
VIDA: Visual Interactive Debugging

Dan Hao, Lingming Zhang, Lu Zhang, Jiasu Sun, Hong Mei
Key Laboratory of High Confidence Software Technologies, Ministry of Education

Institute of Software, School of Electronics Engineering and Computer Science, Peking University
Beijing, 100871, P. R. China

{haod, zhanglm07, zhanglu, sjs, meih}@sei.pku.edu.cn

Abstract

Software debugging is time-consuming and effort-
consuming. Although software debugging, especially fault-
localization, has been studied for long, few practical debug-
ging tools have been developed and used by the industry. In
this paper we present VIDA, a visual interactive debugging
tool, which has been integrated with the Eclipse Integrated
Development Environment to support a programmer’s de-
bugging process. During the programmer’s conventional
debugging process, VIDA continuously recommends break-
points for the programmer based on the analysis of execu-
tion information and the gathered feedback from the pro-
grammer. Moreover, VIDA provides a program outline to
help the programmer choose breakpoints and visualizes the
static dependency relation to help the programmer make es-
timation at breakpoints.

1. Introduction

Software debugging is inevitable as programmers cannot

guarantee to write faultless source code. Moreover, soft-

ware debugging is costly as it costs more than 50% [3] of

software development and maintenance budget. Therefore,

the academic and industry communities have paid much at-

tention to software debugging.

Software debugging consists of fault localization and

correction. The former is to find the location of a fault,

whereas the latter is to correct a fault by replacing the faulty

statements with the correct ones. As the former is much

more time-consuming than the latter [11], and the latter is

human-intensive, most of the existing debugging research

focuses on the former (fault localization), which is also the

problem of this paper.

Among various fault-localization approaches, testing-

based fault-localization approaches (abbreviated as

TBFL) [6, 9], also called spectrum-based fault-localization

approaches [1], have attracted researchers’ attention.

The characteristics of these approaches are that these

approaches use the execution information of test cases

to calculate statements’ suspicions, which are to what

extent statements are likely to contain faults, and then

rank statements based on their suspicions. TBFL ap-

proaches are promising because these approaches reduce

the scope of statements to be examined by a programmer

and determine the examining order of statements for a

programmer. Moreover, TBFL approaches have been

evaluated to be effective [1] in fault localization. However,

these TBFL approaches require a programmer to examine

the statements along the ranked list during the debugging

process. This debugging process supported by these TBFL

approaches are far from the programmer’s conventional

debugging process. That is one of the reasons why few

TBFL approaches have been applied to programmer’s

practice.

In conventional debugging, a programmer finds the lo-

cation of the faulty statement by setting breakpoints and

examining the variables’ values at breakpoints. Although

the choice of breakpoints affects the debugging effective-

ness of a programmer, to our knowledge few researchers

have studied how to help programmers choose breakpoints.

Moreover, although the history information (such as the

programmer’s estimation at previous breakpoints) may be

helpful for the programmer in selecting the next breakpoint

and making estimation at the next breakpoint, the program-

mer can hardly remember this history information.

To address these two problems and help programmers

debug in their conventional way, we have developed a Vi-

sual Interactive Debugging Aids (called VIDA), which is

to recommend breakpoint candidates to a programmer con-

tinuously based on the analysis of the execution informa-

tion of test cases and the programmer’s feedback on the

existing breakpoints. VIDA has been implemented as an

Eclipse Integrated Development Environment (abbreviated

as IDE) plug-in, which deals with Java programs with Ju-

nit Test Cases. For a Java program with test cases, VIDA

analyzes the execution information of test cases and then

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 583



recommends some breakpoint candidates to a programmer.

Based on these breakpoint candidates, the programmer sets

a breakpoint in the debugging mode of the Eclipse IDE.

At each breakpoint, the programmer makes estimation on

whether any of the examined variables’ values at the break-

point is wrong. Then VIDA recommends another group of

breakpoint candidates after analyzing the programmers’ es-

timation and the execution information of test cases.

Besides recommending breakpoint candidates, VIDA

has the another two features. First, VIDA provides a global

view of the target program showing which statements are

more likely to contain a fault by lines in different color, the

positions of breakpoint candidates and the existing break-

points that have been set previously. VIDA provides this

global view because this view records the debugging his-

tory and can help a programmer set a breakpoint based on

the candidates. Second, to help a programmer make estima-

tion at breakpoints, VIDA visualizes the static dependency

relation of the target program by a directed graph.

2. Related Work

Besides our proposed VIDA, Tarantula, Delta Debug-

ging, and Whyline are another two popular debugging tools.

Tarantula [9] is a fault localization tool, which visualizes the

suspicions of statements by different colors. In Tarantula,

the statements in “red” are suspicious whereas the state-

ments in “green” are innocent. Although with Tarantula a

programmer can easily distinguish statements assigned with

different suspicions because these statements are in differ-

ent color, the approach supported by this tool is far from

the programmer’s conventional debugging process. Delta

Debugging [2] is an Eclipse plug-in, which targets at isolat-

ing the failure-inducing input, failure-inducing change, and

failure-inducing states by systematically narrowing down

the failure-inducing chain. Whyline [7] is an interactive de-

bugging tool, which is designed to help a programmer to lo-

cate the fault by allowing the programmer to ask questions

along the source code based on their dependency. Although

all of these four tools address the same problem, the ap-

proaches supported by these tools are different. Moreover,

the approach supported by VIDA is similar to algorithmic

debugging [10], as both of them require feedback from pro-

grammers when being applied to locate faults. However,

the approach supported by VIDA is more applicable as the

programmers’ feedback required by VIDA usually can be

gathered during conventional debugging.

3. Approach supported by VIDA

The approach supported by VIDA can be viewed as an

extension of our previous interactive testing-based fault-

localization framework [4], which is to locate the position of

Program & Test Cases

1. Executing Test Cases

Execution Information

3. Suspicion Calculation

Suspicions

4. Breakpoint Candidate
Recommendation

2. Test Case
Selection

A Failed Test Case

6. Static Dependency
Analysis

Static Dependency

Breakpoint

5. Breakpoint Estimation

Feedback

7. Suspicion Modification

Figure 1. Approach supported by VIDA

the faulty statement by continuously recommending break-

point 1candidates to a programmer based on the execution

information of test cases and the programmer’s feedback.

Then we [5] proposed a simple approach based on this

framework, which requires a programmer to provide con-

fident estimation on whether the faulty statement has been

executed before each breakpoint. However, in practice a

programmer can hardly provide such estimation. Therefore,

in this paper we propose another approach based on the in-

teractive testing-based fault-localization framework [4] and

implement this approach as an Eclipse plug-in.

This approach supported by VIDA consists of seven

steps, shown by Figure 1.

1. Initially, our approach runs the program with its test

cases, recording the execution information (i.e., state-

ment coverage) of these test cases.

2. Based on the execution information, our approach se-

lects a failed test case from the set of test cases. The

following debugging process is to locate the faulty

statement that causes the failure of this failed test case.

3. Based on the execution information, our approach cal-

culates statements’ suspicions.

4. Based on the statements’ suspicions, our approach rec-

ommends several breakpoint candidates to the pro-

grammer. Then the programmer sets the breakpoint

based on these candidates.

5. Our approach gathers the programmer’s estimation at

the breakpoint. The programmer’s estimation used by

1In our previous work [4], we use term “checking point” to represent

the similar meaning of “breakpoint”.

584



our approach includes whether variables’ values are

wrong and whether the programmer is confidence with

her estimation.

6. Based on the analysis of the target program, our ap-

proach constructs the static dependency graph of the

target program.

7. Our approach modifies statements’ suspicions based

on the programmer’s feedback and static dependency

relation.

Based on the modified suspicions computed by step 7,

our approach will recommend another group of breakpoint

candidates and repeat steps 3, 4, 5 and 7.

4. VIDA

The debugging tool VIDA is not a standalone tool, which

is implemented as an Eclipse IDE plug-in. Moreover, VIDA

is designed to be used by a programmer in the debugging

mode of the Eclipse IDE. Therefore, a programmer can use

VIDA during her development process without switching to

other tools or environments. The current version of VIDA

supports programs in Java and test cases written in Junit.

Due to space limit, we divide the seven steps of the ap-

proach supported by VIDA into two components: “Break-

point computation” (consisting of step 1 to step 4 in Fig-

ure 1) and “Suspicion modification” (consisting of step 5 to

step 7 in Figure 1), and then introduce them separately by

the following two subsections.

4.1. Breakpoint computation

When a program runs, VIDA collects the statement cov-

erage information of test cases. Among the set of test cases,

VIDA selects a failed test case that has executed the fewest

statements because this failed test case contains few sus-

picious statement to be examined by a programmer. This

selected test case is the starting point of the debugging pro-

cess. The following debugging process is to locate the po-

sition of the faulty statement that causes the failure of this

failed test case.

Based on the statement coverage of test cases, VIDA

calculates statements’ suspicions based on the algorithm of

Tarantula [8], which has been evaluated to be effective in

fault-localization. Currently VIDA adopts the algorithm of

Tarantula, not SAFL [6] because the latter is more time-

consuming than the former. Various statements are as-

signed with different suspicions, which represent how likely

a statement tends to be faulty.

Then VIDA recommends 10 breakpoint candidates

whose corresponding statements have the highest suspi-

cions, which are shown by a table like Figure 2. The pro-

grammer’s choice on breakpoints depends on many factors,

Figure 2. Breakpoint candidates

Figure 3. Program outline

such as statements’ suspicions, the positions of these break-

point candidates and the positions of the existing break-

points. To help the programmer set a breakpoint, VIDA

gives a program outline (Figure 3) showing the history in-

formation of the existing breakpoints including their posi-

tion of these breakpoints and the programmer’s estimation

on these breakpoints, as well as the positions of breakpoint

candidates. Figure 3 uses long lines (in the middle of the

window) in different color to show statements with various

suspicions. A black line denotes a statement with large sus-

picion, whereas a light grey line denotes a statement with

small suspicion. The breakpoint candidates are addressed

by blue lines. On the left boundary of the window, the short

lines denote the position of the existing breakpoints. The

color of these short lines denote the programmer’s previous

estimation on these breakpoints. Specifically, VIDA uses

a red line to denote that the variables’ values at the corre-

sponding breakpoint have been estimated to be wrong by

the programmer, a green line denotes the variables’ values

at the corresponding breakpoint have been estimated to be

correct, and a yellow line denotes that the programmer is

not confident with her estimation at the breakpoint.

585



Figure 4. Dependency relation

4.2. Suspicion modification

After the programmer sets a breakpoint based on the

breakpoint candidates, VIDA collects the programmer’s es-

timation on the current breakpoint and modifies statements’

suspicions based on the programmer’s estimation.

To help a programmer make estimation at breakpoints

and help modify statements’ suspicions, VIDA constructs

and stores the static dependency relation of the target pro-

gram. Figure 4 shows the static dependency of a piece of

code. A node of the dependency graph denotes a state-

ment of the program, whereas an edge between nodes de-

note the dependency relation between statements. More-

over, the node at the tail of an edge is dependent (including

control dependent and data dependent) on the node at the ar-

row end of an edge. A black edge denotes data dependency,

whereas a blue edge denotes control dependency. The static

dependency graph can help a programmer make estimation

at breakpoints by showing the statements that influence the

execution of the statement at the breakpoint and that influ-

ence the variables’ values at the breakpoint.

Each breakpoint may contain more than one variable.

VIDA does not require a programmer to examine all the

variables’ values, but some variables that the programmer

chooses to examine. The programmer’s feedback to be sub-

mitted to VIDA is whether any of the examined variables’

values is wrong. Besides this, VIDA requires the program-

mer to mark whether she is confident with her estimation.

If the programmer thinks that all the examined variables

have been assigned with correct values, then VIDA will de-

crease the suspicions of the statements that influence the

statement at the breakpoint based on the static dependency

relation; Otherwise, VIDA will increase the suspicions of

the statements that influence the statement at the break-

point. Moreover, if the programmer is confident with her es-

timation, VIDA will significantly increase or decrease some

statements’ suspicions. If the programmer is not confident

with her estimation, VIDA will slightly increase or decrease

some statements’ suspicions.

5. Conclusion

This paper introduces an Eclipse IDE plug-in VIDA,

which aims at recommending breakpoint candidates to a

programmer based on the analysis of execution information

and the programmer’s estimation at breakpoints. Moreover,

VIDA provides a program outline to record the debugging

history and provides a static dependency graph to help the

programmer make estimation at breakpoints.

6. Acknowledgements

This work is supported by the National Basic Research

Program of China under Grant No. 2009CB320703, the

High-Tech Research and Development Program of China

under Grant No. 2007AA010301, the Science Fund for Cre-

ative Research Groups of China under Grant No. 60821003,

the National Natural Science Foundation of China under

Grant No. 60803012, and China Postdoctoral Science

Foundation funded project (No. 20080440254).

References

[1] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On the

accuracy of spectrum-based fault localization. In Testing:
Academic and Industrial Conference Practice and Research
Techniques, pages 89–98, September 2007.

[2] H. Cleve and A. Zeller. Locating causes of program failure.

In Proc. 27th ICSE, pages 342–351, 2005.
[3] J. S. Collofello and S. N. Woodfield. Evaluating the effec-

tiveness of reliability-assurance techniques. Journal of Sys-
tems and Software, 9(3):191–195, 1989.

[4] D. Hao. Testing-based interactive fault localization. In

Proc. 28th ICSE, Doctoral Symposium Track, pages 957–

960, May 2006.
[5] D. Hao, L. Zhang, H. Mei, and J. Sun. Towards interac-

tive fault localization using test information. In Proc. 13th
APSEC, pages 277–284, 2006.

[6] D. Hao, L. Zhang, Y. Pan, H. Mei, and J. Sun. On similarity-

awareness in testing-based fault-localization. Journal of Au-
tomated Software Engineering, 15(2):207–249, June 2008.

[7] A. J.Ko and B. A. Myers. Debugging reinvented: Asking

and answering why and why not questions about program

behavior. In Proc. 30th ICSE, pages 301–310, May 2008.
[8] J. A. Jones and M. J. Harrold. Empirical evaluation of taran-

tula automatic fault-localization technique. In Proc. 20th
ASE, pages 273–282, 2005.

[9] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of

test information to assist fault localization. In Proc. 24th
ICSE, pages 467–477, May 2002.

[10] E. Y. Shapiro. Algorithm Program Debugging. MIT Press,

Canbridge, 1983.
[11] I. Vessey. Expertise in debugging computer programs: A

process analysis. International Journal of Man-Machine
Studies, 23(5):459C494, 1985.

586


