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Abstract.

There is growing interest in autonomic computing systems that can op-
timize their own behavior on different platforms without manual in-
tervention. Examples of successful self-optimizing systems are ATLAS,
which generates Basic Linear Algebra Subroutine (BLAS) Libraries, and
FFTW, which generates FFT libraries.

Self-optimizing systems may need the values of hardware parameters
such as the number of registers of various types and the capacities of
caches at various levels. For example, ATLAS uses the capacity of the
L1 cache and the number of registers in determining the size of cache
tiles and register tiles.

We have built a system called X-Ray!, which uses micro-benchmarks
to measure such parameter values automatically. The micro-benchmarks
currently implemented in X-Ray can determine the latency of various
instructions, the existence of important instructions like fused multiply-
add, the number of registers of various kinds, and parameters of the
memory hierarchy.

In this paper, we discuss how X-Ray determines the capacity of the in-
struction cache (I-cache), which is needed for important optimizations
such as loop unrolling. We present the micro-benchmark used in X-Ray
to measure I-cache capacity, the experimental methodology used to ob-
tain accurate estimates, and experimental results on a large number of
current platforms.

! This work was supported by an IBM Faculty Partnership Award, DARPA grant
NBCH30390004, and by NSF grants ACI-0085969, ACI-0090217, ACI-0103723, ACL-
0121401, and ACI-0406345.



1 Introduction

There is growing interest in self-optimizing systems that can optimize their own
behavior on different platforms without manual intervention [2, 8, 5]. These sys-
tems are based on the generate-and-test paradigm: instead of writing a program,
one implements a program generator that produces a large number of program
variants, and determines empirically which variant performs best. To prevent
a combinatorial explosion in the number of program variants that have to be
considered, self-optimizing systems bound the search space by using hardware
parameter values such as the number of registers and the capacity of the L1
cache [8,9].

For software to be truly self-optimizing, the values of hardware parameters
relevant for software optimization must be determined automatically. It is im-
portant to note that these values are not necessarily the same as the values
one might find in a hardware manual. For example, loop unrolling in ATLAS
is limited by the number of registers on the target architecture. However, most
compilers set aside certain registers for holding special values such as the stack
or frame pointer, so the number of registers available to the register allocator is
usually less than the total number of architected registers. In practice, it is hard
to find documentation even for hardware parameter values, let alone for values
relevant to software optimization.

To address this need, we have developed a framework called X-Ray, which
can be used to implement micro-benchmarks to measure relevant values of hard-
ware parameters automatically. For portability, X-Ray is entirely implemented in
ANSI C’89. Currently, X-Ray can determine the latency of various instructions,
the existence of important instructions like fused multiply-add, the number of
registers of various kinds, and parameters of the memory hierarchy.

In this paper, we describe how X-Ray measures the capacity of the instruction
cache (I-cache). Neither well known benchmarks [3, 6], nor existing tools [4,7]
attempt to measure this parameter.

The I-cache capacity is needed in the implementation of important optimiza-
tions like loop unrolling, which is used to reduce loop overhead, to prepare the
loop body for scheduling of operations, to improve processor pipeline utilization,
to enable register allocation of array values, etc. [1]. If the loop is unrolled too
few times, loop overhead can be substantial, and pipeline and register utilization
can suffer, lowering performance. On the other hand, if the loop is unrolled too
many times, I-cache misses may cause performance to drop. Therefore, compilers
need I-cache capacity to estimate how many times a loop should be unrolled.

An example on Intel Itanium 2 is presented in Figure 1. This figure shows
the sensitivity of performance to the unrolling of the K loop (KU) of Matrix-
Matrix Multiply in ATLAS for two different cache blocking factors (N B). We
have verified with hardware counters that the performance drop observed for
KU > 9 is caused by excessive number of instruction cache misses.

The rest of this paper is organized as follows. In Section 2, we give an overview
of the X-Ray framework. The major challenge is to ensure that the C compiler
does not restructure the micro-benchmarks thereby polluting the timing results,
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Fig. 1. Sensitivity of performance to K-unrolling on Intel Itaniun 2 in ATLAS

while enabling performance critical optimizations such as register allocation.
In Section 3, we describe the micro-benchmark we use for measuring I-cache
capacity. In Section 4, we present experimental results on a number of modern
high-performance processors. We also compare I-cache capacity estimates from
X-Ray with published values for these architectures. These comparisons show
that the estimates of I-cache capacity that X-Ray produces are accurate to within

3% on most architectures.

2 The X-Ray Framework

Hardware parameters are measured by X-Ray micro-benchmarks. Figure 2 presents
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the general structure of a micro-benchmark in the X-Ray framework.
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Fig. 2. A micro-benchmark in X-Ray

As an example, consider the measurement of the number of available registers
of a particular data type T. One way to determine this value is to perform a
number of experiments, all of which perform the same computations but on a




different number of variables (N) of type T. When N exceeds the number of
available registers for type 7', not all variables can be register allocated, and
execution time should increase substantially. The number of available registers
can be inferred from this cross-over point.

Some general conclusions can be drawn from this example. A micro-benchmark
to determine the value of some parameter may need to time a number of differ-
ent but related programs that we call nano-benchmarks. Since there may be no
a priori bound on the number of required nano-benchmarks, we need a Nano-
benchmark Generator, which can produce Nano-benchmark C' Code from a high-
level Nano-benchmark Specification. Finally, generation should happen on-the-fly
since the results of one nano-benchmark may determine the nano-benchmark to
be executed next.

In X-Ray, the execution of a micro-benchmark is orchestrated by its Control
Engine, which chooses the nano-benchmarks to execute, the order in which they
should be executed, and the appropriate parameters for each one. The Control
Engine determines the value of the hardware parameter based on these timing
results.

Some micro-benchmarks may also need the results obtained from running
other micro-benchmarks. For example, to determine the latency of an instruction
in cycles rather than in nanoseconds, the control engine needs to know the cycle
time of the processor. This can be specified by the user or it can be measured
by another micro-benchmark.

2.1 Nano-benchmarks

Even with access to a high-resolution timer, it is hard to accurately time opera-
tions that take only a few CPU cycles to execute. Suppose we want to measure
the time required to execute a C statement S. If this time is small compared to
the granularity of the timer, we must measure the time required to execute this
statement some number of times Rg (dependent on S), and divide that time by
Rgs. If Rg is too small, the time for execution cannot be measured accurately,
whereas if Rg is too big, the experiment will take longer than it needs to.

Rs —1;

while (measures (Rs) < tmin)
Rs «— Rs X 2;

return (measures (Rs) =+ Rs);

Fig. 3. Nano-benchmark timing

Figure 3 shows the timing strategy used in X-Ray nano-benchmarks. In this
code, measuregs(Rg) measures the time required to execute Rg repetitions of
statement S. To determine a reasonable value for Rg, the code in Figure 3 starts
by setting Rg to 1, and then doubles it until the experiment runs for at least



tmin seconds. The value of ¢,,;, can be specified by the user and defaults to 0.25
seconds in the current implementation.

A simplistic implementation of measureg is shown in Figure 4(a). This code
incurs considerable loop overhead, so we unroll the loop U times (Figure 4(b)).

Another problem is that restructuring compiler optimizations may corrupt
the experiment. For example, consider the case when we want to measure the
latency of a single addition. In our framework, we would measure the time taken
to execute the C statement pg = pg + p1. It is important to allocate pg and p;
in registers, but it is crucial that the compiler not replace the U statements in
the loop body by the statement py = pg + U X p1, since this would prevent the
code from timing the original statement correctly.

To solve such problems, we need to generate programs which the compiler can
aggressively optimize without disrupting the sequence of operations whose exe-
cution time we want to measure. We solve this problem using a switch statement
on a volatile variable v as shown in Figure 4(c). The semantics of C require
that v be read from memory; therefore the compiler cannot assume anything
about which case of the switch is selected. Because there is potential control
flow to each of the case blocks, it is impossible for the compiler to combine or
reorder them in any way.

The final problem is that if the compiler is able to deduce that the result of the
computations performed in S is not used in the rest of the code, it might perform
dead-code elimination and remove all instances of S altogether. To prevent this
unwanted optimization, all variables that appear in S are assigned to values
read from appropriately typed volatile variables in the initialize statement;
similarly, their final values are copied back to the same volatile variables in
the use statement.

There are cases where we wish to measure the performance of a sequence of
different statements S1,Ss, ..., S,. To prevent the compiler from optimizing this
sequence, the code generator will give each S; a different case label, generating
code of the form shown in Figure 4(d). In this figure, the number of case labels
W is the smallest multiple of n greater than or equal to U.

2.2 Nano-benchmark Generator

The X-Ray nano-benchmark generator accepts as an input a nano-benchmark
specification and produces nano-benchmark C code structured as shown in Fig-
ures 4(c) and 4(d).

The nano-benchmark specification is a tuple which contains a statement S
to be timed and type information for all variables in S. For example, to measure
the latency of double-precision floating point ADD operation, we use the nano-
benchmark specification (p1 = p1 + pe, (p1, p2 : F64)), which means that we time
the statement p; = p1 +pe, where p; and po are variables of type double (defined
as F64 in X-Ray). Given this specification, the nano-benchmark generator can
produce code as shown in Figure 4(c). Generating code of the form shown in
Figure 4(d) is more complex and requires the first element of the tuple to be a



measures (R) {
ts = now();

measures (R) { i =R/ U;
ts = now(); loop:
i = R; S;
loop: S; S;
if (--%) ...repeat U times...
goto loop; S;
te = now(); if (--1)
return t. —ts; goto loop;
} te = now();
(a) return te — ts;

(b)

measures (R) {
initialize;
volatile int v = O;
measures (R) { . ’
o switch (v)
initialize; {
volatile int v = O;

switch (v) cas; S:R/U'
{ ts = now();
case 0: Loop:

i = R/U; case 1: Si;

ts = now();

case 2: So;

loop:
case 1: S;

case i: Sj;
case 2: S; v

case n: Sp;
case U: S; ™

if (—=4) case n+1: Si;
oto loop; cee
t =gnow()- F case W: Sy;
if (tv) if (--1) '
return te —ts; goto loop;
} te = now();
use; if (lv)
} ’ return t. —ts;
() }
use;

(d)

Fig. 4. Implementation of measureg



function f : integer — string, which computes the code for statement S; from
the case label i.

2.3 Implementing a new micro-benchmark
Implementing a new micro-benchmark in X-Ray requires:

1. Implementing the nano-benchmarks for all timing experiments. If their code
fits the template in Figure 4(d), nano-benchmark specifications are enough;

2. Implementing the micro-benchmark control engine to describe which nano-
benchmarks to run, with what parameters, in what order, and how to pro-
duce a final result from the external parameters and the timings.

The X-Ray implementation of many useful micro-benchmarks is described in
detail in [11,10].

3 Measuring I-cache capacity

To estimate I-cache capacity, X-Ray measures the execution time of code se-
quences of different sizes. These sequences are carefully chosen so that the proces-
sor can run them at full speed unless they are too long to fit completely in the
I-cache.

More precisely, the X-Ray micro-benchmark generates a sequence of nano-
benchmarks. Each nano-benchmark measures the average time needed to execute
one statement of a code sequence of specific length V. The micro-benchmark uses
these nano-benchmarks to determines the largest value of NV for which there is no
significant increase in the average execution time per statement. The capacity of
the I-cache is declared to be the binary code size for this longest code sequence.

Although this is straight-forward in theory, there are several practical prob-
lems we had to address to make this idea work.

3.1 Nano-benchmark

Figure 5 shows the nano-benchmark generated by X-Ray. The basic statements
used in the loop body by X-Ray are assignment statements that increment one
integer variable with the value of another integer variable. The C compiler is also
advised to assign these variables to registers. Therefore, most compilers will map
each assignment statement to a single register-to-register integer add instruction
since such an instruction is available on all ISAs.

Each case statement in Figure 5 consists of a number of independent assign-
ment statements. The idea is to provide enough instruction level parallelism in
each case statement to avoid stalls caused by dependencies. This way we ensure
that instructions are dispatched at the highest possible rate by the processor,
so the slowdown caused by I-cache misses will be prominent. We have found
that using four independent assignment statements per case is adequate on all
current architectures.



volatile int v = 0;
volatile int pg = v,p1 = v, P2 = V,P3 =V, Pa = V;

switch (v)

{

case 0:
1= R/N,
ts =mnow();
start :
case 1: {p1+ = po; p2+ = po; 3+ = po; pa+ = po; }
case 2: {p1+ = po; p2+ = po; 3+ = po; pat+ = po; }

case N : {p1+ = po; p2+ = po; p3+ = po; pa+ = po; }
if(——i)
goto start;
finish:
te =mnow ();
if(lv)
return t. — ts;

}
UV =Dp0o; V=DP1; V=P2; UV=DP3; U=DP4;

Fig. 5. Nano-benchmark code generated by X-Ray for measuring I-cache capacity

Therefore, the X-Ray nano-benchmark is parameterized by N, the number
of cases in the switch statement, and B, the number of independent assignment
statements per case. Not surprisingly, the specification X-Ray uses for its I-cache
nano-benchmark is the following.

Sn. = ([1, N] = {p1+ = po; p2+ = po; - - .;pB+ = P03 }, (0, P1; - - -, P : int))

Currently we measure the binary code size of the sequence by using an exten-
sion to the C language available in the GCC family of compilers, namely taking
the address of a code label. Using this feature, the binary size of the code shown
above would be computed by (char *)&&finish - (char *)&&start.

We are currently looking into other ways of doing this measurement if a
compiler that supports this feature is not available. One possibility is to gener-
ate a program listing which includes the generated assembly instructions along
with their code addresses and deduce the addresses of the labels of interest by
analyzing the listing.

3.2 Micro-benchmark

Figures 7 and 8 show how the average execution time per statement of the nano-
benchmark varies as a function of the computed value of binary code size. It
can be seen that on many architectures such as the IBM Power 4, there are



w0
o «— 0
N «— 256;
while (IV < 256 + S)
T «— time (Sn,B);
M= p+ T
a<—a—|—7’2;
N «— N +1;
pe—=p+S;
0<—\/(a—u2><5')+(5—1);
while (time (Sn,B) < pu+T X o)

N — N x 2;
R« N;
L— N =2

while (R— L > 1)
N—(R+L)+2
if (time (Sn,B) > p+ T X o)
R — N;
else
L — N;
return L X B;

Fig. 6. Control engine script for I-cache micro-benchmark

significant fluctuations in I-cache access time even when loop bodies are small
enough to fit comfortably in the I-cache. In particular, access time can increase
significantly when the size of the loop body is increased by a small amount, but
decreases when the size of the loop body is increased further. This effect is not
entirely noise because some part of it is reproducible. Figures 9 and 10 show the
distribution of the average access times for various architectures when the loop
body is small enough to fit in the I-cache.

Consequently, the micro-benchmark cannot just look for an increase in the
statement execution time to determine the capacity of the I-cache; furthermore,
performing the measurement for each code size some number of times and using
the average time does not always help since some fluctuations occur for different
values of code size.

The solution used by X-Ray is to estimate first the mean and standard de-
viation of the fluctuations in statement execution time when the loop body is
small enough to fit in the I-cache. An increase in execution time is declared to
be significant when the jump exceeds some multiple of the measured standard
deviation of the fluctuations.

More precisely, X-Ray measures the statement execution times for nano-
benchmarks of the form shown in Figure 5 for N € [256, 256 + S — 1], where the
sample size S is a parameter we currently set to 8. It computes the mean u and
the standard deviation o of these times, and uses p + 7T x o as the threshold
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Fig. 7. Execution time per statement on RISC architectures

above which a change in execution time is declared to be significant; currently,
we set the parameter T to 2 since this seems to work well in practice.

The sensitivity of Intel Pentium 4 is shown in Figure 8(d). On this architec-
ture we observed that for some values of N, well before the I-cache edge, there are
significant, but isolated fluctuations. To avoid confusing these fluctuations with
the actual edge, X-Ray applies a smoothing function, which takes the minimum
timing in a small neighborhood of N, namely [N — %, N + %} I is a parameter
of the I-cache micro-benchmark. In our experiments we found that I = 5 works
well in practice.

These considerations lead to the actual control engine algorithm specified in
Figure 6.

This code can be summarized as follows. First, the control engine computes
the mean p and the standard deviation o of the timings for N € [256,256 + S — 1].
Then it starts with N = N,,;, = 256 and doubles N until timing exceeds the
threshold p+ T X o for some N = N4, After that it performs a binary search
in the interval [Nz + 2, Npmaz) to find the maximum N, whose timing is below
the threshold pu + T x o. Finally it returns the number of instructions in the
sequence, which is L x B. The actual size of the binary code is computed as part
of the nano-benchmark (executed for N = L) as discussed above.
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Fig. 8. Execution time per statement on x86 and EPIC architectures

4 Experimental Results

We tried the I-cache capacity micro-benchmark, described in Section 3 on a va-
riety of modern architectures. The results obtained on ten of them are presented
in Table 1. X-Ray was able to estimate the I-cache capacity within 3% of the
actual value, except on the Intel Pentium 4, where the error was about 6%.

All running times are reported for a smoothing interval of I = 5. This is
only really necessary on the Pentium 4 architecture. No smoothing (I = 1) is
required for other architectures, which can dramatically decrease runtime (up to
five times in this case).



Frequency Frequency

Time Time
664 666 668 67 672 (nanoseconds) 194 196 198 2 202 204 (nanoseconds)
(a) SGI R12000 (b) SUN UltraSPARC IIIi
Frequency Frequency

Time Time
1365 1.37 1.375 1.38 1.385 1.39 (nanoseconds) 121 1.2121.2141.2161.218 1.22 (nanoseconds)

(c) IBM Power 4 (d) IBM Power 5

Fig. 9. Hit-time distribution on RISC architectures

Architecture Actual Size |Measured Size| Error|Time (seconds)
SGI R12000 32768 bytes 32108|-2.01% 534
SUN UltraSPARC IIIi| 32768 bytes 32768| 0.00% 321
IBM Power 4 65536 bytes 64956(-0.89% 350
IBM Power 5 65536 bytes 65016(-0.79% 365
AMD Athlon MP 65536 bytes 65496|-0.06% 904
AMD Opteron 240 65536 bytes 65480(-0.09% 647
Intel Itanium 2 16384 bytes 16352|-0.20% 101
Intel Pentium 4 Xeon | 12000 uops 11245|-6.29% 187
Intel Pentium 3 16384 bytes 15940|-2.71% 285
Intel Pentium M 32768 bytes 33040| 0.83% 295
Table 1. I-cache capacity experimental results

4.1 Intel Pentium 4

The Intel Pentium 4 is an interesting architecture because it translates x86 CISC
instructions to RISC-like micro-ops before caching them in its I-cache. Moreover,
the I-cache does not have a conventional design but is organized as a trace cache.
Because of all this, the information we can determine about the capacity of this
cache is limited. The architecture manual reports I-cache size in number of micro-
ops, and we have verified that each of our addition statements translates to a
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Fig. 10. Hit-time distribution on x86 and EPIC architectures

single CISC instruction which in turn translates to a single micro-op according
to the architecture manual. Therefore X-Ray is able to measure the capacity in

micro-ops.

However, this information may not be very useful for self-optimizing software
systems because to use it, one needs to consider how many micro-ops each CISC
instruction translates to, and to avoid the cases of isolated performance hits

visible in Figure 8(d).



5 Conclusions and Future Work

To the best of our knowledge, X-Ray is the first system that can measure I-cache
capacity. The micro-benchmark seems to be fairly accurate on all current archi-
tectures. The techniques described in this paper for eliminating fluctuations and
for smoothing are useful in other contexts as well. For example, we successfully
applied them to improve the accuracy of the micro-benchmark for measuring the
number of registers in X-Ray.

We are actively developing new micro-benchmarks inside the X-Ray frame-
work. Our current focus includes measuring other parameters of the memory
hierarchy such as bandwidth of different levels of the memory hierarchy, as well
as determining all bundles of instructions that can be issued in a single CPU
cycle at a sustained rate.

X-Ray can be downloaded at http://iss.cs.cornell.edu/Software/X-Ray.aspx.
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