
Tioga: Providing Data Management Support for

Scienti�c Visualization Applications �

Michael Stonebraker, Jolly Chen, Nobuko Nathan, Caroline Paxson, Jiang Wu

Computer Science Division, EECS Department

University of California

Berkeley, CA 94720

Abstract

We present a user interface paradigm for

database management systems that is motivated

by scienti�c visualization applications. Our

graphical user interface includes a \boxes and ar-

rows" notation for database access and a
ight

simulator model of movement through informa-

tion space. We also provide means to specify a

hierarchy of abstracts of data of di�erent types

and resolutions, so that a \zoom" capability can

be supported. The underlying DBMS support for

this system is described and includes the com-

pilation of query plans into megaplans, new al-

gorithms for data bu�ering, and provisions for

a guaranteed rate of data delivery. The cur-

rent state of the Tioga implementation is also de-

scribed.

�This research was sponsored by NSF Grant IRI-

9107455, ARO Grant DAAL03-91-G-0183, and DARPA

Contract DABT63-92-C-0007. Additional support was

provided by the University of California and Digital Equip-

ment Corporation under Research Grant #1243.

Other industrial and government partners include the

State of California Department of Water Resources, United
States Geological Survey, Construction Engineering Re-

search Laboratory (CERL) of the U.S. Army Corps of

Engineers, the National Aeronautics and Space Admin-
istration (NASA), Epoch Systems, Inc., Hewlett-Packard

Corp., Hughes Aircraft Company, MCI, Metrum Corpora-

tion, PictureTel Corporation, Research Systems Inc., Sci-
ence Applications International Corporation, Siemens Inc.,

and TRW Space and Electronics.

1 Introduction

Scienti�c visualization applications often deal

with data objects of very large sizes. Exam-

ples include large regular arrays such as those

found in global atmosphere and ocean circulation

models[12] and in remote sensing applications[5].

Large data structures used to model roads,

drainage networks, and vegetation patterns are

represented as collections of arcs, polygons, or

points. Popular visualization systems such as

AVS, Explorer, or Khoros o�er scienti�c users a

visual programming environment and powerful vi-

sualization tools to manipulate and display scien-

ti�c data. Most existing systems, however, pro-

vide only primitive data management support. In

particular, they can only read or write data from

�les, and they are geared toward manipulating a

�xed set of data types.

We are building a next generation visualiza-

tion system, Tioga, which improves dramatically

on current technology. Our architecture is moti-

vated by the fact that many objects visualized by

the scienti�c community are very large and com-

plex and would be best managed by a database

management system (DBMS). Scienti�c data are

not well served by conventional relational DBMSs;

however, the DBMS research community has con-

structed a collection of next generation DBMSs

which support such objects more e�ectively. Ex-

ample data managers in this class are POST-

GRES, IRIS, Starburst, and Orion. Our archi-

tecture assumes the presence of a next generation

DBMS, and we are building Tioga for the POST-

GRES DBMS.

Page 1

Two features of POSTGRES are important in

the design of Tioga. First, POSTGRES sup-

ports a facility through which a user can de�ne

new data types. Such types can either be new

base types which augment the standard collection

of integers,
oating point numbers and charac-

ter strings, or they can be composite data types.

Second, POSTGRES allows users to register a

previously written function. The user must spec-

ify the number and types of the input arguments

and the type of the function result as well as the

location of the code for the function. Currently,

POSTGRES supports functions written in C or

in the query language POSTQUEL[13].

Although Tioga uses POSTGRES, our pro-

posal can be readily adapted to any system

that supports an extendible type system, user-

de�ned functions, and a multi-dimensional access

method, e.g. [7, 8, 11, 14].

Tioga di�ers from other work on support-

ing scienti�c users of database systems. Pre-

vious e�orts have tended to concentrate on

broad requirements[4], representing scienti�c

data[15], and statistical computations on large

databases[2]. Little attention has been addressed

to the programming needs of the scienti�c user

of a DBMS. Instead, work on programming lan-

guage integration with DBMSs has focused on the

seamless integration of general purpose languages,

such as C++, with data base systems[1, 16].

This paper is organized as follows. In Section

2 we explain the \boxes and arrows" visual pro-

gramming paradigm used by Tioga. Section 3

discusses the way Tioga requires the DBMS to

interact with user-space (client) code. This inter-

face is a generalization of both traditional SQL

cursors and database portals[20]. Section 4 in-

dicates the run-time support provided by POST-

GRES for execution of Tioga boxes and arrows

diagrams. This includes the de�nition and opti-

mization of extended query plans. In Section 5

we describe how Tioga supports additional func-

tionality in the areas of guaranteed data delivery,

abstracts of data, browser synchronization, and

visual updating of data. Lastly, in Section 6, we

conclude with an update of our current status and

a look at future issues.

2 The Tioga Programming

Paradigm

Existing scienti�c programming systems allow

the user to create visual programs by connecting

modules, written in a conventional programming

language, using an easy-to-use graphical user in-

terface. The modules are depicted on the screen

as boxes with connections for inputs and out-

puts. The user connects the boxes with arrows

to create a directed graph which represents the

�nal program. One or more boxes in the dia-

gram are input nodes which read data from named

�les. Executing a diagram entails running the

read boxes and progressively running each box as

its inputs are available. Normally, the �nal box

in the graph is a rendering engine which displays

the result of the computation on the screen. The

user can interact dynamically with the diagram by

changing the parameters of the boxes, and the di-

agram is automatically rerun to produce the new

rendered output. In this way, a user can itera-

tively produce the desired visualization e�ect.

Consider as an application example the detec-

tion of wild�res using images from the Advanced

Very High Resolution Radiometer (AVHRR)

satellite. A �re in the mixed terrain of the Cal-

ifornia Sierra is hard to identify because of the

interspersion of forest and crop land. An earth

scientist begins with a composite, cloud-free satel-

lite image and a landuse map. The map is �rst

processed to block out areas of crop cultivation,

since harvested crops and wild�res both reduce

the amount of vegetation evident in a satellite

image. Then the altered landuse map is super-

imposed on the satellite image to produce a new

image with the crop areas eliminated. The earth

scientist then calculates the \greenness" of a given

pixel in the new image using two image bands, in

order to locate the forest regions of interest. After

cropping the image to just forest areas, wild�res

are identi�ed by comparing fall and late spring

forest size. The earth scientist �nally renders the

resulting wild�re images onto the screen. Figure

1 illustrates the complete diagram for this appli-

cation.

The Tioga architecture generalizes this boxes

Page 2

and arrows user interface from commercial pack-

ages. Speci�cally, Tioga supports the de�nition,

manipulation and execution of boxes and arrows

diagrams, which we term recipes. Individual

boxes in a recipe are called ingredients. The

term recipe is used because it that a collection of

ingredients is \cooked" into a �nal visualization

output.

The cornerstone of the Tioga architecture is

that each function registered with POSTGRES

is automatically an ingredient, and is thereby in

the menu of building blocks. Thus, the menu of

building blocks can constructed by simply reading

the catalog of POSTGRES registered functions.

In a boxes and arrows diagram, a one-way con-

nection between two boxes indicates that the re-

sult of the �rst ingredient is to be passed as in-

put to the second ingredient. In order for such

a connection to be valid, the data type returned

by the �rst function must be compatible with the

type of one of the arguments of the second func-

tion. Either the output type exactly matches an

input type of the subsequent function, or the out-

put type is a set of the input type of the second

function. In this latter case the second function

will have to be called multiple times, once per el-

ement of the set. Types in the same inheritance

hierarchy are also compatible. For example, if EMP

is a subtype of PERSON, then outputs of type EMP

can be passed as input to a function expecting an

input of type PERSON. The details of this coordi-

nation and other aspects of recipe execution will

be covered in Section 4.

As a recipe is being constructed by the user,

the editing program automatically performs ap-

propriate type-checking, since the input and re-

turn types of all functions are known. The user is

told if a connection is invalid, so that he or she can

correct it. Although not shown in Figure 1, the

editor supports the use of optional icons to rep-

resent types. We plan to encourage type creators

to design icons which give visual clues concern-

ing the relationship of the type to other types.

For example, icons of types within the same in-

heritance hierarchy might have similar graphical

features. In this way, the user can be given vi-

sual clues concerning the compatibility of types,

Figure 1: Recipe Editor

thereby allowing a kind of visual type checking.

When the user �nishes editing a diagram, the

editor notes which function inputs are missing,

i.e. not provided by an incident edge from some

other function. Function inputs which are not

connected are treated as run-time parameters.

At recipe execution time, the user will be interac-

tively prompted to supply the missing values.

There are two semantically di�erent kinds of

recipe building blocks. The �rst are conventional

POSTGRES functions as noted above. As will

be explained in Section 4 the code for these func-

tions is executed inside the POSTGRES DBMS

when the recipe is run. The second kind of build-

ing blocks are browsers. These visualization boxes

render screen images and run as DBMS applica-

tion programs. As such they adhere to the client-

server communication protocol described in the

Page 3

next section. Browsers produce an output which

is the data type setof image. This output can be

used as the input to subsequent boxes in a recipe,

so that processing on screen images is supported.

There can be an arbitrary number of browsers in

a recipe. Sophisticated users can de�ne new kinds

of browsers to meet speci�c rendering needs.

Using the diagram editor, the user constructs a

recipe consisting of ingredients and browsers at-

tached together into a directed graph. Such a

recipe can be saved in the DBMS in two di�erent

ways. The recipe can be stored as a graph-like

structure in a cookbook, a collection of recipes

in the database. We provide a query tool to sup-

port browsing the cookbook. This tool, RASQL,

is described in a companion paper[3]. RASQL

is integrated with the diagram editor, so a user

can retrieve a recipe from the cookbook, modify

it with the diagram editor, and then install his

new recipe back into the cookbook.

Alternately, a recipe can be encapsulated or

canned into a new ingredient. In order for a

recipe to become an ingredient, it must be a legal

POSTGRES function, meaning it can only have a

single output, and it cannot have a browser. Once

the recipe is compiled into a single ingredient, its

original structure is lost and it becomes opaque

to the user. It is for this reason that ingredients

may not contain browsers: browsers must be di-

rectly manipulated by the user. Canned recipes

are added to the collection of POSTGRES func-

tions and hence, automatically augment the col-

lection of ingredients for future recipes.

If a user wishes to run a previously constructed

recipe, he can do so from the diagram editor. In

this case the appropriate ingredients are loaded,

any missing input parameters are prompted for at

run-time, and a window for each browser is gen-

erated. To run the recipe, the browsers communi-

cate with the DBMS using the protocol described

in the next subsection.

3 Browser-DBMS Protocol

As noted in the previous section, a recipe con-

sists of a collection of interconnected functions,

and may contain one or more browsers. Each

browser is run as a DBMS application program

which interacts with the recipe engine. The en-

gine manages the execution of the ingredients in

the recipe. In this section we describe the pro-

tocol for communication between a browser and

the DBMS. The interaction between the human

user and the browser is unconstrained; however,

the protocol to be described is most natural for

a
ight simulator paradigm, in which the user

has a joystick by which he can navigate in a data

space.

Although it is possible to support an interface

between the browser and the DBMS which al-

lows browsing of an arbitrary collection of DBMS

types, we chose a di�erent approach. Each ob-

ject may be of an arbitrary type, but it must have

associated with it a geometry. The geometry of

an object describes its location in an application

coordinate space. All objects in an application

are located in this common N-dimensional coor-

dinate system, whose dimensions are appropriate

to the speci�c application. The geometry of an

object may be either a polygon1 or a point. It

is the job of the human recipe designer to ensure

that the recipe produces the geometry representa-

tion (polygon or point) expected by some browser.

Failure to provide this will result in a type mis-

match.

To achieve a common polygon representation,

we have de�ned a standard N-dimensional poly-

gon, N-D-polygon. The generic tuple passed to

the browser from a recipe will have the form:

fvalue, type, locationg

The value can be an instance of a base type or a

composite type, and its location is represented by

the N-D-polygon as indicated. For example, the

value might be a satellite image; its type might be

AVHRR, and the location associated with it might

be a rectangle representing one of the quadrants

of a U.S. Geological Survey map.

With these preliminaries, the protocol between

the browser and the recipe execution engine con-

sists of the following commands:

1In this document, \polygon" refers to a general N-
dimensional polyhedron, not merely a two-dimensional

polygon.

Page 4

MARK (N-D-point) with identi�er

ERASE identi�er

MOVE to identi�er

MOVE to (N-D-point)

MOVE along (�1, ..., �N) until

F(value) <operator> <constant>

FETCH (number)

FETCH (�1, ..., �N)

The browser can mark any position in N-

dimensional space with an identi�er, so that it

can return to that point at a later time. This is

useful in marking points of interest. Such marks

can be permanent if they are de�ned as part of

the data type of the object. Usually marks will

be local to a speci�c browsing session.

The browser has three ways to relocate its posi-

tion in N-space: it can move to a previously des-

ignated identi�er, it can move to a speci�c N-D-

point which it calculates in some fashion, or it can

move in some direction, denoted by (�1, ..., �N)

until some condition

F(value) <operator> <constant>

is true. This third relocation command is use-

ful, for example, if a user is browsing Hurricane

Hugo, and wishes to fast-forward the hurricane,

i.e. skip or skim through images sorted by time,

until Hugo hits land. If landfall of the hurricane

can be expressed as a predicate, then the appro-

priate MOVE command would look like

MOVE along (0,0,...,+1) until

hits land(Hurricane.hugo) = TRUE

The +1 means a movement along the positive time

axis, assuming time is the last dimension in this

coordinate system. Note that recipes may be fast-

forwarded in this fashion in any dimension.

There are two ways to fetch data: �rst, the

browser can request a �xed number of instances;

second, it can request all the instances within a

speci�c N-dimensional rectangle. In the �rst case,

the number of instances requested is returned by

running the recipe forward from its current po-

sition. Since the recipe determines the ordering

of instances, it implicitly speci�es what the \for-

ward" direction of instance production is. In the

second case, the rectangle is speci�ed by a col-

lection of o�sets from the current position in the

application coordinate system.

As the user moves through N-space with a

joystick-like interface, it is the responsibility of

the browser module to issue the appropriate move

and fetch commands to support the user. It is

also the browser's responsibility to display appro-

priately the values which are returned from the

recipe in a fashion similar to that of SDMS[9].

To assist the browser, each type implementor

is expected to de�ne a display function in POST-

GRES of the form:

display(object,location,screen-resource)

The location of the object is an N-dimensional

polygon. The screen-resource argument speci�es

the screen resources which are available for the

display of this object such the dimensions in pix-

els of the area and the number of bits of color

available. Given these parameters, the display

function returns to the browser a screen repre-

sentation for a given data object.

The display function can return either a ren-

derable object or a set of sub-objects which

individually need to be passed to display func-

tions. The latter mechanism allows for a hier-

archical decomposition of a complex object into

simpler objects to be displayed. For example, a

browser could display information about employ-

ees by calling the display function with the ap-

propriate instances and locations. This function

would either be a generic one or one written by

the designer of the EMP class. The display func-

tion could return an image of the employee's face,

or the display function could return separate data

objects which make up an EMP instance, such as

the employee's salary, department, name, and pic-

ture. These can then be separately rendered by

calling the display function again.

The N-dimensional browser-DBMS interface is

a generalization of the one-dimensional interface

available for the traditional DBMS cursors found

in SQL. SQL-2 and SQL-3 generalize this interface

so that multiple records can be fetched in either a

forward or reverse direction. In this way, they in-

clude some of the constructs proposed in portals,

Page 5

which allow an application program to retrieve

multiple records in a variety of ways along a sin-

gle dimension[20]. Our browser-DBMS protocol

generalizes portals to operate in an N-dimensional

space. Recipes do not include explicit update

commands; rather they rely on the browser to is-

sue separate POSTQUEL commands for this pur-

pose. Because a unique identi�er is automatically

returned with each object, the browser can easily

perform a separate update if it desires. In this

way, recipe management follows the lead of por-

tals, which include the same capability.

Our browser interface has points in common

with previous user interface work. For exam-

ple, Cattell and Rogers [17] describe an interface

which uses an entity-relationship data model con-

structed for a given data base. The user is given a

browsing paradigm whereby he can navigate the

E-R diagram by following \next" and \previous"

links in an identi�ed set of records as well as by

following an E-R link to an associated record. In

Tioga, one can decompose an E-R relationship

into two functions and then browse a recipe con-

taining something akin to an E-R diagram. On

the other hand, Tioga is not bound to the E-R

model but can implement many kinds of relation-

ships between records. Also, multiple kinds of

browsers can be included in our architecture.

USD[10] has a similar \boxes and arrows" di-

agram notation, and each box can be a function

as in our proposal. However, USD enforces a se-

mantic net data model on the diagram, whereas

we make no such restriction. Also, USD is not

closely integrated with a DBMS and has none of

the extensions covered in Section 5. In a sense,

Tioga is a generalization of USD.

4 Recipe Execution

4.1 Introduction

At �rst glance, Tioga may seem to be merely a

convenient user interface for specifying views for

a next generation system. Or, one might think

of Tioga as a convenient query speci�cation tool

since each box of a recipe corresponds to a query

for the DBMS. Compiling a recipe entails convert-

ing the graph into a series of queries on the DBMS,

resulting in one or more query plans. This is sim-

ilar to compiling the output of any other query

tool. However, recipes di�er from views or query

plans in four crucial ways.

First, when a recipe is inserted into a cook-

book, the Tioga optimizer receives a directed

graph of ingredients, each of which corresponds

to a query. This should be contrasted with a tra-

ditional DBMS which accepts a single query.

In order to support Tioga recipe execution, we

are extending the POSTGRES executor so it can

run a megaplan, which is a directed graph of

nodes, each of which is a query plan. Speci�cally,

we have introduced a plan node which is a tee, or

fork, that connects the output of one plan to the

input of one or more other plans. Megaplans are

query plans with tee nodes in them.

When a recipe is inserted into a cookbook,

each ingredient can be optimized by a traditional

DBMS optimizer. The resulting megaplan is

stored for subsequent execution by an extended

execution engine. An optimization available on

megaplans is to coalesce multiple query plans

into a single composite query plan. Tioga will

optimize by coalescing queries when coalescing is

advantageous.

Second, ingredients have run-time parameters

which are changed frequently. For this reason, it

is advantageous to bu�er the output of some (or

all) ingredients, so that changes in downstream

parameters do not require recalculation of up-

stream ingredients. Where to bu�er is a second

decision which must be optimized. Bu�ering and

coalescing decisions are interrelated, because co-

alescing two ingredients into a single query plan

removes the opportunity to bu�er at the output

of the �rst ingredient. Hence, both kinds of opti-

mization must be performed in a uni�ed manner.

Third, the browser interface allows re-

requesting of information that has been previously

retrieved. Hence, it is advantageous to bu�er the

output of the ingredient immediately preceding a

browser. This output must be indexed using a

multi-dimensional access method, such as an R-

tree, in order to allow re-requested information to

be located quickly.

Fourth, Tioga is demand driven. A megaplan

Page 6

can have several browsers attached to it, each in-

dependently requesting records. Current query

plans have a distinguished root node which out-

puts records to an application. In Tioga, each

browser requests one or more records from a node

of a plan, which responds by requesting records

from its descendent nodes. The process completes

when a node in the plan can deliver records, which

then
ow up the plan to satisfy the outstanding

request.

When two browsers operate on a megaplan,

then a tee must be present. If one browser re-

quests records and the second one does not, then

recipe execution will continue the evaluation of

the megaplan to generate the records required by

the �rst browser. The state of the tee junction

will advance to that required by the �rst browser,

and the second browser will thereby lose its place.

Bu�ering at the tee will allow recipe execution to

avoid the subsequent recomputation of the state

of the second browser when it resumes requesting

records.

To optimize a megaplan, we therefore must de-

cide when to coalesce two ingredients in a mega-

plan and where to insert bu�ers. The remain-

der of this section considers these two issues. We

will �rst describe these two tactics separately, and

then show how to combine them into a single over-

all optimization strategy.

4.2 Bu�ering

A recipe may need to be re-executed in two

di�erent circumstances. First, when a user re-

examines records which he has previously fetched,

the browser must request them again. Second,

the user may change run-time parameters for one

or more functions and then re-run the recipe.

In both cases, bu�ering the output of ingredient

boxes can save recomputation.

There are three possible locations for bu�ering

in a recipe.

1. At the output of an ingredient that connects

to a browser.

If the data required for the current fetch com-

mand is in the bu�er, then an indexed lookup

can replace recipe execution.

2. At the output of an ingredient directly up-

stream from one with a run-time parameter.

When the run-time parameter changes,

then upstream ingredients need not be re-

executed.

3. At the output of an ingredient which goes to

more than one node.

This corresponds to a tee in a recipe plan. If

more than one browser is connected to the

recipe, then bu�ering at tees reduces the re-

computation that would otherwise be trig-

gered by downstream browsers requesting dif-

ferent records.

If space considerations preclude bu�ering in all

possible locations, then the following algorithm

can be used to decide which outputs to cache.

This algorithm assumes that the following statis-

tics are available for each ingredient, I , in a recipe.

P (I) = the number of times a run-time

parameter for this ingredient will be

changed

S(I) = the amount of storage needed to

e�ectively bu�er the output of I (in

bytes)

C(I) = the cost of running the recipe

from the \nearest upstream" bu�er

to I(in seconds). This includes the

cost of running I . In the case where I

has multiple inputs, C(I) is the sum

of the costs of executing portions of

the recipe needed to produce each in-

put. The cost corresponding to each

input \branch" is the cost of running

the recipe from the nearest upstream

bu�er along that branch.

Our algorithm requires one additional com-

puted statistic:

N(I) = number of change requests from

nodes downstream from I , calculated

as follows:

(1) if I is followed by the node J:

N(I) =

(
P (J) if J is bu�ered

P (J) +N(J) if J is unbu�ered

Page 7

(2) if I is followed by a browser B:

N(I) = P (B)

where P (B) is the number of times

the user of the browser causes a re-

execution.

(3) if I is followed by a tee, then calculate

N(I) using method (1) and take the

sum of nodes forked from the tee.

These statistics are gathered over time from

previous executions of the given recipe. Peri-

odic reoptimization allows fresh statistics to in-

uence future megaplan execution. Our algorithm

is based on statistics from a sequential execution

model, i.e. the execution of ingredients is serial-

ized. Optimization based on a parallel execution

model remains a problem for future study.

If the recipe manager is allocated a �xed

amount of bu�er space, SP , then we use following

simple greedy algorithm. Find the ingredient, I1,

which maximizes

C(I1) �N(I1)

S(I1)
:

Allocate S(I1) of bu�er space to ingredient I1

and reduce the overall bu�er space, SP , by this

amount. Recompute C(I) for each remaining in-

gredient I by taking into account the bu�er added

after I1. Find the next ingredient I2 by again

maximizing

C(I2) �N(I2)

S(I2)

and continue this greedy algorithm until no addi-

tional bu�er space remains.

Intuitively, C(I) � N(I) is the amount of time

that is saved in recomputation by bu�ering the

output of I . The formula maximized is thereby

the time savings per unit of bu�er space, and the

algorithm is a hill climbing one on this metric. Al-

though not optimal, we expect the algorithm will

give good real-world performance. A simulation

study is planned to test this hypothesis.

4.3 Coalescing Ingredients

The ingredients in a recipe can also be coalesced

into a smaller number of queries. For example,

sequences of POSTQUEL functions can be coa-

lesced into a single POSTQUEL function using

the query modi�cation technique for view com-

position discussed in [19]. The new function has

the inputs of the �rst function, the output of the

last, and the run-time parameters of all functions

in the sequence. The query plan for the com-

bined POSTQUEL function may be more e�cient

than the query plans of the individual functions

executed serially. As [19] notes, though, if any

POSTQUEL function in the sequence includes ag-

gregate functions, this technique fails.

If a recipe ingredient is a C function and is

opaque to POSTGRES, it can still be coalesced

with a preceding POSTQUEL box. One simply

brackets the C function around the target list

of the previous POSTQUEL command; however,

since C functions cannot be rewritten by POST-

GRES, no performance bene�t is gained from co-

alescing them.

When a function, written in POSTQUEL,

has outgoing edges to two or more subsequent

POSTQUEL boxes, then the �rst function can be

coalesced into each of the subsequent functions

using the above query modi�cation rules. Since

the �rst function will be executed as part of each

coalesced function, it will be executed repeatedly.

A function with more than one input can be

combined with all its preceding functions by ap-

plying the above technique, one function at a

time. In this way it is possible to collapse any

recipe diagram with no aggregates into a diagram

with only one node per browser.

Coalescing two functions has a signi�cant dis-

advantage. It is no longer possible to bu�er the

intermediate result of the �rst function because it

has disappeared inside a single query plan. Hence,

if the user changes a run-time parameter of the co-

alesced function which came from the second in-

gredient, the combined plan must be reexecuted.

Uncoalesced plans with an intermediate bu�er

would have required only the second function to

be re-executed.

Page 8

The next subsection completes the Tioga opti-

mization description by indicating how to choose

between coalescing ingredients and bu�ering in-

termediate results.

4.4 Bu�ering and Coalescing Together

When we construct a megaplan for a recipe, we

must decide which functions will be coalesced and

which outputs should be bu�ered to construct the

most e�cient plan. The following heuristic algo-

rithm contains our �rst simple treatment of this

problem. An optimal algorithm would need to

take into account the complex interrelationship

between coalescing and bu�ering bene�ts. It re-

mains an area for future study.

Our heuristic solution performs a coalescing

step followed by a bu�ering step followed by a

second coalescing step. The �rst step coalesces all

pairs of ingredients where coalescing is more ben-

e�cial than bu�ering. The second step allocates

available bu�er space according to the greedy al-

gorithm in the subsection 4.2. A �nal coalesc-

ing step is necessary to combine ingredients which

were not coalesced in the �rst step because bu�er-

ing would have been more advantageous in those

cases. Step two may not have allocated bu�ers to

all possible outputs because total space available

for bu�ering may have been limited. Therefore,

the �nal coalescing step is necessary to �nd all

remaining ingredient pairs where coalescing is ad-

vantageous.

Consider the case of two adjacent POSTQUEL

ingredients, A and B, where A outputs to B. We

ignore cases involving coalescing ingredients im-

plemented in the programming language C be-

cause no performance bene�t is gained from co-

alescing ingredients implemented as C functions.

In the �rst coalescing step there are three possi-

bilities to consider:

1. If B has no run-time parameter and A's out-

put goes only to B, always coalesce this se-

quence. There is no gain in bu�ering be-

tween these functions. Coalescing the func-

tions may allow the query optimizer to pick

a more e�cient composite plan.

2. If A's output goes to other functions as well

as B, never coalesce A and B. A would need

to be coalesced into multiple ingredients, and

substantial duplicate execution is inevitable.

3. If A's output goes only toB, andB has one or

more run-time parameters, then compute the

following formulas and coalesce if coalescing

is more bene�cial than bu�ering.

Bene�t of Bu�ering = C(A)�N(A)

Bene�t of Coalescing =

(C(B)� C(AB)) � (N(A) + P (A))

Here, AB is the result of coalescing A and B.

C(A), C(B), C(AB), N(A), and P (A) are statis-

tics de�ned as in the subsection 4.2. The bene-

�t of bu�ering is the cost that would be avoided

if there is a bu�er on the output of A. This

is an optimistic estimation of bu�ering bene�t

because we are not considering the presence of

other bu�ers. Other bu�ers upstream and down-

stream of A would decrease C(A) and N(A), re-

spectively. In addition, if ingredients were coa-

lesced upstream of A, C(A) would also decrease.

Intuitively, the C(B) � C(AB) term in the co-

alescing formula is the bene�t gained each time

ingredient AB is executed instead of running A

followed by running B. This bene�t is gained for

each change request from nodes downstream from

A. In addition, this bene�t is also gained for each

expected change in run-time parameters for ingre-

dient A, namely, P (A). The bene�t from coalesc-

ing is underestimated because coalescing accrues

bene�t every time re-execution of AB occurs, not

just when the re-execution is caused by changes

in requests downstream. Re-execution of AB can

also occur as a result of changes in run-time pa-

rameters of ingredients upstream of A. Since co-

alescing bene�t is underestimated and bu�ering

bene�t is overestimated, using the formulas above

will result in ingredient pairs where coalescing is

unequivocally better than bu�ering.

In the case where ingredient B has multiple in-

puts from ingredients A1 to Ak, use the above

algorithm to determine the best Ai to coalesce

with B. After coalescing, ingredient B becomes

ingredient AiB. Now repeat with all remaining

Page 9

input branches and the new ingredient AiB until

no more coalescing is possible.

5 Extensions to Recipe Man-

agement

By using a DBMS to support the data needs of

recipe management, we are able to provide ad-

ditional functionality for Tioga. In the follow-

ing subsections, we present the Tioga approach

to guaranteed data delivery, abstracts, synchro-

nization of browsers, and visual update of data.

5.1 Guaranteed Data Delivery

Many scienti�c visualization applications in-

volve synchronized, interactive presentations of

data which require input data at a predictable

rate. For example, oceanographers need to view

volume and surface data from the atmosphere and

the sea surface simultaneously. Data from the

two sources must be mapped to a common grid

and displayed. Clearly the rate of arrival of data

from both sources must be guaranteed so that it

may be synchronized. The problem di�ers from

standard real-time systems in several ways: the

guarantee applies to a rate of data delivery, not a

deadline for delivery; the visualization may start

at an arbitrary time; the rate is determined by

the scientist, not by the physical system; and the

quantity of the data to be guaranteed is typically

very high.

Researchers have already attacked the prob-

lem of how to provide guaranteed network perfor-

mance. It is clear that overall data delivery guar-

antees can only be met if all components of the

system, from the I/O subsystem to the database

to the network, agree to meet appropriate guar-

antees. Otherwise, the component that has not

agreed to the guarantee will become a perfor-

mance bottleneck and prevent the overall delivery

guarantees from being met. In order to support

applications such as animation of scienti�c data,

we propose to support guaranteed data delivery

from the database so as to work in harmony with

other delivery guarantees from other components

of the system.

We assume an architecture as shown in Figure

2. In the diagram, the network boxes indicate ei-

ther local or remote network connections. Local

connections are assumed to be fast enough tomeet

delivery guarantees. The network manager is as-

sumed to support delivery guarantees for remote

connections using approaches such as [6]. Rates

of data delivery will be speci�ed via contractual

protocols which each subsystem will follow. Since

Visualization System

 Data Manager

 Network

 Network

Storage Subsystem

Figure 2: Architecture for Guaranteed Data De-

livery

the ultimate performance requirements stem from

interaction with the user, the visualization sys-

tem must be responsible for initiating any perfor-

mance demands. The visualization system begins

by proposing a contract which speci�es data de-

livery rates in bytes per second. The contract is

then propagated to all underlying systems. If the

network, data manager, and operating system all

agree to deliver on the contract then the contract

is considered signed. In cases where the under-

lying systems cannot deliver, they may respond

with counter-o�ers and negotiations for a modi-

�ed contract may occur.

Assuming that the network manager has agreed

to deliver on the contract, we now consider how

the DBMS can also provide a guarantee. Tra-

ditionally, a DBMS query optimizer minimizes

a weighted sum of I/O cost and CPU cost[18].

Given the throughput and computing power of

the actual hardware platform, each of these esti-

Page 10

mates can be converted to expected elapsed time.

In e�ect, the optimizer should optimize:

CostT ime = TI=O + TCPU

where TI=O and TCPU are the elapsed time needed

for I/O and CPU operations, respectively. This

assumes the DBMS is allocated all of the ma-

chine's resources. During execution, the DBMS

may receive less resources, and in most systems

today, the allocation of I/O and CPU resources

can vary unpredictably.

In order to provide a service guarantee to the

visualization system, the DBMS must obtain a

guarantee for a certain fraction of total I/O and

CPU resources, FI=O and FCPU , from the oper-

ating system. Given such a guarantee, the query

optimizer can then use the cost function:

CostT ime =
TI=O

FI=O
+
TCPU

FCPU

Since the DBMS knows the expected number of

records returned for a given query, it can estimate

the number of bytes, NB, that will be returned. If

the operating system guarantees FI=O fraction of

I/O time and FCPU fraction of CPU time to the

DBMS, then the DBMS must �nd query plans for

which:

NB

TI=O
FI=O

+ TCPU
FCPU

> X

where X is the bytes per second required by the

original contract. If a plan can be found that sat-

is�es this equation, then the DBMS can agree to

deliver on the contract. If more than one plan can

be found, then the DBMS should choose the one

with least total resource consumption, as in the

Selinger model.

If this equation cannot be satis�ed, then the

DBMS cannot meet the contract immediately;

however, it may still be able to guarantee the con-

tract delivery at a later time, by bu�ering query

results in the meantime. If su�cient bu�ering ca-

pacity is available and BI=O and BCPU are the

I/O and CPU costs in time associated with read-

ing from or writing to the bu�ers, then the DBMS

can execute the entire query into a bu�er in time

T1 where

T1 =
TI=O + BI=O

FI=O
+
TCPU +BCPU

FCPU

If the DBMS can then satisfy the constraint:

NB

BI=O
FI=O

+ BCPU
FCPU

> X

then it can respond with a counter proposal con-

taining an o�set T1 from the current time at which

to start delivery.

If su�cient bu�ering capacity is unavailable for

some reason, then the DBMS must respond nega-

tively to the client since the desired data delivery

rate can never be satis�ed.

In the above description, we have assumed that

the DBMS can extract allocation guarantees from

the operating system. This interaction is compli-

cated by the time the DBMS must spend calculat-

ing the optimal plan. This planning time causes a

lag between the time resources are requested and

the time resources are actually needed from the

operating system. Thus, contracts between the

database and the operating system should also

have a \starting at time T" clause. This avoids

the over-allocation of resources during query plan-

ning.

The discussion above has dealt with the com-

pilation of plans at runtime when immediate re-

source requests can be made. When query opti-

mization occurs prior to execution, resource re-

quests must be deferred until runtime. In this

case we require the optimizer to construct a ta-

ble of compiled query plans. Each entry in the

table contains a plan and the I/O and CPU time

for that plan, namely, TI=O and TCPU . At run

time, a resource allocation can be requested from

the operating system and the best plan chosen

according to the above formulas.

At compile time, a plan can be rejected if both

TI=O and TCPU are higher than some entry in the

table. Otherwise, enter the plan in the table. Fur-

ther heuristics will be needed if this table becomes

too large.

Page 11

5.2 Abstracts

A crucial capability of Tioga is user control over

the resolution of the visualized information. For

example, the user interface must allow the user to

zoom in on recipe output to obtain more detail or

to zoom out to coarser granularity. To satisfy this

requirement, the recipe execution system must be

capable of producing recipe output at varying lev-

els of detail.

The zoom in/zoom out capability is reminiscent

of SDMS[9], where additional detail appeared au-

tomatically and was hard-wired into the system.

In Tioga we are implementing a much more
exi-

ble scheme. We allow every recipe to have one or

more children, which will be termed abstracts for

the given recipe, since they contain less informa-

tion. Conceptually, they are analogous to textual

abstracts for a conventional document. Note that

an abstract need not produce the same type of

information as does its parent. For example, an

abstract for an image of Hurricane Hugo could be

a hurricane icon and an abstract for the icon could

be the character string \hurricane".

We organize recipes into a directed graph of ab-

stracts so that an edge from one node to another

in this graph indicates \is abstracted by." If there

is an edge from P to C, then C is an abstract

of P. P is also the parent of C, and P contains

more information than C. Each edge in this di-

rected graph is labeled with a notation concern-

ing how the abstract loses information. Example

notations include \lower resolution," \lower pre-

cision," and \lower accuracy."

Each recipe in the graph of abstracts has a siz-

ing function which returns the minimum and

maximum size screen representation for objects

which that particular recipe can generate. The

browser begins at a speci�c node in the abstract

graph and determines the minimum and maxi-

mum size screen representations that a recipe can

produce. If the user zooms between those lim-

its, then the display function for this particular

recipe is applicable. If the user zooms in beyond

the level of detail provided by the maximum size

screen representation, then one of the parents of

the recipe must be run, because the parents of

the recipe are presumably abstracts with greater

detail. Similarly, if the user zooms out beyond

the coarsest level of detail provided by the mini-

mum size as returned by the sizing function, one

of the children of the node in the abstract graph

must be chosen to provide less detail. In this way,

Tioga recipe management can be directed to move

among the di�erent nodes of the abstract graph

by the user interface.

When the recipe engine switches to a new

recipe, it must save the old one, load the new

one and then position it at the correct location.

The browser can then perform a FETCH com-

mand to refresh the screen with objects from the

new recipe. This will be an overhead-intensive

operation which will probably generate a pause in

the zooming operation. To alleviate this \heavy-

weight" recipe switch, Tioga allows a node in the

abstract graph to be a function. In this case,

the recipe execution engine will run the function

on the existing data from its child node to pro-

duce a more detailed representation. This reduces

greatly the overhead of zooming.

5.3 Synchronization of Browsers

A traditional user interface has a single cursor

through which the result of a query or a view can

be delivered to an application program. A Tioga

user, in contrast, might put several browsers in

his diagram and then visualize the data at sev-

eral points in the diagram simultaneously. Multi-

ple browsers must be synchronized when a recipe

switch occurs due to zooming and abstracting.

To support such synchronization, we are using

named browsers. If the user zooms in and ac-

tivates a new recipe in the abstract graph, then

his display should seamlessly change to the out-

put of the correspondingly named browsers in the

new recipe.

The user may also wish to constrain multi-

ple browsers in some manner. For example, he

may wish to specify that two browsers be over-

laid. This means that the data that they display

should be superimposed in the same visual win-

dow, rather than placed in separate windows. The

user may also wish to specify that two browsers

be synchronized so that one browser is a slave

Page 12

to a second one. In this case, whenever a move

or fetch operation is performed by the master

browser, the same operation would be performed

by the slave browser.

Synchronizing a slave browser is accomplished

by constraining the slave's input controls to those

of the master. In other words, the slave's joy-

sticks and input widgets, which allow the user to

direct viewing, are controlled by the master. Any

joystick commands given by the user to the mas-

ter are identically dispatched to the slave browser.

Thus, any move or fetch operation performed by

the master browser would result in the same move

or fetch operation in the slave browser. We also

permit a translation function to be de�ned

which translates the input controls of the master

browser to the input controls of the slave browser.

For example, a slave browser can be set up so that

its controls are at a �xed o�set away from the con-

trols of the master browser. This may be useful,

for example, if one wishes to view simultaneously

two portions of a map, separated by a �xed dis-

tance.

5.4 Visual Update of Data

We support visual updating of data if the cre-

ator of a type has de�ned an update function asso-

ciated with that type. The update function is, in

e�ect, a type-speci�c on-screen editor. These edi-

tors are invoked by the browser when the user se-

lects a object on the screen to edit. Recall that the

browser allocates screen resources to various dis-

play functions. Therefore, the browser can deter-

mine, from the user's screen selection, which data

object has been chosen. The browser then invokes

the update function for that object. Users may

register update functions of the following form

with the DBMS:

update(object,location,screen-resource)

The update function will typically use the screen-

area allotted to draw a dialog box for input from

the user. The new value from the user is sent

to the database via the portal through a normal

database update command. The update function

will also return the new value to the browser so

that it may replace the current display of the ob-

ject with the newly updated representation.

6 Conclusion

We have described a system for database sup-

port of scienti�c visualization applications. Pro-

viding a natural user interface for the scientist

has motivated our work on multiple browsers for

a recipe, intelligent bu�ering of computed data,

and guaranteed delivery. At the current time, we

have an N-dimensional browser, the diagram ed-

itor and the recipe storage system working. We

are beginning work on the optimizer and executor

extensions discussed in Section 4, and expect to

have a complete system within six months.

Areas for further study include the simulation

of bu�ering algorithms in the presence of limited

disk space. In addition, we plan to work on the

estimation and monitoring of the number of run-

time parameter changes made by a user. Lastly,

further tuning of our guaranteed delivery system

is anticipated.

References

[1] Agrawal, R. and Gehani, N., \ODE: The

Language and the Data Model," Proc. 1989

ACM-SIGMOD Conference on Management

of Data, Portland, OR, May 1989.

[2] Baru, C. and Su, S., \Performance Evalua-

tion of the Statistical Aggregation by Cate-

gorization in the SM3 System," Proc. 1984

ACM-SIGMOD Conference on Management

of Data, Boston, MA, June 1984.

[3] Chen, J. \RASQL: A Graphical Query Lan-

guage for Recipes," (in preparation)

[4] Dewitt, D. et. al., \A Framework for Re-

search in Database Management for Statisti-

cal Analysis," Proc. 1982 SIGMOD Interna-

tional Conference on Management of Data,

Orlando, FL, June 1982.

[5] Dozier, J., \Spectral Signature of Alpine

Snow Cover from the Landsat Thematic

Mapper," Remote Sensing Environment,

March 1989.

Page 13

[6] Ferrari, D., \Client Requirements for Real-

Time Communication Services," IEEE Com-

munications Magazine, November 1990.

[7] Greene, D., \An Implementation and Perfor-

mance Analysis of Spatial Data Access Meth-

ods," Proc. 1989 Data Engineering Confer-

ence, Los Angeles, CA, February 1989.

[8] Gutman, A., \R-trees: A Dynamic Index

Structure for Spatial Searching," Proc. 1984

ACM-SIGMOD Conference on Management

of Data, Boston, MA, June 1984.

[9] Herot, Christopher F., \Spatial Management

of Data," ACM Transactions on Database

Systems, December 1980.

[10] Johnson, R.R. et. al., \USD - A Database

Management System for Scienti�c Research,"

Proc. 1992 SIGMOD International Confer-

ence on Management of Data, San Diego,

CA, June 1992.

[11] Kolovson, C. and Stonebraker, M., \Seg-

ment Indexes: Dynamic Indexing Techniques

for Multi-dimensional Interval Data," Proc.

1991 ACM-SIGMOD Conference on Man-

agement of Data, Denver, CO.

[12] Mechoso, C. et. al., \Distribution of a Cou-

pled Atmosphere-Ocean General Circulation

Model Across High-Speed Networks," Pro-

ceedings of the 4th International Symposium

on Computational Fluid Dynamics, 1991.

[13] Mosher, C. ed., \The POSTGRES Reference

Manual," Electronics Research Laboratory,

University of California, Berkeley, CA, Memo

91/57, August 1991.

[14] Nievergelt, J. et. al., \The Grid File: An

Adaptable, Symmetric Multikey File Struc-

ture," ACM Transactions on Database Sys-

tems, March 1984.

[15] Ozsoyoglu, G. et. al., \A Language and a

Physical Organization Technique for Sum-

mary Tables," Proc. 1985 ACM-SIGMOD

Conference on Management of Data, Austin,

TX, May 1985.

[16] Richardson, J. and Carey, M., \Program-

ming Constructs for Database System Imple-

mentation in EXODUS," Proc. 1987 ACM-

SIGMOD Conference on Management of

Data, San Francisco, CA, May 1987.

[17] Rogers, T.R., and Cattell, R.G.G., \Entity-

Relationship Database User Interfaces," Pro-

ceedings of the ER Institute, Baton Rouge,

LA, 1987.

[18] Selinger, P. et. al., \Access Path Selection in

a Relational Data Base System," Proc. 1979

ACM-SIGMOD Conference on Management

of Data, Boston, MA, June 1979.

[19] Stonebraker, M., \Implementation of In-

tegrity Constraints and Views by Query

Modi�cation," Proc. 1975 ACM-SIGMOD

Conference, San Jose, CA, May 1975.

[20] Stonebraker, M. and Rowe, L., \Database

Portals - A New Application Program Inter-

face," Proceedings of the 10th International

Conference on Very Large Databases, Singa-

pore, August 1984.

Page 14

