vol, 4205 Boston, November 6-8 2000.

[13] W. Ye, J. Heidemann and D. Estrin. Sensor-MAC (S-MAC):
Medium Access Control for Wireless Sensor Networks. In Proceed-
ings of the 21st International Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM 2002), New
York, NY, USA, June, 2002.

