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Abstract

Unfalsified control theory facilitates the representation
of adaptive processes of control law discovery from
evolving information flows and noisy data. In this pa-
per, the theory of unfalsified adaptive control is ex-
amined from the behavioral perspective of Willems.
An abstract, but parsimonious, min-max optimization
problem formulation is developed that descibes and
unifies direct adaptive control, learning theory and
system identification problems in a common behav-
ioral setting based on the concept of controller/model
unfalsification. Thus, adaptive control is seen to be
firmly and directly linked to, and to conceptually uni-
fied with, the growing body of knowledge on behav-
ioral approaches to model validation and unfalsified
system identification. The results elucidate and un-
derscore the fertile conceptual links that exist between
adaptive control theory and the rich theory of system
identification.

1 Introduction

A fundamental activity in processes of system identifi-
cation and, more generally, in all processes of scientific
discovery is the fitting of models to data. Goals or cost
functions are set based on beliefs about instrument ac-
curacy or other model performance criteria, then and
scientists attempt experimental validation, or unfalsifi-
cation, of data against various parameterized classes of
plausible models in the hope the one or more of the hy-
pothesized plausible models proves have a superior fit
to the data, relative to the specified modeling goals or
cost functions. The challenges faced by the to the sys-
tem identification specialist and the experimental sci-
entist are the same. Moreover, these challenges are not
dissimilar to those faced by adaptive control designers
seeking to find a faithful mathematical representation
of the control-decision-relevant information in evolving

1Research supported in part by AFOSR grants F49620-98-1-
0026 and F49620-01-1-0302.

2email msafonov@usc.edu; web http://routh.usc.edu

observational data.

One interesting development in recent years has
been the advent of the unfalsified control paradigm
[1]-[14] which has advanced the model valida-
tion/unfalsification paradigm of system identification
theory to the control validation paradigm for under-
standing and analyzing adaptive control algorithms.
In adaptive control and system identification, as in
other scientific endeavors, a parsimonious mathemat-
ical representation of the essential issues is preferred.
For adaptive control, one such paradigm is provided
by unfalsified control theory. The unfalsified control
theory views the control problem as an identification
problem in which the objective is that of directly iden-
tifying a control law or “action rule” that is consis-
tent with traditional control performance goals, prior
knowledge, and evolving observational data.

Unfalsified adaptive control software has been devel-
oped and design studies have been conducted. For
example, the theory has recently been applied to the
design of a robust adaptive controller for a two-link
robot manipulator arm in [2, 13] and to the design of
an adaptive missile autopilot [6]. Unfalsified control
theory provided the basis for a general purpose algo-
rithm for automatic tuning of PID controller gains [15].
Recently, the unfalsified control approach has been ap-
plied in experimental settings ranging from the ACC
benchmark control problem [8] to industrial process
control [10, 11]. These design studies seem to confirm
theoretical expectations that adaptive controllers op-
timally designed via unfalsified control theory exhibit
a precise, sure-footed response in the face of evolving
uncertainties and parameter variations.

In this paper, we formulate the unfalsified adap-
tive control problem in the behavioral framework of
Willems ([16],[17]). Our results are closely related to,
but different from, the indirect adaptive method of Pol-
derman [18] in which an unfalsified plant model is iden-
tified from within a prescribed model set. Unlike Pold-
erman, we bypass the intermediate step of plant model
identification and, also unlike Polderman, we make no



assumptions about the ‘true plant’ lying in an assumed
model set. We make no assumptions on the plant.

2 Background: Behavioral Theory

At the heart of the behavioral theory of Willems [16, 17]
is the definition of a mathematical model. This defi-
nition is formulated according to the black box point
of view, “in which we focus on how a system behaves,
on the way it interacts with its environment, instead
of trying to understand, in the tradition of physics,
how it is put together and how its components work”
([16],[17]) . This definition of a mathematical model
formalizes the black box point of view. Like Willems,
we back off “from the usual input/output setting, from
the processor point of view, in which systems are seen
as influenced by inputs, acting as causes, and producing
outputs through these inputs, the internal conditions,
and the system dynamics.”

Willems begins with the assumption that there is a
phenomenon to be modeled. He then “casts the sit-
uation in the language of mathematics by assuming
that the phenomenon produces elements in a set Z”
([16],[17]), called the universum. The elements of Z are
called the outcomes of the phenomenon. “A (determin-
istic) mathematical model for the phenomenon (viewed
purely from the behavioral, the black box point of view)
claims that certain outcomes are possible, while others
are not. Hence a model recognizes a certain subset B
of Z. This subset will be called the behavior (of the
model).” Formally,

Definition 1 A mathematical model is a pair (Z,B),
with Z the universum – its elements are called out-
comes – and B ⊆ Z the behavior.

Definition 2 A controller is a mathematical model.

Regarding data and measurements, Willems [16] says:
“We will now cast measurements in this setting. We
will assume that we make certain measurements which
we will call the data.” “. . . we . . . assume that the data
consists of observed realizations of the phenomenon it-
self. Thus, a data set will be a nonempty subset D of
Z. ”

Following Safonov and Tsao [1], we will work with data
information that can evolve with time. Thus we will
have a universum of time signals and a data set con-
tained in a time varying projection of this universum.

Definition 3 Given a vector space of time signals Z,
a model (Z,B), a mapping Pτ : Z→ Z and a data set
Dτ ∆

= PτD ⊂ Pτ (Z), we say that the model (Z,B) is

unfalsified by the data set Dτ if

Dτ ⊂ Pτ (B).

Typically Pτ (x) is the experimental observation time
sampling operator, which returns values of x(t) only
for past time instants (or possibly time intervals) over
which experimental observations of x(t) have been
recorded. In this setting, definition of controller fal-
sification (cf. [1, 4]) becomes

Definition 4 Given a vector space of time signals Z,
a controller (Z,Bc), a desired closed loop behavior
(Z,Bd), a mapping Pτ : Z → Z, and a data set
Dτ ⊂ Pτ (Z), we say that a controller (Z,Bc) is un-
falsified by the data set Dτ if

Pτ ((P
−1
τ (Dτ )) ∩ Bc) ⊂ Pτ (Bd).

The data set Dτ is a set of actual experimental ob-
servations of the plant behavior as observed through
the time-sampler Pτ . Thus, P

−1
τ (Dτ ) is the set of be-

haviors that interpolate the observed data. For ex-
ample, if we have recorded experimental observations
of the first component x1(t) of a vector-valued signal
x(t) = [x1(t), x2(t), . . . , xn(t)]

T ∈ Ln2 [0,∞) during the
time interval t ∈ [0, 5], then P−1τ (x) is the set of signals
{y ∈ Ln2 [0,∞) | y1(t) = x1(t)∀t ∈ [0, 5]}. The set Bc is
the set of signals which satisfy the constraints imposed
by the controller c, so definition 4 says roughly that a
controller is defined to be unfalsified if the set of signals
x that are consistent with the data and the controller
is, at the past observation times, a subset of a given
performance target set Pτ (Bd).

A particularly useful projection operator for dealing
with past time only information is the time truncation
operator Pτ defined by

Pτ (x)](t) =
x(t), if t < τ
0, if t > τ.

(1)

As explained by Willems ([16],[17]), the intersection of
behaviors is “a way of formalizing that additional laws
are imposed on a system.” Thus, the role of a con-
troller is to impose constraints on the plant behavior.
On the other hand, our goal is to select, based on the
data, the constraints imposed by the control law and
the performance criterion, the best among the set of
given controllers. In order to do that we introduce a
cost function

J(z) : Z→ R (2)

which may be used to sift controllers and to choose
an optimal cost-minimizing controller having the least
unfalsified cost based on the experimental evidence Dτ .



3 Direct Adaptive Control: Behavioral
Formulation

We now explain how problems of adaptive control and
learning theory may be parsimoniously and precisely
embedded within the behavioral framework. At the
crux is the observation that most such problems may
be faithfully represented in terms of constraints on sig-
nals and other variables z ∈ Z. The set Z is called
the universum. Typically, the n-tuple z includes di-
rectly observable manifest variables zmanifest (viz., control
and sensor signals), command input signals zcommand, and
possibly additional latent variables zlatent such as dis-
turbances, noise, state-variable trajectories, error sig-
nals and so forth. That is, z = {zmanifest, zcommand, zlatent} ∈
Zmanifest × Zcommand × Zlatent = Z. In stochastic settings,
the latent variable n-tuple zlatent also includes condi-
tional probability density functions describing some of
the other latent variables [4, 5, 12].

It is convenient to view the constraints on the n-tuple
of signals z ∈ Z as arising from four distinct types of
information, each possibly evolving with time:

1. Goal (cost function and/or design specification)
2. Belief (assumptions, prior knowledge, noise mod-
els, plant parameterizations, etc.)

3. Hypothesis (candidate control law, candidate
plant/noise model)

4. Data (observations, samples of the signal zmanifest
available at current time τ)

Each of these four types of information is representable
as a mathematical constraint on z:
∀zcommand, J(z)< γ, (cost J(z) ≥ 0 no bigger

than γ for any command in-
put)

(3)

K(z) = 0, (hypothetical controller
and/or model K ∈K)

(4)

B(z)< 0, (fixed beliefs, assumptions
& prior knowledge)

(5)

Pτ (zmanifest) = zdata, (zmanifest must interpolate ob-
served data zdata) .

(6)

In turn, the four constraints (3)-(6) define, respec-
tively, four subsets of the universum Z, viz.

Zgoal(γ),Zhypothesis(K),Zbelief,Zdata ⊂ Z. (7)
Thus, the problem of direct adaptive control (or,
controller identification from data), can be formulated
in the Willems behavioral framework as follows.

Problem 1 (Behavioral Adaptive Control)

Given a class of controllers K ∆
= {(Z,Bc(θ)) | θ ∈ Θ},

where Θ is a set of parameter vectors, the performance
(cost) index J(z) the time truncation operator Pτ , τ ,
and a data set Dτ ⊂ PτZ, find the set of parameters
Θ∗ such that K ∈ K that minimizes the cost γ subject
to the constraint (cf. [4, 5, 12]) that, for each

ξ ∈ Zhypothesis(K) ∩Zbelief ∩Zdata, (8)

there is at least one z such that
zcommand = ξcommand (9)

and
z ∈ Zgoal(γ) ∩Zhypothesis(K(θ)) ∩Zbelief ∩Zdata. (10)

4 Discussion

If the set (8) is empty for some K, then the cur-
rently available data zdata provides no information on
this K, which is therefore trivially optimal with cost
γ = 0; otherwise, the adaptive feedback control prob-
lem emerges as the following optimization: At each
time τ , find a control law K which solves

γopt := min
K
max
ξ
min
z

γ (11)

subject to (8)-(10). In many practical cases (e.g.,
[1, 2, 5, 6, 13]), the cost γ can be expressed directly
in terms of zdata and K in which case (8)-(11) simplify
to γopt := minK γ(zdata,K).

Noteworthy are the symmetries revealed in the condi-
tion (10) with respect the information content of goal,
belief, hypothesis and data. Set intersection is a com-
mutative and associative operation; so all four types of
information are logically equivalent in (10). For exam-
ple, this means that the prejudice inherent in viewing
one’s data through a prism of belief Zbelief is logically
equivalent to assuming additional data “interpolation”
constraints (Zdata ← Zdata ∩Zbelief). The standard unfal-
sified control problem considered in [1, 3, 4, 6, 13, 14]
corresponds to the limiting case in which “the prism
of belief” Zbelief is the unconstraining “all-pass” filter Z
(i.e., the universum).

Equations (8)—(10) underscore fertile conceptual links
between adaptive control theory and the rich theory
of system identification: The chief differences between
identification and adaptive control arise from the pre-
cise forms of the cost functions J(z) and of the ad-
missible hypotheses K(z). In system identification the
admissible K(z)’s are typically noisy open-loop plant
models and the cost function J(z) measures probable
modeling error deduced via a prism of beliefs about
noise statistics. In adaptive control on the other hand,
the admissibleK(z)’s might typically be candidate con-
trollers and the cost J(z) could be a weighted sum of
the sizes of tracking error and control signals.

5 Conclusions

The main goal of unfalsified control theory has been
to close the loop on the adaptive and robust control
design processes by developing data-driven methods to
complement traditional model-based methods for the
design of robust control systems. The crux of the un-
falsified control theory is the observation that adaptive



control is from a behavioral theory perspective essen-
tially equivalent to system identification. In this pa-
per, we have developed a behavioral formulation of the
problem of direct adaptive control, viz., the problem of
identifying an optimal controller that is unfalsified by
data available at each time τ with respect to the least
value of a cost function. The main result is the formu-
lation of direct adaptive control problems provided by
Problem 1. This result establishes a firm theoretical
link between Willems’ behavioral framework and di-
rect adaptive control theory, expanding known links to
model validation, unfalsified system identification the-
ory, and behavioral indirect adaptive control approach
of Polderman [18].
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