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Abstract—We present a deterministic channel model = The multiuser Gaussian channel model is the standard
which captures several key features of multiuser wireless one used in information theory to capture these two
communication. We consider a model for a wireless net- effects: signals get attenuated by complex gains and
work with nodes connected by such.detlerministic channels added together with Gaussian noise at each receiver (the
, and present an exact characterization of the end-to- o ,oqian noises at different receivers being independent
end capacity when there is a single source and a single .
destination and an arbitrary number of relay nodes. This of each other.). Unfortunately, except for t.he simplest
result is a natural generalization of the max-flow min- N€WOrks such as the one-to-many Gaussian broadcast
cut theorem for wireline networks. Finally to demonstrate channel and the many-to-one Gaussian multiple access
the connections between deterministic model and Gaussianchannel, the capacity region of most Gaussian networks
model, we look at two examples: the single-relay channel is unknown. For example, even the capacity of the
and the diamond network. We show that in each of simplest Gaussian relay network, with a single source,

these two examples, the capacity-achieving scheme in thesingle destination and single relay, is an open question.

corresponding deterministic model naturally suggests a To make further progress, in this paper we present
scheme in the Gaussian model that is within 1 bit and . ’ S .

2 bit respectively from cut-set upper bound, for all values a. new multiuser channel model which '_S analytically
of the channel gains. This is the first part of a two-part Simpler than Gaussian models but yet still captures the
paper; the sequel [1] will focus on the proof of the max- two key features of wireless communication of broadcast

flow min-cut theorem of a class of deterministic networks and superposition. The key feature of this model is that

of which our model is a special case. the channels ardeterministic the signal received at a
node in the network is a (deterministic) function of the
|. INTRODUCTION transmitted signals. This model is a good approximation

nﬁ)—f the corresponding multiuser Gaussian model under
two assumptions that are quite common in many wireless

. . . communication scenarios:
« first, the broadcastnature of wireless communica-

tion; wireless users communicate over the air and® the additive noise at each receiver is small ComparEd
signals from any one transmitter is heard by multi- to the strength of the signals received from the
ple nodes with possibly different signal strengths.  transmitters (high SNR regime)

. second, thesuperpositionnature; a wireless node e the signals from different nodes in the network
receives signals from multiple simultaneously trans- ~ ¢an be received at very different power at a given
mitting nodes, with the received signals all super- receiver (high dynamic range of received signals)

imposed on top of each other. Essentially, this class of deterministic models allow us
Because of these two effects, links in a wireless net focus on the interaction between the signals transmit-
work are never isolated but instead interact in seemingd from the different nodes of the network rather than
complex ways. This is quite unlike the wired worldhe noise. In this paper we first introduce and motivate
where each transmitter-receiver pair can often be thoughé deterministic model through three basic examples:
of as isolated point-to-point links. point-to-point, broadcast and multiple-access channels.

Two fundamental features distinguish wireless co
munication from wireline communication:



Then we consider a network with a single source amd binary expansions af andz. For simplicity assume
a single destination but with arbitrary number of relay and z are real numbers, then we have

nodes, all connected by such deterministic channels. oo oo
The cut-set bound on the end-to-end capacity of such  , — 2§1ogSNRZ$(Z~)2—i + Z ()27 (4)
networks can actually be achieved, the proof of which i—1

can be found in the sequel [1]. Finally to demon- . . .
strate the connections bet(\quen[d]eterminiitic model QL%S|mpI|fy the effect of background noise assume ithas
Gaussian model, we look at two examples: The sing&f'epeak power equal to 1. Then we can write

relay channel and the Diamond network. We show that . 0 > ‘

the capacity-achieving schemes in the corresponding ¥ = 22"°85"R> 2(i)27" +> z(i)27"  (5)
deterministic model naturally suggest schemes whose =1 =1

performance is "close” to the cut-set upper bound in thog,

Gaussian model. More specifically, we show that in the n 0o

single-relay network, the gap is at most 1 bit/s/Hz, and ; ~ 2» Zw(i)2_i + Z (z(i+n)+2() 27" (6)

in the Diamond network, the gap is at most 2 bit/s/Hz. i1 i—1

The gaps hold forll values of the channel gains and
are relevant particularly when the SNR is high and t
capacity is large.

1=—00

heren = [4logSNR]. Therefore if we just ignore
the 1 bit of the carry-over from the second summa-
tion 0_52, (z(i +n) + 2(i)) 277) to the first summation
[I. A DETERMINISTIC MODEL FORWIRELESS (2" > x(i)27") we can intuitively model a point-
NETWORKS to-point Gaussian channel as a pipe that truncates the
| transmitted signal and only passes the bits that are above
oise level. Therefore think of transmitted signalas
sequence of bits at different signal levels, with the
highest signal level in: being the most significant bit
MSB) and the lowest level being the least significant bit
2) Broqdcast Channel (BC) ELSB)). In this simplified model t%e receiver (?an see the
3) Multiple access channel (MAC) n most significant bits oft without any noise and the

Through each example we will discuss how the proposggkt are not seen at all. Clearly there is a correspondence
deterministic model captures the fundamental aspectshween, andSNR in dB scale

wireless channels.

In this section we introduce adeterministic mode
for wireless networks. First we motivate this model b
looking at the following three examples:

1) Point-to-point channel

A. Point-to-Point n > [log SNK] ()
Consider an AWGN channel, note that a factor ot is needed in the case of AWGN
channel with real signals rather than complex signals. As
y=hr+z (1) we notice in this simplified model there is no background

. noise any more and hence we call itd@terministic
where z ~ CN(0,1). There is also an average power L - .

: 9 . ; model Pictorially the deterministic model corresponding
constraintE[|z|°] < 1 at the transmitter. In this paper.

. . : to the AWGN channel is shown in figure 1. In this figure
we normalize both transmit power and noise power to b? . :

. . . . art the transmitter there are several small circles. Each
equal to 1 and capture the signal-to-noise ra®iNR) in

terms of channel gains. So we modeds afixednumber circle represeqts a signal Ievel_ and a binary digit can be
representing the channel gain, hence put for transmission at each signal Igve_l. Depending on
n, which represents the channel gain in dB scale, the
h = VSNR (2) transmitted bits at first signal levels will be received
clearly at the destination. However the bits at other signal
It is well known that the capacity of this point-to-poinfeyels will not go through the channel. In analogy to
channel is the AWGN channel the first bits are those that are
Cawen = log (1 + SNR) 3) above noise level and the remaining are the ones that
are below noise level. Therefore if transmit signal,is
To get an intuitive understanding of this capacity formula binary vector of lengthy, then deterministic channel
lets write the received signal in equation (%),in terms only delivers its firstn elements to the destination. We



can algebraically write this input-output relationship bgne bit per user of each othere( if a pair (R;, R) is
shifting x down by g — n elements or more precisely in the capacity region of the deterministic BC then there
_ga-n g is a pair within one bit per component 6R;, R2) that
Y= X (8) is in the capacity region of the Gaussian BC).
wherex andy are binary vectors of length denoting

transmit and received signals respectively &ds the C. Multiple Access Channel (MAC):

q % ¢ shift matrix, Consider a two user Gaussian MAC channel:
0 0 0 0 y = hixy + hawy + 2 (12)
1 0 0 --- 0 _
s—|[o 1 0o -0 ©) where z ~ CN(0,1). There is also an average power
N _— _ o constraint equal to 1 at both transmitters. The channel
) ' ' o gains are
0 - 010 hi = /SNR;, i=1,2 (13)

Clearly the capacity of this deterministic point-to- ,
point channel is Without loss of generality assung\NR, < SNR;. The

(10) capacity region of this channel is well-known to be the
set of non-negative pairdR;, Ry) satisfying
wheren = [log SNR]. It is interesting to note that this

Cdet=n

is a within-one-bit approximation of the capacity of the R; < log(1+SNR;), i=1,2 (14)
AWGN channel. R;+ Ry < log(l+ SNR; + SNRy) (15)
B. Broadcast Channel (BC): This region is plotted with solid line in figure 3 (b).

Lol : o : _ To intuitively understand what happens in a Gaussian
Based qn the intuition o_bFal_ned sofar, itis stra|ghtf_orMAC channel we write the received signal, in terms
ward to think of a deterministic model for the Gaussiagf the binary expansions af;, 25 andz. For simplicity

broadcast channel. Assume there are only two receiveassumer,, 2 andz are all real numbers, then we have
The receivedSNR at receiver; is denoted bySNR; for . . o

i = 1,2. Without loss of generality assunBNRy < v =22"% Y gy ()27 422 W2 370 (2774 3 2027
SNR;. Consider the binary expansion of the transmitted =t =t T (1e)
signal, x. Then we can deterministically model theTo simplify the effect of background noise assume it
Gaussian BC channel as the following has a peak power equal to 1. Then we can write

« Receiver 2 (weak user) receives only the first L logSNR) SR i oL logSNRy R o o
bits in the binary expansion af. Those bits are the ¥ = > m(i)27' 422 D w27+ 2(0)2

i=1 i=1 i=1

')

ones that arrive above noise level 17)
« Receiver 1 (strong user) receives the firgt(n; > O
n9) bits in the binary expansion af. Clearly these nLne » 2 »
bits contain what receiver 1 gets y o~ 20 Zl ()27 427 Zl (@1(i+ 1 —na2) +a2(0)) 27
Pictorially the deterministic model for a Gaussian BC < Z _
channel is shown in figure 2 (a). In this particular exam- > (#1(i+n1) +22(i +n2) + 2(1)) 2" (18)

i=1

ple ny =5 andny = 2, therefore both users receive the
first two most significant bits of the transmitted signalwheren; = (% log SNR; | for i = 1,2. Therefore based
However user 1 (strong user) receives additional thres the intuition obtained from the point-to-point AWGN
bits from the next three signal levels of the transmitteehannel, we can approximately model a MAC channel
signal. There is also the same correspondence betwasrfollows

n and channel gains in dB, o That part ofz; that is aboveSNRy (z1(7), 1 <i <
ni o [log SNR;], i=1,2 (11) ?ré;n;) is received clearly without any interference
2

To understand how closely we are modeling the Gaussian The remaining part of; that is above noise level
BC channel, the capacity region of Gaussian BC channel (z1(i), n1 —n2 < i < n;) and that part ofe, that is
and deterministic BC channel are shown in figure 2 (b). above noise level; (i), 1 < i < ny) interact with
In fact it is easy to verify that these regions are within  each other and received without any noise



Fig. 1. Pictorial representation of the deterministic mdde point-to-point channel
Ro
n1

n2<|

log(1 + SNR2 )|

$n2 -~ Ry
log(1 4+ SNRp) nq

(a) Pictorial representation of (b) Capacity region of Gaussian BC channel (solid line).
the deterministic model for Capacity region of deterministic BC channel (dashed
Gaussian BC line)

Fig. 2. Pictorial representation of the deterministic mdde Gaussian BC is shown in (a). Capacity region of Gaussiath deterministic
BC are shown in (b)

« Those parts of; andz, that are below noise level same signal level at the receiver. However, we limit the
are truncated and not received at all receiver to only observe the modulo 2 summation of

The key point is how to model the interaction betweeiose bits that arrive at the same signal level. In some
the bits that are received at the same signal level. In dignse this way of modeling interaction is similar to the
deterministic model we ignore the carry-over's of the regpllision model. In the collision model if two packets

addition and we model the interaction by the modul@rive simultaneously at a receiver both are dropped,
2 sum of the bits that are arrived at the same sigrimilarly here if two bits arrive simultaneously at the

level. Pictorially the deterministic model for a Gaussiag@ame signal level the receiver gets only their modulo 2
MAC channel is shown in figure 3 (a). Analogous to theum, which means it can not figure out any of them. On

deterministic model for the point-to-point channel, wéhe other hand, unlike in the simplistic collision model
can write where the entire packet is lost when there is collision, the

y = S97 My, ¢ S9Nk, (19) most significant bits of the stronger user remain intact.
This is reminiscent of the familiacapturephenomenon

in CDMA systems: the strongest user can be heard even
when multiple users simultaneously transmit.

Now a natural question is how close is the determin-
istic model to the actual Gaussian model. To answer
this question we look at the capacity region of the
n; < [logSNR;], i=1,2 (20) deterministic MAC. It is easy to verify that the capacity

. _ region of the deterministic MAC is the set of non-
Note that if one wants to make a connection betwe% gative pairg Ry, Ry) satisfying

the deterministic model and real Gaussian MAC channe
(rather than complex) a factor (%f iS necessary.

Now compared to simple point-to-point case we now Ry
have interaction between the digits that receive at the R+ Ry

where the summation is iff', (modulo 2). Herex;
( =1,2) andy are binary vectors of lengtia denoting
transmit and received signals respectively 8nd ag x ¢
shift matrix. There is also a relationship betwegls and
the channel gain in dB:

no (21)

<
< m (22)
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(a) Pictorial representation of the (b) Capacity region of Gaussian MAC. (solid line).
deterministic MAC. Capacity region of deterministic MAC.(dashed line)

Fig. 3. Pictorial representation of the deterministic MACshown in (a). Capacity region of Gaussian and deterniniACs are shown
in (b)

wheren; = log SNR; for i = 1,2. This region is plotted ¢ = max; j(n; ;). The received signal at each node is
with dashed line in figure 3 (b). In this deterministi@ deterministic function of the transmitted signals at the
model the "carry-over” from one level to the next thadther nodes, with the following input-output relation: if
would happen with real addition is ignored. However abe nodes in the network transn¥ [¢], x2[t], . . . xn[t]

we notice still the capacity region is very close to ththen the received signal at nodelj< j < N is:

capacity region of the Gaussian model. In fact it is easy
to verify that they are within one bit per user of each ,
other {.e. if a pair (Ry, Ry) is in the capacity region of yilt] = > ST xil]
the deterministic MAC then there is a pair within one =1

bit per component of Ry, Rs) that is in the capacity for all 1 < k¥ < N and the summation and multiplication
region of the Gaussian MAC). The intuitive explanatiois in 5.

for this is that in real addition once two bounded signals The deterministic wireless network can be represented
are added together the magnitude increases howeygdtorially and an example is illustrated in Figure 4.

it can only become as large as twice the maximum

size of individual ones. Therefore the cardinality sizg. Related Works

of summation is increased by at most one bit. On the = .
other hand in finite-field addition there is no magnitude Finite field addition makes the model much more
associated with signals and the summation is still in tigctable, and neglecting the 1-bit carryover from one
same field size as the individual signals. So the g el to the next introduce a small error when the SNR is

between Gaussian and deterministic model for two us@ h. Other works [2] have also exploited the simplicity
MAC is intuitively this one bit of cardinality increase. of finite-field addition over real addition. Aref [3] is one
of the earliest works that use deterministic models for

D. The Deterministic Model for General Networks  relay networks, and for which he proved a capacity result

At this point we are ready to explicitly introduce thdor the single-source-single-destination case. However,
deterministic model for general wireless relay networkBis model only captures the broadcast aspect but not the
We model a wireless network as a set of node¥, Superposition aspect. This work was later extended to
where|V| = the multicast setting by Ratnaker and Kramer [4]. Aref

Communlcatlon from nodé to nodej has a non- and El Gamal [5] also computed the capacity of the
negative integer gainn () associated with it. This semi-determinstic relay channel but only with a single
number models the channel gain in a correspondif@fay- Gupta et al [6] also uses finite-field deterministic

Gaussian setting. At each time nodei transmits a addition to model the superposition property, but they do
vectorx;[t] € F and receive a vectoy;[t] € F§ where Not have the notion of signal scale and the channel as

sending some of the signal scales to below noise level.
1Some channels may have zero gain. Instead they use random erasures to model noise.

N
(23)



Fig. 4. Pictorial representation of Deterministic relaywark

I1l. SINGLE-SOURCE, SINGLE-DESTINATION Lemma 3.2:The capacityC of any deterministic
NETWORK AND ITS CAPACITY wireless networkG is upper bounded by
Given the deterministic model of Section II, we study C < minrank(Gg o) (25)
the information flow for a single source-destination net- @
work (unicast). Proof: From the cut-set upper bound theorem [7]
First we derive the cut-set upper bound on the capacig have
of this network. C < max minl ({z;|i € Q¥ {y;|j € Q}{aili € Q°
. < H{yili € @ {aili € Q%)
Definition 3.1: A cut, © in the deterministic relay P(a1,enn) ' ! '

network G with two distinguished vertices: the source, L ,(26)_

S, and the destination], is a split of the vertices into Since the channels are deterministic we can write this as

two disjoint set€2 andQ¢, suchthatS € QandD € Q°. ¢ < max minH ({{y;17 € QH{xili € Q°}) (27)

For any cut2 we defineG, . as the incidence matrix P10 zn) Q2

associated with the bipartite graph with the small nodé®w note that each of these conditional entropies is

of Q on the left side and the small nodes(@f on the at most equal to the dimension of the range space of

right side and with all edges going from small nodes afie transfer matrix associated with that cut, achieved

2 to small nodes of2 based on the equation describedthen the conditional output is uniformly distributed

in (23). For example in Figure 4 consider the €uthat over its possible values. Now by properties of finite-

separate$§) = {S, Ay, Ap} from Q¢ = { By, By, D} then field arithmetic, this can be simultaneously achieved for

G - is just the incidence matrix of the bipartite graplall conditional entropies by choosing independent and

between the small nodes ofy and A, and the small uniform distribution ofz;’s in F3. Hence, the cut-set

nodes onB; and B,. Therefore bound can be expressed in terms of the minimum rank
of the transfer matrices associated with the cuts. B

000 0O0O0O0UO0O 0O Now the following main theorem states that the ca-
0000000000 pacity of the wireless deterministic network is equal to
1000000000 its cut-set bound
01 00010000 Its cut-set bound. -~ - o
001 000100 0 Theorem 3.3:If G is a deterministic wireless network
Gaoc=1 090900000000 @4 the cooperative capacity of this network froghto D
0000000000 denoted byC' is equal to
000 0O0T1UO0U0O00
000 0O0O0T1O0TUO0O C = mi k(Go o 28
1 000000100 g ran (Gaa:) (28)
_ _ _ where the minimum is taken over all cuts Gh
Equivalently, G- is the transfer matrix from the  proof: The proof of this result can be found in the
super vector of all signals transmitted on the nodef insequel [1] to this paper. m

to the vector of all received signals on the node$Xin  For the example shown in Figure 4 the theorem states
Now based on the cut-set bound theorem [7] we havBat the capacity of this wireless deterministic network



is equal to5 which is the value of the cut witlf2 = relay and then to the destination. This suggests a decode-
{S,A:} and Q¢ = { Ao, By, B2, D}. Note that there are and-forward scheme for the original Gaussian relay
several other tight cuts such & = {S} and Q¢ = channel. If|hsr| < |hsp| then the relay is ignored and
{A;, A, By, By, D}. a communication rate equal ® = log(1 + |hspl|?) is

For wireline networks with unit-capacity edges, thachievable. Ifihsr| > |hsp| the problem becomes more
classic max-flow min-cut theorem says that the maxnteresting. In this case we can think of a decode-forward
mum achievable rate from source to destination is equsheme as described in [10]. Then by using a block-
to the minimum of the values of the cuts, where the validarkov encoding scheme the following communication
of a cut is the number of edges crossing it. Theorerate is achievable:

3.3 can be viewed as an analogy of this result for | 9 9 9
our deterministic model, with the cut value being the" ~ ™™ (log (1 + |hsrl") log (1 + [hspl” + |hRD(|BB

rank of the transfer matrix. In fact, both the wireline{ f Il the followi teis al hievable:
model and our deterministic model are special cases o Iaere ore overaflne foflowing rate 1S always achievable-
more general class of linear deterministic models, where Ror = max{log(1 + |hsp|?),
the matrix S97™<5 in equation (23) is replaced by a_ . 2 2 2

) k ) - og (1+1h ,og (14 |h + |h 32
general binary matrixGy ;. The analysis of this class ( g( sl ) g( _ Ihspl” + hrol _))}( )
of model is the focus of [1], and the main result therdow we show that the achievable rate of this commu-

is a generalization of both the classic max-flow min—c@caﬂg”fsﬁheme is ‘I’(Vi]fhi” I?nﬁ bit ‘?f the cut-sdet upper
theorem and Theorem 3.3, ound of this network for all channel gains. To do so we

should compare this achievable rate by the cut-set upper
IV. CONNECTIONS TOGAUSSIAN RELAY NETwoRks Pound on the capacity of the Gaussian relay network,

In this section we will discuss some connections bé* < C = maxmin{log (1 + (1 — p*)(|hsp|> + |hsr|*)),
tween the deterministic model and the Gaussian model. = ) )
We will look at two examples of Gaussian relay net- dog (1+hspl* + |hrol® +2plhspllhrol)} (33)
works. In these examples we will show that a capacityNote that if|hsgz| > |hsp| then
achieving scheme in the corresponding deterministi . 9 2 9
model n%turally suggests a schgme ing the Gaussiér]\)F:mln (log (1 + lhsrl") . log (1 + [hsp| +|hRD|(3221)
network that achieves a rate whose gap from its Cin for all|p| < 1 we have
set upper bound is bounded independent of the values
of the channel gains. Therefore we have uniformly god@ (1 + (1 = p*)(Ihspl|* + [hsrl*)) <log (1+ |hsr[*) + 1
approximation of the capacities of these relay networks, (35)
uniform over all values of the channel gains.

2 2
A. Relay channel to within one bit log (1 + [hspl” + hrol* + 2plhspllhrpl) <

In this section we look at a simple Gaussian network log (1 +|hsp|* + |hrpl?) +1  (36)
with only one relay. The capacity of this network ha
been an open problem for several decades. Here we Wiff"C€ _
use the deterministic model to find a near-optimal com- Rpr > Chrelay — 1 (37)
munication scheme for this network. First we build the
corresplonding deterministic model of this relay channdlso if |hsr| > |hsp
with channel gains denoted bysg, nsp and ngp. )
From theorem 3.3 we know that the capacity of this Rpr =log(1 + |hspl|?) (38)
deterministic channel is equal to

and
Cfea = min (max(nsg,n ,max(nrp,n 29
lay - nSD(—|— mi; F(ZSRSi)nSD)+(7 (I:Sw S—Dilp)*);oi log (14 (1 = p*)(|hsp|* + |hsr|*)) <log (1 + |hsp|?) (4?:91)
Note that equation (30) naturally implies a capacitytherefore again,
achieving scheme for this deterministic relay net-
work: First ngp bits are sent from the source
directly to the destination; then, the remaining Therefore we showed that the maximum gap between
min ((nsg — nsp)™, (nrp — nsp)™) bits can be routed decode-forward achievable rate and the cut-set upper
on the non-interfering signal levels from the source to thmund on the capacity of Gaussian relay network is at

RDF > Urelay —1 (40)
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Fig. 5. The gap between cut-set upper bound and achievael@falecode-forward scheme in Gaussian relay channel

most one bit. However we should point out that even this
1-bit gap is too conservative in many parameter values.
In fact the gap would be at the maximum value only @éliamond = min{max(nga,,nsa,), max(na,p,na,p)
two of the channel gains are exactly the same. Since in

a wireless scenario the channel gains differ significantly
this happens very rarely. In figure 5 the gap between tEe

achievable rate of decode-forward scheme and the cutfpm these constraints '.t '.S _easy o see_that the capacity
the diamond deterministic network is equal to the

i . .0
set upper bound is plotted for different channel gains. . e S

PP P g capacity of the wireline network shown in figure 7.

'}% the max-flow min-cut theorem we know that the

,NSA, +Na,p,n54, + 4, p}  (41)

In this figure x and y axis are respectively representi
the channel gains from relay to destination and sourc . o . . )

9 y . . capacity of the wireline diamond network is achieved
to relay normalized by the gain of the direct link (sourc

TR . a routing solution. It is not difficult to see that
to destination) in dB scale. The z axis shows the gap (i . o
: . . he capacity of the deterministic diamond network can
bits). There are two main points that one should no

. L i . . . .also be achieved mimicking that routing solution by
in this figure: first the gap is at most one bit which is =~ "~ . . ) N
. . Lo . sending information through non-interfering links from
consistent with what we showed in this section. Secon L
: . ource to relays and then from relays to destination.
the maximum value happens in some rare cases that o . :
. natural analogy of this scheme (that achieves the
channel gains are exactly equal and on the average the . ST
. . capacity of the deterministic diamond network) for the
gap is much less than one bit. . . . .
Gaussian network is the following partial decode-and-
forward strategy:

B. Diamond network to within two bits 1) The source broadcasts two messagesandm,

at rate R, and R, to relaysA; and A,

2) Each relayA; decodes message;, i = 1,2

3) ThenA; and A, re-encode the messages and trans-
mit them via the MAC channel to the destination

Consider the diamond Gaussian relay network shown
in figure 6(a). Brett Schein introduced this network in his
thesis [11] and investigated its capacity. But the capacity
of this network is still an open problem . Here we
will discuss how we can use the deterministic model ©learly at the end the destination can decode both
approximate the capacity of this channel within two biteandms with small error probability if( Ry, Rs) is inside
First we build the corresponding deterministic model dhe capacity region of the BC from source to relays as
this relay channel as shown in figure 6(b). By theoremell as the capacity region of the MAC from relays to
3.3 we know that the capacity of this deterministithe destination. Assumeésa,| > |hsa,| then define the
channel is equal to following region as the intersection of BC (from source



@ ®

Fig. 6. Diamond network with two relays: (a) Gaussian Modk), Deterministic Model

nsA;

max(nsa;,NsA,) max(na,p,NAa,D)

Az

Fig. 7. Wireline diamond network. The outgoing links at ndgl@re orthogonal; the incoming links at nodiz are orthogonal.

to relays) and MAC (from relays to destination): Now we show the following lemma
- Lemma 4.1:Consider the rate regior® and R* as
R = Uneppy{(fr, R2) st described in (42) and (44). Also assume thafs, | >
0< Ry <log(1+ ?\hs)x?ﬁfz)] |hga,| then,
1—a)|hsa,|? *
0 S RQ S log(l + W)., } (42) R g R (46)
0 < R; <log(1+lha,pl?), i=1,2 and moreover,

Ry + Ry <log (1+ |ha,p|* + [ha,p]?)

Therefore in the Gaussian diamond network the follow-
ing communication rate fron$ to D is achievable: where Rppr and R* are respectively defined in (43) and
45).

Rpor = max{Ry + Ry|(F1, Rp) € R} (43) ) Proof: To show the first part assuni&;, R;) € R.
Now we will show that the achievable rate of this partigbince this pair is in the capacity region of BC from
decode and forward scheme is within two bits of the cusource to relays then the stronger useh)( should
set upper bound on the capacity of Gaussian diamodelcode both messages and therefore
network. To do so first we define the regi®t to be

0<R"—Rppe<1 (47)

Ry + Ry <log(1 + |hga,|?) (48)
R = {7, 1) s.t2. Now since the last two conditions & andR* are the
(])%*g R%;icig(lfr ’hZA2’ )2’ same thereforéR;, Ry) € R* and henceR C R*.
" 1<+R- 2<_10g0(£-’i(+4|th SDA|12\) ) 1o } (44) ;ro prove*the *seconfl part we si:ow th_a(R{,R_;) €
Rl_+ ]Z%Z—< log (1 + V;A D"2 1 13‘2) 7; ther_w( I (R5 — 1_) )*e R.If R5 <1itis obvious.
= 1 2 therwise first we findv* € [0, 1] such that

Also define,
R* = max{R} + R3|(R},Ry) € R*}  (45)

(1 —a*)|hga,|?
aﬂhSAJ2+-1

log(1 + )=R;—1  (49)



by solving this equation we get
* 1+|hSA2|2_2R;_1
- 2R~ T[hgy, |2

Now by using the fact thalhga,| > |hga,| > 2% — 1
we have,

(50)

_— 1+ |hsa,|? — 2Rzl
@ = 21— g o, |2
1+ 1]hga,* 1+ |hga,|? — 2%
o 2R3hSAJ2 2R3hSAJ2
o 1+ \hga, |?
- 2R3hSAJ2

therefore we have
) 1+ |hga,[?
log(1 + a*|hsa,|?) > log <%> (51)
Hence,

R} < log(1+ |hga,|*) — R}

B 1+ |hsa,|”
R T

< log(l+ a*|hga, |2)

therefore( R}, (R5—1)") € R and the proof is complete.

As the next step we show th&t" is within one bit of the
cut-set upper bound on the capacity of Gaussian diamorfg

network. First note that

combining (47) and (59) we have

Rppr > C — 2 (60)

Hence the achievable rate of this partial-decode-
forward scheme is within two bits of the cut set upper
bound for all values of the channel gains. It is probably
possible to improve this constant gap further by choosing
a more efficient strategy. However, here our goal is
to concretely show it is possible to characterize the
high SNR behavior capacity of the relay network by
exhibiting a scheme that is within a constant number
of bits to capacity no matter how large the channel
gains are. Therefore the exact gap is not fundamentally
important here.
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