
Deterministic Galois: On-demand, Portable and Parameterless ∗

Donald Nguyen Andrew Lenharth Keshav Pingali
The University of Texas at Austin, Texas, USA
{ddn@cs, lenharth@ices, pingali@cs}.utexas.edu

Abstract
Non-determinism in program execution can make program
development and debugging difficult. In this paper, we argue
that solutions to this problem should be on-demand, portable
and parameterless. On-demand means that the programming
model should permit the writing of non-deterministic pro-
grams since these programs often perform better than de-
terministic programs for the same problem. Portable means
that the program should produce the same answer even if it is
run on different machines. Parameterless means that if there
are machine-dependent scheduling parameters that must be
tuned for good performance, they must not affect the output.

Although many solutions for deterministic program exe-
cution have been proposed in the literature, they fall short
along one or more of these dimensions. To remedy this, we
propose a new approach, based on the Galois programming
model, in which (i) the programming model permits the
writing of non-deterministic programs and (ii) the runtime
system executes these programs deterministically if needed.
Evaluation of this approach on a collection of benchmarks
from the PARSEC, PBBS, and Lonestar suites shows that it
delivers deterministic execution with substantially less over-
head than other systems in the literature.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Concurrent programming structures

Keywords Deterministic scheduling; Irregular programs;
Multicore processors

∗ The work presented in this paper has been supported by NSF grants CCF
1337281, CCF 1218568, ACI 1216701, and CNS 1064956. Donald Nguyen
was supported by a DOE Sandia Fellowship.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’14, March 1–4, 2014, Salt Lake City, Utah, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2305-5/14/03. . . $15.00.
http://dx.doi.org/10.1145/2541940.2541964

1. Introduction
Non-determinism in program execution can make program
development and debugging difficult. A number of systems
for executing parallel programs deterministically have been
proposed recently.

Some solutions make programs deterministic by con-
struction by restricting the programming model to prevent
application developers from writing non-deterministic pro-
grams; data-parallel, stream and functional programming
models are well-known examples [7, 9, 11, 27].

Other solutions provide determinism by scheduling: they
permit developers to write non-deterministic programs but
restrict the possible schedules of operations in these pro-
grams to ensure deterministic execution. These restrictions
can be enforced at different levels of the execution stack in-
cluding hardware [16, 17, 21], OS [2, 4], compiler [3], and
software runtime [24, 25].

Ideally, a deterministic parallel system would provide the
following three features.

• On-demand determinism. It should be possible to turn
deterministic execution on and off without much effort.
As we show in Section 5, deterministic execution often
imposes a substantial runtime overhead, particularly for
parallel programs with fine-grain tasks. This overhead
may be acceptable in some cases, but it should be pos-
sible to turn off determinism when desired.

• Portability. The output of a deterministic program should
be the same regardless of the machine that it runs on.
At the very least, this means that the output should not
depend on the number of executing threads. Portability
ensures that programs enjoy the benefits of determinism
even when moving between machines.

• Parameter-freedom. If there are scheduling parameters
that must be tuned to achieve good performance, they
should not affect the output state. Since optimal values
for such parameters vary by machine, such scheduling
parameters hinder portability by providing an incentive
for producing different results on different machines.

No existing system for deterministic parallel execution
currently provides on-demand determinism, portability and
parameter-freedom.

Programming models such as DPJ [9], revisions with
deterministic merges [11], StreamIt [27], and nested data-
parallel programs [8] are deterministic by construction, but
they are incompatible with on-demand determinism. Other
programming models like Grace [5] are not deterministic by
construction, but the output of a program may depend on the
number of threads used to execute the program. There are
deterministic programming models that have “escapes” that
allow non-deterministic programs to be written, such as DPJ
with non-determinism [10] and PBBS [7], but there is no
convenient method for producing deterministic executions
on demand from such programs.

When determinism is provided by scheduling, it is usu-
ally not portable. In hardware systems like RCDC [17] and
Calvin [21], the number of threads is a fundamental part of
program representation, and any deterministic execution is
always with respect to a particular number of threads. At the
OS and compiler level, it is possible to virtualize the concept
of threads to achieve portability, but current systems such as
Determinator [2], CoreDet [3] and dOS [4] do not do this.
Runtime approaches are replacements for non-determinis-
tic program libraries. Both DThreads [24] and Kendo [25]
model the behavior of pthreads, an explicitly threaded li-
brary, and are not portable.

Finally, some of the above systems have user-tunable
scheduling parameters that affect execution performance
and output: examples are RCDC, CoreDet, Kendo, and
PBBS.

In this paper, we present a deterministic parallel sys-
tem that is on-demand, portable and parameter-free. It takes
high-level, non-deterministic programs written in the Ga-
lois programming model [26] as input. These programs can
be executed non-deterministically with the Galois runtime,
or they can be executed deterministically using a technique
that we call deterministic interference graph (DIG) sched-
uling. The application program does not have to change
when switching between non-deterministic and determin-
istic scheduling since the desired scheduler is specified
through a command-line parameter.

To evaluate the quality of our deterministic programs, we
compare their performance with handwritten deterministic
parallel programs from the PBBS benchmark suite [7]. Our
results show a median performance of 0.62X compared to
the handwritten PBBS implementations. To highlight the im-
portance of on-demand determinism, we compare the per-
formance of non-deterministic Galois programs with that of
deterministic PBBS programs. The non-deterministic pro-
grams achieve a median speedup of 2.4X over the PBBS
implementations.

In addition, we compare our DIG scheduling approach
with a prior deterministic system, CoreDet [3], on non-de-
terministic PBBS programs. CoreDet can make any threaded
program deterministic. The CoreDet execution achieves
scaling for only one out of the four applications. This is be-

1 foreach Task t i n P :
2 atomic :
3 t () / / e x e c u t e t a s k
4 enqueue (S (t)) / / enqueue new t a s k s , i f any

(a) Non-deterministic program.

1 foreach Task t i n P :
2 i f w r i t e M a r k s (0 , i d (t) , L (t)) :
3 / / a l l w r i t e s s u c c e s s f u l
4 t ()
5 enqueue (S (t))
6 e l s e :
7 enqueue (t)
8 w r i t e M a r k s (i d (t) , 0 , L (t))

(b) Scheduling non-deterministic programs.

Figure 1: Non-deterministic program and scheduling (see Fig-
ure 3 for auxiliary function definitions).

cause unlike the PARSEC benchmarks [6] commonly used
to evaluate deterministic parallel systems, our benchmarks
have much more synchronization and smaller task sizes,
which severely taxes systems with high scheduling over-
heads.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe the non-deterministic Galois program-
ming model and provide a high-level overview of scheduling
with interference graphs. In Section 3, we discuss the imple-
mentation of this approach in the Galois system. Section 4
summarizes the benchmarks used in the evaluation. In Sec-
tion 5, we measure the performance of various deterministic
and non-deterministic programs, as well as the performance
of the programs with CoreDet. Section 6 summarizes related
work, and Section 7 concludes the paper.

2. Galois programming model
The programming model used is an abstract version of the
Galois programming model for unordered algorithms [26].
There are no explicitly parallel constructs like threads and
locks; instead, parallelism is specified implicitly through the
use of the iterator shown in Figure 1a. Key features are the
following.

• P is a pool of tasks that can be performed in any order.
The program terminates when all tasks have been exe-
cuted.

• When task t is completed, it may create a set of new
tasks S(t), which are added to the task pool. Task t is
the parent of the tasks it creates; the transitive closure of
the parent relation is called the ancestor relation.

• Each task performs computation and reads and writes
shared-memory locations. The set of locations read R(t)
and written W (t) by a task t is said to constitute its
neighborhood, which is denoted by L(t) = R(t)∪W (t).

Tasks are required to be cautious: that is, a task must read
all of the locations in its neighborhood before it can write
to any of them.

• A conflict occurs between tasks t1 and t2 if (i) neither
task is an ancestor of the other, and (ii) one of them writes
to the neighborhood of the other (W (t1) ∩ L(t2) 6= ∅).
If there can be no conflicts between tasks, parallel execu-
tion is straightforward since the program is a generalized
data-parallel loop in which the iteration range can grow
dynamically. In the presence of conflicts, a correct par-
allel schedule for the program should be serializable: it
must appear as if all tasks were performed atomically in
some order that respects the ancestor relation.

Although neighborhoods can be defined as sets of con-
crete memory locations, it is better to define them as sets
of abstract memory locations; for example, for a graph al-
gorithm, these abstract locations might correspond to graph
elements such as nodes and edges of the graph, rather than
to the concrete memory locations implementing this abstract
data type. The Galois runtime system implements synchro-
nization by associating abstract locks or marks with abstract
locations (§2.1).

2.1 Non-deterministic scheduling
In most programs, neighborhoods of tasks are not known
statically. One parallelization strategy is to use speculative
execution: a free thread selects an arbitrary task from the task
pool P and executes it, rolling back the task if a conflict with
another concurrently executing task is detected. Tracking of
neighborhoods can be done using a transactional-memory-
like approach over abstract memory locations [19, 20].

For programming models with cautious tasks, conflict de-
tection and correction can be done using much lighter weight
mechanisms because the synchronization problem reduces
to the well-known dining philosopher’s problem [12]. Con-
ceptually, each abstract location can be acquired by an
owner. The execution of a task can be divided into two
phases: in the first phase, a task reads locations but does not
write to any of them, acquiring ownership of these locations,
and in the second phase, the task writes to some locations,
but it does not write to any location that it did not read in
the first phase. The point between the first and second phase
is called the failsafe point. For cautious tasks, conflicts are
detected in the first phase, and rollback is implemented sim-
ply by releasing ownership of all locations. Once the failsafe
point has been crossed, global data structures can be updated
in place without the need for backup copies of modified data.

Figure 1b implements this idea for non-deterministic task
scheduling. For each abstract memory location l, we main-
tain a mark location Mark(l). Each task t has a unique id
id(t), and there is an id 0 that is distinct from all other ids.
For this implementation, ids need only be unique. For the de-
terministic scheduler below (§3), ids must also have a total
order, and 0 must be less than any other id. Mark locations

initially contain the value 0. The scheduler chooses a task
t and tries to acquire ownership of all the locations in the
neighborhood of that task, using compare-and-set instruc-
tions for example. If successful, the task executes and adds
new tasks S(t) to the pool. If unsuccessful, there is a conflict,
and the scheduler adds t back to the pool for re-execution. In
either case, any marks acquired are reset back to 0.

3. Deterministic scheduling
In this section, we describe our implementation of determin-
istic scheduling. It is based on finding independent sets in an
implicitly constructed interference graph of tasks. We first
describe the high-level idea (§3.1), then its implementation
(§3.2), and finally some important optimizations (§3.3).

3.1 DIG scheduling
Definition 1. Given a set of tasks P , an interference graph
for P is an undirected graph GP = (VP , EP) in which
there is a distinct node in VP representing each task in P ,
and there is an undirected edge (v1, v2) ∈ EP if the tasks
represented by v1 and v2 have a conflict.

The interference graph for a set of tasks can be built by
executing each task up to its failsafe point while tracking
its neighborhood and putting a conflict edge between two
tasks if their neighborhoods overlap. This is a conservative
approach since it puts a conflict edge between two tasks even
if they both read a location that neither of them writes to.
Program analysis can be used to determine conflicts more
accurately; for the purposes of this paper, any conservative
interference graph is adequate.

Interference graphs can be used to schedule tasks as fol-
lows. The tasks in the task pool P are executed in rounds. In
each round, the scheduler performs the following activities:

• inspect: build an interference graph GP for the tasks in
P ,

• select: find an independent set I of nodes in GP and
remove the corresponding tasks from P , and

• execute: execute the tasks in I in parallel, adding any
newly created tasks to P .

Scheduling is completed when all tasks have been exe-
cuted. During the select phase, it is desirable but not neces-
sary to find a maximal independent set of nodes in the graph.

A subtle point is that the interference graph must in gen-
eral be rebuilt from scratch each round since the neighbor-
hood of a task is relative to the global state, which is modi-
fied by tasks in the execute phase.

There is one enhancement to this basic scheme that is
useful for reducing the overhead of interference graph con-
struction. Note that the scheduling strategy works correctly
even if, in each round, the interference graph is constructed
only for a subset of tasks in the pool; the remaining tasks
are simply delayed to later rounds. This windowing scheme
can reduce the overhead of interference graph construction

1 Tasks cur , nex t , t odo
2 todo = P ;
3 whi le | | t odo | | > 0 :
4 / / o r d e r t a s k s i n todo d e t e r m i n i s t i c a l l y
5 n e x t = s o r t (t odo)
6 todo = {}
7 / / e x e c u t e s o r t e d t a s k s
8 whi le | | n e x t | | > 0 : / / f o r each round . . .
9 ca l cu l a t eW indow ()

10 b a r r i e r
11 / / g e t p r e f i x o f s i z e window from n e x t
12 cur , n e x t = getWindowOfTasks (n e x t)
13 / / compute n e i g h b o r h o o d s o f t a s k s i n cur
14 i n s p e c t (c u r)
15 b a r r i e r
16 / / e x e c u t e s u c c e s s f u l t a s k s , move
17 / / f a i l e d t a s k s t o nex t , and add any
18 / / newly c r e a t e d t a s k s t o todo s e t
19 todo = todo ∪ s e l e c t A n d E x e c (cur , n e x t)
20 b a r r i e r

Figure 2: Deterministic scheduler.

when the number of tasks is much larger than the number of
threads. For the windowed scheduler to be deterministic, we
must also ensure the following in each round: (i) tasks for the
current window are chosen deterministically from the task
pool, and (ii) during the select phase, the independent set of
nodes is chosen deterministically.

3.2 Implementation of DIG scheduling
Figure 2 shows the pseudocode for the implementation of
deterministic scheduling; auxiliary functions are shown in
Figure 3. In the pseudocode, doall indicates a loop whose
iterations are run in parallel. Instead of explicitly building
an interference graph, this code directly finds an independent
set of tasks by using marks on locations.

A summary of what the scheduler does is the following.
The task set todo is initialized to the initial set of tasks P.
These tasks are ordered deterministically to form a sequence
next. This sequence of tasks is executed over several rounds;
in each round, a prefix cur of tasks in next is tried for
execution. Some of these will succeed and others may fail.
Tasks created by successful tasks are added to todo; these are
executed after next becomes empty. Failed tasks are added
back to next and retried in later rounds. Execution terminates
when todo and next become empty.

Some important implementation details are the following.
The inspect operation uses writeMarksMax to mark the

neighborhood of a task, stealing ownership of neighbor-
hood locations from tasks with lower ids. While the mark
on a given location may be updated non-deterministically
depending on how the tasks in cur are scheduled, the final
mark will be the same regardless of the order in which tasks
were processed in the inspect phase. This is because com-
puting the maximum (or minimum) element of a set with a
total order is deterministic (the set in question is the set of

1 Tasks s o r t (Tasks t odo) :
2 / / s o r t t a s k s i n s e t t odo
3
4 void i n s p e c t (Tasks c u r) :
5 d o a l l t i n c u r :
6 wri teMarksMax (i d (t) , L (t))
7
8 Tasks s e l e c t A n d E x e c (Tasks cur , Tasks n e x t) :
9 Tasks newWork = {}

10 d o a l l t i n c u r :
11 i f readMarks (L (t)) = { i d (t) } :
12 / / a l l r e a d s e q u a l i d so e x e c u t e
13 e x e c u t e t a s k t
14 / / add new work i f any t o newWork
15 newWork = newWork ∪ S (t)
16 e l s e :
17 n e x t = n e x t ∪ t
18 w r i t e M a r k s (i d (t) , 0 , L (t))
19 re turn newWork
20
21
22 bool w r i t e M a r k s (Id expec t ed , Id id , Set<Loc> l o c s) :
23 f o r l o c i n l o c s :
24 atomic :
25 i f Mark (l o c) == e x p e c t e d :
26 Mark (l o c) = i d
27 e l s e : re turn f a l s e
28 re turn true
29
30 void writeMarksMax (Id id , Set<Loc> l o c s) :
31 f o r l o c i n l o c s :
32 atomic :
33 i f Mark (l o c) < i d :
34 Mark (l o c) = i d
35
36 Set<Id> readMarks (Set<Loc> l o c s) :
37 / / r e t u r n s e t o f i d s i n mark l o c a t i o n s

Figure 3: Auxiliary functions for deterministic scheduler.

ids of the tasks that read or wrote to a particular location in
the current round). The cumulative effect of the writeMark-
Max operations implicitly creates an interference graph. An
edge in the interference graph exists between tasks t1 and t2
if id(t2) ∈ readMarks(L(t1)).

One important difference between writeMarks and write-
MarksMax is that writeMarks can fail early if it cannot
update a mark location, but in order to be deterministic,
writeMarksMax must attempt to update all mark locations
even if it failed to update some of them. If a task skips
some mark locations, it changes the set that writeMarksMax
is computing the maximum of, and if the mark locations
skipped depend on a scheduling choice, then the resulting
maximums are non-deterministic.

In the second phase, the scheduler selects and executes
an independent set of tasks (line 19 in Figure 2 and function
selectAndExec in Figure 3). A task is selected if all of its
neighborhood locations are still marked with its id at the
end of the inspection phase. Tasks selected this way form an
independent set in the interference graph. This set is unique
because of the total order on ids. If any of the neighborhood

locations of a task does not contain its id, the task is not part
of the independent set, and it is placed in the next set to be
executed in a future round. In either case, the marks written
by a task are cleared in preparation for the next round.

Execution continues in rounds until there are no tasks left
in next. If there are no tasks in the todo set, the scheduler
terminates; otherwise these tasks are moved to next, and
execution continues. Note that in each round, the task in cur
with maximum id is guaranteed to execute, so each round
executes at least one task.

Before enqueued tasks can be scheduled, they must be
assigned a unique id. The assignment of ids must also be de-
terministic. Ids are assigned as follows. The initial tasks are
given ids based on the iteration order of the C++ iterator that
contains the tasks. When task t creates task u, the scheduler
stores with task u the id of the task that created it id(t) and
a number k indicating whether it was the first, second, third,
etc. task created by t. In the sort function, tasks are sorted
lexicographically based on the pair (id(t), k), and the sched-
uler uses the position in the total order defined by the sort as
the id for the new tasks.

The performance of this scheduler depends critically on
the window size, so we implemented an adaptive algorithm
that grows and shrinks the window size each round depend-
ing on the number of tasks that successfully committed in the
previous round. The getWindowOfTasks and calculateWin-
dow functions in Figure 2 implement this functionality. The
calculateWindow function computes the window size for the
current round based on the fraction of tasks that committed
in the previous round. If the commit ratio is less than some
target threshold, the next window size is scaled down pro-
portionally. If the commit ratio is above the threshold, the
window size is doubled. The getWindowOfTasks function
simply returns this prefix of tasks in cur and postpones the
remainder to next. Since the number of tasks that commit in
a round is independent of the number of executing threads,
this heuristic is portable across machines.

To implement the deterministic marking scheme in the
Galois system, we made two changes to the existing system.

First, the default mark values in the Galois system are not
ordered. We modified the marking code to keep track of the
id of a task and to use that value appropriately when writing
mark values.

Second, neighborhoods are not explicitly maintained by
the Galois system. Marks are acquired incrementally dur-
ing execution via user code calls to a data structure library.
The only way to get the neighborhood of a task is to execute
the task and observe which marks are acquired. To imple-
ment the inspect phase, we simply execute a task, which, by
its normal execution, marks locations in its neighborhood.
When the task reaches its failsafe point (the first write to a
global location), it immediately returns. To implement the
selectAndExec phase, we re-execute the task from the be-
ginning, and instead of writing marks, we check whether the

marks that we would have written match the values that have
been written. This implements line 11 of Figure 3. If a task
reads a mark value that is not its id, we go to line 17.

This baseline implementation is sufficient to determin-
istically schedule any program written in the programming
model of Figure 1a.

3.3 Optimizations
The baseline deterministic scheduler described in Section 3.2
contains several inefficiencies, which we now address.

First, it redundantly executes the prefix of a task up to
its failsafe point when a task is selected and executed. A
more efficient method would be to suspend execution of a
task at the failsafe point during the inspect phase and to re-
sume execution in the commit phase. On resumption, the
task must check that all the mark values still match its id
(Figure 3 line 11). The capability to pause and resume ex-
ecution can be achieved generally using additional threads
or creating continuations. In our optimized implementation,
we use a more ad-hoc approach, which simulates the effect
of forming a continuation without implementing a full com-
piler transform. We provide a library function that allows
users to allocate objects in the inspect phase which can be
recalled during the commit phase. Programmers can use this
functionality to manually achieve the same effect as task sus-
pend and resume.

To make sure that resumed tasks are valid to commit, we
make a small change to the protocol in the inspect phase.
Instead of just writing the maximum mark value, a task t
checks if the previous value of the mark location is not 0
and not id(t); if so, by writing its mark, task t will prevent
the task u that corresponds to the current mark value from
committing. Normally, task u detects this case when the
scheduler executes line 11, or in the case of the baseline
scheduler, when task u is executed a second time. When
using the continuation optimization, t is now responsible for
preventing u from executing. It does this by writing to a flag
variable that u checks before resuming execution.

Second, the performance of the scheduler is very sensi-
tive to initial task order. Applications that exploit temporal
locality execute tasks with overlapping neighborhoods close
in time. This typically translates to those tasks being close
together in iteration order, which, in the baseline scheduler
implementation, means that they typically will be executed
in the same round, where they will certainly conflict with
each other. This leads to the perverse situation where the
scheduler needs to reduce locality to improve performance.
We address this issue by assuming that tasks placed close
together in iteration order have high locality and place those
tasks in separate rounds if possible.

Third, the cost of sorting enqueued tasks can be large
relative to the application time. There is a common special
case where a task enqueues tasks, but those tasks are drawn
from a fixed set of tasks. In this case, tasks can be assigned
unique ids before parallel execution, and the programmer

can pass these ids to the scheduler, which uses them directly
instead of generating new ids via the sort function.

3.4 Comparison of non-deterministic and
deterministic schedulers

Compared to the non-deterministic scheduling in Section 2.1,
DIG scheduling adds several overheads, whose performance
impact we evaluate in Section 5.

• As seen in Figures 1b and 2, the deterministic scheduler
executes many more instructions.

• The deterministic scheduler introduces a concept of
rounds that is not present in the original program. These
rounds are implemented using global synchronization.
Rounds extend the critical path length of a program be-
cause the scheduler cannot proceed to the next round
until all of the tasks are processed for the current round.

• The scheduler executes tasks according to a particular
schedule, but that schedule may not be the best perform-
ing one among possible program schedules.

• The execution of a task is broken into two parts, the in-
spect phase and the execution phase, separated by a bar-
rier. The memory locations accessed during the inspect
phase of a task are very likely to be accessed by the ex-
ecution phase of the same task, but under DIG schedul-
ing, these two phases are temporally separated by a factor
that is a function of number of tasks attempted during a
round, which is typically very large. Conversely, increas-
ing locality by reducing the number tasks attempted in a
round, increases the number of rounds executed, which
increases the critical path length of the program.

4. Experimental setup
4.1 Applications
The benchmarks in our study are drawn from three different
sources: the PARSEC (v2.1) benchmark suite [6], the prob-
lem based benchmark suite (PBBS) (v0.1) [7], and the Lone-
star (v2.1.5) benchmark suite [22].

PARSEC The PARSEC benchmark suite has been used in
previous evaluations of deterministic scheduling [3, 17, 24].
It contains twelve applications or kernels. Most are paral-
lelized using the pthreads library. We chose the three bench-
marks that have OpenMP implementations: blackscholes,
bodytrack and freqmine.

PBBS The PBBS programs [7] are organized by problem,
and each problem has one or more solution programs, at least
one of which is deterministic. There are a total of sixteen
problems, but many of these programs are data-parallel or
nested data-parallel, and their performance depends largely
on factors like good load balancing, which is not the subject
of this paper. We therefore excluded them from our study.
We chose deterministic programs that solved the four re-
maining problems: breadth-first search (bfs), Delaunay tri-

angulation (dt), Delaunay mesh refinement (dmr), and max-
imal independent set (mis). We exclude maximal matching
because of its similarity to maximal independent set. In these
codes, determinism is ensured by application-specific tech-
niques customized to each application, and they typically
involve bulk-synchronous execution in rounds. The PBBS
maximal independent set program is data-parallel, but we
have included it in our study for comparison with a non-de-
terministic maximal independent set program that exists in
the Lonestar suite.

Lonestar From the Lonestar benchmark suite, we selected
four programs that solve the same problems as those we in-
cluded from PBBS, using the same algorithms, and an im-
plementation of the preflow-push algorithm (pfp) that uses
the global relabeling heuristic to improve convergence [13].
We automatically generate deterministic implementations of
all Lonestar programs by applying the DIG scheduling of
Section 3, including the optimizations of Section 3.3.

There is one small difference between the PBBS and
Lonestar implementations of Delaunay triangulation (dt).
The algorithmic complexity of Delaunay triangulation de-
pends on the order in which points are inserted, and ran-
dom insertion order has been shown to be optimal [14]. In
the PBBS implementation, points are randomized offline. In
the Lonestar implementation, points are reordered online us-
ing the biased randomized insertion order algorithm [1]. For
comparison purposes, we do not include the reordering time
in either implementation.

As mentioned above, the Lonestar maximal independent
set program is non-deterministic while the PBBS version is
data-parallel.

Application variants In the experimental results, the vari-
ant g-n denotes the original non-deterministic Lonestar ap-
plication, and the deterministic variant generated from DIG
scheduling is called g-d. The variant PBBS denotes the
PBBS version of the application.

4.2 Data-sets
For the PARSEC benchmarks, we use the simlarge inputs
for blackscholes and freqmine and the native input for body-
track.

The performance of the PBBS and Lonestar benchmarks
can vary significantly with the type of input. In our experi-
ence, the behavior across random inputs for an application
is largely similar, so we choose a single representative input
for each application. These inputs are largely drawn from the
evaluation of Blelloch et al. [7]. For bfs, we use a random
graph of 10 million nodes where each node is connected to
five randomly selected nodes. For dmr, we use a Delaunay
triangulated mesh of 2.5 million randomly selected points
from the unit square. For dt, we use 10 million points ran-
domly selected from a unit square. For mis, we use the same
input as bfs. For pfp, we use a random graph of 223 nodes
with each node connected to 4 random neighbors.

4.3 Platforms
We use three machines in our evaluations and take the aver-
age of at least three runs for each application/machine/thread-
count combination. The three machines are (i) m4x10, a
machine running Ubuntu Linux 10.04 LTS 64-bit (Linux
2.6.32) with four ten-core Intel Xeon E7-4860 (2.27 GHz)
processors; (ii) m4x6, a machine running Ubuntu Linux
10.04 LTS 64-bit (Linux 2.6.32) with four six-core In-
tel Xeon E7540 (2.0 GHz) processors; and (iii) numa8x4,
an SGI UV machine (ccNUMA) running SuSE Enterprise
11 SP1 64-bit (Linux 2.6.32.24) with eight four-core Intel
E7520 (1.87 GHz) processors. The processors of numa8x4
are divided into blades of two processors each and enclo-
sures of two blades each. Inter-blade communication uses
SGI NUMALink 5.

We compile the PBBS and Lonestar programs with icc
version 12.1 with the -O3 optimization flag. For the PBBS
programs, we use the Cilk runtime to manage and load bal-
ance threads. For the Lonestar programs, we use the Galois
runtime system.

5. Evaluation
In Section 5.1, we describe applications characteristics use-
ful for understanding the performance results.

In Section 5.2, we compare the performance of non-
deterministic programs with their performance when exe-
cuted with CoreDet [3], a system that provides determinism
by scheduling. Because the C++ language primitives used
in the Lonestar programs are not supported by CoreDet, we
used non-deterministic versions of the PBBS programs as
our representative non-deterministic benchmarks. We show
that with CoreDet, the non-deterministic PBBS programs
do not perform well and have a median slowdown of 3.7X
(min: 1.3X, max: 55X) compared to running without Core-
Det. These experiments show that systems like CoreDet that
provide determinism through deterministic thread schedul-
ing are not suitable for irregular applications, which have
relatively fine-grain tasks.

In Section 5.3, we compare the performance of non-deter-
ministic Galois programs (g-n), generated deterministic im-
plementations of these Galois programs (g-d), and handwrit-
ten deterministic PBBS programs for the same problems.
Overall, our results show that at the maximum number of
threads on each machine, (i) g-n variants achieve a median
improvement of 4.2X compared to g-d, (ii) g-n variants are
2.4X faster than the PBBS variants, and (iii) g-d variants are
only 0.62X slower than the PBBS variants.

These results show that the automatically generated de-
terministic Galois programs are comparable in performance
to the handwritten PBBS programs and that there is a sig-
nificant performance penalty for deterministic execution. A
study with performance counters in Section 5.4 reveals that,
for the most part, non-deterministic programs perform better
than deterministic ones because they exploit more locality.

p = 1 p = 40

Abort
Ratio

Tasks
per µs

Abort
Ratio

Tasks
per µsVariant Rounds

bfs g-d 1700 0.08 0.45 0.08 9.76
bfs g-n 0 0 1.32 0 39.92
bfs pbbs 11 0 1.24 0 24.27

dmr g-d 1287 0.11 0.13 0.11 2.53
dmr g-n 0 0 0.26 < 0.01 8.98
dmr pbbs 1165 0.03 0.18 0.03 2.90

dt g-d 35213 0.27 0.12 0.27 1.78
dt g-n 0 0 0.24 < 0.01 7.47
dt pbbs 1330 0.10 0.11 0.10 2.48

mis g-d 100 0.08 0.77 0.08 21.05
mis g-n 0 0 3.98 < 0.01 79.69
mis pbbs 29 0.05 14.59 0.05 143.12

pfp g-d 21047 0.04 0.26 0.04 2.58
pfp g-n 0 0 0.67 < 0.01 14.99

Figure 4: Abort ratio and task execution rates on machine
m4x10.

p = 1 p = 40

Variant Count Rate Count Rate

mis pbbs < 1 < 0.01 < 1 < 0.01
freqmine < 1 < 0.01 < 1 < 0.01
bodytrack < 1 < 0.01 15 0.07
dt pbbs 1445 0.55 1522 0.66
blackscholes < 1 < 0.01 48 0.77
bfs pbbs 7191 1.24 7162 1.36
dmr pbbs 2360 1.00 2634 1.37
pfp g-n 4622 2.24 1519 27.57
dmr g-n 707 1.59 583 36.21
dt g-n 1376 3.10 920 79.94
mis g-n 19292 10.27 4628 100.17

Figure 5: Atomic updates by application measured by bi-
nary instrumentation on machine m4x10. Variant g-d omitted.
Count is atomic updates per million instructions executed. Rate
is atomic updates per microsecond.

5.1 Application characteristics
The first set of measurements is concerned with the parallel
behavior of applications, such as task granularity, frequency
of synchronization, and how often inter-task conflicts occur
during execution. These metrics are of interest for the fol-
lowing reasons.

Previous evaluations of deterministic scheduling have fo-
cused mostly on applications with coarse-grain tasks that

communicate relatively infrequently. Deterministic schedul-
ing for these kinds of applications can be supported using
relatively heavyweight mechanisms since the overhead of
the system is a small fraction of the overall execution time.
However, these mechanisms may not be useful for appli-
cations with very lightweight tasks that communicate fre-
quently. On a shared-memory system, the concept of com-
munication is less well-defined compared to a distributed
system, but one approximation is the number of atomic up-
dates an application performs. Figures 4 and 5 show task
execution rates, abort ratios, and atomic update rates for
our applications on 1 thread and 40 threads on machine
m4x10. For the deterministic variants, the number of rounds
is also shown. For PBBS variants, this is the number of bulk-
synchronous rounds of the handwritten deterministic sched-
uling.

First, we see that the PBBS and Lonestar benchmarks
have very fine-grain tasks. For example, the g-n version of
dmr, running on one thread, commits 0.26 tasks per mi-
crosecond (see Figure 4), which translates to 3.8 microsec-
onds per task (this is the parallel version of the code with
synchronization, running on one thread), which is on the or-
der of a thousand cycles. On 40 threads, this parallel program
commits roughly 9 tasks per microsecond, which translates
to a throughput of roughly 0.11 microseconds per task.

Second, we see that the abort ratios of the g-n variants
of all applications are essentially zero even at 40 threads.
Conflicts between tasks in the non-deterministic variants
are very rare: this is because there are a large number of
tasks compared to the number of threads. The deterministic
variants g-d and PBBS have larger abort ratios because in
each round, the number of tasks whose neighborhoods are
inspected is typically larger than the number of threads.
Conflicts can also happen with only one thread when two
tasks with overlapping neighborhoods are inspected in the
same round.

Third, the PARSEC benchmarks—blackscholes, body-
track and freqmine, which are frequently used to evaluate
deterministic schedulers—have orders of magnitude fewer
atomic updates than the irregular algorithms of the PBBS
and Lonestar suites (see Figure 5). For example, blacksc-
holes at 40 threads performs atomic updates at a rate of
about 1 update per microsecond, while the mis g-n variant
performs atomic updates at the rate of 100 updates per mi-
crosecond.

These qualitative differences in application characteris-
tics significantly impact the design of deterministic sched-
ulers, as we show in the following sections.

5.2 Deterministic thread scheduling
In this section, we present performance results from using
CoreDet, a deterministic thread scheduler, on our benchmark
applications. Unlike DIG scheduling, CoreDet runs on un-
modified pthread programs.

m4x10 m4x6 numa8x4

0.0

0.5

1.0

1.5

2.0

0

10

20

2

4

6

0.0

2.5

5.0

7.5

10.0

0

2

4

0.5

1.0

1.5

2.0

2.5

1
2
3
4
5

b
fs

b
la

c
k
s
c
h
o

le
s

b
o
d
y
tra

c
k

d
m

r
d
t

fre
q
m

in
e

m
is

0 10 20 30 40 0 5 10 15 20 25 0 10 20 30

Threads

S
p
e
e

d
u
p

Figure 6: Speedup with (solid lines) and without (dotted lines)
CoreDet system on non-deterministic programs. Speedup base-
lines are in Figure 8. Some dmr and dt runs on numa8x4 timed
out after 10 minutes.

Ideally, we would like to run the PARSEC and g-n non-
deterministic programs with CoreDet to make them deter-
ministic. Unfortunately, the CoreDet compiler is based on
the older LLVM 2.6 compiler, and it is unable to compile any
of the g-n programs. To get around this problem, we exploit
the fact that bfs, dmr and dt in PBBS are deterministic imple-
mentations of non-deterministic algorithms. To make them
non-deterministic, we transform the programs by hand to
match the non-deterministic program pattern shown in Fig-
ure 1 and run these with CoreDet. We leave the mis bench-
mark as a data-parallel program.

We use the CoreDet system in low-overhead, synchro-
nization-only mode, which reduces the system to an im-
plementation of the Kendo algorithm [25] and requires all
synchronization between threads to use the pthread library.

For all our CoreDet comparisons, we replace calls to the
OpenMP or Cilk runtimes with calls to a simple pthread-only
runtime. The simple pthread-only runtime likely introduces
minor inefficiencies compared to the more optimized Cilk
and OpenMP runtimes, but they are dwarfed by the over-
heads of CoreDet. We used the LLVM 2.6 compiler with the
-O3 optimization flag to compile programs.

Figure 6 summarizes our results using the CoreDet sys-
tem to make PARSEC and modified PBBS programs deter-
ministic. CoreDet works well for blackscholes: the perfor-
mance with CoreDet is almost the same as without CoreDet
for a small number of threads. As the number of threads in-
creases, the gap between using CoreDet and not using Core-
Det increases, hinting at a serialization bottleneck in the de-
terministic scheduler. The bodytrack and freqmine applica-
tions show more limited speedups. For the modified PBBS
programs, the performance with CoreDet is poor except for
mis, the data-parallel code. The bfs, dmr and dt applications
perform substantially more synchronization than the PAR-
SEC applications and the mis code (§5.1). Overall, at the
maximum number of threads on each machine, the bench-
marks in this suite experience a median slowdown of 3.7X
(min: 1.3X, max: 55X) compared to non-CoreDet runs.

Although this evaluation uses CoreDet, the other deter-
ministic thread schedulers that we are familiar with such
as Kendo and DThreads have similar scheduling algorithms
and differ mainly in how they deal with racy data accesses,
which none of the modified PBBS programs have.

These results make the case that a different approach than
deterministic thread scheduling is needed to handle applica-
tions that perform orders of magnitude more synchronization
than more conventional programs like the PARSEC bench-
marks.

5.3 End-to-end performance of g-n, g-d and PBBS
Figure 7 shows the speedups of g-n, g-d and PBBS rela-
tive to the best performing serial implementations shown
in Figure 8. For bfs, the baseline is the highly optimized
code of Schardl and Leiserson that uses data structures cus-
tomized to the bfs problem [23]. For preflow-push, we use
the highly optimized hi pr implementation from Goldberg
and Tarjan [18]. For the other benchmarks, the best perform-
ing versions that we were able to find were from the bench-
mark suites considered in this paper.

Figure 7 shows that the best performing variant overall is
g-n with a median improvement of 2.4X over correspond-
ing PBBS programs at the maximum number of threads on
each machine. The benefit is largest on the numa8x4 ma-
chine where the scalability of the PBBS variant is particu-
larly poor, but there are positive benefits for almost all non-
deterministic variants. Figure 7 suggests that there are also
significant scalability advantages to the non-deterministic
variants compared to the deterministic ones. The g-n vari-
ants are able to achieve at least a 15X speedup on m4x10 for
four of the five applications.

m4x10 m4x6 numa8x4

g−d
pbbs

g−n

g−d

pbbs

g−n

g−d

pbbs

g−n

g−d
g−n

pbbs

g−d

g−n

g−d

g−n

pbbs

g−d

pbbs

g−n

g−d

pbbs

g−n

g−d
g−n

pbbs

g−d

g−n

g−d
pbbs

g−n

pbbs

g−d

g−n

g−d
pbbs

g−n

g−d
g−n

pbbs

g−d

g−n

0

5

10

15

0

10

20

30

0

10

20

30

0.0

2.5

5.0

7.5

10.0

0

5

10

15

d
t

m
is

p
fp

0 10 20 30 40 0 5 10 15 20 25 0 10 20 30

Threads

S
p
e
e

d
u
p

b
fs

d
m

r

Figure 7: Speedup for selected deterministic and non-
deterministic variants. Speedup baselines are in Figure 8.

Machine Var. Time (s)

bfs m4x10 cilk 3.76
bfs m4x6 cilk 4.36
bfs numa8x4 cilk 4.85
bs m4x10 8.42
bs m4x6 11.27
bs numa8x4 12.01
bt m4x10 164.84
bt m4x6 216.31
bt numa8x4 249.07
dmr m4x10 g-nd 44.48
dmr m4x6 g-nd 60.04
dmr numa8x4 g-nd 63.29

Machine Var. Time (s)

dt m4x10 g-nd 42.35
dt m4x6 g-nd 56.37
dt numa8x4 g-nd 61.15
fm m4x10 7.95
fm m4x6 10.57
fm numa8x4 11.33
mis m4x10 pbbs 0.72
mis m4x6 pbbs 0.90
mis numa8x4 pbbs 0.91
pfp m4x10 hi pr 13.64
pfp m4x6 hi pr 14.64
pfp numa8x4 g-nd 26.17

Figure 8: Baseline times in seconds for speedup calculations
(bs: blackscholes, bt: bodytrack, fm: freqmine). These are the
best times for any variant with one thread. Cilk is a parallel bfs
code [23]. hi pr is a sequential implementation of pfp [18].

The main outlier in these results is the behavior of mis.
As mentioned above, the PBBS variant of mis is a data-
parallel program, and its execution characteristics are sig-
nificantly different than the g-n or g-d variants. The main
conclusion from this benchmark is that if one has a deter-
ministic algorithm for some problem, it may be better to use
that algorithm rather than deterministically schedule a non-
deterministic algorithm for the same problem. However, as
we will see in Section 5.4, the PBBS variant is more sensi-
tive to input ordering than g-n.

The sharp drop in performance at eight threads in some of
the numa8x4 runs is caused by inter-NUMA node commu-
nication. Runs of eight threads or less are scheduled to run
on a single NUMA node. Runs with more than eight threads
use more than one NUMA node, and remote memory ac-
cesses are significantly more expensive than local memory
accesses. The g-n variants for dmr and dt are able to toler-
ate the transition to inter-node communication due to local-
ity optimizations in the Galois runtime system. Exploiting
locality may be difficult in deterministically scheduled pro-
grams, as we describe in Section 5.4.

We conclude that for irregular applications, determinism
comes at a significant price in performance, even if the de-
terminism is obtained through hand-optimized, application-
specific code.

We note that a previous study by Blelloch et al. [7]
reached the opposite conclusion; for example, they found
that the deterministic PBBS version of dt was substantially
faster than the non-deterministic dt program in the Lonestar
suite. Unfortunately, their study did not ensure that the same
algorithm was used for a given problem; in particular, the dt
algorithm in the PBBS suite is different (and more efficient)
than the one that was used in the Lonestar suite at the time
their study was performed. For the study in this paper, we
reimplemented in the Lonestar suite the dt algorithm used in
PBBS, so in our measurements, the performance differences
between non-deterministic and deterministic programs for
a given problem are not entangled with algorithmic differ-
ences.

DIG scheduling vs. determinism by construction How
good is the general-purpose deterministic scheduler de-
scribed in Figure 2 compared to the application-specific,
hand-optimized deterministic code in the PBBS programs?
Figure 9 shows the performance for different variants rela-
tive to the same baseline, the PBBS variant.

Across all machines and benchmarks and at the maximum
number of threads (Imax), the median performance of the g-d
variant relative to PBBS is only 0.62X. If we drop mis from
the set of benchmarks, the median performance is 0.70X.

We conclude that the general-purpose deterministic sched-
uler described in Figure 2 provides reasonable performance
compared to application-specific, hand-optimized determin-
ism by construction code, although there is room for im-
provement.

For dmr and dt, the PBBS variants correspond to a hand-
written version of DIG scheduling of the g-nd variants. We
believe the performance difference between the g-d and
PBBS variants is largely due to the application-specific im-
plementation of resuming tasks and the handtuned window
selection policy used in PBBS. It would be interesting to
study whether a compiler could optimize the generic code of
Figure 2 and provide tuned implementations for each appli-
cation.

Impact of continuation optimization The g-d variants
use the continuation optimization described in Section 3.3,
which requires some user input to form proper continua-
tions (this transformation could be done by a compiler, but
we have not implemented this yet). To weigh the effect of
this optimization, we measure the performance of programs
without this optimization. Overall, the continuation opti-
mization provides a median improvement of 1.14X for our
deterministic programs. As seen in Figure 10, the continu-
ation optimization provides a significant improvement only
for the relatively more complicated dmr and dt programs.

5.4 Determinism and locality
In Section 3.4, we describe how DIG scheduling can de-
crease the performance of an application relative to its non-
deterministic implementation. In this section, we quantify
two of those costs. First, DIG scheduling can make it more
difficult to exploit locality, and second, DIG scheduling can
reduce existing locality.

Performance counter measurements for locality As men-
tioned in Section 3.4, DIG scheduling decreases locality by
splitting a task, which might have significant intra-task local-
ity, into two phases well-separated in time. We can quantify
the impact of this transformation by measuring performance
counter information about memory-level events.

Figure 11 gives the number of data requests satisfied from
DRAM for the g-n, g-d, and PBBS versions of our applica-
tions. The non-deterministic variants typically have far fewer
samples than the deterministic ones, but is the change in
samples enough to explain the difference in performance?

One way to answer this question is to see how the ob-
served data fits a simple model of performance. Let effi-
ciency be speedup normalized by the number of threads. One
simple model is that there is a linear relationship between the
change in efficiency and the change of some performance
counter. Symbolically, let effvar and PCvar be the efficiency
and performance counter value, respectively, of some appli-
cation variant with some number of threads on a machine,
and let effref and PCref be the likewise for a particular refer-
ence variant of the same application with the same number
of threads. We would like to know how well the following
linear model fits the observed data

effvar = B0 +B1(PCref/PCvar)effref.

m4x10 m4x6 numa8x4

Variant Mean Max I1 Imax Mean Max I1 Imax Mean Max I1 Imax

bfs g-n 1.28 1.68 1.07 1.64 1.10 1.20 1.00 0.98 2.23 3.48 1.00 3.09
bfs g-d 0.31 0.37 0.33 0.37 0.29 0.32 0.28 0.25 0.61 1.03 0.30 0.71
bfs pbbs 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

dmr g-n 2.12 2.99 1.39 2.90 1.63 2.11 1.11 2.11 5.45 9.12 1.18 9.12
dmr g-d 0.62 0.71 0.57 0.70 0.60 0.66 0.52 0.66 1.38 1.75 0.55 1.59
dmr pbbs 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

dt g-n 2.81 3.34 2.34 3.34 2.43 2.76 1.92 2.73 6.70 9.30 2.07 9.26
dt g-d 0.72 0.95 0.87 0.58 0.77 0.89 0.79 0.70 1.15 2.08 1.11 0.86
dt pbbs 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

mis g-n 0.40 0.64 0.29 0.59 0.27 0.35 0.31 0.21 0.48 0.94 0.28 0.44
mis g-d 0.09 0.15 0.05 0.14 0.07 0.09 0.05 0.08 0.12 0.18 0.05 0.18
mis pbbs 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Figure 9: Performance of variants relative to PBBS variant. Let timePBBS(p) and timevar(p)
be the times for variant PBBS and var respectively with p threads. The performance number
shown is timePBBS(p)/timevar(p). I1 and Imax show performance at 1 and the maximum
number of threads respectively.

m4x10

Variant Mean Max I1 Imax

bfs g-d 0.31 0.37 0.33 0.37
bfs without 0.27 0.32 0.30 0.32

dmr g-d 0.62 0.71 0.57 0.70
dmr without 0.48 0.54 0.43 0.52

dt g-d 0.72 0.95 0.87 0.58
dt without 0.56 0.71 0.68 0.49

mis g-d 0.09 0.15 0.05 0.14
mis without 0.08 0.13 0.05 0.12

Figure 10: Performance without con-
tinuation optimization relative to
PBBS variant on machine m4x10. I1
and Imax show performance at 1 and
the maximum number of threads re-
spectively.

Fitting the above linear model to our observed data on
machine m4x10 reveals that the change in DRAM accesses
significantly predicts the change in performance, β = 0.35,
t(108) = 16.8, p < 0.001. The change in this performance
counter also explained a significant portion of the variance
in change of performance, R2 = 0.72, F (1, 108) = 282,
p < 0.001. There are performance counters that are more
highly correlated (R2 ≥ 0.75), clock cycles for instance, but
that relationship is trivial.

Inter-task locality Figure 12 shows how the performance
of mis can vary on the same input, depending on whether the
input is randomized or sorted. The input graph is a 2D mesh
which is ordered by sorting nodes according to a space-
filling curve. Figure 12(ordered) shows that the g-n variant
is able to effectively exploit the locality in the input data and
obtain far better performance than the g-d or PBBS variants.
When the input graph is randomized, there is no locality to
be exploited, and the PBBS version performs slightly better
than the g-n version.

Non-deterministic programs can more readily exploit
both intra-task and inter-task locality. The execution of a
single task is not divided into phases separated in time, so
they can exploit intra-task locality better. Furthermore, lo-
cality in the input data, which leads to inter-task locality, is
easier to exploit.

6. Related work
The majority of deterministic parallel systems work by ex-
ecuting tasks in rounds and deterministically resolving con-
flicts when two tasks access the same resource in a round. A

common way to resolve conflicts is to buffer updates pri-
vately and then deterministically merge updates to form
the new state for the next round. Hardware systems like
RCDC [17] and Calvin [21] work this way, as well as
runtime replacements like DThreads [24] and Kendo [25],
compiler-based systems like CoreDet [3], OS systems like
dOS [4] and Determinator [2], and some parallel program-
ming models like Grace [5].

In systems that are deterministic by construction such
as DPJ [9], nested data-parallel programs [8], stream pro-
grams [27] and commutativity-based techniques [7, 11],
tasks have no conflicts. However, it is not possible to write
non-deterministic programs in these approaches. Bocchino
et al. have shown how to extend DPJ to compose safely with
non-deterministic programs [10], but there is as yet no sys-
tem to make the resulting program deterministic on demand.

For round-based systems, an important characteristic of
the system is how tasks are determined. The hardware sys-
tems and Kendo use the number of instructions executed
(or a similar proxy) to divide sequences of instructions into
tasks. Depending on how conflicts are detected, task bound-
aries may also have to be formed at every memory fence,
synchronization instruction, store buffer completion, etc.
RCDC and the bounded mode of Calvin form tasks based on
when the store buffer is full, which is a micro-architectural
event. This means that programs may not be deterministic
across different processor implementations. CoreDet, Kendo
and the unbounded mode of Calvin form tasks based on the
number of executed instructions, so their results should be
the same between processors.

pbbs

g−d

g−n

g−n

pbbs

g−d

g−n

pbbs

g−d

g−d

pbbs

g−n

g−n

g−d

bfs dmr dt mis pfp

0.10

0.15

0.20

0.25

0.30

0.4

0.8

1.2

0.3

0.6

0.9

1.2

0.1

0.2

0.5

0.7

0.9

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

Threads

S
a
m
p
le
s
(b
ill
io
n
s)

Figure 11: Samples of DRAM access performance counter on machine m4x10.

pbbs
g−d

g−n

g−d
g−n

pbbs

0

5

10

15

0 10 20 30 40 0 10 20 30 40

Threads

S
p

e
e

d
u

p

Figure 12: Effect of ordering input for mis. Speedup is relative
to the best variant with one thread among the two inputs (g-n,
4.3 seconds). The ordered input is a graph of a 2D mesh. The
nodes are sorted according to a space-filling curve.

The determinism guarantee of these systems is still quite
fragile, because the insertion of a single instruction will
produce a program that generates different outputs. Also,
performance is sensitive to the task length. Devietti et al.
show that system overheads can vary between 160%–250%
depending on the task size parameter [17].

In contrast, systems like Grace and DThreads form their
tasks based on synchronization instructions, which means
that adding non-synchronization instructions will not change
the decomposition of the program into tasks. However, this
flexibility comes at a cost as tasks are now quite long, and
load balancing becomes an issue. DThreads uses a sequen-
tial token passing algorithm to deterministically process syn-
chronization events, so the entire sequence of instructions
bounded by synchronization instructions is blocked waiting
for the token. Kendo, which breaks tasks up into smaller
pieces, can extract more parallelism by executing a prefix
of instructions before the synchronization instruction. More
recently, Cui et al. have proposed that users add performance
hints akin to thread barriers to improve the load balancing of
a deterministic scheduler [15].

Kendo, CoreDet, Determinator and some PBBS pro-
grams [7] have a tunable parameter that controls the task
or round size, but no method to adaptively set that parame-
ter based on observed execution. dOS uses instruction-based
task formation, but it uses an adaptive algorithm like the one

described in Section 3.2 to deterministically adjust the task
size based on observed parallelism. Calvin uses a standard
hardware two-bit predictor to dynamically increase task size
when there is no synchronization in a task.

7. Conclusion
Deterministic execution of parallel programs has certain ad-
vantages such as reproducibility of results, which makes
debugging easier. There is a substantial body of recent work
on enforcing determinism at the programming language and
programming model level, and at the system level through
deterministic scheduling. We believe that any such sys-
tem should provide three features: on-demand determinism,
portability and parameter-freedom across platforms, which
no existing system currently does.

In this paper, we considered the problem of ensuring
deterministic execution for irregular programs, which are
particularly challenging because task sizes are smaller and
tasks communicate more frequently than in conventional
parallel programs like the PARSEC benchmarks. Irregular
programs have not been studied much in this context, and
we showed that these programs do not scale when executed
on a current determinism by scheduling system.

Our solution takes high-level non-deterministic programs
written in the Galois model and implements determinism au-
tomatically by runtime scheduling. In many instances, the
resulting programs have performance comparable to hand-
written deterministic programs.

However, we showed on three different platforms that
non-deterministic programs perform substantially better
than their handwritten deterministic counterparts, demon-
strating that there is a performance penalty for enforcing
deterministic execution. This performance difference arises
because the deterministic versions have less intra-task and
inter-task locality. Therefore, we believe that determinism
on demand, which leaves the choice between performance
and determinism to the application user, is a reasonable de-
sign point.

References
[1] N. Amenta, S. Choi, and G. Rote. Incremental constructions

con brio. In Proc. Symp. on Computational Geometry (SCG),
2003.

[2] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-
enforced deterministic parallelism. In Proc. USENIX Conf.
Operating Systems Design and Implementation, OSDI, pages
1–16, 2010.

[3] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Gross-
man. CoreDet: a compiler and runtime system for determinis-
tic multithreaded execution. In Proc. Intl Conf. Architectural
Support for Programming Languages and Operating Systems,
ASPLOS, pages 53–64, 2010.

[4] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble. Determinis-
tic process groups in dOS. In Proc. USENIX Conf. Operat-
ing Systems Design and Implementation, OSDI, pages 1–16,
2010.

[5] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: safe mul-
tithreaded programming for C/C++. In Proc. ACM SIGPLAN
Conf. Object Oriented Programming Systems Languages and
Applications, OOPSLA, pages 81–96, 2009.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
benchmark suite: characterization and architectural implica-
tions. In Proc. Intl Conf. Parallel Architectures and Compila-
tion Techniques, PACT, pages 72–81, 2008.

[7] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and J. Shun.
Internally deterministic parallel algorithms can be fast. In
Proc. ACM SIGPLAN Symp. Principles and Practice of Par-
allel Programming, PPoPP, pages 135–146, 2012.

[8] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou. Cilk: An efficient multithreaded
runtime system. In Proc. ACM SIGPLAN Symp. Principles
and Practice of Parallel Programming, PPoPP, 1995.

[9] R. L. Bocchino, Jr., V. S. Adve, S. V. Adve, and M. Snir.
Parallel programming must be deterministic by default. In
Proc. USENIX Conf. Hot Topics in Parallelism, HotPar, pages
4–4, 2009.

[10] R. L. Bocchino, Jr., S. Heumann, N. Honarmand, S. V. Adve,
V. S. Adve, A. Welc, and T. Shpeisman. Safe nondetermin-
ism in a deterministic-by-default parallel language. In Proc.
ACM SIGPLAN-SIGACT Symp. Principles of Programming
Languages, POPL, pages 535–548, 2011.

[11] S. Burckhardt, A. Baldassin, and D. Leijen. Concurrent pro-
gramming with revisions and isolation types. In Proc. ACM
SIGPLAN Conf. Object Oriented Programming Systems Lan-
guages and Applications, OOPSLA, 2010.

[12] K. M. Chandy and J. Misra. The drinking philosophers prob-
lem. ACM Trans. Program. Lang. Syst., 6(4), Oct. 1984.

[13] B. V. Cherkassy and A. V. Goldberg. On implementing push-
relabel method for the maximum flow problem. In Proc. Intl
Conf. Integer Programming and Combinatorial Optimization,
IPCO, pages 157–171, 1995.

[14] K. L. Clarkson and P. W. Shor. Applications of random
sampling in computational geometry, II. Discrete Comput.
Geom., 4(5):287–421, 1989.

[15] H. Cui, J. Simsa, Y.-H. Lin, H. Li, B. Blum, X. Xu, J. Yang,
G. A. Gibson, and R. E. Bryant. Parrot: A practical runtime
for deterministic, stable, and reliable threads. In Proc. ACM
Symp. Operating Systems Principles, SOSP, pages 388–405,
2013.

[16] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: deter-
ministic shared memory multiprocessing. In Proc. Intl Conf.
Architectural Support for Programming Languages and Op-
erating Systems, ASPLOS, pages 85–96, 2009.

[17] J. Devietti, J. Nelson, T. Bergan, L. Ceze, and D. Grossman.
RCDC: a relaxed consistency deterministic computer. In Proc.
Intl Conf. Architectural Support for Programming Languages
and Operating Systems, ASPLOS, 2011.

[18] A. V. Goldberg and R. E. Tarjan. A new approach to the
maximum-flow problem. J. ACM, 35(4):921–940, 1988.

[19] T. Harris and K. Fraser. Language support for lightweight
transactions. In Proc. ACM SIGPLAN Conf. Object Oriented
Programming Systems Languages and Applications, OOP-
SLA, pages 388–402, 2003.

[20] M. Herlihy and E. Koskinen. Transactional boosting: a
methodology for highly-concurrent transactional objects. In
Proc. ACM SIGPLAN Symp. Principles and Practice of Par-
allel Programming, PPoPP, pages 207–216, 2008.

[21] D. Hower, P. Dudnik, M. D. Hill, and D. A. Wood. Calvin:
Deterministic or not? free will to choose. In IEEE Intl
Symp. High Performance Computer Architecture, HPCA,
pages 333–334, 2011.

[22] M. Kulkarni, M. Burtscher, C. Casçaval, and K. Pingali. Lone-
star: A suite of parallel irregular programs. In IEEE Intl
Symp. Performance Analysis of Systems and Software, IS-
PASS, pages 65–76, 2009.

[23] C. E. Leiserson and T. B. Schardl. A work-efficient parallel
breadth-first search algorithm (or how to cope with the non-
determinism of reducers). In Proc. ACM Symp. Parallelism in
Algorithms and Architectures, SPAA, pages 303–314, 2010.

[24] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: Efficient
deterministic multithreading. In Proc. ACM Symp. Operating
Systems Principles, SOSP, pages 327–336, New York, NY,
USA, 2011.

[25] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: efficient
deterministic multithreading in software. In Proc. Intl Conf.
Architectural Support for Programming Languages and Op-
erating Systems, ASPLOS, 2009.

[26] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A.
Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich,
M. Méndez-Lojo, D. Prountzos, and X. Sui. The tao of
parallelism in algorithms. In Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation, PLDI,
pages 12–25, 2011.

[27] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt:
A language for streaming applications. In Proc. Intl Conf.
Compiler Construction, CC, pages 179–196, 2002.

	Introduction
	Galois programming model
	Non-deterministic scheduling

	Deterministic scheduling
	DIG scheduling
	Implementation of DIG scheduling
	Optimizations
	Comparison of non-deterministic and deterministic schedulers

	Experimental setup
	Applications
	Data-sets
	Platforms

	Evaluation
	Application characteristics
	Deterministic thread scheduling
	End-to-end performance of g-n, g-d and PBBS
	Determinism and locality

	Related work
	Conclusion

