
e-mail: chorin@math.berkeley.edu e-mail: xuemin@math.berkeley.edu

Mathematical Modelling and Numerical Analysis Will be set by the publisher

Modélisation Mathématique et Analyse Numérique

INTERPOLATION AND ITERATION FOR NONLINEAR FILTERS

Alexandre J. Chorin1 and Xuemin Tu1

Abstract. We present a general form of the iteration and interpolation process used in implicit
particle filters. Implicit filters are based on a pseudo-Gaussian representation of posterior densities,
and are designed to focus the particle paths so as to reduce the number of particles needed in nonlinear
data assimilation. Examples are given.

1991 Mathematics Subject Classification. 60G35, 62M20, 86A05.

The dates will be set by the publisher.

1. Introduction

There are many problems in science in which the state of a system must be identified from an uncertain
equation supplemented by a stream of noisy data (see e.g. [7]). A natural model of this situation consists of an
Ito stochastic differential equation (SDE):

dx = f(x, t) dt + g(x, t) dw, (1)

where x = (x1, x2, . . . , xm) is an m-dimensional vector, w is m-dimensional Brownian motion, f is an m-
dimensional vector function, and g(x, t) is an m by m diagonal matrix. The initial state x0 is assumed given
and may be random as well.

As the solution of the SDE unfolds, it is observed, and the values bn of a measurement process are recorded
at times tn, n = 1, 2, ... For simplicity assume tn = nδ, where δ is a fixed time interval. The measurements are
related to the evolving state x(t) by

bn = h(xn) + QWn, (2)
where h is a k-dimensional, generally nonlinear, vector function with k ≤ m, Q is a k by k diagonal matrix,
xn = x(nδ), and Wn is a vector whose components are k independent Gaussian variables of mean zero and
variance one, independent also of the Brownian motion in equation (1). The task is to estimate x on the basis
of equation (1) and the observations (2).

If the system (1) and equation (2) are linear and the data are Gaussian, the solution can be found via the
Kalman-Bucy filter (see e.g. [3]). In the general case, it is natural to try to estimate x via its evolving probability
density. The initial state x0 is known and so is its probability density; all one has to do is evaluate sequentially
the density Pn+1 of xn+1 given the probability densities Pk of xk for k ≤ n and the data bn+1. This can be done
by following “particles” (replicas of the system) whose empirical distribution approximates Pn. A standard
construction (see e.g [1, 5, 8–13]) uses the probability density function (pdf) Pn and equation (1) to generate
a prior density, and then uses the new data bn+1 to generate a posterior density Pn+1 through weighting and
resampling. In addition, one has to sample backward to take into account the information each measurement

Keywords and phrases: Implicit sampling, filter, pseudo-Gaussian, Jacobian, chainless sampling, particles

1 Department of Mathematics, University of California at Berkeley and Lawrence Berkeley National Laboratory, Berkeley, CA,
94720

c© EDP Sciences, SMAI 1999

2 TITLE WILL BE SET BY THE PUBLISHER

provides about the past, as well as avoid having too many identical particles after resampling. This can be very
expensive, in particular because the number of particles needed can grow catastrophically (see e.g. [2, 14] and
also Example 2 below). Sophisticated methods for generating efficient priors can be found e.g. in [1, 8]. The
challenge is to generate high probability samples so as to minimize the effort of computing particle paths whose
weight is very low.

In [6] we introduced an alternative to the standard approach. In our method the posterior density is sampled
directly by iteration and interpolation, as suggested by our earlier work on chainless sampling [4], and by the
observation in [15] connecting interpolation and the marginalization process used in chainless sampling. The
new filter aims the particle trajectories as accurately as possible in the direction of the observations so that
fewer particles are needed. In that earlier paper our approach was presented by means of simple examples. In
the present paper we present a general, more abstract, formulation, introduce an extension to the case of sparse
observations, and discuss additional examples.

2. Forward step

To begin, assume that at time tn = nδ, where δ > 0 is fixed, we have a collection of M particles Xn
i ,

1 ≤ i ≤ M , n = 0, 1, . . . , whose empirical density approximates Pn, the probability density at time nδ of the
particles that obey the evolution equation (1) subject to the observations (2) at times t = kδ for k ≤ n. In the
present section we explain how to find positions for the same particles at time (n + 1)δ given only the positions
at time nδ and the pdf Pn, taking into account the next observation and the equation of motion. Let N(a, v)
denote a Gaussian variable of mean a and variance v. First, approximate the SDE (1) by a difference scheme
of the form

Xn+1 = Xn + F (Xn, tn)δ + G(Xn, tn)V n+1, (3)

where we assume temporarily that δ equals the interval between observations, i.e., we assume that there is
an observation at every time step. Xn stands for X(nδ), G is assumed to be diagonal, and Xn, Xn+1 are m
dimensional vectors. F, G determine the scheme used to solve the SDE, see for example [6]. V n+1 is a vector
of N(0, δ) Gaussian variables, independent of each other for each n, with the vectors V n+1 independent of each
other for differing n, independent also of the W k, k = 1, ..., in the observation equation (2). The sequence of
Xn, n = 0, 1, . . . approximates a sample solution of the SDE, X0 is assumed given and may be random. The
function G in (3) does not depend on Xn+1 for an Ito equation, and we assume for simplicity that F does not
depend on Xn+1 either, because this was the case in all the examples we have worked on so far. The analysis
below can be easily repeated for the case where F does depend on Xn+1, at the cost of slightly more complicated
formulas. Equation (3) states that Xn+1 − Xn is an N(F (Xn, tn)δ, δG(Xn, tn)∗G(Xn, tn)) vector, where the
star * denotes a transpose.

We have one sample solution Xn
i of the SDE for each particle. Our task is to sample, for each particle,

the vector Xn+1
i whose probability density is determined by the approximation of the SDE as well as by the

next observation for each of the M particles. We keep the notation Xn+1
i for the positions of the particles

even though once the observation is taken into account these positions no longer coincide with the positions of
sample solutions of equation (3).

Consider the i-th particle. We are going to work particle by particle, so that the particle index i will be
temporarily suppressed. Suppose we already know the posterior vector Xn+1. Its probability density Pn+1 of
Xn+1 given Xn is

Pn+1(Xn+1) = Z−1 exp
(
−

(
Xn+1 − Xn − Fn

)∗ (G∗
nGn)−1

(
Xn+1 − Xn − Fn

)
/2

−
(
h(Xn+1) − bn+1

)∗ (Q∗Q)−1
(
h(Xn+1) − bn+1

)
/2

)
,

(4)

TITLE WILL BE SET BY THE PUBLISHER 3

where the functions Fn = F (Xn, tn)δ, and Gn =
√
δG(Xn, tn) can be read from the approximation of the

SDE, and Z is a normalization constant, the integral of the numerator over all Xn+1 with Xn fixed. The value
of this Z is not available. Our goal is to find samples Xn+1 whose probability is high, and which are well
distributed with respect to Pn+1. We do that by picking the probability in advance: we first pick samples of m
N(0, 1) variables (ξ1, ξ2, . . . , ξm) = ξ, whose joint pdf (probability density function) is exp(−ξ∗ξ/2))/(2π)m/2,
and require that each Xn+1 be a function of a sample ξ with the same probability as ξ, up to the Jacobian of
the transformation. This should produce likely and well-distributed samples.

A little thought shows that this can be done, not by equating Pn+1 to exp(−ξ∗ξ/2)/(2π)m/2, but by equating
the arguments of the two exponentials. For example, if one wants to represent a N(0, v) random variable x with
pdf exp(−x2

2v)/
√

2πv as a function of a N(0, 1) variable ξ with pdf exp(−ξ2/2)/
√

2π, equating the arguments
yields x =

√
v ξ, clearly a good choice. Thus, we wish to solve the equation

ξ∗ξ/2 =

=
(
Xn+1 − Xn − Fn

)∗ (G∗
nGn)−1

(
Xn+1 − Xn − Fn

)
/2 +

(
h(Xn+1) − bn+1

)∗ (Q∗Q)−1
(
h(Xn+1) − bn+1

)
/2
(5)

and obtain Xn+1 as a function of ξ.
We proceed point by point— given a vector ξ, we find the corresponding Xn+1 rather than look for an

expression for the function Xn+1(ξ) as a whole—and by iteration: we find a sequence of approximations Xn+1
j

(= Xj for brevity) which converges to Xn+1; we set X0 = 0, and now explain how to find Xj+1 given Xj . First,
expand the function h in the observation equation (2) in Taylor series around Xj :

h(Xj+1) = h(Xj) + Hj · (Xj+1 − Xj), (6)

where Hj is a Jacobian matrix evaluated at Xj . The observation equation (2) can be approximated as:

zj = HjXj+1 + QWn+1, (7)

where zj = bn+1 − h(Xj) + HjXj .
The left side of equation (5) can be approximated as:

(Xj+1 − Xn − Fn)∗ (G∗
nGn)−1 (Xj+1 − Xn − Fn) /2 + (HjXj+1 − zj)

∗ (Q∗Q)−1 (HjXj+1 − zj) /2

= (Xj+1 − m̄j)
∗ Σ−1

j (Xj+1 − m̄j) /2 + Φj , (8)

where
Σ−1

j = (G∗
nGn)−1 + H∗

j (Q∗Q)−1Hj , m̄j = Σj

(
(G∗

nGn)−1(Xn + Fn) + H∗
j (Q∗Q)−1zj

)
,

and
Kj = HjG

∗
nGnH∗

j + Q∗Q, Φj = (zj − Hj(Xn + Fn))∗ K−1
j (zj − Hj(Xn + Fn)) /2.

We now solve for Xj+1 as a function of ξ. To make the computation tractable, in this step we ignore the
remainder Φj ; this is a key step. We thus solve the simpler equation

(Xj+1 − m̄j)∗Σ−1
j (Xj+1 − m̄j)/2 = ξ∗ξ/2. (9)

This can be done in any of a number of ways; for example, one can write Σj = LjL∗
j , where Lj is a lower

triangular matrix and L∗
j is its transpose, and then set Xj+1 = m̄j + Ljξ (a different algorithm was suggested

in [6]). The iteration is done.
If the sequence Xj converges to a limit, call the limit Xn+1. One can readily check that the approximate

equation (7) converges to the full observation equation (2). The remainders Φj also converge to a limit Φn+1.

4 TITLE WILL BE SET BY THE PUBLISHER

Equation (5) becomes:

ξ∗ξ/2 + Φn+1 =

=
(
Xn+1 − Xn − Fn

)∗ (G∗
nGn)−1

(
Xn+1 − Xn − Fn

)
/2 + (h(Xn+1) − bn+1)(Q∗Q)−1(h(Xn+1) − bn+1)/2.

(10)

Multiply this equation by −1 and exponentiate both sides:

exp(−ξ∗ξ/2) exp(−Φn+1) =

=exp
(
−

(
Xn+1 − Xn − Fn

)∗ (G∗
nGn)−1

(
Xn+1 − Xn − Fn

)
/2 −

(
h(Xn+1) − bn+1)∗(Q∗Q)−1(h(Xn+1) − bn+1

)
/2

)
.

(11)

This differs from what we set out to do in equation (5) by the factor exp(−Φn+1) on the right hand side.
Let P (α|β) be the probability of α given β. The factor exp(−Φn+1) is proportional to P (bn+1|Xn), and

equation (11) is the statement

P (Xn+1|Xn, bn+1)P (bn+1|Xn) = P (Xn+1|Xn)P (bn+1|Xn+1), (12)

i.e., this is Bayes’ theorem. Note also that equation (9) is a pseudo-Gaussian representation of Xn+1, not a
Gaussian representation; the matrix Σj is a function of the sample.

We next compute the Jacobian determinant J = det(∂Xn+1/∂ξ). This can be often done analytically.
Equation (9) relates Xn+1 to ξ implicitly. We have values of ξ and the corresponding values of Xn+1; to find
J there is no need to solve again for Xn+1; an implicit differentiation is all that is needed. Alternately, J can
be found numerically, by taking nearby values of ξ, redoing the iteration (which should converge in one step,
because one can start from the known value of Xn+1), and differencing.

The expression on the right-hand side of equation (11) is proportional to P (bn+1|Xn+1)P (Xn+1|Xn), with
a proportionality constant independent of Xn. When Xn+1 is sampled as just described, each value of
Xn+1 = Xn+1(ξ) appears with probability 1

(2π)m/2 exp(−ξ∗ξ/2)/|J |, and then the value of this expression
is exp(−ξ∗ξ/2) exp(−Φn+1). To get the right value of the expression on the average, one has to give each
proposed Xn+1 the sampling weight W = 1

(2π)m/2 exp(−Φn+1)|J |, (with another factor P (Xn) if such factors
are not all equal). Since 1

(2π)m/2 is a constant and the same to every particle, we will drop it from now. Here
we see an advantage of starting from a prechosen reference variable ξ: the factor exp(−ξ∗ξ/2), which varies
from sample to sample, has been discounted in advance and does not contribute to the non-uniformity of the
weights. We shall see that the other factors can be expected to vary little.

Do this for all the particles and obtain new positions with weights Wi = exp(−Φn+1
i)|Ji|, where Φn+1

i , Ji are
the values of these quantities for the i-th particle. One can get rid of the weights after the fact by resampling,
i.e., for each of M random numbers θk, k = 1, . . . , M drawn from the uniform distribution on [0, 1], choose a
new X̂n+1

k = Xn+1
i such that A−1

∑i−1
j=1 Wj < θk ≤ A−1

∑i
j=1 Wj (where A =

∑M
j=1 Wj), and then suppress

the hat.
Note also that the resampling does not have to be done at every step- for example, one can add up the phases

for a given particle and resample only when the ratio of the largest cumulative weight exp(−
∑

(φi − log |Ji|)) to
the smallest such weight exceeds some limit L (the summation is over the weights accrued to a particular particle
i since the last resampling). If one is worried by too many particles being close to each other (”depletion” in
the usual Bayesian terminology), one can divide the set of particles into subsets of small size and resample only
inside those subsets, creating a greater diversity. As will be seen in the numerical results section, none of these
strategies is used here and we resample fully at every step.

The computational complexity of this construction depends on the sparseness of the matrix Σj , which depends
on the sparseness of Hj in the expression (8), which depends on the structure of the function h in equation

TITLE WILL BE SET BY THE PUBLISHER 5

(2). In the frequently encountered situation where h is diagonal, in the sense that each quantity measured is a
function of a single component of the vector whose dynamics are given by equation (1), one finds that Σj and
Hj are diagonal, and the computations, including the computation of the Jacobian J , are easy, whether h is
linear or not. The more arguments in each of the components of the function h, the more labor is required.

If both equations (1) and (2) are linear and the initial data are Gaussian, then the pdfs Pn are Gaussian.
We only need to find the mean and the variance of the pdf, which can be found as above by considering a single
particle; the iterations converge in one step. The resulting means and variances are identical to those produced
by the Kalman filter. If one had needed multiple particles, their weights would have been all equal. If equation
(1) is nonlinear but equation (2) is linear (or can be well approximated by a linear function in each interval
(nδ, (n + 1)δ)), then the Pn+1 are in general not Gaussian and one needs multiple particles. The iterations still
converge in one step, and what one obtains is a version of the forward step in a filter with an optimal importance
function (as described e.g in [6]).

The convergence of the iteration will be very briefly discussed further below. We have chosen the variables ξ
to be independent N(0, 1) variables, but there is nothing sacred about this choice. The goal is to pick samples
whose probability is high, and in some contexts other choices may be better. We will discuss those other choices
when they are made in further work.

3. Backward sampling

In the previous section we described how to sample the pdf at time (n + 1)δ given the pdf at time nδ. In
general, this is not sufficient. Every observation provides information not only about the future but also about
the past- it may, for example, tag as improbable earlier states that had seemed probable before the observation
was made. Furthermore, in non-Gaussian settings, the pdf one obtains by going directly from time (n − 1)δ to
step (n + 1)δ by a step of duration 2δ may be different from the pdf one obtains after two steps that include an
intermediate step. After one has sampled at time (n + 1)δ, one has to go back, correct the past, and resample
(this backward sampling is often misleadingly explained in the literature solely by the need to create greater
diversity among the particles). We resample by interpolation, which we present explicitly for one backward
step. It is quite obvious one can do that for as many backward steps as are needed.

Given a set of particles at time (n + 1)δ, after a forward step and maybe a subsequent resampling, one can
figure out where each particle i was in the previous two steps, and have a partial history for each particle i:
Xn−1

i , Xn
i , Xn+1

i (if resamplings had occurred, some parts of that history may be shared among several current
particles). Knowing the first and the last members of this sequence, we recompute Xn by interpolation, thus
projecting information backward one step.

The probability of the Xnew that will replace Xn is the product of the three probabilities (properly normal-
ized): the probability of the new leg from Xn−1 to Xn, the probability of the resulting leg from Xn to Xn+1

(the end result being known), and the probability of the resulting observation at time nδ, i.e.:

exp
(
−

(
Xnew − Xn−1 − Fn−1

)∗ (G∗
n−1Gn−1)−1

(
Xnew − Xn−1 − Fn−1

)
/2

−
(
Xn+1 − Xnew − Fn

)∗ (G∗
nGn)−1

(
Xn+1 − Xn − Fn

)
/2 − (h(Xnew) − bn)∗ (Q∗Q)−1 (h(Xnew) − bn) /2

)
.

(13)

Here we recall that Fn−1 = F (Xn−1, tn−1)δ and Gn−1 =
√
δG(Xn−1, tn−1) are known from the approximation

of the SDE, Fn and Gn are functions of Xnew, and the subscript i referring to the particle has been omitted.
This expression differs from equation (4) by having an additional exponential factor.

Once again, we set up an iteration, with iterates Xj , that converges to Xnew, and start with X0 = 0.
We expand h(Xj+1) in a Taylor series around Xj , so that the last factor in the expression (13) becomes a
quadratic in Xj+1. We complete squares so that the argument of the exponential in (13) can be written as
(Xj+1 − m̄j)Σ−1

j ((Xj+1 − m̄j)/2 + Φj ; equate (Xj+1 − m̄j)Σ−1
j ((Xj+1 − m̄j)/2 to ξ∗ξ/2, solve to get Xj+1

6 TITLE WILL BE SET BY THE PUBLISHER

as a function of ξ, calculate the Jacobian, and find the weight. We do this for all the particles, and resample
as needed. This concludes the backward sampling step. Note that as a result of the backward step and the
subsequent forward step, Pn+1 depends, not only on the positions of the particles at time nδ, but also on the
earlier history of the system.

4. Sparse observations

Consider now a situation where we do not have observations at every time step. First, assume that one has
observation at time (n+1)δ but not at time nδ. We try to sample Xn and Xn+1 together given the observation
information at time step (n + 1)δ. Consider the i-th particle. Suppose we are given the vector Xn−1

i for that
particle. Suppress again the particle index i. The joint probability density Pn,n+1 of Xn and Xn+1 given Xn−1

is

Pn,n+1(Xn, Xn+1)

=Z−1 exp
(
−

(
Xn − Xn−1 − Fn−1

)∗ (G∗
n−1Gn−1)−1

(
Xn − Xn−1 − Fn−1

)
/2

−
(
Xn+1 − Xn − Fn

)∗ (G∗
nGn)−1

(
Xn+1 − Xn − Fn

)
/2 −

(
h(Xn+1) − bn+1

)∗ (Q∗Q)−1
(
h(Xn+1) − bn+1

)
/2

)
,

(14)

where Z is the normalization constant. We recall that Fn−1 = F (Xn−1, tn−1)δ, Gn−1 =
√
δG(Xn−1, tn−1) are

known from the approximation of the SDE, Fn and Gn depend on Xn.
In the now familiar sequence of steps, we pick two independent samples ξn and ξn+1, each with probability

density exp(−ξ∗ξ/2)/(2π)m/2, and try to solve the equation

ξn
∗ξn/2 + ξ∗n+1ξn+1/2

=
(
Xn − Xn−1 − Fn−1

)∗ (G∗
n−1Gn−1)−1

(
Xn − Xn−1 − Fn−1

)
/2

+
(
Xn+1 − Xn − Fn

)∗ (G∗
nGn)−1

(
Xn+1 − Xn − Fn

)
/2 +

(
h(Xn+1) − bn+1

)∗ (Q∗Q)−1
(
h(Xn+1) − bn+1

)
/2,

(15)

to obtain Xn and Xn+1 as functions of ξn and ξn+1.
We define a sequence of approximations Xn

j and Xn+1
j which converge to Xn and Xn+1, respectively; set

Xn
0 = 0 and Xn+1

0 = 0, and at each iteration find Xn
j+1 and Xn+1

j+1 given Xn
j and Xn+1

j . First, expand the
function h in the observation equation (2) in Taylor series around Xn+1

j :

h(Xn+1
j+1) = h(Xn+1

j) + Hn+1
j · (Xn+1

j+1 − Xn+1
j), (16)

where Hn+1
j is a Jacobian matrix evaluated at Xn+1

j . The observation equation (2) is approximated as:

zn+1
j = Hn+1

j Xn+1
j+1 + QWn+1, (17)

where zn+1
j = bn+1 − h(Xn+1

j) + Hn+1
j Xn+1

j .
Let Fn,j = F (Xn

j , tn)δ and Gn,j =
√
δG(Xn

j , tn). The right side of equation (15) can be approximated as:
(
Xn

j+1 − Xn−1 − Fn−1

)∗ (G∗
n−1Gn−1)−1

(
Xn

j+1 − Xn−1 − Fn−1

)
/2

+
(
Xn+1

j+1 − Xn
j+1 − Fn,j

)∗ (G∗
n,jGn,j)−1

(
Xn+1

j+1 − Xn
j+1 − Fn,j

)
/2

+
(
Hn+1

j Xn+1
j+1 − zn+1

j

)∗ (Q∗Q)−1
(
Hn+1

j Xn+1
j+1 − zn+1

j

)
/2.

(18)

TITLE WILL BE SET BY THE PUBLISHER 7

We first combine the last two terms in (18) and obtain

(
Xn+1

j+1 − Xn
j+1 − Fn,j

)∗ (G∗
n,jGn,j)−1

(
Xn+1

j+1 − Xn
j+1 − Fn,j

)
/2 +

(
Hn+1X

n+1
j+1 − zn+1

)∗ (Q∗Q)−1
(
Hn+1X

n+1
j+1 − zn+1

)
/2

=
(
Xn+1

j+1 − m̄n+1
j

)∗ (Σn+1
j)−1

(
Xn+1

j+1 − m̄n+1
j

)
/2 + Φn+1

j , (19)

where
(Σn+1

j)−1 = (G∗
n,jGn,j)−1 + (Hn+1

j)∗(Q∗Q)−1Hn+1
j ,

m̄n+1
j = Σn+1

j

(
(G∗

n,jGn,j)−1(Xn
j+1 + Fn,j) + (Hn+1

j)∗(Q∗Q)−1zn+1
j

)
,

Kn+1
j = Hn+1

j G∗
n,jGn,j(Hn+1

j)∗ + Q∗Q,

and
Φn+1

j =
(
zn+1

j − Hn+1
j (Xn

j+1 + Fn,j)
)∗ (Kn+1

j)−1
(
zn+1

j − Hn+1
j (Xn

j+1 + Fn,j)
)
/2.

We combine the first term in (18) and the second term in (19) and obtain

(
Xn

j+1 − Xn−1 − Fn−1

)∗ (G∗
n−1Gn−1)−1

(
Xn

j+1 − Xn−1 − Fn−1

)
/2 + Φn+1

j

=
(
Xn

j+1 − Xn−1 − Fn−1

)∗ (G∗
n−1Gn−1)−1

(
Xn

j+1 − Xn−1 − Fn−1

)
/2

+
(
zn+1

j − Hn+1
j (Xn

j+1 + Fn,j)
)∗ (Kn+1

j)−1
(
zn+1

j − Hn+1
j (Xn

j+1 + Fn,j)
)
/2

=
(
Xn

j+1 − m̄n
j

)∗ (Σn
j)−1

(
Xn

j+1 − m̄n
j

)
/2 + Φn

j , (20)

where
(Σn

j)−1 = (G∗
n−1Gn−1)−1 + (Hn+1

j)∗(Kjj
n+1)−1Hn+1

j ,

m̄n
j = Σn

j

(
(G∗

n−1Gn−1)−1(Xn−1 + Fn−1) + (Hn+1
j)∗(Kn+1

j)−1(zn+1
j − Hn+1

j Fn,j)
)
,

Kn
j = Hn+1

j G∗
n−1Gn−1(Hn+1

j)∗ + Kn+1
j ,

and

Φn
j =

(
zn+1

j − Hn+1
j (Fn,j + Xn−1 + Fn−1)

)∗ (Kn
j)−1

(
zn+1

j − Hn+1
j (Fn,j + Xn−1 + Fn−1)

)
/2.

Combining (15), (16), (18), (19), and (20), we try to solve

ξn
∗ξn/2 + ξ∗n+1ξn+1/2

=
(
Xn+1

j+1 − m̄n+1
j

)∗ (Σn+1
j)−1

(
Xn+1

j+1 − m̄n+1
j

)
/2 +

(
Xn

j+1 − m̄n
j

)∗ (Σn
j)−1

(
Xn

j+1 − m̄n
j

)
/2 + Φn

j . (21)

We now solve for Xn
j+1 and Xn+1

j+1 as functions of ξn and ξn+1, ignoring the remainders Φn
j , i.e. we solve the

simpler equations
(Xk

j+1 − m̄k
j)∗(Σk

j)−1(Xk
j+1 − m̄k

j)/2 = ξ∗kξk/2, k = n, n + 1 (22)

If the sequences Xn
j and Xn+1

j converge to limits, call the limits Xn and Xn+1. In the limit, the approximate
equation (17) converges to the full observation equation (2). The remainders Φn

j and Φn+1
j also converge to

limits Φn and Φn+1. Equation (15) becomes:

ξ∗nξn/2 + ξ∗n+1ξn+1/2 + Φn

=
(
Xn − Xn−1 − Fn−1

)∗ (G∗
n−1Gn−1)−1

(
Xn − Xn−1 − Fn−1

)
/2

+
(
Xn+1 − Xn − Fn

)∗ (G∗
nGn)−1

(
Xn+1 − Xn − Fn

)
/2 + (h(Xn+1) − bn+1)(Q∗Q)−1(h(Xn+1) − bn+1)/2.

(23)

8 TITLE WILL BE SET BY THE PUBLISHER

Multiply by −1 and exponentiate:

exp(−ξ∗nξn/2) exp(−ξ∗n+1ξn+1/2) exp(−Φn)

= exp
((

Xn − Xn−1 − Fn−1

)∗ (G∗
n−1Gn−1)−1

(
Xn − Xn−1 − Fn−1

)
/2

+
(
Xn+1 − Xn − Fn

)∗ (G∗
nGn)−1

(
Xn+1 − Xn − Fn

)
/2 +

(
h(Xn+1) − bn+1)∗(Q∗Q)−1(h(Xn+1) − bn+1

)
/2

)
.

(24)

As before, one has to give each proposed Xn and Xn+1 the sampling weight W = exp(−Φn)|J |, where J
is the Jacobian J = det(∂(Xn, Xn+1)/∂(ξn, ξn+1)) which must be computed. One does this for all particles
and resamples as needed. This process can be generalized if one wishes to sample at more times between
observations. One should also note that the procedure just described may make the evaluation of Jacobian
significantly more onerous, but still often tractable.

The construction of this paragraph is important because many data sets one tries to assimilate are indeed
sparse, and also for the following reason. We have not provided in this present paper a discussion of the
convergence of the iterations we use. This convergence depends on the structure of the underlying SDE, on
the scheme used to approximate it, and on the specific ways one solves for the new increments in terms of the
reference variables ξ, and cannot be analyzed without considering these specifics. In our previous paper [6]
we analyzed a special case and found that there the convergence depended on the size of the time step. We
conjecture that this happens frequently. The present section provides a way to decrease the time step as a
device for repairing diverging iterations without much additional thought.

5. Example 1

We apply our filter to a prototypical marine ecosystem model studied in [10]. We set the main parameters
equal to the ones in [10]; however, we will also present some results with a range of noise variances to make a
particular point. We did the data assimilation with the filter described above, without back sampling, and also
by the a standard particle filter SIR (Sampling importance resampling), see [1].

The model involves four state variables: phytoplankton P (microscopic plants), zooplankton Z (microscopic
animals), nutrients N (dissolved inorganics), and detritus D (particulate organic non-living matter). At the
initial time t = 0 we have P (0) = 0.125, Z(0) = 0.00708, N(0) = 0.764, and D(0) = 0.136. The system is
described by the following nonlinear ordinary differential equations, explained in [10]:

dP

dt
=

N

0.2 + N
γP − 0.1P − 0.6

P

0.1 + P
Z + N(0,σ2

P)

dZ

dt
= 0.18

P

0.1 + P
Z − 0.1Z + N(0,σ2

Z)

dN

dt
= 0.1D + 0.24

P

0.1 + P
Z − γP

N

0.2 + N
+ 0.05Z + N(0,σ2

N)

dD

dt
= −0.1D + 0.1P + 0.18

P

0.1 + P
Z + 0.05Z + N(0,σ2

D), (25)

where the parameter γ, the “ growth rate”, is determined by the equations given by

γt = 0.14 + 3∆γt, ∆γt = 0.9∆γt−1 + N(0,σ2
γ).

The variances of the noise terms are: σ2
P = (0.01P (0))2, σ2

Z = (0.01Z(0))2, σ2
N = (0.01N(0))2, σ2

D =
(0.01D(0))2, and σ2

γ = (0.01)2.
The observations were obtained from NASA’s SeaWiFS satellite ocean color images. These observations

provide a time series for phytoplankton; the relation between the observations P (t)obs (corresponding to the

TITLE WILL BE SET BY THE PUBLISHER 9

Table 1. The number of distinct particles after resampling with different system variances
and different numbers of particles

σp # particle average # particles left after resampling
SIR Our filter

0.01P (0) 100 61 61
P (0) 100 19 63
P (0) 10 2.2 6.3

vector bn in the earlier discussion) and the solution P (t) of the equation of the first equation in (25) is assumed
to be:

log P (t)obs = log P (t) + N(0,σ2
obs),

where σ2
obs = 0.32. Note that this observation equation is not linear. There are 190 data points distributed

from late 1997 to mid 2002. The sample intervals ranged from a week to a month or more, for details see [10].
As in [10], we discretize the system (25) by an Euler method with ∆t = 1 day and prohibit the state variables
from dropping below 1 percent of their initial values.

We have compared our filter and SIR in three sets of numerical experiments, all with the same initial values
as listed above. In each case we attempted to find a trajectory of the system consistent with the fixed data,
and observed how well we succeeded. In the first set of the experiments, we used 100 particles and take
σ2

P = (0.01P (0))2 as in [10]. In this case, the (assumed) variance of the system is much smaller than the
(assumed) variance of the observations; the particle paths are bunched close together, and the results from
our filter and from SIR are quite close, see Figure 1, where we plotted the P component of the reconstructed
solution as well as the corresponding data.

In the second set of the experiments, we still used 100 particle but assumed σ2
p = (P (0))2. The variance

of the system is now comparable to the variance of the observation. For SIR, after resampling, the number of
the distinct particles is smaller than in the first case, as a result of the loss of diversity after resampling when
the weights are very different from each other, see Table 1, where we exhibit the average number of distinct
particles left after each resample; there is a resample after each step. Remember that there is some loss of
diversity in resampling even if all the weights are equal. With 100 particles, the filtered results with SIR are
still comparable to those with our filter. See Figure 2.

In the third set of the experiments, we used only 10 particles and kept σ2
p = (P (0))2. As one could have

foreseen, our filter does better than SIR, see Figure 3. One should remember however that we are working with
a low dimensional problem where the differences between filters are not expected to be very significant; the cost
if 100 particles is not prohibitive.

6. Example 2

We consider next a simple high dimensional example, used in [14] to show how particle filters fail when the
number of dimensions is large. We assume that each component of Xn is an independent Gaussian with zero
mean and unit variance. This is equivalent to taking δ = 1, F (Xn, δ) = 0, G(Xn, tn) = I in equation (3), and
eliminating the Xn term. We have

Xn = V n.

Each component of Xn is observed individually, so that

bn = Xn + Wn.

10 TITLE WILL BE SET BY THE PUBLISHER

Figure 1. Results with σ2
P = (0.01P (0))2 and 100 particles

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

obsevation
SIR

observation
our filter

Figure 2. Results with σ2
P = P (0)2 and 100 particles

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

observation
SIR

observation
our filter

We implement our filter with these particular choices. At the j-th iteration, Hj = I in equation (6) and
zj = bn+1 in equation (7). Therefore, we have Σ−1

j = 2I, m̄j = bn+1/2, and Φj = (bn+1)∗bn+1/4, in equation
(8). The iterations converge in one step and all the particles have the same weights.

However, with SIR the weights are uneven. We ran the SIR filter 1000 times, with a 1000 particles each
time; in each run we normalized the weights so that add up to one, and we recorded the maximum weight. In

TITLE WILL BE SET BY THE PUBLISHER 11

Figure 3. Results with σ2
P = P (0)2 and 10 particles

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
0

0.
1

0.
2

0.
3

0.
4

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
0

0.
1

0.
2

0.
3

0.
4

ob

se
rv

at
io

n
SI

R

ob
se

rv
at

io
n

ou
r f

ilte
r

12 TITLE WILL BE SET BY THE PUBLISHER

Figure 4. Histogram of the SIR normalized maximum particle weights with 1000 runs for 100 dimensions

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

Figures 4 we display a histogram of these recorded maximum weights. As one can observe, when the number of
dimensions is large, most of time, a single particle in each run hogs all the probability, and this version of SIR
fails.

7. Conclusions

We have presented a general form of the iteration and interpolation process used in our new implicit nonlinear
particle filter. The goal is to aim particle paths sharply so that fewer are needed. We conjecture that there
is no general way to reduce the variability of the weights in particle sampling further than we have. We also
presented additional simple examples that illustrate the potential of this new sampling. These examples are
simple in that one is low-dimensional, while the second is linear so that other effective ways of sampling it do
exist. High-dimensional nonlinear problems where our filter may be indispensable will be presented elsewhere,
in the context of specific applications.

8. Acknowledgments

We would like to thank Prof. J. Goodman, who urged us to write a more general version of our previous
work and suggested some notations and nomenclature, Prof. R. Miller, who suggested that we try Dowd’s
model plankton problem as a first step toward an ambitious joint effort and helped us set it up, and Prof.
M. Dowd, who kindly made the data available. This work was supported in part by the Director, Office of
Science, Computational and Technology Research, U.S. Department of Energy under Contract No. DE-AC02-
05CH11231, and by the National Science Foundation under grant DMS-0705910.

References

[1] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for online nonlinear/nongaussian Bayesia
tracking. IEEE Trans. Sig. Proc., 50:174–188, 2002.

[2] P. Bickel, B. Li, and T. Bengtsson. Sharp failure rates for the bootstrap particle filter in high dimensions. IMS Collections:
Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh, 3:318–329, 2008.

[3] S. Bozic. Digital and Kalman Filtering. Butterworth-Heinemann, Oxford, 1994.

TITLE WILL BE SET BY THE PUBLISHER 13

[4] A. J. Chorin. Monte Carlo without chains. Comm. Appl. Math. Comp. Sc., 3:77–93, 2008.
[5] A.J. Chorin and P. Krause. Dimensional reduction for a Bayesian filter. Proc. Nat. Acad. Sci. USA, 101:15013–15017, 2004.
[6] A.J. Chorin and X. Tu. Implicit sampling for particle filters. Proc. Nat. Acad. Sc. USA, 2009. to appear.
[7] A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo Methods in Practice. Springer, New York, 2001.
[8] A. Doucet, S. Godsill, and C. Andrieu. On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comp.,

10:197–208, 2000.
[9] A. Doucet and A. Johansen. Particle filtering and smoothing: Fifteen years later. Handbook of Nonlinear Filtering (eds. D.

Crisan et B. Rozovsky), to appear.
[10] M. Dowd. A sequential Monte Carlo approach for marine ecological prediction. Environmetrics, 17:435–455, 2006.
[11] W. Gilks and C. Berzuini. Following a moving target -Monte Carlo inference for dynamic Bayesian models. J. Roy. Statist.

Soc. B, 63:127–146, 2001.
[12] J. Liu and C. Sabatti. Generalized Gibbs sampler and multigrid Monte Carlo for Bayesian computation. Biometrika, 87:353–

369, 2000.
[13] S. Maceachern, M. Clyde, and J. Liu. Sequential importance sampling for nonparametric Bayes models: the next generation.

Can. J. Stat., 27:251–267, 1999.
[14] C. Snyder, T. Bengtsson, P. Bickel, and J. Anderson. Obstacles to high-dimensional particle filtering. Mon. Wea. Rev.,

136:4629–4640, 2008.
[15] J. Weare. Efficient Monte Carlo sampling by parallel marginalization. Proc. Nat. Acad. Sc. USA, 104:12657–12662, 2007.

