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Microlocal Regularity of an Inverse Problem for
the Multidimensional Wave Equation

Gang Bao

Abstract

Many physical processes such as reflection seismology, oil exploration, and ground-
penetrating radar may be modeled as inverse problems for the multidimensional
acoustic wave equation with point energy sources. The inverse problem is to identify
the coeflicients from the knowledge of boundary measurements of the solution.

In this research we formulate an inverse problem for the wave equation with con-
stant wave speed as a functional equation involving a forward map, which maps the
coefﬁcient (density) to the boundary value of the solution (excess pressure).

We begin by examining some fundamental results in nonsmooth microlocal anal-
ysis. Rauch’s lemma on the algebraic property of microlocal Sobolev spaces and a
Beals-Reed linear propagation of singularities theorem are extended. We then present
a trace regularity theorem which indicates that with microlocal restrictions against
tangential oscillations in the coefficient, the boundary value is just as regular as the
solution itself. The trace theorem also gives the first hint of the appropriate domain

and range for the forward map. However, compared to the one dimensional case,



1ii
much more overall smoothness has to be imposed to assure the optimal regularity of
timelike traces.

The Hadamard theory on progressing wave expansions is employed to study the
fundamental solution to the linear acoustic wave equation. To establish the regularity
of the solution, the solutions of transport equations are investigated by applying the
Rauch-type results.

The central result for the regularity of the inverse problem is an upper bound for
the linearized forward map with nonsmooth reference density. In order to establish
this regularity result, a dual technique is developed which dramatically reduces the
difficulties of the inverse problem. Our method has the potential to obtain some
regularity results even for the important nonsmooth reference velocity case. Similar
analyses could result in a continuity result and a differentiability result for the forward
map. These regularity properties are obviously crucial in the design and analysis of

the algorithms for solving the inverse problem.
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Chapter 1

Preliminaries

1.1 Description of problem

A simplified model which governs many physical processes such as seismic and acoustic

wave propagation is the following reduced linear acoustic wave equation:

Go
c? ot?

-A-Vo - Vu=f, (1.1)
where o0 = o(z) is the logarithm of the density, ¢ = c(z) is the sound speed of
the medium, and f = f(z,t) is the source term which introduces the energy to the
problem. If o, ¢ and f are given al'ong with appropriate side conditions, the forward
(or direct) problem is to determine u = u(x, t), the excess pressure. For appropriate
choices of 0, ¢, and f, u is determined uniquely by standard linear hyperbolic theory
of partial differential equations (p.d.e.).

In this work we study the inverse problem which arises in reflection seismology,
oil exploration, ground-penetrating radar, etc. To understand the problem further,
let us look at a simple exploration seismology experiment explained in detail in Lailly
[20]. Near the surface of the earth, a seismic source is fired at some point (point

source). The seismic waves propagate into the earth. Since the earth’s structure

varies (as do its physical properties) part of the energy of the wave will be reflected



back to the surface and can be measured. The inverse problem is to deduce the
interior properties of the earth from the recorded data. Mathematically, the inverse
problem is to determine the coefficients o, ¢ by knowing additional boundary value
conditions of u.

A natural problem of mathematical and physical importance is to pursue the
right models so that the reflected waves they generate carry sufficient information
for determining the physical properties of the medium. By the theory of geometric
optics, the models which are too smooth (i.e., the coefficients o, ¢ are smooth) on
the wavelength scale do not generate reflected waves. On the other hand, no energy
penetrates extremely oscillatory media, hence models that are too rough generate no
reflected waves.

Another important reason that one wants to work with nonsmooth models comes
from a computational point of view. It is clear that to solve inverse problems numer-
ically requires efficient minimization algorithms. By far, the most efficient minimiza-
tion algorithms are Newton-type algorithms. According to the infinite dimensional
optimization theory (see e.g. Kantorovich and Akilov [19]), in order to formulate
any effective convergent Newton-type algorithm, one has to study the problem in
a Banach space. Moreover, dealing with minimization problems, the best available
results are perhaps those for Hilbert spaces. Note that even though C*-topology
induces countable semi-norms, it is not a Banach space. At this point, we do not

know any effective convergent Newton-type minimization algorithm in a non-Banach



space. Besides, it is natural to use the weakest norm and the biggest possible space
of models.

To fix the ideas, write « € IR" as (’,2,), where 2’ € R™!, z, € IR representing
depth of the “flat” earth. We assume that the medium is the whole space IR™ and
u = 0 in the past. Take f(z,t) = 6(z,t) as an ideal point source. This assump-
tion seems reasonable when the spatial extent of the source is much smaller than
a typical wavelength and all frequency components to be measured are present in
f. More explanations on the validity of these assumptions may be found in Symes
(37]. Throughout this work we shall restrict ourselves to the special case of constant
velocity ¢, though we believe that the ideas in this work may be extended to cover

some more general cases. We then have the following simple model:
Ou — Vo-Vu=§(z,t), (z,t) e R* xR (1.2)
v = 0, t<0, (1.3)

where O is defined to be 8?7 — A, and A is the Laplacian. Thus the inverse problem
is:
Recover o = o(z) by the knowledge of u = u(z,t) on the subset {z, = 0}.

Define the forward map F as:
F:o— (¢u) |zp=0, (1.4)

where ¢ € C3°(IR") is supported inside the conoid {t > |z|} and near{z, = 0}. The

reason for introducing this cut-off function, ¢(z,t) is that we want to make sure the



restriction of distribution u to the hypersurface {z, = 0} is well defined even though
the equation (1.2) has a singular right-hand side. Since the inverse problem is just to
invert this functional relation F', we are naturally interested in all the properties of
this forward map.

Because F'is nonlinear, one wants to work with the formal linearization (or formal
derivative) DF, with respect to the reference state (00, uo), defined by first order
perturbation theory (Born-approximation). Let uo be the solution of (1.2), (1.3)
corresponding to 0. Assume that ug + €du is the solution corresponding to g + €bo.
Substituting them into the equation and ignoring higher order terms in €, we obtain

the linearized problem

Qéu — Voo-Véu= Vo Vug (1.5)
bu = 0, t<0. (1.6)

DF is defined by
DF(00)bo = (é6u) |z,=0 - (1.7)

It is our main goal in this work to determine the appropriate spaces of the domain

and range of F' for which

the formal derivative DF is bounded.

W: believe that similar analysis will lead to the continuity or even differentiability of
F'. These properties are obviously crucial in the design and analysis of algorithms for

solving the inverse problems.



1.2 Previous research

When the spatial dimension is one or ¢ and o depend only on z, (layered problem)
there is a large literature available. For a similar problem in which the medium was
assumed to be excited by an impulsive load on the surface {z» = 0} instead of point
sources, the properties of the forward map have been studied fairly satisfactorily by
Symes and others (see Symes [34] for references). It was shown by Symes that, for
the constant wave speed case, the forward map is a C'—diffeomorphism by applying
the method of geometrical optics together with energy estimates.

When the spatial dimension n > 1 and ¢, o depend on all space variables (non-
layered problem), very little is known in mathematics. Symes [32, 33, 35], Sacks and
Symes [29], Rakesh [25], and Sun [31] have some partial results. The difficulties are
essentially due to the ill-posed nature of the timelike hyperbolic Cauchy problem and
the presence of nonsmooth coefficients. For the one dimensional wave equation, both
coordinate directions are spacelike, which indicates that the problem is hyperbolic
with respect to both directions. Apparently, this is not the case when the spatial
dimension is larger than one.

Rakesh in [25] looked at a related linearized velocity inversion problem with con-
stant density and point sources. Assuming smooth background velocity, he obtained
some results on both upper and lower bounds for the linearized forward map. The
essential observation in Rakesh’s work is that DF is a Fourier integral operator (see

also Beylkin (7]). Unfortunately, the calculus of Fourier integral operators employed



in Rakesh’s work is not applicable to the nonsmooth reference velocity case since the
linearized forward map is a Fourier integral operator only when the reference velocity
1s smooth.

In [32], Symes gave a pair of examples, based on the geometric optics construc-
tion, which show that both DF(1) and DF (1)~ are unbounded for a slightly different
problem. As the examples show, within the Sobolev scales no strengthening or weak-
ening of topologies of the domain and range can make both DF and DF-! bounded.
This fact also implies a strategy of regularization: Change the topology in the domain
so that DF becomes bounded, then ask for optimal regularization of DF~! in the
sense of best possible lower bound estimate for DF. In both examples of Symes,
the unboundedness was caused by rapid oscillation of ¢ in the z'-direction or the
tangential directions, hence the problem is actually “partially well-posed”, i.e., only
more smoothness of the coefficients in tangential directions (essentially grazing ray
directions) will be required to cure the difficulty. This might be the main reason the
anisotropic Sobolev spaces H™°(IR") or Hérmander spaces, were introduced in [29],

[35] and [31]. As defined originally in Hérmander [14],
H™(R") ={f €D, D3 ,.f € *(R"),Ya = (a1, ...,an), | @ |< m + 5,0, < m}

where
o . )%1On—1 Nan

Thus, in H™*(IR"™), the distributions are in H™ with s additional orders of smoothness

in the z’-variables.



In Theorem 4.1 of [29] Sacks and Symes showed by using the full strength of
sideways energy estimates that for a linearized density determination problem with
constant velocity and plane wave sources, DF' is bounded from H'! to H 1. provided
the reference coeflicient is in H'* for some s > n + 2. They also proved the injec-
tivity of DF. However, as they pointed out, the lower bound for DF was not that
satisfactory. Our techniques and results are quite different from theirs. We intend to
assure the optimal regularity of the timelike trace under weaker hypotheses.

There remains an extremely important issue to be addressed, namely,

What is an appropriate space for the domain of DF 7

In 1983, as one of his conjectures, Symes suggested that microlocal restrictions
on the coefficients might regularize the inverse problem (see [33], [35], and [36]). In
some sense, this was confirmed by recent joint work with Symes [2], where we were
able to prove a trace theorem for the solutions of general linear p.d.e. with smooth
coefficients. Roughly speaking, our theorem asserts that the solution will belong to
H? along a codimension one hypersurface if it belongs to H* in a neighborhood of
the hypersurface and to H*+! microlocally in those directions where the p.d.e. is not
microlocally strictly hyperbolic. Note that we gained back the half derivative from
the standard trace theorem.

In this work, we relax the requirement of ‘additional tangential smoothness to

additional microlocal smoothness. The microlocal regularity of the forward map will



be established. Various results on propagation of singularities and microlocal analysis
will play essential roles.

Interested in applications to nonlinear p.d.e., Beals, Bony, Rauch, Reed and many
other mathematicians have over the past decade developed the theory of microlo-
cal analysis concerning p.d.e. with nonsmooth coefficients. The fundamental fact is

Rauch’s lemma proven by Rauch in [26].

Lemma 1.1 (Rauch’s Lemma) For some (zo,&) € T*(IR™)\0, assume

that u,v € H* N H} ,(20,&) with n/2 < s <r <25 —n/2. Then

uv € H° N H} )(z0,&0)

The propagation of singularities theorem for linear p.d.e. with smooth coefficients
is due to Hormander [15] and dates back to the early seventies. Hérmander’s theorem
basically says: The singularities propagate generally along the null bicharacteristics
of the principal part of the operator. However, Hormander’s theorem itself does not
say anything about how the singularities propagate when the p.d.e. has nonsmooth
coefficients. Obviously the nonsmoothness of the coefficients will introduce new sin-
gularities to the solutions, so that only limited initial regularity can be propagated. In
1982, Beals and Reed [5] were able to prove a linear propagation of singularities the-
orem for strictly hyperbolic pseudodifferential operators with nonsmooth coefficients

at lower order terms by following the general outline of the proof of Hérmander’s



theorem. Their theorem and its proof turn out to be the major tools in our work

here.

It is known that in their applications to nonlinear wave equations, most of the
results based on Rauch’s lemma (or the method of Fourier analysis) can only deal with
relatively weak singularities. This is very unfortunate, since in many situations strong
singularities (like shocks) are present. In general, such strong singularities are much
more difficult to work with. Nonetheless, this work exhibits that to some extent,
strong singularities appearing in the linear wave equation (e.g. the fundamental
solution) can also be tackled by this Fourier analysis method. The relation between
the coefficients and solution with strong singularities remains to be fully understood,

especially when the coefficients are less regular.

1.3 Plan of the work

The fundamental concepts of microlocal analysis and results of propagation of singu-
larities are introduced in Chapter 2. We establish an extension of Rauch’s lemma and
a new commutator lemma. The main result of this chapter is an extended Beals-Reed
theorem on propagation of singularities which allows relaxation of the smoothness re-
quirements on the solution, and therefore on the coefficients. In the last part of this
chapter, we obtain some better regularity results when the coefficients are indepen-

dent of some variables.
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In Chapter 3, we prove a trace regularity theorem by using the propagation of
singularities theorem introduced in Chapter 2, along with an application of the pseu-
dodifferential (i.d.o.) cut-off technique and standard hyperbolic energy estimates.
Our trace theorem indicates that with microlocal restrictions against tangential oscil-
lations in the coefficients, the trace is just as regular as the solution. In particular, it
is as regular as the coeflicients allow it to be. These properties of traces also indicate
that the conclusion of our trace theorem is optimal. However, as compared to the
layered problem, a much higher degree of overall smoothness has to be imposed.

The basic structure of fundamental solutions to second order multidimensional
wave equations can be traced back to the works of Hadamard [13], where progressing
wave expansions were introduced to construct approximate solutions. To explain the
ideas of Hadamard’s theory, we state a theorem due to Romanov which gives an
explicit progressing wave expression of the fundamental solution when the spatial
dimension is three. We point out that his proof actually works for other dimensions
as well. The main result in Chapter 4 is a regularity theorem for the solution of the
model problem (i.e. the fundamental solution to equations (1.2), (1.3)) by applying
the method of progressing wave expansions inside the characteristic surface. A simple
energy identity plays a crucial role in our analysis: It indicates that the regularity
result can be established by analyzing the regularity of the transport equations. Based

on a t.d.o. cut-off technique and some properties of ¢.d.o. as well as Rauch-type
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results, we are able to prove a regularity result for solutions of the transport equations
which also turns out to be important in the next chapter.

Chapter 5 is devoted to a study of the regularity of the forward map. By ana-
lyzing the propagation of regularity for solution of a problem dual to the linearized
problem, we obtain an upper bound for the formal derivative of the forward map
at the nonsmooth reference density oq. In this process, a microlocal version of the
classical trace theorem is introduced. An important step is deriving an estimate out
of the result on propagation of singularities. It seems to us that the dual technique
developed in this chapter may well be useful in other contexts.

Conclusions are presented in the last chapter. We also make a few comments on
the effective computation of the multidimensional hyperbolic inverse problems. Some

future interests will be briefly mentioned at the end of this chapter.

1.4 Notation

Throughout this thesis, the reader is assumed to be familiar with the basic calculus
of Pseudodifferential Operators (from now, they will always be called ¢ Y.d.o.”) as
stated in Taylor [39], Nirenberg [24] or Chazarain and Piriou [9]. A classical 1.d.0. P
of order m is denoted as P € OPS™ with its symbol p € S™. ES(P) stands for the
essential support of operator P. W F(u) denotes the wave front set of a distribution
u. H® is the standard L*-type Sobolev space and H{, means a local Sobolev space.

(¢) means (1 + [£[2)}/2. The Fourier transform of a distribution u is expressed as 4.
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Usually, the constant from the Fourier Transform is assumed to be absorbed by the
integral. For simplicity, C' serves as a generalized positive constant the precise value

of which is not needed. Finally, xr is the characteristic function of a set T'.

1.5 Warning

When the reference density oo is smooth, most of the regularity results for the for-
ward map in this work will follow more easily from the calculus of Fourier Integral
Operators. For a standard text on F. I. O. we refer to Duistermaat [11] or Hérmander

[16]. However, this technique fails with the appearance of the nonsmooth reference

density, an assumption important in this work.



Chapter 2

Microlocal Analysis and Propagation of
Singularities

2.1 Introduction

In this chapter, the basic material of microlocal Sobolev spaces that will ser've this
work is introduced and discussed. The recent monograph of Beals [4] contains the
most complete references to date in microlocal analysis and its applications to the
study of nonlinear hyperbolic partial differential equations.

Our main result here is a linear propagation of singularities theorem which is
an extension of the Beals-Reed theorem in [5]. The theorem assures that weaker
regularity of the solution may also be propagated along the null bicharacteristics.
The main ingredients in our proof are an extended Rauch’s lemma and a commutator
lemma.

We prove the theorem by following the general scheme of the proof of the Beals-
Reed theorem in [5]. The pseudodifferential cutoff technique in their proof was analo-
gous to a proof of Hérmander’s theorem (see [15] for the original form) as described in
Nirenberg [24]. Except for the use of Rauch’s lemma since nonsmooth coefficients and

right-hand side were present, the key step was a commutator lemma which allowed

13
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them to compute the action on H*° N H},,(7) of a commutator of a .d.o. with a dif-
ferential operator whose coefficient was nonsmooth. Then a local existence theorem
with microlocal hypotheses completed their proof.

All the results in Sections 2.3-2.5 are improved in the last section under the ad-
ditional hypothesis that the coefficients depend only on some of the variables (recall

that the density in the model problem is time independent).

2.2 Some basic estimates

The following estimates will be used frequently in various contexts, essentially be-
cause it contains very useful information about certain kernels, other related kernel
estimates may be found in Beals [3] and Beals and Reed [6].

We begin with Young’s inequality (see Adams [1] for a proof).

Proposition 2.1 (Young’s Inequality) Let 1 < p < 400 and u €

L'(IR™), v € LP(IR™). Then the convolution products
urv= [ ule—ypw@)dy, vru@)= [ v@-yu)dy
are well defined and are equal a.e. in IR®. Moreover,
uxve LP(R"), and |lu*vl, < flulliflv]l, .

A combination of the Cauchy-Schwarz inequality and Young’s inequality yields

the kernel estimates Proposition 2.2 obtained originally by Rauch and Reed in [27].
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Proposition 2.2 Define

T,0(¢) = [ K(&,m)f(0)g(€ = n)dn
where f,g € L?. Then the estimate

1Tgw(E)llze < Clifllz2llgllze

holds if K(£,7) can be decomposed into finitely many pieces, i.e. K =
>-i Ki(€,m) such that each of which satisfies one of the following condi-

tions:

(1) Sgp/lfﬁ(é,n)lzdn < Cp < +o0,

(2) sup [IKi(&,m)Ide < Co < +oo.

An immediate consequence of Proposition 2.2 leads to a key estimate in this

chapter.

Corollary 2.1 Define
_ [ f(n)g(€—n)
Tanlt) = / (e —me
where f,g € L*(IR"), o+ 3 > n/2. Then

1T, (llz2 < Clifllz2llgllze -

Finally, a distance argument is stated for completeness.
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Proposition 2.3 Assume that K’ is a closed cone which is strictly con-

tained in an open cone K. If £ € K', n € K¢, then
(1) [&=nl=Cilél, CL > 0;
(2) if [¢] = Co > 0, then (£ —n) > C(¢).
Proof (1) is trivial. The statement (2) holds from the simple fact:

(=14 <(1+1/Co)lE)? <C(E—n)*.

2.3 Microlocal Sobolev spaces

We present some basic properties of microlocal Sobolev spaces. Details may be found

in the references mentioned above. Only new results will be proved.
The standard Schauder’s lemma asserts that H*(IR™) is an algebra for s > n/2.

Concerning the lower order Sobolev spaces, one can generalize Schauder’s lemma in

a number of ways.
Lemma 2.1 If u € H**(R") and v € H*2(IR"), with s; + s3 > 0, then

up € Hrinlsvs2s1te-n/2-6) g4, any 6 >0.

Proof The conclusion holds if either one of the following additional conditions is

satisfied (see Beals (3] for a proof):

81,8220 or s1,5<n/2ands;+52,2>0.
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Thus, in order to prove the lemma, it suffices to look at the case where s; > n /2 and
s9 < 0.

Observe that

(&7 1o(e) I= [ K(&m) | £(€—n)g(n) | dn,

where 4(§ —n) = (£ — ) f(€ = n), 5(n) = (n)g(n), f,g € L*(R"), and K(¢,7) =

(£)”
(€ =mysr(n)s

The conclusion then follows from Proposition 2.2, by considering three cases:

(1) If [ 7 [< 1/2] &, then

C
K < __~ .
‘(6)7’)— (é—'f])sl )
(2) Wln|=21/2]&]and | €~ |<1/2] €], then | n|< 3/2| ] and

C

K(¢,n) < W X

(3) Eln[21/21&1 16 —n[=1/2]&], thensince | n [<|E—n |+ | €],

K(n) < GO

]
It is evident that the microlocal Sobolev spaces give a precise description about
how regularity and singularities are propagated for solutions to linear strictly hyper-

bolic p.d.e..
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Definition 2.1 u € H*NH] (2o, &) if there exist ¢(z) € C(IR™) with

¢(z0) # 0 and a conic neighborhood ¥ C IR™\{0} of & such that
(€)*(du)"(§) € L*(R™) and (£)"x-(€)(du)"(€) € L*(R™) .

In terms of classical 1.d.o., there is an equivalent way to characterize the mi-
crolocal Sobolev spaces. Recall that a classical 1.d.o0. p(z, D) of order m is said to be
microlocally elliptic at (zq, &) if there is a constant C' and a small conic neighborhood

v of & such that its symbol satisfies

| p(z,8) |2 C(§)™

on 7.

Proposition 2.4 u € H] ,(z0,&) if and only if there is a ¥.d.o. Q €

OPS® such that Q is microlocally elliptic at (zo,&) and Qu € H,_.

To work on microlocal Sobolev spaces, Rauch’s lemma (whose standard form is
stated in the introduction) is essential. It gives the algebraic property of this inter-
esting class of spaces. Here, we prove a generalized Rauch’s lemma whose statement

was first presented in Symes [36].

Lemma 2.2 Suppose that for some (z9,&) € T*(IR*)\0, the distribu-
tions u,v satisfy u € H® N HY ,(x0,&) and v € H' N HE,(z0,&) with

nf/2<s,0<1<s,q,and ¢ <s+1[—n/2. Then

uwv € H' N HY (20, &) .
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In order to prove the lemma, the following Proposition 2.5 is needed.

Proposition 2.5 Assume that, for nf2 <r,0<1<qg<r and qg<
l4+r—n/2,

W € Hy,.(zo) and w € H' N H (20, &) .
Then

dw € H' N HL ,(20,&) .

Proof Let K be a small conic neighborhood of & such that w € H' n HZ,(K). By

Definition 2.1, we may represent w as

w = w; + w, (2.1)
with
wleﬂlloéﬂHoo(K), U)QEHIqOC.

Then

ww = Wwy + Ywy .

Since n/2 < r and ¢ < r, Lemma 2.1 gives
zbwg € quoc . (22)

Next using Lemma 2.1 one more time gives us ww; € H},.. Therefore from (2.1) and

(2.2), it suffices to show that

Wwy € H (2o, &) . (2.3)
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Let K’ be another conic neighborhood of €, which is strictly contained in K. Suppose

that
F(&) = (6)'w1(€) and g(€) = (£)"w(€)

which means that f, ¢ € L?. Thus in order to get (2.3), it is sufficient to show that

()7 x k() by (€) = / xre (Oxree () gl =) ;. (2.4

(€ —mn)7(n)’
belongs to L?. But this is simple from our previous results. Actually, since { € K’
and n € K¢, Proposition 2.3 implies (¢ — n) > C(€), therefore Corollary 2.1 together
with the hypothesis ¢ < I+ r — n/2 lead to the fact that (2.4) is in L? space. O
Proof of Lemma 2.2 If ¢ < s then u € H} , the conclusion follows from Proposition
2.5. Therefore, we may assume that s < gq.

Definition 2.1 allows us to rewrite
u=1u +uzand v=uv,+vy,

with
uy € Hi 0 H*®(x0,&), u2 € HY,,

v € Hi, N H*(x0,&) , va € HY.,
then

UV = UV1 + UV + UV — UgV3 .

The fact uv, € H' N H? ,(z0,&) is an immediate consequence of Lemma 2.1. From

Proposition 2.5, we have

usv and uv, € H' N H! (z0,&0) .
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Finally, Proposition 2.6 below and Lemma 2.1 yield
uv; € Hg’LZ(:EOaé.O) ’ for q <s+ I - n/2 ’

Ui € HI

loc *

a
Remark on Lemma 2.2. Note that for | = s, this lemma becomes the original
Rauch’s lemma. Since [ can be any constant between 0 and 8, q can be any number

in the interval [/, s+1—n/2), Lemma 2.2 is indeed an improvement of Rauch’s lemma.
We claim that like Rauch’s lemma, Lemma 2.2 cannot be strengthened. The

following result and an example exhibit the extent to which the result is applicable.

Proposition 2.6 Let K;, K,, and K be cones in R™\0 and assume
that u; € H*(R") and fIWF(wi) C Ki, i = 1,2, where II denotes the
projection on the second factor (or on the frequency space). If K CC

K{nNn K§, then
XK(D)(wl’U)2) € Hs , if § S S$1 + Sy — Tl/2 .

Remark. When § < s; + s; — n/2, the result is due to Rauch (Theorem 2.2 in
[26]); the extreme case was first observed by Meyer in [23]. The proposition cannot be
strengthened as is shown by the example described below (the example is illustrated
in Figure 2.1). The idea for the example came from private conversation with Michael
Beals at IMA. See also Beals [4].

Suppose that

D1(€) = ()7 xk, (€) and (€)= (€)™ 2y ()
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where § > 0 small, K, is a small conic neighborhood of {(¢;,0,---,0) : & > 0}, and
K, is a small conic neighborhood of {(0,&;,---,0) : & > 0} with wy, W, > 0. Let K

be a small conic neighborhood of {(£1,&;,--,0): & = &}, Then

XK(f)wlAU&(é) — /(XK(f)XKl(f—ﬂ)XKz(W) d

& — 77>31+n/2+6<77)’2+"/2+5
/ 1
Ina|<elm] (€ — m)o1+n/2+8 (n)s2+n/2+8

dn .

Now if | n [< 1/2 & |, then 1/2 [ £ [<| € —n |<3/2 | £|. Hence

1

a(Gwien(l) = C/;migdm:,|nlsl/z|e| (5)31”"/2"‘5(5)32“/"‘“’"d77
(é " —81—82—
= <§>31 +s)2+n+25 = C<§) .

Therefore, xx(D)wiw; is not in any space H* for t > s, + 53 — n/2.

For the sake of completeness, we end up this section with Hérmander’s theorem
on propagation of singularities for operators with smooth coefficients. The proof may
be found in Hérmander [14] or Nirenberg [24]; the statement is taken from Taylor
[39].

Let p(z,£) € ST, have a scalar principal symbol p,,(z,£). Then the bicharacter-
istic strips of p,, are defined by the Hamiltonian system:

d d
B = Vern(®:6), = ~Vapn(z,6).

The null bicharacteristic through (zo, &) for pm(zo,&o) is the curve defined by the

system above associated with the initial condition,

z(0) =z, £0) =&,



é2

K

&1
K,

Figure 2.1 A counterexample to Proposition 2.6.

23
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and pm(z,€) = 0.

Theorem 2.1 (Hoérmander) Let p(z, D) € OPS™ have a scalar principal
symbol. Let p,.(xo,&) = 0, let I be a null bicharacteristic through (zo, &)

for Repn, and assume Imp,, > 0 on a neighborhood of T'. Suppose
P(z,D)u(z) = f(z) € HZ,(T).

Then u € Hyt™ (D) if u € HE™ (2o, &).

2.4 Commutator lemma

Having introduced the basic concepts of microlocal Sobolev spaces, we now present a
commutator lemma which is necessary in order to prove any results on propagation of
singularities for a p.d.e. with nonsmooth coefficients. As usual, a commutator [A, B]
represents AB — BA. Then the ca.lculus of i.d.o. indicates that if p(z, D) € OPS™
and ¢(z, D) € OPS™ then [p(z, D), q(z, D)] € OPS™*™2~1_ However, the situation

becomes more complicated when one of the operators has nonsmooth coefficients.

Lemma 2.3 Let pi(z,£) € S and by(z,¢) € S° be properly supported,
and assume that for some (zo,&) € T*(IR™*)\0, a(z) € H* N H! (z0, &)
and v(z) € H' N HY (z0,&), with 1 +n/2 < 5,0 <1< s, q <r, and

¢g<l+s—(1+4n/2). Then

(bo(z, D), a(z)pi(z, D)]v(z) € H'n HZ i (zo,&) -
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We shall prove this lemma by the following two steps. Proposition 2.7 offers

the local version of the commutator action, while the microlocal version is given as

Proposition 2.8.

Proposition 2.7 Let pi(z,¢) € S, bo(z, &) € S° be properly supported,
let 14+n/2 < s, and assume that a(z) € H* and v(z) € H with0 <[ < s.

Then

[bo(z, D), a(z)pi(z, D)|v(z) € H .

Proof Assume that by, p; depend on £ only, and v, a are compactly supported (the
general case requires some obvious modifications). We only consider [ > 1 case. A

slightly different analysis will lead to the conclusion for 0 < [ < 1.

A

[bo(D), a(z)p1(D)]v(¢€)

= 50(6) [ alnpa(€ ~ 3 —n)dy ~ [ a(m)p(€ — m)bol — )o(€ — m)dn
[ ) (o(€) = bo(€ — m))pa(€ ~ n)ol€ - n)dn

Write a(n) = f(n)/(n)*, 9(§ —n) = g(§ —n)/(€ —n)', then f,g € L?. Thus

(€)' fbo(D), al@ma(D(6) = [ K (&,m) f(mla(é — n)in
where

C(&)!18o(2) = bo(€ — )
Blem = = e

By Proposition 2.2, it suffices to divide K into finitely many pieces so that

sgp/IKf(é,n)Ian <oco, or sgp/le(é,n)IQdé <o0o.
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But this is obvious from the given regularity assumptions and Proposition 2.3, to-

gether with the following facts:

(1) For [n[ > [¢]/2 and € —n| > [£]/2,

C
K .
KIS s
(2) ¥or Inl > [¢l/2 and [€ — | < I€l/2,
K| < 2 ¢

€ —mit = =y

(3) For [n| < [£]/2, £ —n = &, thus [bo(€) — bo(§ — )| < C(n)/(£), and

consequently,

Proposition 2.8 Let pi(z,¢) € S, bo(z,£) € S be properly supported,
and assume that for some (zo,&) € T*(IR*)\O, a(z) € H* N H? ,(z0, &)
and v(z) € H' N HY ,(z0,&), with 1 +n/2 < 5,0 <[ < s,gand ¢ <

l4+s—(1+n/2). Then
[bo(z, D), a(z)pi(z, D)]v(z) € Hpy(2o, o) - (2.5)

Proof As before, after making some simplifications, we have

P

~

[bo(D), a(e)p1(D)10(€) = [ a(n)(bof€) = bol€ = m)pa(§ = m3(¢ — m)dn .
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Let K be a small conic neighborhood of & such that @ € H* N HY,(K) and v €
H'N H!,(K). Let K’ be a strictly smaller conic neighborhood of &; then in order to

prove (2.5) it suffices to show that

. N

Xk (€)(€)° [bo(D), a(z)ps (D)]v(€) € L? . (2.6)
Write
\ _ xx(mai(n) | xx<(n)aa(n)
a(n) = mr T e (2.7)
se—py = XEE=mul-n)  xx€=nvs(¢—m) (2.8)

(€ —n)e (€ —n) ’
where a;,v; € L? (1 = 1,2).
We only prove (2.5) for the case where ¢ > s, since if ¢ < s then (2.7) will become

a(n)

a(n) = e and the same analysis will go through with much simpler arguments.

Substituting (2.7) and (2.8) into (2.6), we then have

& ToraPIo(E) = 3 [ Kis(€man(€)osté — i

1,j=1

where

_ xx () xx(m)xx (€ —n)(bo(§) = bo(€ — n)){€ = n)
(1) Ku(é,ﬂ) = 77> = > )

<

k€)X (m)xke(E = m)(bol€) — bol€ — m)) (€ — )

(2) Kial&im) = (e — )i ’
X (€)(E) xace (Mexe (€ — m)(Bo(€)  bol€ — m))(E = )

( ) 1{21(57 ) <77)s< > ]

(4) Ky (&,n) =

Xt (E4€) xxee(m)xxee(€ = 1) (Bo(€) = bo(€ — m))(€ — 1)
(m*{€ =)’
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It follows from Proposition 2.2 (essentially Cauchy-Schwarz inequality) that the

corresponding estimates of the kernels will complete the proof:

(1) Ky will be handled exactly as in Proposition 2.7, knowing the fact that

l+n/2<q.

(2) Since ¢ > s, the hypothesis implies that [ — 1 > n/2. On supp Kiz,

E—ne K e K = (n) > C(£); hence

if |6 —nl>Cl¢], then |Kjs| < (65_1 )
‘ C
if |£]>C|¢é—n|, then Ifflzléw-

(3) On supp Ky, n € K¢, €€ K' = (€ —n) > C(£). Now

if {n] > |€1/2, then |Ky|< ¢ — ., s—1>n/2;

(€ —n)
if jn| <|¢|/2then £ —n=~ ¢, thus|bo(€) — bo(€ —n)| < C(n)/(€),

and it follows that K CLE) )€ — n) ¢ or s — n
d it foll thtI‘gls (7]>5<§—7]>q<€> S<T,>s—lf 1> /2

(4) On supp Ko, n € K¢, £ —n € K¢, £ € K’ = Proposition 2.6 can be

applied to treat this term since ¢ <1+ s — (1 +n/2).
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2.5 Propagation of singularities theorem
We are now ready for a formal statement and a proof of the main result of this chapter:

a linear propagation of singularities theorem for 1.d.o. equations with nonsmooth

coefficients at lower order terms.

Theorem 2.2 Let p,(z, D) be a strictly hyperbolic homogeneous .d.o.
of degree m > 2, p.(z,€) € S™ 1, and ps(z,£) € S™ 2. Let T be a null
bicharacteristic of p,, passing through (zo,&) € T*(IR*)\0. Assume that
(i) 1+n/2<s,0<1<s,q,and ¢g<l+s—(1+n/2);
(i) ao € H* N HY,(T) and ag € H*™' N HL,Y(T);
(iii) v € H*™ 2N HZ™ (1) and f € H' N HL,(T);

m.

(iv) v € HIE™ 2 (20, &), for some 0 < € < 1,
and that
[pm(2, D) + Zaa(z)pa(z, D) + Tag(x)ps(z, D)]v(z) = f(z) .

Then

ve HI™ (1) |

Proof We shall basically follow the outline of the proof of the Beals-Reed theorem
in [5], indicating the necessary modifications. Denote z = (¢,Z), where t is a distin-

guished variable. W.L.O.G., we assume that p,, is homogeneous strictly hyperbolic



30

with respect to the direction (1,0) or

pm(t,f,T, E) = (T - kl(t’i"‘f)) e (T - km(t,i’f_)) s

with k; € SY(IR*™'\0) real, homogeneous of degree one in &, and distinct for £ # 0.

Clearly, Lemma 2.2 reduces the equation to

[Pm + SaapsJv € H N HY (K)

where K is a conic nbhd of Tand ' cC K.

Let bo(z,€) € S° be chosen exactly as in Beals and Reed [5], so that supp b, CC K,
bo is elliptic near T', [bo, prm] has order m—2, and ppbo = (D — k1 (¢, Z, Dz)gm_1(z, D)bo

(mod C*°) with ¢,,—1 € S™ ! elliptic near I'. Let

0

A=(D)= (1~ (4 5 2y

Then

bOClo:pav - aapabov + [bO, aapa]v 3

[0, aapalv = [bo, aaA]A—lpav + aqAfbo, A“lpa]v .

Observe that since A~'p, has order m — 2, Lemma 2.3 leads to [bo, acA]A"1p v €

H'NHY,(K). Since Abo, A~'p,] has order m~—2, the last term will be in H'NH2 (K)

by Lemma 2.2. We conclude that

(Pmbo + Taapabo)v € H N HE (K) .
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Let o = Pag—(m-1) Where q_(,,_1) is the parametrix of ¢,,_; so that G—(m-1)Gm-1 =1

on supp bg. Set w = g,,_1bov. We then have
(D¢ — ki (t,Z, Dz))w + Zagpow € H? ,(K)

where w € H?"! and WF(w) CcC K. Therefore, we have obtained a well behaved
hyperbolic Cauchy problem for w (assumption (iv) implies that the Cauchy data of
w € H97'*¢ for ¢ near 0). Our next proposition, which is an extension of the one in
[5], yields that w € H?"'*¢. Thus, v € H**™~2*+¢(T') will follow as a consequence of

the fact ¢,,-1bo is microlocally elliptic of order m — 1 near T. a

Proposition 2.9 Let k(¢,%,€) € SY(IR™!), ky be real, and po(z,€) €
S%(IR™). Assume that
(i) n/2<s,0<¢;
(i) we H! and WF(w) CC K;
(if]) a € H* N HL,(K);
(iv) g € HE'(K), for some 0 < e < 1;

(v) w e Hi'* for ¢t near 0,

and that
(Dt - kl(ta jv Di‘))w = a(:c)po(:v, D)'LU + g((E) .
Then

we HI7te
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An immediate consequence of Theorem 2.2 is a theorem on propagation of singu-

larities due to Beals and Reed, Theorem 1 in [5].

2.6 Remark on Theorem 2.2

Notice that the Beals-Reed theorem as well as Rauch’s Lemma are designed for the
study of nonlinear propagation of singularities. In that case the coefficients or the
right-hand side, roughly speaking, have same (or closely related) regularity as the
solution to the problem or the transformed problem. Theorem 2.2 deals with much
more general situations, since I could vary from 0 to s and q € [[,] 4+ s — (1 4+ n/2))
(unlike in the Beals-Reed theorem).

We conjecture that Theorem 2.2 cannot be improved much concerning the regu-
larity requirements for the coefficients and right-hand side, since the conclusions of
Lemma 2.2 and Lemma 2.3 cannot be strengthened.

The most precise information about the propagation of singularities may be ob-
tained in the case of one space dimension. Roughly speaking, the improved microlocal
regularity is then propagated along null bicharacteristics with very few restriction on
the order of smoothness. This certainly is not implied by Theorem 2.2. Note that
the result itself is not too surprising if one observes that the one dimensional wave
operator can be factored into products of differential operators. But it exhibits a
substantial difference between the one dimension and multidimension for hyperbolic

p.d.e., is somehow remarkable.
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2.7 Analysis on family of distributions
Since the coefficient ¢ = () in the model equation is time-independent, one wants

to obtain some better regularity results by taking advantage of this fact.

Once again, we begin with examining the algebraic properties of this class of

distributions.

Lemma 2.4 (Generalized Schauder’s Lemma) If s;,5, > 0, u(z) €

H*(R™), v(z,y) € H?(IR"), and 1 < ng < n. Then

u(a)o(a,y) € H'(R"),

with s = min{sy, s, 81 + s, — no/2 — §}, for any 6 > 0.

Proof Write
#(€) = (7", o(E,m) = (€)™ g(Em)
with f € L*(IR™), g € L*(IR"). |
Then
WEn) = 4(€) ()
= [€-&)m (e - e m gl m)der

Since [§ — &f + [(€1,7)] = [(§,7)|, we have either & € I; so that |6 — & > |(€,7)]/2
or & € I so that [(&1,7)| > |(€,7)]/2. Thus

(&, m)’lav(€,n)l

< [lem e —ar | e - o6, | dé
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+ /12 (€= &) (6,m)* ™ | f(€ = &1)g(br,m) | dé

or
1 m*|@o(& Mllzaem < maz{Sy, S},
where
Si < ClL (@™ | £(E - €96 n) | deilliaem
< C [dnllem =" g6 el flle
< Cllgllizzemlifllee
and

So = Cl [t = &)™ | 1(6 - €)g(61,) | der e

IN

C [ dnllgey ==+ | £(&) I esie) - loEr, m)lzaen

(A

CIE ™ "2l flz2 ) llgll e < Cligllzzemll fllze -

Note that here we have used Young’s inequality and the assumption
§<s1+82—ng/2—46

so that the following inequalities

16, m)° ™ " L2y < (€)™ 7 || L2gmro) < +o0,

and

1{€)° ™" = | z2(mmo) < +o00
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hold. O
We can also develop a corresponding generalized Rauch’s type lemma that is

similar to Lemma 2.2.

Lemma 2.5 Suppose that for some (zo, &) € T*(IR™ )\0 where (o, Yo, £0,70) €
T*(IR*)\0 (1 < no < n), the distributions u, v satisfy u(z) € H* N
H;e($o, 50) and v(l.a y) € Hlﬂanz(xO’ Yo, 60’ T]O)a with ’I’Lo/2 < S, 0 S l S 8,

q,and ¢ <!+ s —ngy/2. Then

u(z)v(z,y) € HnN H} (x0, 0,0, 70) -

Proof The fact that uv € H{,, comes from Lemma 2.4. W.L.O.G., we may assume
that u,v have compact supports in their own spaces. Moreover, we only prove the
lemma for the case ¢ > s; a natural modification of the proof will yield the conclusion
for ¢ < s. Let K be a conic neighborhood of (£y,70) which is small enough so that
v € H'NH,(K)and u € H*NHZ,(T), where I is the projection of T on the £-space.
Let K’ CC K, a strictly smaller conic neighborhood of (€0,7m0). T” is the projection

of K'. It suffices to show that

m’(€7 n)XK’(E& ﬂ)(fa’l)q € L2(1Rn) .
Write u = uy + u,, v = v; + v, such that

uy € H®, uy € H? ;and supp 4; CI'°, supp 4, C T,

v1 € H', v, € H? ,and supp &, C K¢, supp 6, C K .
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Then

Uv = U V1 + U2 + Uty + Usvy .

Let .
({)3111(5) = fl(ﬁ) ) (5)4&2(5) = fz(f) )

(& m)iouE,m) = (€ m) (€,m)¥02(&,m) = g2(&,m)

then f; € L*(IR™) and ¢g; € L%(IR"), 7 = 1,2. Thus we may decompose
(6, U)qXK'(fvn)@(ﬁ, 77) = Il + I2 + I3 + I4 )

where

_ <€,n>q/ X/ (& mxr(§)xx (€ = &,1) fa(61)g2(E — &1, m)dEy

h G — 1,m)7

’

£1)g1(€ = &1,m)d6y
{

)

)
xx' (& mxr(é)xk<(€ — &, n) fal
=) e — Em)
(¢
P

<§Jl>q/ Xk (& m)xre(&)xx (€ — &,1) fr(€1)g2(€ — €1,m)dé:

b = (E)(E - &, ’
_ q Xk (& mxre(§)xk=(§ = &,m) f1(€1)g1(€ = &1, m)dé;
L= (e (6 — &) ‘

Therefore, to accomplish the proof, we only need to show that I; € L*(IR"™) (i =

1, 4).
(1) The fact I; € L*(&,n) comes from Lemma, 2.4.

(2) On support I, (£ —&1,m) € K° and (§,7) € K' = (£,0) > C(£,n).

Hence

|f25191§ 1,m )|d§1
|I|_-/ (€ =&, ’
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therefore an extension of Corollary 2.1 and the hypotheses will yield

H2llz2me) < Cligalizell follze -

(3) On support I3, & € T, (§,7) € K’ = (£ — £1,m) = C(&,n), Proposition

2.1 gives

I 53llz2e) < C “L{}éﬁ_'

lg2ll z2(mmy -
L1(¢)

Thus, one gets from the hypothesis s > n¢/2 that

1 sllz2@rm) < Cll fullzzmmo) g2llzzamey -

(4) On support I, & € T, (€ — &,n) € K (€,7) € K. Then, since
q < 1+ s —np/2, one may apply an extension form of Proposition 2.6 to

obtain

Mall2grmy < Cllfullzzllgallza-

O
Having established the corresponding generalized Schauder’s lemma and the Rauch
type lemma, one can proceed further to prove an extension of our commutator lemma

(Lemma 2.3). We skip the proof because it is parallel to the one in Section 2.4.

Lemma 2.6 (Generalized Commutator Lemma) Let p;(z,y,£,7) € SY(IR™)
and bo(z,y,£,7) € S°(IR™), and assume that for some (zo, &) € T*(IR™),

(20,y0,60,m0) € T*(R") (1 < mo < n), a(z) € H* N H}y(wo,60) and
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v(z,y) € H' N H? (z0,y0,&0,M0), Wwith 1 + n9/2 < 5,0 <1< s, ¢, and
g <l+s—(1+no/2). Then

[bo, ap1]v. € H'n H} (20,0, €0, 70) -

Consequently, essentially the same arguments as in the proof of Theorem 2.2 lead

to a generalized form of Theorem 2.2. Again, we omit the proof and leave it to the

interested reader.

Theorem 2.3 Let pn(z, D) be a strictly hyperbolic homogeneous .d.o.
of degree m > 2, pa(,§) € 5™, ps(2,€) € S™2, with z = (z1,2,) €
IR™ x R*™™, 1 < ng < n. Let T be a null bicharacteristic of p, passing
through (zo, &) € T*(IR™)\0. Denote K = II(T), IT : T*(IR™) — T*(IR™)
the projection map. Assume that
(i) 1+n0/2<8,0<1<s,q,and ¢ <l+s—(1+no/2);

(i) aa € H* N HY,(K) and ap € H*™' 0 HL,'(K);

(iii) v € H*™" 2N HZ™*(T) and f € H'n H2,(D);

(iv) v € HI™ > (2, &), for some 0 < e < 1,

and that

[pm (2, D) + Laa(z1)palz, D) + Sap(z1)ps(z, D)Jv(z) = f(z) .
Then

v e Hym ().
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An interesting special case of Theorem 2.3 arises: For the layered problem, the
coeflicients (density) depend only on one space variable, so that we have the following

degenerate form of Theorem 2.3.

Corollary 2.2  Let p,(z, D) be a strictly hyperbolic homdgeneous Y.d.o.
of degree m > 2, po(z,£) € S™ " and ps(x,€) € S™2, with z = (21, 2,) €
IR'xIR""'. Let I be a null bicharacteristic of p,, passing through (o, &) €
T*(R*)\0. Let K = II(T), IT : T*(R") — T*(IR') the projection map.
Assume that

(i) 3/2<s,0<1<s,q,and g <l +s—3/2

(ii) aa € Hp"> % and ag € HM -1,

(iii) v € H*™" 2N HZ™*(T) and f € H'n H2 (T);
(iv) v € HIE™ (20, &), for some 0 < e < 1,
and that
[P (2, D) + Zaa(z1)pa(z, D) + Bap(z1)ps(z, D)}v(z) = f(z) .

Then

v € HIEm=2r(T) |

2.8 Microlocal norm

In this section, we introduce a notation which will be used frequently in the following

chapters for simplifying the estimates. Since the microlocal Sobolev spaces are the
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main spaces we deal with in this work, it will be convenient to introduce a microlocal

norm to measure them.

Definition 2.2 Let P be a standard 1.d.o. of order zero, then for any

q,7 € R, define

def.
lwllgre = lwlea + [ Pwlla

where () is a compact set in IR”, or § = IR™ if P has compact support in

spatial variables.

Having Definition 2.2, it is a simple exercise to interpret Rauch’s lemma in terms

of an estimate.

Proposition 2.10 Suppose w; and w, € HN HE,,(7), v € T*(IR™), and
n/2 < q¢ <r <2q—n/2. Then there exist ¢.d.o. P, P; of order zero such

that for : = 1,2,
ES(F;) € a sufficiently small conic neighborhood of v ,
and their principal symbols
P} =1 on yn{(z,6):[¢| > 1} .
Furthermore, for ¢ € C§°(IR"), and supp(¢) C Q a compact set in IR™,

P
[gwiws || o < Cllgwi]|22 o llwa P2 g -
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Proof The conclusion is slightly stronger than the original Rauch’s lemma, though
the proof is analogous. Therefore, we shall skip the proof by making the following
observation. It is obvious to see that the proof of our generalized Rauch’s lemma
(Lemma 2.2) can be utilized to prove Rauch’s lemma. Furthermore, the proposition

will follow immediately if one writes down the corresponding estimates. 0O






Chapter 3

Some Trace Regularity Theorems

3.1 Introduction

The trace properties of solutions to the hyperbolic problem are obviously essential
in understanding the forward map as well as the inverse problem itself. Therefore, a
precise trace theorem is always the first thing one wants to demonstrate in working
on this sort of inverse problem.

The classical trace theorem in Sobolev spaces asserts that the restriction map of a
distribution to a codimension one hypersurface extends uniquely to a continuous linear
operator from H*(IR¥) to H*-'/2(R*¥!), if s > 1/2. It is also well known that this
result is sharp, see Lions and Magenes [22] or Taylor [39] for details. However, dealing
with the solutions to hyperbolic p.d.e., one may reasonably expect an improvement of
their trace regularity. This is actually the case if the equation with smooth coefficients
is strictly hyperbolic with respect to a codimension one trace hypersurface, since
then standard energy estimates will yield that the trace map is from H*(IR*) to
H*(R*') locally for any real s. Unfortunately, the same idea will not work if the

trace surface is timelike, essentially because the presence of grazing rays prohibit the

42
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direct application of energy estimates. See Symes [32], Bao and Symes [2] for more
comments on this aspect.

In {32], Symes proved a trace theorem for the solution of a second order multi-
dimensional wave equation with constant coefficients: For finite energy initial data
compactly supported away from the boundary (with the absence of the grazing rays),
the trace is of class H], which is as regular as the solution in the interior. Some
similar trace regularity results were obtained by Lasiecka and Triggiani [21] for the
solutions of second order hyperbolic mixed problems based on the application of the
Laplace-Fourier transform.

Recently in [2], we proved a trace theorem for general linear p.d.e. with smooth
variable coefficients, applying the full strength of the Hormander-Nirenberg pseudod-
ifferential cutoff technique and the method of energy estimates. Our theorem shows
that the difficulty above may be resolved by imposing more smoothness against graz-
ing ray directions.

Roughly speaking, the analysis in this chapter is similar to that of Bao and Symes

[2]. Two major differences are in order:

e Since in this work our attention is restricted to the second order equation,
compared to the general case in [2] a much simpler 1.d.o. cut-off of the operator

becomes possible.

e Note that the model problem is an initial value problem; therefore both of the

propagation of singularity theorems, both Theorem 2.1 (Hormander’s theorem)
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and Theorem 2.3, have to be involved in the analysis in contrast to [2] where

no side condition was introduced and discussed explicitly.

The main ingredient of this chapter is a fattening lemma which provides a conve-
nient way to determine the regularity of the action of a smooth family of 1.d.o. on a
distribution under some appropriate hypotheses. This lemma plays a dominant role

in deriving our trace regularity theorems.

3.2 Properties of y.d.o.-like operators

It is easy to observe that by the definition of t.d.o. a smooth family of v.d.o.
P(z,y,D;) € OPS™(IR*), for each y € IR¥ % with ko < k, is not necessarily a
¥.d.o. in IR¥. For convenience, in the future, we shall denote the smooth family of
p.d.o. as P € C(IR*, OPS™(IR*)). The results in this section will conclude that
a smooth family of ¢.d.o. in fact behaves like a 1.d.o., hence will be called a Y.d.o.-like

operator in the future.
This section is devoted to the understanding of these 1.d.o.-like operators.

We begin with our Proposition 3.1 which guarantees that similar Sobolev space

continuous properties still hold.

Proposition 3.1 If p(z,¢) € S™(IR*), 1 < ko < k, satisfies one of the

following assumptions:

(1) p(z,€) = p(£); that is p is independent of z;
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(2) p(z,£) has compact support in |z| < ¢,

then

p(z,D;) : H(R*) — H*~™(IR¥)

continuously.

Proof For simplicity, we only prove the second statement here. The first one follows
from the fact F.[P(D.)u(z,y)] = P(&)a(€,y). It suffices to assume the m = 0 case
and derive the appropriate norm estimates. Let u € S, the Schwarz space and write
p(2,€) = [ Fep(n,§)e= dn, with Fop(n,€) = [ p(z1,€)e *1"dz,. Assumption (2) on
p(z,§) implies that | F,p(n,€) |< COn(1+ | |2)_N/2 , YN > 0. Since the Fourier

transform of P(z, D, )u(z,y) has the form

F(P(z, De)u)(n,¢) = [ Funln — & €)(€, )de

we have

| F(P(e, Dyw)(n, ) 1< Cn [ (1 1m—& Y™ Jage, ¢ e

Therefore,

1Pz, Dz)ull%.

- 2 2 2.8/2, . 2
<ofifa+in-e ™ atier+1cP a0 e, do

where N; = N — 5. For large N, Young’s inequality yields that

1P(2, DJully < C [ L+ 1€ P +1¢ 1460 | agede = Ol w .
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[

Note that the only thing preventing P(z,y, D,) from being a %.d.o. of order m is

that its symbol p(z, y, £) does not decrease in any directions other than the ¢-direction.

This implies that via a pseudodifferential cutoff along those nondecay directions P
may be regularized to be a t.d.o., which leads to our next proposition.

From now on, ﬁg : X e T*(IRk) — Y € IR* x R* serves as a map for k& > ko,

I(X) = {(z,y,§) €Y : (z,y,€,0) € X} .
Recall that the normal bundle of a foliation IR¥ = IRF~% x IR* is the set
N ={(z,5,6,n) € R® x REH x Rk x RF0 ¢ = 0} |

Proposition 3.2 Assume that P(z,y,D,) € C®°(R*™, OPS™(IR*))

H(z,y,D.,D,) € OPS™(IRF), 1 < ko < k, m,mo € R and #(z,y) €

C$°(IR¥). Furthermore, assume that
ES(HYNN =0,
where A is the normal bundle of IR* x IR*~%. Then
P¢H € OPS™ ™ (IRF)

and

ES(P¢H) C TI;'ES(P(-,y,-))NES(H) .
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Proof W.L.O.G,, it is sufficient to consider the case with m = my = 0 (some simple

modifications lead to the general case). Thus it suffices to show that

Q = P(.CC, Y Dz)¢(x7 y)H(Dl‘v Dy)
is a 1.d.o. (in OPS°(IR*) ). Observe that
Qu(z,y)
= [ [ Ple,v.003(6 - & p)e= el H(E )i ')+ gl

hence, the symbol of @

Qol=,9,€1) = [ Pla,y,€ +€)3(6,y)edeH(E ')

The definition of .d.o. gives that

| 0 P(2,y,6+€) | < Car(l4 [E+E )™

< COA+ 1€ D™ A+ 1ED™, Yaur > 0.

Therefore, for any (¢/,7') € IR and any (z,y) that is contained in a compact set in
R,

| a?’QO(:E’ Y, 6’, 7),) l

< Ol X (08 [ Pla,y, 6 +€)e™d(6,y)de] 9 H(E ) |

O0<o; <o

< X CA+ g ™og ™ H(E )

0<a; <

< Corx(I+ €|+ 17 D)



43

The last inequality comes from our construction of H; that is, H(¢',n’) is nonzero
only in the region (1+ | &' |+ |7’ |) < C(1+ ] £ |). Thus Q is a .d.o. in IRF.
The fact

ES(P¢H) C I;'ES(P(-,y,"))

1s a simple exercise of the definitions of essential support as well as the map II,. From

the above expression of the symbol of @, it is obvious to see that
ES(P¢H)C ES(H) .

]
Remark. In the appendix of [38], Taylor studied some properties of 1.d.o.-like
operators through two lemmas (Lemma A.1, Lemma A.2). While in Lemma A.1, for
a smooth family of ¢.d.o. P, € C*(IR!, OPS*(IR"™ 1)), he obtained essentially the first
conclusion of Proposition 3.2. He then showed in Lemma A.2 that if (0/0, — P1)u €
C*, then WF(u)NN = 0.
We shall make an extensive use of the ¥.d.o. cut-off technique behind Proposition
3.2 and examine further properties of these 1.d.o.-like operators.

Our next proposition provides us with an important property of microlocal ellip-

ticity.

Proposition 3.3 Suppose P € OPS™(IR*) and Q € OPS°(IRF), s € IR,

q(z,€) has compact support in z, and P is microlocally elliptic on a conic
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neighborhood of £S(Q). Then

1Qulls.0 < Cil|PQulls-ma + Cellullra

holds for any real r and u € C§(IR"), Q is a compact set in IR™ with

supp(u) C (2, and the constants depending on r,s,m, and supp(u).

Proof Since P is elliptic on a neighborhood of ES(Q), there is another 1.d.o. R of

order m such that
e P + R is elliptic;
o ES(RYNES(Q)=0.
According to Garding’s inequality, we then have for any real r
1Qullse < Cill(P + R)Qulls—ma + C3||Qull-a
< Gil|PQulls—m,a + Collull-q ,

where to derive the second inequality, we have used the fact that RQ is a smoothing
operator. a

We are now ready to prove a lemma based on Propositions 3.1-3.3 and a .d.o.
fattening technique. The usefulness of this lemma will become clear in the proofs of

the coming trace theorems.

Lemma 3.1 (Fattening Lemma) Let B(z,y, D) € C®(IR*% 0PS™(IR*)

and A(z,y, D., D,) € OPS™(IRF), where 1 < ko < k. Let

NZ {(l',é) Emk XIRka (él""a{ko)zo}
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be the normal bundle of IR* x IR*¥*°, Also, assume that

(1) A is microlocal elliptic on a conic set Ell(A), with N/ CC
" El(A)
(2) we H* 0 Hyp ([T (RO\EU(A)] N 11" ES(B(-, y, )));

3

(3) Agu € HZ™ 1 (IRF), where ¢(z) € CL(RF).

Then

Béu € Hip,™H(IRY),

loc

in addition, if B is either a convolutional operator or its symbol has com-

pact support in spatial variables,

B¢U € Hh—m-{-l(mk) .

Remark on the lemma. Since the operator A plays a very important role here,
a natural question arises: Given operator B and u, how can one find the appropri-
ate operator A? It is obvious that the right candidate should satisfy assumptions
(1) and (3); that is, its properties depend strongly on the properties of B and u.
Fortunately, this is not a problem because the wave operator always satisfies two
essential requirements: The wave operator O is microlocally elliptic away from its
characteristic variety, therefore we know exactly where (1) holds. According to the
theorems on propagation of singularities, the improved regularity is propagated along
the null bicharacteristics (the Hamiltonian flow) of O, which gives a first hint to find

where the assumption (2) is satisfied.
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Proof We only prove the first part of the conclusion, the second part can be shown
by a simple application of Proposition 3.1.

By assumptions (1) and (2), we can find a conic set Ell;, such that N C Fll; CcC
Ell(A), and u € H* 0 HE ([T*(RF\EILINT;YES(B(-, y,-))).

One can also construct a ¥.d.o. Hy € OPS°(IR¥) which satisfies
o ES(H;) C El(A) and
o the symbol of Hy, hy =1 on Elly N {(z,&) : |€] > 1}.
Write ¢ = ¢¢; with ¢, € C°(IRF); we then have
Béu = B¢1Héu + B Hidu

with H =1 — H,.
Since

AH;¢u = [A, Hy|¢u + H, Apu
and [A, H;] has order my — 1, we have

AH ¢u € HI ™o+

loc

which follows by assumptions (1) & (2) and Proposition 3.1.

From assumption (1) and the fact
ES(Hy,) C Ell(A),
where EIll(A) is the microlocal elliptic region of A, we see from Proposition 3.3 that

Hipu € HML

loc
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Thus Proposition 3.1 gives
loc

B Hypu € Hl™
On the other hand, from the construction of H, Proposition 3.2 implies that
B¢ H € OPS™(IR¥) .
Moreover,
ES(B¢:H) C ;' ES(B(-,y,-)) N ES(H) C [T*(R*)\EIL] N I;'ES(B(-,y,")).
Thus, a simple property of wavefront set yields

B¢ Hou € H-™H1

loc

Eventually, combining the above arguments, we have

Béu = Bé1Hou + Bé1Hypu € HlJ™ |

loc

which finishes the proof. ) a

Furthermore, an estimate can be obtained by carrying out all the corresponding

estimates in the above proof.

Corollary 3.1 Under the assumptions of Lemma 3.1, the following es-

timate holds:

|¢oBoullh-ms1 < Clldulln + ClldoAdu| | h=mo+1 + C|ldoPdu|lpt1 ,

where ¢o(z) € C§°(IR™), P € OPS° and ES(P) C a sufficiently small

conic neighborhood of T' = [T*(RF)\Ell}] N TI;'ES(B(-,y,-)) and p = 1

on ' N {(z,¢&): |¢] > 1}.
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3.3 Propagation of singularities

From now on, the space variable is always denoted as (z',z,) € R* ! x R and the
Fourier variables dual to ¢,z are w,§ respectively. We shall focus mainly on the
multidimensional case, n > 2.

For convenience, we state and prove a simple result on propagation of singularities
by following closely Nirenberg’s construction in [24]. Although the lemma is stated
for the wave operator O, which is what we need in this work, it is clear from the proof

that the corresponding result for general operators can be established with no further
difficulty.

Let
D(x,t,{,w) = (1/2)((4)2 - 52) )

the bicharacteristic strips of O are defined by the Hamiltonian System

The null bicharacteristics of O are those that satisfy w? = |¢|? . For example, one can
easily write down the characteristic through the point (20,0,&0,wo) with w = |£]?

as

{(x,t,f,w) T =T — (éo/wo)tv é = €0a and w = wo} .
Lemma 3.2 Given a conic set v, there exists a B € OPS® such that

(1) [B,O] € OPS%;
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(2) B is elliptic on the null bicharacteristics (Hamiltonian flow)

generated by the wave operator O out of ~.

Proof According to Nirenberg’s proof of the theorem of propagation of singularities,
we can find a ¢.d.o. A of order zero for every null bicharacteristic of O out of
such that A is elliptic on a small conic neighborhood of the bicharacteristic and
[A4,0] € OPS°.

Now B may be constructed in the following way: B = 3" A where A is defined as
above. Then B € OPS°, it can be arranged to be elliptic on the Hamiltonian flow
out of v, and [B,0] € OPS°. Moreover, the local compactness of the unit sphere
ensures that the summation is finite. O

Three remarks are in order:

(1) The same idea could lead to the existence of B € OPS® with all the
properties of B and, moreover, [B, O] € OPS~>°. However, it is evident
~ that with the presence of nonsmooth coefficients, the fact that [B, 0] €
OPS~* will not benefit our analysis any further. The proofs of the Beals-

Reed type theorems only rely on [B,0] € OPS°, anyway.

(2) With Lemma 3.2, both Hérmander’s theorem and the Beals-Reed the-

orem enjoy an obvious but useful generalization. For example, consider

problem

Du:f
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v € Hp,(v)

whef‘e f is smooth. From Lemma 3.2, Hérmander’s theorem will then yield
ue He,(I),

where I' is the Hamiltonian flow out of 4.

(3) By the definition of microlocal Sobolev spaces, u € H2,,(zo, &) implies
that there is a conic neighborhood of ¢y K, such that u € HZ,,(xo,K). This
fact has been implicitly used in Chapter 2. Therefore a combination of this
fact and a simple compactness argument will imply that all the previous
results on propagation of singularities hold in a small conic neighborhood

(in the frequency space) of the null bicharacteristic as well.

3.4 Trace theorem I: Constant coefficients

In this section, we present a trace theorem for the hyperbolic p.d.e. with constant co-
efficients. In addition, we employ Hérmander’s theorem (and Lemma 3.2) to describe
how the singularities are propagated.

We first state a useful local regularity result for the solution to a first order hyper-
bolic Cauchy problem. We shall skip the proof because it is based on the method of
energy estimates employed by Beals and Reed (Proposition on pages 176-177 in [5]).

The difference is that a slightly different version of local regularity result is given in
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their paper with microlocal assumptions on the coefficients and the right-hand side.

See also Proposition 2.9 in the preceding chapter.

Proposition 3.4 (Local Regularity) Let Py(z,t, D,;) € C*(IR,OPSY (IR 1))
and Po(z,t,D,, D;) € OPS°(IR"), where D, — P, is symmetric hyperbolic

in the sense that P, + Py € OPS°. Assume that

(i) a€ H},,,n/2<rand s <r,
(ii) f € Hi.,
(iii) v € H}, for t near 0,

and that

(Dt = Pi(z,t, D))o(z,t) = a(z, t) Po(z,t, Dy, Di)v(z,t) + f(z,t) .
Then
v e HISOC *

We now proceed to show a trace regularity theorem.

Theorem 3.1 Suppose that u solves the hyperbolic problem
52

u € H*NH}'(y), near {t=0},

with

y=0x{(6w) e R, & +]¢° = w? and |€,] < el¢'|},
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for small ¢ > 0, where Q2 is a compact subset of {(z,t) € R*" | |t|,|z,| <
¢0}. Then

ul$n=0 € Hlsoc :

Idea of the proof. As we mentioned before, since the hypersurface {z, = 0} is a
time-like surface, the method of energy estimates cannot be applied directly. To cure
this difficulty, we shall alter the wave operator O by a t.d.o. cut-off technique so that
{zn = 0} becomes a space-like surface. In other words, we shall construct a strictly
hyperbolic .d.o. equation with respect to the trace {z, = 0}. Since the operator
in our construction is differential in z,, the standard method of energy estimates
(for example in John [18] or Taylor [39]) can be applied to get the basic estimate.
Then, the microlocal hypotheses and Theorem 2.1 together with Lemmas 3.1, 3.2 will
complete the proof.

Proof Let 4,7 be two conic subsets of the set g x {(¢',w) € R™, |w| > [¢[} and
let TIoyo C Ioy; (strictly), where II; maps a set to its second factor or the frequency
space (see Figure 3.1), and € is generated by € in such a way that each point in Q

may be traced back to 2 along the characteristics of the operator O. That is,
Qo = {(z,t) € R™, J(zo,t0) €Q, =120 = M, [N =1}.

Then, we can find a convolutional operator @ € C*(IR,OPS°(IR™)), q = ¢(¢',w),

that satisfies

e ES(Q)Cmand 0< Qo < 1;
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o 270
Mo
the light cone

Figure 3.1 The projection of sets vo,7; to the frequency space.
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o QO =1on Yo N {('Tatvélaw)a l(é‘law), > 1}’
where Qo(¢’,w) is the principal symbol of Q. Define another operator E as
def.
E=Q0u:+([—-Q)Au,,

where Ogiy = 0} — 0%, Apry = 02 4+ 92,.

T

Observe that the principal symbol of E

Eo = Qo(w’ — &%) + (1 — Qo)W + €*) > C(w? + £7),

for |(w,&')] > 6, with some positive constants C, 8. Hence, E is an elliptic ¥.d.o. of

order two.

Let ¢ = ¢(z,t) € CL(R™!) with supp ¢ C {|zn] < €0} . We then have a strictly

symmetric hyperbolic problem
(=0;, + E)éu = [0, ¢lu+ (I = Q)(Agry — Do) pu .

Since ¢ is compactly supported, we actually have a symmetric hyperbolic Cauchy
problem with zero Cauchy data. It follows from a hyperbolic energy estimate in
Taylor [39] pages 73-75 or Proposition 3.4, by knowing that [0, ¢] and [Ay, — Ogr 4]

are operators of order one and two respectively, that

1(¢u) lo=o lls < CII[O, Ju+ (I — Q)(Asr = Bart)dulls—1

< Clllgulls + 11 - Q)282¢uls-1] ,

where the second inequality makes sense because @ is a convolutional operator so

that Proposition 3.1 is applicable.
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Therefore, to obtain the desired conclusion it suffices to show that
(I-Q)o;¢ue H,

which requires the use of Lemma 3.1. In order to apply Lemma 3.1, we choose
B = (I - Q) of order m = 0, A =0 of order mg = 2. B is also a t.d.o.-like operator
in R* x R with ko =n, k=n+1,and h = s — 2.

Let us look at the assumption (1) of Lemma 3.1, Ell(A) (the elliptic region of

A = D) is easy to determine. Actually O is elliptic away from the light cone {w? =
€17}

Since Ou = 0, the fact
D0z éu = (0,0, ¢lu € H*™®
verifies assumption (3). Hence, the only assumption that needs to be checked is that
uw € H* N H S ((T(R™\ENO) NI ES(T - Q)) ;

see Figure 3.2.

Since u € HY,_ is a simple consequence of Proposition 3.3, we are left with verifying
that u € H:5' ((T*(R™M)\EU(D)|NII;' ES(I — Q)), and this demands Hérmander’s
theorem on propagation of singularities and Lemma 3.2.

Let 7o, v1 approach the set Qo x {(é,w) : |w| > |€'|}. The set

[T*(R™)\EN(D)NTI;*ES(I — Q)
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is contained in a small (conic) neighborhood of the Hamiltonian flow out of 4. Hence
Hérmander’s theorem on propagation of singularities, Lemma 3.2 (in particular, re-

marks (2) and (3) there), and the microlocal initial hypotheses yield that
u € H (T (R™)\BI(D)] 0 15 ES(T - Q))

Thus we have proved the theorem. a

3.5 Trace theorem II: Variable coeflicients

The ideas in the previous section can be generalized immediately to the case of non-
smooth coefhicients in the lower order terms. With the presence of nonsmooth coeffi-
cients, the generalized Beals-Reed theorem (Theorem 2.3) are obvious necessary.

For the sake of simplicity, let us define
¢ = TR N\EN(D)] NT;TES(I - Q)

where A/ CC EIl(0), with /' the normal bundle of R* x IR'. @ is a convolutional

operator defined in the proof of Theorem 3.1 (see figure 3.2 for G).

Theorem 3.2 Suppose that s > 3+n/2 and that u solves the hyperbolic
initial value problem
Qu = [@B-Vo-Vju=f, (3.1)

u € H'NHYv), near {t=0}. (3.2)



the light cone

IES((I = Q)(1Zn:))

§n

Figure 3.2 The projection of set
G = [T*(R"™'")\EN@) NTI;'ES((I - Q)(-,Zn,)) to the frequency
space.

62
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with
7= x {({,w) e R* | £ 4+ 1¢° = w? and |&,] < el€']},

for small € > 0. © is a compact subset of {(z,t) € R™*" | |t|,|z.| < €}
and

I' = a small conic neighborhood of 7 .

Assume that

(i) ve H-'nH! (), 1 <1< s
(ii) Vo(z) € H*' N H} ,(K), II: T c T*(R"*') - K c T*(IR")
is the projection map;
(i) fe H=n H ,(T).
Then

l
u !xn=06 Hloc .

Proof Proposition 3.3 implies that v € H{ .. In the statement of Theorem 2.3

choose
(m,no,n,1,8,q,€) = (2,n,n+ 1,1 — 1,5 — 1,,1)
then the microlocal hypotheses and the fact G C T' verify all the assumptions of

Theorem 2.3. Hence similar to the proof of Theorem 3.1, we find v € Hf,j}l (G), or

u e H' n HEHG).

mi
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Notice that the main assumption, s > 3 + n/2, is required by the corresponding
hypothesis (i) in Theorem 2.3.

Define E exactly as in the proof of Theorem 3.1. Similar arguments lead to

(=0;, + E)pu = Odu+ (I - Q)(Asy — Oury)gu

(3.3)
=[O, ¢lut ¢f + ¢Vo - Vu+ (I - Q) Ay — Opry)du,
where again ¢ = ¢(z,t) € C&(IR™") with supp ¢ C {|za| < e} .
Hence
1(9%) lzn=o [li < Cl|r.h.s. of (3.1)|i-1
< Cllignulle + 1o flli-1 + ¢V - Vullioy + (I — Q)2 pulli1] (3.4)

where ¢; € C§° and supp(¢) C supp(¢o). But the generalized Schauder’s lemma

(Lemma 2.4) yields

#Veo - -Vue H-1 |

Therefore, to complete the proof it suffices to show that

(I-Q)dZ¢ue H'™,

which again requires Lemma, 3.1.

Arguments similar to those in the proof of Theorem 3.1 are employed to verify all
the assumptions of Lemma 3.1. Choose B = I — Q € C*(IR', OPS°(IR")) of order
m =0, A= 0 of order mp =2, and h = [ — 2 in the statement of Lemma 3.1. Then

hypothesis (1) of Lemma 3.1 is obvious once again because O is elliptic away from
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the light cone. Using the Beals-Reed type theorem on propagation of singularities
(Theorem 2.3) as well as Lemma 3.2 and its remarks, we can verify hypothesis (2).

To verify hypothesis (3), one only needs to look at
Dazl(pu - [D, agl(b]u + ag,qﬁ(VO' . Vu + f) ’

which is bounded by the first three terms in (3.2); hence the same arguments yield
that 0% ¢u € H'=3.
The proof of Theorem 3.2 is then completed. O

Next we derive the corresponding trace estimate on the solution which will also
be useful in Chapter 5. In this process and in the future, for the sake of simplicity it

is convenient to introduce a useful notation.

Definition 3.1 A constant C is said to depend on the H* N H’ ,(K)-
norm of u € CP(IRF) if the constant depends on ||u||, + ||Qul.q for a

Y.d.o. @ of order zero such that

e ES(Q) C a sufficiently small conic neighborhood of K and

e g=1on KN{(z,8): & > 1}.

Q is a compact set such that supp(u) C @, or Q = RR* if ¢(z,¢) has

compact support in z.

We also need a Garding’s type inequality concerning the microlocal ellipticity.
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Lemma 3.3 Assume that Q; € OPS™, @, € OPS™2, with m;,m, €
IR. Furthermore assume @), is elliptic on ES(Q;). Then for any r € R

and u € C§°,
1Q1ulls.0 < CllQ2ulls4my—ms,0 + Cllullra
where ( is a compact set, supp(u) C .

Proof W.L.O.G,, it suffices to consider the case where m; = m, = 0. Let Q5! be

a parametrix of ()2 on 7, a small conic neighborhood of ES(Q;). That is,
7'Q:=I1+K onry, (3.5)

where K is a smoothing operator.

Construct a v.d.o. P of order zero so that
e ES(Q1) CES(P)C~;
o p=1on ES(Q1)N{(z,&): | > 1},
where p is the symbol of P. Then @; can be decomposed into two parts:
Q1 =:1{(I —P)+Q,P.
From (3.5) and the construction of P, we see that

Q1P = 1Q7'Q2P — Q1KP .

But since

ES(Qi(I-P))=ES(@Q)NES(I-P)=0,
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@1(I — P) is a smoothing operator. Therefore, for any r € IR,

[|Qiullse < Cll@1Pullsa + Cllullra
< Cl@1Q7'Q2Pullsa + Cllullra

< CllQaullsa + Cllulla -

O
Remark. The lemma enjoys an obvious extension because in the proof we have

only used the fact that ), has a parametrix on ~.

Lemma 3.4 Under the same hypotheses as in the statement of Theorem

3.2, the estimate

1(¢)lzn=olli < Chllgoulls + Clidoflli-1 + CliPoflle  (3.6)

holds for a ¢.d.o. P of order zero ES(P) C I', where ¢(z,t) and ¢ €
Cg°(IR™1) are supported near the trace hypersurface {z, = 0} and the
constant C; depends on H*~' N H,(K)-norm of ¥ Vo with ¢ € C°(R™),

Q) is a compact set in R™! such that supp(¢) C supp(do) C Q.

Proof Clearly the conclusion of this lemma is slightly stronger than the previous
theorem. Following the general outline of Theorem 3.2, we prove this lemma by
getting all the necessary estimates.

Recall the estimate (3.4) in the proof of Theorem 3.2,

1(@w)len=olli < Clli¢rulli + (|81 + 18V - Vullios +[I(1 = @)z dullia]  (3.7)



68

where @) is again defined in the proof of Theorem 3.1. The generalized Schauder’s

lemma (Lemma 2.4) gives

1¢Ve - Vulli_1 < Clldrull,

with constant C depending on |[¢)Vo||,_y, for some 3 € C$°(IR™).
Thus it suffices to estimate ||(I — Q)¢u||i+1, which requires the .d.o. fattening
technique developed in the proof of Lemma 3.1 (see also Corollary 3.1 for the esti-

mate).

Recall the construction of the 1.d.o. H in the proof of Lemma 3.1. Similarly, one

has

(I -Q)0%éu=(I-Q)$(I — H)¢u + (I — Q) H ¢u . (3.8)

Choosing A=0,B=1-Q,k=n+1,k=n,and h =1, Ais microlocally
elliptic on ES(I — H); hence, according to the proof of Lemma 3.1, one can easily

write down the estimate

(I = @)é:(I = H)0g pulli- < Clgullr, (3.9)

where C' again depends on ||¢Va||,_;.

Therefore to prove the lemma we only need to bound ||(I — Q)¢ HOZ dul|141.

As in the proof of Theorem 3.1 we can arrange € to be sufficiently small and ~o,
71 to approach the set Qo x {(¢',w),|w] > |€'|} so that supp((I — Q)¢ H) is near

{zn =0} and ES((I — Q)$1H) is contained in the flow out of v (the set v is defined
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in the statement of Theorem 3.1). It follows from Lemma 3.2 that there exists a
.d.o. P of order zero such that

e Pisellipticon ES((I — Q)¢ H);
e [O,P] € OPSY
e p is supported near {z, = 0}.
From the ellipticity of P on ES((I — Q)¢ H), Garding’s type inequality Lemma
3.3 yields that
(I = Q)1 HPdullire < ClIPdulli-ra + Cligullra
< Cl|[P, 02 ¢)ulli-1a + C||¢Pullir1.0 + Cl|oul|-a

< Cll¢Pullipr,e + Clloullna

for any r € IR. Thus the proof has been reduced to bounding ||¢Pul|i11 0.

Acting P onto both sides of equation (3.1), one has
OPu = [O,Plu+ PVo-Vu+ Pf
u = 0 t<0.

Then the energy estimates together with a simple estimate implied by the commutator

lemma (Lemma 2.6) yield

I¢Pullivre < Cllgoullia + Cligoflli-1.0 + ClIPéoflla , (3.10)

where C depends on the H*~' N H:,(K)-norm of ¢ Vo.

Eventually, the proof is completed by combining (3.7) with (3.9) and (3.10). O



Chapter 4

Regularity of Fundamental Solution

4.1 Introduction

Since the excess pressure u in the model equation is in fact the fundamental solution,
in order to study the regularity of the forward map, the regularity of the fundamental
solution must be understood. It is evident that the real obstacle here is the singular
right-hand side so that none of the propagation of singularity results discussed before
could be applied to handle it directly. The goal in this chapter is to determine the
regularity of the excess pressure by using the Hadamard theory of progressing wave
expansion. Hadamard’s construction (see e.g. Courant and Hilbert [10]) is nothing
more than a singular decomposition in the sense that it decomposes the fundamental
solution to the second order hyperbolic equation with smooth coefficients into two
parts: A singular part which is the sum of a series of singular functions (singular only
on the “wave front”) and a regular part which is generally smoother than the singular
part. The expansion exhibits precisely where the singularities take place and how
singular they are. We refer the reader to Courant and Hilbert [10], Friedlander [12]

and Romanov [28], for a detail study on the method of progressing wave expansions.

70
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This chapter is started with a rigorous progressing wave expansion for general
second order hyperbolic p.d.e.. We then specify the idea to work on our model prob-
lem. Clearly in order to get regularity of the fundamental solution it is crucial to
study the transport equations. But what is more interesting is that by employing
an energy identity given by Symes [36], the energy norm of the solution can be ex-
pressed in terms of an appropriate norm of the solution on the characteristic surface
(solutions of the transport equations) without any remainder term. Notice that the
regular part v, vanishes at ¢t = 7(z) when s is not too small. It is easy to show that
the solution of the model problem with smooth coefficients is actually smooth inside
the conoid {t = 7(x)}. For more general cases (with nonsmooth coefficients), the
previous Rauch-type results may be applied to obtaining an estimate.

The method involved in the regularity analysis for the solution of the model prob-
lem (the fundamental solution) is a natural one. What it shows, however, is encour-
aging: With the help of a simple energy identity, the previous Rauch-type results
and the method of progressing wave expansions may well be applied to deal with
certain strong singularities. Note that the right-hand side in the model equation is

as singular as the Delta function.

4.2 Progressing wave expansion: General result

Consider a general second order hyperbolic equation

utt_Lu'_—f(xat)’
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where L is a uniformly elliptic operator

Lu= )" aij(z)uga; + Zb z)ug, + c(z)u,

i,7=1

,LLZa < Za,](xaajg Za,, 0<p<+o0o.

i,5=1 z=1

Let D be an open simply connected domain of IR™ containing the origin. The Riemann
p y g g

metric is considered as

1/2
dr = (Z b,J dCL‘ dCI)J) , B = (bij)nxn = A—l ;

1,7=1

and 7(z) is the distance between z and 0.
A point z in D can be specified using the Riemann coordinates ¢ = ((1, (2, -+, Cn),
e, = f({). With respect to the variable (, the function f(¢) has the inverse

¢ = g(z). In this case,

n

(z) = “Z_l bi;(0)g:(z)g;(=) .

The conoid {t > 7(z)} is defined by the domain of influence of the point (0,0).

We are now able to state a general regularity result

Lemma 4.1 (Romanov) For the spatial dimension n = 3, the funda-

mental solution which solves

Ut — Lu = (S(.’E,t)
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. where H(t) is the Heaviside function, and

tk—l
So(t) = 6(t), Sk(t) = = 1)!H(t) , for k>1.
The functions o4 (k =0, - -, s) satisfy the recurrence relations:
1 |o 12
ot (g gentel) "o -1, 0~ Fragete

d
bks(O)gk(:v)gggs(é) le=£(t4(2).0) dt} ;

1 1
O'k(SC) = ZO’Q(I‘)/O [Uo(f)]—ltkLgdk_l(f) !E:f(tg(:r),O) dt N k>0.

Furthermore, v solves the Cauchy problem

(ag{i — L), = (/@O HO)S:(t - 7X(z)) Lo,

Finally, if a;; € C**4(D), b; € C**2(D), ¢ € C4(D) then

or € C*+(D x D).

Remark. The lemma carries all the information about the singularities through
expansion (4.2). The importance of this result is that it gives a natural way to
determine the regularity of u in terms of the regularity of the coefficients oy.

A detailed proof may be found in Romanov [28], the calculation is a bit com-
plicated there, but the idea is rather simple. The proof containes two major steps:

using some known results on the distributions, one may arrange to match the Delta
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function on the right-hand side; the coefficients of the less singular parts all van-
ish, and moreover these relations may be deduced to a series of ordinary differential
equations (transport equations). The standard way of solving the o.d.e. yields the
recurrence relations of 0. However, to get the above construction, one has to take
into full consideration the special structure of 3-D. Nonetheless, Theorem 4.1 below

verifies that similar progressing wave expansions may be carried out for other spatial

dimensions (though one might not be able to write down the explicit expansions as
simply as in Lemma 4.1). Essentially the only difficulty is how to remove the Delta
function on the right-hand side of equation (4.2), but it can be overcome by using
the properties of special functions. The proof is fashioned after the proof of Lemma
4.1 in Romanov’s book; hence we shall not hesitate to skip it. However, it should be
pointed out that the behavior of the leading singularities for all spatial dimensions

was well understood long ago (for example in Courant and Hilbert [10]).

Theorem 4.1 The fundamental solution which solves

uy — Lu=6(z,t), (z,t) € R

is of the following structure:

s

u(z,t) = CoH(t) Y ok(z)Sk(t? — 72(z)) + vs(z, t) ,

k=0
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where Cj is a constant depending on the dimension n, and

So(t) = §(*(t) and Si(t) = Sk_1, for k>1,

H(t
§-V(t) = H(t) and 6C1D(¢) = \;Z) .
The functions o (k = 0,- - -, s) satisfy the recurrence relations:

do
23 0o ail * Ba. k+0kLI‘—-—L0'k 1, k>-1.

When k£ = —1, the right-hand side should be replaced by zero, where

L/F = Z aijrcz:.'xj -+ Zbirxg + C’1 9

7,j=1 i=1

where C is another fixed constant.

Furthermore v, solves the Cauchy problem

62

(55 = Dvs=CoH1)S,(t* ~ 7*()) Lo,

Once again, if a;; € C***(D), b; € C**?*(D), and c € C*(D), then

o) € C¥+(D x D).

4.3 Energy identity

We now examine the regularity of the fundamental solution to the model problem
quantitatively. Clearly Theorem 4.1 gives us a direct way to do so. We can represent

the fundamental solution as the sum of the principal part and remainder and study
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the remainder by the Beals-Reed type propagation of singularity theorem. However,
a great drawback of this idea is that additional regularity is needed to regularize the
remainder term. In this section, taking the special structure of the model problem
into account, we shall modify the above straightforward idea by introducing an en-
ergy identity. The advantage to this technique is that with the energy identity, we
can essentially get rid of the remainder term in the expansion; therefore a refined
regularity result should be expected.

To fix the ideas, let us consider a problem obtained from the model problem by

integrating the problem in the time variable,

(D — Voy - V)vo = 6“5—;‘1'(05(3;) , (:c,t) c R

(4.3)
vo=20 , t<0.
Hadamard’s construction leads to the progressing wave expansion for vy,
vo =Y beSi(t — 7()) + Ry (z, 1) (4.4)

k=0

where 7(z) = |z|, So is the Heaviside function, S; = Sy—; (k > 1), and R,, vanishes

at ¢t = 7(z). Moreover {b;} solve the transport equations, for k=1, - -, s,
2Vr - Vbo + (AT + Vr. vo'o)bo = 0 (45)
2V71 Vb + (AT + V7 -Vaoo)by = Abr_y+ Voo - Ve . (4.6)

Since the boundedness of the energy norm will naturally lead to the regularity, we

attempt to bound the energy norm by recalling an energy identity stated in Symes

[36].
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Denote

Br={z:7(z)<T}, Cr={(z,t):t=7(z) <T}.
We can then introduce an energy identity for the solution of the wave equation.

Proposition 4.1 (Energy Identity) Suppose w solves the inhomoge-

neous wave equation

(O-VoVyw=f, (zt)€R™

(4.7)
w=0, t<0.
Define
Br(t) = [ dzer (1500 + [Vul).
Then the following identity holds
Er(t) = dze"[—VT + Vuwl? + ] / dodte” fw, . (4.8)
Cr Brx[0,t]

Proof We shall assume that o, f, w are smooth enough, and w has compact support

in z for each t. The equation (4.7) may be rewritten as
e’ 0w~V - (eVIw=1¢"f.
Multiply both sides by w; and integrate over Br x [0, 1],

o4 2 _ ) -
//BTXOt]d:cdte fwo, = //BTX[Ot]dxdt{w (| [+ [Vwl?) = V- (7 Vww)} |

Integration by parts (divergence theorem) yields

//B xoﬂdxdte fwy = Ex(t) / dxe"|—-—V7'+Vw|2
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Remarks on the energy identity.

(1) Applying Proposition 4.1 to vy, the remainder term is eliminated due to
the fact that R,, = 0 on C'r. More interestingly, both the tangential and

normal derivatives of vg are determined by the transport equations.

(2) After a simple calculation, we can deduce from (4.4) that

VU0|t_.r(x)+ = Vb - b VT

ov
ato 't—»‘r(z = bl .
Therefore
0
( ;to Vr+ VUO)‘t—»T @)+ = Vo,

where the term b, is killed due to a cancellation. In fact this is true in
general: Given P a differential operator with constant coefficients of order

k, it is easy to show that b; does not appear in

0Puvq
( ot

VT + VPU0)|t-—+T(.’E
the leading term is Vb;_;.

With Proposition 4.1, one can then examine the regularity of vg in (4.3) in terms

of the regularity of the solutions to the corresponding transport equations.
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Corollary 4.1 The solution v of (4.3) belongs to H' inside {t = 7(z)}
if and only if by € H'"*, where by solves the k-th transport equation of

(4.5), (4.6) and k=0, -+, — 1.

Proof From the above energy identity as well as the remarks it is obvious to show
that the Ly-norm of 5{‘1}0 can be bounded by the H**-norm of b; for i = 1, - - wk—1.
Hence it is sufficient to consider higher order z-derivatives. But this is not difficult

either. As an example, let us look at the V2, term. Since Vuq solves equation
(D — VO’O . V)Vvo = AO’()V’UO 5

which may be viewed as an inhomogeneous equation, the corresponding energy iden-

tity and a simple use of Gronwall’s inequality will lead to the desired estimate. The

general case followes by induction. o

4.4 Regularity of fundamental solution

In order to establish a regularity result with the presence of nonsmooth coefficients,
we need the following results.

It is helpful to introduce an interesting invariant property of microlocal Sobolev
spaces. The result was originally established by Bony [8] and was extended by Meyer

[23]. See also Beals [3] for a different proof.
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Proposition 4.2 Suppose that for some (zq,&) € T*(IR*)\0, u € H* N

H} (20,60),n/2 <s<r<2s—n/2, and g € C*, then

9(z,u) € H° N Hy ,(x0,&) .

Observe that all the transport equations in (4.5)-(4.6) have the same principal
part 2V7 - V which is a smooth vector field. Therefore in order to understand the
regularity of the solutions to (4.5)-(4.6) it is useful to study the properties of this
smooth vector field.

It is evident that the equation

Vu=f

can be solved by the so called characteristic method (i.e. finding integral curves of
the vector field V). Let z = z()) be such a curve with A as a parameter, then z(A)

satisfies a system of ordinary differential equations

dz? )
o= (z(A) j=1,--n,

therefore along such a curve

du

=1 (4.9)

which may be viewed as a hyperbolic first order differential equation.

Lemma 4.2 Let V be the smooth vector field V7 - V. Consider

Vusf, o0 =1,
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where u is smooth and supp(u) C {A > 6§}, for V6 > 0 small. Then there
exists a 1.d.o. () of order zero such that Q) is elliptic on Char(V) and

[V,Q] € OPS~. Moreover, for s € IR, the inequalities

l¢ullsa < ClIgQVullsa + Cll¢Vulls-10 + Clldullra  (4.10)

1Qullse < CllQVullsa + Cllulla (4.11)

holdforanyreIR,whereannd(;SeC§°,QCK><{/\: A > 6}

with K a compact set, {2 is a sufficiently big compact set, and supp(¢) C

supp(¢) C Q.

Proof The existence of operator Q follows from Nirenberg’s construction which ap-
peared in the proof of Theorem 6 in {24], together with a local compactness argument.
The assumption on @ implies that @ is elliptic on 4, a small conic neighborhood of
Char(V). Thus, one may construct another 1.d.o. R of order zero which has the

properties:
e R+ Q is elliptic and
e ES(R)Nvy = 0.
Then Garding’s inequality gives

llgullse < ClI(R+ Q)¢ullso + Clidullra

< Cl[Rullsa + CllQ¢ulls0 + Cli¢ull o (4.12)

for any r € IR.
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Since V is elliptic on 4¢ O ES(R), the Garding’s type result Lemma 3.3 yields

that

|Réulls0 < ClIVéulls-1,0 + Cllullra ; (4.13)

hence

Houllse < ClIVaulls—1.0 + C||Qéullsa + Clldullra

< Cll¢Vulls-1,0 + Cli¢Qullsa + Clidrulls-1.0 + Cligull-a ,

with ¢ € Cg°(IR™), and supp(¢) C supp(¢1) C . Now we may apply a bootstrap

argument. In fact, same analysis leads to

|[$itfls—in < ClldiVulls-i—r,0 + Cl|¢iQulls—isg + Cllpiz1te)ls—icr0 + Clldiulra ,

(4.14)
where ¢; € C§°, supp(¢) C supp(¢) C--- C Q, i = 1,2, ... Therefore, a simple
calculation yields

llgullsn < CllIgVulla-r.0 + [16Qullsa + || dull-al - (4.15)

Thus it suffices to study the term ||Qu||s 0. Observe that Qu € C*®(K) solves

VQu = QVu+[V,Qu

which is a first order equation. Thus along the integral curve of the vector field V,

dQu
i QVu+ [V,Qlu, (4.16)

which is a hyperbolic first order differential equation.
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Moreover, the pseudolocal property of () yields that

(Qu)(, &)lls.x < Cllullrx -

Hence the method of hyperbolic energy estimates in Taylor [39] pages 73-75 may be

applied to (4.16) and leads to a simple estimate

1QuC Mllok < € [ 1QVllae + 111V: Qull )i

or

IQullsx < ClIQVullsx + IV, Qlullsx

< CllQVullsx + [lullrk - (4.17)

The second estimate uses the fact that [V, Q] is a smoothing operator. The estimate
(4.11) follows from differentiating the differential equations and above estimates.

Substituting estimates (4.11) and (4.13) to (4.12), we eventually obtain that

lgullse < ClIgVulls—r.0 + ClIgQVullsq + Clidullra ,

which completes our proof. 0

Until now, we have only considered the principal part of the transport equations.
Fortunately, our next proposition implies that the lower order terms may actually be

absorbed by the principal part, hence the whole analysis can go through.
Proposition 4.3 Assume that w, g solve

Vw=fand Vg=a, (4.18)
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where again V denotes V7 - V. Then & = we™? solves the equation
Vo + aw = fe™? . (4.19)

Proof Substituting W = we™? to the left-hand side of (4.19), one has by chain rule
Vo + aw = Vwe™ + (=Vq + a)we™ .

Hence the assumptions in (4.18) verify the equation (4.19). a
Remark. We want to make the following observation: In the transport equations
(4.5) and (4.6),
q=00/2+ qo
where g solves equation Vgy = At/2. Thus q is nothing more than a smooth per-
turbation of o¢/2.

With the above preparations, we are now ready to state and prove the main result

of this chapter.

Theorem 4.2  Suppose that oo € H'** N HZ; 1 (Char(Vr - V)) with one

of the following assumptions: a > n/4 and | > 1+ a, or @ = n/4 and

I>1+n/4. Let Char(Vr-V) = {(z,¢) € T*(IR"), V7 - £ = 0}. Then
Vo € HI(U) ’

where U = {(z,t): £ € Q, t€[0,T] and t > 7(x)} is a compact set in

Rn+1
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Proof By Corollary 4.1, it suffices to show that &, € H'-*(Q), where by is the
solution of the k-th transport equation of (4.5), (4.6), for k = 0,---, [ — 1.

We once again introduce a function ¢ = 6o/2 + go with V7 - Vgo = A7/2. Then
according to Proposition 4.3, the transport equations (4.5), (4.6) may be transformed

to equations

V1 -Vbhe! = 0 (4.20)

V7. Vbee! = (Abr_1/2+ Voo Vbe_1/2)e?, (4.21)

fork=1,---,1—1.

From equation (4.20), the assumptions on oy, [, and «a clearly indicate that
|1Bollr0 < Clioollia-

Since Voo € H**~ 1N H%%(5), the assumptions imply that I+ a—1, 2] —2 satisfy
Rauch’s condition, Proposition 4.3 and Lemma 2.2 (our generalized Rauch’s lemma
in Chapter 2) guarantee that all of the operations involving Voo may be performed.

To clarify the idea, we shall use Qg to represent all 1.d.o. of order zero. Their
essential supports are close to each other, and they all possess the properties of @ in
Lemma 4.2. Therefore by using (4.10), (4.11) of Lemma 4.2 several times, after some

similar simple calculations, one can write down the following inequalities,

ob1efli-1,0 < Cllé1Qobolli+1,0 + Cllé1bollia + Clld100]]r0

||¢bk€q||l—k,a < C||¢1Q0bo||l+k,ﬂ + CH¢1b0||1,n + C||¢1Uo||r,n 5
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where k = 1,-- ;1 -1, ¢ € C°(Q), ¢1 € C§° has bigger support than ¢, r is any
real number, and C depends at most on ||¢100||&)a,21—1,n~ Using the Garding’s type
inequality of Lemma 3.3 one more time, and knowing the regularity of by, we can
then complete the proof of this theorem. ]

We want to make some comments on Theorem 4.2. It is unpleasant to have extra
a-order derivatives on oy in the statement of the theorem. This defect cannot be
avoided because Rauch’s condition is necessary to get the conclusion of Proposition
4.2. At this point, we do not know how to relax the hypothesis as long as the Rauch-

type results are employed.






Chapter 5

Upper Bound for Linearized Forward Map

5.1 Introduction

We are now ready to establish a regularity result for the forward map F. It is well
known that in the study of inverse problems the regularity of forward map is essen-
tial. To solve inverse problems numerically, the differentiability of the corresponding
forward maps is necessary in order to access to any fast numerical schemes such as
various types of Newton’s methods. Also local properties of inverse problems may be
understood through the study of the formal derivative of forward maps provided that
the forward maps are differentiable. Moreover, the regularity results for forward maps
are obviqusly crucial in the design and implementation of any numerical algorithms
for solving inverse problems.

Our goal in this chapter is to determine the appropriate hypotheses under which
DF(0g), the linearization of F about a reference state 0o, 1s bounded above. We
believe that similar analyses could lead to a continuity result for F as well as the

differentiability of F (these and other related issues will be addressed in a sequel to

this work).
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Recall the linearized problem corresponding to the reference state (uo, 09), for

(t,z) e R*, ¢ = (z',z,),
(O —=VooV)éu = Vo Vug

‘ (5.1)
bu=0, t<0,

where wy is the solution of the model problem corresponding to the reference density

0. The linearized forward map can be defined as

DF(o0)bo = ($6u) |z,=0 , (5.2)

where ¢(z,t) € Cg°(IR™1) is supported inside the conoid {t > |z|}, and near {x, =
0}.
Once again we consider a related problem,

(D—VUO-V)U=V50-Vv0

(5.3)
v=0, t<0,
where fu = 8:—;1 v and vy solves
(8= Vao- Vv = 6~ (£)6(z)
(5.4)
vo=0, t<0 s
Observe that for [ € R,
IDF(00)éolli = || ($6u) lon=olls
< Cll(¢v) len=o |l (5.5)

-1 . .
where [; denotes [+ nT Thus the real challenge here is to get an appropriate trace

regularity estimate for v on a time-like hypersurface {z, = 0}.
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Throughout this chapter, we shall always assume that
(A) supp(é0) C {zn > ¢},

for € > 0 small. After all, the most precise recovery of the density should take place

near the trace surface.

5.2 Statement of theorem

We first state the main result of this chapter then give a brief description about the
idea of its proof. The theorem will be proved in the sections which follow.

Recall Definition 3.1, by a constant C depending on the H* N H’ ,(K)-norm of u
we mean that the constant C depends on Hull, = |lulls + [|Qu||-q for a ¥.d.o. Q of
order zero such that £S(Q) C a sufficiently small conic neighborhood of K and ¢ = 1

on KN {(z,€): |£] > 1}, where Q is a compact set with supp(u) C Q.

Theorem 5.1 Assume that o« > n/4, [ > maz{a+(3—-n)/2,3/24 6},
s =mar{3+n/2+6,l4+n—1+6,l+a+(n—1)/2}, V&, 6 > 0,
0 = Char(V - 1) = {(2,€) € T*(R"),V7r-¢ = 0}, and K = {(z,¢) €
T*(IR"),|én| < €lé]}. Then under the assumption (A), the following esti-
mate holds

IDF(a0)ée|li < Cllde]l1y 220 (5.6)

where the constant C' depends on the H* N H,l,j}("ﬂ)/?(l{) N H2=2(9)-

norm of oy but is independent of §o.
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An interesting special case of Theorem 5.1 is remarkable because the additional mi-

crolocal smoothness along the tangential direction will then be absorbed.

Corollary 5.1 In addition to the assumptions in the statement of Theorem
5.1, assume that the spatial dimension n > 3. Then under the assumption

(A), the same estimate
IDF(c0)éo]li < Cllbo]];ynma

holds, where the constant C' depends on the H* N H2}"~2(6)-norm of o4

but is independent of éo.

However, it still remains to see whether or not the additional smoothness along the
characteristic variety of transport equations can be removed.

Before getting into the details of the proof, let us first make the following general

remarks on this theorem:

e The estimate (5.6) above has a similar form to a Rakesh’s theorem (Theorem
2.5 in [25]). Actually a formal extension of our proof here could lead to an
elementary proof of his theorem. On the contrary, notice that Rakesh’s proof
is based on the calculus of Fourier integral operators, therefore it breaks down
when the reference density is nonsmooth (as we mentioned earlier the method

of F. I. O. is only applicable to smooth reference density).

o Our approach here is based on the method of energy estimates associated with

results on propagation of singularities and various trace regularity results. The
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beauty of the method of energy estimates is that it possesses useful information
on various parameters involved in the estimates. Most importantly, the idea
of our approach has the potential to deal with much more difficult velocity

inversion problems with nonsmooth reference velocity.

o To simplify the proof of Theorem 5.1, we shall first assume that ¢y and 6o are
smooth functions with (sufficiently big) compact supports. We then derive the
estimates. The precise smoothness requirement for o can be seen easily from
the dependence of the constants on o in the estimates. It is also important to
see that the coefficient is smooth is not a necessary assumption in order to use

all the techniques involved in our proof.
In order to clarify the ideas, we shall split the proof in several steps:

e Applying our previous trace theorem, assumption (A), as well as results on

propagation of singularities, the estimate of ||(4v) |z,0 ||, may be reduced to

the estimate of ||¢v]],,.

¢ We then decompose §¢ into two pieces: Q160 (good part) and Q.60 (bad part),
correspondingly decompose v into v; +v,, so that they can be studied separately

and then reassembled.

o We show that the good part actually leads to the desired estimate by the same

technique used in the preceding chapter.
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o The most difficult part is to show that the bad part has very little influence on
the estimate therefore may be negligible. In order to do so, we introduce a dual
problem. We show that it suffices to analyze how the singularities (regularity)
of the solution to the dual problem propagate. The main ingredients in this
step are an estimate derived from the propagation of singularities theorem and

a microlocal version of the classical trace theorem.

Let ¢ € Cg° be supported inside the characteristic surface (also inside {z, < €/2}).

Multiplying ¢ to both sides of equation (5.3), we have

Q¢v = ¢Voo - Vo + [0, dlv
(5.7)
v=0, t<0.
Here we have used the fact that according to the assumption (A), ¢ and §c have

disjoint supports, so that pVéoVug = 0.

Once again with [; we denote [ + (n — 1)/2.

Lemma 5.1 Assume that s > 3+n/2,1 <l <s, and v solves problem
(5.7) then there is a ¢ € C§° supported near supp(¢) such that the

following estimate holds,

||(¢v)frn=0||11 < C||¢OUH11 ’ (58)

where C' is a constant depending on the H*~N H",(K)-norm of Voo, but

is independent of éo.
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Proof This lemma is a direct application of Lemma 3.4 in Chapter 3, where the
right-hand side f is chosen to be Véo - Vvg. Observe in the equation (5.7), by the
assumption (A), ¢ and éo have disjoint supports; thus ¢ f = 0. From the construction
of the 1.d.o. P in the proof of Lemma 3.3, its symbol p is supported near {z, = 0};

therefore Pf = 0. m]

5.3 Regularity of v;
Construct two %.d.o. Q1,Q2 € OPS°(IR™), such that
e )+ Q2= 1;
e ES(Q2) is a small conic neighborhood of{Vr - ¢ = 0};
¢ ()2’s symbol ¢; = 1 near {V7 £ =0}N{(z,¢), |¢| > 1}.

An immediate consequence of this construction is that for any 1.d.o0. Q whose essential
support is near {Vr-£ = 0}, the operator QQ; is a smoothing operator. Accordingly,

by linearity, the solution to (5.3) may also be decomposed into two pieces,
v=uv+v,

where v; (for 7 = 1,2) satisfies

(B =Voo-V)v; =VQié0-Vvy, (z,t)€ R (5.9
5.9

v,=0, t<0.
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Therefore, in order to estimate ||¢v]||;,, it suffices to estimate ||@v;||;, for ¢ = 1,2.
In the rest of this chapter, we shall proceed to estimate the two terms separately
because of their different natures.

The analysis of v;’s regularity is parallel to that in Sections 4.2-4.3. From (5.9),

Hadamard’s construction again leads to the progressing wave expansion of v,

vy = i: arSk(t — 7(z)) + Ry, (z,t), (5.10)

k=0
where 7(z) = |z|, So is the Heaviside function, S} = Sk_1, R,, vanishes at ¢t = 7(z),

and {a;} solve the transport equations, for k =0,---,5 — 1,

2V71-Vag+ (AT + V7 -Voay)ag = —byVT - VQié0o (5.11)

2V7-Vag1+{AT+V7-Vog)arss = Aar+Voo-Var+VQ160(Vbr— b1 V) (5.12)

and by as defined in Section 4.3 solves the k-th transport equation (4.6) for v,.

In order to get the regularity for v; we attempt to bound the energy norm by the
energy identity Proposition 4.1 stated in Section 4.3. Since the whole process is so
similar to the one in Sections 4.3-4.4, we think it is appropriate to only point out the

major differences.

Now we can read out the regularity for v;.

Lemma 5.2 Suppose that a > n/4, > 1+ a,ora=n/4,1> 1+

then

[lolliy, < Cliéalls, (5.13)
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holds, where constant C' depends on the H4** N H21=1(§)-norm of oy,

and ¢ is a small conic neighborhood of {(z,¢) € T*(IR"),Vr - ¢ = 0}.

Proof Since the proof follows the same pattern as in Section 4.4, we shall only
make the following observation: Applying the same ideas as in Section 4.4, since oy

1s smooth, in general one should expect an estimate of the following form

loally < Cll@ibolly, + ClIPQibo||a,

CllQié0llf, 2,

where C' depends on oo, P is a %.d.o. of order zero, and ES(P) near {Vr- ¢ = 0}.
However our construction of @, implies that PQ), is a smoothing operator which is

why we call v; the good part.

5.4 Microlocal version of trace theorem

In order to estimate the term ||vq|s,=0]]i,, @ microlocal version of the classical trace
theorem is necessary.

The classical trace theorem in Sobolev spaces characterizes the regularity of a dis-
tribution restricted to a hypersurface. Dealing with inverse problems, one always has
to face a difficult but crucial question: When does the restriction operator commute
with another operator of interest? The result in this section indicates that a simple

microlocal trace theorem, which not only works on the space restriction but also on

the phase space restriction (i.e. a trace theorem on cotangent bundles), may lead to
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a way to cure the difficulty. Let K € IR", i : 2 € R" — (z,0) € R"*!. Define a

semi-norm:
julis = ([ dela(e)(e)™)*
£EK
Then, a proof of the classical trace theorem (see e.g. in Taylor [39], pages 20-21)
implies the following inequality.
Proposition 5.1 For s > 1/2, u € Cg°,
li"ulk s-172 < ClulgxRrys -

Thus the map :* may be extended to be a bounded map from H;,(zxR,K xR)
to H;_ll/z(x,]\'), provided s > 1/2.

Once again, let II, be the projection map to the frequency space (or the second

factor). We may reformulate this result in terms of 1.d.o..

Proposition 5.2 If P, is a ¢.d.o. of order zero in IR", with II,ES(P) C
K, then there exists a 1.d.o. P; of order zero in IR™**', and ILES(P) C

K x IR, such that for s > 1/2, u € Cg°,
1P u|s-1/2 < Cl| Paulls

where ¢* again denotes a restriction operator to a codimension one hyper-

surface.

The above results together with our Garding’s type result Lemma 3.3 yield a

microlocal version of trace theorem.
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Lemma 5.3 Assume that F is an elliptic operator of order m in IR™*! x

K xR, P € OPS°(R") and I, ES(P) C K. Then for s > 1/2, u € C°,
[P ulls—172 < Cl|Eulls—m + Cllull,

for any r € IR.

5.5 Dual problem

According to Proposition 5.2, under some appropriate hypotheses, bounding |{va|z, =0l

is equivalent to bounding ||vs]|;,. Recall that v, solves

Ovy — Vg - Vg = V@480 - Vg
(5.14)
Vo = 0 ¢ <0.

To simplify the arguments on its dual problem, we make use of the symmetric form

of (5.14) by introducing p(z) = €. Then (5.14) becomes

1 1 1
Oyvz = [=0F ~ V- (=V)v; = =V Q180 Vvy
p p p

(5.15)
vp=0 t<0.

Now let us look at a dual problem to (5.15),
’ 1 2 1
Olw =[=0; = V- (=V)Jw =1
P P (5.16)
w=0 t>>T,

where i € Cg° and supp(s) C R™ x [0, T3] N {|t] < |z|}.
Equivalently, we may reformulate (5.16) as

Ojlw = Ow + Vop - Vw = %)
(5.17)

w=0 t>>T1;.
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Thus if we can show that
(902, 9)] < Cllgally |l llo (5.18)
then it can be concluded that
16 v2llo < Cllé5 ]l - (5.19)

Lemma 5.4 Suppose that o > n/4, I; > maz{l + o,1 + n/2 + §},
li + (n —1)/2 < 3 and 0 is a small conic neighborhood of {(z,¢) €
T*(IR™),Vr-£ = 0}. Then the estimate (5.19) holds where the constant

C depends on the H® N H*1~(#)—norm of .

Proof Green’s identity and integration by parts lead to

(&llvzﬂﬁ) = (vp, 0] tllw)

1, 0 0
= (O I _ Sl 2 Al gl Y
(Oyvq, 0, w) /t:r(:z:) p[vganat w— 0, wanvg]ds
1 1
= (;VQg&U - Vg, O1w) — / ( )ds;[vg(atl”'] — V7V ) w — 81 w(d, — VrV)vy) .
t=7(zx

(5.20)
The first term in (5.20) is easy to handle. Actually, integration by parts and a

simple use of Cauchy-Schwarz inequality lead to
[(%VQzéaVvo,aé’wﬂ = (e~ V Q800" Vvo, Byw)|
< Cllem°V Q3800 Vug|lo||8awl|o - (5.21)

The energy estimate on w gives ||0;w|lo < C||¢llo- We may apply the generalized

Schauder’s lemma (Lemma 2.4) twice to obtain

eV Qu6001 Vugllo < CIIVQabollslle™0 02 Vo]l
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< Clléallsotrllvolli, (5.22)

where sq > n/2, and [|vol|;, can be handled by Theorem 4.2, provided that o4 €
Hbten 27N @) and a > n/4, [, > 1+ a,ora =n/d, [} > 1+ o

Thus it suffices to estimate the last two terms in (5.20). As usual, one may write
down the progressing wave expansion for ve. Actually, assuming that ¢; solves the

t-th transport equation (¢ = 0,1), we have
VT - Ve + (AT + V7 - Vao)eo = —boVr - VQyé0 (5.23)
2V71 Ve + (AT + V71 - Vag)er = Aco+ Voo - Ve + VQ260(Vby — b, VT) . (5.24)
Hence to control the last part of (5.20) we only need to analyze
Io = /tm(z) co(08+ — V7 - VO )w — ¢;01w | (5.25)

Since ()7 is symmetric in the sense that Q% = Q,, the Cauchy-Schwarz inequality

deduces

| o

IN

Cll6ololl|Q2f (00)Tr(9; Prw)llo + 1|Q29(00)Tr (85 w)||o]

Clléalloly ,

with P; a first order differential operator (or a linear combination of operators 0,
and VTV). Tr(u) = u|i=r(») is a restriction (trace) operator and f, g are smooth
functions determined by (5.23), (5.24). It is not difficult to see that f only depends

on oy, while g involves g¢, Dog and Aagy.
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From Lemma 5.3, we know that there is a 3.d.o. @, of order zero whose es-
sential support is contained in a “cylindrical” conic neighborhood of ES(Q.) along

w-direction, such that [Isupp(g,) is near the characteristic surface and IIsupp(g;) N

supp(v) = 0. That is,

|11 < ClIQ2f(90) Prwlliy 4172+ + ClQ2g(00)wl[t, 412+ - (5.26)
Thus Lemma 2.5 (the generalized Rauch’s lemma) and the estimates involved in the
proof imply that for l; +1/2+n/2 < 89, 1 =1/2 4+ n/2 < 54,
1Q2f(00) Prwlly, < Culllwlly + || Qowl |1, +3/2+)
1Q29(00)wlli, < Ca(llwll + |Qowlly41/2+)
with Cy, Cp depending on ||oo||s, and ||oolls, respectively, Qo € OPS®, ES(Qo) is
near ES(Q,), and IIsupp(go) N supp(y) = 0.
Hence to finish the proof of Lemma 5.4 it is sufficient to show that

HQow]l1,+3/2+ < Cll¥llo (5.27)

which can be proved by applying Lemma 5.5 below. The lemma (Lemma 5.5) will be

proved in the remaining sections of this chapter. O

5.6 Regularity for solution of the dual problem

A result on propagation of singularities in Duistermaat’s notes [11], Proposition 1.3.3

(see also Theorem 8.2.13 in Hérmander’s book [17]) demonstrates the relation between

the wavefront of the restriction of a distribution and the wavefront set of its own.
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Applying this result and Hémander’s theorem on propagation of singularities, it
is easy to see that Q:Tr(01 P, v2) is smooth. However the result does not directly
lead to any explicit bound. In this section, we shall derive the necessary estimates
by using a bootstrap argument. Our idea here is motivated by Nirenberg’s proof of
Hérmander’s theorem on propagation of singularities. In fact, the main purpose of

this section is to obtain a real estimate out of his proof.

Lemma 5.5 There exists an elliptic ¥.d.o. B of order zero, such that

ES (B) is contained in Cy, a “cylindrical” conic neighborhood of
{(z.t,6,w) € T"R™1\0, 2 — lz]* = 0,w = V7. £}
along w direction, and the symbol of B, b satisfies
Tsupp(8) N supp(sh) = 0 .
Then, for any k € R, ¢ € Cgo(R™)
llgBwlle < Cilllo (5.28)
where the constant C depends on lloollsy k=2 4+n/2 < s.

The proof follows by showing two propositions below. Proposition 5.3 really gives
an estimate based on Nirenberg’s proof of Hérmander’s theorem. It indicates that
an estimate may be formed near any bicharacteristic, hence near the characteristic

variety of operator 00 = 07 — A. We then proceed in Proposition 5.4 to argue that the
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remaining part of the cylindrical region, where the operator O is elliptic, causes no
trouble at all. With a concern about the nonsmooth oy, it should not be surprising
that both propositions require the commutator lemma proved in Chapter 2.

Let B be a null bicharacteristic contained in Cy.

Proposition 5.3 There exists a 1.d.o. B of order zero such that B is
supported in a small conic neighborhood of 8 and B is elliptic near 8,
Hsupp(b) N supp(xp) = 0. If, furthermore, k — 2 + n/2 < s, then the

estimate

1Bwllx < Ckll1lo

holds with C} depending on ||Voy,.

Proof According to Nirenberg’s construction, one can find a Y.d.o. By of order zero

with
(1) bo supported in a small conic neighborhood of 8, By elliptic near 8,
(2) Isupp(bo) N supp(s) = 0, and
(3) [O,Bo] € OPS°.

Since w solves (5.17), the method of energy estimates yields

l|lwlly < Cl¥llo,

where C' is a constant depending on ||Vayo|; for 3 > n/2.
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Observe that from (5.17),
D;Bow = [D, Bo]’w - [Bo, VUO . VJ'LU + Boe”°7,11 .

Since 1 is supported inside the characteristic surface, IIsupp(bo) N supp(y) = 0, we

have

Boe®yp = 0.
Now energy estimates give
||Bowll> < C(II[Q, BoJwlls + [[[Bo, Voo - V]wl]s . (5.29)
Since [O, By) is of order 0,
1B, Bolwlx < Cllwlly < Cllillo -

The second term in (5.29) may be estimated by applying the generalized commutator
lemma (Lemma 2.6 or more precisely Proposition 2.7) by choosing ¢ = 1,1 = 1,1 +

n/2 < sp in Proposition 2.7, so that
I[Bo, Voo - Vulll1 < Cllwlli < Cl|9lo

where C depends on ||V opl|s,.
Thus

[|Bowl||2 < Col[ol] , (5.30)

with Cy depending on ||Voolls,.
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Applying Nirenberg’s construction once again, we can find a 1.d.o. B; such that
ES(B,) C ES(By)(strictly), By also has properties (1) and (2) above; moreover

[0, B1] € OPS™! and B is elliptic near £S(By). From (5.17) and Bye?y = 0,
0{Biw = [0, B|Jw — [By, Voo - Viw.
If we write down the energy estimates, after a simple 1.d.o. cut-off on B, we will find
|Byw||3 < Cllw|l} + Cl|Ai[B1, Voo - V]w|l2||Biw]ls

where A; € OPS®, ES(B;) C ES(A1) C ES(Bo), B, is elliptic on ES(A4,), and
a1 =1 on ES(Bl) N {($,£), |€| 2 1}'
Now since w € H' N HZ,(ES(By)), Proposition 2.8 implies that [By, Voo - V]w €

H'N HE,(ES(A;)) and
||A1[B1, Vao - Viwl|s < C(llwlh + || A1w]]2) -

Here C depends on ||Voo||s, for 2+ n/2 < s;.
Because of our construction, By is elliptic on ES(A,;); therefore Garding’s type

inequality Lemma 3.3 leads to, for any real r,
| Arwl]z < Cl[Bowll2 + Cllwll, < C|#llo

by (5.30).

Therefore we have shown that

|Biwlls < Gyll3llo
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where C; depends on {|Vaylls,.

We can continue this process by constructing a sequence of ¥.d.o. B, A (i =

1,- -,k —2), such that

B; has properties (1), (2), [O,B;] € OPS—,

° ES(Bz) C ES(A,) C ES(B,‘.H), and

By is elliptic on ES(A;), a; =1 on ES(B;) N {(x,¢), €] > 1},

e Also

[|Bawliz2 < Cill¥]lo

where C; depends on ||Voy||, for i +n/2 < s;.
Eventually we conclude by choosing B = By_; so that, for k — 2 + n/2 < s,
1Bwllx < Cl1¥lo
with C depending on ||Voys. ]

Proposition 5.4 Let P be a 1.d.o. of order zero with the following

properties: The wave operator O is elliptic in a small conic neighborhood

of ES(P) and Ilsupp(p) N supp(x)) = . Then

[Pwlle < Cllllo

where C' depends on ||Vayl|, for k —2+n/2 < q.
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Proof The proof is based on the same type of bootstrap arguments as in the proof

of last proposition.
Recall (5.17)

Dw + Voo - Vo = €709 . (5.31)

From the support assumption on p, we see that Pe? = 0. Hence, by applying P to

both sides of (5.31), we find
OPw =[O, Plw — [P,Voy - V]w - Voo - VPw . (5.32)

Now since O is elliptic in a small conic neighborhood of ES(P), there exists a 1.d.o.
Fo of order zero, such that ES(P) C ES(PR,), P, is elliptic near ES(P), and O is
elliptic in a small conic neighborhood of ES(P). From the ellipticity of PyO on

ES(P), Proposition 3.3 gives, for any real number r,
|Pw[lx < Cl|PoBPwl|s—s + Cllw]],
or from (5.32)
[1Pwlli < C(|| P[0, Plwllk-z + || Po[P, Voo - V]wllk—z + || PoVoo - VPw|[s_r) -
Therefore an application of Proposition 2.8 and Lemma 2.5 yields

1Pwlle < CillPowlle-s + Ca(llwlly + (| Powllk—2) + Ca(llwl]y + || Pow][s_1)

< Cligllo + Cl| Pow] k-1 -

Here constants C; and C3 depend on ||Voy|, for £ — 2 +n/2 < q.
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Thus the bootstrap arguments on Py will accomplish the proof. m
A combination of Propositions 5.3, 5.4 and Garding’s type Lemma 3.3 assures the
existence of an elliptic operator B with properties stated in Lemma 5.5. Near the
characteristic variety of O in the cylindrical region Proposition 5.3 and an extension
of Lemma 3.2 may be used, while away from its characteristic set operator al is

microlocally elliptic, hence Proposition 5.4 becomes applicable.

5.7 Proof of the claim

We conclude this chapter by proving an earlier claim.

Claim 5.1 Assume that v; solves equation (5.14), l; € R, l; — 3/2 +

n/2 < s. Then the following estimate holds:

[1v2lzn=olly < C116; v2lz,=0ll0 + Cll8e ]l , (5.33)

with the constant depending on ||&ol|s.

Proof We first construct a ¢.d.o. A € OPS° such that a, the symbol of A, is one

on |w| > €|¢'|, for £ = (¢,&,), and ES(A) C {|w| > €l¢’|, with € > e,}. Denote T'r

as the restriction operator to {z, = 0}; then we have
Tr(vz) = va|z,=0 = ATr(v2) + (I — A)Tr(v,)

or

I Tr(u2)lley < AT (v2)ll + (T = A)Tr(v2)lly -
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Since the operator 8;' is elliptic on ES(A), a simple use of Lemma 3.3 leads to
IATr(v3)[l1y < Ol Tr(v2)llo + ClITr(v2)]lx

for any r € IR.
On the other hand, the microlocal trace theorem implies that there exists a 1.d.o.

A of order zero such that ES(A) C a cylindrical neighborhood of {|w| < ¢|¢’|} along

the &,-direction, and
(I = A)Tr(v)]]s, < C”Av2||ll+1/2 .
Therefore similar arguments as in the preceding section yield
||/~102”11+1/2 < Clléally,

with the constant C depending on [|oolls, for [ — 3/2 + n/2 < s.

Combining the above discussions, we have proved the claim. O



Chapter 6

Concluding Remarks

6.1 Conclusion

In this thesis work, we introduce the methods of nonsmooth microlocal analysis to the
study of multidimensional hyperbolic inverse problems. Through the study several
trace regularity results are established, which turn out (as expected) to be crucial
in the investigation of the inverse problem. In particular, we develop the first trace
regularity result for the variable coefficients, see also [2]. A new regularity result is
also established for the forward map. In this process, some fundamental results of
linear microlocal analysis are examined. Rauch’s lemma on the algebraic property of
microlocal analysis and a Beals-Reed linear propagation of singularities theorem with
nonsmooth coefficients at lower order terms are extended. We also determine the
microlocal regularity of the fundamental solutions to second order hyperbolic p.d.e..
Our results show that the microlocal Sobolev spaces may be the right spaces to work
with in the study of inverse problems for multidimensional wave propagation. The
results in this study clearly exhibit the substantial differences between layered and

nonlayered problems.

109
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In the rest of this chapter, we shall comment on the computational aspect of the

inverse problem and propose some related open problems.

6.2 Remark on computation

In this section, we briefly discuss the numerical indications of our regularity results.
It is evident that the least-squares approach is relevant to solve the inverse problem

numerically, i.e.,
min || F(o) = Fyatal| (6.1)

for some suitable norm “ || - || 7. It is, perhaps, not so evident that even for layered
problems the least-squares approach leads to a very difficult optimization problem.
As explained in detail by Santosa and Symes in {30], the difficulties are essentially
caused by the nonconvexity of the objective function so that the problem often has
many minima. To overcome this obstacle, a very delicate approach, “the coherency
optimization method”, was proposed by them to convexify the least-squares problem
based on the known regularity results of the forward map. We refer to [30] for further
discussions and results of solving layered problems.

Similarly, for nonlayered problems, an analogous method may be proposed to
regularize this ill-posed least-squares problem. In stead of working on (6.1), we look

at a perturbed optimization problem,

min(|| F(0) = Fuatal® + | Qo]|?) (6.2)
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where Q is a 1.d.0. of order zero, and « is a small positive constant. We anticipate
that in this way the problem will be regularized as for the layered problem, so that
the convexity and stability will follow. However, we do not know any numerical
experiments for nonlayered problems based on the ideas above. In any case, we believe
that our regularity result holds some promise to the design and implementation of

algorithms for solving the inverse problem.

6.3 Future work

As we mentioned at the beginning of this thesis very little is known in mathematics
about nonlayered multidimensional inverse problems. There are a great deal of open
problems to be addressed. It seems that our results as well as the techniques in
this work have the potential to demonstrate some rather difficult situations such
as nonlayered velocity inversion problems with nonsmooth background velocity and
mixed forward problems. Most importantly, there is a real challenge, which is related
to this work to some extent, concerning the development of a generalized travel time

transformation to nonlayered media, see Symes [36]. Finally a natural question is

how one can interpret the results from the geophysical point of view?
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