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Preface

This book provides an applications-oriented introduction to digital signal processing
written primarily for electrical engineering undergraduates. Practicing engineers and
graduate students may also find it useful as a first text on the subject.

Digital signal processing is everywhere. Today’s college students hear “DSP” all the
time in their everyday life—from their CD players, to their electronic music synthesizers,
to the sound cards in their PCs. They hear all about “DSP chips”, “oversampling digital
filters”, “1-bit A/D and D/A converters”, “wavetable sound synthesis”, “audio effects
processors”, “all-digital audio studios”. By the time they reach their junior year, they
are already very eager to learn more about DSP.

Approach

The learning of DSP can be made into a rewarding, interesting, and fun experience for
the student by weaving into the material several applications, such as the above, that
serve as vehicles for teaching the basic DSP concepts, while generating and maintaining
student interest. This has been the guiding philosophy and objective in writing this text.
As a result, the book’s emphasis is more on signal processing than discrete-time system
theory, although the basic principles of the latter are adequately covered.

The book teaches by example and takes a hands-on practical approach that empha-
sizes the algorithmic, computational, and programming aspects of DSP. It contains a
large number of worked examples, computer simulations and applications, and several
C and MATLAB functions for implementing various DSP operations. The practical slant
of the book makes the concepts more concrete.

Use

The book may be used at the junior or senior level. It is based on a junior-level DSP
course that I have taught at Rutgers since 1988. The assumed background is only a first
course on linear systems. Sections marked with an asterisk (∗) are more appropriate for
a second or senior elective course on DSP. The rest can be covered at the junior level.
The included computer experiments can form the basis of an accompanying DSP lab
course, as is done at Rutgers.

A solutions manual, which also contains the results of the computer experiments,
is available from the publisher. The C and MATLAB functions may be obtained via
anonymous FTP from the Internet site ece.rutgers.edu in the directory /pub/sjo or

xiii
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by pointing a Web browser to the book’s WWW home page at the URL:
http://www.ece.rutgers.edu/~orfanidi/intro2sp

Contents and Highlights

Chapters 1 and 2 contain a discussion of the two key DSP concepts of sampling and
quantization. The first part of Chapter 1 covers the basic issues of sampling, aliasing,
and analog reconstruction at a level appropriate for juniors. The second part is more
advanced and discusses the practical issues of choosing and defining specifications for
antialiasing prefilters and anti-image postfilters.

Chapter 2 discusses the quantization process and some practical implementations
of A/D and D/A converters, such as the conversion algorithm for bipolar two’s comple-
ment successive approximation converters. The standard model of quantization noise
is presented, as well as the techniques of oversampling, noise shaping, and dithering.
The tradeoff between oversampling ratio and savings in bits is derived. This material is
continued in Section 12.7 where the implementation and operation of delta-sigma noise
shaping quantizers is considered.

Chapter 3 serves as a review of basic discrete-time systems concepts, such as linear-
ity, time-invariance, impulse response, convolution, FIR and IIR filters, causality, and
stability. It can be covered quickly as most of this material is assumed known from a
prerequisite linear systems course.

Chapter 4 focuses on FIR filters and its purpose is to introduce two basic signal
processing methods: block-by-block processing and sample-by-sample processing. In
the block processing part, we discuss various approaches to convolution, transient and
steady-state behavior of filters, and real-time processing on a block-by-block basis using
the overlap-add method and its software implementation. This is further discussed in
Section 9.9 using the FFT.

In the sample processing part, we introduce the basic building blocks of filters:
adders, multipliers, and delays. We discuss block diagrams for FIR filters and their
time-domain operation on a sample-by-sample basis. We put a lot of emphasis on the
concept of sample processing algorithm, which is the repetitive series of computations
that must be carried out on each input sample.

We discuss the concept of circular buffers and their use in implementing delays
and FIR filters. We present a systematic treatment of the subject and carry it on to
the remainder of the book. The use of circular delay-line buffers is old, dating back at
least 25 years with its application to computer music. However, it has not been treated
systematically in DSP texts. It has acquired a new relevance because all modern DSP
chips use it to minimize the number of hardware instructions.

Chapter 5 covers the basics of z-transforms. We emphasize the z-domain view of
causality, stability, and frequency spectrum. Much of this material may be known from
an earlier linear system course.

Chapter 6 shows the equivalence of various ways of characterizing a linear filter
and illustrates their use by example. It also discusses topics such as sinusoidal and
steady-state responses, time constants of filters, simple pole/zero designs of first- and
second-order filters as well as comb and notch filters. The issues of inverse filtering and
causality are also considered.
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Chapter 7 develops the standard filter realizations of canonical, direct, and cascade
forms, and their implementation with linear and circular buffers. Quantization effects
are briefly discussed.

Chapter 8 presents three DSP application areas. The first is on digital waveform
generation, with particular emphasis on wavetable generators. The second is on digital
audio effects, such as flanging, chorusing, reverberation, multitap delays, and dynamics
processors, such as compressors, limiters, expanders, and gates. These areas were cho-
sen for their appeal to undergraduates and because they provide concrete illustrations
of the use of delays, circular buffers, and filtering concepts in the context of audio signal
processing.

The third area is on noise reduction/signal enhancement, which is one of the most
important applications of DSP and is of interest to practicing engineers and scientists
who remove noise from data on a routine basis. Here, we develop the basic principles for
designing noise reduction and signal enhancement filters both in the frequency and time
domains. We discuss the design and circular buffer implementation of notch and comb
filters for removing periodic interference, enhancing periodic signals, signal averaging,
and separating the luminance and chrominance components in digital color TV systems.
We also discuss Savitzky-Golay filters for data smoothing and differentiation.

Chapter 9 covers DFT/FFT algorithms. The first part emphasizes the issues of spec-
tral analysis, frequency resolution, windowing, and leakage. The second part discusses
the computational aspects of the DFT and some of its pitfalls, the difference between
physical and computational frequency resolution, the FFT, and fast convolution.

Chapter 10 covers FIR filter design using the window method, with particular em-
phasis on the Kaiser window. We also discuss the use of the Kaiser window in spectral
analysis.

Chapter 11 discusses IIR filter design using the bilinear transformation based on
Butterworth and Chebyshev filters. By way of introducing the bilinear transformation,
we show how to design practical second-order digital audio parametric equalizer filters
having prescribed widths, center frequencies, and gains. We also discuss the design of
periodic notch and comb filters with prescribed widths.

In the two filter design chapters, we have chosen to present only a few design meth-
ods that are simple enough for our intended level of presentation and effective enough
to be of practical use.

Chapter 12 discusses interpolation, decimation, oversampling DSP systems, sample
rate converters, and delta-sigma quantizers. We discuss the use of oversampling for
alleviating the need for high quality analog prefilters and postfilters. We present several
practical design examples of interpolation filters, including polyphase and multistage
designs. We consider the design of sample rate converters and study the operation of
oversampled delta-sigma quantizers by simulation. This material is too advanced for
juniors but not seniors. All undergraduates, however, have a strong interest in it because
of its use in digital audio systems such as CD and DAT players.

The Appendix has four parts: (a) a review section on random signals; (b) a discus-
sion of random number generators, including uniform, Gaussian, low frequency, and
1/f noise generators; (c) C functions for performing the complex arithmetic in the DFT
routines; (d) listings of MATLAB functions.
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Paths

Several course paths are possible through the text depending on the desired level of
presentation. For example, in the 14-week junior course at Rutgers we cover Sections
1.1–1.4, 2.1–2.4, Chapters 3–7, Sections 8.1–8.2, Chapter 9, and Sections 10.1–10.2 and
11.1–11.4. One may omit certain of these sections and/or add others depending on the
available time and student interest and background. In a second DSP course at the senior
year, one may add Sections 1.5–1.7, 2.5, 8.3, 11.5–11.6, and Chapter 12. In a graduate
course, the entire text can be covered comfortably in one semester.
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1
Sampling and Reconstruction

1.1 Introduction

Digital processing of analog signals proceeds in three stages:

1. The analog signal is digitized, that is, it is sampled and each sample quantized to
a finite number of bits. This process is called A/D conversion.

2. The digitized samples are processed by a digital signal processor.

3. The resulting output samples may be converted back into analog form by an ana-
log reconstructor (D/A conversion).

A typical digital signal processing system is shown below.

sampler
and

quantizeranalog
input

100111011
0110 . . .

110010100
1101 . . .

analog
output

digital
input

digital
output

digital
signal

processor

analog
reconstructor

The digital signal processor can be programmed to perform a variety of signal pro-
cessing operations, such as filtering, spectrum estimation, and other DSP algorithms.
Depending on the speed and computational requirements of the application, the digital
signal processor may be realized by a general purpose computer, minicomputer, special
purpose DSP chip, or other digital hardware dedicated to performing a particular signal
processing task.

The design and implementation of DSP algorithms will be considered in the rest of
this text. In the first two chapters we discuss the two key concepts of sampling and
quantization, which are prerequisites to every DSP operation.

1.2 Review of Analog Signals

We begin by reviewing some pertinent topics from analog system theory. An analog
signal is described by a function of time, say, x(t). The Fourier transform X(Ω) of x(t)
is the frequency spectrum of the signal:

1



2 1. SAMPLING AND RECONSTRUCTION

X(Ω)=
∫∞

−∞
x(t)e−jΩt dt (1.2.1)

where Ω is the radian frequency† in [radians/second]. The ordinary frequency f in
[Hertz] or [cycles/sec] is related to Ω by

Ω = 2πf (1.2.2)

The physical meaning ofX(Ω) is brought out by the inverse Fourier transform, which
expresses the arbitrary signal x(t) as a linear superposition of sinusoids of different
frequencies:

x(t)=
∫∞

−∞
X(Ω)ejΩt

dΩ
2π

(1.2.3)

The relative importance of each sinusoidal component is given by the quantityX(Ω).
The Laplace transform is defined by

X(s)=
∫∞

−∞
x(t)e−st dt

It reduces to the Fourier transform, Eq. (1.2.1), under the substitution s = jΩ. The
s-plane pole/zero properties of transforms provide additional insight into the nature of
signals. For example, a typical exponentially decaying sinusoid of the form

x(t)= e−α1tejΩ1tu(t)= es1tu(t) t

where s1 = −α1 + jΩ1, has Laplace transform

X(s)= 1

s− s1

Im s

Re s

s1 jΩ1

-α1 0

s - plane

with a pole at s = s1, which lies in the left-hand s-plane. Next, consider the response of
a linear system to an input signal x(t):

input output

linear
system

h(t)

x(t) y(t)

†We use the notation Ω to denote the physical frequency in units of [radians/sec], and reserve the
notation ω to denote digital frequency in [radians/sample].
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The system is characterized completely by the impulse response function h(t). The
output y(t) is obtained in the time domain by convolution:

y(t)=
∫∞

−∞
h(t − t′)x(t′)dt′

or, in the frequency domain by multiplication:

Y(Ω)= H(Ω)X(Ω) (1.2.4)

where H(Ω) is the frequency response of the system, defined as the Fourier transform
of the impulse response h(t):

H(Ω)=
∫∞

−∞
h(t)e−jΩt dt (1.2.5)

The steady-state sinusoidal response of the filter, defined as its response to sinu-
soidal inputs, is summarized below:

sinusoid in sinusoid out

linear
system
H(Ω)

x(t) = e
jΩt

y(t) = H(Ω)e
jΩt

This figure illustrates the filtering action of linear filters, that is, a given frequency
component Ω is attenuated (or, magnified) by an amount H(Ω) by the filter. More
precisely, an input sinusoid of frequency Ω will reappear at the output modified in
magnitude by a factor |H(Ω)| and shifted in phase by an amount argH(Ω):

x(t)= ejΩt ⇒ y(t)= H(Ω)ejΩt = |H(Ω)|ejΩt+ jargH(Ω)

By linear superposition, if the input consists of the sum of two sinusoids of frequen-
cies Ω1 and Ω2 and relative amplitudes A1 and A2,

x(t)= A1ejΩ1t +A2ejΩ2t

then, after filtering, the steady-state output will be

y(t)= A1H(Ω1)ejΩ1t +A2H(Ω2)ejΩ2t

Notice how the filter changes the relative amplitudes of the sinusoids, but not their
frequencies. The filtering effect may also be seen in the frequency domain using Eq. (1.2.4),
as shown below:

Ω ΩΩ1 Ω1Ω2 Ω2

A1 A2

H(Ω)

X(Ω) Y(Ω)

A1H(Ω1)

A2H(Ω2)
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The input spectrumX(Ω) consists of two sharp spectral lines at frequenciesΩ1 and
Ω2, as can be seen by taking the Fourier transform of x(t):

X(Ω)= 2πA1δ(Ω−Ω1)+2πA2δ(Ω−Ω2)

The corresponding output spectrum Y(Ω) is obtained from Eq. (1.2.4):

Y(Ω) = H(Ω)X(Ω)= H(Ω)(2πA1δ(Ω−Ω1)+2πA2δ(Ω−Ω2)
)

= 2πA1H(Ω1)δ(Ω−Ω1)+2πA2H(Ω2)δ(Ω−Ω2)

What makes the subject of linear filtering useful is that the designer has complete
control over the shape of the frequency responseH(Ω) of the filter. For example, if the
sinusoidal componentΩ1 represents a desired signal andΩ2 an unwanted interference,
then a filter may be designed that lets Ω1 pass through, while at the same time it filters
out the Ω2 component. Such a filter must have H(Ω1)= 1 and H(Ω2)= 0.

1.3 Sampling Theorem

Next, we study the sampling process, illustrated in Fig. 1.3.1, where the analog signal
x(t) is periodically measured every T seconds. Thus, time is discretized in units of the
sampling interval T:

t = nT, n = 0,1,2, . . .

Considering the resulting stream of samples as an analog signal, we observe that
the sampling process represents a very drastic chopping operation on the original signal
x(t), and therefore, it will introduce a lot of spurious high-frequency components into
the frequency spectrum. Thus, for system design purposes, two questions must be
answered:

1. What is the effect of sampling on the original frequency spectrum?

2. How should one choose the sampling interval T?

We will try to answer these questions intuitively, and then more formally using
Fourier transforms. We will see that although the sampling process generates high
frequency components, these components appear in a very regular fashion, that is, ev-
ery frequency component of the original signal is periodically replicated over the entire
frequency axis, with period given by the sampling rate:

fs = 1

T
(1.3.1)

This replication property will be justified first for simple sinusoidal signals and then
for arbitrary signals. Consider, for example, a single sinusoid x(t)= e2πjft of frequency
f . Before sampling, its spectrum consists of a single sharp spectral line at f . But after
sampling, the spectrum of the sampled sinusoid x(nT)= e2πjfnT will be the periodic
replication of the original spectral line at intervals of fs, as shown in Fig. 1.3.2.
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t

x(t)

t
T

nT2TT0

x(nT)

. . .

x(t) x(nT)

T

analog
signal

sampled
signal

ideal sampler

Fig. 1.3.1 Ideal sampler.

f

f-3fs f-2fs f-fs f f+fs f+2fs f+3fs

. . . . . .

frequency

Fig. 1.3.2 Spectrum replication caused by sampling.

Note also that starting with the replicated spectrum of the sampled signal, one can-
not tell uniquely what the original frequency was. It could be any one of the replicated
frequencies, namely, f ′ = f +mfs, m = 0,±1,±2, . . . . That is so because any one of
them has the same periodic replication when sampled. This potential confusion of the
original frequency with another is known as aliasing and can be avoided if one satisfies
the conditions of the sampling theorem.

The sampling theorem provides a quantitative answer to the question of how to
choose the sampling time interval T. Clearly, T must be small enough so that signal
variations that occur between samples are not lost. But how small is small enough? It
would be very impractical to choose T too small because then there would be too many
samples to be processed. This is illustrated in Fig. 1.3.3, where T is small enough to
resolve the details of signal 1, but is unnecessarily small for signal 2.

t
T

signal 1

signal 2

Fig. 1.3.3 Signal 2 is oversampled.

Another way to say the same thing is in terms of the sampling rate fs, which is
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measured in units of [samples/sec] or [Hertz] and represents the “density” of samples
per unit time. Thus, a rapidly varying signal must be sampled at a high sampling rate
fs, whereas a slowly varying signal may be sampled at a lower rate.

1.3.1 Sampling Theorem

A more quantitative criterion is provided by the sampling theorem which states that for
accurate representation of a signal x(t) by its time samples x(nT), two conditions must
be met:

1. The signal x(t) must be bandlimited, that is, its frequency spectrum must be
limited to contain frequencies up to some maximum frequency, say fmax, and no
frequencies beyond that. A typical bandlimited spectrum is shown in Fig. 1.3.4.

2. The sampling rate fs must be chosen to be at least twice the maximum frequency
fmax, that is,

fs ≥ 2fmax (1.3.2)

or, in terms of the sampling time interval: T ≤ 1

2fmax
.

fmax-fmax
0

f

X(f)

Fig. 1.3.4 Typical bandlimited spectrum.

The minimum sampling rate allowed by the sampling theorem, that is, fs = 2fmax, is
called the Nyquist rate. For arbitrary values of fs, the quantity fs/2 is called the Nyquist
frequency or folding frequency. It defines the endpoints of the Nyquist frequency inter-
val :

[− fs
2
,
fs
2

] = Nyquist Interval

The Nyquist frequency fs/2 also defines the cutoff frequencies of the lowpass analog
prefilters and postfilters that are required in DSP operations. The values of fmax and fs
depend on the application. Typical sampling rates for some common DSP applications
are shown in the following table.
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application fmax fs

geophysical 500 Hz 1 kHz
biomedical 1 kHz 2 kHz
mechanical 2 kHz 4 kHz
speech 4 kHz 8 kHz
audio 20 kHz 40 kHz
video 4 MHz 8 MHz

1.3.2 Antialiasing Prefilters

The practical implications of the sampling theorem are quite important. Since most
signals are not bandlimited, they must be made so by lowpass filtering before sampling.

In order to sample a signal at a desired rate fs and satisfy the conditions of the
sampling theorem, the signal must be prefiltered by a lowpass analog filter, known as
an antialiasing prefilter. The cutoff frequency of the prefilter, fmax, must be taken to
be at most equal to the Nyquist frequency fs/2, that is, fmax ≤ fs/2. This operation is
shown in Fig. 1.3.5.

The output of the analog prefilter will then be bandlimited to maximum frequency
fmax and may be sampled properly at the desired rate fs. The spectrum replication
caused by the sampling process can also be seen in Fig. 1.3.5. It will be discussed in
detail in Section 1.5.

analog
lowpass
prefilteranalog

signal
digital
signal

to DSP
bandlimited

signal

sampler
and

quantizer

rate fscutoff fmax = fs /2

-fs

f

fs0

replicated
spectrum

f
fs/2-fs/2 0

prefiltered spectrum

f
0

input spectrum

prefilter

xin(t) x(t) x(nT)

Fig. 1.3.5 Antialiasing prefilter.

It should be emphasized that the rate fs must be chosen to be high enough so that,
after the prefiltering operation, the surviving signal spectrum within the Nyquist interval
[−fs/2, fs/2] contains all the significant frequency components for the application at
hand.

Example 1.3.1: In a hi-fi digital audio application, we wish to digitize a music piece using a
sampling rate of 40 kHz. Thus, the piece must be prefiltered to contain frequencies up
to 20 kHz. After the prefiltering operation, the resulting spectrum of frequencies is more
than adequate for this application because the human ear can hear frequencies only up to
20 kHz. 	
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Example 1.3.2: Similarly, the spectrum of speech prefiltered to about 4 kHz results in very
intelligible speech. Therefore, in digital speech applications it is adequate to use sampling
rates of about 8 kHz and prefilter the speech waveform to about 4 kHz. 	


What happens if we do not sample in accordance with the sampling theorem? If we
undersample, we may be missing important time variations between sampling instants
and may arrive at the erroneous conclusion that the samples represent a signal which
is smoother than it actually is. In other words, we will be confusing the true frequency
content of the signal with a lower frequency content. Such confusion of signals is called
aliasing and is depicted in Fig. 1.3.6.

true signal

t
T

T

2T 3T 4T 5T 6T 7T 8T 9T 10T

aliased signal

0

Fig. 1.3.6 Aliasing in the time domain.

1.3.3 Hardware Limits

Next, we consider the restrictions imposed on the choice of the sampling rate fs by the
hardware. The sampling theorem provides a lower bound on the allowed values of fs.
The hardware used in the application imposes an upper bound.

In real-time applications, each input sample must be acquired, quantized, and pro-
cessed by the DSP, and the output sample converted back into analog format. Many
of these operations can be pipelined to reduce the total processing time. For example,
as the DSP is processing the present sample, the D/A may be converting the previous
output sample, while the A/D may be acquiring the next input sample.

In any case, there is a total processing or computation time, say Tproc seconds, re-
quired for each sample. The time interval T between input samples must be greater
than Tproc; otherwise, the processor would not be able to keep up with the incoming
samples. Thus,

T ≥ Tproc

or, expressed in terms of the computation or processing rate, fproc = 1/Tproc, we obtain
the upper bound fs ≤ fproc, which combined with Eq. (1.3.2) restricts the choice of fs to
the range:

2fmax ≤ fs ≤ fproc

In succeeding sections we will discuss the phenomenon of aliasing in more detail,
provide a quantitative proof of the sampling theorem, discuss the spectrum replication
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property, and consider the issues of practical sampling and reconstruction and their
effect on the overall quality of a digital signal processing system. Quantization will be
considered later on.

1.4 Sampling of Sinusoids

The two conditions of the sampling theorem, namely, that x(t) be bandlimited and
the requirement fs ≥ 2fmax, can be derived intuitively by considering the sampling of
sinusoidal signals only. Figure 1.4.1 shows a sinusoid of frequency f ,

x(t)= cos(2πft)

that has been sampled at the three rates: fs = 8f , fs = 4f , and fs = 2f . These rates
correspond to taking 8, 4, and 2 samples in each cycle of the sinusoid.

fs = 4f fs = 2ffs = 8f

Fig. 1.4.1 Sinusoid sampled at rates fs = 8f ,4f ,2f .

Simple inspection of these figures leads to the conclusion that the minimum ac-
ceptable number of samples per cycle is two. The representation of a sinusoid by two
samples per cycle is hardly adequate,† but at least it does incorporate the basic up-down
nature of the sinusoid. The number of samples per cycle is given by the quantity fs/f :

fs
f

= samples/sec

cycles/sec
= samples

cycle

Thus, to sample a single sinusoid properly, we must require

fs
f

≥ 2 samples/cycle ⇒ fs ≥ 2f (1.4.1)

Next, consider the case of an arbitrary signal x(t). According to the inverse Fourier
transform of Eq. (1.2.3), x(t) can be expressed as a linear combination of sinusoids.
Proper sampling of x(t) will be achieved only if every sinusoidal component of x(t) is
properly sampled.

This requires that the signal x(t) be bandlimited. Otherwise, it would contain si-
nusoidal components of arbitrarily high frequency f , and to sample those accurately,
we would need, by Eq. (1.4.1), arbitrarily high rates fs. If the signal is bandlimited to

†It also depends on the phase of the sinusoid. For example, sampling at the zero crossings instead of at
the peaks, would result in zero values for the samples.
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some maximum frequency fmax, then by choosing fs ≥ 2fmax, we are accurately sam-
pling the fastest-varying component of x(t), and thus a fortiori, all the slower ones. As
an example, consider the special case:

x(t)= A1 cos(2πf1t)+A2 cos(2πf2t)+· · · +Amax cos(2πfmaxt)

where fi are listed in increasing order. Then, the conditions

2f1 ≤ 2f2 ≤ · · · ≤ 2fmax ≤ fs
imply that every component of x(t), and hence x(t) itself, is properly sampled.

1.4.1 Analog Reconstruction and Aliasing

Next, we discuss the aliasing effects that result if one violates the sampling theorem
conditions (1.3.2) or (1.4.1). Consider the complex version of a sinusoid:

x(t)= ejΩt = e2πjft

and its sampled version obtained by setting t = nT,

x(nT)= ejΩTn = e2πjfTn

Define also the following family of sinusoids, for m = 0,±1,±2, . . . ,

xm(t)= e2πj(f +mfs)t

and their sampled versions,

xm(nT)= e2πj(f +mfs)Tn

Using the property fsT = 1 and the trigonometric identity,

e2πjmfsTn = e2πjmn = 1

we find that, although the signals xm(t) are different from each other, their sampled
values are the same; indeed,

xm(nT)= e2πj(f +mfs)Tn = e2πjfTne2πjmfsTn = e2πjfTn = x(nT)

In terms of their sampled values, the signals xm(t) are indistinguishable, or aliased.
Knowledge of the sample values x(nT)= xm(nT) is not enough to determine which
among them was the original signal that was sampled. It could have been any one of the
xm(t). In other words, the set of frequencies,

f , f ± fs, f ± 2fs, . . . , f ±mfs, . . . (1.4.2)

are equivalent to each other. The effect of sampling was to replace the original fre-
quency f with the replicated set (1.4.2). This is the intuitive explanation of the spectrum



1.4. SAMPLING OF SINUSOIDS 11

ideal
sampler

sampled
signal

analog
signal

analog
signal

ideal
reconstructor

lowpass filter
cutoff = fs/2

rate fs

f

xa(t)x(nT)Tx(t)

fs/2-fs/2
0

Fig. 1.4.2 Ideal reconstructor as a lowpass filter.

replication property depicted in Fig. 1.3.2. A more mathematical explanation will be
given later using Fourier transforms.

Given that the sample values x(nT) do not uniquely determine the analog signal
they came from, the question arises: What analog signal would result if these samples
were fed into an analog reconstructor, as shown in Fig. 1.4.2?

We will see later that an ideal analog reconstructor extracts from a sampled signal all
the frequency components that lie within the Nyquist interval [−fs/2, fs/2] and removes
all frequencies outside that interval. In other words, an ideal reconstructor acts as a
lowpass filter with cutoff frequency equal to the Nyquist frequency fs/2.

Among the frequencies in the replicated set (1.4.2), there is a unique one that lies
within the Nyquist interval.† It is obtained by reducing the original f modulo-fs, that is,
adding to or subtracting from f enough multiples of fs until it lies within the symmetric
Nyquist interval [−fs/2, fs/2]. We denote this operation by‡

fa = f mod(fs) (1.4.3)

This is the frequency, in the replicated set (1.4.2), that will be extracted by the analog
reconstructor. Therefore, the reconstructed sinusoid will be:

xa(t)= e2πjfat

It is easy to see that fa = f only if f lies within the Nyquist interval, that is, only if
|f| ≤ fs/2, which is equivalent to the sampling theorem requirement. If f lies outside
the Nyquist interval, that is, |f| > fs/2, violating the sampling theorem condition, then
the “aliased” frequency fa will be different from f and the reconstructed analog signal
xa(t) will be different from x(t), even though the two agree at the sampling times,
xa(nT)= x(nT).

It is instructive also to plot in Fig. 1.4.3 the aliased frequency fa = f mod(fs) versus
the true frequency f . Observe how the straight line ftrue = f is brought down in segments
by parallel translation of the Nyquist periods by multiples of fs.

In summary, potential aliasing effects that can arise at the reconstruction phase of
DSP operations can be avoided if one makes sure that all frequency components of the
signal to be sampled satisfy the sampling theorem condition, |f| ≤ fs/2, that is, all

†The only exception is when it falls exactly on the left or right edge of the interval, f = ±fs/2.
‡This differs slightly from a true modulo operation; the latter would bring f into the right-sided Nyquist

interval [0, fs].
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fs/2

fs/2

fs 2fs-fs/2

-fs/2

-fs
0

f

fa = f mod( fs)

f tru
e
= f

Fig. 1.4.3 f mod(fs) versus f .

frequency components lie within the Nyquist interval. This is ensured by the lowpass
antialiasing prefilter, which removes all frequencies beyond the Nyquist frequency fs/2,
as shown in Fig. 1.3.5.

Example 1.4.1: Consider a sinusoid of frequency f = 10 Hz sampled at a rate of fs = 12 Hz. The
sampled signal will contain all the replicated frequencies 10+m12 Hz,m = 0,±1,±2, . . . ,
or,

. . . ,−26, −14, −2, 10, 22, 34, 46, . . .

and among these only fa = 10 mod(12)= 10−12 = −2 Hz lies within the Nyquist interval
[−6,6] Hz. This sinusoid will appear at the output of a reconstructor as a −2 Hz sinusoid
instead of a 10 Hz one.

On the other hand, had we sampled at a proper rate, that is, greater than 2f = 20 Hz, say
at fs = 22 Hz, then no aliasing would result because the given frequency of 10 Hz already
lies within the corresponding Nyquist interval of [−11,11] Hz. 	


Example 1.4.2: Suppose a music piece is sampled at rate of 40 kHz without using a prefilter with
cutoff of 20 kHz. Then, inaudible components having frequencies greater than 20 kHz can
be aliased into the Nyquist interval [−20,20] distorting the true frequency components in
that interval. For example, all components in the inaudible frequency range 20 ≤ f ≤ 60
kHz will be aliased with −20 = 20−40 ≤ f−fs ≤ 60−40 = 20 kHz, which are audible. 	


Example 1.4.3: The following five signals, where t is in seconds, are sampled at a rate of 4 Hz:

− sin(14πt), − sin(6πt), sin(2πt), sin(10πt), sin(18πt)

Show that they are all aliased with each other in the sense that their sampled values are
the same.
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Solution: The frequencies of the five sinusoids are:

−7, −3, 1, 5, 9 Hz

They differ from each other by multiples of fs = 4 Hz. Their sampled spectra will be
indistinguishable from each other because each of these frequencies has the same periodic
replication in multiples of 4 Hz.

Writing the five frequencies compactly:

fm = 1 + 4m, m = −2,−1,0,1,2

we can express the five sinusoids as:

xm(t)= sin(2πfmt)= sin(2π(1 + 4m)t), m = −2,−1,0,1,2

Replacing t = nT = n/fs = n/4 sec, we obtain the sampled signals:

xm(nT) = sin(2π(1 + 4m)nT)= sin(2π(1 + 4m)n/4)

= sin(2πn/4 + 2πmn)= sin(2πn/4)

which are the same, independently of m. The following figure shows the five sinusoids
over the interval 0 ≤ t ≤ 1 sec.

t

10

They all intersect at the sampling time instants t = nT = n/4 sec. We will reconsider this
example in terms of rotating wheels in Section 1.4.2. 	


Example 1.4.4: Let x(t) be the sum of sinusoidal signals

x(t)= 4 + 3 cos(πt)+2 cos(2πt)+ cos(3πt)

where t is in milliseconds. Determine the minimum sampling rate that will not cause any
aliasing effects, that is, the Nyquist rate. To observe such aliasing effects, suppose this
signal is sampled at half its Nyquist rate. Determine the signal xa(t) that would be aliased
with x(t).

Solution: The frequencies of the four terms are: f1 = 0, f2 = 0.5 kHz, f3 = 1 kHz, and f4 = 1.5
kHz (they are in kHz because t is in msec). Thus, fmax = f4 = 1.5 kHz and the Nyquist rate
will be 2fmax = 3 kHz. If x(t) is now sampled at half this rate, that is, at fs = 1.5 kHz,
then aliasing will occur. The corresponding Nyquist interval is [−0.75,0.75] kHz. The
frequencies f1 and f2 are already in it, and hence they are not aliased, in the sense that
f1a = f1 and f2a = f2. But f3 and f4 lie outside the Nyquist interval and they will be aliased
with
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f3a = f3 mod(fs)= 1 mod(1.5)= 1 − 1.5 = −0.5 kHz

f4a = f4 mod(fs)= 1.5 mod(1.5)= 1.5 − 1.5 = 0 kHz

The aliased signal xa(t) is obtained from x(t) by replacing f1, f2, f3, f4 by f1a, f2a, f3a, f4a.
Thus, the signal

x(t)= 4 cos(2πf1t)+3 cos(2πf2t)+2 cos(2πf3t)+ cos(2πf4t)

will be aliased with

xa(t) = 4 cos(2πf1at)+3 cos(2πf2at)+2 cos(2πf3at)+ cos(2πf4at)

= 4 + 3 cos(πt)+2 cos(−πt)+ cos(0)

= 5 + 5 cos(πt)

The signals x(t) and xa(t) are shown below. Note that they agree only at their sampled
values, that is, xa(nT)= x(nT). The aliased signal xa(t) is smoother, that is, it has lower
frequency content than x(t) because its spectrum lies entirely within the Nyquist interval,
as shown below:

2T 3T 4T 5T 6T 7T 8T 9T
t

T0

x(t) xa(t)

The form of xa(t) can also be derived in the frequency domain by replicating the spectrum
of x(t) at intervals of fs = 1.5 kHz, and then extracting whatever part of the spectrum lies
within the Nyquist interval. The following figure shows this procedure.

0

1/2
1/2 1/2

1/2

2/2 2/22/2 2/2

3/2 3/2

4

0.5 1 1.5 kHz

f

-1.5 -1 -0.5-0.75 0.75

Nyquist Interval

ideal
reconstructor

Each spectral line of x(t) is replicated in the fashion of Fig. 1.3.2. The two spectral lines
of strength 1/2 at f4 = ±1.5 kHz replicate onto f = 0 and the amplitudes add up to give a
total amplitude of (4 + 1/2 + 1/2)= 5. Similarly, the two spectral lines of strength 2/2 at
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f3 = ±1 kHz replicate onto f = ∓0.5 kHz and the amplitudes add to give (3/2+2/2)= 2.5
at f = ±0.5 kHz. Thus, the ideal reconstructor will extract f1 = 0 of strength 5 and
f2 = ±0.5 of equal strengths 2.5, which recombine to give:

5 + 2.5e2πj0.5t + 2.5e−2πj0.5t = 5 + 5 cos(πt)

This example shows how aliasing can distort irreversibly the amplitudes of the original
frequency components within the Nyquist interval. 	


Example 1.4.5: The signal
x(t)= sin(πt)+4 sin(3πt)cos(2πt)

where t is in msec, is sampled at a rate of 3 kHz. Determine the signal xa(t) aliased with
x(t). Then, determine two other signals x1(t) and x2(t) that are aliased with the same
xa(t), that is, such that x1(nT)= x2(nT)= xa(nT).

Solution: To determine the frequency content of x(t), we must express it as a sum of sinusoids.
Using the trigonometric identity 2 sina cosb = sin(a+ b)+ sin(a− b), we find:

x(t)= sin(πt)+2
[
sin(3πt + 2πt)+ sin(3πt − 2πt)

] = 3 sin(πt)+2 sin(5πt)

Thus, the frequencies present in x(t) are f1 = 0.5 kHz and f2 = 2.5 kHz. The first already
lies in the Nyquist interval [−1.5,1,5] kHz so that f1a = f1. The second lies outside and
can be reduced mod fs to give f2a = f2 mod(fs)= 2.5 mod(3)= 2.5 − 3 = −0.5. Thus, the
given signal will “appear” as:

xa(t) = 3 sin(2πf1at)+2 sin(2πf2at)

= 3 sin(πt)+2 sin(−πt)= 3 sin(πt)−2 sin(πt)

= sin(πt)

To find two other signals that are aliased with xa(t), we may shift the original frequencies
f1, f2 by multiples of fs. For example,

x1(t) = 3 sin(7πt)+2 sin(5πt)

x2(t) = 3 sin(13πt)+2 sin(11πt)

where we replaced {f1, f2} by {f1+fs, f2} = {3.5,2.5} for x1(t), and by {f1+2fs, f2+fs} =
{6.5,5.5} for x2(t). 	


Example 1.4.6: Consider a periodic square wave with periodT0 = 1 sec, defined within its basic
period 0 ≤ t ≤ 1 by

x(t)=
⎧⎪⎨⎪⎩

1, for 0 < t < 0.5
−1, for 0.5 < t < 1

0, for t = 0, 0.5, 1

1

-1

0 0.5 1
t

where t is in seconds. The square wave is sampled at rate fs and the resulting samples are
reconstructed by an ideal reconstructor as in Fig. 1.4.2. Determine the signal xa(t) that
will appear at the output of the reconstructor for the two cases fs = 4 Hz and fs = 8 Hz.
Verify that xa(t) and x(t) agree at the sampling times t = nT.
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Solution: The Fourier series expansion of the square wave contains odd harmonics at frequen-
cies fm =m/T0 =m Hz, m = 1,3,5,7, . . . . It is given by

x(t) =
∑

m=1,3,5,...
bm sin(2πmt)=

= b1 sin(2πt)+b3 sin(6πt)+b5 sin(10πt)+· · ·
(1.4.4)

where bm = 4/(πm), m = 1,3,5, . . . . Because of the presence of an infinite number of
harmonics, the square wave is not bandlimited and, thus, cannot be sampled properly at
any rate. For the rate fs = 4 Hz, only the f1 = 1 harmonic lies within the Nyquist interval
[−2,2] Hz. For the rate fs = 8 Hz, only f1 = 1 and f3 = 3 Hz lie in [−4,4] Hz. The
following table shows the true frequencies and the corresponding aliased frequencies in
the two cases:

fs f 1 3 5 7 9 11 13 15 · · ·
4 Hz f mod(4) 1 −1 1 −1 1 −1 1 −1 · · ·
8 Hz f mod(8) 1 3 −3 −1 1 3 −3 −1 · · ·

Note the repeated patterns of aliased frequencies in the two cases. If a harmonic is aliased
with ±f1 = ±1, then the corresponding term in Eq. (1.4.4) will appear (at the output of the
reconstructor) as sin(±2πf1t)= ± sin(2πt). And, if it is aliased with ±f3 = ±3, the term
will appear as sin(±2πf3t)= ± sin(6πt). Thus, for fs = 4, the aliased signal will be

xa(t) = b1 sin(2πt)−b3 sin(2πt)+b5 sin(2πt)−b7 sin(2πt)+· · ·
= (b1 − b3 + b5 − b7 + b9 − b11 + · · · )sin(2πt)

= A sin(2πt)

where

A =
∞∑
k=0

(
b1+4k − b3+4k

) = 4

π

∞∑
k=0

[
1

1 + 4k
− 1

3 + 4k

]
(1.4.5)

Similarly, for fs = 8, grouping together the 1 and 3 Hz terms, we find the aliased signal

xa(t) = (b1 − b7 + b9 − b15 + · · · )sin(2πt)+
+ (b3 − b5 + b11 − b13 + · · · )sin(6πt)

= B sin(2πt)+C sin(6πt)

where

B =
∞∑
k=0

(
b1+8k − b7+8k

) = 4

π

∞∑
k=0

[
1

1 + 8k
− 1

7 + 8k

]

C =
∞∑
k=0

(
b3+8k − b5+8k

) = 4

π

∞∑
k=0

[
1

3 + 8k
− 1

5 + 8k

] (1.4.6)
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There are two ways to determine the aliased coefficients A, B, C. One is to demand that
the sampled signals xa(nT) and x(nT) agree. For example, in the first case we have
T = 1/fs = 1/4, and therefore, xa(nT)= A sin(2πn/4)= A sin(πn/2). The condition
xa(nT)= x(nT) evaluated at n = 1 impliesA = 1. The following figure shows x(t), xa(t),
and their samples:

t

0 1/4 1/2 1

Similarly, in the second case we have T = 1/fs = 1/8, resulting in the sampled aliased
signal xa(nT)= B sin(πn/4)+C sin(3πn/4). Demanding the condition xa(nT)= x(nT)
at n = 1,2 gives the two equations

B sin(π/4)+C sin(3π/4)= 1

B sin(π/2)+C sin(3π/2)= 1
⇒

B+C = √
2

B−C = 1

which can be solved to give B = (
√

2 + 1)/2 and C = (
√

2 − 1)/2. The following figure
shows x(t), xa(t), and their samples:

t
0 1/8 11/2

The second way of determining A,B,C is by evaluating the infinite sums of Eqs. (1.4.5)
and (1.4.6). All three are special cases of the more general sum:

b(m,M)≡ 4

π

∞∑
k=0

[
1

m+Mk − 1

M −m+Mk
]

with M >m > 0. It can be computed as follows. Write

1

m+Mk − 1

M −m+Mk =
∫∞

0

(
e−mx − e−(M−m)x)e−Mkx dx

then, interchange summation and integration and use the geometric series sum (for x > 0)

∞∑
k=0

e−Mkx = 1

1 − e−Mx

to get
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b(m,M)= 4

π

∫ ∞

0

e−mx − e−(M−m)x

1 − e−Mx dx

Looking this integral up in a table of integrals [30], we find:

b(m,M)= 4

M
cot

(
mπ
M

)

The desired coefficients A,B,C are then:

A = b(1,4)= cot
(π

4

) = 1

B = b(1,8)= 1

2
cot

(π
8

) = √
2 + 1

2

C = b(3,8)= 1

2
cot

(3π
8

) = √
2 − 1

2

The above results generalize to any sampling rate fs = M Hz, where M is a multiple of 4.
For example, if fs = 12, we obtain

xa(t)= b(1,12)sin(2πt)+b(3,12)sin(6πt)+b(5,12)sin(10πt)

and more generally

xa(t)=
∑

m=1,3,...,(M/2)−1

b(m,M)sin(2πmt)

The coefficientsb(m,M) tend to the original Fourier series coefficientsbm in the continuous-
time limit, M → ∞. Indeed, using the approximation cot(x)≈ 1/x, valid for small x, we
obtain the limit

lim
M→∞

b(m,M)= 4

M
· 1

πm/M
= 4

πm
= bm

The table below shows the successive improvement of the values of the aliased harmonic
coefficients as the sampling rate increases:

coefficients 4 Hz 8 Hz 12 Hz 16 Hz ∞
b1 1 1.207 1.244 1.257 1.273

b3 – 0.207 0.333 0.374 0.424

b5 – – 0.089 0.167 0.255

b7 – – – 0.050 0.182

In this example, the sampling rates of 4 and 8 Hz, and any multiple of 4, were chosen so
that all the harmonics outside the Nyquist intervals got aliased onto harmonics within the
intervals. For other values of fs, such as fs = 13 Hz, it is possible for the aliased harmonics
to fall on non-harmonic frequencies within the Nyquist interval; thus, changing not only
the relative balance of the Nyquist interval harmonics, but also the frequency values. 	
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When we develop DFT algorithms, we will see that the aliased Fourier series coef-
ficients for the above type of problem can be obtained by performing a DFT, provided
that the periodic analog signal remains a periodic discrete-time signal after sampling.

This requires that the sampling frequency fs be an integral multiple of the fundamen-
tal harmonic of the given signal, that is, fs = Nf1. In such a case, the aliased coefficients
can be obtained by anN-point DFT of the firstN time samples x(nT), n = 0,1, . . . ,N−1
of the analog signal. See Section 9.7.

Example 1.4.7: A sound wave has the form:

x(t) = 2A cos(10πt)+2B cos(30πt)

+ 2C cos(50πt)+2D cos(60πt)+2E cos(90πt)+2F cos(125πt)

where t is in milliseconds. What is the frequency content of this signal? Which parts of it
are audible and why?

This signal is prefiltered by an analog prefilter H(f). Then, the output y(t) of the pre-
filter is sampled at a rate of 40 kHz and immediately reconstructed by an ideal analog
reconstructor, resulting into the final analog output ya(t), as shown below:

prefilter
H(f)

40 kHz
sampler

analog
reconstructor

x(t) y(t) ya(t)y(nT)

digitalanalog analog analog

Determine the output signals y(t) and ya(t) in the following cases:

(a) When there is no prefilter, that is, H(f)= 1 for all f .

(b) When H(f) is the ideal prefilter with cutoff fs/2 = 20 kHz.

(c) When H(f) is a practical prefilter with specifications as shown below:

20 40 60

60 dB/octave

(-60 dB)

(0 dB)

Analog Prefilter

80 kHz

f

H(f)

0

1

That is, it has a flat passband over the 20 kHz audio range and drops monotonically
at a rate of 60 dB per octave beyond 20 kHz. Thus, at 40 kHz, which is an octave
away, the filter’s response will be down by 60 dB.

For the purposes of this problem, the filter’s phase response may be ignored in deter-
mining the output y(t). Does this filter help in removing the aliased components?

What happens if the filter’s attenuation rate is reduced to 30 dB/octave?

Solution: The six terms of x(t) have frequencies:
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fA = 5 kHz

fB = 15 kHz

fC = 25 kHz

fD = 30 kHz

fE = 45 kHz

fF = 62.5 kHz

Only fA and fB are audible; the rest are inaudible. Our ears filter out all frequencies beyond
20 kHz, and we hear x(t) as though it were the signal:

x1(t)= 2A cos(10πt)+2B cos(30πt)

Each term of x(t) is represented in the frequency domain by two peaks at positive and
negative frequencies, for example, the A-term has spectrum:

2A cos(2πfAt)= Ae2πjfAt +Ae−2πjfAt −→ Aδ(f − fA)+Aδ(f + fA)

Therefore, the spectrum of the input x(t) will be as shown below:

20-20 30 50 70-30 10-10 40-40 60-60-70 -50 kHz

Nyquist
interval

ideal prefilter

AA CC E FEF BB DD

f

0

The sampling process will replicate each of these peaks at multiples of fs = 40 kHz. The
four terms C, D, E, F lie outside the [−20,20] kHz Nyquist interval and therefore will be
aliased with the following frequencies inside the interval:

fC = 25 ⇒ fC,a = fC mod (fs)= fC − fs = 25 − 40 = −15

fD = 30 ⇒ fD,a = fD mod (fs)= fD − fs = 30 − 40 = −10

fE = 45 ⇒ fE,a = fE mod (fs)= fE − fs = 45 − 40 = 5

fF = 62.5 ⇒ fF,a = fF mod (fs)= fF − 2fs = 62.5 − 2 × 40 = −17.5

In case (a), if we do not use any prefilter at all, we will have y(t)= x(t) and the recon-
structed signal will be:

ya(t) = 2A cos(10πt)+2B cos(30πt)

+ 2C cos(−2π15t)+2D cos(−2π10t)

+ 2E cos(2π5t)+2F cos(−2π17.5t)

= 2(A+ E)cos(10πt)+2(B+C)cos(30πt)

+ 2D cos(20πt)+2F cos(35πt)
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where we replaced each out-of-band frequency with its aliased self, for example,

2C cos(2πfCt)→ 2C cos(2πfC,at)

The relative amplitudes of the 5 and 15 kHz audible components have changed and, in
addition, two new audible components at 10 and 17.5 kHz have been introduced. Thus,
ya(t) will sound very different from x(t).

In case (b), if an ideal prefilter with cutoff fs/2 = 20 kHz is used, then its output will be
the same as the audible part of x(t), that is, y(t)= x1(t). The filter’s effect on the input
spectrum is to remove completely all components beyond the 20 kHz Nyquist frequency,
as shown below:

20-20 30 50 70-30 10-10 40-40 60-60-70 -50 kHz

Nyquist
interval

ideal prefilter

AA

CC E FEF

BB

DD f

0

Because the prefilter’s output contains no frequencies beyond the Nyquist frequency, there
will be no aliasing and after reconstruction the output would sound the same as the input,
ya(t)= y(t)= x1(t).

In case (c), if the practical prefilter H(f) is used, then its output y(t) will be:

y(t) = 2A|H(fA)| cos(10πt)+2B|H(fB)| cos(30πt)

+ 2C|H(fC)| cos(50πt)+2D|H(fD)| cos(60πt)

+ 2E|H(fE)| cos(90πt)+2F|H(fF)| cos(125πt)

(1.4.7)

This follows from the steady-state sinusoidal response of a filter applied to the individual
sinusoidal terms of x(t), for example, the effect of H(f) on A is:

2A cos(2πfAt)
H−→ 2A|H(fA)| cos

(
2πfAt + θ(fA)

)
where in Eq. (1.4.7) we ignored the phase response θ(fA)= argH(fA). The basic conclu-
sions of this example are not affected by this simplification.

Note that Eq. (1.4.7) applies also to cases (a) and (b). In case (a), we can replace:

|H(fA)| = |H(fB)| = |H(fC)| = |H(fD)| = |H(fE)| = |H(fF)| = 1

and in case (b):

|H(fA)| = |H(fB)| = 1, |H(fC)| = |H(fD)| = |H(fE)| = |H(fF)| = 0
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In case (c), because fA and fB are in the filter’s passband, we still have

|H(fA)| = |H(fB)| = 1

To determine |H(fC)|, |H(fD)|, |H(fE)|, |H(fF)|, we must find how many octaves† away
the frequencies fC, fD, fE, fF are from the fs/2 = 20 kHz edge of the passband. These are
given by:

log2

(
fC
fs/2

)
= log2

(
25

20

)
= 0.322

log2

(
fD
fs/2

)
= log2

(
30

20

)
= 0.585

log2

(
fE
fs/2

)
= log2

(
45

20

)
= 1.170

log2

(
fF
fs/2

)
= log2

(
62.5
20

)
= 1.644

and therefore, the corresponding filter attenuations will be:

at fC: 60 dB/octave × 0.322 octaves = 19.3 dB

at fD: 60 dB/octave × 0.585 octaves = 35.1 dB

at fE : 60 dB/octave × 1.170 octaves = 70.1 dB

at fF : 60 dB/octave × 1.644 octaves = 98.6 dB

By definition, an amount of A dB attenuation corresponds to reducing |H(f)| by a factor
10−A/20. For example, the relative drop of |H(f)| with respect to the edge of the passband
|H(fs/2)| is A dB if:

|H(f)|
|H(fs/2)| = 10−A/20

Assuming that the passband has 0 dB normalization, |H(fs/2)| = 1, we find the following
values for the filter responses:

|H(fC)| = 10−19.3/20 = 1

9

|H(fD)| = 10−35.1/20 = 1

57

|H(fE)| = 10−70.1/20 = 1

3234

|H(fF)| = 10−98.6/20 = 1

85114

It follows from Eq. (1.4.7) that the output y(t) of the prefilter will be:

†The number of octaves is the number of powers of two, that is, if f2 = 2νf1 ⇒ ν = log2(f2/f1).
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y(t) = 2A cos(10πt)+2B cos(30πt)

+ 2C
9

cos(50πt)+2D
57

cos(60πt)

+ 2E
3234

cos(90πt)+ 2F
85114

cos(125πt)

(1.4.8)

Its spectrum is shown below:

20-20 30 50 70-30 10-10 40-40 60-60-70 -50 kHz

Nyquist
interval

AA
CC

E

F

E

F

BB
DD

f

0

(-19 dB)
(-35 dB)

(-70 dB)

(-98 dB)

Notice how the inaudible out-of-band components have been attenuated by the prefilter,
so that when they get aliased back into the Nyquist interval because of sampling, their
distorting effect will be much less. The wrapping of frequencies into the Nyquist interval
is the same as in case (a). Therefore, after sampling and reconstruction we will get:

ya(t) = 2
(
A+ E

3234

)
cos(10πt)+2

(
B+ C

9

)
cos(30πt)

+ 2D
57

cos(20πt)+ 2F
85114

cos(35πt)

Now, all aliased components have been reduced in magnitude. The component closest
to the Nyquist frequency, namely fC, causes the most distortion because it does not get
attenuated much by the filter.

We will see in Section 1.5.3 that the prefilter’s rate of attenuation in dB/octave is related
to the filter’s order N by α = 6N so that α = 60 dB/octave corresponds to 60 = 6N or
N = 10. Therefore, the given filter is already a fairly complex analog filter. Decreasing the
filter’s complexity toα = 30 dB/octave, corresponding to filter orderN = 5, would reduce
all the attenuations by half, that is,

at fC: 30 dB/octave × 0.322 octaves = 9.7 dB

at fD: 30 dB/octave × 0.585 octaves = 17.6 dB

at fE : 30 dB/octave × 1.170 octaves = 35.1 dB

at fF : 30 dB/octave × 1.644 octaves = 49.3 dB

and, in absolute units:
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|H(fC)| = 10−9.7/20 = 1

3

|H(fD)| = 10−17.6/20 = 1

7.5

|H(fE)| = 10−35.1/20 = 1

57

|H(fF)| = 10−49.3/20 = 1

292

Therefore, the resulting signal after reconstruction would be:

ya(t) = 2
(
A+ E

57

)
cos(10πt)+2

(
B+ C

3

)
cos(30πt)

+ 2D
7.5

cos(20πt)+ 2F
292

cos(35πt)
(1.4.9)

Now theC andD terms are not as small and aliasing would still be significant. The situation
can be remedied by oversampling, as discussed in the next example. 	


Example 1.4.8: Oversampling can be used to reduce the attenuation requirements of the pre-
filter, and thus its order. Oversampling increases the gap between spectral replicas reduc-
ing aliasing and allowing less sharp cutoffs for the prefilter.

For the previous example, if we oversample by a factor of 2, fs = 2 × 40 = 80 kHz, the
new Nyquist interval will be [−40,40] kHz. Only the fE = 45 kHz and fF = 62.5 kHz
components lie outside this interval, and they will be aliased with

fE,a = fE − fs = 45 − 80 = −35 kHz

fF,a = fF − fs = 62.5 − 80 = −17.5 kHz

Only fF,a lies in the audio band and will cause distortions, unless we attenuate fF using a
prefilter before it gets wrapped into the audio band. Without a prefilter, the reconstructed
signal will be:

ya(t) = 2A cos(10πt)+2B cos(30πt)

+ 2C cos(50πt)+2D cos(60πt)

+ 2E cos(−2π35t)+2F cos(−2π17.5t)

= 2A cos(10πt)+2B cos(30πt)

+ 2C cos(50πt)+2D cos(60πt)+2E cos(70πt)+2F cos(35πt)

The audible components in ya(t) are:

y1(t)= 2A cos(10πt)+2B cos(30πt)+2F cos(35πt)

Thus, oversampling eliminated almost all the aliasing from the desired audio band. Note
that two types of aliasing took place here, namely, the aliasing of the E component which
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remained outside the relevant audio band, and the aliasing of the F component which does
represent distortion in the audio band.

Of course, one would not want to feed the signal ya(t) into an amplifier/speaker system
because the high frequencies beyond the audio band might damage the system or cause
nonlinearities. (But even if they were filtered out, the F component would still be there.)

	


Example 1.4.9: Oversampling and Decimation. Example 1.4.8 assumed that sampling at 80 kHz
could be maintained throughout the digital processing stages up to reconstruction. There
are applications however, where the sampling rate must eventually be dropped down to
its original value. This is the case, for example, in digital audio, where the rate must be
reduced eventually to the standardized value of 44.1 kHz (for CDs) or 48 kHz (for DATs).

When the sampling rate is dropped, one must make sure that aliasing will not be reintro-
duced. In our example, if the rate is reduced back to 40 kHz, the C and D components,
which were inside the [−40,40] kHz Nyquist interval with respect to the 80 kHz rate,
would find themselves outside the [−20,20] kHz Nyquist interval with respect to the 40
kHz rate, and therefore would be aliased inside that interval, as in Example 1.4.7.

To prevent C and D, as well as E, from getting aliased into the audio band, one must
remove them by a lowpass digital filter before the sampling rate is dropped to 40 kHz.
Such a filter is called a digital decimation filter. The overall system is shown below.

prefilter
H(f)

80 kHz
sampler

80
kHz

80
kHz

40
kHz

digital
filter

down-
sampler

recon-
structor

x(t) y(t) ya(t)

analoganalog

The downsampler in this diagram reduces the sampling rate from 80 down to 40 kHz by
throwing away every other sample, thus, keeping only half the samples. This is equivalent
to sampling at a 40 kHz rate.

The input to the digital filter is the sampled spectrum of y(t), which is replicated at mul-
tiples of 80 kHz as shown below.

20 30 50 70 9010 40 60 80 100 120 140 160 kHz

digital lowpass filter

prefilter
A AA AC CC C

E EE EF FFF

B BB B
D DD D

f

0

We have also assumed that the 30 dB/octave prefilter is present. The output of the digital
filter will have spectrum as shown below.



26 1. SAMPLING AND RECONSTRUCTION

20 30 50 70 9010 40 60 80 100 120 140 160 kHz

digital lowpass filter

A AA A

F FFF

B BB B

C CEED D C CEED D f

0

(-49 dB)

The digital filter operates at the oversampled rate of 80 kHz and acts as a lowpass filter
within the [−40,40] kHz Nyquist interval, with a cutoff of 20 kHz. Thus, it will remove the
C, D, and E components, as well as any other component that lies between 20 ≤ |f| ≤ 60
kHz.

However, because the digital filter is periodic in f with period fs = 80 kHz, it cannot remove
any components from the interval 60 ≤ f ≤ 100. Any components of the analog input y(t)
that lie in that interval would be aliased into the interval 60−80 ≤ f−fs ≤ 100−80, which
is the desired audio band −20 ≤ f − fs ≤ 20. This is what happened to the F component,
as can be seen in the above figure.

The frequency components of y(t) in 60 ≤ |f| ≤ 100 can be removed only by a pre-
filter, prior to sampling and replicating the spectrum. For example, our low-complexity
30 dB/octave prefilter would provide 47.6 dB attenuation at 60 kHz. Indeed, the number
of octaves from 20 to 60 kHz is log2(60/20)= 1.585 and the attenuation there will be
30 dB/octave × 1.584 octaves = 47.6 dB.

The prefilter, being monotonic beyond 60 kHz, would suppress all potential aliased compo-
nents beyond 60 kHz by more than 47.6 dB. At 100 kHz, it would provide 30×log2(100/20)=
69.7 dB attenuation. At fF = 62.5 kHz, it provides 49.3 dB suppression, as was calculated
in Example 1.4.7, that is, |H(fF)| = 10−49.3/20 = 1/292.

Therefore, assuming that the digital filter has already removed the C, D, and E compo-
nents, and that the aliased F component has been sufficiently attenuated by the prefilter,
we can now drop the sampling rate down to 40 kHz.

At the reduced 40 kHz rate, if we use an ideal reconstructor, it would extract only the
components within the [−20,20] kHz band and the resulting reconstructed output will
be:

ya(t)= 2A cos(10πt)+2B cos(30πt)+ 2F
292

cos(35πt)

which has a much attenuated aliased component F. This is to be compared with Eq. (1.4.9),
which used the same prefilter but no oversampling. Oversampling in conjunction with
digital decimation helped eliminate the most severe aliased components, C and D.

In summary, with oversampling, the complexity of the analog prefilter can be reduced and
traded off for the complexity of a digital filter which is much easier to design and cheaper
to implement with programmable DSPs. As we will see in Chapter 2, another benefit of
oversampling is to reduce the number of bits representing each quantized sample. The
connection between sampling rate and the savings in bits is discussed in Section 2.2. The
subject of oversampling, decimation, interpolation, and the design and implementation of
digital decimation and interpolation filters will be discussed in detail in Chapter 12. 	
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1.4.2 Rotational Motion

A more intuitive way to understand the sampling properties of sinusoids is to consider a
representation of the complex sinusoid x(t)= e2πjft as a wheel rotating with a frequency
of f revolutions per second. The wheel is seen in a dark room by means of a strobe light
flashing at a rate of fs flashes per second. The rotational frequency in [radians/sec] is
Ω = 2πf . During the time interval T between flashes, the wheel turns by an angle:

ω = ΩT = 2πfT = 2πf
fs

(1.4.10)

This quantity is called the digital frequency and is measured in units of [radians/sample].
It represents a convenient normalization of the physical frequency f . In terms ofω, the
sampled sinusoid reads simply

x(nT)= e2πjfTn = ejωn

In units of ω, the Nyquist frequency f = fs/2 becomes ω = π and the Nyquist interval
becomes [−π,π]. The replicated set f +mfs becomes

2π(f +mfs)
fs

= 2πf
fs

+ 2πm =ω+ 2πm

Because the frequency f = fs corresponds to ω = 2π, the aliased frequency given in
Eq. (1.4.3) becomes in units of ω:

ωa =ω mod(2π)

The quantity f/fs = fT is also called the digital frequency and is measured in units
of [cycles/sample]. It represents another convenient normalization of the physical fre-
quency axis, with the Nyquist interval corresponding to [−0.5,0.5].

In terms of the rotating wheel, fT represents the number of revolutions turned dur-
ing the flashing interval T. If the wheel were actually turning at the higher frequency
f +mfs, then during time T it would turn by (f +mfs)T = fT+mfsT = fT+m revo-
lutions, that is, it would coverm whole additional revolutions. An observer would miss
these extram revolutions completely. The perceived rotational speed for an observer is
always given by fa = f mod(fs). The next two examples illustrate these remarks.

Example 1.4.10: Consider two wheels turning clockwise, one at f1 = 1 Hz and the other at
f2 = 5 Hz, as shown below. Both are sampled with a strobe light flashing at fs = 4 Hz.
Note that the second one is turning at f2 = f1 + fs.

n=0 n=0

n=1 n=1

n=2 n=2

n=3 n=3

f=1 f=5

ω=π/2

ω=5π/2

ωa=π/2
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The first wheel covers f1T = f1/fs = 1/4 of a revolution during T = 1/4 second. Its angle
of rotation during that time interval is ω1 = 2πf1/fs = 2π/4 = π/2 radians. During the
sampled motion, an observer would observe the sequence of points n = 0,1,2,3, . . . and
would conclude that the wheel is turning at a speed of 1/4 of a revolution in 1/4 second,
or,

1/4 cycles

1/4 sec
= 1 Hz

Thus, the observer would perceive the correct speed and sense of rotation. The second
wheel, on the other hand, is actually turning by f2T = f2/fs = 5/4 revolutions in 1/4
second, with an angle of rotation ω2 = 5π/2. Thus, it covers one whole extra revolution
compared to the first one. However, the observer would still observe the same sequence
of points n = 0,1,2,3, . . . , and would conclude again that the wheel is turning at 1/4
revolution in 1/4 second, or, 1 Hz. This result can be obtained quickly using Eq. (1.4.3):

f2a = f2 mod(fs)= 5 mod(4)= 5 − 4 = 1

Thus, in this case the perceived speed is wrong, but the sense of rotation is still correct.

In the next figure, we see two more wheels, one turning clockwise at f3 = 9 Hz and the
other counterclockwise at f4 = −3 Hz.

n=0 n=0

n=1 n=1

n=2 n=2

n=3 n=3

f=9 f=−3

ω=9π/2 ω=−3π/ 2

ωa=π/2ωa= π/2

The negative sign signifies here the sense of rotation. During T = 1/4 sec, the third wheel
covers f3T = 9/4 revolutions, that is, two whole extra revolutions over the f1 wheel. An
observer would again see the sequence of points n = 0,1,2,3, . . . , and would conclude
that f3 is turning at 1 Hz. Again, we can quickly compute, f3a = f3 mod(fs)= 9 mod(4)=
9 − 2 · 4 = 1 Hz.

The fourth wheel is more interesting. It covers f4T = −3/4 of a revolution in the coun-
terclockwise direction. An observer captures the motion every 3/4 of a counterclockwise
revolution. Thus, she will see the sequence of points n = 0,1,2,3, . . . , arriving at the
conclusion that the wheel is turning at 1 Hz in the clockwise direction. In this case, both
the perceived speed and sense of rotation are wrong. Again, the same conclusion can be
reached quickly using f4a = f4 mod(fs)= (−3)mod(4)= −3 + 4 = 1 Hz. Here, we added
one fs in order to bring f4 within the Nyquist interval [−2,2]. 	


Example 1.4.11: The following figure shows four wheels rotating clockwise at f = 1.5,2,2.5,4
Hz and sampled at fs = 4 Hz by a strobe light.
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This example is meant to show that if a wheel is turning by less than half of a revolution
between sampling instants, that is, fT < 1/2 or ω = 2πfT < π, then the motion is
perceived correctly and there is no aliasing. The conditions fT < 1/2 or ω < π are
equivalent to the sampling theorem condition fs > 2f . But if the wheel is turning by
more than half of a revolution, it will be perceived as turning in the opposite direction and
aliasing will occur.

The first wheel turns by fT = 3/8 of a revolution every T seconds. Thus, an observer
would see the sequence of points n = 0,1,2,3, . . . and perceive the right motion.

The second wheel is turning by exactly half of a revolution fT = 1/2 or angleω = 2πfT =
π radians. An observer would perceive an up-down motion and lose sense of direction,
not being able to tell which way the wheel is turning.

The third wheel turns by more than half of a revolution, fT = 5/8. An observer would
see the sequence of points n = 0,1,2,3, . . . , corresponding to successive rotations by
ω = 5π/4 radians. An observer always perceives the motion in terms of the lesser
angle of rotation, and therefore will think that the wheel is turning the other way by
an angle ωa = ωmod(2π)= (5π/4)mod(2π)= 5π/4 − 2π = −3π/4 or frequency
fa = −(3/8 cycle)/(1/4 sec)= −1.5 Hz.

The fourth wheel will appear to be stationary because f = fs = 4 and the motion is
sampled once every revolution,ω = 2π. The perceived frequency will be fa = f mod(fs)=
4 mod(4)= 4 − 4 = 0. 	


1.4.3 DSP Frequency Units

Figure 1.4.4 compares the various frequency scales that are commonly used in DSP, and
the corresponding Nyquist intervals. A sampled sinusoid takes the form in these units:

e2πjfTn = e2πj(f/fs)n = ejΩTn = ejωn

being expressed more simply in terms of ω. Sometimes f is normalized with respect
to the Nyquist frequency fN = fs/2, that is, in units of f/fN. In this case, the Nyquist
interval becomes [−1,1]. In multirate applications, where successive digital processing
stages operate at different sampling rates, the most convenient set of units is simply in
terms of f . In fixed-rate applications, the units of ω or f/fs are the most convenient.

1.5 Spectra of Sampled Signals∗

Next, we discuss the effects of sampling using Fourier transforms. Figure 1.3.1 shows
an ideal sampler that instantaneously measures the analog signal x(t) at the sampling
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fs/2-fs/2 0
f [Hz] = [cycles/sec]

1/2-1/2 0
f/fs [cycles/sample]

π-π 0
ω = 2π f/fs [radians/sample]

πfs-πfs 0
Ω = 2πf [radians/sec]

Nyquist
Interval

Fig. 1.4.4 Commonly used frequency units.

instants t = nT. The output of the sampler can be considered to be an analog signal
consisting of the linear superposition of impulses occurring at the sampling times, with
each impulse weighted by the corresponding sample value. Thus, the sampled signal is

x̂(t)=
∞∑

n=−∞
x(nT)δ(t − nT) (1.5.1)

In practical sampling, each sample must be held constant for a short period of time,
say τ seconds, in order for the A/D converter to accurately convert the sample to digital
format. This holding operation may be achieved by a sample/hold circuit. In this case,
the sampled signal will be:

xflat(t)=
∞∑

n=−∞
x(nT)p(t − nT) (1.5.2)

where p(t) is a flat-top pulse of duration of τ seconds such that τ� T. Ideal sampling
corresponds to the limit τ→ 0. Figure 1.5.1 illustrates the ideal and practical cases.

τ

T T

xflat(t)

T T0 02T 2TnT nT

x(nT)δ(t-nT) x(nT)p(t−nT)

. . . . . .t t

x(t)^

Fig. 1.5.1 Ideal and practical sampling.

We will consider only the ideal case, Eq. (1.5.1), because it captures all the essen-
tial features of the sampling process. Our objective is to determine the spectrum of
the sampled signal x̂(t) and compare it with the spectrum of the original signal x(t).
Problem 1.21 explores practical sampling.
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Our main result will be to express the spectrum of x̂(t) in two ways. The first relates
the sampled spectrum to the discrete-time samples x(nT) and leads to the discrete-
time Fourier transform. The second relates it to the original spectrum and implies the
spectrum replication property that was mentioned earlier.

1.5.1 Discrete-Time Fourier Transform

The spectrum of the sampled signal x̂(t) is the Fourier transform:

X̂(f)=
∫∞

−∞
x̂(t)e−2πjft dt (1.5.3)

Inserting Eq. (1.5.1) into Eq. (1.5.3) and interchanging integration and summation, we
obtain:

X̂(f) =
∫∞

−∞

∞∑
n=−∞

x(nT)δ(t − nT)e−2πjft dt

=
∞∑

n=−∞
x(nT)

∫∞

−∞
δ(t − nT)e−2πjft dt or,

X̂(f)=
∞∑

n=−∞
x(nT)e−2πjfTn (1.5.4)

This is the first way of expressing X̂(f). Several remarks are in order:

1. DTFT. Eq. (1.5.4) is known as the Discrete-Time Fourier Transform (DTFT)† of the
sequence of samples x(nT). X̂(f) is computable only from the knowledge of the
sample values x(nT).

2. Periodicity. X̂(f) is a periodic function of f with period fs, hence, X̂(f+fs)= X̂(f).
This follows from the fact that e−2πjfTn is periodic in f . Because of this periodicity,
one may restrict the frequency interval to just one period, namely, the Nyquist
interval, [−fs/2, fs/2].
The periodicity in f implies that X̂(f) will extend over the entire frequency axis,
in accordance with our expectation that the sampling process introduces high
frequencies into the original spectrum. Although not obvious yet, the periodicity
in f is related to the periodic replication of the original spectrum.

3. Fourier Series. Mathematically, Eq. (1.5.4) may be thought of as the Fourier series
expansion of the periodic function X̂(f), with the samples x(nT) being the cor-
responding Fourier series coefficients. Thus, x(nT) may be recovered from X̂(f)
by the inverse Fourier series:

x(nT)= 1

fs

∫ fs/2
−fs/2

X̂(f)e2πjfTn df =
∫ π
−π
X̂(ω)ejωn

dω
2π

(1.5.5)

†Not to be confused with the Discrete Fourier Transform (DFT), which is a special case of the DTFT.
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where in the second equation we changed variables from f to ω = 2πf/fs.‡

Eq. (1.5.5) is the inverse DTFT and expresses the discrete-time signal x(nT) as
a superposition of discrete-time sinusoids ejωn.

4. Numerical Approximation. Eq. (1.5.4) may be thought of as a numerical approxi-
mation to the frequency spectrum of the original analog signal x(t). Indeed, using
the definition of integrals, we may write approximately,

X(f)=
∫∞

−∞
x(t)e−2πjft dt �

∞∑
n=−∞

x(nT)e−2πjfnT ·T or,

X(f)� TX̂(f) (1.5.6)

This approximation becomes exact in the continuous-time limit:

X(f)= lim
T→0

TX̂(f) (1.5.7)

It is precisely this limiting result and the approximation of Eq. (1.5.6) that justify
the use of discrete Fourier transforms to compute actual spectra of analog signals.

5. Practical Approximations. In an actual spectrum computation, two additional ap-
proximations must be made before anything can be computed:

(a) We must keep only a finite number of time samples x(nT), say L samples,
n = 0,1,2, . . . , L − 1, so that Eq. (1.5.4) is computed approximately by the
truncated sum:

X̂(f)� X̂L(f)=
L−1∑
n=0

x(nT)e−2πjfTn (1.5.8)

This approximation leads to the concept of a time window and the related
effects of smearing and leakage of the spectrum. These concepts are central
in the area of spectral analysis and will be discussed in Chapter 9.

(b) We must decide on a finite set of frequencies f at which to evaluate X̂(f).
Proper choice of this set allows the development of various efficient com-
putational algorithms for the DFT, such as the Fast Fourier Transform (FFT),
presented also in Chapter 9.

6. z-transform. Finally, we note that Eq. (1.5.4) leads to the concept of the z-transform,
much like the ordinary Fourier transform leads to the Laplace transform. Setting
z = ejω = e2πjfT, we may write Eq. (1.5.4) as the z-transform†

X̂(z)=
∞∑

n=−∞
x(nT)z−n

‡Abusing the notation slightly, we wrote X̂(ω) for X̂(f).
†Again, abusing the notation, we wrote X̂(z) for X̂(f).
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1.5.2 Spectrum Replication

Next, we show the spectrum replication property by deriving the precise relationship
between the spectrum X̂(f) of the sampled signal x̂(t) and the original spectrum X(f)
of the analog signal x(t).

The nth term x(nT)δ(t − nT) in Eq. (1.5.1) may be replaced by x(t)δ(t − nT)
because the term is nonzero only at t = nT. Then, x(t) can be factored out of the sum
in Eq. (1.5.1) as a common factor:

x̂(t)= x(t)
∞∑

n=−∞
δ(t − nT)≡ x(t)s(t) (1.5.9)

Thinking of this as the modulation of the “carrier” s(t) by the “baseband” signal
x(t), we expect to get frequency translations of the original spectrum, much like the
AM modulation of a sinusoidal carrier. The frequency translation effect may be seen by
expanding the (periodic in time) sampling function s(t) into its Fourier series represen-
tation as a linear combination of harmonics. It is easily shown that

s(t)=
∞∑

n=−∞
δ(t − nT)= 1

T

∞∑
m=−∞

e2πjmfst (1.5.10)

which expresses the sampling function s(t) as a linear combination of sinusoidal carri-
ers, each causing its own frequency shift. Writing Eq. (1.5.9) as

x̂(t)= x(t)s(t)= 1

T

∞∑
m=−∞

x(t)e2πjmfst

and using the modulation property of Fourier transforms, which states that if X(f) is
the transform of x(t) then X(f−fc) is the transform of x(t)e2πjfct, we obtain by taking
Fourier transforms of both sides,

X̂(f)= 1

T

∞∑
m=−∞

X(f −mfs) (1.5.11)

This represents the periodic replication of the original spectrum X(f) at intervals
of the sampling rate fs. Fig. 1.5.2 shows TX̂(f) as the sum of the periodic replicas of
X(f).

Another way to prove Eq. (1.5.11) is as follows. Because x̂(t) is the product of x(t)
and s(t), its Fourier transform will be the convolution of the corresponding transforms,
that is,

X̂(f)=
∫∞

−∞
X(f − f ′)S(f ′)df ′ (1.5.12)

On the other hand, it follows from Eq. (1.5.10) that the Fourier transform of s(t) will be
the sum of the transforms of the individual harmonics:

S(f)= 1

T

∞∑
m=−∞

δ(f −mfs) (1.5.13)
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Fig. 1.5.2 Spectrum replication caused by sampling.

Inserting this into Eq. (1.5.12) and interchanging the summation over m with the
integration over f ′, we obtain

X̂(f)= 1

T

∞∑
m=−∞

∫∞

−∞
X(f − f ′)δ(f ′ −mfs)df ′ = 1

T

∞∑
m=−∞

X(f −mfs)

Combining Eqs. (1.5.4) and (1.5.11), we obtain the two alternative expressions for
the spectrum X̂(f)

X̂(f)=
∞∑

n=−∞
x(nT)e−2πjfTn = 1

T

∞∑
m=−∞

X(f −mfs) (1.5.14)

This is known as the Poisson summation formula. We also see from Fig. 1.5.2 that as
we let T → 0, or equivalently, fs → ∞, the replicas move out to infinity leaving behind
only the original spectrum X(f). Therefore, Eq. (1.5.7) follows.

We emphasize that Eq. (1.5.14) holds for arbitrary signals x(t), not necessarily ban-
dlimited ones. In the special case when x(t) is bandlimited to some maximum frequency
fmax, as suggested by Fig. 1.5.2, we immediately obtain the sampling theorem condition,
Eq. (1.3.2).

It is seen in Fig. 1.5.2 that the replicas are separated from each other by a distance
δ = fs − 2fmax, known as the guard band. It follows that the replicas will not overlap
if δ ≥ 0, or equivalently, fs ≥ 2fmax. But they will overlap if fs < 2fmax or δ < 0 and
aliasing of frequencies will take place as the tails of the replicas enter into the Nyquist
interval and add to the original spectrum, distorting it. This case is shown in Fig. 1.5.3.

It is evident by inspecting Fig. 1.5.2 that if the signal is bandlimited and fs is large
enough so that the replicas do not overlap, then the portion of the sampled signal spec-
trum X̂(f) that lies within the Nyquist interval [−fs/2, fs/2] will be identical to the
original spectrum X(f), that is,

TX̂(f)= X(f), for − fs
2

≤ f ≤ fs
2

(1.5.15)

This is an important result for DSP. Not only does it make possible the analog re-
construction of the sampled signal, but it also guarantees that any subsequent digital
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Fig. 1.5.3 Aliasing caused by overlapping spectral replicas.

processing of the sampled signal will be applied to the original spectrum X(f) and not
to some aliased and distorted version thereof.

For example, a subsequent digital filtering operation will transform the input sam-
ples x(nT) into a sequence of output samples y(nT). Just like analog filtering, digital
filtering is equivalent to spectral shaping in the frequency domain. If the digital filter has
frequency responseHDSP(f), the spectrum X̂(f) of the input sequence will be reshaped
into the output spectrum

Ŷ(f)= HDSP(f)X̂(f)

If Eq. (1.5.15) holds, then the digital filter will reshape the original spectrum X(f).
Note that because all digital filters have periodic frequency responses, the periodicity
of the sampled spectrum is preserved by the digital filtering operation. Therefore, the
output samples could be recovered from Eq. (1.5.5)

y(nT)=
∫ π
−π
Ŷ(ω)ejωn

dω
2π

=
∫ π
−π
HDSP(ω)X̂(ω)ejωn

dω
2π

If the spectrumX(f) is not bandlimited, or, if it is bandlimited but the sampling rate
fs is so low that the replicas overlap, then Eq. (1.5.15) does not hold. Any subsequent
filtering will reshape the wrong spectrum. Therefore, it is essential to use a lowpass
antialiasing prefilter, as shown in Fig. 1.3.5, to bandlimit the input spectrum to within
the Nyquist interval, so that the resulting replicas after sampling will not overlap.

Example 1.5.1: Consider a pure sinusoid of frequency f0, x(t)= e2πjf0t. Its Fourier transform
is the spectral line X(f)= δ(f − f0). It follows from Eq. (1.5.11) that the sampled sinusoid

x̂(t)=
∞∑

n=−∞
x(nT)δ(t − nT)=

∞∑
n=−∞

e2πjf0Tnδ(t − nT)

will have Fourier spectrum

X̂(f)= 1

T

∞∑
m=−∞

δ(f − f0 −mfs)

Thus, the spectrum of the sampled sinusoid consists of all the frequencies in the replicated
set {f0+mfs,m = 0,±1,±2, . . . } in accordance with Fig. 1.3.2 and our remarks in Sections
1.4 and 1.3. 	




36 1. SAMPLING AND RECONSTRUCTION

Example 1.5.2: This example illustrates the effect of sampling on a non-bandlimited signal
and the degree to which the portion of the spectrum X̂(f) within the Nyquist interval
approximates the original spectrum X(f). Consider the exponentially decaying signal and
its spectrum:

x(t) = e−atu(t)

X(f) = 1

a+ 2πjf
t

x(t)

x(nT)

nT

T

The frequency spectrum of the sampled signal x̂(t) may be obtained in two ways. Using
Eq. (1.5.4)

X̂(f)=
∞∑

n=−∞
x(nT)e−2πjfTn =

∞∑
n=0

e−aTne−2πjfTn

and summing the geometric series, we get

X̂(f)= 1

1 − e−aTe−2πjfT = 1

1 − e−aTe−jω

Its magnitude square is

|X̂(f)|2 = 1

1 − 2e−aT cos(2πfT)+e−2aT

The periodicity in f is evident because the dependence on f comes through the periodic
cosine function. Alternatively, we may use Eq. (1.5.11) and sum the replicas of the original
spectrum to get

X̂(f)= 1

T

∞∑
m=−∞

X(f −mfs)= 1

T

∞∑
m=−∞

1

a+ 2πj(f −mfs)

Combining the two expression for X̂(f), we obtain the not-so-obvious identity in the pa-
rameters a, f,T:

1

T

∞∑
m=−∞

1

a+ 2πj(f −mfs) = 1

1 − e−aTe−2πjfT

The left graph in Fig. 1.5.4 compares the periodic spectrum |TX̂(f)|2 with the original
analog spectrum |X(f)|2 = 1/

(
a2 + (2πf)2

)
. The spectra are shown in decibels, that is,

20 log10 |X(f)|. The parameter a was a = 0.2 sec−1. Two values of the sampling rate fs =
1/T are shown, fs = 1 Hz and fs = 2 Hz. The two Nyquist intervals are [−0.5,0.5] Hz and
[−1,1] Hz, respectively. Outside these intervals, the sampled spectra repeat periodically.

Notice that even with the scale factor T taken into account, the two spectra X(f) and
TX̂(f) are very different from each other. However, within the central Nyquist interval
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Fig. 1.5.4 Spectra of analog, sampled, and windowed signals.

[−fs/2, fs/2], they agree approximately, especially at low frequencies. This approximation
gets better as fs increases.

The limit as T → 0 or fs → ∞ can be seen explicitly in this example. Using the approxima-
tion e−x � 1 − x, valid for small x, or L’Hospital’s rule, we obtain

lim
T→0

TX̂(f)= lim
T→0

T
1 − e−aTe−2πjfT = 1

a+ 2πjf
= X(f)

In the right graph of Fig. 1.5.4, we show the effect of using a length-L time window and
approximating the spectrum by Eq. (1.5.8). The parameter values were a = 0.2, fs = 2, and
L = 10 samples.

That figure compares what we would like to compute, that is, |X(f)|2, with what we can
at best hope to compute based on our sampled signal, |TX̂(f)|2, and with what we can
actually compute based on a finite record of samples, |TX̂L(f)|2.

The windowed spectrum |TX̂L(f)|2 can be improved by taking longer L and using a non-
rectangular window, such as a Hamming window. At best, however, it will approach the
sampled spectrum |TX̂(f)|2 and not |X(f)|2. The approximation of X(f) by TX̂(f) can
be improved only by increasing the sampling rate fs.

The quantity X̂L(f) can be computed by sending the L samples x(nT)= e−anT , n =
0,1, . . . , L − 1 into a general DFT routine. In this particular example, X̂L(f) can also be
computed in closed form. Using the finite geometric series:

L−1∑
n=0

xn = 1 − xL
1 − x

we obtain:

X̂L(f)=
L−1∑
n=0

e−aTne−2πjfTn = 1 − e−aTLe−2πjfTL

1 − e−aTe−2πjfT

It is evident that X̂L(f)→ X̂(f) as L→ ∞. 	
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1.5.3 Practical Antialiasing Prefilters

An ideal analog prefilter is shown in Fig. 1.5.5. It acts as an ideal lowpass filter remov-
ing all frequency components of the analog input signal that lie beyond the Nyquist
frequency fs/2.

ideal
prefilter

analog
input

sampled
spectrum

bandlimited
spectrum

ideal sampler

rate fscutoff fmax = fs/2

-fs

f

fs0

replicated
spectrum

f
fs/2-fs/2 0

prefiltered spectrum

f
0

input spectrum

prefilter

Xin( f ) X( f ) X( f )

H( f )

^
T

Fig. 1.5.5 Ideal antialiasing prefilter.

The antialiasing prefilters used in practice are not ideal and do not completely re-
move all the frequency components outside the Nyquist interval. Thus, some aliasing
will take place. However, by proper design the prefilters may be made as good as de-
sired and the amount of aliasing reduced to tolerable levels. A practical antialiasing
lowpass filter is shown in Fig. 1.5.6. Its passband [−fpass, fpass] is usually taken to be
the frequency range of interest for the application at hand and must lie entirely within
the Nyquist interval.

ffstop

fs/2-fs/2

-fstop fpass-fpass

passband stopband

transition
region

stopband

Astop

|H(f)|

0

ideal prefilter

Fig. 1.5.6 Practical antialiasing lowpass prefilter.

The prefilter must be essentially flat over this passband in order not to distort the
frequencies of interest. Even if it is not completely flat over the passband, it can be
“equalized” digitally at a subsequent processing stage by a digital filter, say HEQ(f),
whose frequency response is the inverse of the response of the prefilter over the pass-
band range:

HEQ(f)= 1

H(f)
, for − fpass ≤ f ≤ fpass
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The digital filter HEQ(f), being periodic with period fs, cannot be the inverse of the
prefilter over the entire frequency axis, but it can be the inverse over the passband.

The stopband frequency fstop of the prefilter and the minimum stopband attenuation
Astop in dB must be chosen appropriately to minimize aliasing effects. It will become
evident from the examples below that fstop must be chosen as

fstop = fs − fpass (1.5.16)

or, equivalently,

fs = fpass + fstop

This places the Nyquist frequency fs/2 exactly in the middle of the transition region
of the prefilter, as shown in Fig. 1.5.6. The attenuation of the filter in decibels is defined
in terms of its magnitude response by:

A(f)= −20 log10

∣∣∣∣∣ H(f)H(f0)

∣∣∣∣∣ (attenuation in dB)

where f0 is a convenient reference frequency, typically taken to be at DC for a lowpass
filter. Therefore, the stopband specification of the filter, depicted in this figure, isA(f)≥
Astop, for |f| ≥ fstop.

Transfer functions of analog filters typically drop like a powerH(s)∼ 1/sN for large
s, whereN is the filter order. Thus, their magnitude response drops like |H(f)| ∼ 1/fN

for large f , and their attenuation will be, up to an additive constant,

A(f)= −20 log10

∣∣∣1/fN
∣∣∣ = α10 log10 f , (for large f ) (1.5.17)

where α10 is the attenuation in dB per decade defined by:

α10 = 20N (dB per decade)

It represents the increase in attenuation when f is changed by a factor of ten, that is,
A(10f)−A(f)= α10. Engineers also like to measure attenuation in dB per octave, that
is, the amount of change per doubling of f . This is obtained by using logs in base two,
that is, writing Eq. (1.5.17) in the form:

A(f)= α2 log2 f = α10 log10 f

where α2 is in dB/octave and is related to α10 by:

α2 = α10 log10 2 = 6N (dB per octave)

Figure 1.5.5 shows the effect on the input spectrum Xin(f) of an ideal prefilter with
a sharp cutoff. For a practical prefilter, the output spectrum is given by:

X(f)= H(f)Xin(f)

or, in terms of attenuations in dB:



40 1. SAMPLING AND RECONSTRUCTION

AX(f)= A(f)+AXin(f) (1.5.18)

where AX(f)= −20 log10 |X(f)/X(f0)| and similarly for AXin(f). Thus, attenuations
are additive. The spectrum X(f) will be replicated by the subsequent sampling oper-
ation and therefore, the amount of attenuation in AX(f) will determine the degree of
overlapping of the spectral replicas, that is, the degree of aliasing.

The specifications of the prefilter can be adjusted so that its attenuation A(f), in
combination with the attenuation AXin(f) of the input spectrum, will result in sufficient
attenuation ofX(f) to reduce the amount of aliasing within the desired frequency band.
The next few examples illustrate these remarks.

Example 1.5.3: The frequency range of interest of an analog signal extends to 4 kHz. Beyond 4
kHz, the spectrum attenuates at a rate of 15 dB per octave. Ideally, we would sample at a
rate of 8 kHz provided the sampling operation is preceded by a perfect lowpass antialiasing
prefilter with cutoff of 4 kHz. As a practical alternative to designing a perfect prefilter, we
decide to sample at the higher rate of 12 kHz.

(a) If we do not use any prefilter at all, determine the amount of aliasing that will be
introduced by the sampling process into the frequency range of interest, that is, into
the 4 kHz range.

(b) We wish to suppress the aliased components within the frequency range of inter-
est by more than 50 dB. Determine the least stringent specifications of the lowpass
antialiasing prefilter that must be used.

Solution: Both parts are answered with the help of the figure below, which shows the original
spectrum and its first replicas centered at ±fs = ±12 kHz.

4 8 12 16-16 -12 -8 -4 0 f (kHz)

X(f)

x y

0th replica

desired
range

1st replica-1st replica

By the even symmetry of the spectra, it follows that the left tail of the 1st replica will be
the same as the right tail of the 0th replica. Thus, the indicated attenuations x and y at
frequencies 4 and 8 kHz will be equal, x = y.

If we do not use any prefilter, the attenuation at 8 kHz will be y = 15 dB because the 0th
replica attenuates by 15 dB per octave starting at 4 kHz. The aliased components within
the desired 4 kHz range correspond to the shaded portion of the left side of the 1st replica
that has entered into the 4 kHz interval. They are suppressed by more than x dB. Thus,
x = y = 15 dB. This probably represents too much aliasing to be tolerable.

If we use a prefilter, its passband must extend over the desired 4 kHz range. Therefore,
fpass = 4 kHz and fstop = fs − fpass = 12 − 4 = 8 kHz. Because attenuations are additive
in dB, the total attenuation y at 8 kHz will now be the sum of the attenuation due to the
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signal, that is, 15 dB, and the attenuation due to the prefilter, say Astop dB. The equality
y = x and the requirement that x ≥ 50 dB lead to

y = 15 +Astop = x ≥ 50 ⇒ Astop ≥ 50 − 15 = 35 dB

Thus, the specifications of the prefilter are a fairly flat passband over the ±4 kHz range
and a stopband starting at 8 kHz with minimum attenuation of 35 dB. 	


Example 1.5.4: The significant frequency range of a signal extends to fmax. Beyond fmax, the
spectrum attenuates by α dB/octave. We have available an off-the-shelf antialiasing pre-
filter that has a flat passband up to fmax and attenuates by β dB/octave beyond that. It is
required that within the fmax range of interest, the aliased components due to sampling be
suppressed by more than A dB. Show that the minimum sampling rate that we should use
is given by

fs = fmax + 2A/γfmax

where γ = α+ β.

Solution: We refer to the following figure, which shows the 0th and ±1st replicas.

fmax fs-fs
fs - fmax

-fmax
0

f

X(f)

x A

0th replica

desired
range

1st replica-1st replica

γ dB/octave

The passband edge is at fpass = fmax and the stopband edge at fstop = fs− fmax. Beyond the
desired fmax range, the total attenuation (in dB) of the 0th replica will be the sum of the
attenuations of the signal and the prefilter. In the notation of Eq. (1.5.18), it will be given
as function of frequency by

AX(f)= α log2

(
f
fmax

)
+ β log2

(
f
fmax

)
= γ log2

(
f
fmax

)

where we have normalized the attenuation to 0 dB at f = fmax. This is the mathematical
expression of the statement that the total attenuation will be γ dB per octave.

By the even symmetry of the spectra, we have x = AX(fstop)= AX(fs − fmax). Thus, the
requirement that x ≥ A gives the condition

AX(fs − fmax)≥ A ⇒ γ log2

(
fs − fmax

fmax

)
≥ A

Solving this as an equality gives the minimum acceptable rate fs. Ifα and β had been given
in dB/decade instead of dB/octave, the above condition would be valid with log10 instead
of log2 resulting in fs = fmax + 10A/γfmax. Note that the previous example corresponds to
the case A = γ giving fs = fmax + 2fmax = 3fmax. 	
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The above examples show that to accommodate practical specifications for antialias-
ing prefilters, the sampling rates must be somewhat higher than the minimum Nyquist
rate. The higher the rate, the less complex the prefilter. This idea is carried further in
the method of oversampling, whereby the input is sampled at rates that are many times
higher than the Nyquist rate. The replicas become very far separated, allowing the use
of low quality, inexpensive analog prefilters. Oversampling methods will be discussed
in Chapter 12.

1.6 Analog Reconstructors∗

We saw in Section 1.4.1 that an ideal reconstructor is an ideal lowpass filter with cut-
off the Nyquist frequency fs/2. Here, we derive this result and also consider practical
reconstructors.

Analog reconstruction represents some sort of lowpass filtering of the sampled sig-
nal. This can be seen in Fig. 1.6.1, where practical reconstruction has been accomplished
by filling the gaps between samples by holding the current sample value constant till
the next sample. This is the staircase or sample/hold reconstructor.

T T

t t

ya(t)
ya(t)

D/A
staircase

reconstructor

sampled signal reconstructed signal

y(t)^
y(t)^

Fig. 1.6.1 Staircase reconstructor.

It must be clear from this figure that any reasonable way of filling the gaps between
samples will result in some sort of reconstruction. Filling the gaps results in a smoother
signal than the sampled signal. In frequency-domain language, the higher frequencies
in the sampled signal are removed, that is, the sampled signal is lowpass filtered. Thus,
any reconstructor may be viewed as an analog lowpass filter, as shown in Fig. 1.6.2.

ya(t)analog
reconstructor

h(t)sampled
input

reconstructed
analog output

y(t)^

Fig. 1.6.2 Analog reconstructor as a lowpass filter.

We will determine the form of the impulse response h(t) of the reconstructor both
for ideal and practical reconstruction. The relationship of the reconstructed output
ya(t) to the input samples y(nT) can be found by inserting the sampled input signal

ŷ(t)=
∞∑

n=−∞
y(nT)δ(t − nT)
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into the convolutional equation of the reconstructor

ya(t)=
∫∞

−∞
h(t − t′)ŷ(t′)dt′

It then follows that:

ya(t)=
∞∑

n=−∞
y(nT)h(t − nT) (1.6.1)

It states that the way to fill the gaps between samples is to start at the current
sample y(nT) and interpolate from it following the shape of h(t) until the next sample.
More precisely, a copy of h(t) must be attached at each sample y(nT), and all such
contributions must be summed over—the resulting curve being the reconstructed analog
signal. In the frequency domain, Eq. (1.6.1) becomes

Ya(f)= H(f)Ŷ(f) (1.6.2)

where Ŷ(f) is the replicated spectrum given by Eq. (1.5.11)

Ŷ(f)= 1

T

∞∑
m=−∞

Y(f −mfs)

1.6.1 Ideal Reconstructors

For perfect or ideal reconstruction one must require that Ya(f) be identical to the orig-
inal analog spectrum Y(f). If the spectrum Y(f) is bandlimited and its replicas do not
overlap, then within the Nyquist interval, TŶ(f)will agree withY(f) in accordance with
Eq. (1.5.15), that is,

Ŷ(f)= 1

T
Y(f) , for − fs

2
≤ f ≤ fs

2
(1.6.3)

The ideal reconstruction filterH(f) is an ideal lowpass filter with cutoff fs/2, defined
as follows:

H(f)=
{
T, if |f| ≤ fs/2
0, otherwise f

fs/2−fs/2

H( f )
T

0

The value T for the passband gain is justified below. As shown in Fig. 1.6.3, such a
filter will extract the central replica and remove all other replicas. Using Eq. (1.6.3), we
have within the Nyquist interval:

Ya(f)= H(f)Ŷ(f)= T · 1

T
Y(f)= Y(f)

where the filter’s gain factor T canceled the 1/T factor in the spectrum.
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fs /2 fs 2fs-2fs -fs/2-fs
Nyquist
Interval

0

. . .. . .

f

Y(f-2fs)Y(f-fs)Y(f)Y(f+2fs) Y(f+fs)

TY(f)^ ideal reconstructor

Fig. 1.6.3 Ideal reconstructor in frequency domain.

The same relationship also holds trivially (0 ≡ 0) outside the Nyquist interval. Thus,
we have Ya(f)= Y(f), for all f , which implies that the reconstructed analog signal
ya(t) will be identical to the original signal that was sampled, ya(t)= y(t). Combining
this with Eq. (1.6.1), we obtain the Shannon sampling theorem [35–39] expressing the
bandlimited signal y(t) in terms of its samples y(nT):

y(t)=
∞∑

n=−∞
y(nT)h(t − nT) (1.6.4)

The impulse response of the ideal reconstructor can be obtained from the inverse
Fourier transform of H(f):

h(t)=
∫∞

−∞
H(f)e2πjft df =

∫ fs/2
−fs/2

Te2πjft df, or,

h(t)= sin(πt/T)
πt/T

= sin(πfst)
πfst

(ideal reconstructor) (1.6.5)

It is shown in Fig. 1.6.4. Unfortunately, the ideal reconstructor is not realizable. Its
impulse response is not causal, having an infinite anticausal part. Therefore, alternative
reconstructors, such as the staircase one, are used in practice.

t
T-T 2T-2T-3T 3T

h(t)
1

0

staircase 
reconstructorideal

reconstructor

Fig. 1.6.4 Impulse response of ideal reconstructor.

An approximation to the ideal reconstructor, obtained by truncating it to finite
length, is used in the design of digital FIR interpolation filters for oversampling and
sample rate conversion applications. We will discuss it in Chapter 12.
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1.6.2 Staircase Reconstructors

The staircase reconstructor shown in Fig. 1.6.1 is the simplest and most widely used
reconstructor in practice. It generates a staircase approximation to the original signal.
Note the similarity of this operation to practical sampling, where h(t) is a sampling
pulse p(t) having a very narrow width τ� T. By contrast, the impulse response of the
staircase reconstructor must have duration of T seconds in order to fill the entire gap
between samples. Thus, h(t) is given by:

h(t)= u(t)−u(t −T)=
{

1, if 0 ≤ t ≤ T
0, otherwise

t
T

h(t)
1

0

where u(t) is the unit step. The staircase output, although smoother than the sampled
input, still contains spurious high-frequency components arising from the sudden jumps
in the staircase levels from sample to sample. This spurious frequency content may be
seen by computing the frequency response of the reconstructor. The Laplace transform
of h(t)= u(t)−u(t −T) is

H(s)= 1

s
− 1

s
e−sT

from which we obtain the Fourier transform by setting s = 2πjf :

H(f)= 1

2πjf
(
1 − e−2πjfT) = T sin(πfT)

πfT
e−πjfT (1.6.6)

It is shown in Fig. 1.6.5 in comparison to the ideal reconstructor. Notice that it
vanishes at integral multiples of fs — exactly where the replicas caused by sampling are
centered. The spurious high frequencies mentioned above are those beyond the Nyquist
frequency fs/2.

fs-fs-2fs 2fs

f

fs/2-fs/2

|H(f)|
T

0

ideal
reconstructor

4 dB

Fig. 1.6.5 Frequency response of staircase reconstructor.

Thus, the reconstructor does not completely eliminate the replicated spectral images
as the ideal reconstructor does. Figure 1.6.6 compares the spectra before and after the
staircase reconstructor, that is, the effect of the multiplication Ya(f)= H(f)Ŷ(f).
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ideal reconstructor staircase reconstructor

fs/2 fs 2fs-2fs -fs/2-fs 0
f

fs/2 fs 2fs-2fs -fs/2-fs 0
f

surviving replicaspartially attenuated
central replica

Fig. 1.6.6 Frequency response of staircase reconstructor.

1.6.3 Anti-Image Postfilters

The surviving spectral replicas may be removed by an additional lowpass postfilter, called
an anti-image postfilter, whose cutoff is the Nyquist frequency fs/2. This operation is
shown in Fig. 1.6.7.

staircase
reconstructor

anti-image
lowpass
postfilteranalog

signal

ideal reconstructor

analog
signal

cutoff fs/2

digital
signal

t t t

Fig. 1.6.7 Analog anti-image postfilter.

In the time domain, the postfilter has the effect of rounding off the corners of the
staircase output making it smoother. In the frequency domain, the combined effect
of the staircase reconstructor followed by the anti-image postfilter is to remove the
spectral replicas as much as possible, that is, to emulate the ideal reconstructor. The
final reconstructed spectrum at the output of the postfilter is shown in Fig. 1.6.8.

The reason for using this two-stage reconstruction procedure is the simplicity of
implementation of the staircase reconstruction part. A typical D/A converter will act
as such a reconstructor. The digital code for each sample is applied to the DAC for T
seconds generating an analog output that remains constant during T.

The specifications of the postfilter are similar to those of an antialiasing prefilter,
namely, a flat passband and cutoff frequency equal to the Nyquist frequency fs/2. High-
quality DSP applications, such as digital audio, require the use of postfilters (and pre-
filters) with very stringent specifications. In deciding the specifications of a postfilter,
one must take into account the effect of the staircase D/A which does part of the recon-
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fs/2 fs 2fs-2fs -fs/2-fs 0
f

anti-image 
lowpass postfilter sharp cutoff stopband

attenuation

APOST

Fig. 1.6.8 Spectrum after postfilter.

struction.
The main function of the postfilter is to remove the remnants of the spectral images

that survived the staircase D/A reconstructor. It can also be used to equalize the rolloff
of the staircase response within the Nyquist interval. As shown in Fig. 1.6.5, the staircase
reconstructor is not flat within the Nyquist interval, tending to attenuate more near the
Nyquist frequency fs/2. The maximum attenuation suffered at fs/2 is about 4 dB. This
can be seen as follows:

−20 log10

∣∣∣∣H(fs/2)H(0)

∣∣∣∣ = −20 log10

∣∣∣∣sin(π/2)
π/2

∣∣∣∣ = 3.9 dB

This attenuation can be compensated by proper design of the passband of the anti-
image postfilter. But more conveniently, it can be compensated digitally before analog
reconstruction, by designing an equalizing digital filter whose response matches the
inverse of H(f) over the Nyquist interval.

Similar techniques were mentioned in Section 1.5.3 for equalizing the imperfect pass-
band of the antialiasing prefilter. The use of high-quality digital filters to perform these
equalizations improves the overall quality of the digital processing system. By contrast,
analog compensation techniques would be more cumbersome and expensive. The com-
bined equalizer, DAC, and postfilter are shown in Fig. 1.6.9. The frequency response of
the equalizer is defined as the inverse of the DAC, as given by Eq. (1.6.6):

HEQ(f)= T
H(f)

= πfT
sin(πfT)

eπjfT , for − fs
2

≤ f ≤ fs
2

(1.6.7)

It is shown in Fig. 1.6.10. As a digital filter, HEQ(f) is periodic outside the Nyquist
interval with period fs. We will design such inverse filters later using the frequency
sampling design method of Section 10.3. Some designs are presented in Chapter 12.

staircase
reconstructor

H(f)

digital filter
equalizer
HEQ(f)

anti-image
postfilter
HPOST(f)analog

signal
analog
signal

digital
signal

digital
signal

y(nT) ya(t) yPOST(t)yEQ(nT)

Fig. 1.6.9 Digital equalization filter for D/A conversion.

The equalizer filter transforms the sequence y(nT) into the “equalized” sequence
yEQ(nT), which is then fed into the DAC and postfilter. The frequency spectrum of
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f

fs/2-fs/2

|H(f)|

|HEQ(f)|

0

4 dB
1
T

Fig. 1.6.10 Frequency response of DAC equalizer.

yEQ(nT) is ŶEQ(f)= HEQ(f)Ŷ(f). The spectrum of the staircase output of the DAC will
be Ya(f)= H(f)ŶEQ(f). Therefore, the final reconstructed spectrum at the output of
the postfilter will be

YPOST(f) = HPOST(f)Ya(f)

= HPOST(f)H(f) ŶEQ(f)

= HPOST(f)H(f)HEQ(f) Ŷ(f)

Within the Nyquist interval, using Eqs. (1.6.7) and (1.5.15) and assuming a flat post-
filter there, HPOST(f)� 1, we have

YPOST(f)= HPOST(f)H(f)HEQ(f) Ŷ(f)= 1 ·T · 1

T
Y(f)= Y(f)

Outside the Nyquist interval, assuming HPOST(f)� 0, we have YPOST(f)= 0. Thus,
the combination of equalizer, DAC, and postfilter acts like an ideal reconstructor.

Example 1.6.1: The signal of Example 1.5.3 that was sampled at fs = 12 kHz is filtered by a
digital filter designed to act as an ideal lowpass filter with cutoff frequency of fc = 2 kHz.
The filtered digital signal is then fed into a staircase D/A and then into a lowpass anti-
image postfilter. The overall reconstructor is required to suppress the spectral images
caused by sampling by more than A = 80 dB. Determine the least stringent specifications
for the analog postfilter that will satisfy this requirement.

Solution: The digital lowpass filter is, by construction, periodic in f with period fs. Thus, the
spectrum of the signal after the digital filter will look as follows:

ideal lowpass
digital filter

fs/2 fs 2fs-2fs -fs/2-fs 0
f

Y(f)^

fc fs-fc

The spectral images are separated now by a distance fs − 2fc = 12 − 2 · 2 = 8 kHz. After
passing through the staircase reconstructor, the spectrum will be as shown below:
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postfilter
passband transition

region

fs/2 fs 2fs-2fs -fs/2

ADAC

-fs 0

Ya(f)

fc = stopbandfs-fc

APOST

f

The postfilter must have a flat passband over [−fc, fc]. Its stopband must begin at fstop =
fs − fc = 12 − 2 = 10 kHz because the first replica is largest there. The wide transition
region between fc and fs − fc allows the use of a less stringent postfilter.

The required stopband attenuation of the postfilter can be determined as follows. The
total attenuation caused by the cascade of the DAC and postfilter is the sum of the corre-
sponding attenuations:

A(f)= ADAC(f)+APOST(f)

where

ADAC(f)= −20 log10

∣∣∣∣H(f)H(0)

∣∣∣∣ = −20 log10

∣∣∣∣∣ sin(πf/fs)
πf/fs

∣∣∣∣∣
At f = fstop = fs − fc, the total attenuation must be greater than A

ADAC +APOST ≥ A ⇒ APOST ≥ A−ADAC

Numerically, we find at fstop = 10 kHz

ADAC = −20 log10

∣∣∣∣ sin(π10/12)
π10/12

∣∣∣∣ = 14.4

resulting in APOST ≥ 80 − 14.4 = 65.6 dB. 	


The key idea in this example was to use the separation between spectral replicas
as the transition region of the postfilter. The wider this separation, the less stringent
the postfilter. Oversampling and digital interpolation techniques exploit this idea to its
fullest and can be used to alleviate the need for expensive high-quality analog postfilters.
Such oversampling systems are routinely used in CD and DAT players. They will be
discussed in Chapter 12.

Example 1.6.2: A sinusoid of frequency f0 is sampled at a rate fs, such that |f0| ≤ fs/2. The
resulting sampled sinusoid is then reconstructed by an arbitrary reconstructor H(f). De-
termine the analog signal at the output of the reconstructor when H(f) is: (a) the ideal
reconstructor, (b) the staircase reconstructor, (c) the staircase reconstructor followed by a
very good anti-image postfilter, and (d) a staircase reconstructor equalized by the digital
filter defined in Eq. (1.6.7).
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Solution: Let y(t)= e2πjf0t. Its spectrum is Y(f)= δ(f − f0) and the spectrum of the sampled
sinusoid will be the replication of Y(f), as in Example 1.5.1:

Ŷ(f)= 1

T

∞∑
m=−∞

δ(f − f0 −mfs)

The spectrum of the reconstructed signal will be:

Ya(f)= H(f)Ŷ(f) = 1

T

∞∑
m=−∞

H(f)δ(f − f0 −mfs)

= 1

T

∞∑
m=−∞

H(f0 +mfs)δ(f − f0 −mfs)

Taking inverse Fourier transforms, we obtain:

ya(t)= 1

T

∞∑
m=−∞

H(fm)e2πjfmt (1.6.8)

where fm = f0 +mfs. If H(f) is the ideal reconstructor, then H(fm) will be zero if fm
does not lie in the Nyquist interval. Because f0 was assumed to lie in the interval, only the
m = 0 term will survive the sum giving:

ya(t)= 1

T
H(f0)e2πjf0t = 1

T
·Te2πjf0t = e2πjf0t

thus, the sinusoid is reconstructed perfectly. If f0 lies outside the interval, |f0| > fs/2,
then there exists a unique integer m0 such that |f0 +m0fs| < fs/2, where m0 is negative
if f0 > 0. In this case, only the m =m0 term will survive the sum giving:

ya(t)= 1

T
H(fm0)e

2πjfm0 t = e2πjfm0 t

where fm0 = f0 +m0fs = f0 mod(fs). The sinusoid f0 will be confused with the sinusoid
fm0 , as we discussed qualitatively in Section 1.4.1.

For the staircase reconstructor of Eq. (1.6.6), the reconstructed signal will be given by
Eq. (1.6.8), which should sum up to generate the staircase approximation to the sinusoid.
This is demonstrated in Example 1.6.3.

In case (c), a good postfilter will remove all frequencies outside the Nyquist interval, that
is, only the m = 0 term will survive in Eq. (1.6.8), giving:

ya(t)= 1

T
H(f0)e2πjf0t

where we assumed that the postfilter has unity gain over the Nyquist interval. Using
Eq. (1.6.6) evaluated at f = f0, we get:

ya(t)= sin(πf0T)
πf0T

e−πjf0T e2πjf0t
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Thus, there is amplitude attenuation and phase shift, which both become worse as f0
increases towards the Nyquist frequency fs/2. A digital filter that equalizes the staircase
response, would anticipate this attenuation and phase shift and undo them. Indeed, in
case (d), the effective reconstructor is HEQ(f)H(f). Therefore, Eq. (1.6.8) becomes:

ya(t)= 1

T

∞∑
m=−∞

HEQ(fm)H(fm)e2πjfmt

But because of the periodicity of HEQ(f), we can replace HEQ(fm)= HEQ(f0)= T/H(f0),
giving:

ya(t)=
∞∑

m=−∞

H(fm)
H(f0)

e2πjfmt (1.6.9)

A good postfilter, extracting them = 0 term, would result in the final reconstructed output

ypost(t)= H(f0)
H(f0)

e2πjf0t = e2πjf0t. 	


Example 1.6.3: The cosinusoid y(t)= cos(2πf0t) is sampled at a rate fs and the samples are
reconstructed by a staircase reconstructor H(f). The reconstructed signal will be:

ya(t)=
∞∑

m=−∞
G(fm)cos

(
2πfmt +φ(fm)

)
(1.6.10)

where G(f) and φ(f) are defined as

G(f)= sin(πfT)
πfT

, φ(f)= −πfT ⇒ H(f)= TG(f)ejφ(f)

Note that TG(f) and φ(f) are not quite the magnitude and phase responses of H(f);
those are |H(f)| = T|G(f)| and argH(f) = φ(f)+π(1 − signG(f))/2. Eq. (1.6.10)
is obtained by substituting H(f)= TG(f)ejφ(f) into Eq. (1.6.8) and taking real parts. A
computable approximation of Eq. (1.6.10) is obtained by truncating the sum to 2M + 1
terms, that is, keeping the terms −M ≤m ≤M:

ya(t)=
M∑

m=−M
w(m)G(fm)cos

(
2πfmt +φ(fm)

)
(1.6.11)

where we have also introduced appropriate weights w(m) to reduce the Gibbs ripples
resulting from the truncation of the sum. For example, the Hamming weights are:

w(m)= 0.54 + 0.46 cos
(πm
M

)
, −M ≤m ≤M

whereas the rectangular weights are w(m)= 1.

For the numerical values f0 = 0.125 kHz, fs = 1 kHz, M = 15, we have computed the orig-
inal analog signal y(t) and the reconstructed signal ya(t) as given by the approximation
of Eq. (1.6.11), over the time interval 0 ≤ t ≤ 16 msec, that is, over 16 sampling instants.

If the signal ya(t)were postfiltered by a good postfilter, only them = 0 term would survive
the sum, and the resulting signal would be the original f0 sinusoid with some attenuation
and phase shift:
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ypost(t)= G(f0)cos
(
2πf0t +φ(f0)

)
The following figure compares the three signals y(t), ya(t), and ypost(t) in the two cases
of using rectangular weights and Hamming weights w(m).

Notice how the postfilter output ypost(t) is essentially an averaged or smoothed version
of the staircase output ya(t). To see the dependence on the value of f0 of the attenuation
and phase shift of ypost(t), the next two graphs show the cases f0 = 0.25 and f0 = 0.5
kHz.

The case f0 = 0.5 kHz corresponds to the Nyquist frequency fs/2, having the maximum
amplitude and phase distortion. In all cases, however, ypost(t) is a smoothed version of
the staircase output.

If the staircase reconstructor is preceded by an equalizer filter, as shown in Fig. 1.6.9, then
the staircase output will be given by the real part of Eq. (1.6.9). We have:

H(fm)
H(f0)

= sin(πfmT)
πfmT

πf0T
sin(πf0T)

e−jπ(fm−f0)

= sin(πf0T +πm)
sin(πf0T)

f0
fm
e−jπm

= (−1)msin(πf0T)
sin(πf0T)

f0
fm
(−1)m= f0

fm

where we used the property cos(x+πm)= (−1)mcosx. Thus,
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ya(t)=
M∑

m=−M
w(m)

f0
fm

cos(2πfmt) (1.6.12)

This signal is shown below for the case f0 = 0.125 kHz.

It is superimposed on the original sinusoid, corresponding to the m = 0 term, which is
what would be extracted by a good postfilter. Notice again the smoothing effect of the
postfilter. In order to remove completely all the m �= 0 terms, the postfilter must be a
high-quality lowpass filter with sharp cutoff at the Nyquist frequency.

To illustrate the beneficial effect of oversampling on such a reconstructor, we have also
plotted the digitally equalized staircase output in the case of 4-times oversampling, as
given by Eq. (1.6.12) with fs = 4 kHz. Now there are four times as many staircase levels.
They follow the original sinusoid more closely and can be smoothed more easily. Therefore,
a lower quality, less expensive lowpass postfilter would be sufficient in this case. 	


1.7 Basic Components of DSP Systems

It follows from the discussion in Sections 1.5 and 1.6 that the minimum number of
necessary components in a typical digital signal processing system must be:

1. A lowpass analog antialiasing prefilter that bandlimits the signal to be sampled to
within the Nyquist interval.

2. An A/D converter (sampler and quantizer).

3. A digital signal processor.

4. A D/A converter (staircase reconstructor), possibly preceded by an equalizing dig-
ital filter.

5. A lowpass analog anti-image postfilter to complete the job of the staircase re-
constructor and further remove the spectral images introduced by the sampling
process.

These are shown in Fig. 1.7.1. Here, we review briefly the function of each stage and
its impact on the quality of the overall digital processing system. With the exception



54 1. SAMPLING AND RECONSTRUCTION

of the sampling stage, every stage in this system may be thought of as a filtering op-
eration by an appropriate transfer function. The sampling stage, through its spectrum
replication, is a spectrum expansion operation.

The function of the antialiasing prefilter HPRE(f) is to bandlimit the overall analog
input signal xa(t) to within the Nyquist interval [−fs/2, fs/2]. The output of the pre-
filter is now a bandlimited signal x(t) and may be sampled at a rate of fs samples per
second. By design, the spectral replicas generated by the sampling process will not over-
lap. The sampling rate must be high enough so that the surviving input spectrum after
the prefiltering operation, that is, the spectrum of x(t), contains all the frequencies of
interest for the application at hand.

The quality of the prefilter affects critically the quality of the overall system, that is,
the degree of overlap of the spectral replicas depends on the rolloff characteristics of
the prefilter.

The sampled (and quantized) signal x̂(t) or x(nT) is then processed by a digital
signal processor whose effect is to reshape the spectrum by means of a transfer function,
say HDSP(f), so that Ŷ(f)= HDSP(f)X̂(f).

The resulting output samples ŷ(t) or y(nT) are then reconstructed by the DAC into
the staircase analog signal y(t). Finally, the signal y(t) is smoothed further by the
postfilter, resulting in the overall analog output signal ya(t). Separating in Eq. (1.5.11)
the central replica from the other replicas, we write

X̂(f)= 1

T

∞∑
m=−∞

X(f −mfs)= 1

T
[
X(f)+replicas

]
and following backwards all the transfer function relationships, we find for the spectrum
of ya(t):

Ya(f) = HPOST(f)Y(f)= HPOST(f)HDAC(f) Ŷ(f)

= HPOST(f)HDAC(f)HDSP(f) X̂(f)

= HPOST(f)HDAC(f)HDSP(f)
1

T
[
X(f)+replicas

]
= HPOST(f)HDAC(f)HDSP(f)

1

T
[
HPRE(f)Xa(f)+replicas

]

analog
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Fig. 1.7.1 Components of typical DSP system.
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In a well-designed system, the product of the staircase DAC and the postfilter trans-
fer functions should be effectively equal to the ideal reconstructor. Therefore, for fre-
quencies outside the Nyquist interval the output spectrum will vanish, that is, the spec-
tral images will be removed. But for frequencies within the Nyquist interval, that product
should be equal to the gain T canceling the 1/T factor.

Furthermore, because the prefilterHPRE(f) ensures that the replicas do not overlap,
the terms labeled “replicas” will vanish for all frequencies within the Nyquist interval.
Finally, because the prefilter approximates an ideal lowpass filter, its passband gain will
be approximately one. The upshot of all this is that within the Nyquist interval one has
approximately

HPOST(f)HDAC(f) � T
replicas � 0

HPRE(f) � 1

To the extent that these approximations are good—and this determines the quality
of the overall system—we finally find

Ya(f)= T ·HDSP(f)
1

T
[
1 ·Xa(f)+0

]
, or,

Ya(f)= HDSP(f)Xa(f) , for |f| ≤ fs
2

(1.7.1)

Thus, the above arrangement works exactly as expected, that is, it is equivalent to
linear filtering of the analog input, with an effective transfer functionHDSP(f) defined by
the digital signal processor. This is, of course, the ultimate goal of the DSP system. The
primary reasons for using digital signal processing are the programmability, reliability,
accuracy, availability, and cost of the digital hardware.

1.8 Problems

1.1 A wheel, rotating at 6 Hz, is seen in a dark room by means of a strobe light flashing at a rate
of 8 Hz. Determine the apparent rotational speed and sense of rotation of the wheel. Repeat
the question if the flashes occur at 12 Hz, 16 Hz, or 24 Hz.

1.2 The analog signal x(t)= 10 sin(2πt)+10 sin(8πt)+5 sin(12πt), where t is in seconds, is
sampled at a rate of fs = 5 Hz. Determine the signal xa(t) aliased with x(t). Show that the
two signals have the same sample values, that is, show that x(nT)= xa(nT). Repeat the
above questions if the sampling rate is fs = 10 Hz.

1.3 The signal x(t)= cos(5πt)+4 sin(2πt)sin(3πt), where t is in milliseconds, is sampled at
a rate of 3 kHz. Determine the signal xa(t) aliased with x(t).
Determine two other signals x1(t) and x2(t) that are different from each other and from
x(t), yet they are aliased with the same xa(t) that you found.

1.4 Let x(t)= cos(8πt)+2 cos(4πt)cos(6πt), where t is in seconds. Determine the signal
xa(t) aliased with x(t), if the sampling rate is 5 Hz. Repeat for a sampling rate of 9 Hz.
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1.5 The analog signal x(t)= sin(6πt)
[
1 + 2 cos(4πt)

]
, where t is in milliseconds, is sampled

at a rate of 4 kHz. The resulting samples are immediately reconstructed by an ideal recon-
structor. Determine the analog signal xa(t) at the output of the reconstructor.

1.6 The analog signal x(t)= 4 cos(2πt)cos(8πt)cos(12πt), where t is in seconds, is sampled
at a rate of fs = 10 Hz. Determine the signal xa(t) aliased with x(t). Show that the two
signals have the same sample values, that is, show that x(nT)= xa(nT). Repeat the above
questions if the sampling rate is fs = 12 Hz. [Hint: Express x(t) as a sum of sines and
cosines.]

1.7 Consider the periodic triangular waveform with period T0 = 1 sec shown in Fig. 1.8.1. The
waveform is sampled at rate fs = 8 Hz and the resulting samples are reconstructed by
an ideal reconstructor. Show that the signal xrec(t) that will appear at the output of the
reconstructor will have the form:

xrec(t)= A sin(2πf1t)+B sin(2πf2t)

and determine the numerical values of the frequencies f1, f2 and amplitudes A, B.

x(t)

t (sec)

1

0.50 1

Fig. 1.8.1 Triangular waveform of Problem 1.7.

1.8 Computer Experiment: Aliasing. Consider an analog signal x(t) consisting of three sinusoids
of frequencies f1 = 1 kHz, f2 = 4 kHz, and f3 = 6 kHz, where t is in milliseconds:

x(t)= 2 sin(2πf1t)+2 sin(2πf2t)+ sin(2πf3t)

a. The signal is sampled at a rate of 5 kHz. Determine the signal xa(t) that would be
aliased with x(t). On the same graph, plot the two signals x(t) and xa(t) versus t in
the range 0 ≤ t ≤ 2 msec. Show both analytically and graphically that the two signals
have the same sampled values, which occur at intervals of T = 1/fs = 0.2 msec.

b. Repeat with a sampling rate of fs = 10 kHz.

c. On the same graph, plot the signals x(t) and xa(t) of Problem 1.7, over the range
0 ≤ t ≤ 2 sec, and verify that they intersect at the sampling instants at multiples of
T = 1/fs = 0.125 sec. In plotting, x(t), you need to define it as a triangular function
of t.
Repeat this part, but with sampling rate fs = 4 Hz. What is xa(t) now?

1.9 Consider the following sound wave, where t is in milliseconds:

x(t)= sin(10πt)+ sin(20πt)+ sin(60πt)+ sin(90πt)

This signal is prefiltered by an analog antialiasing prefilter H(f) and then sampled at an
audio rate of 40 kHz. The resulting samples are immediately reconstructed using an ideal
reconstructor. Determine the output ya(t) of the reconstructor in the following cases and
compare it with the audible part of x(t):
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a. When there is no prefilter, that is, H(f)≡ 1.

b. When H(f) is an ideal prefilter with cutoff of 20 kHz.

c. WhenH(f) is a practical prefilter that has a flat passband up to 20 kHz and attenuates
at a rate of 48 dB/octave beyond 20 kHz. (You may ignore the effects of the phase
response of the filter.)

1.10 Prove the Fourier series expansion of the ideal sampling function s(t) given in Eq. (1.5.10).
Then, prove its Fourier transform expression (1.5.13).

1.11 Given Eq. (1.5.4), prove the inverse DTFT property (1.5.5), that is,

X̂(f)=
∞∑

n=−∞
x(nT)e−2πjfTn ⇒ x(nT)= 1

fs

∫ fs/2
−fs/2

X̂(f)e2πjfTn df

1.12 Consider a pure sinusoid of frequency f0, x(t)= cos(2πf0t). Show that the spectrum of the
sampled sinusoid x(nT) is:

X̂(f)= 1

2T

∞∑
m=−∞

[
δ(f − f0 −mfs)+δ(f + f0 +mfs)

]
1.13 Computer Experiment: Sampling of Non-Bandlimited Signals. Consider the exponentially

decaying sinusoid x(t)= e−at cos(2πf0t) sampled at a rate fs = 1/T. For convenience,
replace it by its complex-valued version: x(t)= e−ate2πjf0t. Let x(nT)= e−aTne2πjf0Tn be
its samples, and let xL(nT)= x(nT), n = 0,1, . . . , L− 1 be its windowed version to length
L. Show that the magnitude spectra of the analog, sampled, and windowed signals are given
by:

|X(f)|2 = 1

a2 + (2π(f − f0))2

|X̂(f)|2 = 1

1 − 2e−aT cos
(
2π(f − f0)T

)+ e−2aT

|X̂L(f)|2 = 1 − 2e−aTL cos
(
2π(f − f0)LT

)+ e−2aTL

1 − 2e−aT cos
(
2π(f − f0)T

)+ e−2aT

Show the limits:

lim
L→∞

X̂L(f)= X̂(f), lim
fs→∞

TX̂(f)= X(f)

For the numerical values a = 0.2 sec−1, f0 = 0.5 Hz, and the two rates fs = 1 Hz and
fs = 2 Hz, plot on the same graph the analog spectrum |X(f)|2 and the sampled spectrum
|TX̂(f)|2, over the frequency range 0 ≤ f ≤ 3 Hz.

For fs = 2, plot on another graph, the three spectra |X(f)|2, |TX̂(f)|2, |TX̂L(f)|2, over the
range 0 ≤ f ≤ 3 Hz.

What conclusions do you draw from these graphs? What are the implications of the above
limits? What are the essential differences if we work with the real-valued signal?

1.14 The frequency range of interest of a signal extends to fmax. Beyond fmax, the spectrum
attenuates by α dB per decade. We have available an off-the-shelf antialiasing prefilter that
has a flat passband up to fmax and attenuates by β dB per decade beyond that. It is required
that within the fmax range of interest, the aliased components due to sampling be suppressed
by more than A dB. Show that the minimum sampling rate that we should use is given by

fs = fmax + 10A/γfmax , where γ = α+ β
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1.15 An analog input signal to a DSP system has spectrum:

|Xin(f)| = 1√
1 + (0.1f)8

where f is in kHz. The highest frequency of interest is 20 kHz. The signal is to be sampled
at a rate fs. It is required that the aliased spectral components within the frequency range
of interest be suppressed by more than 60 dB relative to the signal components, that is, they
must be at least 60 dB below the value of the signal components throughout the 20 kHz
range of interest.

a. Determine the minimum sampling rate fs, if no antialiasing prefilter is used.

b. Suppose a simple third-order Butterworth antialiasing prefilter is used having magni-
tude response

|H(f)| = 1√
1 + (f/f0)6

It is required that the prefilter’s attenuation within the 20 kHz band of interest remain
less than 1 dB. What is the value of the normalization frequency f0 in this case? What
is the minimum value of fs that may be used? Compare your exact calculation of fs
with the approximate one using the method of Problem 1.14.

1.16 For the above example, suppose we are constrained to use a particular sampling rate, which
is less than the minimum we determined above (and greater than 2fmax), such as fs = 70 kHz.
In order to achieve the required 60 dB suppression of the aliased replicas, we must now use
a more complex prefilter—one that has a steeper transition width, such as a higher-order
Butterworth. An Nth order Butterworth filter has magnitude response

|H(f)|2 = 1

1 + (f/f0)2N

Given fs, determine the minimum filter order N in order for the filter to attenuate less than
Apass = 1 dB in the passband and the total suppression of the spectral images to be greater
than A = 60 dB.

1.17 Computer Experiment: Butterworth Prefilter Design. Using the methods of the previous prob-
lem, derive a “design curve” for the prefilter, that is, an expression for the Butterworth filter
orderN as a function of the sampling rate fs and stopband attenuationA. Assume fmax = 20
kHz and Apass = 1 dB for the passband attenuation.

For each of the attenuation values A = 40,50,60,70,80 dB, plot the filter order N versus fs
in the range 50 ≤ fs ≤ 120 kHz. Identify on these graphs the design points of the Problems
1.15 and 1.16.

1.18 The significant frequency range of an analog signal extends to 10 kHz. Beyond 10 kHz, the
signal spectrum attenuates at a rate of 80 dB per decade.

The signal is to be sampled at a rate of 30 kHz. The aliased frequency components introduced
into the 10 kHz range of interest must be kept below 60 dB, as compared to the signal
components.

Suppose we use an antialiasing prefilter whose passband is flat over the 10 kHz interval.
Beyond 10 kHz, it attenuates at a certain rate that must be steep enough to satisfy the
above sampling requirements. What is this attenuation rate in dB per decade? Explain your
reasoning. What is the minimum filter order that we must use?

What is the prefilter’s attenuation rate if we increase the sampling rate to 50 kHz? What is
the filter order in this case?
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1.19 An analog input signal to a DSP system has spectrum:

|Xin(f)| = 1√
1 + (f/fa)2Na

where fa andNa are given. The highest frequency of interest is fmax = 2fa. The signal is to be
sampled at a rate fs. It is required that the aliased spectral components within the frequency
range of interest be suppressed by more than A dB relative to the signal components, that
is, they must be at least A dB below the value of the signal components throughout the
0 ≤ f ≤ fmax range of interest.

a. Assuming that no antialiasing prefilter is used, set up and solve an equation for the
minimum sampling rate fs, in terms of the quantities fa, Na, A.

b. Next, suppose that an Nth order Butterworth analog prefilter is to be used to aid the
sampling process. Let f0 be the filter’s 3-dB normalization frequency. It is required
that the prefilter’s attenuation within the 0 ≤ f ≤ fmax band of interest remain less
than B dB.

Set up an equation for f0 that would guarantee this condition.

Then, set up an equation for the minimum fs that would guarantee the desired A dB
suppression of the spectral images.

c. Show that fs is given approximately by

fs = fmax

[
1 + 10A/20(N+Na)

]
When is this approximation valid? Show that this expression also covers part (a) if you
setN = 0. Discuss the meaning of the limitN → ∞ in terms of the sampling theorem.

1.20 In Problem 1.19, we implicitly assumed that the prefilter’s order N was given, and we deter-
mined f0 and fs. Here, we assume that fs is given and is equal to some value above 2fmax.
Show that the minimum prefilter order that must be used to guarantee A dB suppression of
the spectral images is approximately linearly related to A via an equation of the form:

N = aA+ b

Determine expressions for a and b in terms of the given quantities.

1.21 The operation of flat-top practical sampling depicted in Fig. 1.5.1 may be thought of as filter-
ing the ideally sampled signal x̂(t) through an analog linear filter whose impulse response
is the sampling pulse p(t), as shown in Fig. 1.8.2. Show that Eq. (1.5.2) can be written as the
I/O convolutional equation of such a filter:

xflat(t)=
∫∞

−∞
p(t − t′)x̂(t′)dt′ =

∞∑
n=−∞

x(nT)p(t − nT)

where x̂(t) is given by Eq. (1.5.1). In the frequency domain, this translates to Xflat(f)=
P(f)X̂(f), where P(f) is the spectrum of sampling pulse p(t).
Determine P(f) for a flat pulse p(t) of duration τ seconds. For the case τ = T/5, make a
sketch of Xflat(f) over the range −6fs ≤ f ≤ 6fs.
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t
nT

x(nT) δ(t-nT)

t
nT

x(nT) p(t −nT)

ideally
sampled
signal

flat-top
sampled
signal

linear system

xflat(t)

τ t

x(t)^ p(t)

0

Fig. 1.8.2 Flat-top sampling as filtering.

1.22 After having been properly prefiltered by an antialiasing filter, an analog signal is sampled
at a rate of 6 kHz. The digital signal is then filtered by a digital filter designed to act as an
ideal lowpass filter with cutoff frequency of 1 kHz. The filtered digital signal is then fed into
a staircase D/A reconstructor and then into a lowpass anti-image postfilter.

The overall reconstructor is required to suppress the spectral images caused by sampling by
more than A = 40 dB. Determine the least stringent specifications for the analog postfilter
that will satisfy this requirement.

1.23 Consider an arbitrary D/A reconstructing filter with impulse response h(t) and correspond-
ing frequency responseH(f). The analog signal at the output of the reconstructor is related
to the incoming time samples x(nT) by

xa(t)=
∑
n
x(nT)h(t − nT)

Show this result in two ways:

a. Using convolution in the time domain.

b. Starting with Xa(f)= H(f)X̂(f) and taking inverse Fourier transforms.

1.24 The sinusoidal signal x(t)= sin(2πf0t) is sampled at a rate fs and the resulting samples are
then reconstructed by an arbitrary analog reconstructing filter H(f). Show that the analog
signal at the output of the reconstructor will have the form:

xrec(t)=
∞∑

m=−∞
Am sin(2πfmt + θm)

What are the frequencies fm? How are the quantities Am and θm related to the frequency
responseH(f)? Determine the quantities Am and θm for the two cases of a staircase recon-
structor and an ideal reconstructor.

1.25 The sum of sinusoids

y(t)= A1e2πjf1t +A2e2πjf2t

is sampled at a rate fs such that fs > 2|f1| and fs > 2|f2|. The resulting samples are then
filtered digitally by a staircase-equalizing digital filter and then reconstructed by a staircase
reconstructor, as shown in Fig. 1.6.9. If a final postfilter is not used, show that the resulting
analog signal at the output of the reconstructor will be

ya(t)=
∞∑

m=−∞

[
A1me2πjf1mt +A2me2πjf2mt

]
where A1m = A1f1/f1m, A2m = A2f2/f2m, and f1m = f1 +mfs, f2m = f2 +mfs. What would
a final postfilter do to each of these terms?
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Quantization

2.1 Quantization Process

Sampling and quantization are the necessary prerequisites for any digital signal pro-
cessing operation on analog signals. A sampler and quantizer are shown in Fig. 2.1.1
[40–45]. The hold capacitor in the sampler holds each measured sample x(nT) for at
most T seconds during which time the A/D converter must convert it to a quantized
sample, xQ(nT), which is representable by a finite number of bits, say B bits. The B-bit
word is then shipped over to the digital signal processor.

x(t) x(nT)

Tanalog
signal

sampled
signal

B bits/sample

sample & hold

sampler & quantizer

to DSP
A/D

converter

quantized
signal xQ(nT)

Fig. 2.1.1 Analog to digital conversion.

After digital processing, the resulting B-bit word is applied to a D/A converter which
converts it back to analog format generating a staircase output. In practice, the sam-
ple/hold and ADC may be separate modules or may reside on board the same chip.

The quantized sample xQ(nT), being represented by B bits, can take only one of
2B possible values. An A/D converter is characterized by a full-scale range R, which
is divided equally (for a uniform quantizer) into 2B quantization levels, as shown in
Fig. 2.1.2. The spacing between levels, called the quantization width or the quantizer
resolution, is given by:

Q = R
2B

(2.1.1)

This equation can also be written in the form:

61
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x(nT)
x(t)

xQ(nT)

0

quantization
levels

Fig. 2.1.2 Signal quantization.

R
Q

= 2B (2.1.2)

which gives the number of quantization levels. Typical values of R in practice are be-
tween 1–10 volts. Figure 2.1.2 shows the case of B = 3 or 2B = 8 levels, and assumes a
bipolar ADC for which the possible quantized values lie within the symmetric range:

−R
2

≤ xQ(nT)<
R
2

For a unipolar ADC, we would have instead 0 ≤ xQ(nT)< R. In practice, the input
signal x(t)must be preconditioned by analog means to lie within the full-scale range of
the quantizer, that is, −R/2 ≤ x(t)< R/2, before it is sent to the sampler and quantizer.
The upper end, R/2, of the full-scale range is not realized as one of the levels; rather,
the maximum level is R/2 −Q.

In Fig. 2.1.2, quantization of x(t) was done by rounding, that is, replacing each value
x(t) by the value of the nearest quantization level. Quantization can also be done by
truncation whereby each value is replaced by the value of the level below it. Rounding
is preferred in practice because it produces a less biased quantized representation of
the analog signal.

The quantization error is the error that results from using the quantized signal
xQ(nT) instead of the true signal x(nT), that is,†

e(nT)= xQ(nT)−x(nT) (2.1.3)

In general, the error in quantizing a number x that lies in [−R/2, R/2) is:

e = xQ − x
†A more natural definition would have been e(nT)= x(nT)−xQ(nT). The choice (2.1.3) is more conve-

nient for making quantizer models.
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where xQ is the quantized value. If x lies between two levels, it will be rounded up or
down depending on which is the closest level. If x lies in the upper (lower) half between
the two levels, it will be rounded up (down). Thus, the error e can only take the values†

− Q
2

≤ e ≤ Q
2

(2.1.4)

Therefore, the maximum error is emax = Q/2 in magnitude. This is an overestimate
for the typical error that occurs. To obtain a more representative value for the average
error, we consider the mean and mean-square values of e defined by:

e = 1

Q

∫ Q/2
−Q/2

ede = 0, and e2 = 1

Q

∫ Q/2
−Q/2

e2 de = Q2

12
(2.1.5)

The result e = 0 states that on the average half of the values are rounded up and
half down. Thus, e cannot be used as a representative error. A more typical value is the
root-mean-square (rms) error defined by:

erms =
√
e2 = Q√

12
(2.1.6)

Equations (2.1.5) can be given a probabilistic interpretation by assuming that the
quantization error e is a random variable which is distributed uniformly over the range
(2.1.4), that is, having probability density:

p(e)=
⎧⎪⎨⎪⎩

1

Q
if −Q

2
≤ e ≤ Q

2
0 otherwise

e
Q/2−Q/2

p(e)
1/Q

0

The normalization 1/Q is needed to guarantee:∫ Q/2
−Q/2

p(e)de = 1

It follows that Eqs. (2.1.5) represent the statistical expectations:

E[e]=
∫ Q/2
−Q/2

ep(e)de and E[e2]=
∫ Q/2
−Q/2

e2p(e)de

Thinking of R and Q as the ranges of the signal and quantization noise, the ratio in
Eq. (2.1.2) is a signal-to-noise ratio (SNR). It can be expressed in dB:

20 log10

(R
Q
) = 20 log10

(
2B
) = B · 20 log10 2, or,

SNR = 20 log10

(R
Q
) = 6B dB (2.1.7)

†If the midpoint between levels is always rounded up, then we should have more strictly −Q/2 < e ≤
Q/2.
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which is referred to as the 6 dB per bit rule. Eq. (2.1.7) is called the dynamic range of
the quantizer. Equations (2.1.1) and (2.1.6) can be used to determine the wordlength B
if the full-scale range and desired rms error are given.

Example 2.1.1: In a digital audio application, the signal is sampled at a rate of 44 kHz and each
sample quantized using an A/D converter having a full-scale range of 10 volts. Determine
the number of bits B if the rms quantization error must be kept below 50 microvolts. Then,
determine the actual rms error and the bit rate in bits per second.

Solution: Write Eq. (2.1.6) in terms of B, erms = Q/
√

12 = R2−B/
√

12 and solve for B:

B = log2

[
R

erms
√

12

]
= log2

[
10

50 · 10−6
√

12

]
= 15.82

which is rounded to B = 16 bits, corresponding to 2B = 65536 quantization levels. With
this value of B, we find erms = R2−B/

√
12 = 44 microvolts. The bit rate will be Bfs =

16 · 44 = 704 kbits/sec. This is a typical bit rate for CD players.

The dynamic range of the quantizer is 6B = 6·16 = 96 dB. Note that the dynamic range of
the human ear is about 100 dB. Therefore, the quantization noise from 16-bit quantizers
is about at the threshold of hearing. This is the reason why “CD quality” digital audio
requires at least 16-bit quantization. 	


Example 2.1.2: By comparison, in digital speech processing the typical sampling rate is 8 kHz
and the quantizer’s wordlength 8 bits, corresponding to 256 levels. An 8-bit ADC with full-
scale range of 10 volts, would generate an rms quantization noise erms = R2−B/

√
12 = 11

millivolts. The bit rate in this case is Bfs = 8 · 8 = 64 kbits/sec. 	


The probabilistic interpretation of the quantization noise is very useful for deter-
mining the effects of quantization as they propagate through the rest of the digital
processing system. Writing Eq. (2.1.3) in the form†

xQ(n)= x(n)+e(n) (2.1.8)

we may think of the quantized signal xQ(n) as a noisy version of the original unquan-
tized signal x(n) to which a noise component e(n) has been added. Such an additive
noise model of a quantizer is shown in Fig. 2.1.3.

x(n) x(n)xQ(n) xQ(n)
e(n)

Quantizer

Fig. 2.1.3 Additive noise model of a quantizer.

In general, the statistical properties of the noise sequence e(n) are very complicated
[46–51,54]. However, for so-called wide-amplitude wide-band signals, that is, signals that
vary through the entire full-scale range R crossing often all the quantization levels, the

†For simplicity, we denoted x(nT) by x(n), etc.
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sequence e(n)may be assumed to be a stationary zero-mean white noise sequence with
uniform probability density over the range [−Q/2,Q/2]. Moreover, e(n) is assumed
to be uncorrelated with the signal x(n). The average power or variance of e(n) has
already been computed above:

σ2
e = E[e2(n)]= Q2

12
(2.1.9)

The assumption that e(n) is white noise means that it has a delta-function autocorre-
lation (see Appendix A.1):

Ree(k)= E[e(n+ k)e(n)]= σ2
eδ(k) (2.1.10)

for all lags k. Similarly, that it is uncorrelated with x(n) means that it has zero cross-
correlation:

Rex(k)= E[e(n+ k)x(n)]= 0 (2.1.11)

for all k. Later on we will illustrate this statistical model for e(n) with a simulation
example and verify equations (2.1.9)–(2.1.11), as well as the uniform distribution for the
density p(e).

The model is not accurate for low-amplitude slowly varying signals. For example, a
sinusoid that happens to lie exactly in the middle between two levels and has amplitude
less than Q/2 will be quantized to be a square wave, with all the upper humps of the si-
nusoid being rounded up and all the lower ones rounded down. The resulting error e(n)
will be highly periodic, that is, correlated from sample to sample, and not resembling
random white noise. It will also be highly correlated with input sinusoid x(n).

In digital audio, quantization distortions arising from low-level signals are referred
to as granulation noise and correspond to unpleasant sounds. They can be virtually
eliminated by the use of dither, which is low-level noise added to the signal before
quantization.

The beneficial effect of dithering is to make the overall quantization error behave as
a white noise signal, which is perceptually much more preferable and acceptable than
the gross granulation distortions of the undithered signal [52–69]. On the negative side,
dithering reduces the signal-to-noise ratio somewhat—between 3 to 6 dB depending on
the type of dither used. Dither will be discussed in Section 2.5.

2.2 Oversampling and Noise Shaping∗

In the frequency domain, the assumption that e(n) is a white noise sequence means that
it has a flat spectrum. More precisely, the total average power σ2

e of e(n) is distributed
equally over the Nyquist interval [−fs/2, fs/2], as shown in Fig. 2.2.1.

Thus, the power per unit frequency interval or power spectral density of e(n) will
be†

†In units of digital frequency ω = 2πf/fs, it is See(ω)= σ2
e/2π.
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f
fs/2-fs/2

See(f)
σ2

e /fs

0

Fig. 2.2.1 Power spectrum of white quantization noise.

See(f)= σ2
e
fs
, for − fs

2
≤ f ≤ fs

2
(2.2.1)

and it is periodic outside the interval with period fs. The noise power within any Nyquist
subinterval [fa, fb] of width Δf = fb − fa is given by

See(f)Δf = σ2
e
Δf
fs

= σ2
e
fb − fa
fs

As expected, the total power over the entire interval Δf = fs will be

σ2
e
fs
fs = σ2

e

Noise shaping quantizers reshape the spectrum of the quantization noise into a more
convenient shape. This is accomplished by filtering the white noise sequence e(n) by
a noise shaping filter HNS(f). The equivalent noise model for the quantization process
is shown in Fig. 2.2.2. The corresponding quantization equation, replacing Eq. (2.1.8),
becomes:

xQ(n)= x(n)+ε(n) (2.2.2)

x(n)

HNS(f)

xQ(n)

e(n)

ε(n)

Fig. 2.2.2 Model of noise shaping quantizer.

where ε(n) denotes the filtered noise. The sequence ε(n) is no longer white. Its power
spectral density is not flat, but acquires the shape of the filter HNS(f):

Sεε(f)= |HNS(f)|2 See(f)= σ2
e
fs

|HNS(f)|2 (2.2.3)

The noise power within a given subinterval [fa, fb] is obtained by integrating Sεε(f)
over that subinterval:
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Power in [fa, fb] =
∫ fb
fa
Sεε(f)df = σ2

e
fs

∫ fb
fa

|HNS(f)|2 df (2.2.4)

Noise shaping quantizers are implemented by the so-called delta-sigma A/D con-
verters [276], which are increasingly being used in commercial products such as digital
audio sampling systems for hard disk or digital tape recording. We will discuss imple-
mentation details in Chapter 12. Here, we give a broad overview of the advantages of
such quantizers.

The concepts of sampling and quantization are independent of each other. The first
corresponds to the quantization of the time axis and the second to the quantization
of the amplitude axis. Nevertheless, it is possible to trade off one for the other. Over-
sampling was mentioned earlier as a technique to alleviate the need for high quality
prefilters and postfilters. It can also be used to trade off bits for samples. In other
words, if we sample at a higher rate, we can use a coarser quantizer. Each sample will
be less accurate, but there will be many more of them and their effect will average out
to recover the lost accuracy.

The idea is similar to performing multiple measurements of a quantity, say x. Let σ2
x

be the mean-square error in a single measurement. If L independent measurements of
x are made, it follows from the law of large numbers that the measurement error will be
reduced to σ2

x/L, improving the accuracy of measurement. Similarly, if σ2
x is increased,

making each individual measurement worse, one can maintain the same level of quality
as long as the number of measurements L is also increased commensurately to keep the
ratio σ2

x/L constant.
Consider two cases, one with sampling rate fs and B bits per sample, and the other

with higher sampling rate f ′s and B′ bits per sample. The quantity:

L = f ′s
fs

is called the oversampling ratio and is usually an integer. We would like to show that
B′ can be less than B and still maintain the same level of quality. Assuming the same
full-scale range R for the two quantizers, we have the following quantization widths:

Q = R2−B, Q′ = R2−B′

and quantization noise powers:

σ2
e =

Q2

12
, σ′2

e = Q′2

12

To maintain the same quality in the two cases, we require that the power spectral den-
sities remain the same, that is, using Eq. (2.2.1):

σ2
e
fs

= σ′2
e
f ′s

which can be rewritten as
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σ2
e = fs

σ′2
e
f ′s

= σ′2
e
L

(2.2.5)

Thus, the total quantization power σ2
e is less than σ′2

e by a factor of L, making B
greater than B′. The meaning of this result is shown pictorially in Fig. 2.2.3. If sampling
is done at the higher rate f ′s , then the total power σ′2

e of the quantization noise is spread
evenly over the f ′s Nyquist interval.

f
fs/2 fs′/2-fs′/2 -fs/2

σ′2e /fs′

0

area = σ2
e

Fig. 2.2.3 Oversampled quantization noise power, without noise shaping.

The shaded area in Fig. 2.2.3 gives the proportion of theσ′2
e power that lies within the

smaller fs interval. Solving Eq. (2.2.5) for L and expressing it in terms of the difference
ΔB = B− B′, we find:

L = σ′2
e

σ2
e

= 22(B−B′) = 22ΔB

or, equivalently

ΔB = 0.5 log2 L (2.2.6)

that is, a saving of half a bit per doubling of L. This is too small to be useful. For
example, in order to reduce a 16-bit quantizer for digital audio to a 1-bit quantizer, that
is, ΔB = 15, one would need the unreasonable oversampling ratio of L = 230.

A noise shaping quantizer operating at the higher rate f ′s can reshape the flat noise
spectrum so that most of the power is squeezed out of the fs Nyquist interval and
moved into the outside of that interval. Fig. 2.2.4 shows the power spectrum of such a
quantizer.

f
0

|HNS(f )|
2

fs/2 fs′/2-fs′/2 -fs/2

σ′2e /fs′

σ′2e
fs′

Fig. 2.2.4 Spectrum of oversampling noise shaping quantizer.

The total quantization noise power that resides within the original fs Nyquist interval
is the shaded area in this figure. It can be calculated by integrating Eq. (2.2.4) over
[−fs/2, fs/2]:
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σ2
e =

σ′2
e
f ′s

∫ fs/2
−fs/2

|HNS(f)|2 df (2.2.7)

Note that it reduces to Eq. (2.2.5) if there is no noise shaping, that is, HNS(f)= 1.
We will see in Section 12.7 that a typical pth order noise shaping filter operating at the
high rate f ′s has magnitude response:

|HNS(f)|2 =
∣∣∣∣∣2 sin

(
πf
f ′s

)∣∣∣∣∣
2p

, for − f ′s
2

≤ f ≤ f ′s
2

(2.2.8)

For small frequencies f , we may use the approximation, sinx � x, to obtain:

|HNS(f)|2 =
(

2πf
f ′s

)2p

, for |f| � f ′s/2 (2.2.9)

Assuming a large oversampling ratio L, we will have fs � f ′s , and therefore, we can
use the approximation (2.2.9) in the integrand of Eq. (2.2.7). This gives:

σ2
e =

σ′2
e
f ′s

∫ fs/2
−fs/2

(
2πf
f ′s

)2p

df = σ′2
e

π2p

2p+ 1

(
fs
f ′s

)2p+1

= σ′2
e

π2p

2p+ 1

1

L2p+1

Using σ2
e/σ′2

e = 2−2(B−B′) = 2−2ΔB, we obtain:

2−2ΔB = π2p

2p+ 1

1

L2p+1

Solving for ΔB, we find the gain in bits:

ΔB = (p+ 0.5)log2 L− 0.5 log2

(
π2p

2p+ 1

)
(2.2.10)

Now, the savings are (p+ 0.5) bits per doubling of L. Note that Eq. (2.2.10) reduces
to Eq. (2.2.6) if there is no noise shaping, that is, p = 0. Practical values for the order
p are at present p = 1,2,3, with p = 4,5 becoming available. Table 2.2.1 compares the
gain in bits ΔB versus oversampling ratio L for various quantizer orders.

The first CD player built by Philips used a first-order noise shaper with 4-times over-
sampling, that is, p = 1, L = 4, which according to the table, achieves a savings of
ΔB = 2.1 bits. Because of that, the Philips CD player used a 14-bit, instead of a 16-bit,
D/A converter at the analog reconstructing stage [279].

We also see from the table that to achieve 16-bit CD-quality resolution using 1-
bit quantizers, that is, ΔB = 15, we may use a second-order 128-times oversampling
quantizer. For digital audio rates fs = 44.1 kHz, this would imply oversampling at
f ′s = Lfs = 5.6 MHz, which is feasible with the present state of the art. Alternatively, we
may use third-order noise shaping with 64-times oversampling.

An overall DSP system that uses oversampling quantizers with noise shaping is
shown in Fig. 2.2.5. Sampling and reconstruction are done at the fast rate f ′s and at
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p L 4 8 16 32 64 128

0 ΔB = 0.5 log2 L 1.0 1.5 2.0 2.5 3.0 3.5
1 ΔB = 1.5 log2 L− 0.86 2.1 3.6 5.1 6.6 8.1 9.6
2 ΔB = 2.5 log2 L− 2.14 2.9 5.4 7.9 10.4 12.9 15.4
3 ΔB = 3.5 log2 L− 3.55 3.5 7.0 10.5 14.0 17.5 21.0
4 ΔB = 4.5 log2 L− 5.02 4.0 8.5 13.0 17.5 22.0 26.5
5 ΔB = 5.5 log2 L− 6.53 4.5 10.0 15.5 21.0 26.5 32.0

Table 2.2.1 Performance of oversampling noise shaping quantizers.

the reduced resolution of B′ bits. Intermediate processing by the DSP is done at the low
rate fs and increased resolution of B bits. The overall quality remains the same through
all the processing stages. Such a system replaces the traditional DSP system, shown in
Fig. 1.7.1.

analog
prefilter

to
DSP

fs′ rate fs rate
B′ bits B bits

analog
input noise-shaping

delta-sigma
A/D converter

digital
decimation

filter

fs′ rate fs′ ratefs rate

B′ bitsB bits B bits

analog
postfilter

from
DSP

analog
outputB′-bit

staircase
DAC

noise-shaping
requantizer

digital
interpolation

filter

Fig. 2.2.5 Oversampling DSP system.

The faster sampling rate f ′s also allows the use of a less expensive, lower quality,
antialiasing prefilter. The digital decimation filter converts the fast rate f ′s back to the
desired low rate fs at the higher resolution of B bits and removes the out-of-band quan-
tization noise that was introduced by the noise shaping quantizer into the outside of
the fs Nyquist interval.

After digital processing by the DSP, the interpolation filter increases the sampling
rate digitally back up to the fast rate f ′s . The noise shaping requantizer rounds the B-bit
samples to B′ bits, without reducing quality. Finally, an ordinary B′-bit staircase D/A
converter reconstructs the samples to analog format and the postfilter smooths out the
final output. Again, the fast rate f ′s allows the use of a low-quality postfilter.

Oversampling DSP systems are used in a variety of applications, such as digital
transmission and coding of speech, the playback systems of CD players, and the sam-
pling/playback systems of DATs. We will discuss the design of oversampling digital
interpolation and decimation filters and the structure of noise shaping quantizers and
ΔΣ converters in Chapter 12.
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2.3 D/A Converters

Next, we discuss some coding details for standard A/D and D/A converters, such as
binary representations of quantized samples and the successive approximation method
of A/D conversion. We begin with D/A converters, because they are used as the building
blocks of successive approximation ADCs. We take a functional view of such converters
without getting into the electrical details of their construction.

Consider a B-bit DAC with full-scale range R, as shown in Fig. 2.3.1. Given B input
bits of zeros and ones, b = [b1, b2, . . . , bB], the converter outputs an analog value xQ,
that lies on one of the 2B quantization levels within the range R. If the converter is
unipolar, the output xQ falls in the range [0, R). If it is bipolar, it falls in [−R/2, R/2).

DAC

b1

b2

b3

bB

xQ

.

.

.

.

.

.

R (reference)

analog output

MSB

LSB

B input bits

Fig. 2.3.1 B-bit D/A converter.

The manner in which the B bits [b1, b2, . . . , bB] are associated with the analog value
xQ depends on the type of converter and the coding convention used. We will discuss
the three widely used types: (a) unipolar natural binary, (b) bipolar offset binary, and (c)
bipolar two’s complement converters.

The unipolar natural binary converter is the simplest. Its output xQ is computed in
terms of the B bits by:

xQ = R(b12−1 + b22−2 + · · · + bB2−B) (2.3.1)

The minimum level is xQ = 0 and is reached when all the bits are zero, b = [0,0, . . . ,0].
The smallest nonzero level is xQ = Q = R2−B and corresponds to the least signif-
icant bit (LSB) pattern b = [0,0, . . . ,0,1]. The most significant bit (MSB) pattern is
b = [1,0,0, . . . ,0] and corresponds to the output value xQ = R/2. The maximum level
is reached when all bits are one, that is, b = [1,1, . . . ,1] and corresponds to the analog
output:

xQ = R(2−1 + 2−2 + · · · + 2−B)= R(1 − 2−B)= R−Q

where we used the geometric series

2−1 + 2−2 + · · · + 2−B = 2−1(1 + 2−1 + 2−2 + · · · + 2−(B−1))
= 2−1

(
1 − 2−B

1 − 2−1

)
= 1 − 2−B

Eq. (2.3.1) can be written also in terms of the quantization width Q, as follows:
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xQ = R2−B(b12B−1 + b22B−2 + · · · + bB−121 + bB) or,

xQ = Qm (2.3.2)

where m is the integer whose binary representation is (b1b2 · · ·bB), that is,

m = b12B−1 + b22B−2 + · · · + bB−121 + bB
As the integer m takes on the 2B consecutive values m = 0,1,2, . . . ,2B − 1, the

analog output xQ runs through the quantizer’s consecutive levels. The bipolar offset
binary converter is obtained by shifting Eq. (2.3.1) down by half-scale, R/2, giving the
rule:

xQ = R(b12−1 + b22−2 + · · · + bB2−B − 0.5) (2.3.3)

The minimum and maximum attainable levels are obtained by shifting the corre-
sponding natural binary values by R/2:

xQ = 0 − R
2

= −R
2

and xQ = (R−Q)−R
2

= R
2
−Q

The analog value xQ can also be expressed in terms of Q, as in Eq. (2.3.2). In this
case we have:

xQ = Qm′ (2.3.4)

where m′ is the integer m shifted by half the maximum scale, that is,

m′ =m− 1

2
2B =m− 2B−1

It takes on the sequence of 2B values

m′ = −2B−1, . . . ,−2,−1,0,1,2, . . . ,2B−1 − 1

One unnatural property of the offset binary code is that the level xQ = 0 is rep-
resented by the nonzero bit pattern b = [1,0, . . . ,0]. This is remedied by the two’s
complement code, which is the most commonly used code. It is obtained from the
offset binary code by complementing the most significant bit, that is, replacing b1 by
b1 = 1 − b1, so that

xQ = R(b12−1 + b22−2 + · · · + bB2−B − 0.5) (2.3.5)

Table 2.3.1 summarizes the three converter types and their input/output coding
conventions and Table 2.3.2 compares the three coding conventions for the case B = 4
and R = 10 volts. The level spacing isQ = R/2B = 10/24 = 0.625 volts. The codes [b1,
b2, b3, b4] in the first column, apply to both the natural and offset binary cases, but the
quantized analog values that they represent are different.
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Converter type I/O relationship

natural binary xQ = R(b12−1 + b22−2 + · · · + bB2−B)

offset binary xQ = R(b12−1 + b22−2 + · · · + bB2−B − 0.5)

two’s complement xQ = R(b12−1 + b22−2 + · · · + bB2−B − 0.5)

Table 2.3.1 Converter types.

natural binary offset binary 2’s C

b1b2b3b4 m xQ = Qm m′ xQ = Qm′ b1b2b3b4

— 16 10.000 8 5.000 —

1 1 1 1 15 9.375 7 4.375 0 1 1 1
1 1 1 0 14 8.750 6 3.750 0 1 1 0
1 1 0 1 13 8.125 5 3.125 0 1 0 1
1 1 0 0 12 7.500 4 2.500 0 1 0 0
1 0 1 1 11 6.875 3 1.875 0 0 1 1
1 0 1 0 10 6.250 2 1.250 0 0 1 0
1 0 0 1 9 5.625 1 0.625 0 0 0 1
1 0 0 0 8 5.000 0 0.000 0 0 0 0
0 1 1 1 7 4.375 −1 −0.625 1 1 1 1
0 1 1 0 6 3.750 −2 −1.250 1 1 1 0
0 1 0 1 5 3.125 −3 −1.875 1 1 0 1
0 1 0 0 4 2.500 −4 −2.500 1 1 0 0
0 0 1 1 3 1.875 −5 −3.125 1 0 1 1
0 0 1 0 2 1.250 −6 −3.750 1 0 1 0
0 0 0 1 1 0.625 −7 −4.375 1 0 0 1
0 0 0 0 0 0.000 −8 −5.000 1 0 0 0

Table 2.3.2 Converter codes for B = 4 bits, R = 10 volts.

For the natural binary case, the values xQ are positive, spanning the range [0,10)
volts, with the maximum value being R − Q = 10 − 0.625 = 9.375. For offset binary,
the level values are offset by half scale, R/2 = 5 volts, and span the range [−5,5) volts,
with the maximum being R/2 −Q = 5 − 0.625 = 4.375 volts. Note that the upper ends
of the full-scale range, R = 10 and R/2 = 5 volts, are shown in the table for reference
and do not represent a level.

The last column shows the two’s complement codes. They are obtained from the
first column by complementing the MSB, b1. The quantized values xQ represented by
these codes are the same as in the offset binary case, that is, given in the fifth column
of the table.

The two’s complement code can be understood by wrapping the linear natural binary
code around in a circle, as shown in Fig. 2.3.2. This figure shows the natural binary
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integers m and their negative values in the lower half of the circle. The negative of any
positive m in the upper semicircle can be obtained by the usual rule of complementing
all its bits and adding one, that is, m2c =m+ 1.

0000=0

0001=1

0010=2

0100
0011=35=0101

6=0110

7=0111

-8=1000

-7=1001

-6=1010

-5=1011
1100
-4

4

1101=-3
1110=-2

1111=-1

Fig. 2.3.2 Two’s complement code.

Example 2.3.1: In Table 2.3.2 or Fig. 2.3.2, the level m = 3 corresponds to the natural binary
quantized value of xQ = 1.875 volts. The two’s complement of m is obtained by the rule

m2c =m+ 1 = (0011)+ (0001)= (1100)+(0001)= (1101)= −3

which, according to the fifth column of the table, corresponds to the two’s complement
quantized value xQ = −1.875 volts. 	


The following C routine dac.c simulates the operation of the bipolar two’s comple-
ment converter. Its inputs are the B bits [b1, b2, . . . , bB], and the full-scale range R, and
its output is the analog value xQ computed by Eq. (2.3.5).

/* dac.c - bipolar two’s complement D/A converter */

double dac(b, B, R)
int *b, B; bits are dimensioned as b[0], b[1], . . . , b[B− 1]
double R;
{

int i;
double dac = 0;

b[0] = 1 - b[0]; complement MSB

for (i = B-1; i >= 0; i--) Hörner’s rule

dac = 0.5 * (dac + b[i]);

dac = R * (dac - 0.5); shift and scale

b[0] = 1 - b[0]; restore MSB

return dac;
}

Its usage is:
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xQ = dac(b, B, R);

Because of the default indexing of arrays in C, the B-dimensional bit vector b[i] is
indexed for i = 0,1, . . . , B−1. The declaration and dimensioning of b[i] should be done
in the main program. For example, if B = 4, the main program must include a line:

int b[4];

The array b[i] can also be allocated dynamically for any desired value of B using
calloc. The main program must include the lines:

int *b; b is a pointer to int

B = 4; B can also be read from stdin

b = (int *) calloc(B, sizeof(int)); allocates B int slots

The internal for-loop in dac.c implements a variant of Hörner’s rule for evaluating
a polynomial. The result is the binary sum b12−1 + b22−2 + · · · + bB2−B which is then
shifted by 0.5 and scaled by R. We leave the details of Hörner’s algorithm for Problems
2.10–2.13. This algorithm will be used again later for the evaluation of z-transforms and
DTFTs. (See the MATLAB function dtft.m in Appendix D.)

The routine dac may be modified easily to implement the natural binary and offset
binary converter types, given by Eqs. (2.3.1) and (2.3.3).

2.4 A/D Converters

A/D converters quantize an analog value x so that it is represented byB bits [b1, b2, . . . , bB],
as shown in Fig. 2.4.1. ADCs come in many varieties, depending on how the conversion
process is implemented. One of the most popular ones is the successive approximation
A/D converter whose main building block is a D/A converter in a feedback loop. It is
shown in Fig. 2.4.2.

ADC

b1

b2

b3

bB

x

.

.

.

.

.

.

R

analog input

MSB

LSB

B output bits

Fig. 2.4.1 B-bit A/D converter.

The conversion algorithm is as follows. Initially all B bits are cleared to zero, b =
[0,0, . . . ,0], in the successive approximation register (SAR). Then, starting with the MSB
b1, each bit is turned on in sequence and a test is performed to determine whether that
bit should be left on or turned off.

The control logic puts the correct value of that bit in the right slot in the SAR register.
Then, leaving all the tested bits set at their correct values, the next bit is turned on in
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Fig. 2.4.2 Successive approximation A/D converter.

the SAR and the process repeated. After B tests, the SAR will hold the correct bit vector
b = [b1, b2, . . . , bB], which can be sent to the output.

At each test, the SAR bit vector b is applied to the DAC which produces the analog
quantized value xQ. When a given bit is turned on, the output xQ of the DAC is compared
with the analog input x to the ADC. If x ≥ xQ, that bit is kept on; else, it is turned off. The
output C of the comparator is the correct value of the bit being tested. The algorithm
is summarized below:

for each x to be converted, do:
initialize b = [0,0, . . . ,0]
for i = 1,2, . . . , B do:

bi = 1
xQ = dac(b, B,R)
if (x ≥ xQ)

C = 1
else

C = 0
bi = C

Therefore, C becomes a serial representation of the bit vector b. The algorithm
imitates the operations shown in Fig. 2.4.2. It can be written more compactly as follows:

for each x to be converted, do:
initialize b = [0,0, . . . ,0]
for i = 1,2, . . . , B do:

bi = 1
xQ = dac(b, B,R)
bi = u(x− xQ)

where u(x) is the unit-step function, defined by:

u(x)=
{

1 if x ≥ 0
0 if x < 0

As stated above, the algorithm applies to the natural and offset binary cases (with
corresponding versions of dac). It implements truncation of x to the quantization level
just below, instead of rounding to the nearest level.
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The algorithm converges to the right quantization level by performing a binary
search through the quantization levels. This can be seen with the help of the first col-
umn of Table 2.3.2. The test b1 = 1 or 0 determines whether x lies in the upper or lower
half of the levels. Then, the test b2 = 1/0 determines whether x lies in the upper/lower
half of the first half, and so on. Some examples will make this clear.

Example 2.4.1: Convert the analog values x = 3.5 and x = −1.5 volts to their offset binary
representation, assuming B = 4 bits and R = 10 volts, as in Table 2.3.2.

Solution: The following table shows the successive tests of the bits, the corresponding DAC
output xQ at each test, and the comparator output C = u(x− xQ).

test b1b2b3b4 xQ C = u(x− xQ)

b1 1 0 0 0 0.000 1
b2 1 1 0 0 2.500 1
b3 1 1 1 0 3.750 0
b4 1 1 0 1 3.125 1

1 1 0 1 3.125

For each bit pattern, the DAC inputs/outputs were looked up in the first/fifth columns of
Table 2.3.2, instead of computing them via Eq. (2.3.3). When b1 is tested, the DAC output
is xQ = 0 which is less than x; therefore, b1 passes the test. Similarly, b2 passes the test
and stays on. On the other hand bit b3 fails the test because x < xQ = 3.75; thus, b3 is
turned off. Finally, b4 passes.

The last row gives the final content of the SAR register and the corresponding quantized
value xQ = 3.125. Even though x = 3.5 lies in the upper half between the two levels
xQ = 3.75 and xQ = 3.125, it gets truncated down to the lower level. The C column is a
serial representation of the final answer.

Note also the binary searching taking place: b1 = 1 selects the upper half of the levels,
b2 = 1 selects the upper half of the upper half, and of these, b3 = 0 selects the lower half,
and of those, b4 = 1 selects the upper half. For the case x = −1.5 we have the testing table

test b1b2b3b4 xQ C = u(x− xQ)

b1 1 0 0 0 0.000 0
b2 0 1 0 0 −2.500 1
b3 0 1 1 0 −1.250 0
b4 0 1 0 1 −1.875 1

0 1 0 1 −1.875

Bit b1 fails the test because x < xQ = 0, and therefore, b1 = 0, and so on. Again, the final
quantized value xQ = −1.875 is that obtained by truncating x = −1.5 to the level below it,
even though x lies nearer the level above it. 	


In order to quantize by rounding to the nearest level, we must shift x by half the
spacing between levels, that is, use:

y = x+ 1

2
Q
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in place of x and perform truncation on y. If x is already in the upper half between two
levels, then y will be brought above the upper level and will be truncated down to that
level. The conversion algorithm for rounding is:

for each x to be converted, do:
y = x+Q/2
initialize b = [0,0, . . . ,0]
for i = 1,2, . . . , B do:

bi = 1
xQ = dac(b, B,R)
bi = u(y − xQ)

Example 2.4.2: To quantize the value x = 3.5 by rounding, we shift it to y = x + Q/2 =
3.5 + 0.625/2 = 3.8125. The corresponding test table will be

test b1b2b3b4 xQ C = u(y − xQ)

b1 1 0 0 0 0.000 1
b2 1 1 0 0 2.500 1
b3 1 1 1 0 3.750 1
b4 1 1 1 1 4.375 0

1 1 1 0 3.750

Only b4 fails the test because with it on, the DAC output xQ = 4.375 exceeds y. The final
value xQ = 3.750 is the rounded up version of x = 3.5. For the case x = −1.5, we have
y = −1.5 + 0.625/2 = −1.1875. The corresponding test table is

test b1b2b3b4 xQ C = u(y − xQ)

b1 1 0 0 0 0.000 0
b2 0 1 0 0 −2.500 1
b3 0 1 1 0 −1.250 1
b4 0 1 1 1 −0.625 0

0 1 1 0 −1.250

The value xQ = −1.250 is the rounded up version of x = −1.5. 	


The successive approximation algorithm for the two’s complement case is slightly
different. Because the MSB is complemented, it must be treated separately from the
other bits. As seen in the last column of Table 2.3.2, the bit b1 determines whether the
number x is positive or negative. If x ≥ 0 then, we must have b1 = 0; else b1 = 1.
We can express this result by b1 = 1 − u(x), or, b1 = 1 − u(y) if we are quantizing
by rounding. The remaining bits, {b2, b3, . . . , bB}, are tested in the usual manner. This
leads to the following two’s complement conversion algorithm with rounding:
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for each x to be converted, do:
y = x+Q/2
initialize b = [0,0, . . . ,0]
b1 = 1 − u(y)
for i = 2,3, . . . , B do:

bi = 1
xQ = dac(b, B,R)
bi = u(y − xQ)

Example 2.4.3: The two’s complement rounded 4-bit representations of x = 3.5 and x = −1.5
are:

x = 3.5 ⇒ xQ = 3.750 ⇒ b = [0,1,1,0]
x = −1.5 ⇒ xQ = −1.250 ⇒ b = [1,1,1,0]

They are obtained from the offset binary by complementing the MSB. The quantized values
xQ are the same as in the offset binary case — only the binary codes change. 	


Example 2.4.4: Consider the sampled sinusoid x(n)= A cos(2πfn), where A = 3 volts and
f = 0.04 cycles/sample. The sinusoid is evaluated at the ten sampling times n = 0,1, . . . ,9
and x(n) is quantized using a 4-bit successive approximation ADC with full-scale range
R = 10 volts. The following table shows the sampled and quantized values xQ(n) and the
offset binary and two’s complement binary codes representing them.

n x(n) xQ(n) 2’s C offset

0 3.000 3.125 0101 1101
1 2.906 3.125 0101 1101
2 2.629 2.500 0100 1100
3 2.187 1.875 0011 1011
4 1.607 1.875 0011 1011
5 0.927 0.625 0001 1001
6 0.188 0.000 0000 1000
7 −0.562 −0.625 1111 0111
8 −1.277 −1.250 1110 0110
9 −1.912 −1.875 1101 0101

The 2’s complement and offset binary codes differ only in their MSB. The quantized values
they represent are the same. 	


The following routine adc.c simulates the operation of a bipolar two’s complement
successive approximation ADC. It makes successive calls to dac.c to determine each
bit.

/* adc.c - successive approximation A/D converter */

#include <math.h>

double dac();
int u();
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void adc(x, b, B, R)
double x, R;
int *b, B;
{

int i;
double y, xQ, Q;

Q = R / pow(2, B); quantization width Q = R/2B
y = x + Q/2; rounding

for (i = 0; i < B; i++) initialize bit vector

b[i] = 0;

b[0] = 1 - u(y); determine MSB

for (i = 1; i < B; i++) { loop starts with i = 1

b[i] = 1; turn ith bit ON

xQ = dac(b, B, R); compute DAC output

b[i] = u(y-xQ); test and correct bit

}
}

The inputs to the routine are the analog value x to be converted and the full-scale rangeR.
The outputs are the B bits b = [b1, b2, . . . , bB] representing x in the two’s complement
representation. The unit-step function u(x) is implemented by the routine:

/* u.c - unit step function */

int u(x)
double x;
{

if (x >= 0)
return 1;

else
return 0;

}

Example 2.4.5: This example illustrates the usage of the routines adc and dac. Consider L = 50
samples of a sinusoid x(n)= A cos(2πfn) of digital frequency f = 0.02 cycles/sample
and amplitudeA = 4. The signal x(n) is quantized using a successive approximation two’s
complement converter with rounding, as implemented by the routine adc. The following
for-loop was used in the main program for calculating xQ(n):

for (n=0; n<L; n++) {
x[n] = A * cos(2 * pi * f * n);
adc(x[n], b, B, R);
xQ[n] = dac(b, B, R);
}

where each call to adc determines the bit vector b, which is then passed to dac to calculate
the quantized value.

The following figure shows the sampled and quantized signal xQ(n) plotted together with
the exact values x(n) for the two cases of a 3-bit and a 4-bit converter. The full-scale range
was R = 16.
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Example 2.4.6: This example illustrates the statistical properties of the quantization error.
Consider L samples of the noisy sinusoidal signal:

x(n)= A cos(2πf0n+φ)+v(n) , n = 0,1, . . . , L− 1 (2.4.1)

whereφ is a random phase distributed uniformly in the interval [0,2π] and v(n) is white
noise of variance σ2

v . Using a B-bit two’s complement converter with full-scale range R,
these samples are quantized to give xQ(n) and the quantization error is computed:

e(n)= xQ(n)−x(n) , n = 0,1, . . . , L− 1

According to the standard statistical model discussed in Section 2.1, the quantization noise
samples e(n) should be distributed uniformly over the interval −Q/2 ≤ e ≤ Q/2. This
can be tested by computing the histogram of the L values of e(n).

The theoretical statistical quantities given in Eqs. (2.1.9–2.1.11) can be calculated experi-
mentally by the time-average approximations:

σ2
e =

1

L

L−1∑
n=0

e2(n) (2.4.2)

Ree(k) = 1

L

L−1−k∑
n=0

e(n+ k)e(n) (2.4.3)

Rex(k) = 1

L

L−1−k∑
n=0

e(n+ k)x(n) (2.4.4)

We can also compute the autocorrelation of x(n) itself:

Rxx(k)= 1

L

L−1−k∑
n=0

x(n+ k)x(n) (2.4.5)

where in the last three equations, k ranges over a few lags 0 ≤ k ≤M, withM typically being
much less than L − 1. Note also that σ2

e = Ree(0). All four of the above expressions are
special cases of the cross correlation, Eq. (2.4.4), which is implemented by the correlation
routine corr.c, given in Appendix A.1.

For this experiment, we chose the following numerical values:
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B = 10 bits
R = 1024 volts, so that Q = 1 volt
L = 1000 samples
M = 50 lags
f0 = 1/

√
131 � 0.08737 cycles/sample

A = R/4 = 256 volts and φ = 0

The white noise v(n) was distributed uniformly over the interval [−R/4, R/4]. Such num-
bers can be generated by:

v = 0.5R(u− 0.5) (2.4.6)

where u is a uniform random number in the standardized interval [0,1]. The quantity
(u− 0.5) is uniform over [−0.5,0.5], making v uniform over [−R/4, R/4]. We used the
routine ran of Appendix B.1 to generate the u’s, but any other uniform random number
generator could have been used. The samples v(n) were generated by a for-loop of the
form:

for (n=0; n<L; n++)
v[n] = 0.5 * R * (ran(&iseed) - 0.5);

where the initial seed† was picked arbitrarily. With these choices, the sinusoidal and noise
terms in x(n) vary over half of the full-scale range, so that their sum varies over the full
range [−R/2, R/2], as is necessary for the model.

With Q = 1, the theoretical value of the noise variance is σe = Q/
√

12 = 1/
√

12 = 0.289.
The experimental value computed using Eq. (2.4.2) was σe = 0.287.

The histogram of the computed e(n) values was computed by dividing the interval [−Q/2,
Q/2]= [−0.5,0.5] into 10 bins. It is shown below. Theoretically, for a uniform distribu-
tion, 1000 samples would distribute themselves evenly over the 10 bins giving 1000/10 =
100 samples per bin.

The next two figures show the standard normalized correlation functions:

ρee(k)= Ree(k)
Ree(0)

, ρex(k)= Rex(k)√
Ree(0)Rxx(0)

, ρxx(k)= Rxx(k)
Rxx(0)

†Note that iseed is passed by address in ran(&iseed).
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computed for lags k = 0,1, . . . ,M using Eqs. (2.4.3–2.4.5).

Theoretically, ρee(k) should be δ(k) and ρex(k) should be zero. Using the results of
Problem 2.20, the theoretical expression for ρxx(k) will be, for the particular numerical
values of the parameters:

ρxx(k)= 0.6 cos(2πf0k)+0.4δ(k)

Thus, although x(n) itself is highly self-correlated, the quantization noise e(n) is not. The
above figures show the closeness of the experimental quantities to the theoretical ones,
confirming the reasonableness of the standard statistical model. 	


Successive approximation A/D converters are used routinely in applications with
sampling rates of 1 MHz or less. Slower converters also exist, the so-called counter or
integrating type. They convert by searching through the quantization levels in a linear
fashion, comparing each level with the value x to be converted. Therefore, they may
require up to 2B tests to perform a conversion. This is to be compared with the B binary
searching steps of the successive approximation type.

For higher rates, parallel or flash A/D converters must be used. They determine all
the bits simultaneously, in parallel, but they are electrically complex requiring 2B − 1
comparators internally. For this reason they are limited at present to B ≤ 12 bits,
achieving conversion rates of 500 MHz with 8 bits, or 50 MHz with 10 bits [41]. As
discussed in Problem 2.21, two or more flash A/D converters can be cascaded together,
in a so-called subranging configuration, to increase the effective quantization resolution.

2.5 Analog and Digital Dither∗

Dither is a low-level white noise signal added to the input before quantization for the
purpose of eliminating granulation or quantization distortions and making the total
quantization error behave like white noise [52–69].

Analog dither can be added to the analog input signal before the A/D converter,
but perhaps after the sample/hold operation. It is depicted in Fig. 2.5.1. In many ap-
plications, such as digital audio recordings, the inherent analog system noise of the
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microphones or mixers may already provide some degree of dithering and therefore
artificial dithering may not be necessary.

x(t)

v(t)

ADC

dither
generator

B bits

to DSP,
digital channel,
or, digital storage

analog input
from sample/hold

Fig. 2.5.1 Analog dither.

Digital dither can be added to a digital signal prior to a requantization operation that
reduces the number of bits representing the signal.

This circumstance arises, for example, when an audio signal has been sampled and
quantized with 20 bits for the purpose of high-quality digital mixing and processing,
which then must be reduced to 16 bits for storing it on a CD. Another example is the noise
shaping requantization required in oversampling D/A converters used in the playback
systems of CD players and DAT decks.

Figure 2.5.2 shows a general model of the analog or digital dither process followed
by the quantization operation. It represents a type of dither known as nonsubtractive.

x(n) y(n)=x(n)+v(n) yQ(n)

v(n)

Q

quantizer

dither
generator

Fig. 2.5.2 Nonsubtractive dither process and quantization.

The input to the quantizer is the sum of the input signal x(n) to be quantized or
requantized and the dither noise v(n), that is,

y(n)= x(n)+v(n)

The output of the quantizer is yQ(n), the quantized version of y(n). The quantization
error is

e(n)= yQ(n)−y(n)

Thus, the total error resulting from dithering and quantization will be:

ε(n)= yQ(n)−x(n) (2.5.1)

which can be written as

ε(n)= (
y(n)+e(n))− x(n)= x(n)+v(n)+e(n)−x(n)
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or,

ε(n)= yQ(n)−x(n)= e(n)+v(n) (2.5.2)

that is, the sum of the dither noise plus the quantization error. Proper choice of the
dither process v(n) can guarantee that e(n) and v(n) will be uncorrelated from each
other, and therefore the total error noise power will be

σ2
ε = σ2

e +σ2
v =

1

12
Q2 +σ2

v (2.5.3)

The statistical properties of the dither signal v(n), such as its probability density
function (pdf), can affect drastically the nature of the total error (2.5.2). In practice, there
are three commonly used types of dithers, namely, those with Gaussian, rectangular, or
triangular pdf’s. The pdf’s of the rectangular and triangular cases are shown in Fig. 2.5.3.
Note that the areas under the curves are equal to unity. In the Gaussian case, the zero-
mean pdf is:

0 0Q/2 Q

1/Q 1/Q

v v

p(v) p(v)

-Q/2 -Q

Fig. 2.5.3 Rectangular and triangular dither probability densities.

p(v)= 1√
2πσ2

v

e−v
2/2σ2

v (2.5.4)

with the recommended value for the variance:

σ2
v =

1

4
Q2 (2.5.5)

which corresponds to the rms value vrms = Q/2, or half-LSB. It follows from Eq. (2.5.3)
that the total error variance will be:

σ2
ε =

1

12
Q2 + 1

4
Q2 = 4 · 1

12
Q2 = 1

3
Q2

In the rectangular case, the pdf is taken to have width Q, that is, 1-LSB. Therefore,
the dither signal can only take values in the interval:

−1

2
Q ≤ v ≤ 1

2
Q

The corresponding pdf and variance are in this case:

p(v)=
⎧⎪⎨⎪⎩

1

Q
, if −1

2
Q ≤ v ≤ 1

2
Q

0, otherwise
and σ2

v =
1

12
Q2 (2.5.6)
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Therefore, the total error variance will be:

σ2
ε =

1

12
Q2 + 1

12
Q2 = 2 · 1

12
Q2 = 1

6
Q2

Similarly, the width of the triangular dither pdf is taken to be 2Q, that is, 2-LSB, and
therefore, the corresponding pdf and variance are:

p(v)=
⎧⎪⎨⎪⎩
Q − |v|
Q2

, if −Q ≤ v ≤ Q
0, otherwise

and σ2
v =

1

6
Q2 (2.5.7)

and, the total error variance will be:

σ2
ε =

1

12
Q2 + 1

6
Q2 = 3 · 1

12
Q2 = 1

4
Q2

In summary, the total error variance in the three cases and the undithered case (v = 0)
will be:

σ2
ε =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q2/12, undithered

2Q2/12, rectangular dither
3Q2/12, triangular dither
4Q2/12, Gaussian dither

(2.5.8)

Thus, the noise penalty in using dither is to double, triple, or quadruple the noise of
the undithered case. This corresponds to a decrease of the SNR by:

10 log10 2 = 3 dB

10 log10 3 = 4.8 dB

10 log10 4 = 6 dB

which is quite acceptable in digital audio systems that have total SNRs of the order of
95 dB.

It has been shown that the triangular dither is the best (of the nonsubtractive types)
in the sense that it accomplishes the main objective of the dithering process, namely,
to eliminate the quantization distortions of the undithered case and to render the total
error (2.5.2) equivalent to white noise [56].

Rectangular, uniformly distributed dither can be generated very simply by using a
uniform random number generator such as ran. For example,

v = Q(u− 0.5)

where u is the random number returned by ran, that is, uniformly distributed over the
interval [0,1). The shifting and scaling of u imply that v will be uniformly distributed
within −Q/2 ≤ v < Q/2.

Triangular dither can be generated just as simply by noting that the triangular pdf
is the convolution of two rectangular ones and therefore v can be obtained as the sum
of two independent rectangular random numbers, that is,
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v = v1 + v2 (2.5.9)

where v1, v2 are generated from two independent uniform u1, u2, by

v1 = Q(u1 − 0.5) and v2 = Q(u2 − 0.5)

Example 2.5.1: This simulation example illustrates the impact of dither on the quantization
of a low-amplitude sinusoid and the removal of quantization distortions. Consider the
following dithered sinusoid:

y(n)= x(n)+v(n)= A cos(2πf0n)+v(n)

where A is taken to be below 1-LSB; for example, A = 0.75Q. The frequency f0 is taken
to be f0 = 0.025 cycles/sample, which corresponds to 1/f0 = 40 samples per cycle. At an
audio rate of fs = 40 kHz, this frequency would correspond to a 1 kHz sinusoid.

The signal y(n) is quantized using a 3-bit A/D converter, (B = 3), with full-scale range of
R = 8 volts. Therefore, Q = R/2B = 8/23 = 1, and A = 0.75Q = 0.75. Triangular dither
was used, generated by Eq. (2.5.9). The dithered signal y(n) and its quantized version
yQ(n) were generated by the following loop:

for (n=0; n<Ntot; n++) {
v1 = Q * (ran(&iseed) - 0.5);
v2 = Q * (ran(&iseed) - 0.5);
v = v1 + v2;
y[n] = A * cos(2 * pi * f0 * n) + v;
adc(y[n], b, B, R);
yQ[n] = dac(b, B, R);
}

Note that v1 and v2 are independent of each other because each call to ran updates the
seed to a new value.

The following graphs show the undithered sinusoid x(n) and its quantized version xQ(n),
together with its Fourier spectrum |XQ(f)| plotted over the right half of the Nyquist in-
terval, that is, 0 ≤ f ≤ 0.5, in units of cycles/sample.



88 2. QUANTIZATION

The spectrum of xQ(n) has peaks at f0 and the odd harmonics 3f0, 5f0, and so forth. These
harmonics were not present in x(n). They are the artifacts of the quantization process
which replaced the sinusoid by a square-wave-like signal.

The next two graphs show the dithered signal y(n) and its quantized version yQ(n), to-
gether with its spectrum |YQ(f)|.

The main peak at f0 is still there, but the odd harmonics have been eliminated by the
dithering process and replaced by a typical featureless background noise spectrum. For
digital audio, this noise is perceptually far more acceptable than the artificial harmonics
introduced by the quantizer.

The above spectra were computed in the following way: The sequences xQ(n) and yQ(n)
were generated for 0 ≤ n ≤ Ntot − 1, with Ntot = 1000. Then, they were windowed using
a length-Ntot Hamming window, that is,

y′Q(n)= w(n)yQ(n), n = 0,1, . . . ,Ntot − 1

where,

w(n)= 0.54 − 0.46 cos
( 2πn
Ntot − 1

)
, n = 0,1, . . . ,Ntot − 1

And, their DTFT

YQ(f)=
Ntot−1∑
n=0

y′Q(n)e−2πjfn

was evaluated at 200 equally spaced frequencies f over the interval 0 ≤ f ≤ 0.5 [cy-
cles/sample], that is, at fi = 0.5i/200, i = 0,1, . . . ,199.

This example is somewhat special in that the undithered spectrum XQ(f) contained only
odd harmonics of the fundamental frequency f0. This is what one would expect if the
quantized square-wave-like signal xQ(n) were an unsampled, analog, signal.

In general, the sampling process will cause all the odd harmonics that lie outside the
Nyquist interval to be aliased back into the interval, onto frequencies that may or may not
be odd harmonics. In the above example, because the sampling rate is an even multiple
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of f0, that is, fs = 40f0, one can show that any odd harmonic of f0 that lies outside the
Nyquist interval will be wrapped onto one of the odd harmonics inside the interval.

But, for other values of f0, the out-of-band odd harmonics may be aliased onto in-band
non-harmonic frequencies. For example, the following graphs show the undithered and
dithered spectra in the case of f0 = 0.03 cycles/sample.

In addition to the odd harmonics at 3f0 = 0.09, 5f0 = 0.15, and so forth, one sees non-
harmonic peaks at:

f = 0.01, 0.05, 0.07, 0.13, 0.17, 0.19, 0.23, 0.25, . . .

which are the aliased versions of the following out-of-band odd harmonics:

33f0, 35f0, 31f0, 29f0, 39f0, 27f0, 41f0, 25f0, . . .

The beneficial effect of dithering works, of course, for any value of f0. 	


An alternative dithering strategy is to use the so-called subtractive dither, as shown
in Fig. 2.5.4. Here, the dither noise v(n) that was added during the recording or trans-
mission phase prior to quantization is subtracted at the playback or receiving end.

x(n) y(n)=x(n)+v(n) yQ(n) yQ(n) yout(n)

v(n)

Q

quantizer

dither
generator

-+

digital 
channel

or, storage

Fig. 2.5.4 Subtractive dither.

The total error in this case can be determined as follows:

ε(n)= yout(n)−x(n)=
(
yQ(n)−v(n)

)− x(n)= yQ(n)−
(
x(n)+v(n))
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or,

ε(n)= yQ(n)−y(n)= e(n)

that is, only the quantizer error. Therefore, its variance remains the same as the un-
dithered case, σ2

ε = Q2/12, and the SNR remains the same.
It can be shown [56] that the best type of dither is subtractive rectangularly dis-

tributed dither with 1-LSB width, in the sense that it not only removes the quantization
distortions but also renders the total error completely independent of the input signal.
However, its practical implementation in digital audio and other applications is difficult
because it requires a copy of the dither signal at the playback or receiving end.

By contrast, the triangular nonsubtractive dither that we considered earlier does not
make the total error independent of the input—it only makes the power spectrum of
the error independent of the input. In digital audio, this whitening of the total error
appears to be enough perceptually. Therefore, triangular nonsubtractive dither is the
best choice for practical use [56].

In summary, triangular nonsubtractive dither improves the quality of a digital pro-
cessing system by removing the artifacts of the quantization process with only a modest
decrease in the signal-to-noise ratio. It may be applied at any intermediate processing
stage that involves reduction in the number of bits and, therefore, potential quantization
distortions.

2.6 Problems

2.1 Consider a 3-bit successive approximation two’s complement bipolar A/D converter with full
scale range of R = 16 volts. Using the successive approximation algorithm, determine the
quantized value as well as the corresponding 3-bit representation of the following analog
input values: x = 2.9, 3.1, 3.7, 4, −2.9, −3.1, −3.7, −4.

Repeat using an offset binary converter.

2.2 Consider the signal x(n)= 5 sin(2πfn), where f = 0.04 [cycles/sample]. This signal is to
be quantized using a 4-bit successive approximation bipolar ADC whose full-scale range is
R = 16 volts. For n = 0,1, . . . ,19, compute the numerical value of x(n) and its quantized
version xQ(n) as well as the corresponding bit representation at the output of the converter.
Do this both for an offset binary converter and a two’s complement converter.

2.3 It is desired to pick an A/D converter for a DSP application that meets the following speci-
fications: The full-scale range of the converter should be 10 volts and the rms quantization
error should be kept below 1 millivolt. How many bits should the converter have? What is
the actual rms error of the converter? What is the dynamic range in dB of the converter?

2.4 Hard disk recording systems for digital audio are becoming widely available. It is often
quoted that to record 1 minute of “CD quality” digital audio in stereo, one needs about 10
Megabytes of hard disk space. Please, derive this result, explaining your reasoning.

2.5 A digital audio mixing system uses 16 separate recording channels, each sampling at a 48
kHz rate and quantizing each sample with 20 bits. The digitized samples are saved on a
hard disk for further processing.

a. How many megabytes of hard disk space are required to record a 3-minute song for a
16-channel recording?
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b. Each channel requires about 35 multiplier/accumulation (MAC) instructions to per-
form the processing of each input sample. (This corresponds to about 7 second-order
parametric EQ filters covering the audio band.)

In how many nanoseconds should each MAC instruction be executed for: (i) each chan-
nel? (ii) all 16 channels, assuming they are handled by a single processor? Is this within
the capability of present day DSP chips?

2.6 If the quantized value xQ is obtained by truncation of x instead of rounding, show that the
truncation error e = xQ−x will be in the interval −Q < e ≤ 0. Assume a uniform probability
density p(e) over this interval, that is,

p(e)=
⎧⎪⎨⎪⎩

1

Q
if −Q < e ≤ 0

0 otherwise
e

−Q

p(e)
1/Q

0

Determine the mean me = E[e] and variance σ2
e = E[(e−me)2] in terms of Q.

2.7 Using Eq. (2.2.10), determine the value of the oversampling ratio L to achieve 16-bit reso-
lution using 1-bit quantizers for the cases of first-, second-, and third-order noise shaping
quantizers. What would be the corresponding oversampled rate Lfs for digital audio?

2.8 In a speech codec, it is desired to maintain quality of 8-bit resolution at 8 kHz sampling
rates using a 1-bit oversampled noise shaping quantizer. For quantizer orders p = 1,2,3,
determine the corresponding oversampling ratio L and oversampling rate Lfs in Hz.

2.9 Show that the two’s complement expression defined in Eq. (2.3.5) can be written in the alter-
native form:

xQ = R
(
−b12−1 + b22−2 + · · · + bB2−B

)
2.10 Hörner’s rule is an efficient algorithm for polynomial evaluation. Consider a polynomial of

degree M

B(z)= b0 + b1z+ b2z2 + · · · + bMzM

Hörner’s algorithm for evaluating B(z) at some value of z, say z = a, can be stated as
follows:

initialize p = 0
for i =M,M−1, . . . ,0 do:

p = ap+ bi
Verify that upon exit, p will be the value of the polynomial at z = a, that is, p = B(a).

2.11 Computer Experiment: Hörner’s Rule. Write a polynomial evaluation C routine pol.c that
implements the algorithm of Problem 2.10. The routine should return the value B(a) of the
polynomial and should be dimensioned as follows:

double pol(M, b, a)
int M; order of polynomial

double *b, a; b is (M+1)-dimensional

2.12 Consider the following variation of Hörner’s algorithm:
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initialize qM−1 = bM
for i =M−1,M−2, . . . ,1 do:

qi−1 = aqi + bi
p = aq0 + b0

where the final computation yields p = B(a). Show that it is equivalent to the algorithm of
Problem 2.10. This version is equivalent to “synthetic division” in the following sense.

The computed coefficients {q0, q1, . . . , qM−1} define a polynomial of degree (M−1), namely,
Q(z)= q0 + q1z+ · · · + qM−1zM−1.

Show that Q(z) is the quotient polynomial of the division of B(z) by the monomial z − a.
Moreover, the last computed p = B(a) is the remainder of that division. That is, show as
an identity in z

B(z)= (z− a)Q(z)+p

2.13 In the dac routines, the polynomial to be evaluated is of the form

B(z)= b1z+ b2z2 + · · · + bMzM

The dac routines evaluate it at the specific value z = 2−1. Show that the polynomial B(z)
can be evaluated at z = a by the following modified version of Hörner’s rule:

initialize p = 0
for i =M,M−1, . . . ,1 do:

p = a(p+ bi)

2.14 Consider a 4-bit successive approximation A/D converter with full-scale range of 8 volts.
Using the successive approximation algorithm (with rounding), determine the 4-bit codes of
the voltage values x = 1.2,5.2,−3.2 volts, for the following types of converters:

a. Natural binary.

a. Bipolar two’s complement.

In each case, show all the steps of the successive approximation algorithm. Explain what
happens if the analog voltage to be converted lies outside the full-scale range of the con-
verter. This happens for x = 5.2 in two’s complement, and x = −3.2 in natural binary
representations.

2.15 Carry out, by hand, the successive approximation conversion of all the signal values shown
in the table of Example 2.4.4, for both the offset binary and two’s complement cases.

2.16 Computer Experiment: DAC and ADC Routines. Write C versions of the routines dac and adc

for the natural binary, offset binary, and two’s complement cases that implement truncation.

For the natural and offset binary cases, write another set of such routines that implement
rounding.

2.17 Computer Experiment: Simulating DAC and ADC Operations. Generate L = 50 samples of
a sinusoidal signal x(n)= A cos(2πfn), n = 0,1, . . . , L − 1 of frequency f = 0.02 [cy-
cles/sample] and amplitude A = 8.

a. Using a 3-bit (B = 3) bipolar two’s complement successive approximation A/D con-
verter, as implemented by the routine adc, with full-scale range R = 32, quantize x(n)
and denote the quantized signal by xQ(n).



2.6. PROBLEMS 93

For n = 0,1, . . . , L− 1, print in three parallel columns the true analog value x(n), the
quantized value xQ(n), and the corresponding two’s complement bit vector b.

On the same graph, plot the two signals x(n) and xQ(n) versus n. Scale the vertical
scales from [−16,16] and use 8 y-grid lines to indicate the 8 quantization levels.

b. Repeat part (a) using a B = 4 bit A/D converter. In plotting x(n) and xQ(n), use the
same vertical scales as above, namely, from [−16,16], but use 16 y-grid lines to show
the 16 quantization levels.

c. What happens if the analog signal to be quantized has amplitude that exceeds the
full-scale range of the quantizer? Most D/A converters will saturate to their largest
(positive or negative) levels. To see this, repeat part (a) by taking the amplitude of the
sinusoid to be A = 20.

d. What happens if we use truncation instead of rounding? Repeat part (a) using the
two’s complement truncation routines adc and dac that you developed in the previous
problem.

2.18 Computer Experiment: Quantization Noise Model. Reproduce the results of Example 2.4.6.

2.19 Show that the mean and variance of the random variable v defined by Eq. (2.4.6) of Example
2.4.6 are mv = 0 and σ2

v = R2/48.

2.20 Show that the normalized autocorrelation functionρxx(k) of the signal x(n) given by Eq. (2.4.1)
in Example 2.4.6, is given by

ρxx(k)= Rxx(k)
Rxx(0)

= a cos(2πf0k)+(1 − a)δ(k) , where a = SNR
SNR+ 1

where Rxx(k) defined as the statistical expectation value

Rxx(k)= E[x(n+ k)x(n)]
Assume that phase of the sinusoid φ is not correlated with v(n). The quantity SNR is the
signal-to-noise ratio SNR = A2/(2σ2

v). For the numerical values of Example 2.4.6, show
a = 0.6.

2.21 Computer Experiment: Subranging Converters. It was mentioned that parallel A/D convert-
ers are at present limited in their bits. However, it is possible to use two of them in cascade.
For example, using two identical 6-bit flash ADCs, one can achieve effective resolution of 12
bits at conversion rates of 10 MHz.

Consider a B-bit ADC and write B as the sum of two integers B = B1 + B2. The conversion
of an analog value x to its B-bit representation can be done in two stages: First, convert x
into its B1-bit representation. This is equivalent to keeping the first B1 most significant bits
of its B-bit representation. Let x1 be the quantized B1-bit value. Then, form the difference
x2 = x− x1 and quantize it to B2 bits. These operations are shown in the following figure:

B1-bit
ADC

B1 bits
B1 bits

R2

R1

R1

B2 bits

B1-bit
DAC

B2-bit
ADC+

−

x

x
x2

x1



94 2. QUANTIZATION

The B1-bit word from the first ADC is sent to the output and also to a B1-bit DAC whose
output is x1. The analog subtracter forms x2, which is sent to the B2-bit ADC producing the
remaining B2 bits.

a. What should be the full-scale ranges R1 and R2 of the two ADCs in order for this
arrangement to be equivalent to a single (B1 + B2)-bit ADC with full-scale range R?
What is the relationship of R1 and R2 in terms of R?

b. Using the routines adc and dac as building blocks, write a routine that implements
this block diagram. Test your routine on the signal:

x(n)= A cos(2πf0n) , n = 0,1, . . . , L− 1

where A = 4, f0 = 0.02, and L = 50. Take B1 = 5, B2 = 5, B = B1 + B2 = 10, and
R = 16. Compare the results of your routine with the results of an equivalent single
B-bit ADC with full-scale range R.

c. How does the block diagram generalize in the case of cascading three such converters,
such that B = B1 + B2 + B3?

2.22 Computer Experiment: Triangular Dither. Reproduce the results and graphs of Example
2.5.1.



3
Discrete-Time Systems

In this and the next chapter, we discuss discrete-time systems and, in particular, linear
time-invariant (LTI) systems. The input/output (I/O) relationship of LTI systems is given
by the discrete-time convolution of the system’s impulse response with the input signal.

LTI systems can be classified into finite impulse response (FIR) or infinite impulse
response (IIR) types depending on whether their impulse response has finite or infinite
duration. Our main objective in these two chapters is to develop practical computational
algorithms for the FIR case. The IIR case is considered in Chapter 7, although we do
present a few simple IIR examples here.

Depending on the application and hardware, an FIR digital filtering operation can be
organized to operate either on a block basis or a sample-by-sample basis.

In the block processing case, the input signal is considered to be a single block of
signal samples. The block is filtered by convolving it with the filter, generating the output
signal as another block of samples.

If the input signal is very long or infinite in duration, this method requires modification—
for example, breaking up the input into multiple blocks of manageable size, filtering the
blocks one at a time, and piecing together the resulting output blocks to form the over-
all output. The filtering of each block can be implemented in various ways, such as by
ordinary convolution, or fast convolution via the FFT.

In the sample processing case, the input samples are processed one at a time as
they arrive at the input. The filter operates as a state machine; that is, each input
sample is used in conjunction with the current internal state of the filter to compute the
current output sample and also to update the internal state of the filter in preparation
for processing the next input sample.

This approach is useful in real-time applications involving very long input signals.
It is also useful in adaptive filtering applications where the filter itself changes after
processing each sample. Moreover, it is efficiently implemented with present day DSP
chip families, such as the Texas Instruments TMS320, the Bell Labs AT&T DSP16/32, the
Motorola DSP56K/96K, and the Analog Devices ADSP2101 families. The architectures
and instruction sets of these chips are optimized for such sample-by-sample processing
operations.

95
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3.1 Input/Output Rules

A discrete-time system, shown in Fig. 3.1.1, is a processor that transforms an input se-
quence of discrete-time samples x(n) into an output sequence of samples y(n), ac-
cording to some input/output rule that specifies how to compute the output sequence
y(n) from the knowledge of the input sequence x(n). In sample-by-sample processing
methods, we may think of the I/O rule as processing the input samples one at a time:†

{x0, x1, x2, . . . , xn, . . . } H−→ {y0, y1, y2, . . . , yn, . . . }

that is, x0
H−→ y0, x1

H−→ y1, x2
H−→ y2, and so on. In block processing methods, we think

of the input sequence as a block or vector of signal samples being processed as a whole
by the system, producing the corresponding output block:

x =

⎡⎢⎢⎢⎢⎢⎣
x0

x1

x2

...

⎤⎥⎥⎥⎥⎥⎦ H−→

⎡⎢⎢⎢⎢⎢⎣
y0

y1

y2

...

⎤⎥⎥⎥⎥⎥⎦ = y

Thus, the I/O rule maps the input vector x into the output vector y according to
some functional mapping:

y = H[x] (3.1.1)

For linear systems, this mapping becomes a linear transformation by a matrix H,
y = Hx. For linear and time-invariant systems, the matrix H has a special structure
being built in terms of the impulse response of the system.

Some examples of discrete-time systems illustrating the wide variety of possible I/O
rules are given below.

x(n) y(n)
H

input sequence output sequence

Fig. 3.1.1 Discrete-time system.

Example 3.1.1: y(n)= 2x(n). It corresponds to simple scaling of the input:

{x0, x1, x2, x3, x4, . . . } H−→ {2x0,2x1,2x2,2x3,2x4, . . . }

Example 3.1.2: y(n)= 2x(n)+3x(n− 1)+4x(n− 2). A weighted average of three successive

input samples. At each time instant n, the system must remember the previous input

samples x(n− 1) and x(n− 2) in order to use them.

†For brevity, we denoted {x(0), x(1), x(2), . . . } by subscripts {x0, x1, x2, . . . }.
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Example 3.1.3: Here, the I/O rule is specified as a block processing operation by a linear trans-
formation, transforming a length-4 input block {x0, x1, x2, x3} into a length-6 output block:

y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2

y3

y4

y5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0
3 2 0 0
4 3 2 0
0 4 3 2
0 0 4 3
0 0 0 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
x0

x1

x2

x3

⎤⎥⎥⎥⎦ = Hx

It is equivalent to the convolutional form of Example 3.1.2. The output block is longer than
the input block by two samples because this filter has memory two — the last two outputs
being the input-off transients generated after the input is turned off. If we had to filter
length-5 input blocks {x0, x1, x2, x3, x4}, the linear transformation would have one more
column and row:

y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2

y3

y4

y5

y6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0
3 2 0 0 0
4 3 2 0 0
0 4 3 2 0
0 0 4 3 2
0 0 0 4 3
0 0 0 0 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
x0

x1

x2

x3

x4

⎤⎥⎥⎥⎥⎥⎥⎦ = Hx

Example 3.1.4: Example 3.1.2 can also be cast in an equivalent sample-by-sample processing
form described by the following system of three equations:

y(n)= 2x(n)+3w1(n)+4w2(n)

w2(n+ 1)= w1(n)

w1(n+ 1)= x(n)

The auxiliary signals w1(n) and w2(n) can be thought of as the internal states of the
system. The present input sample x(n) together with the knowledge of the present internal
states {w1(n),w2(n)} is sufficient to compute the present output y(n). The next output
y(n+1) due to the next input x(n+1) requires knowledge of the updated states {w1(n+
1),w2(n+ 1)}, but these are already available from the nth time step; thus, at time n+ 1
we have:

y(n+ 1)= 2x(n+ 1)+3w1(n+ 1)+4w2(n+ 1)

w2(n+ 2)= w1(n+ 1)

w1(n+ 2)= x(n+ 1)

The computations are repetitive from one time instant to the next and can be summarized
by the following I/O sample-by-sample processing algorithm which tells how to process
each arriving input sample x producing the corresponding output sample y and updating
the internal states:†

†The symbol := denotes assignment not equation, that is, a :=b means “a takes on the value b.”
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for each new input sample x do:
y :=2x+ 3w1 + 4w2

w2 :=w1

w1 :=x

Once the current values of the internal states {w1,w2} are used in the computation of the
output y, they may be updated by the last two assignment equations to the values they
must have for processing the next input sample. Therefore, {w1,w2} must be saved from
call to call of the algorithm. The order in which {w1,w2} are updated is important, that
is, w2 is updated first and w1 second, to prevent overwriting of the correct values.

This and the previous two examples represent equivalent formulations of the same discrete-
time system. Deciding which form to use depends on the nature of the application—that
is, whether the input signals are finite or infinite sequences and the samples must be pro-
cessed one at a time as they arrive.

This example is a special case of more general state-space representations of discrete-time
systems described by the following I/O sample processing algorithm:

y(n)= g(x(n), s(n)) (output equation)

s(n+ 1)= f
(
x(n), s(n)

)
(state updating equation)

where s(n) is an internal state vector of appropriate dimension, like s(n)=
[
w1(n)
w2(n)

]
of the previous example. The I/O algorithm calculates both the output y(n) and the next
state s(n+ 1) from the knowledge of the present input x(n) and the present state s(n).
It can be rephrased in the repetitive algorithmic form:

for each new input sample x do:
y :=g(x, s)
s := f(x, s)

State-space realizations of LTI systems are described by functions f and g that are linear
functions of their arguments, that is, f(x, s)= As+Bx, g(x, s)= Cs+Dx, where A,B,C,D
have appropriate dimensions. In particular, for the above example we have

y :=2x+ 3w1 + 4w2 = [3,4]
[
w1

w2

]
+ 2x = [3,4]s + 2x ≡ g(x, s)

s =
[
w1

w2

]
:=
[
x
w1

]
=
[

0 0
1 0

][
w1

w2

]
+
[

1
0

]
x =

[
0 0
1 0

]
s +

[
1
0

]
x ≡ f(x, s)

Example 3.1.5: y(n)= 0.5y(n − 1)+2x(n)+3x(n − 1). The output is computed recursively

by a constant-coefficient difference equation. At each time instant n, the system must

remember the previous input and output samples x(n− 1), y(n− 1).

Example 3.1.6: Example 3.1.5 can also be described by stating its I/O rule as a sample-by-
sample processing algorithm:
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for each new input sample x do:
y :=0.5w1 + 2x+ 3v1

w1 :=y
v1 :=x

It corresponds to the so-called direct form realization of the difference equation and re-
quires the computation and updating of the auxiliary quantities {w1, v1}. Its equivalence
to Example 3.1.5 will be seen later.

An alternative I/O computational rule for Example 3.1.5, corresponding to the so-called
canonical realization of the system, is as follows:

for each new input sample x do:
w0 :=x+ 0.5w1

y :=2w0 + 3w1

w1 :=w0

It uses the auxiliary quantities {w0,w1}.

Example 3.1.7: y(n)= 1

5

[
x(n+2)+x(n+1)+x(n)+x(n−1)+x(n−2)

]
. Smoother or averager

of five successive samples. The operation is slightly non-causal, because at each time n,

the system must know the next samples x(n+ 1) and x(n+ 2). We will see later how to

handle such cases in real time.

Example 3.1.8: y(n)= 2x(n)+3. Scaling and shifting of the input.

Example 3.1.9: y(n)= x2(n). Squaring the input.

Example 3.1.10: y(n)= 2x(n)+3x(n−1)+x(n)x(n−1). It contains a nonlinear cross-product

term x(n)x(n− 1).

Example 3.1.11: y(n)= med[x(n + 1), x(n), x(n − 1)]. A simple median filter, where the

operation med[a, b, c] represents the median of the three numbers a,b, c obtained by

sorting the three numbers in increasing order and picking the middle one.

Example 3.1.12: y(n)= nx(n). It has a time-varying coefficient.

Example 3.1.13: y(n)= 1

n
[
x(0)+x(1)+· · · + x(n − 1)

]
. Cumulative average of n numbers.

It can also be expressed recursively as in the following example.

Example 3.1.14: y(n+1)= any(n)+bnx(n), where an = n/(n+1), bn = 1−an = 1/(n+1).
It corresponds to a first-order difference equation with time-varying coefficients an, bn.

Example 3.1.15: y(n)= x(2n). It acts as a rate compressor or downsampler, keeping every
other sample of x(n), thus, resulting in half of the input samples. That is, the input and
output sequences are:

{x0, x1, x2, x3, x4, x5, x6, . . . } H−→ {x0, x2, x4, x6, . . . }
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Example 3.1.16: y(n)=
{
x(n/2), if n is even
0, if n is odd

. It acts as a rate expander or upsampler,

inserting a zero sample between the samples of x(n), thus, doubling the number of input
samples. That is, the input and output sequences are:

{x0, x1, x2, x3, x4, . . . } H−→ {x0,0, x1,0, x2,0, x3,0, x4, . . . }

Examples 3.1.1–3.1.7 represent LTI systems; Examples 3.1.8–3.1.11 are nonlinear but
time-invariant; and Examples 3.1.12–3.1.16 are linear but time-varying systems.

Although most applications of DSP use linear time-invariant systems, nonlinear and
time-varying systems are used increasingly in a variety of applications. For example,
median filters are used successfully in image processing because of their excellent edge-
preserving and noise removal properties; time-varying filters are used in adaptive filter-
ing applications, such as channel equalization and echo cancellation in digital data or
voice channels; downsamplers and upsamplers are part of multirate signal processing
systems, such as those used for interpolation, decimation, oversampling, and sample
rate conversion.

3.2 Linearity and Time Invariance

A linear system has the property that the output signal due to a linear combination of
two or more input signals can be obtained by forming the same linear combination of
the individual outputs. That is, if y1(n) and y2(n) are the outputs due to the inputs
x1(n) and x2(n), then the output due to the linear combination of inputs

x(n)= a1x1(n)+a2x2(n) (3.2.1)

is given by the linear combination of outputs

y(n)= a1y1(n)+a2y2(n) (3.2.2)

To test linearity one must determine separately the three outputs y(n), y1(n), and
y2(n) and then show that they satisfy Eq. (3.2.2). The required operations are shown in
Fig. 3.2.1.

H

x1(n) a1

a2x2(n)

x(n) y(n)

H

H

x1(n) y1(n) a1

a2x2(n) y2(n)

y1(n)a1 a2 y2(n)+

Fig. 3.2.1 Testing linearity.

Example 3.2.1: Test the linearity of the discrete-time systems defined in Examples 3.1.8 and
3.1.9, that is, defined by y(n)= 2x(n)+3 and y(n)= x2(n).
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Solution: The I/O equation y(n)= 2x(n)+3 is a linear equation, but it does not represent a
linear system. Indeed, the output due to the linear combination of Eq. (3.2.1) will be

y(n)= 2x(n)+3 = 2[a1x1(n)+a2x2(n)]+3

and is not equal to the linear combination in the right-hand side of Eq. (3.2.2), namely,

a1y1(n)+a2y2(n)= a1(2x1(n)+3)+a2(2x2(n)+3)

Similarly, for the quadratic system y(n)= x2(n) of Example 3.1.9, we have

a1x2
1(n)+a2x2

2(n)≠
(
a1x1(n)+a2x2(n)

)2

More simply, if a system is nonlinear, one can use a counterexample to show violation of
linearity. For example, if the above quadratic system were linear, doubling of the input
would cause doubling of the output. But in this case, doubling of the input quadruples the
output. 	


A time-invariant system is a system that remains unchanged over time. This implies
that if an input is applied to the system today causing a certain output to be produced,
then the same output will also be produced tomorrow if the same input is applied. The
operation of waiting or delaying a signal by a time delay of, say,D units of time is shown
in Fig. 3.2.2. It represents the right translation of x(n) as a whole by D samples. A time

delay
D

x(n) x(n) x(n-D) x(n-D)

0 0
n n

D

D

Fig. 3.2.2 Time delay by D samples.

advance would have negative D and correspond to the left translation of x(n).
The mathematical formulation of time invariance can be stated with the aid of Fig. 3.2.3.

The upper diagram in this figure shows an input x(n) being applied to the system pro-

H

D

D

H

x(n)

x(n) xD(n)

x(n-D)

y(n)

yD(n)

y(n-D)

Fig. 3.2.3 Testing time invariance.

ducing the output y(n). The lower diagram shows the same input delayed by D units
of time, that is, the signal:

xD(n)= x(n−D) (3.2.3)

which is then applied to the system producing an output, say, yD(n).
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To test whether the system will produce the same output later as the one it is pro-
ducing now, we must take the output y(n) produced now and save it until later, that
is, delay it by D time units, as shown in the upper diagram of Fig. 3.2.3. Then, it can be
compared with the output yD(n) that will be produced later. Thus, if

yD(n)= y(n−D) (3.2.4)

the system will be time-invariant. In other words, delaying the input, Eq. (3.2.3), causes
the output to be delayed by the same amount, Eq. (3.2.4). Equivalently, in terms of the
samples, if

{x0, x1, x2, . . . } H−→ {y0, y1, y2, . . . }
then

{0,0, . . . ,0
D zeros

, x0, x1, x2, . . . } H−→ {0,0, . . . ,0
D zeros

, y0, y1, y2, . . . }

Example 3.2.2: Test the time invariance of the discrete-time systems defined in Examples (3.1.12)
and (3.1.15), that is, defined by y(n)= nx(n) and y(n)= x(2n).

Solution: Because the system y(n)= nx(n) has a time-varying coefficient, we expect it not
to be time-invariant. According to the given I/O rule, the signal xD(n) applied to the
system will cause the output yD(n)= nxD(n). But xD(n) is the delayed version of x(n),
xD(n)= x(n−D). Therefore,

yD(n)= nxD(n)= nx(n−D)

On the other hand, delaying the output signal y(n)= nx(n) by D units gives, replacing n
by n−D:

y(n−D)= (n−D)x(n−D)≠ nx(n−D)= yD(n)

Thus, the system is not time-invariant. Example 3.1.15 described by y(n)= x(2n) is a little
more subtle. According to the I/O rule, the signal xD(n) will cause the output yD(n)=
xD(2n). But, xD(n)= x(n − D) and therefore, replacing the argument n by 2n gives
xD(2n)= x(2n−D), or,

yD(n)= xD(2n)= x(2n−D)

On the other hand, replacing n by n−D in y(n)= x(2n) gives

y(n−D)= x(2(n−D)) = x(2n− 2D)≠ x(2n−D)= yD(n)

Thus, the downsampler is not time-invariant. This can also be seen more intuitively by
considering the effect of the system on the original input sequence and its delay by one
time unit. Noting that the output sequence is obtained by dropping every other input
sample, we find:

{x0, x1, x2, x3, x4, x5, x6, . . . } H−→ {x0, x2, x4, x6, . . . }
{0, x0, x1, x2, x3, x4, x5, x6, . . . } H−→ {0, x1, x3, x5, . . . }

We see that the lower output is not the upper output delayed by one time unit. 	
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3.3 Impulse Response

Linear time-invariant systems are characterized uniquely by their impulse response se-
quence h(n), which is defined as the response of the system to a unit impulse δ(n),
as shown in Fig. 3.3.1. The unit impulse is the discrete-time analog of the Dirac delta
function δ(t) and is defined as

δ(n)=
{

1 if n = 0
0 if n ≠ 0

H
δ(n)δ(n) h(n) h(n)

impulse in impulse response0

1

0n n

Fig. 3.3.1 Impulse response of an LTI system.

Thus, we have by definition,

δ(n) H−→ h(n)

or, in terms of the sample values:†

{1,0,0,0, . . . } H−→ {h0, h1, h2, h3, . . . }
Time invariance implies that if the unit impulse is delayed or time shifted by a certain

amount, say D units of time, then it will cause the impulse response to be delayed by
the same amount, that is, h(n−D). Thus,

δ(n−D) H−→ h(n−D)
for any positive or negative delayD. Figure Fig. 3.3.2 shows this property forD = 0,1,2.
On the other hand, linearity implies that any linear combination of inputs causes the
same linear combination of outputs, so that, for example, the sum of the three impulses
of Fig. 3.3.2 will cause the sum of the three outputs, that is,

δ(n)+δ(n− 1)+δ(n− 2) H−→ h(n)+h(n− 1)+h(n− 2)

or, more generally the weighted linear combination of the three inputs:

x(0)δ(n)+x(1)δ(n− 1)+x(2)δ(n− 2)

will cause the same weighted combination of the three outputs:

x(0)h(n)+x(1)h(n− 1)+x(2)h(n− 2)

as shown in Fig. 3.3.3. In general, an arbitrary input sequence {x(0), x(1), x(2), . . . }
can be thought of as the linear combination of shifted and weighted unit impulses:

†Again, we denote {h(0), h(1), h(2), . . . } by {h0, h1, h2, . . . }.
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H
δ(n)δ(n)

δ(n-1) δ(n-1)

δ(n-2) δ(n-2)

h(n) h(n)

0 1 20 1 2

0 1 20 1 2

0 1 20 1 2

nn

H

h(n-1)h(n-1)

nn

H

h(n-2)h(n-2)

nn

Fig. 3.3.2 Delayed impulse responses of an LTI system.

x(n)= x(0)δ(n)+x(1)δ(n− 1)+x(2)δ(n− 2)+x(3)δ(n− 3)+· · ·
This follows because each term of the right-hand side is nonzero only at the cor-

responding delay time, for example, at n = 0 only the first term is nonzero, at n = 1
only the second term is nonzero, and so on. Linearity and time invariance imply then
that the corresponding output sequence will be obtained by replacing each delayed unit
impulse by the corresponding delayed impulse response, that is,

y(n)= x(0)h(n)+x(1)h(n− 1)+x(2)h(n− 2)+x(3)h(n− 3)+· · · (3.3.1)

or written more compactly:

H

0 1 2
n

x(0)h(n)

x(1)h(n-1)

x(2)h(n-2)

0 1 2
n

x(0)δ(n)

x(1)δ(n-1)

x(2)δ(n-2)

Fig. 3.3.3 Response to linear combination of inputs.

y(n)=
∑
m
x(m)h(n−m) (LTI form) (3.3.2)

This is the discrete-time convolution of the input sequence x(n) with the filter se-
quence h(n). Thus, LTI systems are convolvers.

In general, the summation could extend also over negative values ofm, depending on
the input signal. Because it was derived using the LTI properties of the system, Eq. (3.3.2)
will be referred to as the LTI form of convolution. Changing the index of summation, it
can also be written in the alternative form:



3.4. FIR AND IIR FILTERS 105

y(n)=
∑
m
h(m)x(n−m) (direct form) (3.3.3)

For reasons that will become clear later, Eq. (3.3.3) will be referred to as the direct
form of convolution. The computational aspects of Eqs. (3.3.2) and (3.3.3) and their
realization in terms of block or sample processing methods will be discussed in detail
in the next chapter.

3.4 FIR and IIR Filters

Discrete-time LTI systems can be classified into FIR or IIR systems, that is, having finite
or infinite impulse response h(n), as depicted in Fig. 3.4.1.

An FIR filter has impulse response h(n) that extends only over a finite time interval,
say 0 ≤ n ≤M, and is identically zero beyond that:

{h0, h1, h2, . . . , hM,0,0,0, . . . }

M is referred to as the filter order. The length of the impulse response vector h =
[h0, h1, . . . , hM] is:

Lh =M + 1

FIR h(n) IIR h(n)

0 02 21 1M
n n. . . . . .

. . .

Fig. 3.4.1 FIR and IIR impulse responses.

The impulse response coefficients {h0, h1, . . . , hM} are referred to by various names,
such as filter coefficients, filter weights, or filter taps, depending on the context. In the
direct form of convolution of Eq. (3.3.3), all the terms for m > M and m < 0 will
be absent because by definition h(m) vanishes for these values of m; only the terms
0 ≤m ≤M are present. Therefore, Eq. (3.3.3) is simplified to the finite-sum form:

y(n)=
M∑
m=0

h(m)x(n−m) (FIR filtering equation) (3.4.1)

or, explicitly

y(n)= h0x(n)+h1x(n− 1)+h2x(n− 2)+· · · + hMx(n−M) (3.4.2)

Thus, the I/O equation is obtained as a weighted sum of the present input sample
x(n) and the past M samples x(n− 1), x(n− 2), . . . , x(n−M).
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Example 3.4.1: Second-order FIR filters are characterized by three impulse response coeffi-
cients h = [h0, h1, h2] and have I/O equation:

y(n)= h0x(n)+h1x(n− 1)+h2x(n− 2)

Such was the case of Example 3.1.2, which had h = [2,3,4].

Example 3.4.2: Similarly, third-order FIR filters are characterized by four weights h = [h0, h1, h2, h3]
and have I/O equation:

y(n)= h0x(n)+h1x(n− 1)+h2x(n− 2)+h3x(n− 3)

Example 3.4.3: Determine the impulse response h of the following FIR filters:

(a) y(n)= 2x(n)+3x(n− 1)+5x(n− 2)+2x(n− 3)

(b) y(n)= x(n)−x(n− 4)

Solution: Comparing the given I/O equations with Eq. (3.4.2), we identify the impulse response
coefficients:

(a) h = [h0, h1, h2, h3]= [2,3,5,2]
(b) h = [h0, h1, h2, h3, h4]= [1,0,0,0,−1]

Alternatively, sending a unit impulse as input, x(n)= δ(n), will produce the impulse
response sequence as output, y(n)= h(n):

(a) h(n)= 2δ(n)+3δ(n− 1)+5δ(n− 2)+2δ(n− 3)

(b) h(n)= δ(n)−δ(n− 4)

The expressions for h(n) and h are equivalent. 	


An IIR filter, on the other hand, has an impulse response h(n) of infinite duration,
defined over the infinite interval 0 ≤ n < ∞. Eq. (3.3.3) now has an infinite number of
terms:

y(n)=
∞∑
m=0

h(m)x(n−m) (IIR filtering equation) (3.4.3)

This I/O equation is not computationally feasible because we cannot deal with an
infinite number of terms. Therefore, we must restrict our attention to a subclass of IIR
filters, namely, those for which the infinite number of filter coefficients {h0, h1, h2, . . . }
are not chosen arbitrarily, but rather they are coupled to each other through constant-
coefficient linear difference equations.

For this subclass of IIR filters, Eq. (3.4.3) can be rearranged as a difference equation
allowing the efficient recursive computation of the output y(n). Some examples will
make this point clear.
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Example 3.4.4: Determine the I/O difference equation of an IIR filter whose impulse response
coefficients h(n) are coupled to each other by the difference equation:

h(n)= h(n− 1)+δ(n)

Solution: Setting n = 0, we have h(0)= h(−1)+δ(0)= h(−1)+1. Assuming causal initial
conditions, h(−1)= 0, we find h(0)= 1. For n > 0, the delta function vanishes, δ(n)= 0,
and therefore, the difference equation reads h(n)= h(n− 1). In particular h(1)= h(0)=
1, h(2)= h(1)= 1, and so on. Thus, all of the samples h(n) are equal to each other. In
summary, we have the (causal) solution:

h(n)= u(n)=
{

1 if n ≥ 0
0 if n ≤ −1

where u(n) is the discrete-time unit-step function. Now, putting this solution into the
convolutional I/O equation (3.4.3), we have

y(n)=
∞∑
m=0

h(m)x(n−m)=
∞∑
m=0

x(n−m)

where we set h(m)= 1. Writing it explicitly we have

y(n)= x(n)+x(n− 1)+x(n− 2)+x(n− 3)+· · ·

Replacing n by n− 1 gives the previous output

y(n− 1)= x(n− 1)+x(n− 2)+x(n− 3)+· · ·

Subtracting it from y(n), we have

y(n)−y(n− 1)= x(n)

Therefore, the I/O convolutional equation is equivalent to the recursive difference equation

y(n)= y(n− 1)+x(n)

It represents an accumulator, or discrete-time integrator. Note that this is the same differ-
ence equation as that of h(n), because by definition h(n) is the output when the input is
an impulse; that is, y(n)= h(n) if x(n)= δ(n). 	


Example 3.4.5: Suppose the filter coefficients h(n) satisfy the difference equation

h(n)= ah(n− 1)+δ(n)

where a is a constant. Determine the I/O difference equation relating a general input signal
x(n) to the corresponding output y(n).
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Solution: Arguing as in the previous example, we have

h(0) = ah(−1)+δ(0)= a · 0 + 1 = 1

h(1) = ah(0)+δ(1)= a · 1 + 0 = a
h(2) = ah(1)+δ(2)= a · a+ 0 = a2

h(3) = ah(2)+δ(3)= a · a2 + 0 = a3

and so on. Therefore, we find the solution

h(n)= anu(n)=
{
an, if n ≥ 0
0, if n ≤ −1

Inserting this solution into Eq. (3.4.3), we have

y(n) = x(n)+ax(n− 1)+a2x(n− 2)+a3x(n− 3)+· · ·
= x(n)+a[x(n− 1)+ax(n− 2)+a2x(n− 3)+· · · ]

The sum in the brackets is recognized now as the previous output y(n − 1). Therefore,
we obtain the I/O difference equation:

y(n)= ay(n− 1)+x(n)

As expected, it is the same as the difference equation satisfied by h(n). 	


Example 3.4.6: Determine the convolutional form and the (causal) impulse response of the IIR
filter described by the following difference equation:

y(n)= −0.8y(n− 1)+x(n)

Solution: This is the same example as above, with a = −0.8. Setting x(n)= δ(n) and y(n)=
h(n), we obtain the difference equation for h(n):

h(n)= −0.8h(n− 1)+δ(n)

Assuming causal initial conditions, h(−1)= 0, and iterating a few values of n as we did in
the previous example, we find the solution:

h(n)= (−0.8)nu(n)=
{
(−0.8)n, if n ≥ 0
0, if n ≤ −1

Inserting the values for h(n) into the convolutional equation (3.4.3), we find

y(n)= x(n)+(−0.8)x(n− 1)+(−0.8)2x(n− 2)+(−0.8)3x(n− 3)+· · ·

which, in general, has an infinite number of terms. 	
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Example 3.4.7: In this example, start with an expression forh(n) and work backwards to obtain
the I/O difference equation satisfied by y(n) in terms of x(n), and also determine the
difference equation satisfied by h(n). Assume the IIR filter has a causal h(n) defined by

h(n)=
{

2, for n = 0
4(0.5)n−1, for n ≥ 1

Solution: The first two values h(0) and h(1) are chosen arbitrarily, but for n ≥ 2 the values
are recursively related to one another; for example, starting with h(1)= 4, we have h(2)=
0.5h(1), h(3)= 0.5h(2), h(4)= 0.5h(3), and so on. Therefore, we expect that these
recursions can be used to reassemble the I/O convolutional equation into a difference
equation for y(n).

Inserting the numerical values of h(n) into Eq. (3.4.3), we find for the I/O equation

yn = h0xn + h1xn−1 + h2xn−2 + h3xn−3 + h4xn−4 + · · ·
= 2xn + 4xn−1 + 2

[
xn−2 + 0.5xn−3 + 0.52xn−4 + · · · ]

and for the previous output

yn−1 = 2xn−1 + 4xn−2 + 2
[
xn−3 + 0.5xn−4 + · · · ]

Multiplying by 0.5, we have

0.5yn−1 = xn−1 + 2
[
xn−2 + 0.5xn−3 + 0.52xn−4 + · · · ]

Subtracting it from yn, we find the I/O difference equation

yn − 0.5yn−1 = 2xn + 3xn−1

and solving for y(n)

y(n)= 0.5y(n− 1)+2x(n)+3x(n− 1)

which is recognized as the difference equation of Example 3.1.5. Setting x(n)= δ(n) and
y(n)= h(n) gives the difference equation for h(n):

h(n)= 0.5h(n− 1)+2δ(n)+3δ(n− 1)

Starting with the initial value h(−1)= 0 and iterating for a few values of n, one can easily
verify that this difference equation generates the sequence h(n) we started out with. 	


Example 3.4.8: Determine the convolutional form and the (causal) impulse response of the IIR
filter described by the following difference equation:

y(n)= 0.25y(n− 2)+x(n)



110 3. DISCRETE-TIME SYSTEMS

Solution: The impulse response h(n) will satisfy the difference equation:

h(n)= 0.25h(n− 2)+δ(n)

to be iterated with zero initial conditions: h(−1)= h(−2)= 0. A few iterations give:

h(0) = 0.25h(−2)+δ(0)= 0.25 · 0 + 1 = 1

h(1) = 0.25h(−1)+δ(1)= 0.25 · 0 + 0 = 0

h(2) = 0.25h(0)+δ(2)= 0.25 · 1 + 0 = 0.25 = (0.5)2

h(3) = 0.25h(1)+δ(3)= 0.25 · 0 + 0 = 0

h(4) = 0.25h(2)+δ(4)= 0.25 · 0.25 + 0 = (0.25)2= (0.5)4

And, in general, for n ≥ 0

h(n)=
{
(0.5)n, if n = even
0, if n = odd

Equivalently, we can write:

h = [1, 0, (0.5)2, 0, (0.5)4, 0, (0.5)6, 0, (0.5)8, 0, . . . ]

And, Eq. (3.4.3) becomes:

yn = xn + 0.52xn−2 + 0.54xn−4 + 0.56xn−6 + · · ·

which is the solution of the given difference equation in terms of x(n). 	


Example 3.4.9: Determine the I/O difference equation of the IIR filter that has the following
causal periodic impulse response:

h(n)= {2,3,4,5,2,3,4,5,2,3,4,5, . . . }

where the dots denote the periodic repetition of the four samples {2,3,4,5}.

Solution: If we delay the given response by one period, that is, 4 samples, we get

h(n− 4)= {0,0,0,0,2,3,4,5,2,3,4,5, . . . }

Subtracting it from h(n), we get

h(n)−h(n− 4)= {2,3,4,5,0,0,0,0,0,0,0,0, . . . }

with all samples beyond n = 4 canceling to zero. These operations are depicted below.

h(n) h(n-4) h(n) - h(n-4)

0 0 04 4 43 3 37 7 78 8 82 2 26 6 61 1 15 5 5n n n. . . . . . . . .

. . . . . . . . .
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Thus, the right-hand side is nonzero only for n = 0,1,2,3, and we can rewrite it as the
difference equation

h(n)−h(n− 4)= 2δ(n)+3δ(n− 1)+4δ(n− 2)+5δ(n− 3)

or, solving for h(n)

h(n)= h(n− 4)+2δ(n)+3δ(n− 1)+4δ(n− 2)+5δ(n− 3)

Using the method of the previous example, we can show that y(n) satisfies the same
difference equation:

yn = yn−4 + 2xn + 3xn−1 + 4xn−2 + 5xn−3

This example shows how to construct a digital periodic waveform generator : Think of
the waveform to be generated as the impulse response of an LTI system, determine the
difference equation for that system, and then hit it with an impulse, and it will generate
its impulse response, that is, the desired waveform. See Section 8.1.2. 	


More generally, the IIR filters that we will be concerned with have impulse responses
h(n) that satisfy constant-coefficient difference equations of the general type:

h(n)=
M∑
i=1

aih(n− i)+
L∑
i=0

biδ(n− i)

or, written explicitly

hn = a1hn−1 + a2hn−2 + · · · + aMhn−M + b0δn + b1δn−1 + · · · + bLδn−L
Using the methods of Example 3.4.7, it can be shown that the corresponding convo-

lutional equation (3.4.3) can be reassembled into the same difference equation for y(n)
in terms of x(n), that is,

y(n)=
M∑
i=1

aiy(n− i)+
L∑
i=0

bix(n− i)

or, explicitly

yn = a1yn−1 + a2yn−2 + · · · + aMyn−M + b0xn + b1xn−1 + · · · + bLxn−L
We will explore the properties of IIR filters after we discuss z-transforms. Note

also that FIR filters can be thought of as special cases of the IIR difference equations
when the recursive terms are absent, that is, when the recursive coefficients are zero,
a1 = a2 = · · · = aM = 0.

Eventually, we aim to develop several mathematically equivalent descriptions of FIR
and IIR filters, such as,
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• I/O difference equation
• Convolutional equation
• Impulse response h(n)
• Transfer function H(z)
• Frequency response H(ω)
• Pole/zero pattern
• Block diagram realization and sample processing algorithm

The above examples show how to go back and forth between the first three of these
descriptions—from the difference equation to the corresponding impulse response to
the convolutional form of the filtering equation. We will see later that all of the tedious
time-domain manipulations of the above examples can be avoided by working with z-
transforms.

Each description serves a different purpose and provides a different insight into
the properties of the filter. For example, in a typical application, we would provide
desired frequency-domain specifications for the filter, that is, specify the desired shape
of H(ω). Using a filter design technique, we would design a filter whose frequency
response closely approximates the desired response. The output of the filter design
technique is typically the transfer function H(z) for IIR filters or the impulse response
h(n) for FIR filters. FromH(z) or h(n), we would obtain an appropriate block diagram
realization that can be used to implement the filter in real time.

3.5 Causality and Stability

Like analog signals, discrete-time signals can be classified into causal, anticausal, or
mixed signals, as shown in Fig. 3.5.1.

A causal or right-sided signal x(n) exists only for n ≥ 0 and vanishes for all negative
times n ≤ −1. Causal signals are the most commonly encountered signals, because
they are the type that we generate in our labs — for example, when we turn on a signal
generator or signal source.

An anticausal or left-sided signal exists only for n ≤ −1 and vanishes for all n ≥ 0.
A mixed or double-sided signal has both a left-sided and a right-sided part.

0 0 02 2 2-2 -2 -21 1 1-1 -1 -1n n

x(n) x(n) x(n)

causal anticausal mixed

n

Fig. 3.5.1 Causal, anticausal, and mixed signals.

The placement of the time origin, n = 0, along the time axis is entirely a matter of
convention. Typically, it is taken to be the time when we turn on our signal generators
or the time when we begin our processing operations. Therefore, a signal that is double-
sided with respect to a chosen time origin is simply a signal that has already been in
existence when we start our processing.
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LTI systems can also be classified in terms of their causality properties depending
on whether their impulse response h(n) is causal, anticausal, or mixed. For a general
double-sided h(n), which can extend over −∞ < n <∞, the I/O convolutional equation
becomes

y(n)=
∞∑

m=−∞
h(m)x(n−m) (3.5.1)

Such systems cannot be implemented in real time, as can be seen by writing a few
of the positive and negative m terms:

yn = · · · + h−2xn+2 + h−1xn+1 + h0xn + h1xn−1 + h2xn−2 + · · ·

which shows that to compute the output y(n) at the current time n, one needs to know
the future input samples x(n+1), x(n+2), . . . , which are not yet available for process-
ing.

Anticausal and double-sided systems are very counter-intuitive, violating our sense
of causality. For example, in response to a unit impulse δ(n), which is applied to the
system at n = 0, the system will generate its impulse response output h(n). But if
h(−1)≠ 0, this means that the system had already produced an output sample at time
n = −1, even before the input impulse was applied at n = 0 !

Should we, therefore, be concerned with non-causal filters? Are they relevant, useful,
or necessary in DSP? The answer to all of these questions is yes. Some typical applica-
tions where double-sided filters crop up are the design of FIR smoothing filters, the
design of FIR interpolation filters used in oversampling DSP systems, and the design of
inverse filters.

FIR smoothing and interpolation filters belong to a class of double-sided filters that
are only finitely anticausal, that is, their anticausal part has finite duration, say over the
period −D ≤ n ≤ −1. Such filters are shown in Fig. 3.5.2. In general, the causal part of
h(n) may be finite or infinite. The I/O equation (3.5.1) becomes for this class of filters:

hD(n)= h(n-D)DD h(n)

0 1 2-D
n. . .

. . . 0 1 2-D
n. . .

. . .

Fig. 3.5.2 Finitely anticausal filter and its causal version.

y(n)=
∞∑

m=−D
h(m)x(n−m) (3.5.2)

A standard technique for dealing with such filters is to make them causal by replacing
h(n) with its delayed version by D time units, that is,

hD(n)= h(n−D)
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As shown in Fig. 3.5.2, this operation translates h(n) to the right byD units, making
it causal. The I/O filtering equation for the causal filter hD(n) will be

yD(n)=
∞∑
m=0

hD(m)x(n−m) (3.5.3)

and will be implementable in real time. It is easily seen that the resulting sequence
yD(n) is simply the delayed version of y(n) as computed by Eq. (3.5.2):

yD(n)= y(n−D)

Thus, the output samples are computed correctly, but come out with a time delay.

Example 3.5.1: Consider the typical 5-tap smoothing filter of Example 3.1.7 having filter coef-
ficients h(n)= 1/5 for −2 ≤ n ≤ 2. The corresponding I/O convolutional equation (3.5.2)
becomes

y(n) =
2∑

m=−2

h(m)x(n−m)= 1

5

2∑
m=−2

x(n−m)

= 1

5

[
x(n+ 2)+x(n+ 1)+x(n)+x(n− 1)+x(n− 2)

]
It is called a smoother or averager because at each n it replaces the current sample x(n)
by its average with the two samples ahead and two samples behind it, and therefore, it
tends to average out rapid fluctuations from sample to sample.

Its anticausal part has duration D = 2 and can be made causal with a time delay of two
units, resulting in

y2(n)= y(n− 2)= 1

5

[
x(n)+x(n− 1)+x(n− 2)+x(n− 3)+x(n− 4)

]
This filtering equation must be thought of as smoothing the middle sample x(n− 2) and
not the current sample x(n). 	


When real-time processing is not an issue, as in block processing methods, and the
input data to be processed have already been collected and saved as a block of samples
on some medium such as memory or tape, one may use the non-causal form of Eq. (3.5.2)
directly. This is one of the advantages of DSP that does not have a parallel in analog
signal processing. An example of this may be the processing of a still picture, where all
the pixel information has been gathered into a block of samples.

In addition to their causality properties, LTI systems can be classified in terms of
their stability properties. A stable LTI system is one whose impulse response h(n)
goes to zero sufficiently fast as n → ±∞, so that the output of the system y(n) never
diverges, that is, it remains bounded by some bound |y(n)| ≤ B if its input is bounded,
say |x(n)| ≤ A. That is, a system is stable if bounded inputs always generate bounded
outputs.

It can be shown that a necessary and sufficient condition for an LTI system to be
stable in the above bounded-input/bounded-output sense is that its impulse response
h(n) be absolutely summable:
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∞∑
n=−∞

|h(n)| <∞ (stability condition) (3.5.4)

Example 3.5.2: Consider the following four examples of h(n):

h(n) = (0.5)nu(n)
h(n) = −(0.5)nu(−n− 1)

h(n) = 2nu(n)

h(n) = −2nu(−n− 1)

(stable and causal)

(unstable and anticausal)

(unstable and causal)

(stable and anticausal)

In the two causal cases, the presence of the unit step u(n) causes h(n) to be nonzero only
for n ≥ 0, whereas in the anticausal cases, the presence of u(−n−1)makes h(n) nonzero
only for −n−1 ≥ 0 or n+1 ≤ 0 or n ≤ −1. The first example tends to zero exponentially
for n → ∞; the second diverges as n → −∞; indeed, because n is negative, one can write
n = −|n| and

h(n)= −(0.5)nu(−n− 1)= −(0.5)−|n|u(−n− 1)= −2|n|u(−n− 1)

and therefore it blows up exponentially for large negative n. The third example blows up
for n→ ∞ and the fourth tends to zero exponentially for n→ −∞, as can be seen from

h(n)= −2nu(−n− 1)= −2−|n|u(−n− 1)= −(0.5)|n|u(−n− 1)

Thus, cases one and four are stable and cases two and three unstable. The same conclusion
can also be reached by the stability criterion of Eq. (3.5.4). We have in the four cases:

∞∑
n=−∞

|h(n)| =
∞∑
n=0

(0.5)n= 1

1 − 0.5
<∞

∞∑
n=−∞

|h(n)| =
−∞∑
n=−1

(0.5)n=
∞∑
m=1

2m = ∞

∞∑
n=−∞

|h(n)| =
∞∑
n=0

2n = ∞

∞∑
n=−∞

|h(n)| =
−∞∑
n=−1

2n =
∞∑
m=1

(0.5)m= 0.5
1 − 0.5

<∞

where in the first and fourth cases, we used the infinite geometric series formulas:

∞∑
m=0

xm = 1

1 − x and
∞∑
m=1

xm = x
1 − x

valid for |x| < 1. For the second and third cases the geometric series have x > 1
and diverge. We will see later that cases one and two have the same transfer function,

namely, H(z)= 1

1 − 0.5z−1
, and therefore, cannot be distinguished on the basis of just

the transfer function. Similarly, cases three and four have the common transfer function

H(z)= 1

1 − 2z−1
. 	
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Stability is absolutely essential in hardware or software implementations of LTI sys-
tems because it guarantees that the numerical operations required for computing the I/O
convolution sums or the equivalent difference equations remain well behaved and never
grow beyond bounds. In hardware implementations, such instabilities would quickly
saturate the hardware registers and in software implementations they would exceed the
numerical ranges of most computers resulting in numerical nonsense.

The concepts of stability and causality are logically independent, but are not always
compatible with each other, that is, it may not be possible to satisfy simultaneously the
conditions of stability and causality, as was the case of the last two systems of Example
3.5.2. However, because of the practical numerical considerations mentioned above, we
must always prefer stability over causality.

If the anticausal part of a stable system h(n) has finite duration, then it can be
handled as above, making it causal by a time delay. If, on the other hand, the anticausal
part is infinite, thenh(n) can only be handled approximately by the following procedure.
Because h(n) is stable, it will tend to zero for large negative n. Therefore, one may pick
a sufficiently large negative integer n = −D and clip the left tail of h(n) for n < −D.
That is, one can replace the true h(n) by its clipped approximation:

h̃(n)=
{
h(n), for n ≥ −D
0, for n < −D (3.5.5)

This clipped response will be of the finitely anticausal type shown in Fig. 3.5.2, and
therefore, it can be made causal by a delay ofD units of time, that is, h̃D(n)= h̃(n−D).
The approximation error can be made as small as desired by increasing the value of D.
To see this, let ỹ(n) be the output of the approximate system h̃(n) for a bounded input,
|x(n)| ≤ A, and let y(n) be the output of the exact system h(n). It is easily shown that
the error in the output is bounded from above by

|y(n)−ỹ(n)| ≤ A
−D−1∑
m=−∞

|h(m)| (3.5.6)

for all n. The above sum, being a partial sum of Eq. (3.5.4), is finite and tends to zero as
D increases. For example, in case four of Example 3.5.2 we find

−D−1∑
m=−∞

|h(m)| =
∞∑

m=D+1

(0.5)m= (0.5)D+1 1

1 − 0.5
= (0.5)D

which can be made as small as desired by increasing D.
This type of stable but non-causal filter can often arise in the design of inverse filters.

The inverse of a filter with transfer function H(z) has transfer function

Hinv(z)= 1

H(z)

Such inverse filters are used in various equalization applications, such as channel
equalization for digital data transmission whereH(z)may represent the channel’s trans-
fer function, or the equalizer filters that we discussed in Chapter 1.
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The corresponding impulse response of the inverse filter hinv(n)must be chosen to
be stable. But, then it may be not be causal.† Therefore, in this case we must work with
the approximate clipped/delayed inverse filter response

h̃inv,D(n)= h̃inv(n−D)

We will consider examples of such designs later, after we discuss z-transforms.

3.6 Problems

3.1 Determine whether the discrete-time systems described by the following I/O equations are
linear and/or time-invariant:

a. y(n)= 3x(n)+5

b. y(n)= x2(n− 1)+x(2n),
c. y(n)= ex(n)
d. y(n)= nx(n− 3)+3x(n).

e. y(n)= n+ 3x(n)

3.2 Determine the causal impulse response h(n) for n ≥ 0 of the LTI systems described by the
following I/O difference equations:

a. y(n)= 3x(n)−2x(n− 1)+4x(n− 3)

b. y(n)= 4x(n)+x(n− 1)−3x(n− 3)

c. y(n)= x(n)−x(n− 3)

3.3 Determine the causal impulse response h(n) for n ≥ 0 of the LTI systems described by the
following I/O difference equations:

a. y(n)= −0.9y(n− 1)+x(n)
b. y(n)= 0.9y(n− 1)+x(n)
c. y(n)= 0.64y(n− 2)+x(n)
d. y(n)= −0.81y(n− 2)+x(n)
e. y(n)= 0.5y(n− 1)+4x(n)+x(n− 1)

3.4 Determine the I/O difference equations relating x(n) and y(n) for the LTI systems having
the following impulse responses:

a. h(n)= (0.9)nu(n)
b. h(n)= (−0.6)nu(n)

c. h(n)= (0.9)nu(n)+(−0.9)nu(n)

d. h(n)= (0.9j)nu(n)+(−0.9j)nu(n)

3.5 A causal IIR filter has impulse response h(n)= 4δ(n)+3(0.5)n−1u(n−1). Working with the
convolutional equation y(n)= ∑

m h(m)x(n −m), derive the difference equation satisfied
by y(n).

†We will see later that this circumstance can arise if some of the zeros of the transfer function H(z) lie
outside the unit circle in the z-plane.
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3.6 A causal IIR filter has impulse response:

h(n)=
{

5, if n = 0
6(0.8)n−1, if n ≥ 1

Working with the convolutional filtering equation, derive the difference equation satisfied by
y(n).

3.7 To understand the role played the first two values h(0) and h(1), redo Problem 3.6 starting
with the more general expression for h(n):

h(n)=
{
c0 for n = 0
c1an−1 for n ≥ 1

which hash(0)= c0 andh(1)= c1. First, determine the difference equation satisfied byh(n)
for all n ≥ 0. Then, using the I/O convolutional equation (3.3.3), determine the difference
equation relating y(n) to x(n). How are {c0, c1} related to the coefficients of the difference
equation?

3.8 A causal linear time-invariant filter has impulse response:

hn = [C1pn1 +C2pn2 + · · · +CMpnM]u(n)

Without using any z-transforms and working entirely in the time domain, show that hn
satisfies the order-M difference equation:

hn + a1hn−1 + a2hn−2 + · · · + aMhn−M = 0, for n ≥M

where {1, a1, a2, . . . , aM} are the coefficients of the polynomial whose roots are the (complex)
numbers {p1, p2, . . . , pM}, that is,

1 + a1z−1 + a2z−2 + · · · + aMz−M = (1 − p1z−1)(1 − p2z−1)· · · (1 − pMz−1)

Note that Ci are arbitrary and the restriction n ≥M necessary.

3.9 A causal linear time-invariant filter has impulse response:

hn = C0δ(n)+C1pn1 +C2pn2 + · · · +CMpnM , n ≥ 0

Show that it satisfies the same difference equation as in the previous problem, but with the
restriction n ≥M + 1.

3.10 A causal linear time-invariant filter has impulse response:

hn = C1pn1 +C2pn2 , n ≥ 0

Working in the time domain, show that the difference equation satisfied by hn for all n ≥ 0
and the difference equation relating the input and output signals are of the form:

hn + a1hn−1 + a2hn−2 = b0δ(n)+b1δ(n− 1)

yn + a1yn−1 + a2yn−2 = b0xn + b1xn−1

Determine {a1, a2, b0, b1} in terms of {C1, C2, p1, p2}.
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3.11 A causal linear time-invariant filter has impulse response:

hn = C0δ(n)+C1pn1 +C2pn2 , n ≥ 0

Show that the difference equation satisfied by hn for all n ≥ 0 and the difference equation
relating the input and output signals are of the form:

hn + a1hn−1 + a2hn−2 = b0δ(n)+b1δ(n− 1)+b2δ(n− 2)

yn + a1yn−1 + a2yn−2 = b0xn + b1xn−1 + b2xn−2

Determine {a1, a2, b0, b1, b2} in terms of {C0, C1, C2, p1, p2}.

3.12 A causal linear time-invariant filter has impulse response:

hn = C1pn1 +C2pn2 +C3pn3 , n ≥ 0

Working in the time domain, show that the difference equation satisfied by hn for all n ≥ 0
and the difference equation relating the input and output signals are of the form:

hn + a1hn−1 + a2hn−2 + a3hn−3 = b0δ(n)+b1δ(n− 1)+b2δ(n− 2)

yn + a1yn−1 + a2yn−2 + a3yn−3 = b0xn + b1xn−1 + b2xn−2

Determine {a1, a2, a3, b0, b1} in terms of {C1, C2, C3, p1, p2, p3}.

3.13 Using the results of the previous two problems, determine and verify the difference equations
satisfied by the impulse responses:

a. h(n)= 5(0.5)nu(n)+4(0.8)nu(n).

b. h(n)= (0.5j)nu(n)+(−0.5j)nu(n).

c. h(n)= [
3(0.4)n+4(0.5)n−7(−0.5)n

]
u(n).

3.14 The condition of Eq. (3.5.4) is sufficient for bounded-input/bounded-output (BIBO) stability.
Assume A = ∑

m |h(m)| < ∞. Show that if the input is bounded, |x(n)| ≤ B, then the
output is bounded by |y(n)| ≤ AB.

3.15 The condition of Eq. (3.5.4) is also necessary for BIBO stability. Assume that every bounded
input results in a bounded output and consider the particular bounded input x(n)= sign

(
h(−n))

defined to be the algebraic sign of h(−n). Then, the corresponding output y(n) will be
bounded. By considering the particular output sample y(0), prove that Eq. (3.5.4) must
hold. What happens if when h(−n)= 0 for some n?

3.16 The standard method for making an anticausal (but stable) system into a causal system is
to clip off its anticausal tail at some large negative time n = −D and then delay the impulse
response by D time units to make it causal, that is, hD(n)= h(n − D). Let y(n) be the
output of h(n) with input x(n), and let yD(n) be the output of the delayed system hD(n)
also with input x(n). Working in the time domain, show that yD(n) is the delayed version
of y(n), that is, yD(n)= y(n−D).

3.17 In certain applications, such as data smoothing and FIR interpolation, the desired output
y(n) must be computed from a partly anticausal filter, that is, a filter h(n) with anticausal
duration of D time units. This filter can be made causal by a delay D, but this would cause
the output to be delayed as we saw in the previous problem.
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In order to get the correct undelayed output from the delayed causal filter hD(n), the input
must be time-advanced by D time units, that is, xA(n)= x(n + D). Using time-domain
convolution, show that y(n) can be computed in the following two ways:

y(n)=
∑
m
h(m)x(n−m)=

∑
m
hD(m)xA(n−m)

In the z-domain, this is obvious:

Y(z)= H(z)X(z)= [
z−DH(z)

][
zDX(z)

]
In Sections 8.3.5 and 12.2.2, we show how to implement this idea by proper initialization of
the filter’s internal states.

3.18 Prove the inequality (3.5.6). Is the right-hand side finite? Does it get smaller asD gets larger?



4
FIR Filtering and Convolution

Practical DSP methods fall in two basic classes:

• Block processing methods.
• Sample processing methods.

In block processing methods, the data are collected and processed in blocks. Some
typical applications include, FIR filtering of finite-duration signals by convolution, fast
convolution of long signals which are broken up in short segments, DFT/FFT spectrum
computations, speech analysis and synthesis, and image processing.

In sample processing methods, the data are processed one at a time—with each input
sample being subjected to a DSP algorithm which transforms it into an output sample.
Sample processing methods are used primarily in real-time applications, such as real-
time filtering of long signals, digital audio effects processing, digital control systems,
and adaptive signal processing. Sample processing algorithms are essentially the state-
space realizations of LTI filters.

In this chapter, we consider block processing and sample processing methods for FIR
filtering applications. We discuss the computational aspects of the convolution equa-
tions (3.3.2) or (3.3.3) as they apply to FIR filters and finite-duration inputs and present
various equivalent forms of convolution, namely,

• Direct form
• Convolution table
• LTI form
• Matrix form
• Flip-and-slide form
• Overlap-add block convolution form.

Each form has its own distinct advantages. For example, the LTI form is of funda-
mental importance because it incorporates the consequences of linearity and time in-
variance; the direct form leads directly to block diagram realizations of the filter and the
corresponding sample-by-sample processing algorithms; the convolution table is conve-
nient for quick computations by hand; the flip-and-slide form shows clearly the input-on
and input-off transient and steady-state behavior of a filter; the matrix form provides a
compact vectorial representation of the filtering operation and is widely used in some

121



122 4. FIR FILTERING AND CONVOLUTION

applications such as image processing; and the overlap-add form is used whenever the
input is extremely long or infinite in duration.

Then, we go on to discuss sample-by-sample processing methods for FIR filtering
and discuss block diagram realizations which provide a mechanization of the sample
processing algorithms. We develop the so-called direct form realizations of FIR filters
and discuss some hardware issues for DSP chips. We develop also the concept of circular
addressing, which is the “modern” way to implement delay lines, FIR, and IIR filters in
both hardware and software.

4.1 Block Processing Methods

4.1.1 Convolution

In many practical applications, we sample our analog input signal (in accordance with
the sampling theorem requirements) and collect a finite set of samples, say L samples,
representing a finite time record of the input signal. The duration of the data record in
seconds will be:†

TL = LT
0 2 ...1

n

L-1

x(n)
T

TL

(4.1.1)

where T is the sampling time interval, related to the sampling rate by fs = 1/T. Con-
versely, we can solve for the number of time samples L contained in a record of duration
TL seconds:

L = TLfs (4.1.2)

The L collected signal samples, say x(n), n = 0,1, . . . , L − 1, can be thought of as a
block:

x = [x0, x1, . . . , xL−1] (4.1.3)

which may then be processed further by a digital filter. The direct and LTI forms of
convolution given by Eqs. (3.3.3) and (3.3.2)

y(n)=
∑
m
h(m)x(n−m)=

∑
m
x(m)h(n−m) (4.1.4)

describe the filtering equation of an LTI system in general. An alternative way of writing
these equations, called the convolution table form, is obtained by noting that the sum
of the indices of h(m) and x(n−m) is m+ (n−m)= n. Therefore, Eqs. (4.1.4) can be
written in the form:

†More correctly, TL = (L− 1)T, but for large L Eq. (4.1.1) is simpler. See also Section 9.1.
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y(n)=
∑
i, j

i+j=n

h(i)x(j) (convolution table form) (4.1.5)

That is, the sum of all possible products h(i)x(j)with i+j = n. The precise range of
summation with respect tom in Eqs. (4.1.4) or i, j in Eq. (4.1.5) depends on the particular
nature of the filter and input sequences, h(n) and x(n).

4.1.2 Direct Form

Consider a causal FIR filter of order M with impulse response h(n), n = 0,1, . . . ,M. It
may be represented as a block:

h = [h0, h1, . . . , hM] (4.1.6)

Its length (i.e., the number of filter coefficients) is one more than its order:

Lh =M + 1 (4.1.7)

The convolution of the length-L input x of Eq. (4.1.3) with the order-M filter h will
result in an output sequence y(n). We must determine: (i) the range of values of the
output index n, and (ii) the precise range of summation in m. For the direct form, we
have

y(n)=
∑
m
h(m)x(n−m)

The index of h(m) must be within the range of indices in Eq. (4.1.6), that is, it must be
restricted to the interval:

0 ≤m ≤M (4.1.8)

Similarly, the index of x(n−m) must lie within the legal range of indices in Eq. (4.1.3),
that is,

0 ≤ n−m ≤ L− 1 (4.1.9)

To determine the range of values of the output index n, we rewrite (4.1.9) in the form:

m ≤ n ≤ L− 1 +m

and use (4.1.8) to extend the limits to:

0 ≤m ≤ n ≤ L− 1 +m ≤ L− 1 +M, or,

0 ≤ n ≤ L− 1 +M (4.1.10)

This is the index range of the output sequence y(n). Therefore, it is represented by a
block
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y = [y0, y1, . . . , yL−1+M] (4.1.11)

with length

Ly = L+M (4.1.12)

Thus, y is longer than the input x by M samples. As we will see later, this property
follows from the fact that a filter of orderM has memory M and keeps each input sample
inside it forM time units. Setting Lx = L, and Lh =M+1, we can rewrite Eq. (4.1.12) in
the more familiar form:

Ly = Lx + Lh − 1 (4.1.13)

The relative block lengths are shown in Fig. 4.1.1. For any value of the output index n
in the range (4.1.10), we must determine the summation range overm in the convolution
equation. For fixedn, the inequalities (4.1.8) and (4.1.9) must be satisfied simultaneously
by m. Changing the sign of (4.1.9), we obtain

h =

x =

y = h * x =

M+1

L

L M

Fig. 4.1.1 Relative lengths of filter, input, and output blocks.

−(L− 1)≤m− n ≤ 0

and adding n to all sides

n− L+ 1 ≤m ≤ n (4.1.14)

Thus, m must satisfy simultaneously the inequalities:

0 ≤m ≤M
n− L+ 1 ≤m ≤ n

It follows that m must be greater than the maximum of the two left-hand sides and
less than the minimum of the two right-hand sides, that is,

max(0, n− L+ 1)≤m ≤ min(n,M) (4.1.15)

Therefore, in the case of an order-M FIR filter and a length-L input, the direct form
of convolution is given as follows:

y(n)=
min(n,M)∑

m=max(0,n−L+1)
h(m)x(n−m) (direct form) (4.1.16)
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for n = 0,1, . . . , L+M− 1. Sometimes, we will indicate this convolutional operation by
the compact notation:

y = h ∗ x

As an example, consider the case of an order-3 filter and a length-5 input signal. The
filter, input, and output blocks are

h = [h0, h1, h2, h3]

x = [x0, x1, x2, x3, x4]

y = h ∗ x = [y0, y1, y2, y3, y4, y5, y6, y7]

The output block has length Ly = L +M = 5 + 3 = 8 and is indexed as 0 ≤ n ≤ 7.
The convolutional equation (4.1.16) becomes:

yn =
min(n,3)∑

m=max(0,n−4)
hmxn−m, n = 0,1, . . . ,7

For n = 0,1,2, . . . ,7, the summation index m takes on the values:

max(0,0 − 4)≤m ≤ min(0,3) ⇒ m = 0

max(0,1 − 4)≤m ≤ min(1,3) ⇒ m = 0,1

max(0,2 − 4)≤m ≤ min(2,3) ⇒ m = 0,1,2

max(0,3 − 4)≤m ≤ min(3,3) ⇒ m = 0,1,2,3

max(0,4 − 4)≤m ≤ min(4,3) ⇒ m = 0,1,2,3

max(0,5 − 4)≤m ≤ min(5,3) ⇒ m = 1,2,3

max(0,6 − 4)≤m ≤ min(6,3) ⇒ m = 2,3

max(0,7 − 4)≤m ≤ min(7,3) ⇒ m = 3

(4.1.17)

So, for example, at n = 5 the output y5 will be given by

y5 =
∑

m=1,2,3
hmx5−m = h1x4 + h2x3 + h3x2

Using the values in Eq. (4.1.17), we find all the output samples:
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y0 = h0x0

y1 = h0x1 + h1x0

y2 = h0x2 + h1x1 + h2x0

y3 = h0x3 + h1x2 + h2x1 + h3x0

y4 = h0x4 + h1x3 + h2x2 + h3x1

y5 = h1x4 + h2x3 + h3x2

y6 = h2x4 + h3x3

y7 = h3x4

(4.1.18)

4.1.3 Convolution Table

Note how each output yn in Eq. (4.1.18) is the sum of all possible products hixj with
i + j = n. This leads directly to the convolution table of Eq. (4.1.5). For example, y5 is
obtained as

y5 =
∑
i, j

i+j=5

hixj = h1x4 + h2x3 + h3x2

The required computations can be arranged in a table [24] as shown in Fig. 4.1.2 with
the filter h written vertically and the input block x horizontally.†

x0 x1 x2 x3 x4

x0 x1 x2 x3 x4h0 h0 h0 h0 h0 h0

x0 x1 x2 x3 x4h1 h1 h1 h1 h1 h1

x1 x2 x3 x4h2 x0h2 h2 h2 h2 h2

x0 x1 x2 x3 x4h3 h3 h3 h3 h3 h3

j

i

Fig. 4.1.2 Convolution table.

The nth row of the table is filled by multiplying the x samples by the corresponding
hn sample for that row. Then, the table is “folded” along its antidiagonal lines. In the ij-
plane, the condition i+j = n represents thenth antidiagonal straight line. Therefore, the
entries within each antidiagonal strip are summed together to form the corresponding
output value. There are as many antidiagonal strips as output samples yn. For example,

†It can also be arranged the other way, with the filter horizontally and the input vertically.
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the n = 0 strip contains only h0x0, which is y0; the n = 1 strip contains h0x1 and h1x0,
whose sum is y1, and so on; finally the n = 7 strip contains only h3x4, which is y7.

The convolution table is convenient for quick calculation by hand because it displays
all required operations compactly.

Example 4.1.1: Calculate the convolution of the following filter and input signals:

h = [1,2,−1,1], x = [1,1,2,1,2,2,1,1]

Solution: The convolution table, with h arranged vertically and x horizontally, is

h\x 1 1 2 1 2 2 1 1

1 1 1 2 1 2 2 1 1
2 2 2 4 2 4 4 2 2

-1 -1 -1 -2 -1 -2 -2 -1 -1
1 1 1 2 1 2 2 1 1

Folding the table, we get

y = [1,3,3,5,3,7,4,3,3,0,1]

Note that there are Ly = L+M = 8 + 3 = 11 output samples. 	


4.1.4 LTI Form

Next, we discuss the LTI form of convolution. A more intuitive way to understand it is
in terms of the linearity and time-invariance properties of the filter. Consider again the
filter h = [h0, h1, h2, h3] in the example of Eq. (4.1.18). The input signal

x = [x0, x1, x2, x3, x4]

can be written as a linear combination of delayed impulses:

x = x0[1,0,0,0,0]

+ x1[0,1,0,0,0]

+ x2[0,0,1,0,0]

+ x3[0,0,0,1,0]

+ x4[0,0,0,0,1]

It can also be written analytically for all n as a sum of delta functions:

x(n)= x0δ(n)+x1δ(n− 1)+x2δ(n− 2)+x3δ(n− 3)+x4δ(n− 4)

The effect of the filter is to replace each delayed impulse by the corresponding delayed
impulse response, that is,
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y(n)= x0h(n)+x1h(n− 1)+x2h(n− 2)+x3h(n− 3)+x4h(n− 4)

We can represent the input and output signals as blocks:

x = x0[1,0,0,0,0]

+ x1[0,1,0,0,0]

+ x2[0,0,1,0,0]

+ x3[0,0,0,1,0]

+ x4[0,0,0,0,1]

H−→

y = x0[h0, h1, h2, h3,0,0,0,0]

+ x1[0, h0, h1, h2, h3,0,0,0]

+ x2[0,0, h0, h1, h2, h3,0,0]

+ x3[0,0,0, h0, h1, h2, h3,0]

+ x4[0,0,0,0, h0, h1, h2, h3]

The result is the same as Eq. (4.1.18). Indeed, the indicated linear combinations in the
right-hand side give:

y = [h0x0, x0h1 + x1h0, x0h2 + x1h1 + x2h0, . . . , x4h3]

= [y0, y1, y2, . . . , y7]

For computational purposes, the LTI form can be represented pictorially in a table
form, as shown in Fig. 4.1.3. The impulse response h is written horizontally, and the
input x vertically.

h0 h1 h2 h3 0 0 0 0

y0 y1 y2 y3 y4 y5 y6 y7

h0 h1 h2 h3 0 0 0 0x0 x0 x0 x0 x0

h0 h1 h2 h3 0 0 0x1 0 x1 x1 x1 x1

h0 h1 h2 h3 0 00 0x2 x2 x2 x2 x2

h0 h1 h2 h3 00 0 0x3 x3 x3 x3 x3

h0 h1 h2 h30 0 0 0x4 x4 x4 x4 x4

Fig. 4.1.3 LTI form of convolution.

The rows of the table correspond to the successive delays (right shifts) of the h
sequence—the mth row corresponds to delay by m units. Each row is scaled by the
corresponding input sample, that is, the mth row represents the term xmhn−m in the
LTI form. After the table is filled, the table entries are summed column-wise to obtain
the output samples y(n), which is equivalent to forming the sum:

y(n)=
∑
m
x(m)h(n−m)

Example 4.1.2: Calculate the convolution of Example 4.1.1 using the LTI form.
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Solution: The corresponding LTI table is in this case:

n 0 1 2 3 4 5 6 7 8 9 10

x\h 1 2 -1 1 partial output

1 1 2 -1 1 x0hn
1 1 2 -1 1 x1hn−1

2 2 4 -2 2 x2hn−2

1 1 2 -1 1 x3hn−3

2 2 4 -2 2 x4hn−4

2 2 4 -2 2 x5hn−5

1 1 2 -1 1 x6hn−6

1 1 2 -1 1 x7hn−7

yn 1 3 3 5 3 7 4 3 3 0 1
∑
m
xmhn−m

The output samples are obtained by summing the entries in each column. The result agrees
with Example 4.1.1. 	


The LTI form can also be written in a form similar to Eq. (4.1.16) by determining the
proper limits of summation. Arguing as in the direct form, or interchanging the roles of
h(n) and x(n) and correspondingly, the length quantities M and L − 1, we obtain the
following form:

y(n)=
min(n,L−1)∑

m=max(0,n−M)
x(m)h(n−m) (LTI form) (4.1.19)

for n = 0,1, . . . , L+M − 1.

4.1.5 Matrix Form

The convolutional equations (4.1.16) or (4.1.19) can also be written in the linear matrix
form:

y = Hx (4.1.20)

where H is built out of the filter’s impulse response h. Because the output vector y has
length L+M and the input vector x length L, the filter matrix H must be rectangular
with dimensions

Ly × Lx = (L+M)×L

To see this, consider again the example of Eq. (4.1.18). The output samples can be
arranged in the matrix form
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y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2

y3

y4

y5

y6

y7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 0 0 0
h1 h0 0 0 0
h2 h1 h0 0 0
h3 h2 h1 h0 0
0 h3 h2 h1 h0

0 0 h3 h2 h1

0 0 0 h3 h2

0 0 0 0 h3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
x0

x1

x2

x3

x4

⎤⎥⎥⎥⎥⎥⎥⎦ = Hx

Note that the columns of H are the successively delayed replicas of the impulse
response vector h. There are as many columns as input samples. Note also that H is
a so-called Toeplitz matrix, in the sense that it has the same entry along each diagonal.
The Toeplitz property is a direct consequence of the time invariance of the filter. Note
also that Eq. (4.1.20) is equivalent to the LTI table, transposed column-wise instead of
row-wise.

Example 4.1.3: Calculate the convolution of Example 4.1.1 using the matrix form.

Solution: Because Ly = 11 and Lx = 8, the filter matrix will be 11 × 8 dimensional. We have,

Hx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0

−1 2 1 0 0 0 0 0
1 −1 2 1 0 0 0 0
0 1 −1 2 1 0 0 0
0 0 1 −1 2 1 0 0
0 0 0 1 −1 2 1 0
0 0 0 0 1 −1 2 1
0 0 0 0 0 1 −1 2
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
2
1
2
2
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3
3
5
3
7
4
3
3
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
which agrees with Example 4.1.1. 	


There is also an alternative matrix form written as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2

y3

y4

y5

y6

y7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0 0 0 0
x1 x0 0 0
x2 x1 x0 0
x3 x2 x1 x0

x4 x3 x2 x1

0 x4 x3 x2

0 0 x4 x3

0 0 0 x4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
h0

h1

h2

h3

⎤⎥⎥⎥⎦ (4.1.21)

Instead of a filter matrix H acting on the input data vector x, it has a data matrix acting
on the filter vector h. It can be written compactly in the form:
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y = Xh (4.1.22)

where the data matrix X has dimension:

Ly × Lh = (L+M)×(M + 1)

The first column of X is the given input, padded withM zeros at the end to account
for the input-off transients. The remaining columns are the successively delayed (down-
shifted) versions of the first one. We will see in Section 4.2.2 that this form is essentially
equivalent to the sample-by-sample processing algorithm of the direct form realization
of the filter—with the nth row of X representing the filter’s internal states at time n.

Example 4.1.4: Calculate the convolution of Example 4.1.1 using the matrix form (4.1.22).

Solution: TheXmatrix will have dimension Ly×Lh = 11×4. Its first column is the input signal
padded with 3 zeros at the end:

Xh =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
1 1 0 0
2 1 1 0
1 2 1 1
2 1 2 1
2 2 1 2
1 2 2 1
1 1 2 2
0 1 1 2
0 0 1 1
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
1
2

−1
1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3
3
5
3
7
4
3
3
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
which agrees with Example 4.1.1. 	


Matrix representations of convolution are very useful in some applications, such as
image processing, and in more advanced DSP methods such as parametric spectrum
estimation and adaptive filtering.

4.1.6 Flip-and-Slide Form

The LTI form is also closely related to the popular flip-and-slide form of convolution,
in which the filter h(n) is flipped around or reversed and then slid over the input data
sequence. At each time instant, the output sample is obtained by computing the dot
product of the flipped filter vector h with the M+1 input samples aligned below it, as
shown in Fig. 4.1.4.

The input sequence is assumed to have been extended by padding M zeros to its
left and to its right. At time n = 0, the only nonzero contribution to the dot product
comes from h0 and x0 which are time aligned. It takes the filter M time units before
it is completely over the nonzero portion of the input sequence. The first M outputs
correspond to the input-on transient behavior of the filter. Then, for a period of time
M ≤ n ≤ L−1, the filter remains completely over the nonzero portion of the input data,
and the outputs are given by the form
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0 0 0 0 00 x0 x1 x2 xnxn-3 xn-2 xn-1

h0h1h2h3 h0h1h2h3 h0h1h2h3

. . . . . .

yny0 yL-1+M

xL-1

M zeros M zeros

Fig. 4.1.4 Flip-and-slide form of convolution.

yn = h0xn + h1xn−1 + · · · + hMxn−M
This period corresponds to the steady-state behavior of the filter. Finally, the last M
outputs beyond the end of the input data are the input-off transients, that is, they are
the outputs after the input has been turned off. They correspond to the time period
L ≤ n ≤ L − 1 +M. During this period the filter slides over the last M zeros padded
at the end of the input. The very last output is obtained when hM is aligned over xL−1,
which gives yL−1+M = hMxL−1.

One can also think of the filter block h as being stationary and the input block x
sliding underneath it in the opposite direction. This view leads to the sample-by-sample
processing algorithms for FIR filtering.

4.1.7 Transient and Steady-State Behavior

The transient and steady-state behavior of an FIR filter can also be understood using
the direct form of convolution, Eq. (4.1.16). For a length-L input and order-M filter, the
output time index n will be in the range:

0 ≤ n ≤ L− 1 +M

It can be divided into three subranges, depicted in Fig. 4.1.5, corresponding to the input-
on transients, steady state, and input-off transients:

0 ≤ n < M (input-on transients)

M ≤ n ≤ L− 1 (steady state)

L− 1 < n ≤ L− 1 +M (input-off transients)

These subranges affect differently the limits of the convolution summation equation
(4.1.16). As implied in Fig. 4.1.5, we assumed that the filter length is much shorter than
the length of the input, that is,M+1 < L orM < L−1, otherwise the steady-state range
defined above does not exist—the input is too short to exhibit any steady behavior.

For the input-on transients, the restriction 0 ≤ n < M < L− 1 implies the following
summation limits:
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input-on
transients steady state

input ends here

input-off
transients

M L-1 L-1+M

n

0

output y(n)

Fig. 4.1.5 Transient and steady-state filter outputs.

max(0, n− L+ 1)= 0, min(n,M)= n
For the steady-state range, M ≤ n ≤ L− 1, we have:

max(0, n− L+ 1)= 0, min(n,M)=M
And, for the input-off transients, M < L− 1 < n ≤ L− 1 +M, we have:

max(0, n− L+ 1)= n− L+ 1, min(n,M)=M
Therefore, Eq. (4.1.16) takes the following different forms depending on the value of

the output index n:

yn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
m=0

hmxn−m, if 0 ≤ n < M, (input-on)

M∑
m=0

hmxn−m, if M ≤ n ≤ L− 1, (steady state)

M∑
m=n−L+1

hmxn−m, if L− 1 < n ≤ L− 1 +M, (input-off)

During the input-on transient period, the number of terms in the sum is n+1 and is
increasing. During the steady-state period, the number of terms is equal to the number
of filter weights, M+1, and remains fixed. And during the input-off period, the number
of terms in the sum keeps decreasing down to one because the lower summation limit
is increasing.

In Eq. (4.1.18), the first three outputs {y0, y1, y2} are the input-on transients and the
number of terms keeps increasing to 4. The next two outputs {y3, y4} are the steady-
state outputs, and the last three outputs {y5, y6, y7} are the input-off transients having
a decreasing number of terms.

The I/O equation in the steady state was also discussed earlier in Eq. (3.4.1). It has
a fixed number of terms:



134 4. FIR FILTERING AND CONVOLUTION

y(n)=
M∑
m=0

h(m)x(n−m) (steady state) (4.1.23)

In a certain sense, it also incorporates the input-on and input-off transients and is
quoted often as the generic I/O equation for FIR filters. To understand why, consider
again the example of Eq. (4.1.18). In this case, we write

yn = h0xn + h1xn−1 + h2xn−2 + h3xn−3

If n is in the input-on range, that is, 0 ≤ n ≤ 2, not every term in the sum will contribute,
because xn is assumed causal. For example, if n = 1, we have

y1 = h0x1 + h1x1−1 + h2x1−2 + h3x1−3 = h0x1 + h1x0

When n is in the steady range, then all terms are contributing. And, when n is in the
input-off range, not all terms contribute. For example, if n = 6 we have

y6 = h0x6 + h1x6−1 + h2x6−2 + h3x6−3 = h2x4 + h3x3

because xn was assumed to have length 5, and therefore x6 = x5 = 0. With these caveats
in mind, it is correct to write Eq. (4.1.23) as the generic I/O filtering equation of an order-
M FIR filter. For programming purposes, one must of course work with Eq. (4.1.16) which
does not let the indices exceed the array bounds.

4.1.8 Convolution of Infinite Sequences

By taking appropriate limits of the direct form of convolution

yn =
min(n,M)∑

m=max(0,n−L+1)
hmxn−m

we can obtain the correct summation limits for the following three cases:

1. Infinite filter, finite input; i.e., M = ∞, L <∞.
2. Finite filter, infinite input; i.e., M <∞, L = ∞.
3. Infinite filter, infinite input; i.e., M = ∞, L = ∞.

In all three cases, the range of the output index Eq. (4.1.10) is infinite, 0 ≤ n < ∞,
that is, the output y(n) has infinite duration. When M → ∞, the upper limit in the
convolution sum becomes

min(n,M)= n

and when L→ ∞, the lower limit becomes

max(0, n− L+ 1)= 0

Therefore, we find in the three cases:
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yn =
n∑

m=max(0,n−L+1)
hmxn−m, if M = ∞, L <∞

yn =
min(n,M)∑
m=0

hmxn−m, if M <∞, L = ∞

yn =
n∑

m=0

hmxn−m, if M = ∞, L = ∞

When the filter is infinite, we define steady state as the limit of y(n) for large n.

Example 4.1.5: An IIR filter has impulse response h(n)= (0.75)nu(n). Using convolution,
derive closed-form expressions for the output signal y(n) when the input is:

(a) A unit step, x(n)= u(n).
(b) An alternating step, x(n)= (−1)nu(n).

(c) A square pulse of duration L = 25 samples, x(n)= u(n)−u(n− 25).

In each case, determine the steady-state response of the filter.

Solution: In case (a), because both the input and filter are causal and have infinite duration, we
use the formula:

y(n)=
n∑

m=0

h(m)x(n−m)=
n∑

m=0

(0.75)mu(m)u(n−m)

or, using the finite geometric series:

y(n)=
n∑

m=0

(0.75)m= 1 − (0.75)n+1

1 − 0.75
= 4 − 3(0.75)n

The steady-state response is the large-n limit of this formula, that is, as n→ ∞

y(n)→ 1

1 − 0.75
= 4

For case (b), we have

y(n) =
n∑

m=0

(0.75)m(−1)n−m= (−1)n
n∑

m=0

(−0.75)m

= (−1)n
1 − (−0.75)n+1

1 + 0.75
= 4

7
(−1)n+3

7
(0.75)n

where in the second term, we wrote (−1)n(−0.75)n= (0.75)n. In the large-n limit, n→ ∞,
we have

y(n)→ (−1)n
1

1 + 0.75
= 4

7
(−1)n
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We will see later that these steady-state responses correspond to special cases of the sinu-
soidal response of the filter (at frequencies ω = 0 and ω = π), and can be obtained very
simply in terms of the transfer function H(z) of the filter evaluated at z = 1 for part (a),
and z = −1 for part (b), that is,

y(n)→ H(1) and y(n)→ (−1)nH(−1)

where in this example,

H(z)= 1

1 − 0.75z−1
⇒ H(1)= 1

1 − 0.75
= 4, H(−1)= 1

1 + 0.75
= 4

7

In part (c), the input is finite with length L = 25. Therefore,

yn =
n∑

m=max(0,n−L+1)
hmxn−m =

n∑
m=max(0,n−24)

(0.75)m

We must distinguish two subranges in the output index: For 0 ≤ n ≤ 24, we have

yn =
n∑

m=0

(0.75)m= 1 − (0.75)n+1

1 − 0.75
= 4 − 3(0.75)n

and for 25 ≤ n <∞,

yn =
n∑

m=n−24

(0.75)m = (0.75)n−24 1 − (0.75)n−(n−24)+1

1 − 0.75

= (0.75)n−24 1 − (0.75)25

1 − 0.75

which corresponds to the input-off transient behavior. Because of the exponentially de-
caying nature of the impulse response, this filter acts like an RC-type integrator. During
the input-on period 0 ≤ n ≤ 24, the output “charges” up and during the input-off period
n ≥ 25, it “discharges” down. See Example 4.1.8 for a similar, but not quite identical,
example.

The output signals y(n) of the three cases (a-c) are shown below:
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Notice the steady-state behavior of the first two cases, and the input-off transients of the
third. 	


Example 4.1.6: We saw in Example 3.4.5 that a filter of the form hn = (0.75)nu(n) satisfies
the difference equation:

y(n)= 0.75y(n− 1)+x(n)

Verify that the expressions for y(n) obtained in the three cases (a-c) in Example 4.1.5 are
solutions of this difference equation, with causal initial conditions.

Solution: In case (a), we have x(n)= u(n) and the difference equation becomes, for n ≥ 0:

y(n)= 0.75y(n− 1)+1

For n = 0, it gives y(0)= 0.75y(−1)+1 = 0.75·0+1 = 1, which agrees with the expression
y(n)= 4 − 3(0.75)n evaluated at n = 0. For n ≥ 1, we have, starting with the right-hand
side:

0.75y(n− 1)+1 = 0.75
[
4 − 3(0.75)n−1

]+ 1 = 4 − 3(0.75)n= y(n)

In case (b), we have x(n)= (−1)nu(n) and the difference equation becomes for n ≥ 1:

0.75y(n− 1)+x(n)= 0.75
[

4

7
(−1)n−1+3

7
(0.75)n−1

]
+ (−1)n

= −0.75
4

7
(−1)n+3

7
(0.75)n+(−1)n= 4

7
(−1)n+3

7
(0.75)n= y(n)

In case (c), we have the difference equations

y(n)= 0.75y(n− 1)+1, for 0 ≤ n ≤ 24

and

y(n)= 0.75y(n− 1), for n ≥ 25
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The first value at n = 25 will be y(25)= 0.75y(24), and therefore, it requires knowledge of
the “initial” value y(24). If that is known, then the solution of the homogeneous equation
will be

y(n)= (0.75)n−24y(24), for n ≥ 25

But, y(24) is

y(24)= 1 − (0.75)25

1 − 0.75
= 4 − 3(0.75)24

as obtained from the solution of the first difference equation evaluated at the endpoint
n = 24. 	


The most general case that covers any type of filter and input signal— finite or
infinite, causal or non-causal—can be defined as follows. Assume the filter’s impulse
response h(n) is defined over the interval:

−M1 ≤ n ≤M2

0

n

M2-M1

h(n)

and the input signal x(n) over the interval:

−L1 ≤ n ≤ L2 − 1

0

n
L2-1-L1

x(n)

Any desired case can be obtained by taking appropriate limits in the quantities M1,
M2, L1, L2. We wish to determine the range of the output index n and the limits of
summation in the convolutional equation

y(n)=
∑
m
h(m)x(n−m)

The index m of h(m) and n −m of x(n −m) must lie within the given index ranges,
that is,

−M1 ≤m ≤M2 and − L1 ≤ n−m ≤ L2 − 1

From these it follows that the output index n must vary over the range:

−M1 − L1 ≤ n ≤ L2 +M2 − 1

Note that the endpoints of the output index are the sum of the corresponding end-
points for h(n) and x(n). For each n in this output range, the summation index must
be within the limits:

max(−M1, n− L2 + 1)≤m ≤ min(n+ L1,M2)
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Therefore, the I/O equation is in this case:

y(n)=
min(n+L1,M2)∑

m=max(−M1,n−L2+1)
h(m)x(n−m)

The results of Eq. (4.1.16) can be recovered as the special case corresponding toM1 = 0,
M2 =M, L1 = 0, L2 = L.

4.1.9 Programming Considerations

The following C routine conv.c implements the direct form of convolution of Eq. (4.1.16):

/* conv.c - convolution of x[n] with h[n], resulting in y[n] */

#include <stdlib.h> defines max( ) and min( )

void conv(M, h, L, x, y)
double *h, *x, *y; h, x, y = filter, input, output arrays

int M, L; M = filter order, L = input length

{
int n, m;

for (n = 0; n < L+M; n++)
for (y[n] = 0, m = max(0, n-L+1); m <= min(n, M); m++)

y[n] += h[m] * x[n-m];
}

The quantities h, x, y are arrays and must be declared or allocated to proper dimen-
sion in the main program; for example, using calloc:

double *h, *x, *y;
h = (double *) calloc(M+1, sizeof(double)); (M+1)–dimensional

x = (double *) calloc(L, sizeof(double)); L–dimensional

y = (double *) calloc(L+M, sizeof(double)); (L+M)–dimensional

In some C implementations,† the include-file stdlib.h contains the definitions of
the two macros max and min; otherwise they must be added in the above routine:

#define max(a,b) (((a) > (b)) ? (a) : (b))
#define min(a,b) (((a) < (b)) ? (a) : (b))

Next, we present a few simulation examples illustrating some of the ideas we dis-
cussed, such as input-on and input-off transients, steady state, linearity, and time invari-
ance. A quantity of interest in these examples will be the DC gain of a (stable) filter, that
is, the steady-state value of its output when the input remains constant for a long period
of time. For a unity input, it is given by the sum of the impulse response coefficients:

ydc =
∑
m
h(m) (4.1.24)

It will be derived later on.

†For example, Microsoft and Borland C.
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Example 4.1.7: Consider an integrator-like FIR filter of order M = 14 defined by the following
I/O convolutional equation:

y(n)= G[x(n)+x(n− 1)+x(n− 2)+· · · + x(n− 14)
]

where G is a convenient scale factor, taken to be G = 0.1. Such a filter accumulates (inte-
grates) the present and past 14 samples of the input signal. Comparing with Eq. (4.1.23),
we identify the impulse response of this filter:

hn =
{
G, for 0 ≤ n ≤ 14
0, otherwise

The DC gain will be:

ydc =
14∑
m=0

h(m)=
14∑
m=0

G = 15G = 1.5

To observe the steady-state response of this filter, as well as the input-on and input-off
transients, we consider a square-wave input signal xn of length L = 200 and period of
K = 50 samples. Such a signal may be generated by the simple for-loop:

for (n=0; n<L; n++)
if (n%K < K/2) n % K is the MOD operation

x[n] = 1;
else

x[n] = 0;

The output signal yn will have length Ly = L +M = 200 + 14 = 214 samples. It can be
obtained by a single call to the routine conv:

conv(M, h, L, x, y);

The figure below shows the output signal yn plotted together with the periodic input.

As the square wave periodically goes on and off, we can observe the input-on transient,
steady-state, and input-off transient behavior of the filter.

During each on-period of the square wave lasting for 25 samples, the filter exhibits an
input-on transient behavior which lasts for 14 samples; then it reaches steady state (equal
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to its DC gain) lasting only 25−14 = 11 samples, and then the square wave goes off causing
the filter to undergo its input-off transient behavior which lasts another 14 samples. The
filter’s output settles down to zero only after 25+14 = 39 samples and remains zero until
the onset of the next on-period of the square wave, and the whole process repeats. 	


Example 4.1.8: Consider the following two FIR filters, one defined in terms of its impulse re-
sponse and the other in terms of its transfer function:

(a) hn =
{
ban, for 0 ≤ n ≤M
0, otherwise

Take M = 14, a = 0.75, and b = 1 − a = 0.25. Its DC gain is almost unity:

ydc =
M∑
m=0

h(m)= b
M∑
m=0

am = (1 − a)·1 − aM+1

1 − a = 1 − aM+1

or, ydc = 1 − (0.75)15= 0.987.

(b) H(z)= 1

5
(1 − z−1)5= 0.2 − z−1 + 2z−2 − 2z−3 + z−4 − 0.2z−5

This filter hasM = 5 and acts as a 5-fold differentiator. Its impulse response can be
extracted from H(z):

h = [0.2, −1, 2, −2, 1, −0.2]= 1

5
[1, −5, 10, −10, 5, −1]

The factor 1/5 serves only as a convenient scale. Its DC gain is zero.

The square wave input of the previous example is fed into the two filters. The resulting
output signals, computed by two calls to conv, are shown in the figure below:

Filter (a) acts more like an RC-type integrator than an accumulator. The exponentially
decaying nature of the impulse response causes the charging/discharging type of output
as the input goes on and off.

Filter (b) acts as a differentiator, differentiating the constant portions (i.e., the on portions)
of the input to zero. The input-on and off transients have duration of M = 5, but the rest
of the output is zero. 	


Example 4.1.9: To demonstrate the concepts of impulse response, linearity, and time invari-
ance, consider an FIR filter with impulse response
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h(n)= (0.95)n, for 0 ≤ n ≤ 24

and an input signal

x(n)= δ(n)+2δ(n− 40)+2δ(n− 70)+δ(n− 80), n = 0,1, . . . ,120

consisting of four impulses of the indicated strengths occurring at the indicated time
instants. Note that the first two impulses are separated by more than the duration of the
filter, whereas the last two are separated by less.

Using the LTI form of convolution, we obtain the filter output by replacing each delayed
impulse by the delayed impulse response, that is,

y(n)= h(n)+2h(n− 40)+2h(n− 70)+h(n− 80) (4.1.25)

The input signal can be generated with the aid of the following C routine that implements
a delta function δ(n):

/* delta.c - delta function */

double delta(n)
int n;
{

if (n == 0)
return 1;

else
return 0;

}

The input signal can be generated by a for-loop of the form

for (n=0; n<=120; n++)
x[n] = delta(n) + 2*delta(n-40) + 2*delta(n-70) + delta(n-80);

The corresponding output signal will have length Ly = L+M = 121 + 24 = 145, and can
be generated by single call to conv:

conv(24, h, 121, x, y);

The output is shown below, together with the impulsive input.
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Each impulse of the input generates a copy of the impulse response at the output. The
outputs due to the first and second terms of Eq. (4.1.25) do not overlap, but the outputs
of the last two terms do. 	


4.1.10 Overlap-Add Block Convolution Method

In the above examples, the entire input signal was passed to conv as a single block of
samples. This is not feasible in those applications where the input is infinite or extremely
long. A practical approach is to divide the long input into contiguous non-overlapping
blocks of manageable length, say L samples, then filter each block and piece the output
blocks together to obtain the overall output, as shown in Fig. 4.1.6. Thus, processing is
carried out block by block.

block x0 block x1 block x2
. . .

. . .

. . .

ML

L

L

M

M

n=0 n=L n=2L n=3L

y0=

ytemp

ytemp

ytempy1=

y2=

x=

L L L

Fig. 4.1.6 Overlap-add block convolution method.

This is known as the overlap-add method of block convolution. Each of the input
sub-blocks x0, x1, x2, . . . , is convolved with the order-M filter h producing the outputs
blocks:

y0 = h ∗ x0

y1 = h ∗ x1

y2 = h ∗ x2

(4.1.26)

and so on. The resulting blocks are pieced together according to their absolute timing.
Block y0 starts at absolute time n = 0; block y1 starts at n = L because the correspond-
ing input block x1 starts then; block y2 starts at n = 2L, and so forth.

Because each output block is longer than the corresponding input block by M sam-
ples, the last M samples of each output block will overlap with the first M outputs of
the next block. Note that only the next sub-block will be involved if we assume that
2L > L+M, or, L > M. To get the correct output points, the overlapped portions must
be added together (hence the name, overlap-add).

Example 4.1.10: Compute the output of Example 4.1.1 using the overlap-add method of block
convolution. Use input blocks of length L = 3. Perform the required individual convolu-
tions of Eq. (4.1.26) using the convolution table.
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Solution: The input is divided into the following three contiguous blocks

x = [1,1,2︸ ︷︷ ︸
x0

,1,2,2︸ ︷︷ ︸
x1

,1,1,0︸ ︷︷ ︸
x2

]

where we padded an extra zero at the end of x2 to get a length-3 block. Convolving each
block separately with h = [1,2,−1,1] gives:

y0 = h ∗ x0 = [1,3,3,4,−1,2]

y1 = h ∗ x1 = [1,4,5,3,0,2]
y2 = h ∗ x2 = [1,3,1,0,1,0]

These convolutions can be done by separately folding the three convolution subtables:

block 0 block 1 block 2

h\x 1 1 2 1 2 2 1 1 0

1 1 1 2 1 2 2 1 1 0
2 2 2 4 2 4 4 2 2 0

-1 -1 -1 -2 -1 -2 -2 -1 -1 0
1 1 1 2 1 2 2 1 1 0

The three sub-blocks begin at the absolute times n = 0,3,6, respectively. It follows from
time invariance that the corresponding output blocks will also begin at the same absolute
times. Thus, aligning the output blocks according to their absolute timings and adding
them up gives the final result:

n 0 1 2 3 4 5 6 7 8 9 10

y0 1 3 3 4 -1 2
y1 1 4 5 3 0 2
y2 1 3 1 0 1

y 1 3 3 5 3 7 4 3 3 0 1

which agrees with Example 4.1.1. 	


The method can be implemented by the following algorithm, which reads the input
data in blocks x of length L and outputs the result also in blocks of length L:

for each length-L input block x do:
1. compute length-(L+M) output: y = h ∗ x
2. for i = 0,1, . . . ,M−1:

y(i)= y(i)+ytemp(i) (overlap)
ytemp(i)= y(i+ L) (save tail)

3. for i = 0,1, . . . , L−1:
output y(i)

It uses a temporary M-dimensional vector ytemp to store the last M samples of each
previous block. Before processing the first block, ytemp must be initialized to zero.
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After computing the length-(L+M) filter output y = h ∗ x, the first M samples of
y are added to the last M samples of the previous block held in ytemp. Then, the last
M samples of the currently computed block y are saved in ytemp for use in the next
iteration. Only the first L corrected output samples of y are sent to the output.

In practice this method is implemented efficiently by computing the individual block
convolutions using the FFT instead of time-domain convolution. For an FIR filter of
order M and an FFT of length N (which is a power of two), the length of each input
block x is chosen to be L = N − M. We will see later that the computational gain
of this fast convolution method versus the conventional time-domain “slow” method is
approximately

fast

slow
= log2N

M

For example, for the values N = 1024 = 210 and M = 100, we have log2N/M =
10/100 = 1/10, gaining a factor of 10 in computational speed. There is also an al-
ternative fast convolution method called the overlap-save method that has comparable
performance to the overlap-add method. We will also discuss it later.

The following routine blockcon.c is an implementation of the above algorithm. It
calls the routine conv to perform the convolution of each input block. In using this
routine, some care must be exercised in handling the very last input block, which in
general will have length less than L.

/* blockcon.c - block convolution by overlap-add method */

void conv();

void blockcon(M, h, L, x, y, ytemp)
double *h, *x, *y, *ytemp; ytemp is tail of previous block

int M, L; M = filter order, L = block size

{
int i;

conv(M, h, L, x, y); compute output block y

for (i=0; i<M; i++) {
y[i] += ytemp[i]; add tail of previous block

ytemp[i] = y[i+L]; update tail for next call

}
}

The quantities h, x, y, ytemp are arrays and must be allocated in the main program,
for example, using calloc:

double *h, *x, *y, *ytemp;
h = (double *) calloc(M+1, sizeof(double)); (M+1)–dimensional

x = (double *) calloc(L, sizeof(double)); L–dimensional

y = (double *) calloc(L+M, sizeof(double)); (L+M)–dimensional

ytemp = (double *) calloc(M, sizeof(double)); M–dimensional

To illustrate the usage of such a routine, suppose the input samples to be filtered
have been stored sequentially† in a data file x.dat. Suppose also that the computed
samples will be stored in the output file y.dat.

†Separated by white space, such as blanks, tabs, or newlines.
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The following program segment keeps reading samples from the file x.dat in blocks
of length L. For each such input block, it calls the routine blockcon to compute and
save the output block in the file y.dat. When the end-of-file of x.dat is encountered,
it determines the length of the last input block and calls blockcon one more time to
process the last block.

for (;;) { keep reading input blocks

for (N=0; N<L; N++)
if (fscanf(fpx, "%lf", x+N) == EOF) goto last;

blockcon(M, h, L, x, y, ytemp); process input block

for (i=0; i<L; i++) write output block

fprintf(fpy, "%lf\n", y[i]);
}

last:
blockcon(M, h, N, x, y, ytemp); last block has N ≤ L

for (i=0; i<N+M; i++) last output block

fprintf(fpy, "%lf\n", y[i]);

Note that x+N stands for the address of x[N], that is, &x[N]. The function fscanf returns
EOF upon encountering the end of file x.dat. The last processed block has lengthN ≤ L.
The entire last output block of length (N+M) is written into the output file. The lastM
output samples represent the input-off transients. The file pointers, fpx, fpy, must be
declared and defined in the main program by:

FILE *fpx, *fpy; file pointers

fpx = fopen("x.dat", "r"); open for read

fpy = fopen("y.dat", "w"); open for write

4.2 Sample Processing Methods

Convolution methods process the input signal on a block-by-block basis. Here, we dis-
cuss alternative formulations of FIR filters that operate on a sample-by-sample basis.
As we mentioned earlier, such methods are convenient for real-time applications that
require the continuous processing of the incoming input.

Sample processing algorithms are closely related to block diagram realizations of the
I/O filtering equations. A block diagram is a mechanization of the I/O equation in terms
of the three basic building blocks: adders, multipliers, and delays, shown in Fig. 4.2.1.

In general, a filter may have several equivalent block diagram realizations depend-
ing on how its I/O equation is organized. Each realization gives rise to its own sample
processing algorithm. Some standard filter realizations are the direct, canonical, and
cascade forms and the corresponding transposed versions. We will discuss them sys-
tematically in a later chapter. In this chapter, we consider only the direct form for FIR
filters; its transpose is discussed in the Problems.

4.2.1 Pure Delays

As an introduction to the concept of a sample processing algorithm, consider the case
of a single delay, shown in Fig. 4.2.2. It is an LTI system with I/O relationship:
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x(n) x(n-1)z-1

x1(n)

x2(n)

x1(n) + x2(n)

x(n)
a

x(n)a

Fig. 4.2.1 Basic building blocks of DSP systems.

y(n)= x(n− 1)

It can be thought of as a register holding the previous input sample x(n − 1). At
each time instant n, two steps must be carried out: (a) the current content x(n − 1)
is clocked out to the output and (b) the current input x(n) gets stored in the register,
where it will be held for one sampling instant and become the output at the next time
n+1.

x(n)
w1(n)

y(n)z-1

Fig. 4.2.2 Single delay.

We can think of the content of the delay register at time n as the internal state of
the filter. Let us denote it by

w1(n)= x(n− 1) (internal state at time n)

Thus, the output is y(n)= w1(n). Replacing n by n+1, we obtain the content of the
register at the next time instant,

w1(n+ 1)= x(n) (internal state at time n+1)

The two processing steps (a) and (b) can be expressed then as follows:

y(n)= w1(n)

w1(n+ 1)= x(n)
(4.2.1)

In words, at time n the content of the register w1(n) becomes the output and the
input x(n) is saved and becomes the new content. At time n+1, the two steps are
repeated:
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y(n+ 1)= w1(n+ 1)

w1(n+ 2)= x(n+ 1)

The internal state w1(n + 1) is available from the previous time step when it was
saved; the current input x(n+1) is also available and gets saved for the next time step.
Before processing the first input sample, the delay register is typically initialized to zero,
that is, at time n = 0 it contains

w1(0)= 0

The following table shows the values of the input x(n), the internal state w1(n), and
the output y(n) at different time instants:

n x(n) w1(n) y(n)
0 x0 0 0
1 x1 x0 x0

2 x2 x1 x1

3 x3 x2 x2

4 x4 x3 x3

...
...

...
...

Thus, the input sequence gets delayed as a whole by one time unit:

[x0, x1, x2, x3, . . . ]
H−→ [0, x0, x1, x2, x3, . . . ]

The two steps of Eq. (4.2.1), representing the output and the state updating, can be
expressed in the following algorithmic form, which applies repetitively to every input
sample:

for each input sample x do:
y :=w1

w1 :=x

This is the sample-by-sample processing algorithm implementing a single delay.
Consider next a double delay, depicted in Fig. 4.2.3. Its I/O equation is

y(n)= x(n− 2)

x(n)
w1(n) w2(n)

y(n)z-1 z-1

Fig. 4.2.3 Double delay.

Now, there are two registers holding the previous two input samples. Denoting the
contents of the two registers by w1(n) and w2(n), we note that w1(n) is the delayed
version of the input x(n), and w2(n) the delayed version of w1(n):
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w2(n)= w1(n− 1)

w1(n)= x(n− 1)
(4.2.2)

Therefore, w2(n) is the doubly delayed version of x(n):

w2(n)= w1(n− 1)= x((n− 1)−1)= x(n− 2)

At time n, w2(n) becomes the output, y(n)= w2(n), and the contents of the two
registers are updated in preparation for the next time step, that is,

w2(n+ 1)= w1(n)

w1(n+ 1)= x(n)
In words, the next contents of the two registers are obtained by shifting w1 into w2,

and x into w1. In summary, the I/O equations describing the double delay are:

y(n)= w2(n)

w2(n+ 1)= w1(n)

w1(n+ 1)= x(n)

The repetitive sample processing algorithm describing these equations is:

for each input sample x do:
y :=w2

w2 :=w1

w1 :=x

Note, that the order of updating the internal states is important: the last delay must
always be updated first. Once the current value ofw1 has been shifted intow2, the value
of w1 may be overwritten by x.

The following table shows the values of x(n), the contents of the two registers
w1(n), w2(n), and the output y(n) at different times (with zero initial values w1(0)=
w2(0)= 0):

n x(n) w1(n) w2(n) y(n)
0 x0 0 0 0
1 x1 x0 0 0
2 x2 x1 x0 x0

3 x3 x2 x1 x1

4 x4 x3 x2 x2

5 x5 x4 x3 x3

...
...

...
...

...

A triple delay, shown in Fig. 4.2.4, can be described in a similar fashion. Let w1(n),
w2(n), and w3(n) denote the contents of the three registers at time n. They are suc-
cessive delays of each other, that is,
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w3(n)= w2(n− 1)

w2(n)= w1(n− 1)

w1(n)= x(n− 1)

x(n)
w1(n) w2(n) w3(n)

y(n)z-1 z-1 z-1

Fig. 4.2.4 Triple delay.

Thus, w3(n)= w2(n− 1)= w1(n− 2)= x(n− 3). Their updates to time n+1 are:

w3(n+ 1)= w2(n)

w2(n+ 1)= w1(n)

w1(n+ 1)= x(n)
(4.2.3)

Therefore, the I/O equations for a triple delay will be:

y(n)= w3(n)

w3(n+ 1)= w2(n)

w2(n+ 1)= w1(n)

w1(n+ 1)= x(n)

And the corresponding sample processing algorithm:

for each input sample x do:
y :=w3

w3 :=w2

w2 :=w1

w1 :=x

In general, for a delay by D units of time, shown in Fig. 4.2.5, the contents of the D
registers are denoted by wi(n), i = 1,2, . . . ,D. For convenience, the input is denoted
by w0(n). The output of each register is the delayed version of its input:

wi(n)= wi−1(n− 1), for i = 1,2, . . . ,D (4.2.4)

At time n, the content of the Dth register is output, y(n)= wD(n). Then, in prepa-
ration for the next time step, the content of the wD−1 register is shifted into wD, the
content of wD−2 is shifted into wD−1, and so on, and finally the current input w0 is
shifted into w1. These updates may be expressed by replacing n by n+1 in Eq. (4.2.4)
and reversing the order of the equations. The complete set of I/O equations describing
a D-delay becomes:
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w0(n)w0(n) w1(n) w2(n) wD(n)wD-1(n)wD(n)
. . .z-D z-1 z-1z-1

Fig. 4.2.5 D-unit delay.

y(n)= wD(n)
w0(n)= x(n)
wi(n+ 1)= wi−1(n), i = D,D−1, . . . ,2,1

The corresponding sample processing algorithm will be:

for each input sample x do:
y :=wD
w0 :=x
for i = D,D−1, . . . ,1 do:

wi :=wi−1

or, more simply:

for each input sample w0 do:
for i = D,D−1, . . . ,1 do:

wi :=wi−1

The following C routine delay.c is an implementation of this algorithm:

/* delay.c - delay by D time samples */

void delay(D, w) w[0] = input, w[D] = output

int D;
double *w;
{

int i;

for (i=D; i>=1; i--) reverse-order updating

w[i] = w[i-1];

}

The array w has dimension D+1 and must be allocated in the main program by a state-
ment of the form:

double *w;
w = (double *) calloc(D+1, sizeof(double)); (D+1)–dimensional

The array w serves both as input and output of the routine. Upon exit, w is the shifted
version of itself. Prior to the first call of this routine, the array w must be initialized to
zero. This is indirectly accomplished by calloc. The usage of the routine is illustrated
by the following program segment, which implements the I/O equation y(n)= x(n−D),
for n = 0,1, . . . ,Ntot − 1:
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for (n = 0; n < Ntot; n++) {
y[n] = w[D]; write output

w[0] = x[n]; read input

delay(D, w); update delay line

}

We will use this routine to implement FIR and IIR filters and also, in cascaded and
feedback arrangements, to implement several digital audio effects, such as digital reverb,
and to implement periodic waveform generators.

When used in feedback configurations, we note that its output w[D] is available even
before the input w[0]. This is illustrated to some degree by the above program segment,
where the output is returned before the input is read into w[0]. However, the current
input w[0] must be known before the delay line can be updated by the call to delay.

4.2.2 FIR Filtering in Direct Form

We saw in Eq. (4.1.23) that the direct form I/O convolutional equation for an FIR filter
of order M is given by

y(n)= h0x(n)+h1x(n− 1)+· · · + hMx(n−M) (4.2.5)

with impulse response h = [h0, h1, . . . , hM]. For example, a third-order filter

h = [h0, h1, h2, h3]

will have I/O equation:

y(n)= h0x(n)+h1x(n− 1)+h2x(n− 2)+h3x(n− 3) (4.2.6)

In order to mechanize this equation, we need to use an adder to accumulate the sum
of products in the right-hand side; we need multipliers to implement the multiplications
by the filter weights; and, we need delays to implement the delayed terms x(n − 1),
x(n− 2), x(n− 3).

Fig. 4.2.6 shows a mechanization of Eq. (4.2.6). It is called a direct form realization
because it directly realizes all the terms in the right-hand side. The four inputs to the
adder are the four terms of the right-hand side of Eq. (4.2.6), and the output of the adder
is the left-hand side.

The three delays are equivalent to the triple delay of Fig. 4.2.4, and therefore, we can
introduce the same set of three internal states w1(n), w2(n), w3(n) to describe the
contents of the three registers. Thus, we define:

w0(n)= x(n)
w1(n)= x(n− 1)= w0(n− 1)

w2(n)= x(n− 2)= w1(n− 1)

w3(n)= x(n− 3)= w2(n− 1)

(4.2.7)

so that each is a delayed version of the previous one. With these definitions, we can
rewrite Eq. (4.2.6) in the form:
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x(n) y(n)

x(n-1)

x(n-2)

x(n-3)

z-1

z-1

z-1

h0

h1

h2

h3

Fig. 4.2.6 Direct form realization of third-order filter.

y(n)= h0w0(n)+h1w1(n)+h2w2(n)+h3w3(n) (4.2.8)

Fig. 4.2.7 shows the realization in this case. The advantage of this equation is that
all the terms in the right-hand side refer to the same time instant n. All are available for
processing at time n; that is, w0(n) is the current input x(n), and wi(n), i = 1,2,3 are
the current contents of the delay registers.

x(n) y(n)
w0(n)

w1(n)

w2(n)

w3(n)

z-1

z-1

z-1

h0

h1

h2

h3

Fig. 4.2.7 Direct form with internal states.

The set of delays is sometimes called a tapped delay line because the individual
outputs of each delay are tapped out and diverted into the filter multipliers.

Once the current output is computed, the delay registers may be updated to hold the
values that will be needed at the next time instant n+1. The updating is implemented
via Eq. (4.2.4), that is, by shifting from the bottom up, w2 into w3, w1 into w2, and w0

into w1. Thus, the I/O equation (4.2.6) is equivalent to the system:
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w0(n)= x(n)
y(n)= h0w0(n)+h1w1(n)+h2w2(n)+h3w3(n)

w3(n+ 1)= w2(n)

w2(n+ 1)= w1(n)

w1(n+ 1)= w0(n)

(4.2.9)

It can be mechanized by the following sample-by-sample processing algorithm:†

for each input sample x do:
w0 = x
y = h0w0 + h1w1 + h2w2 + h3w3

w3 = w2

w2 = w1

w1 = w0

(4.2.10)

It is shown in Fig. 4.2.8. Thus, each input sample x is subjected to this algorithm
and transformed to the output sample y. Before processing the first input sample, the
internal states w1, w2, and w3 must be initialized to zero.

x y
w0

w1

w2

w3

z-1

z-1

z-1

h0

h1

h2

h3

Fig. 4.2.8 Block diagram form of sample processing algorithm.

The input-off and input-on transient behavior of an FIR filter can be understood in
terms of the block diagram realization. Initially, the delay registers are cleared to zero.
During the input-on transients, the three delays gradually fill up with input samples. It
takes M = 3 time units for that to happen. Similarly when the input turns off, it takes
the last input sample M time units to propagate through the delays, that is, it takes M
time units for the delays to empty out their contents and be filled with zeros again.

The following table shows the contents of the delays at different times and the cor-
responding outputs for the length-5 input given in Eq. (4.1.18):

†For notational simplicity, we used = instead of :=.
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n x w0 w1 w2 w3 y = h0w0 + h1w1 + h2w2 + h3w3

0 x0 x0 0 0 0 h0x0

1 x1 x1 x0 0 0 h0x1 + h1x0

2 x2 x2 x1 x0 0 h0x2 + h1x1 + h2x0

3 x3 x3 x2 x1 x0 h0x3 + h1x2 + h2x1 + h3x0

4 x4 x4 x3 x2 x1 h0x4 + h1x3 + h2x2 + h3x1

5 0 0 x4 x3 x2 h1x4 + h2x3 + h3x2

6 0 0 0 x4 x3 h2x4 + h3x3

7 0 0 0 0 x4 h3x4

(4.2.11)

Each column of w’s is the delayed (down-shifted) version of the previous one. Each
row ofw’s is the delayed (right-shifted) version of the previous row. The computed out-
puts agree with Eq. (4.1.18). The three zeros padded at the end of the input correspond
to the input-off transients. Note also that the four w columns are essentially the data
matrix X of Eq. (4.1.21).

More generally, for an Mth order filter, we may define w0(n)= x(n) and for i =
1,2, . . . ,M

wi(n)= x(n− i) (4.2.12)

They satisfy

wi(n)= wi−1(n− 1), i = 1,2, . . . ,M (4.2.13)

Indeed, wi−1(n − 1)= x
(
(n − 1)−(i − 1)

) = x(n − i)= wi(n). Therefore, at the next
time instant:

wi(n+ 1)= wi−1(n), i = 1,2, . . . ,M

It follows that Eq. (4.2.5) can be written as

y(n)= h0w0(n)+h1w1(n)+· · · + hMwM(n)
Thus, the FIR filter Eq. (4.2.5) is described by the following system:

w0(n)= x(n)
y(n)= h0w0(n)+h1w1(n)+· · · + hMwM(n)
wi(n+ 1)= wi−1(n), for i =M,M−1, . . . ,1

(4.2.14)

with corresponding sample processing algorithm:

for each input sample x do:
w0 = x
y = h0w0 + h1w1 + · · · + hMwM
for i =M,M−1, . . . ,1 do:

wi = wi−1

(4.2.15)

Fig. 4.2.9 shows the corresponding direct form realization.



156 4. FIR FILTERING AND CONVOLUTION

y(n)
w0(n)

x(n)

w1(n)

w2(n)

wM(n)

z
-1

z
-1

z
-1

h0

h1

h2

hM

...

......

Fig. 4.2.9 Direct form realization of Mth order filter.

Example 4.2.1: Determine the sample processing algorithm of Example 4.1.1, which had filter
and input

h = [1,2,−1,1], x = [1,1,2,1,2,2,1,1]

Then, using the algorithm compute the corresponding output, including the input-off tran-
sients.

Solution: The I/O equation of this filter is

y(n)= x(n)+2x(n− 1)−x(n− 2)+x(n− 3)

Introducing the internal states wi(n)= x(n− i), i = 1,2,3, and setting w0(n)= x(n), we
obtain the following system describing the output equation and the state updating:

w0(n)= x(n)
y(n)= w0(n)+2w1(n)−w2(n)+w3(n)

w3(n+ 1)= w2(n)

w2(n+ 1)= w1(n)

w1(n+ 1)= w0(n)

The corresponding block diagram realization and sample processing algorithm are shown
below:
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x y
w0

z-1

z-1

z-1

w1

w2

w3

2

-1

for each input sample x do:
w0 = x
y = w0 + 2w1 −w2 +w3

w3 = w2

w2 = w1

w1 = w0

The sample processing algorithm generates the following output samples:

n x w0 w1 w2 w3 y = w0 + 2w1 −w2 +w3

0 1 1 0 0 0 1
1 1 1 1 0 0 3
2 2 2 1 1 0 3
3 1 1 2 1 1 5
4 2 2 1 2 1 3
5 2 2 2 1 2 7
6 1 1 2 2 1 4
7 1 1 1 2 2 3
8 0 0 1 1 2 3
9 0 0 0 1 1 0
10 0 0 0 0 1 1

The first three outputs correspond to the input-on transients (the internal delay registers
are still filling up). The period 3 ≤ n ≤ 7 corresponds to steady state (all delays are filled).
The last three outputs—in general, the last M outputs for an Mth order FIR filter—are the
input-off (x = 0) transients (the delays gradually empty out their contents). 	


Example 4.2.2: To illustrate the repetitive nature of the sample processing algorithm, we present
a small C program that implements the previous example.

/* firexmpl.c - Example of FIR sample processing algorithm */

#include <stdio.h>
#include <stdlib.h> declares calloc

double x[8] = {1,1,2,1,2,2,1,1}; input signal

double filter();

void main()
{

int n;
double y, *w;

w = (double *) calloc(4, sizeof(double)); allocate/initialize w

for (n=0; n<8; n++) { on-transients & steady state

y = filter(x[n], w); nth output sample
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printf("%lf\n", y);
}

for (n=8; n<11; n++) { input-off transients

y = filter(0.0, w); called with x = 0

printf("%lf\n", y);
}

} end of main

double filter(x, w) Usage: y = filter(x, w);

double x, *w;
{

double y;

w[0] = x; read input sample

y = w[0] + 2 * w[1] - w[2] + w[3]; compute output sample

w[3] = w[2]; update internal states

w[2] = w[1];
w[1] = w[0];

return y;
}

The sample processing algorithm is implemented by the routine filter whose input is
the current input sample and the internal states w. At each call, it returns the computed
output sample and the updated state vector w. The routine filter is called 8 times (i.e.,
the length of the input) producing the first 8 outputs. Then, it is called 3 more times
(M = 3), to generate the input-off transients. The total number of output samples is
Ly = L+M = 11. 	


Example 4.2.3: Draw the direct form realization and write the corresponding sample process-
ing algorithm of the FIR filter defined by the I/O equation:

y(n)= x(n)−x(n− 4)

For the input x = [1,1,2,1,2,2,1,1], compute the output using the sample processing
algorithm.

Solution: Because the filter has order M = 4, we define the following internal states:

w0(n) = x(n)
w1(n) = x(n− 1)= w0(n− 1)

w2(n) = x(n− 2)= w1(n− 1)

w3(n) = x(n− 3)= w2(n− 1)

w4(n) = x(n− 4)= w3(n− 1)

Then, the given I/O equation together with the state-updating equations will read:



4.2. SAMPLE PROCESSING METHODS 159

w0(n)= x(n)
y(n)= w0(n)−w4(n)

and

w4(n+ 1) = w3(n)

w3(n+ 1) = w2(n)

w2(n+ 1) = w1(n)

w1(n+ 1) = w0(n)

This leads to the following sample processing algorithm and block diagram realization:

x y
w0

z-1

z-1

z-1

z-1

w1

w2

w3

w4
-1

for each input sample x do:
w0 = x
y = w0 −w4

w4 = w3

w3 = w2

w2 = w1

w1 = w0

The following table shows the computation of the output.

n x w0 w1 w2 w3 w4 y = w0 −w4

0 1 1 0 0 0 0 1

1 1 1 1 0 0 0 1

2 2 2 1 1 0 0 2

3 1 1 2 1 1 0 1

4 2 2 1 2 1 1 1

5 2 2 2 1 2 1 1

6 1 1 2 2 1 2 −1

7 1 1 1 2 2 1 0

8 0 0 1 1 2 2 −2

9 0 0 0 1 1 2 −2

10 0 0 0 0 1 1 −1

11 0 0 0 0 0 1 −1

The 4 zeros padded at the end of the input correspond to the input-off transients, during
which the contents of the delays gradually become empty. A similar program as the above
firexmpl.c can be used to implement this example. The function filter will be in this
case:

double filter(x, w) Usage: y = filter(x, w);

double x, *w;
{

double y;
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w[0] = x; read input sample

y = w[0] - w[4]; compute output sample

w[4] = w[3]; update internal states

w[3] = w[2];
w[2] = w[1];
w[1] = w[0];

return y;
}

where w must be allocated as a 5-dimensional array in the main program. 	


4.2.3 Programming Considerations

The following C routine fir.c is an implementation of the sample processing algorithm
Eq. (4.2.15):

/* fir.c - FIR filter in direct form */

double fir(M, h, w, x) Usage: y = fir(M, h, w, x);

double *h, *w, x; h = filter, w = state, x = input sample

int M; M = filter order

{
int i;
double y; output sample

w[0] = x; read current input sample x

for (y=0, i=0; i<=M; i++)
y += h[i] * w[i]; compute current output sample y

for (i=M; i>=1; i--) update states for next call

w[i] = w[i-1]; done in reverse order

return y;
}

It is the generalization of the example routine filter to the Mth order case. It is
patterned after the Fortran and C routines in [28,29]. The routine returns the computed
output sample into a double, so that its typical usage will be of the form:

y = fir(M, h, w, x);

The filter vector h and internal state w are (M+1)-dimensional arrays, which must
be defined and allocated in the main program by the statements:

double *h, *w;
h = (double *) calloc(M+1, sizeof(double)); (M+1)–dimensional

w = (double *) calloc(M+1, sizeof(double)); (M+1)–dimensional

Note that calloc initializes w to zero. The following program segment illustrates the
usage of the routine. The input samples are read one at a time from an input file x.dat,
and the output samples are written one at a time into the output file y.dat, as they are
computed.
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FILE *fpx, *fpy;
fpx = fopen("x.dat", "r"); input file

fpy = fopen("y.dat", "w"); output file

while(fscanf(fpx, "%lf", &x) != EOF) { read x from x.dat

y = fir(M, h, w, x); process x to get y
fprintf(fpy, "%lf\n", y); write y into y.dat

}

for (i=0; i<M; i++) { M input-off transients

y = fir(M, h, w, 0.0); with x = 0

fprintf(fpy, "%lf\n", y);
}

Filtering stops as soon as the end of file of x.dat is detected and then the input-off
transients are computed by making M additional calls to fir with zero input.

The fir routine performs three basic operations: (i) reading the current input sam-
ple, (ii) computing the current output by the dot product of the filter vector with the state
vector, and (iii) updating the delay line containing the states. The dot product operation
is defined by

y = h0w0 + h1w1 + · · · + hMwM = [h0, h1, . . . , hM]

⎡⎢⎢⎢⎢⎢⎣
w0

w1

...
wM

⎤⎥⎥⎥⎥⎥⎦ = hTw

and can be implemented by the following routine dot.c:

/* dot.c - dot product of two length-(M+1) vectors */

double dot(M, h, w) Usage: y = dot(M, h, w);

double *h, *w; h = filter vector, w = state vector

int M; M = filter order

{
int i;
double y;

for (y=0, i=0; i<=M; i++) compute dot product

y += h[i] * w[i];

return y;
}

The updating of the delay line can be implemented by the routine delay given earlier.
Therefore, a second version of fir, which separates these three conceptual parts, is as
follows:

/* fir2.c - FIR filter in direct form */

double dot();
void delay();

double fir2(M, h, w, x) Usage: y = fir2(M, h, w, x);

double *h, *w, x; h = filter, w = state, x = input
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int M; M = filter order

{
double y;

w[0] = x; read input

y = dot(M, h, w); compute output

delay(M, w); update states

return y;
}

It has the same usage as fir. (See Appendix D for the MATLAB version fir.m.) The
sample processing algorithm Eq. (4.2.15) reads in this case:

for each input sample x do:
w0 = x
y = dot(M,h,w)
delay(M,w)

(4.2.16)

4.2.4 Hardware Realizations and Circular Buffers

The FIR filtering algorithms of Eqs. (4.2.15) or (4.2.16) can be realized in hardware using
DSP chips or special purpose dedicated hardware.

Modern programmable DSP chips, such as the Texas Instruments TMS320C25, C30,
or C50, the Motorola DSP56001, or DSP96002, the AT&T DSP16A or DSP32C, and the
Analog Devices ADSP-2101 or ADSP-21020, have architectures that are optimized for
the specialized repetitive nature of sample-by-sample processing algorithms. They ex-
cel at performing the multiplications and accumulations required in computing the dot
product y = hTw, and at performing the memory moves required in updating the con-
tents of the delay-line registers.

A generic DSP chip is shown in Fig. 4.2.10. The tapped delay-line registers wi are
sequential RAM locations on board the chip and the filter weights hi reside either in
RAM or ROM. In addition, there is program RAM or ROM on board (not shown in the
figure) to hold the instructions for the filtering algorithm. A typical DSP chip may have
data wordlengths of 16–32 bits, several double-precision accumulators, and on-board
RAM and ROM of 512 to 4k words.

The workhorse of the DSP chip is an on-board multiplier accumulator (MAC), which
implements the dot product multiplications/accumulations, that is, the operations:

y :=y + hiwi
State-of-the-art DSP chips can perform this type of MAC operation in one instruction

cycle in about:

Tinstr = 30–80 nanoseconds (4.2.17)
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Assuming a MAC operation counts for two floating point operations (one multipli-
cation and one addition), this corresponds to a numerical computation speed of 25–67
million floating point operations per second (MFLOPS).

For an order-M filter havingM+1 taps, one would require about (M+1)Tinstr sec to
calculate the required dot product. To this time, one must add the overhead required
for shifting the input sample from the input port to the register w0, the time required
to update the delay-line registers, and the time it takes to send y to the output port.

The goal of modern DSP architectures has been to try to minimize this overhead as
much as possible. To see the type of computational efficiencies built into DSP chips, let
us rewrite the sample processing algorithm for a third-order filter given in Eq. (4.2.10)
in the following equivalent form:

for each input sample x do:
w0 :=x
y :=h3w3

w3 :=w2

y :=y + h2w2

w2 :=w1

y :=y + h1w1

w1 :=w0

y :=y + h0w0

h0 w0 y

y

y

x
h1 w1

h2 w2

h3

hi

w3

wi

hiwi

MAC

ROM or RAM RAM
OUTIN

BUS

Fig. 4.2.10 Typical DSP chip.

This works because once the multiplication h3w3 is performed, the current content
of w3 is no longer needed and can be updated to the next time instant. Similarly, once
h2w2 has been accumulated into y, w2 may be updated, and so on. In general, for a
filter of order M, we can rewrite Eq. (4.2.15) in the form:
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for each input sample x do:
w0 :=x
y :=hMwM
for i =M−1, . . . ,1,0 do:

wi+1 :=wi
y :=y + hiwi

(4.2.18)

In earlier generations of DSP chips, the two operations:

wi+1 :=wi
y :=y + hiwi

were carried out with two instructions, one for the data shifting and the other for the
MAC operation. In modern DSP chips, the two operations can be carried out with a single
instruction, such as MACD of the TMS320C25.

Therefore, the total processing time for each input sample is about Tinstr per filter
tap, or, for an Mth order filter:

Tproc = (M + 1)Tinstr (4.2.19)

As discussed in Chapter 1, this imposes a maximum limit on the allowed sampling
rate for the application:

T ≥ Tproc ⇒ fs ≤ 1

Tproc
(4.2.20)

Example 4.2.4: What is the longest FIR filter that can be implemented with a 50 nsec per in-
struction DSP chip for digital audio applications?

Solution: We have from Eq. (4.2.19)

T = (M + 1)Tinstr ⇒ M + 1 = T
Tinstr

= 1

fsTinstr
= finstr

fs

where the instruction rate is finstr = 1/Tinstr = 20 million instructions per second (MIPS).
For digital audio at fs = 44.1 kHz, we find

M + 1 = finstr

fs
= 20 · 106

44.1 · 103
= 453 taps

This filter length is quite sufficient to implement several digital audio algorithms. 	


The following C routine fir3.c is yet a third version of the sample-by-sample pro-
cessing algorithm implementing Eq. (4.2.18). Its usage is the same as fir’s:

/* fir3.c - FIR filter emulating a DSP chip */

double fir3(M, h, w, x)
double *h, *w, x;
int M;
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{
int i;
double y;

w[0] = x; read input

for (y=h[M]*w[M], i=M-1; i>=0; i--) {
w[i+1] = w[i]; data shift instruction

y += h[i] * w[i]; MAC instruction

}

return y;
}

The sample processing algorithm (4.2.18) and the routine fir3 assume a linear
delay-line memory buffer for holding the internal states {w0,w1, . . . ,wM}. At each
time instant, the data in the delay line are shifted one memory location ahead. This
arrangement is used in some DSP processors, such as the TMS32020.

An alternative way to update the internal states is to use a circular delay-line buffer.
This is used, for example, by the Motorola DSP56001/96002, the Texas Instruments
TMS320C30–C50, and the Analog Devices ADSP2101–21020 processors. Instead of shift-
ing the data forward while holding the buffer addresses fixed, the data are kept fixed
and the addresses are shifted backwards in the circular buffer. The relative movement
of data versus addresses remains the same.

To understand this, consider first the conventional linear delay-line buffer case, but
wrap it around in a circle, as shown in Fig. 4.2.11 for the case M = 3.

w1 w1

w2 w2

w3 w3

w0 w0

xn-1

xn-1

xn-3

xn+1xn-2

xn-2

xn

xn

next time

shifted
data

p p

Fig. 4.2.11 Wrapped linear delay-line buffer.

Going from time n to n+1 involves shifting the content of each register counter-
clockwise into the next register. The addresses of the four registers {w0,w1,w2,w3}
remain the same, but now they hold the shifted data values, and the first register w0

receives the next input sample xn+1.
By contrast, in the circular buffer arrangement shown in Fig. 4.2.12, instead of shift-

ing the data counterclockwise, the buffer addresses are decremented, or shifted clock-
wise once, so that w3 becomes the new beginning of the circular buffer and will hold
the next input xn+1.

The internal state vectors at times n and n + 1 are the same in both the linear and
circular buffer implementations, namely,
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w1

w2

w3 w3

w0

w1

w2w0

xn-1 xn-1

xn-3 xn+1

xn-2 xn-2xn xn

next time
shifted
pointer

p
p

Fig. 4.2.12 Modulo-(M+1) circular delay-line buffer.

s(n)=

⎡⎢⎢⎢⎣
xn
xn−1

xn−2

xn−3

⎤⎥⎥⎥⎦ , s(n+ 1)=

⎡⎢⎢⎢⎣
xn+1

xn
xn−1

xn−2

⎤⎥⎥⎥⎦ (4.2.21)

In both the linear and circular implementations, the starting address of the state
vector is the current input sample, and from there, the addresses pointing to the rest of
the state vector are incremented counterclockwise.

But, whereas in the linear case the starting address is always fixed and pointing to
w0, as shown in Fig. 4.2.11, the starting address in the circular case is back-shifted from
one time instant to the next. To keep track of this changing address, we introduce a
pointer variable p which always points to the current input, as shown in Fig. 4.2.12.

At each time instant, the w-register pointed to by p gets loaded with the current
input sample, that is, ∗p = x, or p[0]= x. After computing the current output, the
pointer p is decremented circularly. Figure 4.2.13 shows the position of the pointer p
at successive sampling instants.

p pp
p

w0 w0w0 w0

w1 w1w1 w1

w2 w2w2 w2

w3 w3w3 w3

n=0,4,8,... n=1,5,9,... n=2,6,10,... n=3,7,11,...

Fig. 4.2.13 Successive positions of address pointer p, repeating modulo-(M+1).

The pointer p is restricted to lie within the pointer range of the linear buffer w, that
is, in C notation:

w ≤ p ≤ w+M (4.2.22)

and therefore, it will always point at some w-register, say w[q],
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p = w+ q ⇒ ∗p = p[0]= w[q] (4.2.23)

where q is an integer that gives the offset of p with respect to the fixed beginning of the
w-buffer. The restriction of Eq. (4.2.22) translates to the restriction on the range of q:

0 ≤ q ≤M (4.2.24)

Inspecting the indices of the w’s pointed to by the successive p’s in Fig. 4.2.13, we
may identify the periodically repeating sequence of values of q:

q = 0,3,2,1,0,3,2,1,0,3,2,1, . . .

and in general, q cycles over the values: q = 0,M,M−1, . . . ,1.
At each time instant, the pointer p, or equivalently the offset q, defines the vector s

of internal states. The sequence of pointers p, p+1, . . . , p+M, point at the components
of the state vector, that is,

si = p[i]= ∗(p+ i)= ∗(w+ q+ i)= w[q+ i], i = 0,1, . . . ,M

This definition is correct as long as the shifted pointer p + i does not exceed the
array bounds ofw, or equivalently, as long as q+ i ≤M. If q+ i > M, it must be reduced
modulo-(M+1). Therefore, the correct definition of the internal state vector defined by
the pointer p is, in C notation:

si = w[(q+ i)%(M + 1)]= w[(p−w+ i)%(M + 1)] (4.2.25)

for i = 0,1, . . . ,M, where we solved Eq. (4.2.23) for q = p−w.† In particular, note that
the first component of the state vector is:

s0 = w[q]= p[0]= ∗p = ∗(w+ q) (4.2.26)

and the last component, corresponding to i =M:

sM = w[(q+M)%(M + 1)]= w[(p−w+M)%(M + 1)] (4.2.27)

Note that sM = w[M]= p[M] if q = 0, and sM = w[q − 1]= p[−1] otherwise.
Therefore, sM is always in the w-register that circularly precedes w[q].

Assuming that the current input sample x has been read into s0 = w[q]= ∗p, that
is, ∗p = x, the corresponding output sample y will be computed by the dot product:

y =
M∑
i=0

hisi = [h0, h1, . . . , hM]

⎡⎢⎢⎢⎢⎢⎣
s0

s1

...
sM

⎤⎥⎥⎥⎥⎥⎦ = hTs

As an example illustrating Eq. (4.2.25), Fig. 4.2.14 shows p at the time when it points
tow2, so that p = w+2 and q = 2. We assume thatw2 has been loaded with the current

†Some C compilers may require the cast: q = (int) (p-w).
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input sample. In this case, the indices q+ i = 2 + i and their mod-4 reductions are, for
i = 0,1,2,3:

q+ i = 2 + i = 2,3,4,5 mod-4−→ 2,3,0,1

p+1

p+2

p-1=p+3

p=p+4

w3

s3

w2 s2

w1

s1

w0s0

increasing
address

starting
address

decreasing
address

Fig. 4.2.14 Internal states defined by circular pointers p+ i, i = 0,1, . . . ,M.

Therefore, the state vector defined by this value of p will be

s =

⎡⎢⎢⎢⎣
s0

s1

s2

s3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
w2

w3

w0

w1

⎤⎥⎥⎥⎦
The following table shows the succession of “rotating” state vectors of Fig. 4.2.13

and their contents, as they fill up with input samples xn at the successive time instants
n = 0,1, . . . ,7. An equivalent view is shown in Fig. 4.2.15. The wi columns show the
contents of the array w = [w0,w1,w2,w3] over which the pointer p circulates. At each
time instant, only one entry in each row changes as it receives the new input sample,
namely, the entry wq. By contrast, in the linear buffer case given in Eq. (4.2.11), all
entries of w shift. The first four si columns show the w-registers selected by p or q.
The last four si columns show the actual contents of these w-registers:

n q w0 w1 w2 w3 s0 s1 s2 s3 s0 s1 s2 s3

0 0 x0 0 0 0 w0 w1 w2 w3 x0 0 0 0
1 3 x0 0 0 x1 w3 w0 w1 w2 x1 x0 0 0
2 2 x0 0 x2 x1 w2 w3 w0 w1 x2 x1 x0 0
3 1 x0 x3 x2 x1 w1 w2 w3 w0 x3 x2 x1 x0

4 0 x4 x3 x2 x1 w0 w1 w2 w3 x4 x3 x2 x1

5 3 x4 x3 x2 x5 w3 w0 w1 w2 x5 x4 x3 x2

6 2 x4 x3 x6 x5 w2 w3 w0 w1 x6 x5 x4 x3

7 1 x4 x7 x6 x5 w1 w2 w3 w0 x7 x6 x5 x4

(4.2.28)
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It is evident that the contents of the columns s0, s1, s2, s3 are the successively delayed
signal samples xn, xn−1, xn−2, xn−3. Therefore, the state vector s(n) at each time instant
n is generated correctly according to Eq. (4.2.21).

p pp
p

x0

x1 x1 x1

x2 x2

x3

x0 x0 x0

0 0 0

0

0

0

n=0 n=1 n=2 n=3

p pp

p

n=4 n=5 n=6 n=7

x2 x2 x6 x6

x1 x5 x5 x5

x3 x3 x3 x7

x4 x4 x4 x4

Fig. 4.2.15 Contents of circular buffer at successive time instants.

To make sure that p and its shifts p + i always stay within the address space of w
given by Eq. (4.2.22), they must be wrapped modulo-(M+1). This is accomplished by
the following routine wrap.c, which adjusts the bounds of p, such that if p = w− 1, it
wraps it around to p = (w− 1)+(M+ 1)= w+M, and if p = w+M+ 1, it wraps it to
p = (w+M + 1)−(M + 1)= w.

/* wrap.c - circular wrap of pointer p, relative to array w */

void wrap(M, w, p)
double *w, **p;
int M;
{

if (*p > w + M)
*p -= M + 1; when ∗p = w+M + 1, it wraps around to ∗p = w

if (*p < w)
*p += M + 1; when ∗p = w− 1, it wraps around to ∗p = w+M

}

Note that p is modified at each call and serves both as an input and output of the
routine; therefore, it must be passed by reference, that is, as a pointer to pointer. If in
the main program w and p are declared as ordinary pointers:

double *w, *p;

then p must be passed into wrap by its address, that is,

wrap(M, w, &p);

With the help of the routine wrap, an FIR filter can be implemented using a circular
delay-line buffer by the following routine cfir.c, which replaces fir:
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/* cfir.c - FIR filter implemented with circular delay-line buffer */

void wrap();

double cfir(M, h, w, p, x)
double *h, *w, **p, x; p = circular pointer to w
int M; M = filter order

{
int i;
double y;

**p = x; read input sample x

for (y=0, i=0; i<=M; i++) { compute output sample y
y += (*h++) * (*(*p)++);
wrap(M, w, p);
}

(*p)--; update circular delay line

wrap(M, w, p);

return y;
}

The following three operations are carried out by the routine:

• The current input sample x is read into the w-register pointed to by the current
value of the pointer p.

• The for-loop computes the filter’s output sample y by accumulating the terms
hisi of products of the filter coefficients with the components of the internal state
vector defined by the pointer p.

Each pass through the loop post-increments the h and p pointers and wraps p,
if necessary. This loop could as well have been replaced by the following more
obscure loop, which uses Eq. (4.2.25) for the states:

for (y=0, i=0; i<=M; i++)
y += h[i] * w[(*p-w+i)%(M+1)]; that is, y = y + hisi

Upon exit from the loop, the pointer p has been circularly incrementedM+1 times
and therefore, it has wrapped around to its original value, that is, pointing again
at the current input sample.

The filter pointer h is also incremented M+1 times and, after the loop, it points
beyond its allowed range, but this does not matter because h will be reset at the
next call of cfir. In hardware, h is also stored in a circular buffer, and therefore
it wraps back to h[0].

• Finally, the circular delay line is updated by simply decrementing the pointer p
and wrapping it modulo M+1 if necessary. The pointer p is left pointing at the
w-register containing the last component sM of the state vector. This component
will be overwritten by the next input sample.
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In DSP chips that support circular or modulo addressing, each pass through the
above for-loop requires only one instruction—the calls to wrap are not necessary because
the incrementing pointer wraps around automatically. Therefore, the total number of
instructions per call is essentially M+1. The total processing time per sample will be
Tproc = (M + 1)Tinstr.

Each call of cfir changes the value of the pointer p, and therefore, pmust be passed
by reference, as in the routine wrap. The arrays h andwmust be declared and allocated
in the main program in the usual way, and w must be initialized to zero. The pointer p
is initialized to point tow[0], that is, p = w. The following program segment illustrates
the proper initialization and usage of cfir.

double *h, *w, *p;
h = (double *) calloc(M+1, sizeof(double));
w = (double *) calloc(M+1, sizeof(double)); also, initializes w to zero

p = w; initialize p

for (n = 0; n < Ntot; n++)
y[n] = cfir(M, h, w, &p, x[n]); p passed by address

The routine cfir imitates the hardware implementation of FIR filtering on the Mo-
torola DSP56K chip, as illustrated in Example 4.2.5. A slightly different version of cfir,
which essentially emulates the TMS320C30, is given below:

/* cfir1.c - FIR filter implemented with circular delay-line buffer */

void wrap();

double cfir1(M, h, w, p, x)
double *h, *w, **p, x;
int M;
{

int i;
double y;

*(*p)-- = x;
wrap(M, w, p); p now points to sM

for (y=0, h+=M, i=M; i>=0; i--) { h starts at hM
y += (*h--) * (*(*p)--);
wrap(M, w, p);
}

return y;
}

After loading the current input sample into the w-register pointed to by p, it post-
decrements p circularly, so that p becomes the wrapped p +M and points to the last
component sM of the state vector.

The for-loop shifts the h pointer to point to hM and then runs backwards from i =M
down to i = 0, accumulating the terms hisi and post-decrementing h and p at each pass.

Upon exit from the loop, p has wrapped around to point back to p + M and is
left pointing there upon exit from cfir1, but, that is where it should be pointing for
processing the next input sample.
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Example 4.2.5: It is beyond the scope of this book to discuss architectures and instruction sets
for particular DSP chips. However, in order to illustrate the way fir3, cfir, and cfir1

emulate assembly code for DSP chips, we present some code examples for the TMS32020,
DSP32C, DSP56K, and TMS320C30; see Refs. [79–88] for details.

The following TMS32020 code segment implements the algorithm (4.2.18) for the case
M = 3:

NEWX IN W0, PA2 read new x into w0

ZAC zero accumulator, y = 0

LT W3 load w3

MPY H3 multiply by h3, y = h3w3

LTD W2 w3 = w2, load and shift

MPY H2 y = y + h2w2

LTD W1 w2 = w1

MPY H1 y = y + h1w1

LTD W0 w1 = w0

MPY H0 y = y + h0w0

APAC accumulate final sum

SACH Y, 1 store accumulator in register Y

OUT Y, PA2 output Y from output port

B NEWX branch back to NEWX to get next input sample

The shift/MAC pairs of instructions LTD/MPY can be replaced by single MACD instructions.

The same filter would be implemented on the AT&T DSP32C floating point processor by
the program segment:

a1 = *r4++ * *r2++ y = h3w3

a1 = a1 + (*r3++ = *r4++) * *r2++ y = y + h2w2, w3 = w2

a1 = a1 + (*r3++ = *r4++) * *r2++ y = y + h1w1, w2 = w1

a0 = a1 + (*r3 = *r5) * *r2++ y = y + h0w0, w1 = w0

*r6 = a0 = a0

The address pointer r4 points to the internal states wi and r2 to the filter weights hi. The
first line puts the product h3w3 into accumulator a1 and increments the pointers to point
to w2, h2. The second line accumulates the product h2w2 into a1 and simultaneously
shifts the value of w2 pointed to by r4 into w3 pointed to by r3, then post-increments the
pointers.

In the fourth line, r5 points to the input data, that is, w0 = x. The sum of the previous
value of a1 and product h0w0 are put into accumulator a0 and simultaneouslyw0 is moved
into w1 pointed to by r3. In the last line, r6 points to the computed output sample y.

The following code implements the same filter on the Motorola DSP56K using a circular
buffer. It is essentially equivalent to cfir.

clr a x0,x:(r0)+ y:(r4)+,y0
rep #M
mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0
macr x0,y0,a (r0)-
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Here, the circular buffer resides in the chip’s X-memory and is pointed to by the modulo
pointer r0. The filter coefficients reside in Y-memory and are pointed to by the modulo
pointer r4.

The clr instruction clears the accumulator register a, loads the temporary registers x0,
y0 with the values w0 and h0, and increments the pointers r0, r4.

The rep instruction repeats the mac instruction M times. During the ith repetition, the
registers x0, y0 hold the values of wi−1 and hi−1; these values get multiplied and accu-
mulated into the accumulator a, and then x0, y0 are loaded with wi, hi, and the modulo
pointers r0, r4 are incremented.

Upon exit from this loop, the pointer r0 has been incremented M+1 times, and therefore
it has wrapped around to point to w0 again. The last macr instruction performs the final
accumulation ofwMhM , and then it decrements the pointer r0, so that it now points tow−1

which is the same as wM . The value in this register will be overwritten by the next input
sample. The total number of instruction cycles for this example is (M + 1)+3, instead of
the nominal M + 1.

The floating point TMS320C30/C40 processor implements circular addressing in a similar
fashion, as illustrated by the following code:

NEWX LDF IN, R3 read new input sample x
STF R3, *AR1++% put x in w0 and increment AR1

LDF 0.0, R0 initialize accumulators

LDF 0.0, R2

RPTS M repeat for i=M down to i=0

MPYF3 *AR0++%, *AR1++%, R0 hiwi → R0, and in parallel

|| ADDF3 R0, R2, R2 accumulate previous R0 into R2

ADDF R0, R2 accumulate last product

STF R2, Y store R2 into output register Y

B NEWX branch to NEWX and repeat

Here, the filter coefficients hi and internal states wi are stored in reverse order, so that
hM , wM are in the lowest and h0, w0 at the highest address of the modulo-(M+1) circular
buffers. Therefore, pointers are incremented, instead of decremented as in cfir1.

Upon entry, the address pointer AR0 points to the beginning of the h-buffer, that is, to hM ,
and the pointer AR1 points to the bottom of the w-buffer, that is, to w0 which receives
the current input sample xn by the first STF instruction. The AR1 pointer is then post-
incremented and wraps around to point to the beginning of the w-buffer, that is, to wM .

The RPTS loop repeats the following instruction M+1 times. The multiply instruction
MPYF3 and accumulate instruction ADDF3 are done in parallel. The loop accumulates the
terms hiwi, for i =M, . . . ,1,0. Each repetition post-increments the pointers AR0 and AR1.
Therefore, afterM+1 repetitions, AR0 and AR1 will wrap around and point to the beginning
of the circular buffers.

Thus, AR1 is circularly incremented a total of (M+ 1)+1 times and will be left pointing to
wM , which will receive the next input sample xn+1, as shown in Fig. 4.2.12. 	


The final part of cfir, which updates the circular delay line by modulo decrementing
p, can be put by itself into a routine that implements the circular version of the delay
routine delay.c of Section 4.2.1. Denoting M by D in this definition, we have:
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/* cdelay.c - circular buffer implementation of D-fold delay */

void wrap();

void cdelay(D, w, p)
int D;
double *w, **p;
{

(*p)--; decrement pointer and wrap modulo-(D+ 1)
wrap(D, w, p); when ∗p = w− 1, it wraps around to ∗p = w+D

}

Note that because p is decreasing, only the second half of wrap that tests the lower
bound w ≤ p is effective.

As in the case of the routine delay, the output of the delay line is available even
before its input. This output is the last component of the internal state vector and is
obtained from Eq. (4.2.27) with M = D:

sD = w[(q+D)%(D+ 1)]= w[(p−w+D)%(D+ 1)]

Again, p must be passed by address into cdelay. The usage of the routine is
illustrated by the following program segment, which implements the delay equation
y(n)= x(n−D):

p = w; initialize p

for (n = 0; n < Ntot; n++) {
y[n] = w[(p-w+D)%(D+1)]; write output

*p = x[n]; read input; equivalently, p[0]= x[n]
cdelay(D, w, &p); update delay line

}

The table in Eq. (4.2.28) illustrates this delay operation, with D = 3.
In the linear buffer implementations of fir and delay, the state vector is w itself,

that is, s = w, and its components are directly accessible as si = w[i], for i = 0,1, . . . ,D.
In the circular buffer case, the state vector components are given by Eq. (4.2.25). To
avoid having to write the complicated expressions of Eq. (4.2.25), we find it convenient
to define a routine that returns the ith component si, or ith tap, of the circular tapped
delay-line state vector:

/* tap.c - i-th tap of circular delay-line buffer */

double tap(D, w, p, i) usage: si = tap(D, w, p, i);

double *w, *p; p passed by value

int D, i; i = 0,1, . . . , D
{

return w[(p - w + i) % (D + 1)];
}

Note that p is not changed by this routine, and therefore, it is passed by value. With
the help of this routine, the above example of the D-fold delay would read as follows:
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p = w; initialize p

for (n = 0; n < Ntot; n++) {
y[n] = tap(D, w, p, D); Dth component of state vector

*p = x[n]; read input; equivalently, p[0]= x[n]
cdelay(D, w, &p); update delay line

}

The circular buffer implementation of a delay line is very efficient, consisting of just
decrementing an address pointer without shifting any data (except for the input read
into p[0]). It is especially useful in implementing digital audio effects, such as reverb,
because D can be fairly large in these applications. For example, a 100 msec delay at
44.1 kHz sampling rate corresponds to D = 100× 44.1 = 4410 samples. It is also used
in wavetable sound synthesis, where a stored waveform can be generated periodically by
cycling over the circular buffer.

Because p is determined uniquely by the offset index q, via p = w+q, it is possible
to rewrite all of the above routines so that they manipulate the index q instead of the
pointer p. These versions can be translated easily into other languages, such as Fortran
or MATLAB, that do not support pointer manipulation (see Appendix D).

The following routine wrap2.c replaces wrap. It simply keeps q within its allowed
range, 0 ≤ q ≤M, by wrapping it modulo-(M+1).

/* wrap2.c - circular wrap of pointer offset q, relative to array w */

void wrap2(M, q)
int M, *q;
{

if (*q > M)
*q -= M + 1; when ∗q =M + 1, it wraps around to ∗q = 0

if (*q < 0)
*q += M + 1; when ∗q = −1, it wraps around to ∗q =M

}

Because q is modified by wrap2, it must be passed by reference, that is, as a pointer
to integer. The following routine cfir2.c replaces cfir. Note that the current input
sample is placed in p[0]= w[q], that is, w[q]= x.

/* cfir2.c - FIR filter implemented with circular delay-line buffer */

void wrap2();

double cfir2(M, h, w, q, x)
double *h, *w, x; q = circular offset index

int M, *q; M = filter order

{
int i;
double y;

w[*q] = x; read input sample x

for (y=0, i=0; i<=M; i++) { compute output sample y
y += (*h++) * w[(*q)++];
wrap2(M, q);
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}

(*q)--; update circular delay line

wrap2(M, q);

return y;
}

If so desired, the for-loop in this routine can be replaced by the following version,
which accesses the ith state via Eq. (4.2.25):

for (y=0, i=0; i<=M; i++)
y += h[i] * w[(*q+i)%(M+1)]; used by cfir2.m of Appendix D

The index q must be initialized to q = 0, which is equivalent to p = w. The usage
of cfir2 is illustrated by the following program segment:

double *h, *w;
int q;
h = (double *) calloc(M+1, sizeof(double));
w = (double *) calloc(M+1, sizeof(double)); also, initializes w to zero

q = 0; initialize q

for (n = 0; n < Ntot; n++)
y[n] = cfir2(M, h, w, &q, x[n]); q passed by address

The implementation of the circular delay line is completely trivial. The following
routine cdelay2.c replaces cdelay, and consists simply of decrementing q modulo
D+1, assuming that the current input has been read into w[q], namely, w[q]= x.

/* cdelay2.c - circular buffer implementation of D-fold delay */

void wrap2();

void cdelay2(D, q)
int D, *q;
{

(*q)--; decrement offset and wrap modulo-(D+ 1)
wrap2(D, q); when ∗q = −1, it wraps around to ∗q = D

}

Its usage is illustrated by the following program segment. Note, again, that its output,
namely, the Dth component of the internal state, is available even before its input:

q = 0; initialize q

for (n = 0; n < Ntot; n++) {
y[n] = w[(q+D)%(D+1)]; alternatively, y[n] = tap2(D, w, q, D);
w[q] = x[n]; read input

cdelay2(D, &q); update delay line

}

Finally, the components of the internal state vector given by Eq. (4.2.25) are returned
by the following routine tap2.c which replaces tap:
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/* tap2.c - i-th tap of circular delay-line buffer */

double tap2(D, w, q, i) usage: si = tap2(D, w, q, i);

double *w;
int D, q, i; i = 0,1, . . . ,D
{

return w[(q + i) % (D + 1)];
}

In summary, the circular buffer implementation of the FIR sample processing algo-
rithm can be stated in the following form (initialized to p = w):

for each input sample x do:
s0 = ∗p = x
for i = 1,2, . . . ,M determine states:

si = tap(M,w, p, i)
y = h0s0 + h1s1 + · · · + hMsM
cdelay(M,w,&p)

where for convenience, we used the routine tap to get the current states. In terms of
the offset index q (initialized to q = 0):

for each input sample x do:
s0 = w[q]= x
for i = 1,2, . . . ,M determine states:

si = tap2(M,w, q, i)
y = h0s0 + h1s1 + · · · + hMsM
cdelay2(M,&q)

Example 4.2.6: The circular buffer implementation of Example 4.2.1 is as follows:

for each input sample x do:
s0 = ∗p = x
s1 = tap(3,w, p,1)
s2 = tap(3,w, p,2)
s3 = tap(3,w, p,3)
y = s0 + 2s1 − s2 + s3

cdelay(3,w,&p)

where w is to be declared as a 4-dimensional array and initialized to zero. In terms of the
variable q, we have

for each input sample x do:
s0 = w[q]= x
s1 = tap2(3,w, q,1)
s2 = tap2(3,w, q,2)
s3 = tap2(3,w, q,3)
y = s0 + 2s1 − s2 + s3

cdelay2(3,&q)
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For the same input, the output signal samples and internal states computed by either of
the above algorithms are exactly those given in the table of Example 4.2.1.

The linear buffer version discussed in Example 4.2.1 can be obtained from the above by
freezing the pointer p to always point to w, that is, p = w. Then, we have for i = 0,1,2,3:

si = tap(3,w, p, i)= w[(p−w+ i)%4]= w[i%4]= wi

and the algorithm becomes the conventional one:

for each input sample x do:
w0 = x
y = w0 + 2w1 −w2 +w3

delay(3,w)

where cdelay was replaced by delay. 	


4.3 Problems

4.1 Compute the convolution, y = h ∗ x, of the filter and input,

h = [1,1,2,1], x = [1,2,1,1,2,1,1,1]

using the following three methods: (a) The convolution table. (b) The LTI form of convolution,
arranging the computations in a table form. (c) The overlap-add method of block convolution
with length-3 input blocks. Repeat using length-5 input blocks.

4.2 Repeat Problem 4.1 for the filter and input:

h = [2, −2, −1, 1], x = [2, 2, 0, 1, −1, 0, 1, 2],

4.3 The impulse response h(n) of a filter is nonzero over the index range 3 ≤ n ≤ 6. The input
signal x(n) to this filter is nonzero over the index range 10 ≤ n ≤ 20. Consider the direct
and LTI forms of convolution:

y(n)=
∑
m
h(m)x(n−m)=

∑
m
x(m)h(n−m)

a. Determine the overall index range n for the output y(n). For each n, determine the
corresponding summation range over m, for both the direct and LTI forms.

b. Assumeh(n)= 1 and x(n)= 1 over their respective index ranges. Calculate and sketch
the output y(n). Identify (with an explanation) the input on/off transient and steady
state parts of y(n).

4.4 An LTI filter has infinite impulse response h(n)= anu(n), where |a| < 1. Using the convo-
lution summation formula y(n)= ∑

m h(m)x(n −m), derive closed-form expressions for
the output signal y(n) when the input is:

a. A unit step, x(n)= u(n)
b. An alternating step, x(n)= (−1)nu(n).
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In each case, determine the steady state and transient response of the filter.

4.5 Consider the IIR filterh(n)= anu(n), where 0 < a < 1. The square pulse x(n)= u(n)−u(n−
L) of duration L is applied as input.

Using the time-domain convolution formula, determine a closed-form expression for the
output signal y(n) for the two time ranges: 0 ≤ n ≤ L− 1 and n ≥ L.

4.6 The filter of Problem 4.5 satisfies the difference equation: y(n)= ay(n − 1)+x(n). Verify
that the solution y(n) that you obtained above satisfies this difference equation for all n.

4.7 Computer Experiment: Convolution Routines. Write C or MATLAB routines that implement
convolution in: (a) the convolution table form and (b) the LTI form; that is,

yn =
∑
i, j

i+j=n

hixj =
∑
m
xmhn−m

The routines must have the same input/output variables as conv.c of the text. Write a small
main program that tests your routines.

4.8 Computer Experiment: Filtering by Convolution. Write small C or MATLAB routines to re-
produce all the results and graphs of Examples 4.1.7, 4.1.8, and 4.1.9. The inputs must be
treated as single blocks and passed into the routine conv.

4.9 Computer Experiment: Block-by-Block Processing. Write a stand-alone C program, say blk-

filt.c, that implements the overlap-add block convolution method. The program must
have usage:

blkfilt h.dat L < x.dat > y.dat

It must have as command-line inputs a file of impulse response coefficients h.dat (stored
one coefficient per line) and the desired input block length L. It must read the input signal
samples from stdin or a file x.dat and write the computed output samples to stdout

or a file y.dat. It must have the following features built-in: (a) it must allocate storage
dynamically for the impulse h(n) read from h.dat (the program should abort with an error
message if L < M); (b) it must read the input signal in length-L blocks, and call the routine
blockcon.c of the text to process each block; (c) it must write the output also in blocks; (d)
it must compute correctly both the input-on and input-off transients.

Note that the essence of such a program was already given in Section 4.1.10. Test your
program on Example 4.1.10, with blocksizes L = 3,4,5,6.

4.10 Computer Experiment: Sample-by-Sample Processing. Write a stand-alone C program, say
firfilt.c, that implements the FIR sample processing algorithm of Eq. (4.2.15). The pro-
gram must have usage:

firfilt h.dat < x.dat > y.dat

It must read and dynamically allocate the impulse response vector h from an input file, say
h.dat, and must allocate the internal state vector w. Using the routine fir.c, it must keep
processing input samples, reading them one at a time from stdin or from a file x.dat, and
writing the computed output samples to stdout or a file y.dat.

It must correctly account for the input-on and input-off transients. Thus, it must produce
identical results with convolution or block convolution if applied to a finite input block of
samples.

The essence of such a program was given in Section 4.2.3. Test your program on Examples
4.1.7–4.1.10.
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Such filters can be cascaded together by piping the output of one into the input to another.
For example, the filtering operation by the combined filter h = h1 ∗ h2 can be implemented
by:

firfilt h1.dat | firfilt h2.dat < x.dat > y.dat

Alternatively or additionally, write a MATLAB version, say firfilt.m, with usage:

y = firfilt(h, x);

It must read the filter and input vectors h, x, and compute the output vector y. The input-
off transients must also be part of the output vector. You may use the MATLAB functions
delay.m and fir.m of Appendix D.

4.11 Computer Experiment: Sample Processing with Circular Buffers. Rewrite the above program,
say cfirfilt.c, such that the basic sample-by-sample filtering operation is implemented
by the circular buffer routine cfir.c instead of fir.c. The usage of the program will be
the same as above:

cfirfilt h.dat < x.dat > y.dat

Test your program on Examples 4.1.7–4.1.10. It must produce identical results as the fir-

filt program. Rewrite versions of this program that use the alternative circular FIR routines
cfir1.c and cfir2.c. You may also write a MATLAB version using cfir2.m.

4.12 Computer Experiment: Delay Using Circular Buffers. Write a stand-alone C program, say
cdelfilt.c, that implements a plain delay by up to D samples, that is, y(n)= x(n − i),
i = 0,1, . . . ,D, and has usage:

cdelfilt i D < x.dat > y.dat

It must read the input samples one at a time from stdin and write the delayed samples
into stdout. It must make use of the circular buffer routines cdelay.c and tap.c. The
delay-line buffer must have length D+ 1.

Test your program on a length-20 input using the values D = 5, and i = 0,1, . . . ,5. Then,
write another version of this program that uses the routines cdelay2 and tap2 and test it.

4.13 Computer Experiment: Alternative Sample Processing Algorithms. The FIR sample processing
algorithm of Eq. (4.2.15) proceeds by (a) reading the current input, (b) processing it, and (c)
updating the delay line.

In some texts, the algorithm is structured in a slightly different way, such that the update
of the delay line is done before the current input is read. Derive the difference equations
describing this version of the algorithm. [Hint: Use Eq. (4.2.13).]

Translate the difference equations into a sample processing algorithm like Eq. (4.2.15) and
then, write a C routine that implements it. Discuss the proper initialization of the internal
states in this case. Test your routine to make sure it produces identical results with fir.c.

4.14 Consider the filter and input of Problem 4.1. Draw a block diagram realization of the filter,
introduce internal states, write the corresponding sample processing algorithm, and convert
it into a C routine.

Then, using the sample processing algorithm, compute the full output signal, including the
input-off transients (for these, apply x = 0 to the algorithm). Display your computations in
a table form. Identify on the table which outputs correspond to the input-on transients, to
the steady state, and to the input-off transients. [Note: The computed output signal should
agree exactly with that computed by the convolution method of Problem 4.1.]
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4.15 Consider the filter with I/O equation: y(n)= x(n)−x(n− 3).

a. Determine the impulse response sequence h(n), for all n ≥ 0.

b. Draw a block diagram realization, introduce appropriate internal states, and write the
corresponding sample processing algorithm. Moreover, implement the algorithm by a
C routine. Test your routine on the results of parts (c) and (d).

c. Send as input the sequence x = [1,1,2,2,4, . . . ]. Using convolution, compute the first
five output samples, y(n), n = 0,1, . . . ,4.

d. Compute the same outputs using the sample processing algorithm. Display your com-
putations in a table that, at each sampling instant n, shows the corresponding input
sample x(n), the values of the internal states, and the computed output sample y(n).

4.16 Repeat Problem 4.15 for the filter: y(n)= 0.8y(n− 1)+x(n).
4.17 Repeat Problem 4.15 for the filter: y(n)= 0.25y(n− 2)+x(n).
4.18 Let x = [1,1,2,2,2,2,1,1] be an input to the filter described by the I/O equation:

y(n)= x(n)−x(n− 2)+2x(n− 3)

a. Determine the impulse response h(n) of this filter.

b. Compute the corresponding output signal y(n) using the LTI form of convolution.
Show your computations in table form.

c. Compute the same output using the overlap-add method of block convolution by par-
titioning the input signal into length-4 blocks.

d. Draw a block diagram realization of this filter. Then, introduce appropriate internal
states and write the corresponding sample processing algorithm.

4.19 The length-8 input signal x(n)= {8, 7, 6, 5, 4, 3, 2, 1} is applied to the input of a 2-fold
delay described by the I/O equation y(n)= x(n− 2).
The circular buffer version of the sample processing implementation of the delay operation
requires the use of a 3-dimensional linear buffer array of internal states w = [w0, w1, w2]
and a pointer p circulating over w.

Make a table of the numerical values of the contents of the array w for the successive time
instants 0 ≤ n ≤ 10. In each row, indicate that array element, wi, which represents the
current output y(n) of the delay line. Explain your reasoning in filling this table. Compare
with the linear buffer case.

4.20 Figure 4.3.1 shows the transposed realization of the third-order filter with impulse response
h = [h0, h1, h2, h3]. Write the difference equations describing the I/O operation of this
realization. Show that the combined effect of these difference equations is equivalent to the
standard direct form operation of Eq. (4.2.6).

Write the transposed difference equations as a sample processing algorithm and apply it to
the filter and input of Example 4.2.1. Make a table of the values of x, y, and all the variables
vi, for each time instant 0 ≤ n ≤ 10.

4.21 Computer Experiment: Transposed FIR Realization. Generalize the block diagram of Fig. 4.3.1
to an arbitrary Mth order filter with impulse response h = [h0, h1, . . . , hM]. Write the
corresponding sample processing algorithm and translate it into a C routine firtr.c that
has usage:

y = firtr(M, h, v, x);
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x(n) y(n)
v1(n)

v0(n)

v2(n)

v3(n)

z-1

z-1

z-1

h0

h1

h2

h3

Fig. 4.3.1 Transposed realization of third-order filter.

where h and v are (M+1)-dimensional vectors, and x, y are the current input and output
samples.

To test your routine, write a version of the program firfilt.c of Problem 4.10 that uses
the routine firtr.c instead of fir.c. Test your program on Example 4.2.1.
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z-Transforms

5.1 Basic Properties

Here, we review briefly z-transforms and their properties. We assume that the reader
already has a basic familiarity with the subject. Our usage of z-transforms in this book
is basically as a tool for the analysis, design, and implementation of digital filters.

Given a discrete-time signal x(n), its z-transform is defined as the following series:

X(z)=
∞∑

n=−∞
x(n)z−n (z-transform) (5.1.1)

or, writing explicitly a few of the terms:

X(z)= · · · + x(−2)z2 + x(−1)z+ x(0)+x(1)z−1 + x(2)z−2 + · · ·

There are as many terms as nonzero signal values x(n). The terms z−n can be
thought of as place holders for the values x(n). If the signal x(n) is causal, only negative
powers z−n, n ≥ 0 appear in the expansion. If x(n) is strictly anticausal, being nonzero
for n ≤ −1, only positive powers will appear in the expansion, that is, z−n = z|n|, for
n ≤ −1. And if x(n) is mixed with both causal and anticausal parts, then both negative
and positive powers of z will appear.

The definition (5.1.1) can also be applied to the impulse response sequence h(n) of
a digital filter. The z-transform of h(n) is called the transfer function of the filter and
is defined by:

H(z)=
∞∑

n=−∞
h(n)z−n (transfer function) (5.1.2)

Example 5.1.1: Determine the transfer functionH(z) of the two causal filters of Example 3.4.3,
namely,

(a) h = [h0, h1, h2, h3]= [2,3,5,2]
(b) h = [h0, h1, h2, h3, h4]= [1,0,0,0,−1]

183
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Solution: Using the definition (5.1.2), we find:

H(z)= h0 + h1z−1 + h2z−2 + h3z−3 = 2 + 3z−1 + 5z−2 + 2z−3

for case (a), and

H(z)= h0 + h1z−1 + h2z−2 + h3z−3 + h4z−4 = 1 − z−4

for case (b). 	


The three most important properties of z-transforms that facilitate the analysis and
synthesis of linear systems are:

• linearity property
• delay property
• convolution property

The linearity property simply states that the z-transform of a linear combination of
signals is equal to the linear combination of z-transforms, that is, if X1(z) and X2(z)
are the z transforms of the signals x1(n) and x2(n), then the z-transform of the linear
combination a1x1(n)+a2x2(n) is

a1x1(n)+a2x2(n)
Z−→ a1X1(z)+a2X2(z) (linearity) (5.1.3)

The delay property states that the effect of delaying a signal by D sampling units is
equivalent to multiplying its z-transform by a factor z−D, namely,

x(n) Z−→ X(z) ⇒ x(n−D) Z−→ z−DX(z) (delay) (5.1.4)

Note that D can also be negative, representing a time advance. Finally, the convolu-
tion property states that convolution in the time domain becomes multiplication in the
z-domain:

y(n)= h(n)∗x(n) ⇒ Y(z)= H(z)X(z) (convolution) (5.1.5)

that is, the z-transform of the convolution of two sequences is equal to the product of
the z-transforms of the sequences.

Example 5.1.2: The two filters of the above example and of Example 3.4.3 can also be written
in the following “closed” forms, valid for all n:

(a) h(n)= 2δ(n)+3δ(n− 1)+5δ(n− 2)+2δ(n− 3), (b) h(n)= δ(n)−δ(n− 4)

Their transfer functions can be obtained using the linearity and delay properties as follows.
First, note that the z-transform of δ(n) is unity:

δ(n) Z−→
∞∑

n=−∞
δ(n)z−n = δ(0)z−0 = 1
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Then, from the delay property, we have

δ(n− 1) Z−→ z−1 · 1 = z−1, δ(n− 2) Z−→ z−2, δ(n− 3) Z−→ z−3, etc.

Using linearity, we obtain

2δ(n)+3δ(n− 1)+5δ(n− 2)+2δ(n− 3) Z−→ 2 + 3z−1 + 5z−2 + 2z−3

for case (a), and

h(n)= δ(n)−δ(n− 4) Z−→ H(z)= 1 − z−4

for case (b). 	


Example 5.1.3: Using the unit-step identity u(n)−u(n − 1)= δ(n), valid for all n, and the
z-transform properties, determine the z-transforms of the two signals:

(a) x(n)= u(n), (b) x(n)= −u(−n− 1)

Solution: For case (a), we have the difference equation:

x(n)−x(n− 1)= u(n)−u(n− 1)= δ(n)

Taking z-transforms of both sides and using the linearity and delay properties, we obtain

x(n)−x(n− 1)= δ(n) Z−→ X(z)−z−1X(z)= 1 ⇒ X(z)= 1

1 − z−1

Similarly, for case (b) we have the difference equation:

x(n)−x(n− 1)= −u(−n− 1)+u(−(n− 1)−1
) = u(−n)−u(−n− 1)= δ(−n)

where in the last equation we used the given identity with n replaced by −n. Noting that
δ(−n)= δ(n), and taking z-transforms of both sides, we find

x(n)−x(n− 1)= δ(−n) Z−→ X(z)−z−1X(z)= 1 ⇒ X(z)= 1

1 − z−1

Thus, even though the two signals u(n) and −u(−n − 1) are completely different in
the time domain (one is causal, the other anticausal), their z-transforms are the same.
We will see in the next section that they can be distinguished in terms of their region of
convergence. 	


Example 5.1.4: Compute the output of Example 4.1.1 by carrying out the convolution operation
as multiplication in the z-domain.
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Solution: The two sequences

h = [1,2,−1,1], x = [1,1,2,1,2,2,1,1]

have z-transforms:

H(z) = 1 + 2z−1 − z−2 + z−3

X(z) = 1 + z−1 + 2z−2 + z−3 + 2z−4 + 2z−5 + z−6 + z−7

Multiplying these polynomials, we find for the product Y(z)= H(z)X(z):

Y(z)= 1 + 3z−1 + 3z−2 + 5z−3 + 3z−4 + 7z−5 + 4z−6 + 3z−7 + 3z−8 + z−10

The coefficients of the powers of z are the convolution output samples:

y = h ∗ x = [1,3,3,5,3,7,4,3,3,0,1]

Note that the term z−9 is absent, which means that its coefficient is zero. 	


5.2 Region of Convergence

If x(n) has infinite duration, Eq. (5.1.1) becomes an infinite series, and it is possible that
certain values of the complex variable z might render it divergent.

The region of convergence (ROC) of the z-transformX(z) is defined to be that subset
of the complex z-plane C for which the series (5.1.1) converges, that is,

Region of Convergence = {
z ∈ C ∣∣ X(z)= ∞∑

n=−∞
x(n)z−n ≠∞} (5.2.1)

The ROC is an important concept in many respects: It allows the unique inversion of
the z-transform and provides convenient characterizations of the causality and stability
properties of a signal or system.

The ROC depends on the signal x(n) being transformed. As an example, consider
the following causal signal:

x(n)= (0.5)nu(n)= {1, 0.5, 0.52, 0.53, . . . }

Its z-transform will be:

X(z)=
∞∑

n=−∞
(0.5)nu(n)z−n =

∞∑
n=0

(0.5)nz−n =
∞∑
n=0

(
0.5z−1)n

where the summation was restricted over n ≥ 0 because of the causality of x(n). This
infinite sum can be done with the help of the infinite geometric series formula:

1 + x+ x2 + x3 + · · · =
∞∑
n=0

xn = 1

1 − x (5.2.2)
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which is valid only for |x| < 1 and diverges otherwise. Setting x = 0.5z−1 we find the
sum:

X(z)=
∞∑
n=0

(
0.5z−1)n =

∞∑
n=0

xn = 1

1 − x , or,

X(z)= 1

1 − 0.5z−1
= z
z− 0.5

where the convergence of the geometric series requires

|x| = |0.5z−1| < 1 ⇒ |z| > 0.5

Thus, the ROC is the set of z’s in the z-plane that lie strictly outside the circle of
radius 0.5, as shown below:

ROC = {z ∈ C ∣∣ |z| > 0.5} 0.5 |z|

z-planeROC

pole

z

0.5

Note, that the z-transform has a pole at z = 0.5. In summary, we have

(0.5)nu(n) Z−→ 1

1 − 0.5z−1
, with |z| > 0.5

A z-transform and its ROC are uniquely determined by the time signal x(n). How-
ever, it is possible for two different time signals x(n) to have the same z-transform, as
was the case in Example 5.1.3. Such signals can only be distinguished in the z-domain
by their region of convergence. Consider, for example, the anticausal signal

x(n)= −(0.5)nu(−n− 1)

The presence of the anti-unit step u(−n−1) restricts n to be −n−1 ≥ 0 or, n ≤ −1.
Its z-transform will be:

X(z)= −
−1∑

n=−∞
(0.5)nz−n = −

−1∑
n=−∞

(
(0.5)−1z

)−n = −
∞∑
m=1

(
(0.5)−1z

)m
where we changed summation variables from n to m = −n. To sum it, we use the
following variant of the infinite geometric series:

x+ x2 + x3 + · · · =
∞∑
m=1

xm = x
1 − x
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which is valid only for |x| < 1 and diverges otherwise. Setting x = (0.5)−1z, we have

X(z)= −
∞∑
m=1

(
(0.5)−1z

)m = −
∞∑
m=1

xm = − x
1 − x = − 0.5−1z

1 − 0.5−1z
, or,

X(z)= z
z− 0.5

= 1

1 − 0.5z−1

which is the same as the causal example above. However, the ROC in this case is differ-
ent. It is determined by the geometric series convergence condition

|x| = |0.5−1z| < 1 ⇒ |z| < 0.5

which is the set of z’s that lie strictly inside the circle of radius 0.5, as shown below:

ROC = {z ∈ C ∣∣ |z| < 0.5} 0.5

z-plane

0.5

pole

z

ROC

To summarize, we have determined the z-transforms:

(0.5)nu(n) Z−→ 1

1 − 0.5z−1
, with |z| > 0.5

−(0.5)nu(−n− 1) Z−→ 1

1 − 0.5z−1
, with |z| < 0.5

The two signals have the same z-transform but completely disjoint ROCs. More
generally, we have the result:

anu(n) Z−→ 1

1 − az−1
, with |z| > |a|

−anu(−n− 1) Z−→ 1

1 − az−1
, with |z| < |a|

(5.2.3)

where a is any complex number. Their ROCs are shown below.

a|a|

z-plane

a

pole

anticausal case

ROC

z
|z|

z-plane

pole

causal case

z
|a|

ROC

The z-transforms (5.2.3), together with the linearity and delay properties, can be
used to construct more complicated transforms.
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Example 5.2.1: Setting a = ±1 in Eq. (5.2.3), we obtain the z-transforms of the causal and
anticausal unit-steps and alternating unit-steps:

u(n) Z−→ 1

1 − z−1
, with |z| > 1

−u(−n− 1) Z−→ 1

1 − z−1
, with |z| < 1

(−1)nu(n) Z−→ 1

1 + z−1
, with |z| > 1

−(−1)nu(−n− 1) Z−→ 1

1 + z−1
, with |z| < 1

which agree with Example 5.1.3. 	


Example 5.2.2: Determine the z-transform and corresponding region of convergence of the
following signals:

1. x(n)= u(n− 10)

2. x(n)= (−0.8)nu(n)

3. x(n)= (−0.8)n[u(n)−u(n− 10)]

4. x(n)= 1

2
[u(n)+(−1)nu(n)]= {1,0,1,0,1,0,1,0, . . . }

5. x(n)= 1

2
[(0.8)nu(n)+(−0.8)nu(n)]

6. x(n)= cos(
πn
2
)u(n)= {1,0,−1,0,1,0,−1,0,1,0,−1,0, . . . }

7. x(n)= (0.8)ncos(
πn
2
)u(n)

8. x(n)= 1

2
[(0.8j)nu(n)+(−0.8j)nu(n)]

9. x(n)= cos(ω0n)u(n) and x(n)= sin(ω0n)u(n)

10. x(n)= {1,2,3,1,2,3,1,2,3, . . . }, periodically repeating {1,2,3}
Solution: Using the delay property, we have in case (1):

X(z)= z−10U(z)= z−10

1 − z−1

with ROC |z| > 1. In case (2), we apply Eq. (5.2.3) with a = −0.8 to get

X(z)= 1

1 + 0.8z−1
, with ROC: |z| > | − 0.8| = 0.8

For case (3), we write

x(n)= (−0.8)nu(n)−(−0.8)10(−0.8)n−10u(n− 10)

where in the second term we multiplied and divided by the factor (−0.8)10 in order to
reproduce the delayed (by 10 units) version of the first term. Thus, using the linearity and
delay properties and the results of case (2), we get
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X(z)= 1

1 + 0.8z−1
− (−0.8)10 z−10

1 + 0.8z−1
= 1 − (−0.8)10z−10

1 + 0.8z−1

Here, the ROC is not |z| > 0.8 as might appear at first glance. Rather it is the set of all
nonzero z’s, z �= 0. This follows by recognizing x(n) to be a length-10 finite sequence.
Indeed, setting a = −0.8, we have

x(n)= an[u(n)−u(n− 10)]= {1, a, a2, a3, a4, a5, a6, a7, a8, a9,0,0,0, . . . }

and therefore, its z-transform can be computed by the finite sum

X(z)= 1 + az−1 + a2z−2 + · · · + a9z−9

which exists for any z �= 0. Using the finite geometric series

1 + x+ x2 + · · · + xN−1 = 1 − xN
1 − x

we may sum the above series to

X(z)= 1 + az−1 + a2z−2 + · · · + a9z−9 = 1 − a10z−10

1 − az−1
= 1 − (−0.8)10z−10

1 + 0.8z−1

For case (4), we have, using linearity and Eq. (5.2.3) with a = 1 and a = −1:

X(z)= 1

2

[
1

1 − z−1
+ 1

1 + z−1

]
= 1

1 − z−2

with ROC |z| > 1. The same result can be obtained using the definition (5.1.1) and summing
the series:

X(z)= 1 + 0z−1 + z−2 + 0z−3 + z−4 + · · · = 1 + z−2 + z−4 + z−6 + · · ·

which is an infinite geometric series of the type of Eq. (5.2.2) with x = z−2. Therefore,

X(z)= 1

1 − x
∣∣∣∣
x=z−2

= 1

1 − z−2

The convergence of the series requires |x| = |z−2| < 1 or equivalently, |z| > 1. In case (5),
we find again using linearity and Eq. (5.2.3):

X(z)= 1

2

[
1

1 − 0.8z−1
+ 1

1 + 0.8z−1

]
= 1

1 − 0.64z−2

with ROC |z| > 0.8. Case (6) can be handled directly by the definition (5.1.1):

X(z)= 1 − z−2 + z−4 − z−6 + z−8 + · · · = 1 + x+ x2 + x3 + x4 + · · ·

where x = −z−2. The series will converge to
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X(z)= 1

1 − x = 1

1 + z−2

provided |x| = |−z−2| < 1, or equivalently, |z| > 1. The same result can be obtained using
Euler’s formula to split the cosine into exponential signals of the type (5.2.3):

x(n)= cos(
πn
2
)u(n)= 1

2

[
ejπn/2u(n)+e−jπn/2u(n)] = 1

2

[
anu(n)+a∗nu(n)]

where a = ejπ/2 = j and a∗ = e−jπ/2 = −j. Thus, we find

X(z)= 1

2

[
1

1 − jz−1
+ 1

1 + jz−1

]
= 1

1 + z−2

In case (7), using Euler’s formula as above, we find

x(n)= (0.8)ncos(
πn
2
)u(n)= 1

2

[
(0.8)nejπn/2u(n)+(0.8)ne−jπn/2u(n)]

which can be written as the signal of case (8):

x(n)= 1

2

[
(0.8j)nu(n)+(−0.8j)nu(n)

]
Thus, cases (7) and (8) are the same. Their z-transform is obtained using a = ±0.8j in
Eq. (5.2.3):

X(z)= 1

2

[
1

1 − 0.8jz−1
+ 1

1 + 0.8jz−1

]
= 1

1 + 0.64z−2

with ROC |z| > |0.8j| = 0.8. The cosinewave in case (9) can be handled in a similar fashion.
We write

cos(ω0n)u(n)= 1

2

[
ejω0n + e−jω0n

]
u(n) Z−→ 1

2

[
1

1 − ejω0z−1
+ 1

1 − e−jω0z−1

]

which combines to give:

X(z)= 1 − cos(ω0)z−1

1 − 2 cos(ω0)z−1 + z−2

Setting ω0 = π/2, we recover case (6). Similarly, for a sinewave we have

sin(ω0n)u(n)= 1

2j
[
ejω0n − e−jω0n

]
u(n) Z−→ 1

2j

[
1

1 − ejω0z−1
− 1

1 − e−jω0z−1

]

which combines to give:

X(z)= sin(ω0)z−1

1 − 2 cos(ω0)z−1 + z−2
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Finally, we consider case (10). Using the definition (5.1.1) and grouping the terms in groups
of 3, we obtain:

X(z) = (1 + 2z−1 + 3z−2)+(1 + 2z−1 + 3z−2)z−3 +
+ (1 + 2z−1 + 3z−2)z−6 + (1 + 2z−1 + 3z−2)z−9 + · · ·

= (1 + 2z−1 + 3z−2)(1 + z−3 + z−6 + z−9 + · · · )

= 1 + 2z−1 + 3z−2

1 − z−3

The infinite geometric series converges for |z−3| < 1 or |z| > 1. An alternative method is
to delay x(n) by one period, that is, 3 time units

x(n− 3)= {0,0,0,1,2,3,1,2,3, . . . }

and subtract it from x(n) to get the difference equation

x(n)−x(n− 3)= {1,2,3,0,0,0,0,0,0, . . . } = δ(n)+2δ(n− 1)+3δ(n− 2)

Then, taking z-transforms of both sides, we get

X(z)−z−3X(z)= 1 + 2z−1 + 3z−2 ⇒ X(z)= 1 + 2z−1 + 3z−2

1 − z−3

This technique can be generalized to any periodic sequence. It will be used later to imple-
ment digital periodic waveform generators. 	


Example 5.2.3: Determine the z-transform and corresponding region of convergence of the
following signals:

1. x(n)= (0.8)nu(n)+(1.25)nu(n)

2. x(n)= (0.8)nu(n)−(1.25)nu(−n− 1)

3. x(n)= −(0.8)nu(−n− 1)−(1.25)nu(−n− 1)

4. x(n)= −(0.8)nu(−n− 1)+(1.25)nu(n)

Solution: Using Eq. (5.2.3) with a = 0.8 and a = 1.25, we note that the first three cases have
exactly the same z-transform, namely,

X(z)= 1

1 − 0.8z−1
+ 1

1 − 1.25z−1
= 2 − 2.05z−1

1 − 2.05z−1 + z−2

The three cases differ only in their ROCs. In case (1), both terms are causal, and therefore,
we must have simultaneously |z| > 0.8 and |z| > 1.25. Thus, the ROC is |z| > 1.25.
In case (2), the second term is anticausal and therefore we must have the simultaneous
inequalities: |z| > 0.8 and |z| < 1.25. Thus, the ROC is 0.8 < |z| < 1.25. In case (3), both
terms are anticausal requiring |z| < 0.8 and |z| < 1.25. Therefore, the ROC is |z| < 0.8.
The three ROCs are shown below:
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z-plane

0.8 1.25

I

III
II

z-plane

0.8 1.25

I

III
II

1

z-plane

0.8 1.25

I

III
II

unit circle

The two poles of X(z) at z = 0.8 and z = 1.25 divide the z-plane into three non-
overlapping regions which are the three possible ROCs.

Note that case (1) is causal but unstable because the term (1.25)n diverges for large positive
n. Case (2) is stable, because the term (0.8)n converges to zero exponentially for large
positive n, and the term (1.25)n converges to zero exponentially for large negative n. And,
case (3) is anticausal and unstable because the term (0.8)n diverges for large negative n.

The unit circle is contained entirely within the ROC of case (2), in accordance with the
general criterion of stability of Section 5.3.

The fourth case, which is unstable both for n → ∞ and n → −∞, does not have a z-
transform because convergence requires |z| < 0.8 for the anticausal term and |z| > 1.25
for the causal term. Thus, there is no z for whichX(z) is converges. The ROC is the empty
set. 	


5.3 Causality and Stability

The z-domain characterizations of causality and stability can be obtained with the help
of the basic result (5.2.3). A causal signal of the form

x(n)= A1pn1u(n)+A2pn2u(n)+· · · (5.3.1)

will have z-transform

X(z)= A1

1 − p1z−1
+ A2

1 − p2z−1
+ · · · (5.3.2)

with the restrictions |z| > |p1|, |z| > |p2|, and so forth. Therefore, the common ROC
of all the terms will be

|z| > max
i

|pi| (5.3.3)

that is, the outside of the circle defined by the pole of maximum magnitude. Similarly,
if the signal is completely anticausal

x(n)= −A1pn1u(−n− 1)−A2pn2u(−n− 1)−· · · (5.3.4)

its z-transform will be the same as Eq. (5.3.2), but the ROC restrictions on z will be
|z| < |p1|, |z| < |p2|, and so forth. Thus, the ROC is in this case:
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|z| < min
i

|pi| (5.3.5)

that is, the inside of the circle defined by the pole of minimum magnitude. The ROCs of
these two cases are shown in Fig. 5.3.1.

anticausal ROC 

p1

p2

p3

p4

causal ROC

z-plane

p1

p2

p3

p4

z-plane

Fig. 5.3.1 Causal and anticausal ROCs.

In summary, causal signals are characterized by ROCs that are outside the maximum
pole circle. Anticausal signals have ROCs that are inside the minimum pole circle. Mixed
signals have ROCs that are the annular region between two circles—with the poles that
lie inside the inner circle contributing causally and the poles that lie outside the outer
circle contributing anticausally.

Stability can also be characterized in the z-domain in terms of the choice of the ROC.
It can be shown that a necessary and sufficient condition for the stability of a signal x(n)
is that the ROC of the corresponding z-transform contain the unit circle. For a system
h(n), it can be shown that this condition is equivalent to the condition (3.5.4) discussed
in Chapter 3.

Stability is not necessarily compatible with causality. For a signal or system to be
simultaneously stable and causal, it is necessary that all its poles lie strictly inside the
unit circle in the z-plane. This follows from Eq. (5.3.3) which is required for a causal
ROC. If this ROC is to also correspond to a stable signal, then it must contain the unit
circle. In other words, we may set |z| = 1 in Eq. (5.3.3):

1 > max
i

|pi|

which implies that all poles must have magnitude less than one. A signal or system
can also be simultaneously stable and anticausal, but in this case all its poles must lie
strictly outside the unit circle. Indeed, the anticausality condition Eq. (5.3.5), together
with the stability condition that the ROC contain the points |z| = 1, imply

1 < min
i

|pi|

which means that all poles must have magnitude greater than one. If some of the poles
have magnitude less than one and some greater than one, then it is possible to have a
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stable signal but it will be of the mixed kind. Those poles that lie inside the unit circle
will contribute causally and those that lie outside will contribute anticausally.

Figure 5.3.2 illustrates three such possible stable cases. In all cases, the z-transform
has the same form, namely,

X(z)= A1

1 − p1z−1
+ A2

1 − p2z−1
+ A3

1 − p3z−1
+ A4

1 − p4z−1

p4

p3

p2

p1

stable/causal ROC

unit
circle

1

stable/anticausal ROC

p4

p3

p2

p1

unit
circle

stable/mixed ROC

unit
circle

p1

p4

p2
p3

1

Fig. 5.3.2 Stable ROCs.

In the stable and causal case, all poles must have magnitude less than one, that is,
|pi| < 1, i = 1,2,3,4 and the signal x(n) will be

x(n)= [
A1pn1 +A2pn2 +A3pn3 +A4pn4

]
u(n)

with all terms converging to zero exponentially for large positiven. In the stable/anticausal
case, all poles have magnitude greater than one, |pi| > 1, i = 1,2,3,4, and x(n) will be:

x(n)= −[A1pn1 +A2pn2 +A3pn3 +A4pn4
]
u(−n− 1)

where because n is negative, each term will tend to zero exponentially for large negative
n. This can be seen more clearly by writing a typical term as

−A1pn1u(−n− 1)= −A1p
−|n|
1 u(−n− 1)= −A1

(
1

p1

)|n|
u(−n− 1)

where we set n = −|n| for negative n. Because |p1| > 1 it follows that |1/p1| < 1
and its successive powers will tend to zero exponentially. In the mixed case, we have
|p1| < |p2| < 1 and |p4| > |p3| > 1. Therefore, the stable signal will be

x(n)= [
A1pn1 +A2pn2

]
u(n)−[A3pn3 +A4pn4

]
u(−n− 1)

with p1, p2 contributing causally, and p3, p4 anticausally. An example of such a stable
but mixed signal was given in the second case of Example 5.2.3, namely,

x(n)= (0.8)nu(n)−(1.25)nu(−n− 1)
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As we emphasized in Chapter 3, stability is more important in DSP than causality in
order to avoid numerically divergent computations. Causality can be reconciled exactly
if all the poles are inside the unit circle, but only approximately if some of the poles are
outside. We will discuss this issue later.

An important class of signals are the so-called marginally stable signals, which nei-
ther diverge nor converge to zero for large n. Rather, they remain bounded. The unit-
step, alternating unit-step, and more general sinusoidal signals fall in this class. Such
signals have poles that lie on the unit circle.

Some examples were cases (1,4,6,9,10) of Example 5.2.2. A simpler example is the
case of a complex sinusoid of frequency ω0

(causal) x(n)= ejω0nu(n)

(anticausal) x(n)= −ejω0nu(−n− 1)

which is a special case of Eq. (5.2.3) with a = ejω0 . Note that the plain unit-step u(n)
and alternating step (−1)nu(n) are special cases of this withω0 = 0 andω0 = π. The
corresponding z-transform follows from Eq. (5.2.3):

X(z)= 1

1 − ejω0z−1

z-plane e jω0

1
0

ω0

unit
circle

pole

with ROC being either |z| > 1 for the causal case, or |z| < 1 for the anticausal one.

5.4 Frequency Spectrum

The frequency spectrum, frequency content, or discrete-time Fourier transform (DTFT)
of a signal x(n) is defined by

X(ω)=
∞∑

n=−∞
x(n)e−jωn (DTFT) (5.4.1)

It is recognized as the evaluation of the z-transform on the unit circle, that is, at the
z points:

z = ejω (5.4.2)

Indeed, we have:†

X(z)
∣∣
z=ejω =

∞∑
n=−∞

x(n)z−n
∣∣∣∣
z=ejω

=
∞∑

n=−∞
x(n)e−jωn = X(ω)

†Here, we abuse the notation and write X(ω) instead of X(ejω).
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The frequency response H(ω) of a linear system h(n) with transfer function H(z)
is defined in the same way, namely,

H(ω)=
∞∑

n=−∞
h(n)e−jωn (frequency response) (5.4.3)

and it is also the evaluation of H(z) on the unit circle:

H(ω)= H(z)∣∣z=ejω
As discussed in Chapter 1, the digital frequency ω is in units of [radians/sample]

and is related to the physical frequency f in Hz by

ω = 2πf
fs

(digital frequency) (5.4.4)

The Nyquist interval [−fs/2, fs/2] is the following interval in units of ω:

−π ≤ω ≤ π (Nyquist interval) (5.4.5)

In Chapter 1, the quantity X(ω) was denoted by

X̂(f)=
∞∑

n=−∞
x(nT)e−2πjfn/fs

It was the Fourier spectrum of the sampled signal x(nT) and was given by the peri-
odic replication of the original analog spectrum at multiples of fs.

In units of ω, periodicity in f with period fs becomes periodicity in ω with period
2π. Therefore, X(ω) may be considered only over one period, such as the Nyquist
interval (5.4.5).

The inverse DTFT recovers the time sequence x(n) from its spectrum X(ω) over
the Nyquist interval:

x(n)= 1

2π

∫ π
−π
X(ω)ejωn dω (inverse DTFT) (5.4.6)

It expresses x(n) as a linear combination of discrete-time sinusoids ejωn of different
frequencies. The relative amplitudes and phases of these sinusoidal components are
given by the DTFT X(ω). One quick way to prove Eq. (5.4.6) is to think of Eq. (5.4.1)
as the Fourier series expansion of the periodic function X(ω). Then, Eq. (5.4.6) gives
simply the Fourier series expansion coefficients. In terms of the physical frequency f in
Hertz, the inverse DTFT reads as

x(n)= 1

fs

∫ fs/2
−fs/2

X(f)e2πjfn/fs df

As an example, consider a (double-sided) complex sinusoid of frequency ω0:
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x(n)= ejω0n, −∞ < n <∞

Then, its DTFT will be given by

X(ω)= 2πδ(ω−ω0)+(Nyquist replicas)

where the term “Nyquist replicas” refers to the periodic replication of the first term at
intervals of 2π. This is needed in order to make X(ω) periodic with period 2π. More
precisely, the full expression will be

X(ω)= 2π
∞∑

m=−∞
δ(ω−ω0 − 2πm)

To verify it, we insert it into the inverse DTFT equation (5.4.6) and recover the given
sinusoid. It was also discussed in Chapter 1, Example 1.5.1. Assuming that ω0 lies in
the Nyquist interval [−π,π], then the restriction of X(ω) within it will be given only
by the m = 0 term, that is:

X(ω)= 2πδ(ω−ω0), −π ≤ω ≤ π

Therefore, Eq. (5.4.6) gives

x(n)= 1

2π

∫ π
−π
X(ω)ejωn dω = 1

2π

∫ π
−π

2πδ(ω−ω0)ejωn dω = ejω0n

Similarly, for a linear combination of two sinusoids we have:

x(n)= A1ejω1n +A2ejω2n −→ X(ω)= 2πA1δ(ω−ω1)+2πA2δ(ω−ω2)

This can be verified in the same way, if we assume that both ω1 and ω2 lie in the
Nyquist interval. In particular, for real-valued cosine and sine signals, we have:

cos(ω0n) −→ πδ(ω−ω0)+πδ(ω+ω0)

sin(ω0n) −→ −jπδ(ω−ω0)+jπδ(ω+ω0)

Another useful relationship is Parseval’s equation, which relates the total energy of
a sequence to its spectrum:

∞∑
n=−∞

|x(n)|2 = 1

2π

∫ π
−π

|X(ω)|2 dω (Parseval) (5.4.7)

The DTFT can be given a geometric interpretation by recognizing that the points
z = ejω lie on the unit circle on the z-plane. As ω varies over the Nyquist interval
[−π,π], the complex point z = ejω moves around the unit circle, as shown in Fig. 5.4.1.
The phase angle of z is ω.
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unit
circle

e jω

1

ω ω=0ω=π
0

Fig. 5.4.1 Evaluation of z-transform on the unit circle.

In order for the spectrum X(ω) to exist,† the ROC of the z-transform X(z) must
contain the unit circle; otherwise the z-transform will diverge at the unit circle points
z = ejω. But if the ROC contains the unit circle, the signal x(n) must be stable. Thus,
the Fourier transform X(ω) exists only for stable signals.

Marginally stable signals, such as sinusoids, strictly speaking do not have a spectrum
because their poles lie on the unit circle and therefore the evaluation of X(z) on the
unit circle will cause X(z) to diverge at certain z’s. However, it is intuitively useful to
consider their spectra. For example, for the causal complex sinusoid of the previous
section we have:

x(n)= ejω0nu(n) Z−→ X(z)= 1

1 − ejω0z−1

and therefore the formal replacement of z by ejω will yield

X(ω)= 1

1 − ejω0e−jω
= 1

1 − ej(ω0−ω)

ω
ω0

∞

0 π

|X(ω)|

which diverges at ω = ω0. However, this is to be expected because if the signal were
a pure sinusoid x(n)= ejω0n, its spectrum would be a single spectral line concentrated
at ω = ω0, that is, X(ω)= 2πδ(ω −ω0) (plus its Nyquist replicas). Here, the signal
is not a pure sinusoid; it is a causal, truncated version of a pure sinusoid and therefore
additional frequencies are present. However, the dominant frequency is still ω0.

The shape of the spectrum X(ω) or H(ω) is affected by the pole/zero pattern of
the z-transform X(z) or H(z), that is, by the relative geometric locations of the poles
and zeros on the z-plane. To see this, consider a simple z-transform having a single
pole at z = p1 and a single zero at z = z1.

X(z)= 1 − z1z−1

1 − p1z−1
= z− z1

z− p1

†That is, to be finite X(ω)≠∞ for all ω.
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The corresponding spectrum and its magnitude are obtained by replacing z by ejω:

X(ω)= ejω − z1

ejω − p1
⇒ |X(ω)| = |ejω − z1|

|ejω − p1|
Figure 5.4.2 shows the relative locations of the fixed points z1, p1 and the moving

point z = ejω. A rough plot of |X(ω)| based on this pole/zero pattern is also shown.
The magnitude spectrum |X(ω)| is the ratio of the distance of the point ejω to the zero
z1, namely, |ejω − z1| divided by the distance of ejω to the pole p1, namely, |ejω −p1|.

unit
circle

zero
dip

pole
peakp1

z1

e jω

1

|z-p1|

|z-z1|

ω1 ϕ1

ω

0

ω
ω1

0 πϕ1

|X(ω)|

Fig. 5.4.2 Geometric interpretation of frequency spectrum.

As ejω moves around the unit circle, these distances will vary. As ejω passes near
the pole, the denominator distance will become small causing the value of |X(ω)| to
increase. If ω1 is the phase angle of the pole p1, then the point of closest approach
to p1 will occur at ω = ω1 causing a peak in |X(ω)| there. The closer the pole is to
the unit circle, the smaller the denominator distance will become at ω = ω1, and the
sharper the peak of |X(ω)|.

Similarly, as ejω passes near the zero z1, the numerator distance will become small,
causing |X(ω)| to decrease. At the zero’s phase angle, say ω = φ1, this distance will
be smallest, causing a dip in |X(ω)| there. The closer the zero to the unit circle, the
sharper the dip. The zero z1 can also lie on the unit circle, in which case |X(ω)| will
vanish exactly at ω = φ1.

In summary, we can draw a rough sketch of the spectrum |X(ω)| by letting ejω

trace the unit circle and draw peaks as ejω passes near poles, and dips as it passes near
zeros. By proper location of the zeros and poles of X(z) or H(z), one can design any
desired shape for X(ω) or H(ω).

It is convenient to divide the unit circle into low-, medium-, and high-frequency
wedge regions, as shown in Fig. 5.4.3. This subdivision is somewhat arbitrary because
what is “low” or “high” frequency depends on the application. It aids, however, in the
placement of poles and zeros. For example, to make a lowpass filter that emphasizes low
frequencies and attenuates high ones, one would place poles inside the circle somewhere
within the low-frequency wedge and/or zeros within the high-frequency wedge.

Such filter design methods are somewhat crude and are used in practice only for
the design of simple and/or specialized filters, such as resonator or notch filters or
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Fig. 5.4.3 Low-, medium-, and high-frequency parts of the unit circle.

biquadratic filter sections for digital audio graphic and parametric equalizers. Such
design examples will be considered later on.

The DTFT X(ω) of a signal x(n) is a complex-valued quantity and therefore, it can
be characterized also by its real and imaginary parts ReX(ω), ImX(ω) or, in its polar
form, by its magnitude and phase responses |X(ω)|, argX(ω). Thus,

X(ω)= ReX(ω)+j ImX(ω)= |X(ω)|ej argX(ω)

For real-valued signals x(n), the quantity X(ω) satisfies the following so-called
hermitian property:

X(ω)∗= X(−ω) (5.4.8)

which translates to the following relationships for the magnitude and phase responses:

|X(ω)| = |X(−ω)|
argX(ω) = − argX(−ω)

(5.4.9)

that is, the magnitude response is even inω and the phase response odd. Similar defini-
tions and results apply to the frequency response H(ω) of a real-valued system h(n).

We note finally that the multiplicative filtering propertyY(z)= H(z)X(z) evaluated
on the unit circle takes the following frequency-domain form:

Y(ω)= H(ω)X(ω) (filtering in frequency domain) (5.4.10)

Its consequences will be explored later on.
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5.5 Inverse z-Transforms

The problem of inverting a given z-transformX(z) is to find the time signal x(n) whose
z-transform is X(z). As we saw already, the answer for x(n) is not necessarily unique.
But it can be made unique by specifying the corresponding ROC.

In inverting a z-transform, it is convenient to break it into its partial fraction (PF)
expansion form, that is, into a sum of individual pole terms of the type (5.3.2).

Once X(z) is written in the form (5.3.2), one still needs to know how to invert each
term, that is, causally or anticausally. This depends on the choice of the ROC.

In general, the circles through the poles at z = p1, z = p2, and so on, divide the
z-plane into non-overlapping regions, which are all possible candidates for ROCs. Any
one of these ROC regions will result into a different x(n). Among all possible x(n),
there will be a unique one that is stable, because the unit circle lies in exactly one of the
possible ROCs.

Example 5.5.1: In Example (5.2.3), the first three signals had a common z-transform:

X(z)= 1

1 − 0.8z−1
+ 1

1 − 1.25z−1

The two circles through the poles at z = 0.8 and z = 1.25 divide the z-plane into the
three regions I, II, III, shown in Example 5.2.3. There are therefore three possible inverse
z-transforms, that is, three different signals x(n) corresponding to the three ROC choices.
But, only II is stable. 	


The partial fraction expansion method can be applied to z-transforms that are ratios
of two polynomials in z−1 of the form:

X(z)= N(z)
D(z)

The zeros of the denominator polynomial D(z) are the poles of X(z). Assuming
D(z) has degreeM, there will beM denominator zeros, say at p1, p2, . . . , pM, andD(z)
may be assumed to be in the factored form

D(z)= (1 − p1z−1)(1 − p2z−1)· · · (1 − pMz−1)

The partial fraction expansion of X(z) is given by†

X(z) = N(z)
D(z)

= N(z)
(1 − p1z−1)(1 − p2z−1)· · · (1 − pMz−1)

= A1

1 − p1z−1
+ A2

1 − p2z−1
+ · · · + AM

1 − pMz−1

(5.5.1)

For this expansion to be possible as an identity in z−1, the degree of the numerator
polynomialN(z)must be strictly less than the degreeM of the denominator polynomial.
The PF expansion coefficients Ai can be computed by the formulas:

†We have assumed that all the poles are single poles.
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Ai =
[
(1 − piz−1)X(z)

]
z=pi =

⎡⎢⎢⎢⎣ N(z)∏
j �=i
(1 − pjz−1)

⎤⎥⎥⎥⎦
z=pi

(5.5.2)

for i = 1,2, . . . ,M. In words, the factor (1 − piz−1) is deleted from the denominator
and the remaining expression is evaluated at the pole z = pi.

Example 5.5.2: In Example 5.2.3 the z-transform was written in the form

X(z)= 2 − 2.05z−1

1 − 2.05z−1 + z−2
= 2 − 2.05z−1

(1 − 0.8z−1)(1 − 1.25z−1)

Because the numerator polynomial has degree one in the variable z−1, there is a PF expan-
sion of the form:

X(z)= 2 − 2.05z−1

(1 − 0.8z−1)(1 − 1.25z−1)
= A1

1 − 0.8z−1
+ A2

1 − 1.25z−1

The two coefficients are obtained by Eq. (5.5.2) as follows:

A1 = [
(1 − 0.8z−1)X(z)

]
z=0.8 =

[
2 − 2.05z−1

1 − 1.25z−1

]
z=0.8

= 2 − 2.05/0.8
1 − 1.25/0.8

= 1

A2 = [
(1 − 1.25z−1)X(z)

]
z=1.25 =

[
2 − 2.05z−1

1 − 0.8z−1

]
z=1.25

= 1

which are as expected. 	


If the degree of the numerator polynomial N(z) is exactly equal to the degree M
of the denominator D(z), then the PF expansion (5.5.1) must be modified by adding an
extra term of the form:

X(z) = N(z)
D(z)

= N(z)
(1 − p1z−1)(1 − p2z−1)· · · (1 − pMz−1)

= A0 + A1

1 − p1z−1
+ A2

1 − p2z−1
+ · · · + AM

1 − pMz−1

(5.5.3)

The coefficientsAi, i = 1,2, . . . ,M are computed in exactly the same way by Eq. (5.5.2).
The extra coefficient A0 is computed by evaluating the z-transform at z = 0, that is,

A0 = X(z)∣∣z=0 (5.5.4)

If the degree ofN(z) is strictly greater thanM, one may divide the polynomialD(z)
into N(z), finding the quotient and remainder polynomials, so that

N(z)= Q(z)D(z)+R(z)

and then writing
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X(z)= N(z)
D(z)

= Q(z)D(z)+R(z)
D(z)

= Q(z)+R(z)
D(z)

where now the second term will admit an ordinary PF expansion of the form (5.5.1) be-
cause the degree of the remainder polynomialR(z) is strictly less thanM. Alternatively,
one may simply remove the numerator polynomial N(z) altogether, then carry out an
ordinary PF expansion of the quantity

W(z)= 1

D(z)

and finally restore the numerator by writing

X(z)= N(z)W(z)
We may refer to this method as the “remove/restore” method. Some examples will
illustrate these techniques.

Example 5.5.3: We emphasize that a PF expansion may exist in one independent variable, say
z−1, but not in another, say z. For example, the z-transform

X(z)= 2 − 2.05z−1

(1 − 0.8z−1)(1 − 1.25z−1)
= z(2z− 2.05)
(z− 0.8)(z− 1.25)

has numerator of degree one with respect to the variable z−1, but degree two with respect
to z. Thus, it admits an expansion of the form (5.5.1) with respect to z−1, but not with
respect to z.

Many texts prefer to work with z and therefore to make the PF expansion possible, a factor
z is divided out to lower the degree of the numerator and then restored at the end, that is,

X(z)
z

= (2z− 2.05)
(z− 0.8)(z− 1.25)

= A1

z− 0.8
+ A2

z− 1.25

When z is restored, one gets

X(z)= zA1

z− 0.8
+ zA2

z− 1.25
= A1

1 − 0.8z−1
+ A2

1 − 1.25z−1

It is easily verified that the PF expansion coefficients will be the same in the two approaches.
In this book, we prefer to work directly with z−1 and avoid the extra algebraic steps required
to write everything in terms of z, divide by z, restore z, and rewrite the final answer in
terms of z−1. 	


Example 5.5.4: Compute all possible inverse z-transforms of

X(z)= 6 + z−1

1 − 0.25z−2
0.5-0.5

0

z-plane I

II
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Solution: Because the numerator has degree one in z−1, we have the PF expansion:

X(z)= 6 + z−1

1 − 0.25z−2
= 6 + z−1

(1 − 0.5z−1)(1 + 0.5z−1)
= A1

1 − 0.5z−1
+ A2

1 + 0.5z−1

where

A1 =
[

6 + z−1

1 + 0.5z−1

]
z=0.5

= 4, A2 =
[

6 + z−1

1 − 0.5z−1

]
z=−0.5

= 2

The two poles at ±0.5 have the same magnitude and therefore divide the z-plane into two
ROC regions I and II: |z| > 0.5 and |z| < 0.5. For the first ROC, both terms in the PF
expansion are inverted causally giving:

x(n)= A1(0.5)nu(n)+A2(−0.5)nu(n)

Because this ROC also contains the unit circle the signal x(n) will be stable. For the second
ROC, both PF expansion terms are inverted anticausally giving:

x(n)= −A1(0.5)nu(−n− 1)−A2(−0.5)nu(−n− 1)

This answer is unstable, because the ROC does not contain the unit circle. 	


Example 5.5.5: Determine all inverse z-transforms of

X(z)= 10 + z−1 − z−2

1 − 0.25z−2
0.5-0.5

0

z-plane I

II

Solution: Ordinary partial fraction expansion is not valid in this case because the degree of the
numerator is the same as the degree of the denominator. However, we may still have an
expansion of the form (5.5.3)

X(z) = 10 + z−1 − z−2

1 − 0.25z−2
= 10 + z−1 − z−2

(1 − 0.5z−1)(1 + 0.5z−1)

= A0 + A1

1 − 0.5z−1
+ A2

1 + 0.5z−1

where A1 and A2 are determined in the usual manner and A0 is determined by evaluating
X(z) at z = 0:

A0 =
[

10 + z−1 − z−2

1 − 0.25z−2

]
z=0

=
[

10z2 + z− 1

z2 − 0.25

]
z=0

= −1

−0.25
= 4

A1 =
[

10 + z−1 − z−2

1 + 0.5z−1

]
z=0.5

= 4, A2 =
[

10 + z−1 − z−2

1 − 0.5z−1

]
z=−0.5

= 2
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Again, there are only two ROCs I and II: |z| > 0.5 and |z| < 0.5. For the first ROC, the A1

and A2 terms are inverted causally, and the A0 term inverts into a simple δ(n):

x(n)= A0δ(n)+A1(0.5)nu(n)+A2(−0.5)nu(n)

For the second ROC, we have:

x(n)= A0δ(n)−A1(0.5)nu(−n− 1)−A2(−0.5)nu(−n− 1)

Only the first inverse is stable because its ROC contains the unit circle. 	


Example 5.5.6: Determine the causal inverse z-transform of

X(z)= 6 + z−5

1 − 0.25z−2
0.5-0.5

0

z-plane I

II

Solution: Here, the degree of the numerator is strictly greater than that of the denominator.
The first technique is to divide the denominator into the numerator, giving

(6 + z−5)= (1 − 0.25z−2)(−16z−1 − 4z−3)+(6 + 16z−1)

where (6+ 16z−1) is the remainder polynomial and (−16z−1 − 4z−3) the quotient. Then,

X(z)= 6 + z−5

1 − 0.25z−2
= −16z−1 − 4z−3 + 6 + 16z−1

1 − 0.25z−2

and expanding the last term in PF expansion:

X(z)= −16z−1 − 4z−3 + 19

1 − 0.5z−1
− 13

1 + 0.5z−1

The causal inverse, having ROC |z| > 0.5, will be:

x(n)= −16δ(n− 1)−4δ(n− 3)+19(0.5)nu(n)−13(−0.5)nu(n)

The second technique is the “remove/restore” method. Ignoring the numerator we have

W(z)= 1

1 − 0.25z−2
= 0.5

1 − 0.5z−1
+ 0.5

1 + 0.5z−1

which has the causal inverse

w(n)= 0.5(0.5)nu(n)+0.5(−0.5)nu(n)

Once w(n) is known, one can obtain x(n) by restoring the numerator:
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X(z)= (6 + z−5)W(z)= 6W(z)+z−5W(z)

Taking inverse z-transforms of both sides and using the delay property, we find

x(n) = 6w(n)+w(n− 5)= 3(0.5)nu(n)+3(−0.5)nu(n)

+ 0.5(0.5)n−5u(n− 5)+0.5(−0.5)n−5u(n− 5)

The two expressions for x(n) from the two techniques are equivalent. 	


Example 5.5.7: Determine all possible inverse z-transforms of

X(z)= 7 − 9.5z−1 − 3.5z−2 + 5.5z−3

(1 − z−2)(1 − 0.5z−1)(1 − 1.5z−1) 0.5

1.51-1 I
II

IV
III

z-plane

Solution: X(z) admits the PF expansion:

X(z)= 1

1 − z−1
+ 1

1 + z−1
+ 3

1 − 0.5z−1
+ 2

1 − 1.5z−1

where the PF expansion coefficients are easily found. The four poles at z = 0.5,1,−1,
1.5 divide the z-plane into the four ROC regions I, II, III, IV. Region I corresponds to the
completely anticausal inverse and region IV to the completely causal one. For region II, the
pole at z = 0.5 will be inverted causally and the rest anticausally. For region III, z = 0.5
and z = ±1 will be inverted causally and z = 1.5 anticausally. Thus, the four possible
inverse z-transforms are:

x1(n) = −[1 + (−1)n+3(0.5)n+2(1.5)n
]
u(−n− 1)

x2(n) = 3(0.5)nu(n)−[1 + (−1)n+2(1.5)n
]
u(−n− 1)

x3(n) =
[
1 + (−1)n+3(0.5)n

]
u(n)−2(1.5)nu(−n− 1)

x4(n) =
[
1 + (−1)n+3(0.5)n+2(1.5)n

]
u(n)

Strictly speaking there is no stable answer because two of the poles, z = ±1, lie on the
unit circle. However, x2(n) and x3(n) are marginally stable, that is, neither diverging nor
converging to zero for large n. In both cases, the anticausal term (1.5)n tends to zero for
large negative n. Indeed, because n is negative, we write n = −|n| and

(1.5)n= (1.5)−|n|→ 0 as n→ −∞

The terms due to the poles z = ±1 are causal or anticausal in cases III and II, but they
remain bounded. The other two signals x1(n) and x4(n) are unstable because the unit
circle does not lie in their ROCs. 	
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The assumption that the numerator and denominator polynomials N(z) and D(z)
have real-valued coefficients implies that the complex-valued poles of X(z) come in
complex-conjugate pairs. In that case, the PF expansion takes the form

X(z)= A1

1 − p1z−1
+ A∗

1

1 − p∗1 z−1
+ A2

1 − p2z−1
+ · · · 0 ω1

p1

p1*

p2

p3

z-plane

R1

where the PF expansion coefficients also come in conjugate pairs. Thus, it is necessary
to determine only one of them, not both. The corresponding inverse z-transform will
be real-valued; indeed, considering the causal case we have

x(n)= A1pn1u(n)+A∗
1 p

∗n
1 u(n)+A2pn2u(n)+· · ·

Because the first two terms are complex conjugates of each other, we may use the
result that C+C∗ = 2Re(C), for any complex number C, to write the first term as

A1pn1 +A∗
1 p

∗n
1 = 2Re

[
A1pn1

]
Writing A1 and p1 in their polar form, say, A1 = B1ejα1 and p1 = R1ejω1 , with

B1 > 0 and R1 > 0, we have

Re
[
A1pn1

] = Re
[
B1ejα1Rn1ejω1n

] = B1Rn1 Re
[
ejω1n+jα1

]
and taking the real part of the exponential, we find

A1pn1 +A∗
1 p

∗n
1 = 2Re

[
A1pn1

] = 2B1Rn1 cos(ω1n+α1)

and for x(n)

x(n)= 2B1Rn1 cos(ω1n+α1)u(n)+A2pn2u(n)+· · ·

Thus, complex-valued poles correspond to exponentially decaying sinusoids (if R1 <
1). The decay envelope Rn1 and the frequency ω1 depend on the complex pole by p1 =
R1ejω1 .

The first-order terms in the partial fraction expansion corresponding to complex con-
jugate poles can be reassembled into second-order terms with real-valued coefficients,
as follows:

A1

1 − p1z−1
+ A∗

1

1 − p∗1 z−1
= (A1 +A∗

1 )−(A1p∗1 +A∗
1 p1)z−1

(1 − p1z−1)(1 − p∗1 z−1)

Using the identities

(1 − p1z−1)(1 − p∗1 z−1)= 1 − 2Re(p1)z−1 + |p1|2z−2

or,
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(1 −R1ejω1z−1)(1 −R1e−jω1z−1)= 1 − 2R1 cos(ω1)z−1 +R2
1z−2

and writing

A1 +A∗
1 = 2Re(A1)= 2B1 cos(α1)

A1p∗1 +A∗
1 p1 = 2Re(A1p∗1 )= 2B1R1 cos(α1 −ω1)

we find

A1

1 − p1z−1
+ A∗

1

1 − p∗1 z−1
= 2B1 cos(α1)−2B1R1 cos(α1 −ω1)z−1

1 − 2R1 cos(ω1)z−1 +R2
1z−2

having real-valued coefficients.

Example 5.5.8: Determine all possible inverse z-transforms of

X(z)= 4 − 3z−1 + z−2

1 + 0.25z−2

0.5j

-0.5j

0

z-plane
I

II

Solution: We write

X(z) = 4 − 3z−1 + z−2

1 + 0.25z−2
= 4 − 3z−1 + z−2

(1 − 0.5jz−1)(1 + 0.5jz−1)

= A0 + A1

1 − 0.5jz−1
+ A∗

1

1 + 0.5jz−1

with the numerical values:

A0 =
[

4 − 3z−1 + z−2

1 + 0.25z−2

]
z=0

= 4 , A1 =
[

4 − 3z−1 + z−2

1 + 0.5jz−1

]
z=0.5j

= 3j

Therefore,

X(z)= 4 + 3j
1 − 0.5jz−1

− 3j
1 + 0.5jz−1

= 4 − 3z−1

1 + 0.25z−2

The causal ROC is |z| > |0.5j| = 0.5, resulting in

x(n)= 4δ(n)+3j(0.5j)nu(n)−3j(−0.5j)nu(n)

Because the last two terms are complex conjugates of each other, we may write them as

x(n)= 4δ(n)+2Re
[
3j(0.5j)nu(n)

] = 4δ(n)+6(0.5)nu(n)Re
[
jn+1

]
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Writing jn+1 = ejπ(n+1)/2 and taking real parts we find

Re
[
jn+1

] = cos
(π(n+ 1)

2

) = − sin
(πn

2

)
and

x(n)= 4δ(n)−6(0.5)nsin
(πn

2

)
u(n)

Similarly, we find

x(n)= 4δ(n)+6(0.5)nsin
(πn

2

)
u(−n− 1)

for the anticausal version with ROC |z| < 0.5. Some additional examples with complex
conjugate poles were cases (6-9) of Example 5.2.2. 	


5.6 Problems

5.1 Prove the linearity, delay, and convolution properties of z-transforms given by Eqs. (5.1.3)–
(5.1.5).

5.2 Compute the z-transform of the following sequences and determine the corresponding re-
gion of convergence:

a. x(n)= δ(n− 5)

b. x(n)= δ(n+ 5)

c. x(n)= u(n− 5)

d. x(n)= u(−n+ 5)

5.3 Compute the z-transform of the following sequences and determine the corresponding re-
gion of convergence:

a. x(n)= (−0.5)nu(n)

b. x(n)= (−0.5)n
[
u(n)−u(n− 10)

]
c. x(n)= (0.5)nu(n)+(−0.5)nu(n)

5.4 Compute the z-transform of the following sequences and determine the corresponding re-
gion of convergence:

a. x(n)= 2(0.8)n cos(πn/2)u(n)

b. x(n)= (0.8j)nu(n)+(−0.8j)nu(n)

5.5 Compute the z-transform of the following sequences and determine the corresponding re-
gion of convergence:

a. x(n)= (0.25)nu(n)+4nu(n)

b. x(n)= (0.25)nu(n)−4nu(−n− 1)

c. x(n)= −(0.25)nu(−n− 1)−4nu(−n− 1)

d. Explain why x(n)= −(0.25)nu(−n− 1)+4nu(n) does not have a z-transform.



5.6. PROBLEMS 211

5.6 Using the power series definition of z-transforms, derive the z-transform and its ROC of the
signal x(n)= cos(πn/2)u(n).

5.7 Using partial fractions or power series expansions, compute the inverse z-transform of the
following z-transforms and determine whether the answer is causal and/or stable:

a. X(z)= (1 − 4z−2)(1 + 3z−1)

b. X(z)= 5 + 3z3 + 2z−2

5.8 Using partial fractions or power series expansions, determine all possible inverse z-transforms
of the following z-transforms, sketch their ROCs, and discuss their stability and causality
properties:

a. X(z)= 3(1 + 0.3z−1)
1 − 0.81z−2

b. X(z)= 6 − 3z−1 − 2z−2

1 − 0.25z−2

c. X(z)= 6 + z−5

1 − 0.64z−2

d. X(z)= 10 + z−2

1 + 0.25z−2

e. X(z)= 6 − 2z−1 − z−2

(1 − z−1)(1 − 0.25z−2)
, ROC |z| > 1

f. X(z)= −4 + 1

1 + 4z−2

g. X(z)= 4 − 0.6z−1 + 0.2z−2

(1 − 0.5z−1)(1 + 0.4z−1)

5.9 Consider the z-transform pair:

xa(n)= anu(n) � Xa(z)= 1

1 − az−1

Applying the derivative operator ∂/∂a to the pair, derive the z-transform of the sequence
x(n)= nanu(n).

5.10 Consider the differential operator D = a
∂
∂a

. First, show that its k-fold application gives

Dkan = nkan. Then, use this result to obtain the z-transform of x(n)= nkanu(n). Derive
the explicit transforms for the cases k = 1,2,3,4.

5.11 Show the z-transform of a triangular signal:

L∑
n=−L

(
1 − |n|

L
)
z−n = 1

L

[
1 − z−L
1 − z−1

]2

zL−1

5.12 Using Euler’s formula and the z-transform pair of Problem 5.9, derive the z-transforms of
the signals x(n)= Rn cos(ω0n)u(n) and x(n)= Rn sin(ω0n)u(n).

5.13 Consider the causal sequence x(n)= {a0, a1, a2, a3, a0, a1, a2, a3, · · · }, where the dots indi-
cate the periodic repetition of the four samples {a0, a1, a2, a3}. Determine the z-transform
of x(n) and the corresponding ROC.

5.14 Using partial fraction expansions, determine the inverse z-transform of the z-transform of
Problem 5.13. Verify that the sum of the PFE terms generate the periodic sequence x(n) of
that problem.
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5.15 Consider the z-transform for |z| > 1:

X(z)= 1 − z−2 + z−4 − z−6 + z−8 − · · ·

Derive a rational expression for X(z) in two ways: (a) by summing the above series, and (b)
by showing that it satisfies the equation X(z)= 1 − z−2X(z).
Derive also the inverse z-transform x(n) for all n.

5.16 Without using partial fractions, determine the causal inverse z-transforms of:

a. X(z)= 1

1 + z−4

b. X(z)= 1

1 − z−4

c. X(z)= 1

1 + z−8

d. X(z)= 1

1 − z−8

5.17 Using partial fraction expansions, determine the inverse z-transforms of Problem 5.16. Ver-
ify that you get the same answers as in that problem.

5.18 Consider a transfer function H(z)= N(z)/D(z), where the numerator and denominator
polynomials have real-valued coefficients and degrees L and M in z−1, and assume L > M.
Show that H(z) can be written in the form:

H(z)= Q(z)+
K∑
i=1

bi0 + z−1bi1
1 + ai1z−1 + ai2z−2

where Q(z) is a polynomial of degree L − M in z−1 and the second-order sections have
real coefficients. The number of sections K is related to M by K = M/2 if M is even and
K = (M − 1)/2 if M is odd. This result forms the basis of the parallel realization form of
H(z).

5.19 Determine the factorization into first-order zeros of:

1 − z−D =
D−1∏
k=0

(1 − zkz−1)

1 + z−D =
D−1∏
k=0

(1 − zkz−1)

where D is an integer. What are the zeros zk in the two cases? For D = 4 and D = 8, place
these zeros on the z-plane with respect to the unit circle.

5.20 Given a > 0 and integer D, repeat the previous problem for:

1 − az−D =
D−1∏
k=0

(1 − zkz−1)

1 + az−D =
D−1∏
k=0

(1 − zkz−1)
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5.21 Prove the “modulation” property of z-transforms:

x(n) Z−→ X(z) ⇒ anx(n) Z−→ X(z/a)

For a = ejω0 , show that in the frequency domain this property becomes:

x(n)−→ X(ω) ⇒ ejω0nx(n)−→ X(ω−ω0)

5.22 Given the DTFT equation (5.4.1), prove the inverse DTFT, Eq. (5.4.6).

5.23 Prove the Parseval equation (5.4.7).

5.24 For real-valued signals, prove the hermitian properties (5.4.8) and (5.4.9). What are the her-
mitian properties satisfied by the real and imaginary parts of the DTFT spectrum?



6
Transfer Functions

6.1 Equivalent Descriptions of Digital Filters

In this chapter, with the aid of z-transforms, we develop several mathematically equiv-
alent ways to describe and characterize FIR and IIR filters, namely, in terms of their:

• Transfer function H(z)
• Frequency response H(ω)
• Block diagram realization and sample processing algorithm
• I/O difference equation
• Pole/zero pattern
• Impulse response h(n)
• I/O convolutional equation

The most important one is the transfer function description because from it we can
easily obtain all the others. Figure 6.1.1 shows the relationships among these descrip-
tions. The need for such multiple descriptions is that each provides a different insight
into the nature of the filter and each serves a different purpose.

transfer function
H(z)

I/O difference
equation(s)

impulse response
h(n)

I/O convolutional
equation

pole/zero
pattern

filter
design
specifications

block
processing

sample
processing

frequency response
H(ω)

block-diagram
realization

filter design method

Fig. 6.1.1 Equivalent descriptions of digital filters.
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In practice, a typical usage of these descriptions is to start by specifying a set of
desired frequency response specifications, that is, the desired shape ofH(ω) (lower left
corner in Fig. 6.1.1). Then, through a filter design method, obtain a transfer function
H(z) that satisfies the given specifications. From H(z) one can then derive a block
diagram realization and the corresponding sample-by-sample processing algorithm that
tells how to operate the designed filter in real time (lower right corner of Fig. 6.1.1). For
an FIR filter, one can alternatively obtain the impulse response h(n) and then use one
of the convolution-based block processing methods to implement the operation of the
filter (upper right corner of Fig. 6.1.1).

6.2 Transfer Functions

Here, we illustrate the central role played by the transfer function H(z) of a filter by
showing how to pass back and forth from one description to another.

Given a transfer function H(z) one can obtain: (a) the impulse response h(n), (b)
the difference equation satisfied by the impulse response, (c) the I/O difference equation
relating the output y(n) to the input x(n), (d) the block diagram realization of the
filter, (e) the sample-by-sample processing algorithm, (f) the pole/zero pattern, (g) the
frequency response H(ω). Conversely, given any of (a)–(g) as the starting point, one
can obtain H(z) and from it the rest of (a)–(g).

As an example, consider the transfer function:

H(z)= 5 + 2z−1

1 − 0.8z−1
(6.2.1)

To obtain the impulse response, we use partial fraction expansion to write it in the
form:

H(z)= 5 + 2z−1

1 − 0.8z−1
= A0 + A1

1 − 0.8z−1
= −2.5 + 7.5

1 − 0.8z−1

where A0 and A1 are obtained by:

A0 = H(z)∣∣z=0 = 5 + 2z−1

1 − 0.8z−1

∣∣∣∣∣
z=0

= 5z+ 2

z− 0.8

∣∣∣∣
z=0

= 2

−0.8
= −2.5

A1 = (1 − 0.8z−1)H(z)
∣∣
z=0.8 = (5 + 2z−1)

∣∣
z=0.8 = 5 + 2/0.8 = 7.5

Assuming the filter is causal, we find:

h(n)= −2.5δ(n)+7.5(0.8)nu(n) (6.2.2)

The difference equation satisfied by h(n) can be obtained fromH(z). The standard
approach is to eliminate the denominator polynomial ofH(z) and then transfer back to
the time domain. Starting with Eq. (6.2.1) and multiplying both sides by the denominator,
we find

(1 − 0.8z−1)H(z)= 5 + 2z−1 ⇒ H(z)= 0.8z−1H(z)+5 + 2z−1
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Taking inverse z-transforms of both sides and using the linearity and delay proper-
ties, we obtain the difference equation for h(n):

h(n)= 0.8h(n− 1)+5δ(n)+2δ(n− 1) (6.2.3)

It is easily verified that Eq. (6.2.2) is the causal solution, that is, the solution with the
causal initial condition h(−1)= 0. Given the impulse response h(n), we can obtain the
general I/O convolutional equation for the filter, that is,

yn = h0xn + h1xn−1 + h2xn−2 + h3xn−3 + · · ·
= 5xn + 7.5

[
(0.8)xn−1 + (0.8)2xn−2 + (0.8)3xn−3 + · · · ]

It can be rearranged into a difference equation for y(n) using the time-domain tech-
niques of Chapter 3, as in Example 3.4.7. This difference equation can be determined
very quickly using z-transforms with the aid of the z-domain equivalent of convolution:

Y(z)= H(z)X(z)

Again, the standard procedure is to eliminate denominators and go back to the time
domain. For this example, we have:

Y(z)= H(z)X(z)= 5 + 2z−1

1 − 0.8z−1
X(z) ⇒ (1 − 0.8z−1)Y(z)= (5 + 2z−1)X(z)

which can be written as

Y(z)−0.8z−1Y(z)= 5X(z)+2z−1X(z)

Taking inverse z-transforms of both sides, we have

y(n)−0.8y(n− 1)= 5x(n)+2x(n− 1)

Therefore, the I/O difference equation is:

y(n)= 0.8y(n− 1)+5x(n)+2x(n− 1) (6.2.4)

Note that Eq. (6.2.3) is a special case of this, with x(n)= δ(n) and y(n)= h(n). If
the difference equation (6.2.4) was the starting point, we could obtainH(z) by reversing
all of the above steps, that is, taking z-transforms of both sides

Y(z)= 0.8z−1Y(z)+5X(z)+2z−1X(z) ⇒
(1 − 0.8z−1)Y(z)= (5 + 2z−1)X(z)

and solving for the ratio

H(z)= Y(z)
X(z)

= 5 + 2z−1

1 − 0.8z−1

Once the I/O difference equation is determined, one can mechanize it by a block
diagram. For example, Eq. (6.2.4) can be implemented as shown in Fig. 6.2.1. This is



6.2. TRANSFER FUNCTIONS 217

x(n)

0.82

5
y(n)

z-1 z-1

v1(n)=x(n-1) w1(n)=y(n-1)

Fig. 6.2.1 Direct form realization of H(z).

referred to as the direct form realization because it realizes directly the various terms
in the right-hand side of Eq. (6.2.4).

As in the FIR case, the sample processing algorithm can be obtained by assigning
internal state variables to all the delays that are present in the block diagram. That is,
we may define

v1(n)= x(n− 1) ⇒ v1(n+ 1)= x(n)

where v1(n) is the content of the x-delay at time n. Similarly, we define:

w1(n)= y(n− 1) ⇒ w1(n+ 1)= y(n)

so that w1(n) is the content of the y-delay at time n. In terms of these definitions, we
can replace Eq. (6.2.4) by the system of equations:

(compute output) y(n)= 0.8w1(n)+5x(n)+2v1(n)

(update states) v1(n+ 1)= x(n)
w1(n+ 1)= y(n)

It may be written as the repetitive sample processing algorithm:

for each input sample x do:
y = 0.8w1 + 5x+ 2v1

v1 = x
w1 = y

(direct form) (6.2.5)

The frequency response of this particular filter can be obtained by replacing z by ejω

into H(z). This substitution is valid here because the filter is stable and therefore its
ROC, |z| > 0.8, contains the unit circle. We find:

H(z)= 5(1 + 0.4z−1)
1 − 0.8z−1

⇒ H(ω)= 5(1 + 0.4e−jω)
1 − 0.8e−jω

Using the identity

|1 − ae−jω| =
√

1 − 2a cosω+ a2

which is valid for any real-valued a, we obtain an expression for the magnitude response:
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|H(ω)| = 5
√

1 + 0.8 cosω+ 0.16√
1 − 1.6 cosω+ 0.64

This quantity may be plotted with the help of the pole/zero geometric pattern. The
filter has a zero at z = −0.4 and a pole at z = 0.8. Fig. 6.2.2 shows the pole/zero
locations relative to the unit circle.

z-plane

unit
circle

0.8

-0.4

= poles
= zeros

π ω0

35

35/21

|H(ω)|e jω

ω

Fig. 6.2.2 Pole/zero pattern and magnitude response.

A quick sketch of the magnitude response |H(ω)| can be obtained by letting the
point ejω trace the unit circle and drawing peaks when passing near poles and dips
when passing near zeros.

The moving point ejω is nearest to the pole z = 0.8 whenω = 0 and therefore there
must be a peak there. Similarly, at ω = π there must be a dip because ejω is closest to
the zero z = −0.4. In particular, setting z = 1 or ω = 0, and z = −1 or ω = π, we can
calculate the actual frequency response values at the endpoints of the Nyquist interval:

H(ω)
∣∣
ω=0 = H(z)∣∣z=1 = 5 + 2

1 − 0.8
= 35

H(ω)
∣∣
ω=π = H(z)∣∣z=−1 = 5 − 2

1 + 0.8
= 5

3
= 35

21

This filter acts like a lowpass filter because it emphasizes low frequencies and atten-
uates high frequencies. The highest frequency is attenuated by a factor of 21 relative to
the lowest one:

|H(π)|
|H(0)| = 1

21

or, in decibels:

20 log10

∣∣∣∣H(π)H(0)

∣∣∣∣ = 20 log10

( 1

21

) = −26.4 dB

The block diagram realization of a transfer function is not unique. Different but
mathematically equivalent forms of the transfer function may lead to a different set of
I/O difference equations which are implemented by a different block diagram and corre-
sponding sample processing algorithm. For our example, the partial fraction expansion
form of Eq. (6.2.1)
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H(z)= 5 + 2z−1

1 − 0.8z−1
= −2.5 + 7.5

1 − 0.8z−1

may be thought of as a parallel implementation, that is, the sum of two transfer func-
tions

H(z)= H1(z)+H2(z)

where H1(z)= −2.5 and H2(z)= 7.5/(1 − 0.8z−1). Fig. 6.2.3 shows a block diagram
implementation of this form. At first glance, it may not be obvious that the transfer
function of this block diagram is the above H(z).

x(n)

0.8

y(n)

z-1

w(n)

w(n-1) w1

w07.5

-2.5

Fig. 6.2.3 Parallel form realization of H(z).

To verify it, we follow the standard procedure of assigning labels, that is, names to
all the signal lines that do not already have a label. The output adder has two inputs,
one due to the direct connection of the input to the output through the multiplier −2.5,
that is, the term −2.5x(n). The other input is assigned a temporary name w(n). Thus,
the output adder equation becomes

y(n)= w(n)−2.5x(n) (6.2.6)

The quantity w(n) is recognized as the output of the filter H2(z) with input x(n).
The I/O difference equation of H2(z) is

w(n)= 0.8w(n− 1)+7.5x(n) (6.2.7)

The two equations (6.2.6) and (6.2.7) together describe the operation of the block
diagram in the time domain. Transforming both equations to the z-domain, we obtain

Y(z) =W(z)−2.5X(z)

W(z) = 0.8z−1W(z)+7.5X(z) ⇒ W(z)= 7.5X(z)
1 − 0.8z−1

and therefore,

Y(z)=W(z)−2.5X(z)= 7.5X(z)
1 − 0.8z−1

− 2.5X(z)
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Solving for the ratio Y(z)/X(z) gives the corresponding transfer function:

H(z)= Y(z)
X(z)

= 7.5
1 − 0.8z−1

− 2.5

The sample processing algorithm corresponding to this block diagram is obtained
by introducing an internal state holding the content of the delay. That is, we define

w0(n) = w(n)
w1(n) = w(n− 1)

⇒ w1(n+ 1)= w0(n)

Then, Eqs. (6.2.6) and (6.2.7) can be replaced by the system:

w0(n)= 0.8w1(n)+7.5x(n)

y(n)= w0(n)−2.5x(n)

w1(n+ 1)= w0(n)

which can be written in the algorithmic form:

for each input sample x do:
w0 = 0.8w1 + 7.5x
y = w0 − 2.5x
w1 = w0

(parallel form) (6.2.8)

Other block diagram realizations can be derived by rearranging the I/O computations
differently. A third realization is the so-called canonical form realization and is depicted
in Fig. 6.2.4. It can be justified as follows. Starting with the z-domain filtering equation

x(n)

0.8

y(n)

z-1

w(n)

w(n-1) w1

w0

2

5

Fig. 6.2.4 Canonical form realization of H(z).

Y(z)= H(z)X(z)= 5 + 2z−1

1 − 0.8z−1
X(z)

we separate out the effect of the filter’s denominator by defining the temporary quantity

W(z)= 1

1 − 0.8z−1
X(z)

then, the output z-transform can be computed by

Y(z)= (5 + 2z−1)W(z)
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Writing these equations in the time domain, we obtain

W(z)= 1

1 − 0.8z−1
X(z) ⇒ W(z)= 0.8z−1W(z)+X(z)

or,

w(n)= 0.8w(n− 1)+x(n)

Similarly,

Y(z)= 5W(z)+2z−1W(z) ⇒ y(n)= 5w(n)+2w(n− 1)

Thus, we obtain the system of I/O equations

w(n) = 0.8w(n− 1)+x(n)
y(n) = 5w(n)+2w(n− 1)

which are mechanized in the block diagram of Fig. 6.2.4. Introducing internal states

w0(n) = w(n)
w1(n) = w(n− 1)

⇒ w1(n+ 1)= w0(n)

we rewrite the above system as:

w0(n)= 0.8w1(n)+x(n)
y(n)= 5w0(n)+2w1(n)

w1(n+ 1)= w0(n)

which can be written in the algorithmic form:

for each input sample x do:
w0 = 0.8w1 + x
y = 5w0 + 2w1

w1 = w0

(canonical form) (6.2.9)

A fourth block diagram realization can be obtained by transposing the canonical
realization following the transposition rules of replacing adders by nodes, nodes by
adders, reversing all flows, and exchanging input with output. The resulting transposed
realization is depicted in Fig. 6.2.5.

Again, we have assigned an internal state variable w1(n) to hold the contents of the
delay register. The input to the delay is the sum 2x(n)+0.8y(n) which gets delayed
and becomes w1(n). Thus,

w1(n)= 2x(n− 1)+0.8y(n− 1)

The complete I/O description of this realization is then given by the system:
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x(n)

0.8

y(n)

z-1

w1(n)

2

5

Fig. 6.2.5 Transposed realization of H(z).

y(n)= w1(n)+5x(n)

w1(n+ 1)= 2x(n)+0.8y(n)

which translates to the following sample processing algorithm:

for each input sample x do:
y = w1 + 5x
w1 = 2x+ 0.8y

(transposed form) (6.2.10)

To verify that this realization describes the same transfer function, we transform
the I/O equations to the z-domain:

Y(z)=W1(z)+5X(z)

zW1(z)= 2X(z)+0.8Y(z)

Then, solve the second for W1(z), insert it in the first, and solve for the ratio
Y(z)/X(z). We have:

W1(z)= 0.8z−1Y(z)+2z−1X(z)

and

Y(z)=W1(z)+5X(z)= 0.8z−1Y(z)+2z−1X(z)+5X(z)

which gives

H(z)= Y(z)
X(z)

= 5 + 2z−1

1 − 0.8z−1

Given a particular block diagram implementation, one can easily translate the cor-
responding sample processing algorithm into a software or hardware routine. For ex-
ample, the canonical form of Eq. (6.2.9) can be implemented by the following C routine
filter.c:
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/* filter.c - IIR example routine */

double filter(x, w) usage: y = filter(x, w);

double x, *w;
{

double y;

w[0] = 0.8 * w[1] + x;

y = 5 * w[0] + 2 * w[1]; compute output

w[1] = w[0]; update internal state

return y;
}

The array w must be declared to be a two-dimensional array in the main program.
The following program segment illustrates the usage of this routine for processing N
input samples:

w = (double *) calloc(2, sizeof(double));

for (n=0; n<N; n++)
y[n] = filter(x[n], w);

The internal state array w must be initialized to zero prior to the first call of filter.
This is indirectly accomplished by calloc during the allocation of w.

Our aim in this example was to show not only how to pass from one filter descrip-
tion to another using z-transforms, but also to illustrate how different block diagram
realizations correspond to different but equivalent ways of arranging the required I/O
filtering equations. A more systematic discussion of filter realizations will be presented
in the next chapter.

In general, the transfer function of an IIR filter is given as the ratio of two polynomials
of degrees, say L and M:

H(z)= N(z)
D(z)

= b0 + b1z−1 + b2z−2 + · · · + bLz−L
1 + a1z−1 + a2z−2 + · · · + aMz−M (IIR) (6.2.11)

Note that by convention, the 0th coefficient of the denominator polynomial has been
set to unity a0 = 1. The filter H(z) will have L zeros and M poles. Assuming that the
numerator and denominator coefficients are real-valued, then if any of the zeros or poles
are complex, they must come in conjugate pairs.

To determine the impulse response h(n) of such a filter, we may use the inverse
z-transform techniques of Chapter 5, such as partial fraction expansions. The relative
locations of the poles on the z-plane will divide the plane into non-overlapping regions
which may be taken as the possible ROCs for h(n).

In particular, to get a stable impulse response, we must pick the ROC that contains
the unit circle. Recall that in order for the stable h(n) to also be causal, all poles of
H(z), that is, the zeros of D(z), must lie strictly inside the unit circle. Then, the ROC
for inverting H(z) will be the outside of the unit circle.
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As the above example showed, there are many different, but mathematically equiv-
alent, I/O difference equations describing such a filter—each leading to a particular
block diagram implementation and sample processing algorithm. The simplest one is
the direct form obtained by writing

Y(z)= H(z)X(z)= b0 + b1z−1 + b2z−2 + · · · + bLz−L
1 + a1z−1 + a2z−2 + · · · + aMz−M X(z)

then, multiplying by the denominator:

(1 + a1z−1 + · · · + aMz−M)Y(z)= (b0 + b1z−1 + · · · + bLz−L)X(z)

and finally, transforming back to the time domain:

yn + a1yn−1 + · · · + aMyn−M = b0xn + b1xn−1 + · · · + bLxn−L (6.2.12)

It can also be written as:

yn = −a1yn−1 − · · · − aMyn−M + b0xn + b1xn−1 + · · · + bLxn−L
Note also that if the denominator coefficients are zero, that is, ai = 0, i = 1,2, . . . ,M,

the denominator polynomial is trivial D(z)= 1 and H(z) becomes equal to the numer-
ator polynomial H(z)= N(z), that is, an FIR filter:

H(z)= N(z)= b0 + b1z−1 + b2z−2 + · · · + bLz−L (FIR) (6.2.13)

In this case, the difference equation (6.2.12) becomes the usual I/O convolutional
equation for an FIR filter:

yn = b0xn + b1xn−1 + · · · + bLxn−L (FIR I/O equation) (6.2.14)

Various implementations of the FIR case were discussed in Chapter 4. The imple-
mentations of the IIR case will be discussed in detail in Chapter 7.

Next, we present some further examples. In each case, we determine the transfer
function, impulse response, frequency response, pole/zero pattern, block diagram real-
ization and sample processing algorithm.

Example 6.2.1: Determine the transfer function of the following third-order FIR filter with im-
pulse response:

h = [1,6,11,6]

Solution: The filter’s I/O equation is

y(n)= x(n)+6x(n− 1)+11x(n− 2)+6x(n− 3)

The z-transform of the finite impulse response sequence is:

H(z)= h0 + h1z−1 + h2z−2 + h3z−3 = 1 + 6z−1 + 11z−2 + 6z−3
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Noting that H(z) has a zero at z = −1, we may factor it in the form

H(z)= (1 + z−1)(1 + 5z−1 + 6z−2)= (1 + z−1)(1 + 2z−1)(1 + 3z−1)

The corresponding frequency response is obtained by the substitution z = ejω:

H(ω)= 1 + 6e−jω + 11e−2jω + 6e−3jω = (1 + e−jω)(1 + 2e−jω)(1 + 3e−jω)

The filter has zeros at z = −1,−2,−3. The pole/zero pattern is shown below together
with a sketch of the magnitude response |H(ω)|. (The multiple pole at the origin z = 0
is not shown.)

= zeros

0

unit circle

-3 -2 -1

z-plane

exact zero

π ω0

24
|H(ω)|

The filter tends to attenuate high frequencies, that is, it will act as a lowpass filter. The filter
vanishes exactly at z = −1 orω = π. Atω = 0 or z = 1, it is equal to 1+6+11+6 = 24.
The block diagram realization and the sample-by-sample processing algorithm are:

x y

z-1

z-1

z-1

w1

w0

w2

w3

11

6

1

6

for each input sample x do:
w0 = x
y = w0 + 6w1 + 11w2 + 6w3

w3 = w2

w2 = w1

w1 = w0

The block diagram and sample processing algorithm correspond to the FIR direct form
discussed in Chapter 4. 	


Example 6.2.2: An FIR filter is described by the I/O equation:

y(n)= x(n)−x(n− 4)

Determine its transfer function H(z) and impulse response h(n).

Solution: The I/O equation becomes in the z-domain:

Y(z)= X(z)−z−4X(z) ⇒ H(z)= Y(z)
X(z)

= 1 − z−4

It follows that h = [1,0,0,0,−1]. The frequency response is obtained by setting z = ejω:
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H(ω)= 1 − e−4jω = (e2jω − e−2jω)e−2jω = 2j sin(2ω)e−2jω

Thus, its magnitude response will be |H(ω)| = 2| sin(2ω)|. The zeros of H(z) are the
fourth roots of unity, obtained by solving 1 − z−4 = 0 or,

z4 = 1 ⇒ z = e2πjk/4, k = 0,1,2,3 ⇒ z = 1, j,−1,−j

Thus, the magnitude response |H(ω)| will vanish at ω = 2πk/4 = 0,π/2,π,3π/2, for
k = 0,1,2,3, as shown below:

= zeros

0

unit circle

z-plane

-1 1

-j

j

ππ/2

ω

0

|H(ω)|

The magnitude response |H(ω)| is plotted only over the right half of the Nyquist interval,
0 ≤ ω ≤ π, and therefore the zero at ω = 3π/2 is not shown—it gets aliased to the
negative side: 3π/2 − 2π = −π/2.

The block diagram realization of the direct form and the corresponding sample processing
algorithm are as shown:

x y

z-1

z-1

z-1

z-1

w1

w0

w2

w3

w4

-1

for each input sample x do:
w0 = x
y = w0 −w4

w4 = w3

w3 = w2

w2 = w1

w1 = w0

This is a special case of a comb filter with notches at the four frequencies ω = 2πk/4,
k = 0,1,2,3. Comb filters and their applications will be discussed in Chapter 8. 	


Example 6.2.3: Determine the transfer function and causal impulse response of the two filters
described by the difference equations:

(a) y(n)= 0.25y(n− 2)+x(n)
(b) y(n)= −0.25y(n− 2)+x(n)
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Solution: For case (a), we take z-transforms of both sides of the difference equation to get:

Y(z)= 0.25z−2Y(z)+X(z)

Solving for Y(z)/X(z) we find the transfer function:

H(z)= 1

1 − 0.25z−2
= A1

1 − 0.5z−1
+ A2

1 + 0.5z−1

with A1 = A2 = 0.5. Thus, the causal impulse response will be:

h(n)= A1(0.5)nu(n)+A2(−0.5)nu(n)

The pole at z = 0.5 is in the low-frequency part of the unit circle, and the pole z = −0.5
is in the high-frequency part. Thus, the filter will tend to enhance both the low and high
frequencies, that is, it will behave as a 2-band bandpass filter, or as a bandstop filter—
attenuating the intermediate frequencies between low and high.

Indeed, the value of H(z) at ω = 0,π or z = ±1 is

H(0)= H(π)= H(z)∣∣z=±1 = 1

1 − 0.25
= 4

3

which is larger than the value of H(z) at the intermediate frequency ω = π/2 or z = j or
z2 = −1, that is, the value

H(π/2)= H(z)∣∣z=j = 1

1 − 0.25(−1)
= 4

5

The pole/zero pattern and magnitude spectra are shown below. The peaks at the high-
/low-frequency ends are not too high because the poles are not too close to the unit circle.

= polesz-plane

-0.5 0.5 1

ππ/2
ω

0

4/3 4/3
4/5

|H(ω)|

The block diagram implementation of the given difference equation and corresponding
sample processing algorithm are:

x

0.25

y
y

z-1

z-1

w2

w1

for each input sample x do:
y = 0.25w2 + x
w2 = w1

w1 = y
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For case (b), the difference equation becomes in the z-domain:

Y(z)= −0.25z−2Y(z)+X(z)

which can be solved for Y(z)/X(z) to give:

H(z)= 1

1 + 0.25z−2
= A1

1 − 0.5jz−1
+ A∗

1

1 + 0.5jz−1

with A1 = 0.5. Notice the poles are conjugate pairs as are the PF expansion coefficients.
The causal impulse response will be:

h(n)= A1(0.5j)nu(n)+A∗
1 (−0.5j)nu(n)

which can be written in the exponentially decaying form:

h(n) = 2Re[A1(0.5)njn]u(n)= 2Re[0.5(0.5)nejπn/2]u(n)

= (0.5)ncos(πn/2)u(n)

The two conjugate poles are in the “midfrequency” range, z = ±0.5j = 0.5e±jπ/2. Thus,
the filter will emphasize the middle frequencies, that is, it will act as a bandpass filter.

Again, the value of the magnitude response at ω = π/2 or z = j or z2 = −1 is 1/(1 +
0.25(−1))= 4/3, whereas the value atω = 0,π or z = ±1 or z2 = 1 is 1/(1+0.25)= 4/5.

= polesz-plane

-0.5j

0.5j

1

ππ/2 ω
0

4/5 4/5

4/3|H(ω)|

The block diagram and corresponding sample processing algorithm are:

x

-0.25

y
y

z-1

z-1

w2

w1

for each input sample x do:
y = −0.25w2 + x
w2 = w1

w1 = y

The two cases differ by a simple change of sign in the difference equation coefficient 0.25
which leads to drastically different pole locations and frequency responses. 	
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6.3 Sinusoidal Response

6.3.1 Steady-State Response

The response of a filter to an input sinusoidal signal is referred to as the sinusoidal
response. Knowing what happens to sinusoids under filtering is important because they
are the elementary building blocks of more complicated signals.

Consider an infinitely long, double-sided, complex sinusoid of frequency ω0 which
is applied to the input of a stable filter h(n):

x(n)= ejω0n, −∞ < n <∞

The resulting output can be determined in two ways: (1) using convolution in the
time domain, or (2) using multiplication in the frequency domain. Using the first method,
we have

y(n)=
∑
m
h(m)x(n−m)=

∑
m
h(m)ej(n−m)ω0 = ejω0n

∑
m
h(m)e−jω0m, or,

y(n)= H(ω0)ejω0n (6.3.1)

where H(ω0) is the frequency response of the filter evaluated at ω =ω0:

H(ω0)=
∑
m
h(m)e−jω0m

Using the frequency-domain method, we start with the spectrum of the input signal,
namely,

X(ω)= 2πδ(ω−ω0)+(replicas)

Then, using the frequency-domain multiplication formula (5.4.10), we obtain (the
first replica of) the spectrum of the output:

Y(ω)= H(ω)X(ω)= H(ω)2πδ(ω−ω0)= 2πH(ω0)δ(ω−ω0)

where ω was replaced by ω0 in the argument of H(ω), because the delta function
δ(ω −ω0) forces ω = ω0. Putting Y(ω) into the inverse DTFT formula (5.4.6), we
find:

y(n)= 1

2π

∫ π
−π
Y(ω)ejωn dω = 1

2π

∫ π
−π

2πH(ω0)δ(ω−ω0)ejωn dω

The presence of δ(ω −ω0) causes the integrand to be evaluated at ω0 resulting
in Eq. (6.3.1). To summarize, an infinite double-sided input sinusoid of frequency ω0

reappears at the output unchanged in frequency but modified by the frequency response
factor H(ω0):

ejω0n H−→ H(ω0)ejω0n (6.3.2)
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BecauseH(ω) is a complex-valued quantity, we can write it in terms of its magnitude
and phase as:

H(ω)= |H(ω)|ej argH(ω)

Therefore, Eq. (6.3.2) can be written in the form:

ejω0n H−→ |H(ω0)|ejω0n+j argH(ω0) (6.3.3)

which shows that the filter introduces both a magnitude modification by an amount
|H(ω0)|, as well as a relative phase shift by an amount argH(ω0). Taking real or
imaginary parts of both sides of this result, we obtain the cosine and sine versions:

cos(ω0n)
H−→ |H(ω0)| cos

(
ω0n+ argH(ω0)

)
sin(ω0n)

H−→ |H(ω0)| sin
(
ω0n+ argH(ω0)

) (6.3.4)

Figure 6.3.1 illustrates this result. Note that the phase shift corresponds to the
translation of the sinewave as a whole by an amount argH(ω0) relative to the input
sinewave. Typically, argH(ω0) is negative and therefore it represents a time delay, that
is, translation to the right.

0 n

cos(ω0n)

0

1

n

|H(ω0)| cos(ω0n+arg H(ω0))
argH(ω0)

|H(ω0)|

Fig. 6.3.1 Magnitude and phase-shift modification introduced by filtering.

The filtering result (6.3.2) is one of the most fundamental results in signal processing.
It essentially justifies the use of LTI filters and explains their widespread application. By
proper design of the frequency response shape H(ω), it allows complete control over
the frequency content of the input signal.

Using the linearity property of the filter, we can apply Eq. (6.3.2) to a linear combi-
nation of two input sinusoids of frequencies ω1 and ω2, resulting in the same linear
combination of the corresponding outputs, that is,

A1ejω1n +A2ejω2n H−→ A1H(ω1)ejω1n +A2H(ω2)ejω2n

which shows that the effect of filtering is to change the relative amplitudes and phases
of the two sinusoids from the values {A1,A2} to the values {A1H(ω1),A2H(ω2)}. In
the frequency domain, we have for the spectra of the input and output signals:
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A1δ(ω−ω1)+A2δ(ω−ω2)
H−→ A1H(ω1)δ(ω−ω1)+A2H(ω2)δ(ω−ω2)

where for simplicity, we dropped a common factor of 2π. Figure 6.3.2 shows the input
and output spectra and illustrates how the filter alters the relative balance by multipli-
cation by the appropriate frequency response factors.

ω 00 ωω1 ω1ω2 ω2

A1 A2

H(ω)

X(ω) Y(ω)

A1H(ω1)

A2H(ω2)

Fig. 6.3.2 Relative amplitudes before and after filtering.

If one of the sinusoids, say ω1, were a desired signal and the other an unwanted
interference, one could design a filter to remove the interference. For example, the
choice:

H(ω1)= 1, H(ω2)= 0

would leave the desired signal unaffected and remove the interference. The resulting
output signal would be in this case:

y(n)= A1H(ω1)ejω1n +A2H(ω2)ejω2n = A1ejω1n

A more general input x(n)with a more complicated spectrumX(ω) can be resolved
into its sinusoidal components by the inverse DTFT formula:

x(n)= 1

2π

∫ π
−π
X(ω)ejωn dω

The filter H(ω) reshapes the input spectrum X(ω) into the output spectrum by
Y(ω)= H(ω)X(ω). It changes, in a controlled manner, the relative amplitudes and
phases of the various frequency components of the input signal. The resulting output
signal can be reconstructed from the inverse DTFT formula:

y(n)= 1

2π

∫ π
−π
Y(ω)ejωn dω = 1

2π

∫ π
−π
H(ω)X(ω)ejωn dω (6.3.5)

Another useful filtering concept is that of the phase delay defined in terms of the
phase response argH(ω) as follows:

d(ω)= −argH(ω)
ω

⇒ argH(ω)= −ωd(ω) (6.3.6)

Similarly, the group delay of a filter is defined as:



232 6. TRANSFER FUNCTIONS

dg(ω)= − d
dω

argH(ω) (6.3.7)

The sinusoidal response of Eqs. (6.3.2) or (6.3.3) can be expressed in terms of the
phase delay as follows:

ejωn H−→ |H(ω)|ejω(n−d(ω)) (6.3.8)

which shows that different frequency components get delayed by different amounts,
depending on the filter’s phase delay.

Linear phase filters have the property that their phase delay d(ω) is independent of
frequency, say d(ω)= D, so that the phase response is linear in ω, argH(ω)= −ωD.
Such filters cause every frequency component to be delayed by the same amountD, thus
corresponding to an overall delay in the output:

ejωn H−→ |H(ω)|ejω(n−D) (6.3.9)

This overall delay can also be seen by the inverse DTFT formulas:

x(n)=
∫ π
−π
X(ω)ejωn

dω
2π

H−→ y(n)=
∫ π
−π

|H(ω)|X(ω)ejω(n−D) dω
2π

The design of FIR linear phase filters will be discussed in Chapter 10. IIR filters that
have linear phase over the entire Nyquist interval cannot be designed. However, they
can be designed to have approximately linear phase over their passband (for example,
Bessel filters).

6.3.2 Transient Response

In obtaining the result (6.3.2), we assumed that the input sinusoid had been on for a very
long time (since n = −∞), and therefore, Eq. (6.3.2) represents the steady-state output
resulting after all the filter transients have died out.

In practice, we typically begin processing an input signal at some instant of time, say
n = 0, and therefore, we must deal with the input-on transients, as well as the input-off
transients taking place after the input is turned off. Figure 6.3.3 shows the difference
between a double-sided sinewave and a causal one that is turned on at n = 0.

If we start generating and filtering an input sinewave at n = 0, the filter will not
“know” immediately that its input is sinusoidal. It takes the filter a certain period of
time to settle into its sinusoidal behavior given by Eq. (6.3.2). The analysis of the fil-
ter’s response in this case can be carried out using z-transforms. Consider the causal
sinusoidal input and its z-transform:

x(n)= ejω0nu(n) Z−→ X(z)= 1

1 − ejω0z−1

having ROC |z| > |ejω0| = 1. Assume a filter of the form:

H(z)= N(z)
D(z)

= N(z)
(1 − p1z−1)(1 − p2z−1)· · · (1 − pMz−1)
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0 n

cos(ω0n)

0 n

cos(ω0n)u(n)

Fig. 6.3.3 Double-sided and one-sided sinewaves.

withM poles that lie strictly within the unit circle, so that the filter is stable and causal.
The output z-transform will be:

Y(z)= H(z)X(z)= N(z)
(1 − ejω0z−1)(1 − p1z−1)(1 − p2z−1)· · · (1 − pMz−1)

Assuming that the degree of the numerator polynomialN(z) is strictly less than the
degree M+1 of the denominator,† we can write the PF expansion:

Y(z)= C
1 − ejω0z−1

+ B1

1 − p1z−1
+ B2

1 − p2z−1
+ · · · + BM

1 − pMz−1

The PF expansion coefficients are obtained in the usual fashion, via Eq. (5.5.2). In
particular, the coefficient of the first term will be:

C = (1 − ejω0z−1)Y(z)
∣∣
z=ejω0 =

[
(1 − ejω0z−1)

H(z)
1 − ejω0z−1

]
z=ejω0

Canceling the (1−ejω0z−1) factors, we find that C is none other than the frequency
response H(ω) evaluated at ω =ω0, that is,

C = H(z)∣∣z=ejω0 = H(ω0) (6.3.10)

Therefore, the PF expansion will read:

Y(z)= H(ω0)
1 − ejω0z−1

+ B1

1 − p1z−1
+ B2

1 − p2z−1
+ · · · + BM

1 − pMz−1

Taking the causal inverse z-transform (with ROC |z| > 1), we find for n ≥ 0:

y(n)= H(ω0)ejω0n + B1pn1 + B2pn2 + · · · + BMpnM (6.3.11)

Because the filter was assumed to have all its poles inside the unit circle, namely,
|pi| < 1, it follows that in the limit of largen, thepni terms will drop to zero exponentially
giving the steady-state output:

†This assumption is not critical. The same conclusions can be drawn otherwise.
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y(n)→ H(ω0)ejω0n as n→ ∞

For smaller values of n, Eq. (6.3.11) gives the transient response of the filter.

Example 6.3.1: Determine the full transient response of the filter

H(z)= 5 + 2z−1

1 − 0.8z−1

for a causal complex sinusoidal input of frequency ω0.

Solution: We have the partial fraction expansion for the output z-transform Y(z)= H(z)X(z):

Y(z)= 5 + 2z−1

(1 − ejω0z−1)(1 − 0.8z−1)
= H(ω0)

1 − ejω0z−1
+ B1

1 − 0.8z−1

where the coefficient B1 is found by

B1 = (1 − 0.8z−1)Y(z)
∣∣
z=0.8 =

[
5 + 2z−1

1 − ejω0z−1

]
z=0.8

= 7.5
1 − 1.25ejω0

The causal inverse z-transform will be:

y(n)= H(ω0)ejω0n + B1(0.8)n, n ≥ 0

For large n, the term (0.8)n drops to zero and the output settles into its steady-state
sinusoidal response

y(n)→ H(ω0)ejω0n

where H(ω0)= 5 + 2e−jω0

1 − 0.8e−jω0
. 	


There are four straightforward conclusions that can be drawn from Eq. (6.3.11). First,
it shows clearly the requirement of stability for the filter. If any of the filter poles, say p1,
were outside the unit circle, such that |p1| > 1, the term pn1 would be unstable, diverging
as n → ∞. This term would dominate completely the rest of terms of Eq. (6.3.11) and
there would be no steady-state response. (Of course, we know that in this case the series
definition, Eq. (5.4.3), of the frequency response H(ω) does not converge because the
unit circle does not lie in the causal region of convergence |z| > |p1| > 1.)

Second, assuming the filter is strictly stable, all the transient terms pni will drop to
zero exponentially. But some of them will drop to zero faster than others. The effective
time constant to reach the sinusoidal steady state is dictated by the slowest converging
pole term, that is, the term with the largest magnitude, namely, max |pi|. Equivalently,
this is the pole that lies closest to the unit circle (from the inside). Denoting the maximum
pole magnitude by

ρ = max
i

|pi|
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we may define the effective time constant to be the time neff at which the quantity ρn

has dropped below a certain small value, for example, when it drops below 1% its initial
value. We can make this definition more quantitative by defining neff such that:

ρneff = ε
where ε is the desired level of smallness, for example, ε = 1% = 0.01. It follows that:

neff = ln ε
lnρ

= ln(1/ε)
ln(1/ρ)

(time constant) (6.3.12)

Because both ε and ρ are less than one, their logs are negative, but the ratio is
positive. In the last expression, we have the ratio of two positive numbers. The effective
time constant neff becomes larger if the slowest pole is pushed closer to the unit circle,
that is, increasing ρ toward one, and also if we require a smaller threshold ε.

The value ε = 1% corresponds to the amplitude of the filter’s output falling by a
factor of 10−2 or 40 dB. The time constant in seconds, τ = neffT, is referred to as the
40-dB time constant. In the study of reverberation properties of concert halls, the 60-dB
time constants are used, which correspond to ε = 0.1% = 10−3.

In conclusion, the speed of response of a stable and causal IIR filter is controlled by
the poles nearest to the unit circle. The filter is slow reaching steady state if its poles
are near the unit circle, and fast if they are further away (toward the center).

Example 6.3.2: A sinusoid of frequencyω0 = 0.1π and duration of 300 samples, that is, x(n)=
sin(ω0n), 0 ≤ n < 300, is input to a (causal) filter with transfer function

H(z)= b
1 − az−1

where a = 0.97. Determine the 1% time constant of this filter. Adjust the scale factor b
such that the filter’s gain at ω0 is unity. Determine and plot the output of the filter y(n)
over the interval 0 ≤ n < 450, by iterating the difference equation of the filter.

Solution: The 1% time constant of this filter is computed from Eq. (6.3.12),

neff = ln ε
lna

= ln(0.01)
ln(0.97)

= 151.2 samples

The frequency and magnitude responses are

H(ω)= b
1 − ae−jω ⇒ |H(ω)| = b√

1 − 2a cosω+ a2

The requirement that |H(ω0)| = 1 leads to the condition on b:

|H(ω0)| = b√
1 − 2a cosω0 + a2

= 1 ⇒ b =
√

1 − 2a cosω0 + a2 = 0.3096

The value of the frequency response at ω0 becomes then,

H(ω0)= b
1 − ae−jω0

= 0.2502 − 0.9682j = 1 · e−j1.3179
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so that its phase response will be argH(ω0)= −1.3179 radians. The resulting output
y(n), shown in Fig. 6.3.4, was computed by the following program segment, which imple-
ments the difference equation y(n)= ay(n−1)+bx(n) and sample processing algorithm
of this filter:

for (y1=0, n=0; n<450; n++) {
if (n < 300)

x = sin(w0 * n);
else

x = 0;
y[n] = a * y1 + b * x; /* y1 = y[n-1] */
y1 = y[n];
}

Fig. 6.3.4 Input and output of Example 6.3.2.

Notice the input-on and input-off transients, each lasting approximately neff = 151 time
samples. The time interval 150 ≤ n ≤ 300 corresponds to the steady-state period, during
which the output settles to its sinusoidal behavior according to Eq. (6.3.4). The amplitude
of the steady-state output is unity because |H(ω0)| = 1. There is a slight phase delay
relative to the input, due to the negative value of the phase response argH(ω0)= −1.3179
radians. 	


Example 6.3.3: Derive closed-form expressions for the output y(n) of the previous example
in two ways: (a) working with convolution in the time domain, and (b) working with z-
transforms.

Solution: It proves convenient to work with the complex-valued version of the sinusoid, x(n)=
ejω0n, 0 ≤ n ≤ 299, and take imaginary parts of the answer at the end. Using convolution,
we obtain

y(n)=
n∑

m=max(0,n−299)
h(m)x(n−m) =

n∑
m=max(0,n−299)

bamejω0(n−m)

where we used the impulse response h(m)= bamu(m). The summation limits were ob-
tained by the requirements that the indices of h(m) and x(n−m) do not exceed the array
bounds, that is,
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0 ≤m <∞, 0 ≤ n−m ≤ 299

which are equivalent to max(0, n− 299)≤m ≤ n. It follows that if 0 ≤ n ≤ 299, then

y(n)= ejω0n
n∑

m=0

bame−jω0m = ejω0nb
1 − an+1e−jω0(n+1)

1 − ae−jω0

Setting H0 = H(ω0)= b/(1 − ae−jω0) and noting that (1 − ae−jω0)H0 = b which gives
b−H0 = −H0ae−jω0 , we obtain

y(n)= H0ejω0n + (b−H0)an, for 0 ≤ n ≤ 299

On the other hand, if 300 ≤ n ≤ 449, then the limits of summation become:

y(n)= ejω0n
n∑

m=n−299

bame−jω0m

and we must use the finite geometric series formula

m2∑
m=m1

xm = xm1 − xm2+1

1 − x (6.3.13)

with x = ae−jω0 , to obtain:

y(n)= H0ejω0n
[
an−299e−jω0(n−299) − an+1e−jω0(n+1)]

Noting that the factor ejω0n cancels, we obtain

y(n)= H0
[
an−299ej299ω0 − an+1e−jω0

] = H0ae−jω0(ej300ω0 − a300)an−300

At n = 300, we have y(300)= H0ae−jω0(ej300ω0 − a300), Therefore, we can write

y(n)= y(300)an−300, for 300 ≤ n <∞

Thus, the input-off transients are exponentially decaying as seen in Fig. 6.3.4. Note that
the two expressions of y(n) for n ≤ 299 and n ≥ 300 join smoothly, in the following
sense. The difference equation for y(n) gives at n = 300, y(300)= ay(299)+bx(300).
But x(300)= 0 and thus y(300)= ay(299). This condition can be verified for the above
expressions. We have, using b−H0 = −aH0e−jω0 :

ay(299) = a[H0ej299ω0 + (b−H0)a299
]

= aH0ej300ω0e−jω0 − a2H0e−jω0a299

= aH0e−jω0(ej300ω0 − a300)= y(300)



238 6. TRANSFER FUNCTIONS

The real-valued versions can be obtained by taking imaginary parts of these answers. Writ-
ing H0 = |H0|ejφ0 , with |H0| = 1 and φ0 = argH0 = −1.3179 radians, we have for
n ≤ 299

y(n)= H0ejω0n + (b−H0)an = ej(ω0n+φ0) + (b− ejφ0)an

Taking imaginary parts, we find

y(n)= sin(ω0n+φ0)−an sinφ0, for 0 ≤ n ≤ 299

and

y(n)= y(300)an−300, for n ≥ 300

where we calculate y(300)= ay(299). The numerical values of y(n) agree, of course, with
the iterated values of Example 6.3.2.

All of the above expressions can be obtained much faster using z-transforms. First, we
write the length-300 complex sinusoid in a form which is valid for all n:

x(n)= ejω0n
(
u(n)−u(n− 300)

) = ejω0nu(n)−ej300ω0ejω0(n−300)u(n− 300)

where, in the second term we have the delayed version of the first. Taking z-transforms
and using the delay property, we find:

X(z)= 1 − ej300ω0z−300

1 − ejω0z−1

The output z-transform will be then

Y(z)= H(z)X(z)= b(1 − ej300ω0z−300)
(1 − az−1)(1 − ejω0z−1)

The (causal) inverse z-transform can be found using the “remove/restore” method. Ignor-
ing the numerator temporarily, we have

W(z)= b
(1 − az−1)(1 − ejω0z−1)

= C
1 − ejω0z−1

+ B
1 − az−1

where, as we have seen C = H0. Similarly, one can verify that B = b−H0. Therefore, the
causal inverse z-transform of W(z) will be:

w(n)= H0ejω0nu(n)+(b−H0)anu(n)

Restoring the numerator of Y(z), that is, Y(z)= (1 − ej300ω0z−300)W(z), we find

y(n)= w(n)−ej300ω0w(n− 300)

which gives rise to the following expression for y(n):

y(n) = H0ejω0nu(n)+(b−H0)anu(n)−
− ej300ω0

[
H0ejω0(n−300)u(n− 300)+(b−H0)an−300u(n− 300)

]
We leave it up to the reader to verify that this expression agrees with the separate expres-
sions given above for n ≤ 299 and n ≥ 300. 	
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A third consequence of Eq. (6.3.11) is its application to two important special cases,
namely, the unit-step and the alternating unit-step responses. The unit-step response is
the output y(n) due to a unit-step input:

x(n)= u(n)

It is a special case of a sinusoid ejω0nu(n) with ω0 = 0. The value ω0 = 0 corre-
sponds to the complex point z = ejω0 = 1 on the z-plane. Equation (6.3.11) becomes in
this case:

y(n)= H(0)+B1pn1 + B2pn2 + · · · + BMpnM, n ≥ 0

Thus, in the limit of large n, the output will settle into a constant value given by

y(n)→ H(0)= H(z)∣∣z=1 as n→ ∞

We may also refer to it as the DC response of the filter, that is, its response to a
constant input. Setting ω = 0 into the definition of H(ω), Eq. (5.4.3), or z = 1 into the
definition of H(z), Eq. (5.1.2), we can express H(0) in the alternative form:

H(0)= H(z)∣∣z=1 =
∞∑
n=0

h(n) (DC gain) (6.3.14)

In Chapter 4, we referred to it as the DC gain of the filter and used it in Eq. (4.1.24)
and in the simulation examples. In a similar fashion, we can discuss the alternating step
response, namely, the output due to the alternating input:

x(n)= (−1)nu(n)

Writing −1 = ejπ, we have (−1)nu(n)= ejπnu(n), and therefore, we recognize
this as a special case of Eq. (6.3.11) with ω0 = π, which corresponds to the z-point
z = ejω0 = −1. Eq. (6.3.11) becomes:

y(n)= H(π)ejπn + B1pn1 + B2pn2 + · · · + BMpnM, n ≥ 0

And, in the limit of large n, the output tends to

y(n)→ H(π)(−1)n as n→ ∞

The quantityH(π)may be called the AC gain and can be expressed in terms of h(n)
by setting z = −1 into the definition for H(z):

H(π)= H(z)∣∣z=−1 =
∞∑
n=0

(−1)nh(n) (AC gain)

Example 6.3.4: Determine the DC and alternating-step responses of the filter of Example 6.3.1.
Determine also the effective time constant neff to reach steady state to within one percent.
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Solution: Setting n = 0 in the expression for y(n) in Example 6.3.1 gives the relationship y(0)=
H(ω0)+B1. Inspecting the expression for Y(z), the value of y(0) is found to be y(0)= 5.
More systematically, y(0) can be found by evaluating Y(z) at z = ∞. We have therefore,
H(ω0)+B1 = 5, which can be solved for B1 = 5−H(ω0). Thus, for a generalω0 we may
write:

y(n)= H(ω0)ejω0n + (5 −H(ω0)
)
(0.8)n, n ≥ 0

For the DC unit-step response, we have setting ω0 = 0:

H(0)=
[

5 + 2e−jω0

1 − 0.8e−jω0

]
ω0=0

= 5 + 2

1 − 0.8
= 35

Therefore, B1 = 5 −H(0)= 5 − 35 = −30, and the response to a unit-step is:

y(n)= 35 − 30(0.8)n, n ≥ 0

Similarly, we find H(π)= 5/3, and B1 = 5 − 5/3 = 10/3. Thus, the alternating unit-step
response will be:

y(n)= 5

3
(−1)n+10

3
(0.8)n, n ≥ 0

The output signals of the two cases are shown below:

This filter has only one pole; therefore the effective time constant is determined by the
quantity a = 0.8. At the 1% level, we have ε = 1% = 0.01, and we find

neff = ln ε
lna

= ln(0.01)
ln(0.8)

= 20.6

Thus, the effective duration of the transient behavior is about 20 time steps, after which
the transient term (0.8)n drops by more than 1% its initial value. 	


The fourth consequence of Eq. (6.3.11) is its application to marginally stable filters.
Many filters of practical interest are not strictly stable, but only marginally so, with
poles on the unit circle. This includes for example, accumulators (integrators), periodic
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function generators, and others. It is therefore useful to know what happens to the
sinusoidal response in such cases.

Suppose the filterH(z) has a pole p1 on the unit circle at some phase angle θ1, that
is, p1 = ejθ1 . Of course, the conjugate pole p∗1 = e−jθ1 is also present. For example, the
filters:

H(z)= 1

1 − z−1
, H(z)= 1

1 + z−1
, H(z)= 1

1 + z−2

have poles at p1 = 1 = ej0, p1 = −1 = ejπ, and ±j = e±jπ/2, respectively.
Suppose also that all other poles lie inside the unit circle. Then the transient response

Eq. (6.3.11) will be:

y(n)= H(ω0)ejω0n + B1pn1 + B∗
1 p

∗n
1 + B2pn2 + · · · , or,

y(n)= H(ω0)ejω0n + B1ejθ1n + B∗
1 e−jθ1n + B2pn2 + · · ·

In the limit of large n, the terms pn2 , pn3 , etc., will drop to zero exponentially, but the pn1
being sinusoidal will not. Thus, the filter output tends to

y(n)→ H(ω0)ejω0n + B1ejθ1n + B∗
1 e−jθ1n

for large n. There is no true sinusoidal response even though the output is a sum of
sinusoids. Once the sinusoidal pole terms ejθ1n are excited, they will remain in the
output forever.

This analysis of Eq. (6.3.11) applies only to the case when ω0 ≠ ±θ1. If ω0 = ±θ1,
one hits a “resonance” of the system and the output y(n) becomes unstable diverging to
infinity. In this case, the output z-transform Y(z) has a double pole and the discussion
must be modified. For example, if ω0 = θ1, then ejω0 = ejθ1 = p1 and Y(z) becomes:

Y(z)= H(z)X(z) = N(z)
(1 − ejω0z−1)(1 − p1z−1)· · · (1 − pMz−1)

= N(z)
(1 − p1z−1)2(1 − p2z−1)· · · (1 − pMz−1)

The partial fraction expansion takes the form in this case:

Y(z)= B1

1 − p1z−1
+ B′

1

(1 − p1z−1)2
+ B2

1 − p2z−1
+ · · · + BM

1 − pMz−1

Using the causal inverse z-transform (with ROC |z| > |a|):
1

(1 − az−1)2

Z−1−→ (n+ 1)anu(n)

we find for the output signal:

y(n)= B1pn1 + B′
1(n+ 1)pn1 + B2pn2 + · · · + BMpnM , or,
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y(n)= B1ejθ1n + B′
1(n+ 1)ejθ1n + B2pn2 + · · · + BMpnM

which diverges linearly in n.
Until now, the entire discussion of transient response was geared to IIR filters that

have nontrivial poles. FIR filters do not have any poles (except at z = 0), and therefore,
the analysis of their steady versus transient sinusoidal response must be carried out
differently.

Consider an FIR filter of order M with impulse response h = [h0, h1, · · · , hM]. For
a causal sinusoidal input x(n)= ejω0nu(n), the output will be, as discussed in Chapter
4:

y(n)=
min(n,M)∑
m=0

h(m)x(n−m)=
min(n,M)∑
m=0

h(m)ejω0(n−m)

or, for any n ≥ 0:

y(n)= ejω0n
min(n,M)∑
m=0

h(m)e−jω0m

When n ≥M, the upper summation limit becomes M, giving

y(n)= ejω0n
M∑
m=0

h(m)e−jω0m = H(ω0)ejω0n, n ≥M

Therefore, as we have already seen in Chapter 4, the input-on transients last only for
the time period 0 ≤ n ≤M. After that period, steady state sets in.

6.4 Pole/Zero Designs

6.4.1 First-Order Filters

Pole/zero placement can be used to design simple filters, such as first-order smoothers,
notch filters, and resonators. To illustrate the technique, we design the transfer function

H(z)= 5 + 2z−1

1 − 0.8z−1
= 5(1 + 0.4z−1)

1 − 0.8z−1

discussed in Section 6.2. We begin with the more general transfer function

H(z)= G(1 + bz−1)
1 − az−1

(6.4.1)

where both a and b are positive and less than one. The gain factor G is arbitrary. The
pole/zero pattern is shown in Fig. 6.4.1.

The filter zero at z = −b lies in the left half (the high-frequency part) of the unit
circle, and the filter pole at z = a lies in the right half (the low-frequency part). Therefore,
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z-plane

unit
circle

a-b

= poles
= zeros

π ω0

|H(ω)|

|H(π)|

|H(0)|
ejω

ω

Fig. 6.4.1 Pole/zero pattern and frequency response.

the pole emphasizes low frequencies and the zero attenuates high frequencies; in other
words, the filter acts as a lowpass filter.

The frequency response values at the lowest and highest frequencies ω = 0,π are
found by setting z = ±1 in Eq. (6.4.1):

H(0)= G(1 + b)
1 − a , H(π)= G(1 − b)

1 + a
Therefore, the attenuation of the highest frequency relative to the lowest one is:

H(π)
H(0)

= (1 − b)(1 − a)
(1 + b)(1 + a) (6.4.2)

To determine the two unknown parameters a and b in Eq. (6.4.1), we need two design
equations. One such equation can be Eq. (6.4.2). If a is known, then for a desired level
of attenuation H(π)/H(0), we can solve for b.

To determine a, we may impose a constraint on the speed of response of the filter,
that is, we may specify the effective time constant neff, which is controlled by the value
of a. For example, requiring that neff = 20 time samples and taking ε = 0.01, we can
solve Eq. (6.3.12) for a:

a = ε1/neff = (0.01)1/20� 0.8

With this value of a, requiring that H(π)/H(0)= 1/21, Eq. (6.4.2) would give:

(1 − b)(1 − 0.8)
(1 + b)(1 + 0.8)

= 1

21
⇒ b = 0.4

which gives the desired designed filter, up to the gain G:

H(z)= G(1 + 0.4z−1)
1 − 0.8z−1

Because the parameter b is restricted to the interval 0 ≤ b ≤ 1, we may look at the
two extreme designs, namely, for b = 0 and b = 1. Setting b = 0 in Eqs. (6.4.1) and
(6.4.2), gives:

H(z)= G
1 − 0.8z−1

,
H(π)
H(0)

= 1

9

and setting b = 1,
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H(z)= G(1 + z−1)
1 − 0.8z−1

,
H(π)
H(0)

= 0

corresponding to H(π)= 0. The two design criteria that we used are not the only pos-
sible ones. In Section 8.3.1, we will replace the design equation (6.4.2) by an alternative
criterion, which is better suited for the design of noise reduction filters.

6.4.2 Parametric Resonators and Equalizers

As another example, consider the design of a simple second-order “resonator” filter
whose frequency response is dominated by a single narrow pole peak at some frequency
ω0. Such frequency response is shown in Fig. 6.4.2.

1

z-plane = poles

= 3-dB width

ππ/2 ω

Δω

ω0

ω0
−ω0

0

1

1/2

|H(ω)|2

R
p

p*

Fig. 6.4.2 Pole/zero pattern and frequency response of resonator filter.

To make a peak at ω =ω0, we place a pole inside the unit circle along the ray with
phase angle ω0, that is, at the complex location:

p = Rejω0

where the pole magnitude is 0 < R < 1. Together with the conjugate pole p∗ = Re−jω0 ,
we obtain the transfer function:

H(z)= G
(1 −Rejω0z−1)(1 −Re−jω0z−1)

= G
1 + a1z−1 + a2z−2

(6.4.3)

where a1 and a2 are related to R and ω0 by

a1 = −2R cosω0, a2 = R2

The gainGmay be fixed so as to normalize the filter to unity atω0, that is, |H(ω0)| =
1. The frequency response of the filter is obtained by the substitution z = ejω:

H(ω)= G
(1 −Rejω0e−jω)(1 −Re−jω0e−jω)

= G
1 + a1e−jω + a2e−2jω

The normalization requirement |H(ω0)| = 1 gives the condition:
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|H(ω0)| = G
|(1 −Rejω0e−jω0)(1 −Re−jω0e−jω0)| = 1

which can be solved for G:

G = (1 −R)
√

1 − 2R cos(2ω0)+R2

The magnitude response squared can also be expressed in the form:

|H(ω)|2 = G2

(1 − 2R cos(ω−ω0)+R2)(1 − 2R cos(ω+ω0)+R2)

The 3-dB width Δω of the peak is defined as the full width at half maximum of the
magnitude squared response. It can be found by solving the equation

|H(ω)|2 = 1

2
|H(ω0)|2 = 1

2

In dB, this condition reads

20 log10

∣∣∣∣ H(ω)H(ω0)

∣∣∣∣ = 10 log10

(1

2

) = −3 dB

This equation has two solutions, say ω1 and ω2, the first to the left of ω0 and the
second to the right. The full width is defined as Δω =ω2 −ω1. These two frequencies
are called the 3-dB frequencies. It can be shown that when p is near the unit circle, that
is, R � 1, the full width is given approximately by

Δω � 2(1 −R) (6.4.4)

Thus, the closer R is to one, the sharper the peak, but also the slower the filter will
be in reaching its steady-state response, as we discussed in the previous section.

Equation (6.4.4) can be shown geometrically, as follows [15]. In Fig. 6.4.3, the pole p
is indicated by the point P whose distance from the origin is |OP| = R. Therefore, the
distance |PQ| to the unit circle will be |PQ| = 1 −R.

Assuming the pole P is very near the unit circle, the small 3-dB angle Δω subtended
about the direction OQ will intersect the circle at two points which may be taken to be
approximately the points A and B that lie along the tangent to the circle at Q. Denoting
by zA and zQ the complex numbers represented by the points A and Q, we have the
values for the transfer function:

|H(zA)| = G
|zA − p||zA − p∗| , |H(zQ)| = G

|zQ − p||zQ − p∗|
Assuming P is very near the circle, all four points P, Q, A, and B will be very closely

clustered to each other. Therefore, their distances to the conjugate pole p∗ will be
approximately equal, that is, |zA − p∗| � |zQ − p∗|. Thus, we have for the ratio:

|H(zA)|
|H(zQ)| =

|zQ − p|
|zA − p| = |PQ|

|PA|
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Fig. 6.4.3 Geometric interpretation of 3-dB width.

Then, the 3-dB condition that |H(zA)|/|H(zQ)| = 1/
√

2, implies |PQ|/|PA| = 1/
√

2,
or, |PA| = √

2|PQ|, which means that the orthogonal triangle PQA will be equilateral,
with a 45◦ angle ∠QPA. A similar argument shows that the triangle PQB is also a 45◦

orthogonal triangle. It follows that |AB| = 2|QA| = 2|PQ| = 2(1 − R). But the arc
subtended by the angle Δω is equal to the radius of the circle (i.e., 1) times the angle
Δω. This arc is approximately equal to |AB| and therefore, Δω = |AB| = 2(1 −R).

Eq. (6.4.4) can be used as the design criterion that determines the value of R for
a given bandwidth Δω. The filter’s causal impulse response can be obtained from
Eq. (6.4.3) using partial fractions. We find, for n ≥ 0:

h(n)= G
sinω0

Rn sin(ω0n+ω0)

The difference equation for the filter follows from Eq. (6.4.3). We have:

Y(z)= H(z)X(z)= G
1 + a1z−1 + a2z−2

X(z)

which gives

(1 + a1z−1 + a2z−2)Y(z)= GX(z)

and in the time domain:

y(n)+a1y(n− 1)+a2y(n− 2)= Gx(n)

or,

y(n)= −a1y(n− 1)−a2y(n− 2)+Gx(n) (6.4.5)

A block diagram realization is shown in Fig. 6.4.4. The corresponding sample pro-
cessing algorithm is obtained by introducing the internal states

w1(n) = y(n− 1)

w2(n) = y(n− 2)= w1(n− 1)
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y(n)

z-1

z-1

x(n)
G

-a1

w1(n)

w2(n)
-a2

Fig. 6.4.4 Direct form realization of resonator filter.

The difference equation may be replaced by the system:

y(n)= −a1w1(n)−a2w2(n)+Gx(n)
w2(n+ 1)= w1(n)

w1(n+ 1)= y(n)

which gives rise to the following sample processing algorithm:

for each input sample x do:
y = −a1w1 − a2w2 +Gx
w2 = w1

w1 = y

Example 6.4.1: Design a 2-pole resonator filter with peak at f0 = 500 Hz and width Δf = 32
Hz, operating at the sampling rate of fs = 10 kHz.

Solution: The normalized resonator frequency will be

ω0 = 2πf0
fs

= 0.1π [radians/sample]

and the corresponding width:

Δω = 2πΔf
fs

= 0.02

Eq. (6.4.4) gives then

2(1 −R)= 0.02 ⇒ R = 0.99

With this value of R, we find the filter parameters:

G = 0.0062, a1 = −1.8831, a2 = 0.9801

and the filter transfer function
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H(z)= 0.0062

1 − 1.8831z−1 + 0.9801z−2

The magnitude response and impulse response h(n) are shown below:

The effective time constant of this filter is about neff = ln ε/ lnR = 458 time samples. The
graph only plots until n = 300. 	


A slight generalization of the resonator filter is to place a pair of zeros near the poles
along the same directions as the poles, that is, at locations:

z1 = rejω0 , z∗1 = re−jω0

where r is restricted to the range 0 ≤ r ≤ 1. The transfer function becomes:

H(z)= (1 − rejω0z−1)(1 − re−jω0z−1)
(1 −Rejω0z−1)(1 −Re−jω0z−1)

= 1 + b1z−1 + b2z−2

1 + a1z−1 + a2z−2
(6.4.6)

where the filter coefficients are given in terms of the parameters r, R, and ω0:

b1 = −2r cosω0

a1 = −2R cosω0

b2 = r2

a2 = R2
(6.4.7)

The corresponding magnitude squared response is:

|H(ω)|2 =
(
1 − 2r cos(ω−ω0)+r2

)(
1 − 2r cos(ω+ω0)+r2

)(
1 − 2R cos(ω−ω0)+R2

)(
1 − 2R cos(ω+ω0)+R2

)
Figure 6.4.5 shows the pole/zero pattern. When r < R, the pole “wins” over the zero,

in the sense that it is closer to the unit circle than the zero, giving rise to a peak in the
frequency response at ω =ω0. The resonator case may be thought of as a special case
with r = 0. When r > R, the zero wins over the pole, giving rise to a dip in the frequency
response. In particular, if r = 1, one gets an exact zero, a notch, at ω =ω0.

When the pole and zero are very near each other, that is, r � R or r � R, the
frequency response remains essentially flat for frequencies far fromω = ±ω0, because
the distances of the moving point ejω to the pole/zero pairs are almost equal, giving
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Fig. 6.4.5 Parametric equalizer filter.

|H(ω)| � 1. Only near the vicinity of ±ω0 does |H(ω)| vary dramatically, developing
a peak or a dip.

Such a filter can be thought of as a simple parametric equalizer filter, providing a
“boost” if r < R, or a “cut” if r > R. The height of the boost or cut relative to 1 is
controlled by the closeness of r to R. The width of the peaks or dips is controlled by
the closeness of R to the unit circle.

Later on, we will reconsider such pole/zero designs of equalization filters for digital
audio systems based on analog designs and the bilinear transformation method, and will
derive more precise design criteria that are based on the desired values of the bandwidth
and gain of the peak or dip. Such second-order filters can be cascaded together to
provide boosting or cutting at multiple frequencies.

Example 6.4.2: Using the numerical values R = 0.98, ω0 = 0.4π for the pole, determine the
parametric equalizer transfer functions of Eq. (6.4.6) for a boost corresponding to r =
0.965, a cut with r = 0.995, and an exact notch with r = 1.

Solution: The transfer function coefficients are computed by Eq. (6.4.7). The resulting transfer
functions are in the three cases of r = 0.965, r = 0.995, r = 1:

H(z) = 1 − 0.5964z−1 + 0.9312z−2

1 − 0.6057z−1 + 0.9604z−2

H(z) = 1 − 0.6149z−1 + 0.9900z−2

1 − 0.6057z−1 + 0.9604z−2

H(z) = 1 − 0.6180z−1 + z−2

1 − 0.6057z−1 + 0.9604z−2

The corresponding magnitude responses |H(ω)| are shown in Fig. 6.4.6. The case r = 1
provides an exact notch at ω =ω0. 	


6.4.3 Notch and Comb Filters

The case r = 1 for a notch filter deserves some further discussion. In this case, the filter
coefficients given by Eq. (6.4.7) can be written as

a1 = Rb1 = −2R cosω0, a2 = R2b2 = R2
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Fig. 6.4.6 Parametric equalizers of Example 6.4.2.

And, the transfer function takes the form:

H(z)= 1 + b1z−1 + b2z−2

1 +Rb1z−1 +R2b2z−2
= N(z)
N(R−1z)

where N(z) is the numerator polynomial having zeros at the two notch locations z =
e±jω0 :

N(z)= 1 + b1z−1 + b2z−2 = 1 − 2z−1 cosω0 + z−2 = (1 − ejω0z−1)(1 − e−jω0z−1)

This method can be generalized to construct a notch filter with notches at an ar-
bitrary (finite) set of frequencies. The numerator polynomial N(z) is defined as the
polynomial whose zeros are on the unit circle at the desired notch locations. For exam-
ple, if there are M desired notch frequencies ωi, i = 1,2, . . . ,M, then N(z) is defined
as the Mth degree polynomial with zeros at zi = ejωi , i = 1,2, . . . ,M:

N(z)=
M∏
i=1

(
1 − ejωiz−1) (notch polynomial) (6.4.8)

The denominator polynomial is chosen as D(z)= N(ρ−1z), for some parameter 0 <
ρ < 1, that is,

D(z)= N(ρ−1z)=
M∏
i=1

(
1 − ejωiρz−1)

The zeros of D(z) lie at the same directions as the notch zeros, but they are all
pushed inside the unit circle at radius ρ. Therefore, for each desired zero zi = ejωi ,
there is a corresponding pole pi = ρejωi . Writing Eq. (6.4.8) in expanded form:

N(z)= 1 + b1z−1 + b2z−2 + · · · + bMz−M

we obtain the following transfer function for the notch filter:
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H(z)= N(z)
N(ρ−1z)

= 1 + b1z−1 + b2z−2 + · · · + bMz−M
1 + ρb1z−1 + ρ2b2z−2 + · · · + ρMbMz−M (6.4.9)

that is, the denominator coefficients are chosen as the scaled versions of the numerator
coefficients,

ai = ρibi, i = 1,2, · · · ,M

If ρ is near one, ρ � 1, the distances of the movable point ejω to the pole/zero pairs
{zi, pi} = {zi, ρzi} are almost equal to each other except in the near vicinity of the pair,
that is, except near ω =ωi. Thus, H(ω) remains essentially flat except in the vicinity
of the desired notch frequencies.

Example 6.4.3: A DSP system operating at a sampling rate of 600 Hz, is plagued by 60 Hz power
frequency interference noise and its harmonics. Design a notch filter that removes all of
these harmonics, but remains flat at other frequencies.

Solution: The fundamental harmonic is

ω1 = 2πf1
fs

= 2π · 60

600
= 0.2π [radians/sample]

The other harmonics at fi = if1 correspond to ωi = iω1. There are 10 harmonics that lie
within the Nyquist interval [0, fs]; namely, fi, for i = 0,1, · · · ,9. Because fs = 10f1, all
the harmonics that lie outside the Nyquist interval (if they have not been filtered out by
the antialiasing prefilter) will be aliased onto harmonics inside that interval. For example,
the harmonic f11 = 11fs gets aliased with f11−fs = 11f1−10f1 = f1, and so on. Therefore,
our digital notch filter must be designed to have notches at the 10 frequencies within the
Nyquist interval:

ωi = iω1 = 2πi
10

, i = 0,1, . . . ,9

These 10 frequencies are none other than the tenth roots of unity, that is, the 10 roots of
the polynomial:

N(z)= 1 − z−10 =
9∏
i=0

(
1 − ejωiz−1

)

Our notch filter is then obtained by

H(z)= N(z)
N(ρ−1z)

= 1 − z−10

1 − ρ10z−10
= 1 − z−10

1 −Rz−10

where we set R = ρ10. The following figure shows the resulting pole/zero pattern for this
transfer function, and the corresponding magnitude response (computed only between
0 ≤ω ≤ π):
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where we chose R = 0.98, or ρ = R1/10 = (0.98)1/10= 0.9980. The radius ρ of the poles is
very close to the unit circle resulting in very sharp notches at the desired harmonics. At
other frequencies the magnitude response is essentially flat. 	


Example 6.4.4: Repeat the previous example when the sampling rate is fs = 1200 Hz. Then,
design another notch filter that excludes the DC and AC harmonics at f = 0 and f = fs/2.

Solution: Now the fundamental harmonic isω1 = 2π · 60/1200 = 0.1π, and the 20 harmonics
in the Nyquist interval will be

ωi = iω1 = 2πi
20

, i = 0,1, . . . ,19

They correspond to the 20th roots of unity, that is, the roots of:

N(z)= 1 − z−20 =
19∏
i=0

(
1 − ejωiz−1

)

The notch filter will be:

H(z)= N(z)
N(ρ−1z)

= 1 − z−20

1 − ρ20z−20
= 1 − z−20

1 −Rz−20

where we set R = ρ20. The following figure shows the resulting pole/zero pattern and
magnitude response, with the values R = 0.98 or ρ = R1/20 = (0.98)1/20= 0.9990:

= poles
= zeros

unit
circle
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If we want to exclude the ω =ω0 = 0 and ω =ω10 = π harmonics from the notch filter,
we must divide them out of N(z). They contribute a factor

(1 − z−1)(1 + z−1)= 1 − z−2

Therefore, the new N(z) that has notches at all the harmonics but at z = ±1 will be:

N(z)= 1 − z−20

1 − z−2
= 1 − z−10

1 − z−2
(1 + z−10)= (1 + z−2 + z−4 + z−6 + z−8)(1 + z−10)

Therefore, we find for the notch transfer function:

H(z)= N(z)
N(ρ−1z)

= (1 + z−2 + z−4 + z−6 + z−8)(1 + z−10)
(1 + ρ2z−2 + ρ4z−4 + ρ6z−6 + ρ8z−8)(1 + ρ10z−10)

The resulting pole/zero pattern and magnitude response are shown below:

= poles
= zeros

unit
circle

The value of ρ was the same as above, such that ρ20 = R = 0.98. 	


A variant of the above method of constructing notch filters is the generalization of
the parametric equalizer filter. It corresponds to moving the notch zeros into the unit
circle and behind the poles, that is, replacing each notch zero by:

zi = ejωi −→ zi = rejωi

where r � ρ. This makes the poles win over the zeros, changing all the notch dips into
sharp peaks at frequencies ω = ωi. The corresponding transfer function is obtained
from Eq. (6.4.9) by scaling z in the numerator:

H(z)= N(r−1z)
N(ρ−1z)

= 1 + rb1z−1 + r2b2z−2 + · · · + rMbMz−M
1 + ρb1z−1 + ρ2b2z−2 + · · · + ρMbMz−M (6.4.10)

Example 6.4.5: Starting with the notch polynomialN(z)= 1−z−20 of Example 6.4.4, we obtain
the following filter, which will exhibit sharp peaks instead of dips if r � ρ:

H(z)= N(r−1z)
N(ρ−1z)

= 1 − r20z−20

1 − ρ20z−20
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The pole/zero pattern and magnitude response are shown below:

= poles
= zeros

unit
circle

The values of the parameters were r20 = 0.96 and ρ20 = 0.98, which correspond to r =
0.9980 and ρ = 0.9990. 	


The notching and peaking filters of Eqs. (6.4.9) and (6.4.10) are referred to generically
as comb filters. Notching comb filters are typically used to cancel periodic interference,
such as the power frequency pickup and its harmonics. Peaking comb filters are used to
enhance periodic signals in noise. The noise/interference reduction and signal enhance-
ment capabilities of comb filters and their design will be discussed further in Chapters
8 and 11.

Comb filters arise also in the construction of digital reverb processors, where they
represent the effects of multiple reflections of a sound wave off the walls of a listening
space. They also arise in the design of digital periodic waveform generators. These
topics will be discussed in Chapter 8.

6.5 Deconvolution, Inverse Filters, and Stability

In many applications, it is necessary to undo a filtering operation and recover the input
signal from the available output signal. The output signal y(n) is related to the input
by the convolutional equation:

y(n)= h(n)∗x(n) (6.5.1)

The objective of such “deconvolution” methods is to recover x(n) from the knowl-
edge of y(n) and the filter h(n). In theory, this can be accomplished by inverse filtering,
that is, filtering y(n) through the inverse filter

Hinv(z)= 1

H(z)
(6.5.2)

Indeed, working in the z-domain we have from Eq. (6.5.1):

Y(z)= H(z)X(z) ⇒ X(z)= 1

H(z)
Y(z)= Hinv(z)Y(z)

which becomes in the time domain:
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x(n)= hinv(n)∗y(n) (6.5.3)

where hinv(n) is the impulse response of the inverse filter Hinv(z). This operation is
illustrated in Fig. 6.5.1.

H(z)
y(n) x(n)x(n) inverse

filter
Hinv(z)

H(z)Hinv(z)=1

Fig. 6.5.1 Inverse filtering recovers original input.

Two typical applications of inverse filtering are channel equalization in digital voice
or data transmission and the equalization of room or car acoustics in audio systems.

In channel equalization, the effect of a channel can be modeled as a linear filter-
ing operation of the type of Eq. (6.5.1), where the transfer function H(z) incorporates
the effects of amplitude and phase distortions introduced by the channel. The signals
x(n) and y(n) represent the transmitted and received signals, respectively. The in-
verse filter—called a channel equalizer in this context—is placed at the receiving end
and its purpose is to undo the effects of the channel and recover the signal x(n) that
was transmitted. The overall processing system is shown in Fig. 6.5.2.

Often the channel itself is not known in advance, as for example in making a phone
connection when the channel is established dynamically depending on how the call is
routed to its destination. In such cases, the channel’s transfer function must be deter-
mined (usually using adaptive signal processing techniques) before it can be inverted.

Hch(z)
y(n) x(n)x(n)

equalizerchannel received
signal

transmitted
signal

Heq(z)

Hch(z)Heq(z)=1

Fig. 6.5.2 Channel equalizer.

The sound generated by an audio system in a listening room is changed by the rever-
beration and absorption characteristics of the room’s wall geometry and objects. The
effect of the room can be modeled by a reverberation impulse response hroom(n), so
that the actual sound wave impinging on a listener’s ears is a distorted version of the
original sound wave x(n) produced by the audio system:

yroom(n)= hroom(n)∗x(n) (6.5.4)

The impulse response hroom(n) depends on where one sits in the room, but it can
be measured and then deconvolved away by an inverse filtering operation:

Yroom(z)= Hroom(z)X(z) ⇒ X(z)= 1

Hroom(z)
Yroom(z)
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In addition to removing the local reverberation effects of a room, one may want to
add the reverberation ambience of a concert hall that increases the warmth and richness
of the sound. If the same audio signal x(n) were listened to in a concert hall with
reverberation impulse response hhall(n), the actual sound wave would be

yhall(n)= hhall(n)∗x(n) (6.5.5)

Available DSP audio effects processors can simulate the reverberation characteristics
of typical concert halls and can implement the above filtering operation. An idealized
audio effects processor is shown in Fig. 6.5.3.

1
Hroom(z)

Hhall(z) Hroom(z)
yhall(n)x(n)

audio in

DSP processor

audio out

Fig. 6.5.3 An ideal audio effects processor.

First, it deconvolves the room acoustics by prefiltering the audio signal x(n) by the
inverse filter of the room’s transfer function, anticipating the room’s effect, and then
it convolves it with the reverberation response of a desired concert hall. The effective
transfer function of the arrangement is:

Heff(z)= Hroom(z)·Hhall(z)· 1

Hroom(z)
= Hhall(z)

Thus, with the DSP effects processor, the sound wave produced in a room sounds
as it does in a concert hall, Eq. (6.5.5). We will discuss audio effects processors in more
detail in Chapter 8.

There are many other applications of inverse filtering in such diverse fields as identi-
fication and control systems, communication systems, image enhancement and restora-
tion, digital magnetic recording, oil exploration, geophysics, ocean engineering, electro-
magnetic theory, scattering theory, radio astronomy, medical tomography, and spec-
troscopic analysis, as well as in many areas of applied mathematics, such as numerical
analysis and statistics.

There are two major issues that arise in the practical application of inverse filtering.
One is the requirement of stability of the inverse filterhinv(n). Without this requirement,
the inverse filtering equation (6.5.3) would be unstable, resulting in numerical nonsense.

The other issue is the presence of noise in the data, that is, the available signal y(n)
may be (and almost invariably is) contaminated with noise, so that Eq. (6.5.1) is replaced
by:

y(n)= h(n)∗x(n)+v(n) (6.5.6)

where v(n) is the noise. Even if there is an exact and stable inverse filter hinv(n), the
deconvolution of the noisy data y(n) will give rise to the signal:
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x̂(n)= hinv(n)∗y(n)= x(n)+v̂(n) (6.5.7)

where v̂(n) is the filtered noise:

v̂(n)= hinv(n)∗v(n)

Depending on the nature of the inverse filter hinv(n), even if the measurement noise
v(n) is very weak, it is quite possible for the filtered noise v̂(n) to be a much amplified
version of v(n), rendering x̂(n) a very poor and almost useless estimate of the desired
signal x(n). There exist signal processing techniques that try to address this noise
problem to some extent. But they are beyond the scope of this book. See [28] for some
discussion and references.

The impulse response h(n) of the system H(z) is assumed to be both stable and
causal. This implies that the poles of H(z) must lie strictly inside the unit circle. But
the zeros ofH(z) do not have to lie inside the unit circle—they can be anywhere on the
z-plane. Writing H(z) in the ratio of two polynomials,

H(z)= N(z)
D(z)

we conclude that the zeros of N(z) may be anywhere on the z-plane. Therefore, the
inverse filter

Hinv(z)= 1

H(z)
= D(z)
N(z)

can have poles outside the unit circle. In this case, the stable inverse z-transform hinv(n)
will necessarily be anticausal. As an example, consider the case of a filter H(z) to be
inverted:

H(z)= 1 − 1.25z−1

1 − 0.5z−1
= 2.5 − 1.5

1 − 0.5z−1

It has a causal and stable impulse response given by:

h(n)= 2.5δ(n)−1.5(0.5)nu(n)

The corresponding inverse filter Hinv(z) will be

Hinv(z)= 1

H(z)
= 1 − 0.5z−1

1 − 1.25z−1
= 0.4 + 0.6

1 − 1.25z−1

and because it has a pole outside the unit circle, its stable impulse response will be
anticausal:

hinv(n)= 0.4δ(n)−0.6(1.25)nu(−n− 1)=

⎧⎪⎪⎨⎪⎪⎩
0 if n ≥ 1

0.4 if n = 0

−0.6(1.25)n if n ≤ −1
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Such a stable and anticausal impulse response can be handled using the approxi-
mation technique discussed in Section 3.5. That is, the infinitely long anticausal tail
is clipped off at some large negative time n = −D, replacing the exact hinv(n) by its
clipped approximation:

h̃inv(n)=
⎧⎨⎩hinv(n) if n ≥ −D

0 if n < −D (6.5.8)

The approximate impulse response h̃inv(n) has only a finitely anticausal part and
can be made causal by delaying it by D time units, as discussed in Section 3.5. The
deconvolution error arising from using the approximate response can be determined as
follows. Let x̃(n) be the deconvolved output using h̃inv(n), that is,

x̃(n)= h̃inv(n)∗y(n)
Subtracting it from the exact output x(n) of Eq. (6.5.3), we have

x(n)−x̃(n) = hinv(n)∗y(n)−h̃inv(n)∗y(n)=
(
hinv(n)−h̃inv(n)

)∗ y(n)
=

∞∑
m=−∞

(
hinv(m)−h̃inv(m)

)
y(n−m)

=
−D−1∑
m=−∞

hinv(m)y(n−m)

where all the terms for m ≥ −D were dropped because h̃inv(m) agrees with hinv(m)
there, and h̃inv(m)= 0 for m < −D. Assuming the signal y(n) is bounded by some
maximum value |y(n)| ≤ A, we find

|x(n)−x̃(n)| ≤ A
−D−1∑
m=−∞

|hinv(m)| (6.5.9)

This is a general result for the deconvolution error. The upper bound gets smaller
as D is increased. In particular, for the above example, we have:

|x(n)−x̃(n)| ≤ A
−D−1∑
m=−∞

|0.6(1.25)m| = 2.4A(1.25)−D

which can be made as small as desired by choosing D larger.
For a more general inverse filter Hinv(z) having more than one pole outside the unit

circle, the pole nearest the circle controls the decay time constant of the negative-time
tail of hinv(n), because it converges to zero the slowest. Therefore, it controls the choice
of the delay D. If we denote the minimum magnitude of these poles by

a = min |poutside| > 1

then for largeD, the upper bound in Eq. (6.5.9) will behave essentially like the term a−D,
which gives the approximation error bound, for some constant B:
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|x(n)−x̃(n)| ≤ Ba−D

In summary, when the inverse filter transfer functionHinv(z) has some poles outside
the unit circle, one must choose the anticausal but stable impulse response hinv(n) and
clip it at some large negative time D (and delay it by D to make it causal). The choice of
D is dictated by the outside pole closest to the unit circle. The resulting deconvolution
error arising from using the clipped filter can be made as small as desired by choosing
the clipping delay D larger.

6.6 Problems

6.1 Using z-transforms, determine the transfer function H(z) and from it the causal impulse
response h(n) of the linear systems described by the following I/O difference equations:

a. y(n)= −0.8y(n− 1)+x(n)
b. y(n)= 0.8y(n− 1)+x(n)
c. y(n)= 0.8y(n− 1)+x(n)+x(n− 1)

d. y(n)= 0.8y(n− 1)+x(n)−0.5x(n− 1)

e. y(n)= 0.8y(n− 1)+x(n)+0.25x(n− 2)

f. y(n)= 0.9y(n− 1)−0.2y(n− 2)+x(n)+x(n− 1)−6x(n− 2)

In each case, determine also the frequency response H(ω), the pole/zero pattern of the
transfer function on the z-plane, draw a rough sketch of the magnitude response |H(ω)|
over the right half of the Nyquist interval 0 ≤ ω ≤ π, and finally, draw the direct and
canonical block diagram realizations of the difference equation and state the corresponding
sample-by-sample filtering algorithms.

6.2 A unit-step signal x(n)= u(n) is applied at the input of the linear systems:

a. y(n)= x(n)+6x(n− 1)+11x(n− 2)+6x(n− 3)

b. y(n)= x(n)−x(n− 4)

Using z-transforms, determine the corresponding output signals y(n), for all n ≥ 0.

Repeat for the alternating-step input x(n)= (−1)nu(n).

6.3 Repeat Problem 6.2 for the following systems:

a. y(n)= 0.25y(n− 2)+x(n) b. y(n)= −0.25y(n− 2)+x(n)
6.4 A unit-step signal x(n)= u(n) is applied at the inputs of the systems of Problem 6.1.

a. Using z-transforms, derive expressions for the corresponding output signals y(n) for
all n ≥ 0, and determine which part of y(n) is the steady-state part and which the
transient part.

b. Repeat for the input x(n)= (−1)nu(n).

c. Repeat for the input x(n)= (0.5)nu(n) applied only to Problem 6.1(d).

d. Repeat for the input x(n)= (0.5)ncos(πn/2)u(n) applied to Problem 6.1(e) only.
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e. Repeat for the unstable input x(n)= 2nu(n) applied only to the system 6.1(f). Why is
the output stable in this case?

6.5 Determine the transfer function H(z) and the corresponding I/O difference equation relat-
ing x(n) and y(n) of the linear filters having the following impulse responses:

a. h(n)= δ(n− 5)

b. h(n)= u(n− 5)

c. h(n)= (0.8)nu(n)
d. h(n)= (−0.8)nu(n)

e. h(n)= (−0.8)n
[
u(n)−u(n− 8)

]
f. h(n)= (0.8)nu(n)+(−0.8)nu(n)

g. h(n)= 2(0.8)ncos(πn/2)u(n)

h. h(n)= (0.8j)nu(n)+(−0.8j)nu(n)

In each case, determine also the frequency response H(ω), the pole/zero pattern of the
transfer function on the z-plane, draw a rough sketch of the magnitude response |H(ω)|
over the right half of the Nyquist interval 0 ≤ ω ≤ π, and finally, draw the direct and
canonical realizations implementing the I/O difference equation and state the corresponding
sample-by-sample processing algorithms.

6.6 Find the transfer functionH(z) and express it as the ratio of two polynomials of the system
having impulse response:

h(n)=
∞∑
m=0

(0.5)mδ(n− 8m)= δ(n)+(0.5)δ(n− 8)+(0.5)2δ(n− 16)+· · ·

Then, draw a block diagram realization and write its sample processing algorithm.

6.7 A digital reverberation processor has frequency response:

H(ω)= −0.5 + e−jω8

1 − 0.5e−jω8

whereω is the digital frequency in [radians/sample]. Determine the causal impulse response
h(n), for all n ≥ 0, and sketch it versus n. [Hint: Do not use partial fractions.]

6.8 The first few Fibonacci numbers are:

h = [0,1,1,2,3,5,8,13,21, . . . ]

where each is obtained by summing the previous two.

a. Determine the linear system H(z) whose causal impulse response is h, and express it
as a rational function in z−1.

b. Using partial fractions, derive an expression for the nth Fibonacci number in terms of
the poles of the above filter.

c. Show that the ratio of two successive Fibonacci numbers converges to the Golden Sec-
tion, that is, the positive solution of the quadratic equation φ2 = φ + 1, namely,
φ = (1 +√

5)/2.

d. Show that the filter’s poles are the two numbers {φ,−φ−1}. Show that the geometric
sequence:

y = [0,1,φ,φ2,φ3, . . . ]

satisfies the same recursion as the Fibonacci sequence (for n ≥ 3). Show that y may be
considered to be the output of the filter h for a particular input. What is that input?
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See [32,33] for some remarkable applications and properties of Fibonacci numbers.

6.9 Pell’s series [32,33] is obtained by summing twice the previous number and the number
before (i.e., hn = 2hn−1 + hn−2):

h = [0,1,2,5,12,29, . . . ]

Determine the linear system H(z) whose causal impulse response is h, and express it as
a rational function in z−1. Using partial fractions, derive an expression for the nth Pell
number in terms of the poles of the above filter. Show that the ratio of two successive Pell
numbers converges to the positive solution of the quadratic equation θ2 = 2θ + 1, that is,
θ = 1 + √

2. Show that the filter’s poles are the two numbers {θ,−θ−1}. Show that the
geometric sequence:

y = [0,1, θ,θ2, θ3, . . . ]

satisfies the same recursion as the Pell sequence (for n ≥ 3). Show that y may be considered
to be the output of the filter h for a particular input. What is that input?

6.10 For a particular causal filter, it is observed that the input signal (0.5)nu(n) produces the out-
put signal (0.5)nu(n)+(0.4)nu(n). What input signal produces the output signal (0.4)nu(n)?

6.11 For a particular filter, it is observed that the input signal anu(n) causes the output signal
anu(n)+bnu(n) to be produced. What output signal is produced by the input cnu(n),
where c = (a+ b)/2?

6.12 The signal (0.7)nu(n) is applied to the input of an unknown causal LTI filter, and the signal
(0.7)nu(n)+(0.5)nu(n) is observed at the output. What is the causal input signal that will
cause the output (0.5)nu(n)? What is the transfer functionH(z) of the system? Determine
its causal impulse response h(n), for all n ≥ 0.

6.13 Design a resonator filter of the form H(z)= 1

1 + a1z−1 + a2z−2
, which has a peak at f0 =

250 Hz and a 3-dB width ofΔf = 20 Hz and is operating at a rate of fs = 5 kHz. What are the
values of a1 and a2? Show that the time constant of the resonator is given approximately by

neff = −2 ln ε
Δω

which is valid for small Δω. For the designed filter, calculate the 40-dB value of neff, that is,
corresponding to ε = 10−2. Compare the approximate and exact values of neff.

6.14 For any stable and causal filter, let τ40 and τ60 denote its 40-dB and 60-dB time constants,
expressed in seconds. Show that they are related by: τ60 = 1.5τ40.

6.15 Show that the 60-dB time constant of a resonator filter is given approximately by:

τ60 = 2.2
Δf

where τ60 is in seconds and Δf is the 3-dB width in Hz. When is the approximation valid?

6.16 It is desired to generate the following periodic waveform:

h(n)= [1,2,3,4,0,0,0,0,1,2,3,4,0,0,0,0, · · · ]

where the dots indicate the periodic repetition of the 8 samples [1,2,3,4,0,0,0,0].
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a. Determine the filter H(z) whose impulse response is the above periodic sequence.
Express H(z) as a ratio of two polynomials of degree less than 8.

b. Draw the canonical and direct realization forms of H(z). Write the corresponding
sample processing algorithms.

6.17 A digital sawtooth generator filter has a periodic impulse response:

h = [0,1,2,3,0,1,2,3,0,1,2,3, · · · ]

where the dots indicate the periodic repetition of the length-4 sequence {0,1,2,3}.

a. Determine the transfer function H(z).

b. Draw the direct and canonical realization forms. Factor H(z) into second-order sec-
tions with real coefficients. Draw the corresponding cascade realization.

c. For each of the above three realizations, write the corresponding I/O time-domain
difference equations and sample-by-sample processing algorithms.

d. Using partial fractions, do an inverse z-transform of H(z) and determine a closed
form expression for the above impulse response h(n) in the form

h(n)= A+ B(−1)n+2C cos
(πn

2

)+ 2D sin
(πn

2

)
, n ≥ 0

What are the values of A,B,C,D ?

6.18 Consider the system: H(z)= 1 + z−1 + z−2 + z−3

1 − z−7
.

a. Without using partial fractions, determine the causal impulse response of the system.
Explain your reasoning.

b. Draw the canonical realization form of the system. Write the I/O difference equations
and the sample processing algorithm describing this realization.

c. The length-3 input signal x = [3,2,1] is applied as input to the system. Using any
method, determine the output signal y(n) for all n ≥ 0. Explain your method.

6.19 A causal filter has transfer function: H(z)= 1 + z−1 + z−2 + z−3

1 − z−2
.

a. Determine the numerical values of the causal impulse response h(n), for all n ≥ 0.

b. Draw the canonical realization form of this filter and write the sample processing
algorithm describing it.

6.20 A filter is described by the following sample processing algorithm:

for each input x do:
w0 = x+w1

y = w0 +w2

w2 = w1

w1 = w0

a. Determine the transfer function H(z) of this filter.

b. Show that it is identically equal to that of Problem 6.19.
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6.21 A biomedical signal, sampled at a rate of 240 Hz, is plagued by 60 Hz power frequency
interference and its harmonics.

Design a digital notch filter H(z) that removes all these harmonics, but remains essentially
flat at other frequencies.

[Hint : You may assume, although it is not necessary, that the signal has been prefiltered
by a perfect antialiasing prefilter matched to the above sampling rate. Therefore, only the
harmonics that lie in the 0 ≤ f < 240 Hz Nyquist interval are relevant.]

6.22 A digital filter has transfer function, where 0 < a < 1:

H(z)= 1 − z−16

1 − az−16

a. What are the poles and zeros of this filter? Show them on the z-plane.

b. Draw a rough sketch of its magnitude response |H(ω)| over the frequency interval
0 ≤ω ≤ 2π.

c. Determine the causal/stable impulse response h(n) for all n ≥ 0. Sketch it as a
function of n. [Hint : Do not use PF expansions.]

d. Draw the canonical realization form and write the corresponding sample processing
algorithm. (You may make use of the delay routine to simplify the algorithm.)

6.23 Find the causal impulse response h(n), for all n ≥ 0, of H(z)= 0.3 + 0.15z−1

1 − 0.5z−1
.

6.24 LetH(z)= 1 − a
1 − az−1

be a first-order lowpass filter (also called a first-order smoother), where

0 < a < 1. Draw the canonical realization. Draw another realization that uses only one
multiplier, (that is, a), one delay, and one adder and one subtractor. For both realizations,
write the sample-by-sample processing algorithms. What would you say is the purpose of
the chosen gain factor 1 − a?

6.25 LetH(z)= 3 − 3z−1 − z−2

1 − 1.5z−1 − z−2
. Determine all possible impulse responses h(n), for all n, and

the corresponding ROCs.

6.26 A discrete system is described by the difference equation

y(n)= 2.5y(n− 1)−y(n− 2)+3x(n)+3x(n− 2)

Using z-transforms, find all possible impulse responses h(n) and indicate their causality
and stability properties.

For the causal filter, determine the output y(n) if the input is x(n)= g(n)−2g(n−1), where
g(n)= cos(πn/2)u(n).

6.27 A signal x(n) has frequency bandwidth 0 ≤ |ω| ≤ ωc, where ωc < π. The signal is
applied to a lowpass filter H(ω) resulting in the output y(n). Assuming that the filter
has an approximately flat passband over 0 ≤ |ω| ≤ ωc and is zero outside that band,
and assuming that the filter has linear phase with a phase delay d(ω)= D, show that the
resulting output will be approximately equal to the delayed input y(n)= Gx(n−D), where
G is the filter’s passband gain.

6.28 Consider a causal/stable filter H(z)= N(z)
(1 − p1z−1)(1 − p2z−1)· · · (1 − pMz−1)

, where the

M poles are inside the unit circle |pi| < 1, and the numeratorN(z) is a polynomial in z−1 of
degree strictly less than M. Show that the impulse response can be expressed in the form:
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h(n)=
M∑
i=1

Aipni u(n), where Ai = N(pi)∏
j �=i
(1 − pjp−1

i )

6.29 The input-on behavior of the above filter may be studied by applying to it a one-sided sinusoid
that starts at n = 0 and continues till n = ∞. The input-off behavior may be studied
by applying a sinusoid that has been on since n = −∞ and turns off at n = 0. Using
z-transforms, show that the corresponding outputs are in the two cases:

ejω0nu(n) H−→ y(n)= H(ω0)ejω0nu(n)+
M∑
i=1

Bipni u(n)

ejω0nu(−n− 1) H−→ y(n)= H(ω0)ejω0nu(−n− 1)−
M∑
i=1

Bipni u(n)

Thus, the transient behavior for n ≥ 0 is the same in both cases except for a sign. Show that
the coefficients Bi are related to Ai of the previous problem by:

Bi = piAi
pi − ejω0

, i = 1,2, . . . ,M

Using these results and linear superposition, derive the steady-state result of Eq. (6.3.2),
which is valid for double-sided sinusoids. See also Problem 8.14.

6.30 Let H(z)= 3 − 5z−1 + z−2

(1 − 0.5z−1)(1 − 2z−1)
. Determine the stable but anticausal impulse response

h(n) of this system. Let h̃(n) denote the causal approximation to h(n) obtained by clipping
off the anticausal tail of h(n) at some large negative time n = −D. What is H̃(z)?
Suppose the signal x(n)= δ(n)−2δ(n− 1) is applied at the input of the true and approx-
imate systems resulting in the outputs y(n) and ỹ(n), respectively. Using z-transforms,
determine an expression for the output error e(n)= y(n)−ỹ(n).



7
Digital Filter Realizations

7.1 Direct Form

In this section, we discuss in detail the direct form realizations of digital filters, otherwise
known as direct form I realizations. We begin by considering a simple second-order filter
with transfer function

H(z)= N(z)
D(z)

= b0 + b1z−1 + b2z−2

1 + a1z−1 + a2z−2
(7.1.1)

having I/O difference equation:

yn = −a1yn−1 − a2yn−2 + b0xn + b1xn−1 + b2xn−2 (7.1.2)

The direct form realization is the block diagram representation of this difference
equation. It is depicted in Fig. 7.1.1.

y(n)x(n)

z-1

z-1

-a1
w1(n)

w0(n)

w2(n)
-a2

z-1

z-1

b1

b0

v1(n)

v0(n)

v2(n)
b2

Fig. 7.1.1 Direct form realization of second-order IIR filter.

The main feature of this realization is a single adder that accumulates all the terms
in the right-hand side of Eq. (7.1.2) and whose output is y(n).

All the b-multiplier terms are feeding forward. They correspond to the numera-
tor polynomial of H(z) and to the x-dependent, non-recursive terms of the difference
equation (7.1.2).
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The a-multiplier terms are feeding back. They correspond to the denominator poly-
nomial ofH(z) and to the y-dependent, recursive terms of Eq. (7.1.2). Notice the change
in sign: The a-multipliers in the block diagram and in the difference equation are the
negatives of the denominator polynomial coefficients.

The FIR direct form of Chapter 4 is obtained as a special case of this by setting the
feedback coefficients to zero a1 = a2 = 0.

The sample-by-sample processing algorithm can be derived by defining the internal
states of the filter to be:

v0(n) = x(n)
v1(n) = x(n− 1)= v0(n− 1)

v2(n) = x(n− 2)= v1(n− 1)

and

w0(n) = y(n)
w1(n) = y(n− 1)= w0(n− 1)

w2(n) = y(n− 2)= w1(n− 1)

The quantities v1(n), v2(n), w1(n), and w2(n) are the internal states of the filter,
representing the contents of the delay registers of the block diagram at timen. Replacing
n by n+1 in the above definitions, we find the time updates:

v1(n+ 1) = v0(n)

v2(n+ 1) = v1(n)
and

w1(n+ 1) = w0(n)

w2(n+ 1) = w1(n)

Therefore, we may replace Eq. (7.1.2) by the system:

v0(n)= x(n)
w0(n)= −a1w1(n)−a2w2(n)+b0v0(n)+b1v1(n)+b2v2(n)

y(n)= w0(n)

v2(n+ 1)= v1(n), w2(n+ 1)= w1(n)

v1(n+ 1)= v0(n), w1(n+ 1)= w0(n)

It can be replaced by the following repetitive sample processing algorithm:

for each input sample x do:
v0 = x
w0 = −a1w1 − a2w2 + b0v0 + b1v1 + b2v2

y = w0

v2 = v1, w2 = w1

v1 = v0, w1 = w0

(7.1.3)

Note that the state updating must be done in reverse order (from the bottom up in the
block diagram).

The direct form realization can be generalized easily to the case of arbitrary nu-
merator and denominator polynomials. One simply extends the structure downward
by adding more delays and corresponding multipliers. In the general case, the transfer
function is:
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H(z)= N(z)
D(z)

= b0 + b1z−1 + b2z−2 + · · · + bLz−L
1 + a1z−1 + a2z−2 + · · · + aMz−M (7.1.4)

having an Lth degree numerator and Mth degree denominator. The corresponding I/O
difference equation is:

yn = −a1yn−1 − a2yn−2 − · · · − aMyn−M + b0xn + b1xn−1 + · · · + bLxn−L (7.1.5)

Figure 7.1.2 shows the case L = M. To derive the sample processing algorithm in
the general case, we define the internal state signals:

vi(n) = x(n− i), i = 0,1, . . . , L

wi(n) = y(n− i), i = 0,1, . . . ,M
(7.1.6)

...

...

x(n)
b0

b1

b2

bL

z-1

z-1

z-1

z-1

z-1

z-1
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v0

v2

vL

...

...

y(n)

-aM

-a2

-a1 w1

w0

w2

wM

Fig. 7.1.2 Direct form realization of Mth order IIR filter.

They are updated in time by

vi(n+ 1) = vi−1(n), i = 1,2, . . . , L

wi(n+ 1) = wi−1(n), i = 1,2, . . . ,M
(7.1.7)

These can be shown easily, for example:

wi(n+ 1)= y((n+ 1)−i) = y(n− (i− 1)
) = wi−1(n)

Then, the difference equation (7.1.5) is be written as follows:

w0(n)= −a1w1(n)−· · · − aMwM(n)+b0v0(n)+b1v1(n)+· · · + bLvL(n)

Together with the time updates (7.1.7), it leads to the following sample processing
algorithm for the direct form realization:
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for each input sample x do:
v0 = x
w0 = −a1w1 − · · · − aMwM + b0v0 + b1v1 + · · · + bLvL
y = w0

vi = vi−1, i = L,L−1, . . . ,1
wi = wi−1, i =M,M−1, . . . ,1

(7.1.8)

Again, the state updating must be done in reverse order to avoid overwriting vi and
wi. Before filtering the first input sample, the internal states must be initialized to zero,
that is, at time n = 0 set:

[v1, v2, . . . , vL]= [0,0, . . . ,0], [w1,w2, . . . ,wM]= [0,0, . . . ,0]
The following C routine dir.c is an implementation of this algorithm:

/* dir.c - IIR filtering in direct form */

double dir(M, a, L, b, w, v, x) usage: y = dir(M, a, L, b, w, v, x);

double *a, *b, *w, *v, x; v,w are internal states

int M, L; denominator and numerator orders

{
int i;

v[0] = x; current input sample

w[0] = 0; current output to be computed

for (i=0; i<=L; i++) numerator part

w[0] += b[i] * v[i];

for (i=1; i<=M; i++) denominator part

w[0] -= a[i] * w[i];

for (i=L; i>=1; i--) reverse-order updating of v
v[i] = v[i-1];

for (i=M; i>=1; i--) reverse-order updating of w
w[i] = w[i-1];

return w[0]; current output sample

}

Note that b, a are the numerator and denominator coefficient vectors:

b = [b0, b1, b2, . . . , bL], a = [1, a1, a2, . . . , aM] (7.1.9)

They, and the internal state vectors w, v, must be declared and allocated in the main
program by

double *a, *b, *w, *v;
a = (double *) calloc(M+1, sizeof(double)); (M+1)–dimensional

b = (double *) calloc(L+1, sizeof(double)); (L+1)–dimensional

a[0] = 1; always so

w = (double *) calloc(M+1, sizeof(double)); (M+1)–dimensional

v = (double *) calloc(L+1, sizeof(double)); (L+1)–dimensional
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Note that calloc initializes the internal states w,v to zero. The following program
segment illustrates the usage of dir:

for (n = 0; n < Ntot; n++)
y[n] = dir(M, a, L, b, w, v, x[n]);

Example 7.1.1: Draw the direct form realization of the following filter:

H(z)= 2 − 3z−1 + 4z−3

1 + 0.2z−1 − 0.3z−2 + 0.5z−4

and determine the corresponding difference equation and sample processing algorithm.

Solution: The difference equation is:

yn = −0.2yn−1 + 0.3yn−2 − 0.5yn−4 + 2xn − 3xn−1 + 4xn−3

The direct form realization is shown in Fig. 7.1.3. The sample processing algorithm is:

for each input sample x do:
v0 = x
w0 = −0.2w1 + 0.3w2 − 0.5w4 + 2v0 − 3v1 + 4v3

y = w0

w4 = w3

w3 = w2, v3 = v2

w2 = w1, v2 = v1

w1 = w0, v1 = v0

x(n)

z-1

z-1

z-1

z-1

v1

v0

v2

y(n)

w1

w0

w2

w3

w4

z-1 z-1

v3

z-1

2

4

-3 -0.2

-0.5

0.3

Fig. 7.1.3 Direct form realization of Example 7.1.1.

The filter coefficient and state vectors are in this example:

a = [a0, a1, a2, a3, a4]= [1,0.2,−0.3,0.0,0.5]

b = [b0, b1, b2, b3]= [2,−3,0,4]

w = [w0,w1,w2,w3,w4], v = [v0, v1, v2, v3]
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There are four delays for the feedback coefficients and three for the feed forward ones,
because the denominator and numerator polynomials have orders 4 and 3. Note also that
some coefficients are zero and therefore their connections to the adder are not shown. 	


The direct form algorithm (7.1.8) can be written more simply in terms of the dot
product routine dot and delay routine delay in much the same way as was done in
Chapter 4 for the FIR filtering routine fir. The output y in Eq. (7.1.8) involves essentially
the dot products of the filter coefficient vectors with the internal state vectors. These
dot products are:

dot(L,b,v)= bTv = b0v0 + b1v1 + · · · + bLvL
dot(M, a,w)= aTw = a0w0 + a1w1 + · · · + aMwM

where a0 = 1. If we setw0 = 0, then the second dot product is precisely the contribution
of the feedback (denominator) coefficients to the filter output, that is,

w0 = 0 ⇒ dot(M, a,w)= a1w1 + · · · + aMwM
Therefore, we may replace Eq. (7.1.8) by the more compact version:

for each input sample x do:
v0 = x
w0 = 0
w0 = dot(L,b,v)−dot(M, a,w)
y = w0

delay(L,v)
delay(M,w)

(7.1.10)

The following routine dir2.c is an implementation of this algorithm. It is the IIR
version of the routine fir2 of Chapter 4.

/* dir2.c - IIR filtering in direct form */

double dot();
void delay();

double dir2(M, a, L, b, w, v, x) usage: y = dir2(M, a, L, b, w, v, x);

double *a, *b, *w, *v, x;
int M, L;
{

v[0] = x; current input sample

w[0] = 0; needed for dot(M,a,w)

w[0] = dot(L, b, v) - dot(M, a, w); current output

delay(L, v); update input delay line

delay(M, w); update output delay line

return w[0];
}
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7.2 Canonical Form

The canonical realization form, otherwise known as direct form II, can be obtained from
the direct form in the following way. Starting with the second-order filter of Eq. (7.1.1)
we may group the five terms in the right-hand side of Eq. (7.1.2) into two subgroups: the
recursive terms and the non-recursive ones, that is,

yn = (b0xn + b1xn−1 + b2xn−2)+(−a1yn−1 − a2yn−2)

This regrouping corresponds to splitting the big adder of the direct form realization
of Fig. 7.1.1 into two parts, as shown in Fig. 7.2.1.

x(n) y(n)

z-1

z-1

-a1
w1(n)

w0(n)

w2(n)
-a2

z-1

z-1

b1

b0

v1(n)

v0(n)

v2(n)
b2

N(z) 1/D(z)

Fig. 7.2.1 Regrouping of direct form terms.

We can think of the resulting realization as the cascade of two filters: one consist-
ing only of the feed-forward terms and the other of the feedback terms. It is easy to
verify that these two filters are the numeratorN(z) and the inverse of the denominator
1/D(z), so that their cascade will be

H(z)= N(z)· 1

D(z)

which is the original transfer function given in Eq. (7.1.1). Mathematically, the order of
the cascade factors can be changed so that

H(z)= 1

D(z)
·N(z)

which corresponds to changing the order of the block diagrams representing the factors
N(z) and 1/D(z), as shown in Fig. 7.2.2.

The output signal of the first filter 1/D(z) becomes the input to the second filter
N(z). If we denote that signal byw(n), we observe that it gets delayed in the same way
by the two sets of delays of the two filters, that is, the two sets of delays have the same
contents, namely, the numbers w(n− 1), w(n− 2).
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z-1

b1

b0

b2

N(z)

y(n)

z-1

z-1

-a1
w1(n) w1(n)

w0(n)

w(n)w(n)

w0(n)

w2(n) w2(n)
-a2

1/D(z)

Fig. 7.2.2 Interchanging N(z) and 1/D(z).
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Fig. 7.2.3 Canonical realization form of second-order IIR filter.

Therefore, there is no need to use two separate sets of delays. The two sets can be
merged into one, shared by both the first and second filters 1/D(z) and N(z). This
leads to the canonical realization form depicted in Fig. 7.2.3.

The I/O difference equations describing the time-domain operation of this realiza-
tion can be obtained by writing the conservation equations at each adder, with the input
adder written first:

w(n) = x(n)−a1w(n− 1)−a2w(n− 2)

y(n) = b0w(n)+b1w(n− 1)+b2w(n− 2)
(7.2.1)

The computed value of w(n) from the first equation is passed into the second to
compute the final output y(n). It is instructive also to look at this system in the z-
domain. Taking z-transforms of both sides, we find

W(z) = X(z)−a1z−1W(z)−a2z−2W(z)

Y(z) = b0W(z)+b1z−1W(z)+b2z−2W(z)
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which can be solved for W(z) and Y(z):

W(z) = 1

1 + a1z−1 + a2z−2
X(z)= 1

D(z)
X(z)

Y(z) = (b0 + b1z−1 + b2z−2)W(z)= N(z)W(z)
Eliminating W(z), we find that the transfer function from X(z) to Y(z) is the original
one, namely, N(z)/D(z):

Y(z)= N(z)W(z)= N(z) 1

D(z)
X(z)= N(z)

D(z)
X(z)

At each time n, the quantities w(n− 1) and w(n− 2) in Eq. (7.2.1) are the contents
of the two shared delay registers. Therefore, they are the internal states of the filter. To
determine the corresponding sample processing algorithm, we redefine these internal
states by:

w0(n) = w(n)
w1(n) = w(n− 1)= w0(n− 1)

w2(n) = w(n− 2)= w1(n− 1)

⇒
w1(n+ 1) = w0(n)

w2(n+ 1) = w1(n)

Therefore, the system (7.2.1) can be rewritten as:

w0(n)= x(n)−a1w1(n)−a2w2(n)

y(n)= b0w0(n)+b1w1(n)+b2w2(n)

w2(n+ 1)= w1(n)

w1(n+ 2)= w0(n)

which translates to the following sample processing algorithm:

for each input sample x do:
w0 = x− a1w1 − a2w2

y = b0w0 + b1w1 + b2w2

w2 = w1

w1 = w0

(7.2.2)

where, again, the states w2 and w1 must be updated in reverse order. The canonical
form for the more general case of Eq. (7.1.4) is obtained following similar steps. That is,
we define

Y(z)= N(z)W(z) and W(z)= 1

D(z)
X(z)

and rewrite them in the form:

(1 + a1z−1 + a2z−2 + · · · + aMz−M)W(z)= X(z)
Y(z)= (b0 + b1z−1 + · · · + bLz−L)W(z)
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or, equivalently

W(z)= X(z)−(a1z−1 + a2z−2 + · · · + aMz−M)W(z)
Y(z)= (b0 + b1z−1 + · · · + bLz−L)W(z)

which become in the time domain:

w(n) = x(n)−a1w(n− 1)−· · · − aMw(n−M)
y(n) = b0w(n)+b1w(n− 1)+· · · + bLw(n− L)

(7.2.3)

The block diagram realization of this system is shown in Fig. 7.2.4 for the case M =
L. If M ≠ L one must draw the maximum number of common delays, that is, K =
max(M,L). Defining the internal states by

...

...
...

x(n)
w(n)

y(n)
b0

b1

b2

bM-aM

-a2

-a1

z-1

z-1

z-1

w1

w0

w2

wM

Fig. 7.2.4 Canonical realization form of Mth order IIR filter.

wi(n)= w(n− i)= wi−1(n− 1), i = 0,1, . . . , K

we may rewrite the system (7.2.3) in the form:

w0(n)= x(n)−a1w1(n)−· · · − aMwM(n)
y(n)= b0w0(n)+b1w1(n)+· · · + bLwL(n)
wi(n+ 1)= wi−1(n), i = K,K−1, . . . ,1

(7.2.4)

This leads to the following sample-by-sample filtering algorithm:

for each input sample x do:
w0 = x− a1w1 − a2w2 − · · · − aMwM
y = b0w0 + b1w1 + · · · + bLwL
wi = wi−1, i = K,K−1, . . . ,1

(7.2.5)



7.2. CANONICAL FORM 275

Again, the state updating must be done in reverse order. Before the first input sam-
ple, the internal states must be initialized to zero, that is, [w1,w2, . . . ,wK]= [0,0, . . . ,0].
The following C routine can.c is an implementation of this algorithm:

/* can.c - IIR filtering in canonical form */

double can(M, a, L, b, w, x) usage: y = can(M, a, L, b, w, x);

double *a, *b, *w, x; w = internal state vector

int M, L; denominator and numerator orders

{
int K, i;
double y = 0;

K = (L <= M) ? M : L; K = max(M,L)

w[0] = x; current input sample

for (i=1; i<=M; i++) input adder

w[0] -= a[i] * w[i];

for (i=0; i<=L; i++) output adder

y += b[i] * w[i];

for (i=K; i>=1; i--) reverse updating of w
w[i] = w[i-1];

return y; current output sample

}

The vectors a,b must be allocated just as for the direct form routine dir. The state
vector w must be allocated to dimension K+1, that is,

w = (double *) calloc(K+1, sizeof(double)); w = [w0,w1, . . . ,wK]

The same program segment illustrating the usage of dir also illustrates the usage
of can. The only difference is that now there is only one state vector w instead of w,v:

for (n = 0; n < Ntot; n++)
y[n] = can(M, a, L, b, w, x[n]);

Comparing Figs. 7.1.2 and 7.2.4, we note that: (a) The direct form requires twice as
many delays; (b) both have exactly the same multiplier coefficients; (c) the direct form
has only one adder whose output is the system output; and (d) the canonical form has
two adders, one at the input and one at the output. Between the two, the canonical form
is usually preferred in practice.

Note also that for FIR filters the denominator polynomial is trivialD(z)= 1 and thus,
the direct and canonical forms are identical to the direct form of Chapter 4.

Example 7.2.1: Draw the canonical realization form of Example 7.1.1 and write the correspond-
ing difference equations and sample processing algorithm.

Solution: Interchanging the feedback and feed-forward parts of Fig. 7.1.3 and merging the com-
mon delays, we obtain the canonical realization shown in Fig. 7.2.5. The difference equa-
tions describing this block diagram in the time domain are obtained from the two adder
equations:
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w(n) = x(n)−0.2w(n− 1)+0.3w(n− 2)−0.5w(n− 4)

y(n) = 2w(n)−3w(n− 1)+4w(n− 3)

The corresponding sample processing algorithm is:

for each input sample x do:
w0 = x− 0.2w1 + 0.3w2 − 0.5w4

y = 2w0 − 3w1 + 4w3

w4 = w3

w3 = w2

w2 = w1

w1 = w0

Here, the maximum number of delays is K = max(M,L)= max(4,3)= 4. 	
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Fig. 7.2.5 Canonical realization form of Example 7.1.1.

Following the discussion of Eq. (7.1.10), we can derive an alternative version of the
canonical form algorithm (7.2.5) that uses the dot product and delay routines, as follows:

for each input sample x do:
w0 = 0
w0 = x− dot(M, a,w)
y = dot(L,b,w)
delay(K,w)

(7.2.6)

The C routine can2.c is an implementation.

/* can2.c - IIR filtering in canonical form */

double dot();
void delay();
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double can2(M, a, L, b, w, x) usage: y = can2(M, a, L, b, w, x);

double *a, *b, *w, x;
int M, L;
{

int K;
double y;

K = (L <= M) ? M : L; K = max(M,L)

w[0] = 0; needed for dot(M,a,w)

w[0] = x - dot(M, a, w); input adder

y = dot(L, b, w); output adder

delay(K, w); update delay line

return y; current output sample

}

7.3 Cascade Form

A second-order section (SOS) is a second-order transfer function of the form (7.1.1). Its
canonical realization is depicted in Fig. 7.2.3. In the time domain it operates according
to the I/O system of difference equations given by Eq. (7.2.1) and the corresponding
sample processing algorithm of Eq. (7.2.2).

It can be implemented by the routine can with M = L = 2 and three-dimensional
coefficient and state arrays a,b,w. However, it proves convenient to write a special ver-
sion of can as it applies to this specific case. The following C routine sos.c implements
a second-order section:

/* sos.c - IIR filtering by single second order section */

double sos(a, b, w, x) a, b, w are 3-dimensional

double *a, *b, *w, x; a[0]= 1 always

{
double y;

w[0] = x - a[1] * w[1] - a[2] * w[2];
y = b[0] * w[0] + b[1] * w[1] + b[2] * w[2];

w[2] = w[1];
w[1] = w[0];

return y;
}

where a, b, w must be declared to be three-dimensional arrays in the main program, for
example by

a = (double *) calloc(3, sizeof(double)); a = [1, a1, a2]
b = (double *) calloc(3, sizeof(double)); b = [b0, b1, b2]
w = (double *) calloc(3, sizeof(double)); w = [w0, w1, w2]
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The cascade realization form of a general transfer function assumes that the transfer
function is the product of such second-order sections:

H(z)=
K−1∏
i=0

Hi(z)=
K−1∏
i=0

bi0 + bi1z−1 + bi2z−2

1 + ai1z−1 + ai2z−2
(7.3.1)

Any transfer function of the form (7.1.4) can be factored into second-order factors
with real-valued coefficients, provided Eq. (7.1.4) has real coefficients.

The maximum order of the numerator and denominator polynomials in Eq. (7.3.1)
is 2K, that is, twice the number of second-order sections. By “second order” we really
mean “up to second order”, and therefore, if some of the z−2 coefficients bi2 or ai2 are
zero, the actual numerator and denominator orders will be L ≤ 2K and M ≤ 2K.

A block diagram realization of Eq. (7.3.1) can be obtained by cascading together the
block diagram realizations of the SOS filters Hi(z). Each SOS may be realized in its
canonical, direct, or transposed realizations. However, the convention is to realize all
of them in their canonical form, as shown in Fig. 7.3.1.

x(n)

w0(n) w1(n)

w2(n) w3(n)

x1=y0 x2=y1

x2=y1 x3=y2

x0=x b00

b01-a01

z-1

z-1 z-1

z-1

w01

w00

b02-a02
w02

b10

b11-a11 w11

w10

b12-a12
w12

H0(z) H1(z)

y(n)

y=y3b20

b21-a21

z-1

z-1 z-1

z-1

w21

w20

b22-a22
w22

b30

b31-a31 w31

w30

b32-a32
w32

H2(z) H3(z)

Fig. 7.3.1 Cascade of second-order sections.

Let us denote by xi(n), yi(n) the input and output signals of the ith section Hi(z).
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Then, the overall input is the input to H0(z), namely, x(n)= x0(n), and the overall
output is the output from the last SOS HK−1(z), namely, y(n)= yK−1(n). For the
intermediate stages, the output yi(n) of the ith section becomes the input to the (i+1)th
section Hi+1(z), that is,

xi+1(n)= yi(n), i = 0,1, . . . , K − 1

Each section has its own internal state vector wi(n)= [wi0(n),wi1(n),wi2(n)],
i = 0,1, . . . , K − 1, where the numbers wi1(n), wi2(n) are the contents of the section’s
delay registers at the nth time instant.

The I/O difference equations describing the time-domain operation of the realization
are obtained by writing the difference equations (7.2.1) for each SOS and passing the
output of each to the input of the next:

x0(n)= x(n)
for i = 0,1, . . . , K − 1 do:

wi(n)= xi(n)−ai1wi(n− 1)−ai2wi(n− 2)

yi(n)= bi0wi(n)+bi1wi(n− 1)+bi2wi(n− 2)

xi+1(n)= yi(n)
y(n)= yK−1(n)

(7.3.2)

It can be translated to the following sample processing algorithm:

for each input sample x do:
x0 = x
for i = 0,1, . . . , K − 1 do:

wi0 = xi − ai1wi1 − ai2wi2
yi = bi0wi0 + bi1wi1 + bi2wi2
wi2 = wi1
wi1 = wi0
xi+1 = yi

y = yK−1

(7.3.3)

where, the internal state vector wi of the ith section is defined at time n by:

wi0(n) = wi(n)
wi1(n) = wi(n− 1)

wi2(n) = wi(n− 2)

, for i = 0,1, . . . , K − 1

To keep track of the coefficients of the sections and the internal states, we arrange
them into K×3 matrices whose ith rows hold the corresponding parameters of the ith
section. For example, if K = 4 as in Fig. 7.3.1, we define
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A =

⎡⎢⎢⎢⎣
1 a01 a02

1 a11 a12

1 a21 a22

1 a31 a32

⎤⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎣
b00 b01 b02

b10 b11 b12

b20 b21 b22

b30 b31 b32

⎤⎥⎥⎥⎦ , W =

⎡⎢⎢⎢⎣
w00 w01 w02

w10 w11 w12

w20 w21 w22

w30 w31 w32

⎤⎥⎥⎥⎦
The ith rows of these matrices are the three-dimensional coefficient vectors and

states of the ith section, that is,

ai = [1, ai1, ai2]
bi = [bi0, bi1, bi2],
wi = [wi0,wi1,wi2]

for i = 0,1, . . . , K − 1 (7.3.4)

In this notation, we may rewrite the sample processing algorithm (7.3.3) as K suc-
cessive calls to the basic SOS routine sos:

for each input sample x do:
y = x
for i = 0,1, . . . , K − 1 do:

y = sos(ai,bi,wi, y)

(7.3.5)

where y denotes both the input and output of each section. The last computed y is the
final output. The C implementation of this algorithm is given by the following routine
cas.c:

/* cas.c - IIR filtering in cascade of second-order sections */

double sos(); single second-order section

double cas(K, A, B, W, x)
int K;
double **A, **B, **W, x; A,B,W are K×3 matrices

{
int i;
double y;

y = x; initial input to first SOS

for (i=0; i<K; i++)
y = sos(A[i], B[i], W[i], y); output of ith section

return y; final output from last SOS

}

The coefficient and state matrices A, B, W must be dimensioned to size K×3 and
allocated in the main program, for example, by

double **A, **B, **W;

A = (double **) calloc(K, sizeof(double *)); allocate K rows

B = (double **) calloc(K, sizeof(double *));
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W = (double **) calloc(K, sizeof(double *));
for (i=0; i<K; i++) {

A[i] = (double *) calloc(3, sizeof(double)); allocate each row

B[i] = (double *) calloc(3, sizeof(double));
W[i] = (double *) calloc(3, sizeof(double));
}

Alternatively, if the value of K is known in advance, we may declare:

double A[K][3], B[K][3], W[K][3];

In that case, the declarations inside cas must also be modified to read:

double A[][3], B[][3], W[][3];

The quantities A[i], B[i], W[i] are the ith rows of A, B, W, as given by Eq. (7.3.4).
The states W must be initialized to zero before the first call to cas; this is accomplished
indirectly by calloc. The usage of cas is the same as can; that is,

for (n = 0; n < Ntot; n++)
y[n] = cas(K, A, B, W, x[n]);

Example 7.3.1: Draw the cascade and canonical realizations of the following filter:

H(z) =
[

3 − 4z−1 + 2z−2

1 − 0.4z−1 + 0.5z−2

][
3 + 4z−1 + 2z−2

1 + 0.4z−1 + 0.5z−2

]
= H0(z)H1(z)

= 9 − 4z−2 + 4z−4

1 + 0.84z−2 + 0.25z−4

Write the corresponding I/O difference equations and sample processing algorithms.

Solution: The cascade realization is shown in Fig. 7.3.2 and the canonical one in Fig. 7.3.3. The
I/O difference equations describing the cascade realization in the time domain are:

w0(n)= x(n)+0.4w0(n− 1)−0.5w0(n− 2)

x1(n)= 3w0(n)−4w0(n− 1)+2w0(n− 2)

w1(n)= x1(n)−0.4w1(n− 1)−0.5w1(n− 2)

y(n)= 3w1(n)+4w1(n− 1)+2w1(n− 2)

where x1(n) is the output of H0(z) and the input to H1(z). The corresponding sample
processing algorithm is:

for each input sample x do:
w00 = x+ 0.4w01 − 0.5w02

x1 = 3w00 − 4w01 + 2w02

w02 = w01

w01 = w00

w10 = x1 − 0.4w11 − 0.5w12

y = 3w10 + 4w11 + 2w12

w12 = w11

w11 = w10
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The coefficient and state matrices in the routine cas are in this case:

A =
[

1 −0.4 0.5
1 0.4 0.5

]
, B =

[
3 −4 2
3 4 2

]
, W =

[
w00 w01 w02

w10 w11 w12

]

For the canonical case, we have the coefficient vectors for the numerator and denominator
polynomials:

b = [9, 0, −4, 0, 4], a = [1.00, 0.00, 0.84, 0.00, 0.25]

The difference equation at the input and output adders of Fig. 7.3.3 are:

w(n)= x(n)−0.84w(n− 2)−0.25w(n− 4)

y(n)= 9w(n)−4w(n− 2)+4w(n− 4)

Defining the internal states as wi(n)= w(n − i), i = 0,1,2,3,4, we find the sample pro-
cessing algorithm:

for each input sample x do:
w0 = x− 0.84w2 − 0.25w4

y = 9w0 − 4w2 + 4w4

w4 = w3

w3 = w2

w2 = w1

w1 = w0

The total number of internal states in the cascade and the canonical realizations is the
same, namely, four. 	


x(n) y(n)

z-1

z-1 z-1

z-1

w01

w00

w0(n) w1(n)x1(n)

w02

w11

w10

w12

3 3

-4 40.4 -0.4

-0.5 -0.52 2

Fig. 7.3.2 Cascade realization of Example 7.3.1.

Example 7.3.2: Consider the filter

H(z) =
[

1 + z−1 + z−2

1 − 0.7z−2

][
1 − z−2

1 − 0.6z−1 + 0.4z−2

][
1 − z−1 + z−2

1 + 0.5z−1 + 0.3z−2

]

= 1 − z−6

1 − 0.1z−1 − 0.3z−2 + 0.09z−3 − 0.16z−4 − 0.014z−5 − 0.084z−6
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9

-4

4

y(n)
w(n)

z-1

z-1

w1

w0

w2

w3

w4

z-1

z-1

x(n)

-0.25

-0.84

Fig. 7.3.3 Canonical realization of Example 7.3.1.

To illustrate the usage of the routines cas and can, we generated and filtered the following
“step” input signal of length 100:

x(n)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2, if 0 ≤ n ≤ 24
0, if 25 ≤ n ≤ 49

−1, if 50 ≤ n ≤ 74
1, if 75 ≤ n ≤ 99

The resulting output signal y(n) can be computed either by the routine cas or by can.
The cascade realization coefficient matrices are:

A =
⎡⎢⎣ 1 0 −0.7

1 −0.6 0.4
1 0.5 0.3

⎤⎥⎦ , B =
⎡⎢⎣ 1 1 1

1 0 −1
1 −1 1

⎤⎥⎦
Similarly, the canonical form coefficients of the sixth degree numerator and denominator
polynomials of H(z) are:

b = [1,0,0,0,0,0,−1]

a = [1,−0.1,−0.3,0.09,−0.16,−0.014,−0.084]

These quantities, as well as the cascade state matrixW and canonical internal state vector
w, must be declared, allocated, and initialized in the main program as discussed above
(with K = 3, L =M = 6). The output signal can be generated by the for-loop:

for (n=0; n<100; n++) {
ycas[n] = cas(3, A, B, W, x[n]);
ycan[n] = can(6, a, 6, b, w, x[n]);
}

The two output signals ycas(n) and ycan(n) generated by the two routines cas and cas

are, of course, the same. This output signal is shown in Fig. 7.3.4.
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Fig. 7.3.4 Output of Example 7.3.2.

Notice also that for this particular example, the pole closest to the unit circle is that of the
first section, that is, p = ±√0.7 = ±0.8367. Therefore, the ε = 1% = 0.01 time constant
will be neff = ln ε/ ln(0.8367)� 26. Because the filter has a zero at z = 1, its unit-step
response will be H(0)= H(z)∣∣z=1 = 0. As the step input changes level every 25 samples,
the output tries to settle to its zero steady-state value with a time constant of about neff.

	


7.4 Cascade to Canonical

To pass from the direct or canonical realization, Eq. (7.1.4), to the cascade realization,
Eq. (7.3.1), requires factoring the numerator and denominator polynomials into their
second-order factors.

This can be done by finding the roots of these polynomials and then pairing them
in complex conjugate pairs. The procedure is outlined below. Given the M zeros pi,
i = 1,2, . . . ,M of the denominator polynomial of Eq. (7.1.4), we can factor it into its root
factors:

D(z) = 1 + a1z−1 + a2z−2 + · · · + aMz−M

= (1 − p1z−1)(1 − p2z−1)· · · (1 − pMz−1)

The root factors of any real-valued roots can be left as they are or combined in pairs.
For example, if both p1 and p2 are real, we may combine them into the SOS with real
coefficients:

(1 − p1z−1)(1 − p2z−1)= (
1 − (p1 + p2)z−1 + p1p2z−2)

If any roots are complex, they must appear in complex-conjugate pairs, for example,
if p1 is a complex root, then p2 = p∗1 must also be a root. Combining the root factors
of conjugate pairs results into an SOS with real coefficients, for example

(1 − p1z−1)(1 − p∗1 z−1) = 1 − (p1 + p∗1 )z−1 + p1p∗1 z−2

= 1 − 2Re(p1)z−1 + |p1|2z−2
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This identity was also used in Chapter 5. Using the polar representation of the
complex number p1 = R1ejθ1 , we have Re(p1)= R1 cosθ1 and |p1|2 = R2

1, and we can
write the above identity in the alternative form:

(1 − p1z−1)(1 − p∗1 z−1) = 1 − 2Re(p1)z−1 + |p1|2z−2

= 1 − 2R1 cos(θ1)z−1 +R2
1z−2

Once the denominator and numerator polynomials have been factored into their
quadratic factors, each quadratic factor from the numerator may be paired with a quadratic
factor from the denominator to form a second-order section.

This pairing of numerator and denominator factors and the ordering of the result-
ing SOSs is not unique, but the overall transfer function will be the same. In practice,
however, the particular pairing/ordering may make a difference.

In a hardware realization, the internal multiplications in each SOS will generate a
certain amount of roundoff error which is then propagated into the next SOS. The net
roundoff error at the overall output will depend on the particular pairing/ordering of
the quadratic factors. The optimal ordering is the one that generates the minimum net
roundoff error. Finding this optimal ordering is a difficult problem and is beyond the
scope of this book.

Some examples will illustrate the above factoring technique. The most tedious part is
finding the actual roots of the numerator and denominator polynomials. For high-order
polynomials, one must use a root-finding routine from a numerical software package
such as MATLAB or Mathematica. Some special cases of high-order polynomials can be
handled by hand, as seen below.

Example 7.4.1: Determine the cascade realization form of the filter:

H(z)= 1 − 1.5z−1 + 0.48z−2 − 0.33z−3 + 0.9376z−4 − 0.5328z−5

1 + 2.2z−1 + 1.77z−2 + 0.52z−3

Solution: Using MATLAB, we find the five roots of the numerator polynomial:

z = 0.9, −0.5 ± 0.7j, 0.8 ± 0.4j

They lead to the following root factors, already paired in conjugate pairs:

(1 − 0.9z−1)(
1 − (−0.5 + 0.7j)z−1

)(
1 − (−0.5 − 0.7j)z−1

) = (1 + z−1 + 0.74z−2)(
1 − (0.8 + 0.4j)z−1

)(
1 − (0.8 − 0.4j)z−1

) = (1 − 1.6z−1 + 0.8z−2)

Similarly, we find the roots of the denominator:

p = −0.8, −0.7 ± 0.4j

giving the root factors:
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(1 + 0.8z−1)(
1 − (−0.7 + 0.4j)z−1

)(
1 − (−0.7 − 0.4j)z−1

) = (1 + 1.4z−1 + 0.65z−2)

Therefore, a possible pairing/ordering of SOS factors for H(z) will be:

H(z)= 1 − 0.9z−1

1 + 0.8z−1
· 1 + z−1 + 0.74z−2

1 + 1.4z−1 + 0.65z−2
· (1 − 1.6z−1 + 0.8z−2)

The coefficient matrices A and B needed for programming this filter by the routine cas

will be:

A =
⎡⎢⎣ 1 0.8 0

1 1.4 0.65
1 0 0

⎤⎥⎦ , B =
⎡⎢⎣ 1 −0.9 0

1 1 0.74
1 −1.6 0.8

⎤⎥⎦
The first-order section may be considered as special case of an SOS of the form (7.1.1) with
zero z−2 coefficients, that is, b2 = a2 = 0. Similarly, the last quadratic factor is a special
case of an FIR SOS, that is, with a1 = a2 = 0 (but a0 = 1). 	


Example 7.4.2: Determine the cascade form of the filter:

H(z)= 1 − 0.48z−2 + 0.5476z−4

1 + 0.96z−2 + 0.64z−4

Solution: Even though the polynomials have degree 4, the z−1 and z−3 terms are missing, and
we may think of the polynomials as quadratic in the variable z−2. That is, we can find the
roots of the denominator by solving the quadratic equation

1 + 0.96z−2 + 0.64z−4 = 0 ⇒ (z2)2+0.96(z2)+0.64 = 0

which has two solutions:

z2 = −0.96 ±√
0.962 − 4×0.64

2
= −0.48 ± 0.64j

Taking square roots, we obtain the four roots of the denominator:

p = ±
√
−0.48 ± 0.64j = ±(0.4 ± 0.8j)

Pairing them in conjugate pairs gives the quadratic factors:

(
1 − (0.4 + 0.8j)z−1

)(
1 − (0.4 − 0.8j)z−1

) = 1 − 0.8z−1 + 0.8z−2(
1 + (0.4 + 0.8j)z−1

)(
1 + (0.4 − 0.8j)z−1

) = 1 + 0.8z−1 + 0.8z−2

Similarly, we find for the numerator polynomial:

1 − 0.48z−2 + 0.5476z−4 = 0 ⇒ z2 = 0.24 ± 0.7j
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and taking square roots:

z = ±
√

0.24 ± 0.7j = ±(0.7 ± 0.5j)

The quadratic factors are:

(
1 − (0.7 + 0.5j)z−1

)(
1 − (0.7 − 0.5j)z−1

) = 1 − 1.4z−1 + 0.74z−2(
1 + (0.7 + 0.5j)z−1

)(
1 + (0.7 − 0.5j)z−1

) = 1 + 1.4z−1 + 0.74z−2

Thus, we find for H(z):

H(z)= 1 − 1.4z−1 + 0.74z−2

1 − 0.8z−1 + 0.8z−2
· 1 + 1.4z−1 + 0.74z−2

1 + 0.8z−1 + 0.8z−2

which is one possible ordering of the quadratic factors. 	


Example 7.4.3: As another special case, determine the cascade form of the filter:

H(z)= 1 + z−8

1 − 0.0625z−8

Solution: The roots of the numerator are the 8 solutions of:

1 + z−8 = 0 ⇒ z8 = −1 = ejπ = ejπe2πjk = ej(2k+1)π

where we multiplied by e2πjk = 1 for integer k. Taking eighth roots of both sides we find:

zk = ej(2k+1)π/8, k = 0,1, . . . ,7

We have the following conjugate pairs, as shown in Fig. 7.4.1: {z0, z7}, {z1, z6}, {z2, z5},
and {z3, z4}, which lead to the quadratic factors:

(1 − z0z−1)(1 − z7z−1)= 1 − 2 cos
(π

8

)
z−1 + z−2 = 1 − 1.8478z−1 + z−2

(1 − z1z−1)(1 − z6z−1)= 1 − 2 cos
(3π

8

)
z−1 + z−2 = 1 − 0.7654z−1 + z−2

(1 − z2z−1)(1 − z5z−1)= 1 − 2 cos
(5π

8

)
z−1 + z−2 = 1 + 0.7654z−1 + z−2

(1 − z3z−1)(1 − z4z−1)= 1 − 2 cos
(7π

8

)
z−1 + z−2 = 1 + 1.8478z−1 + z−2

Similarly, the filter poles are the roots of the denominator:

1 − 0.0625z−8 = 0 ⇒ z8 = 0.0625 = 0.0625e2πjk = (0.5)4e2πjk

which has the eight solutions:

pk =
√

0.5e2πjk/8, k = 0,1, . . . ,7
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Of these, p0 = √
0.5 and p4 = √

0.5e2πj4/8 = −√
0.5 are real and may be paired together

into one SOS. The rest are complex and can be paired in conjugate pairs: {p1, p7}, {p2, p6},
{p3, p5}, resulting into the quadratic factors:

(1 − p0z−1)(1 − p4z−1)= (1 −√
0.5z−1)(1 +√

0.5z−1)= 1 − 0.5z−2

(1 − p1z−1)(1 − p7z−1)= 1 −√
2 cos

(2π
8

)
z−1 + 0.5z−2 = 1 − z−1 + 0.5z−2

(1 − p2z−1)(1 − p6z−1)= 1 −√
2 cos

(4π
8

)
z−1 + 0.5z−2 = 1 + 0.5z−2

(1 − p3z−1)(1 − p5z−1)= 1 −√
2 cos

(6π
8

)
z−1 + 0.5z−2 = 1 + z−1 + 0.5z−2

Finally, we obtain the factorization of H(z):

H(z) =
[

1 − 1.8478z−1 + z−2

1 − 0.5z−2

]
·
[

1 − 0.7654z−1 + z−2

1 − z−1 + 0.5z−2

]
·

·
[

1 + 0.7654z−1 + z−2

1 + 0.5z−2

]
·
[

1 + 1.8478z−1 + z−2

1 + z−1 + 0.5z−2

]

The coefficient matrices A and B will be in this case:

A =

⎡⎢⎢⎢⎣
1 0 −0.5
1 −1 0.5
1 0 0.5
1 1 0.5

⎤⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎣
1 −1.8478 1
1 −0.7654 1
1 0.7654 1
1 1.8478 1

⎤⎥⎥⎥⎦
This filter acts as a notch/comb filter, where the zero dips are shifted by π/8 compared
to the pole peaks. The pole zero pattern and magnitude response |H(ω)| are shown in
Fig. 7.4.1.

This example was only meant to illustrate the factorization procedure. Its canonical form
realization is much more efficient than the cascade one, since it involves only one multiplier
and an 8-fold delay. The canonical realization and the corresponding sample processing
algorithm are shown in Fig. 7.4.2. Here, w = [w0,w1, . . . ,w8] is the 9-dimensional internal
state vector. 	


Example 7.4.4: Sharpen the poles and zeros of the previous filter and determine the cascade
form of the resulting filter.

Solution: To sharpen the zeros of the filter, we must place poles “behind” the zeros, that is,
replace the numerator polynomial N(z)= 1 + z−8 by

H1(z)= N(z)
N(ρ−1z)

= 1 + z−8

1 + ρ8z−8

For example, we may choose ρ8 = 0.94, or ρ = 0.9923. The factorization of N(ρ−1z) into
SOSs is obtained from that of N(z) by replacing z by z/ρ or z−1 by ρz−1 in each factor.
This gives:
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= poles
= zeros

unit
circle

π/8 p0

p1

z0

z1z2

z3

z4

z5 z6

z7

p2

p3

p4

p6

p7p5

Fig. 7.4.1 Pole/zero pattern and magnitude response of Example 7.4.3.

x

0.0625

y

z-8

w8

w0 for each input x do:
w0 = x+ 0.0625w8

y = w0 +w8

delay(8,w)

Fig. 7.4.2 Canonical realization of Example 7.4.3.

H1(z)= N(z)
N(ρ−1z)

=
[

1 − 1.8478z−1 + z−2

1 − 1.8478ρz−1 + ρ2z−2

]
·
[

1 − 0.7654z−1 + z−2

1 − 0.7654ρz−1 + ρ2z−2

]
·

·
[

1 + 0.7654z−1 + z−2

1 + 0.7654ρz−1 + ρ2z−2

]
·
[

1 + 1.8478z−1 + z−2

1 + 1.8478ρz−1 + ρ2z−2

]

To sharpen the poles, we must do two things: first push the existing poles closer to the unit
circle, and second, place zeros “behind” the poles. This can be done by the substitution of
the denominator polynomial by

1

1 − 0.0625z−8
−→ H2(z)= 1 − r8z−8

1 −R8z−8

where r � R. For example, we may choose r8 = 0.96 or r = 0.9949, and R8 = 0.98 or
R = 0.9975. The SOS factors of the numerator and denominator can be found in the same
fashion as for the polynomial (1 − 0.0625z−8). The factorization of H2(z) is then:

H2(z)= 1 − r8z−8

1 −R8z−8
=
[

1 − r2z−2

1 −R2z−2

]
·
[

1 −√
2rz−1 + r2z−2

1 −√
2Rz−1 +R2z−2

]
·

·
[

1 + r2z−2

1 +R2z−2

]
·
[

1 +√
2rz−1 + r2z−2

1 +√
2Rz−1 +R2z−2

]

Thus, the new transfer function will be
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H(z)= H1(z)H2(z)=
[

1 + z−8

1 + 0.94z−8

]
·
[

1 − 0.96z−8

1 − 0.98z−8

]

Again, the simplest realization is to realizeH1(z) andH2(z) in cascade, with each realized
in its canonical form. This realization and its sample processing algorithm are shown
below; the magnitude response |H(ω)| is shown in Fig. 7.4.3. 	


yx

-0.94 -0.96

z-8

w8

H1(z) H2(z)

w0

x1

0.98

z-8

v8

v0

for each input x do:
w0 = x− 0.94w8

x1 = w0 +w8

delay(8,w)
v0 = x1 + 0.98v8

y = v0 − 0.96v8

delay(8,v)

Fig. 7.4.3 Pole/zero sharpening in Example 7.4.4.

The reverse process of going from the cascade realization, Eq. (7.3.1), to the canon-
ical one, Eq. (7.1.4), is much easier. It amounts to multiplying out the second-order
numerator and denominator factors to get the full degree polynomials:

N(z) =
K−1∏
i=0

(bi0 + bi1z−1 + bi2z−2)= b0 + b1z−1 + b2z−2 + · · · + bLz−L

D(z) =
K−1∏
i=0

(1 + ai1z−1 + ai2z−2)= 1 + a1z−1 + a2z−2 + · · · + aMz−M

where L and M will be at most 2K, depending on how many sections are full second-
order or first-order sections.

The polynomial multiplications may be done in the time domain using convolution.
For example, using the definitions (7.1.9) and (7.3.4) for the coefficient vectors, we may
write these convolutions in the form:



7.4. CASCADE TO CANONICAL 291

b = b0 ∗ b1 ∗ · · · ∗ bK−1

a = a0 ∗ a1 ∗ · · · ∗ aK−1

(7.4.1)

These convolutions may be implemented recursively by defining:

di = a0 ∗ a1 ∗ · · · ∗ ai−1

and noting that di satisfies the recursion:

di+1 = di ∗ ai (7.4.2)

where it must be initialized to d0 = δ, that is, a delta function, d0(n)= δ(n). We may
take d0 to be the one-dimensional vector: d0 = δ = [1]. A few of the recursion steps
will be:

d1 = d0 ∗ a0 = δ ∗ a0 = a0

d2 = d1 ∗ a1 = a0 ∗ a1

d3 = d2 ∗ a2 = (a0 ∗ a1)∗a2

d4 = d3 ∗ a3 = (a0 ∗ a1 ∗ a2)∗a3, etc.

The recursion ends at i = K−1 with the desired answer a = dK. Note that the
intermediate vector di has order 2i and length 2i+1; similarly, the resulting vector di+1

has length 2(i+ 1)+1 = 2i+ 3.
During the recursion (7.4.2), there is no need to save the intermediate vectors di.

Therefore, the recursion can be stated in the following algorithmic form:

d = δ
for i = 0,1, . . . , K−1 do:

d = ai ∗ d
a = d

A variation, which helps the implementation in terms of the routine conv of Chapter
4, is to keep updating a during each step:

a = δ
for i = 0,1, . . . , K−1 do:

d = ai ∗ a
a = d

(7.4.3)

and similarly for the numerator vector b. The following C routine cas2can.c is an
implementation of this algorithm:

/* cas2can.c - cascade to canonical */

#include <stdlib.h> declares calloc

void conv();



292 7. DIGITAL FILTER REALIZATIONS

void cas2can(K, A, a) a is (2K + 1)-dimensional

double **A, *a; A is Kx3 matrix

int K; K = no. of sections

{
int i,j;
double *d;

d = (double *) calloc(2*K+1, sizeof(double));

a[0] = 1; initialize

for(i=0; i<K; i++) {
conv(2, A[i], 2*i+1, a, d); d = a[i] ∗ a
for(j=0; j<2*i+3; j++) a = d

a[j] = d[j];
}

}

Its inputs are the number of sectionsK and the coefficient matrixA, whose rows hold
the coefficients of the successive sections, as in the routine cas. Its output is the (2K)-
dimensional vector a. It must be called separately on the numerator and denominator
coefficient matrices.

Example 7.4.5: To illustrate the usage of cas2can, we apply it to the cascade realization of
Example 7.4.1:

H(z)=
[

1 − 0.9z−1

1 + 0.8z−1

]
·
[

1 + z−1 + 0.74z−2

1 + 1.4z−1 + 0.65z−2

]
· [1 − 1.6z−1 + 0.8z−2

]
The routine cas2can must be called twice with inputs the coefficient matrices A and B:

A =
⎡⎢⎣ 1 0.8 0

1 1.4 0.65
1 0 0

⎤⎥⎦ , B =
⎡⎢⎣ 1 −0.9 0

1 1 0.74
1 −1.6 0.8

⎤⎥⎦
The quantities A, B, a, b must be dimensioned in the main program as in Section 7.3 or
Example 7.3.2. Then, the two calls:

cas2can(K, A, a); denominator coefficients

cas2can(K, B, b); numerator coefficients

will return the vectors:

a = [1, 2.2, 1.77, 0.52, 0, 0]

b = [1, −1.5, 0.48, −0.33, 0.9376, −0.5328]

which define the canonical realization of Example 7.4.1. 	
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7.5 Hardware Realizations and Circular Buffers

Hardware realizations of FIR filters with DSP chips were discussed in Section 4.2.4. IIR
filters can be realized in a similar fashion.

Consider, for example, a second-order section (7.1.1) realized in its canonical form
shown in Fig. 7.2.3. A hardware realization by a typical DSP chip is shown in Fig. 7.5.1.
The filter coefficients {b0, b1, b2, a1, a2} are stored in RAM or ROM on board the chip;
the internal states {w0,w1,w2} are stored in RAM.

y

y

y

x

bi

-ai

wi

biwi

-aiwi

b0

b1

b2

-a1

-a2

MAC

ROM or RAM

w0

w1

w2

RAM OUTIN

BUS

Fig. 7.5.1 Typical DSP chip realization of a second-order section.

As in Section 4.2.4, the sample processing algorithm (7.2.2) can be rewritten in a
form that imitates individual instructions of the DSP chip, such as MAC and data shifting
instructions:

for each input sample x do:
w0 :=x− a1w1

w0 :=w0 − a2w2

y :=b2w2

w2 :=w1, y :=y + b1w1

w1 :=w0, y :=y + b0w0

(7.5.1)

In a modern DSP chip, each line in the above algorithm can be implemented with
a single MAC-type instruction; therefore, a single SOS can be implemented with five
instructions per input sample.

Note that the states w1 and w2 cannot be updated until after w0 has been com-
puted. The MAC instructions for computing w0 proceed forward, that is, from the low-
est ai coefficient to the highest. This is convenient because once w0 is computed, the
combined data shift/MAC instructions for computing y can be started, but proceeding
backwards from the highest bi coefficient to the lowest. In the general case, we can
rewrite Eq. (7.2.5), where for simplicity we assumed L =M:
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for each input sample x do:
w0 :=x
for i = 1,2, . . . ,M do:

w0 :=w0 − aiwi
y :=bMwM
for i =M−1, . . . ,1,0 do:

wi+1 :=wi
y :=y + biwi

(7.5.2)

The following C routine can3.c is an implementation.

/* can3.c - IIR filtering in canonical form, emulating a DSP chip */

double can3(M, a, b, w, x) usage: y = can3(M, a, b, w, x);

double *a, *b, *w, x; w = internal state vector

int M; a,b have order M
{

int i;
double y;

w[0] = x; read input sample

for (i=1; i<=M; i++) forward order

w[0] -= a[i] * w[i]; MAC instruction

y = b[M] * w[M];

for (i=M-1; i>=0; i--) { backward order

w[i+1] = w[i]; data shift instruction

y += b[i] * w[i]; MAC instruction

}

return y; output sample

}

Assuming that each MAC operation in Eq. (7.5.2) can be done with one instruction,
and in particular that the combined data move/MAC instructions in the second for-loop
can be also done with a single instruction, we count the total number of instructions for
the filtering of each input sample by an Mth order IIR filter to be:

Ninstr = 2(M + 1)+C (order-M IIR filter) (7.5.3)

where we have added a constant C to account for any additional overhead (such as loop
overhead) in instructions. Its value is typically of the order of 10 or less, depending on
the particular DSP chip. In Section 4.2.4, we had arrived at a similar result for an FIR
filter, which we rewrite now in the form:

Ninstr = (M + 1)+C (order-M FIR filter) (7.5.4)

The total time for processing each input sample will be then

Tproc = NinstrTinstr (7.5.5)
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where Tinstr is the time for a basic instruction, such as MAC or MACD. Recall from
Section 4.2.4 that Tinstr is of the order of 30–80 nanoseconds, which corresponds to an
instruction rate of finstr = 1/Tinstr = 12.5–33.3 MIPS (million instructions per second).
The processing time per sample imposes an upper limit on the sampling rate fs at which
the filter may be operated, that is,

fs = 1

Tproc
= 1

NinstrTinstr
= finstr

Ninstr
(7.5.6)

where the quantity 1/Tproc is the chip’s computational rate, that is, the number of sam-
ples that can be processed per second.

It is impossible to give a processor-independent count of the number of instructions
for a particular filter. The precise count, as well as the total processing time Tproc per
sample, depend on the DSP chip’s architecture, instruction set, how memory accessing is
used, processor wait states introduced for slow memory, and the way a filter realization
is programmed in the chip’s assembly language, for example, using in-line code or not.

The above results must be used only as rough guidelines in evaluating the perfor-
mance of a DSP chip. Our discussion was based on counting the number of MACs in the
sample processing algorithm for the particular filter.

The transposed realizations for both IIR and FIR filters can be implemented also
by the same number of instructions given by Eqs. (7.5.3) and (7.5.4). The transposed
sample processing algorithm uses only plain MAC instructions—not requiring combined
data shift/MAC instructions. Therefore, in the early generations of DSP chips, it had a
computational advantage in the number of instructions over the canonical realizations.

For a cascade of second-order sections, to find the total processing time we must
calculate the time it takes to process a single SOS and then multiply it by the number of
sections. We saw in Eq. (7.5.1) that it takes about five instructions per SOS; therefore, the
processing time for a single SOS will be approximately (ignoring any other overhead):

TSOS � 5Tinstr (7.5.7)

For K second-order sections that are either cascaded or arranged in parallel, but
which are implemented by the same DSP, the total number of instructions will be:

Ninstr = 5K +C (K-section IIR filter) (7.5.8)

where C is any additional overhead for the K-section filter. Therefore, the total process-
ing time will be:

Tproc = (5K +C)Tinstr = KTSOS +CTinstr (7.5.9)

Ignoring the possible small overhead term, we find the maximum sampling rate fs
for implementing K second-order sections:

fs = 1

Tproc
= 1

KTSOS
= finstr

5K
(7.5.10)

For parallel implementations (see Problem 5.18), we may speed up the throughput
rate by using K different DSP chips operating in parallel, each being dedicated to per-
forming a single SOS filtering operation inTSOS seconds. In this case, the total processing
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time isTSOS because all of the DSPs finish simultaneously, and therefore, the throughput
rate is K times faster than in the case of a single DSP:

Tproc = TSOS ⇒ fs = 1

Tproc
= 1

TSOS
(7.5.11)

For a cascade implementation, one may also use K DSP chips—one for each SOS—to
speed up processing. However, because the output of each section becomes the input
of the next section, it is not possible to run all K DSP chips simultaneously. Each DSP
must wait TSOS seconds for the DSP before it to finish.

One solution is to pipeline the filtering operations of the successive sections, so
that all DSPs are working together, but each is processing the input from the previous
sampling instant. This can be accomplished by inserting unit delays between the DSPs,
as shown in Fig. 7.5.2.

y(n)x(n) y1(n) y2(n)y1(n- )1 y2(n-1)
DSP 

1
DSP 

2
DSP 

3z-1 z-1

Fig. 7.5.2 Pipelining the operation of multiple DSP processors.

At the nth time instant, while DSP-1 is working on the current input sample x(n),
DSP-2 is working on the sample y1(n−1) which was produced by DSP-1 at the previous
time instant and was saved in the delay register until now, and DSP-3 is working on the
sample y2(n− 1) which was produced by DSP-2 earlier, and so on. The effect of intro-
ducing these delays is only an overall delay in the output. For example, in the case shown
in Fig. 7.5.2, the overall transfer function changes from H(z)= H1(z)H2(z)H3(z) to:

H(z)= H1(z)z−1H2(z)z−1H3(z)= z−2H1(z)H2(z)H3(z)

which corresponds to delaying the overall output by two sampling units. For K sections,
the overall delay will be z−(K−1).

Example 7.5.1: The AT&T DSP32C floating point DSP chip [87,88] can execute a basic MAC-
type instruction in four clock cycles, that is, Tinstr = 4Tclock. Therefore, its instruction
rate is finstr = fclock/4. A typical MAC instruction represents two floating point operations:
one addition and one multiplication. Therefore, the chip achieves a computational rate of
fFLOPS = 2finstr = fclock/2 FLOPS.

At a clock rate of fclock = 50 MHz, it achieves an instruction rate of finstr = 50/4 = 12.5
MIPS, and a computational rate of fFLOPS = 50/2 = 25 MFLOPS (megaflops). The time per
instruction is Tinstr = 1/finstr = 1/12.5 = 80 nanoseconds.

An order-M FIR filter can be implemented (with in-line code) with

Ninstr = (M + 1)+11 =M + 12 (instructions per sample)

Therefore, the processing time per sample will be

Tproc = (M + 12)Tinstr
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For a 100-tap FIR filter (M = 99) with the DSP32C running at 50 MHz, we haveTproc = (99+
12)80 nsec = 8.9 μsec, achieving a maximum throughput rate of fs = 1/Tproc = 112.4
kHz.

A K-section IIR filter can be implemented (with in-line code) with

Ninstr = 5K + 10 (instructions per sample)

It also requires a number of machine-cycle wait states:

Nwait = 2K + 1 (wait states per sample)

Therefore, the total processing time for K sections will be:

Tproc = NinstrTinstr +NwaitTclock

Writing Tinstr = 4Tclock = 4/fclock, we have

Tproc = 4Ninstr +Nwait

fclock
= 4(5K + 10)+2K + 1

fclock

For one SOS, K = 1, and a 50 MHz clock, we find Tproc = 1.26 μsec, which translates to
maximum sampling rate of fs = 1/Tproc = 793.6 kHz. For a 5-section filter K = 5, we
find Tproc = 3.02 μsec and fs = 331.1 kHz. And, for a 10-section filter, K = 10, we have
Tproc = 5.22 μsec and fs = 191.6 kHz. 	


We saw in Section 4.2.4 that circular addressing was an efficient way to implement
FIR filters and delay lines, and was supported by most of the current DSP chip families.
All of the IIR filtering routines—direct, canonical, and cascade—can also be implemented
using circular addressing.

The following routine ccan.c implements the canonical realization of Fig. 7.2.4 using
circular buffers, and replaces can. For simplicity, we assume that the numerator and
denominator polynomials have the same order M.

/* ccan.c - circular buffer implementation of canonical realization */

void wrap(); defined in Section 4.2.4

double ccan(M, a, b, w, p, x) usage: y = ccan(M, a, b, w, &p, x);

double *a, *b, *w, **p, x; p = circular pointer to buffer w
int M; a,b have common order M
{

int i;
double y = 0, s0;

**p = x; read input sample x

s0 = *(*p)++; s0 = x
wrap(M, w, p); p now points to s1

for (a++, i=1; i<=M; i++) { start with a incremented to a1

s0 -= (*a++) * (*(*p)++);
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wrap(M, w, p);
}

**p = s0; p has wrapped around once

for (i=0; i<=M; i++) { numerator part

y += (*b++) * (*(*p)++);
wrap(M, w, p); upon exit, p has wrapped

} around once again

(*p)--; update circular delay line

wrap(M, w, p);

return y; output sample

}

Like the FIR routine cfir, it uses a circular pointer p that always points at the effec-
tive starting address of the circular buffer. Here the internal state vector is defined at
time n by

s(n)=

⎡⎢⎢⎢⎢⎢⎣
s0(n)
s1(n)

...
sM(n)

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
w(n)

w(n− 1)
...

w(n−M)

⎤⎥⎥⎥⎥⎥⎦ (7.5.12)

Upon entry, the circular pointer p points at the w-register holding s0(n)= w(n).
The value of s0(n) is not known—only its address. The first for-loop computes the
numerical value of s0(n) and puts it in the correct w-register. This is so because after
the loop, p has been post-incremented a total ofM+1 times and has wrapped completely
around.

The second for-loop then computes the contribution of the numerator part. The
pointer p is incremented M+1 times and cycles around once more. Finally, in prepara-
tion for the next time step, p is circularly decremented and points at thew-register that
will hold the next value w(n+ 1).

As we mentioned in Section 4.2.4, in DSP chips that support circular addressing, the
incrementing or decrementing pointer wraps around automatically and there is no need
to use the routine wrap.

The following program segment illustrates the proper initialization and usage of the
routine. Note that p must be passed by address because it is changed after each call:

double *a, *b, *w, *p;
a = (double *) calloc(M+1, sizeof(double));
b = (double *) calloc(M+1, sizeof(double));
w = (double *) calloc(M+1, sizeof(double)); initializes w to zero

a[0] = 1; not used in the routine

p = w; initialize p

for (n = 0; n < Ntot; n++)
y[n] = ccan(M, a, b, w, &p, x[n]); p is passed by address

The operations carried out by the routine ccan can be restated in a slightly different
form by the following sample processing algorithm:
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for each input sample x do:
for i = 1,2, . . . ,M determine states:

si = tap(M,w, p, i)
s0 = x− a1s1 − · · · − aMsM
y = b0s0 + b1s1 + · · · + bMsM
∗p = s0

cdelay(M,w,&p)

where for convenience, we used the routine tap to compute the current states.

Example 7.5.2: Write the circular-buffer version of the sample processing algorithm of Example
7.2.1 or 7.1.1, whose canonical realization is depicted in the block diagram of Fig. 7.2.5.

Solution: Here, the bufferw is a five-dimensional array, initialized to zero. The circular pointer
p is initialized by p = w. We have:

for each input sample x do:
s1 = tap(4,w, p,1)
s2 = tap(4,w, p,2)
s3 = tap(4,w, p,3)
s4 = tap(4,w, p,4)
s0 = x− 0.2s1 + 0.3s2 − 0.5s4

y = 2s0 − 3s1 + 4s3

∗p = s0

cdelay(4,w,&p)

The statement ∗p = s0 puts the computed value of the 0th component s0 into the w-
register pointed to by p. Then, cdelay decrements p circularly. 	


Example 7.5.3: Determine the circular-buffer version of the sample processing algorithm of
Example 7.4.3, whose realization is depicted in Fig. 7.4.2.

Solution: Here, the buffer w is nine-dimensional. The algorithm is stated below, where only the
output s8 of the 8-fold delay line is needed:

x

0.0625

y

z-8

s8

s0
for each input sample x do:

s8 = tap(8,w, p,8)
s0 = x+ 0.0625s8

y = s0 + s8

∗p = s0

cdelay(8,w,&p)

Note that the output s8 was available before the input s0 could be computed. 	


Example 7.5.4: The input signal x = [1,3,2,5,4,6] is applied to the filter:

H(z)= 1 + z−1 + 2z−2

1 − z−3
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Draw the canonical realization and write its circular buffer sample processing algorithm.
Iterate the algorithm nine times for n = 0,1, . . . ,8 and compute the corresponding output
y(n). Make a table of the circular buffer entries w and the filter’s internal states s.

Solution: The block diagram realization and its circular sample processing algorithm are:

x y

z-1

z-1

z-1

s0

s1

s2

s3

2

for each input sample x do:
s1 = tap(3,w, p,1)
s2 = tap(3,w, p,2)
s3 = tap(3,w, p,3)
s0 = x+ s3

y = s0 + s1 + 2s2

∗p = s0

cdelay(3,w,&p)

The entries of the linear buffer w = [w0,w1,w2,w3] over which the circular pointer cir-
culates are shown in the following table.

n x w0 w1 w2 w3 s0 s1 s2 s3 y = s0 + s1 + 2s2

0 1 1↑ 0 0 0 1 0 0 0 1
1 3 1 0 0 3↑ 3 1 0 0 4
2 2 1 0 2↑ 3 2 3 1 0 7
3 5 1 6↑ 2 3 6 2 3 1 14
4 4 7↑ 6 2 3 7 6 2 3 17
5 6 7 6 2 8↑ 8 7 6 2 27
6 0 7 6 6↑ 8 6 8 7 6 28
7 0 7 7↑ 6 8 7 6 8 7 29
8 0 8↑ 7 6 8 8 7 6 8 27

In each row, only onewi changes, that is, the one pointed to by p. These entries, indicated
by an up-arrow, can be filled only after the value of s0 has been calculated from s0 = x+s3.
The internal states si are pointed to by p + i, i = 0,1,2,3 and wrap around if necessary.
For example, at time n = 3, p is pointing to w1; therefore, p + 1, p + 2, point to w2, w3,
but p+ 3 wraps around and points to w0, so that s3 = w0 = 1.

According to Eq. (7.5.12), the states si are the delayed replicas of the signal w(n) running
through the intermediate delays. In the z-domain, this signal is

W(z)= 1

D(z)
X(z)= 1 + 3z−1 + 2z−2 + 5z−3 + 4z−4 + 6z−5

1 − z−3

Its inverse z-transform is the period-3 replication of the numerator:

1 3 2 5 4 6 = x(n)
1 3 2 5 4 6 = x(n− 3)

1 3 2 5 · · · = x(n− 6)
1 · · ·

1 3 2 6 7 8 6 7 8 6 · · · = w(n)

Thus, the s0 column holdsw(n), s1 holdsw(n−1), and so on. Similarly, the output signal
y(n) can be constructed from w(n) by
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Y(z)= N(z)W(z)= (1 + z−1 + 2z−2)W(z) ⇒ y(n)= w(n)+w(n− 1)+2w(n− 2)

Adding up the delayed/scaled replicas of w(n), we have:

1 3 2 6 7 8 6 7 8 · · · = w(n)
1 3 2 6 7 8 6 7 · · · = w(n− 1)

2 6 4 12 14 16 12 · · · = 2w(n− 2)
1 4 7 14 17 27 28 29 27 · · · = y(n)

which agrees with the values computed in the above table. 	


A second-order section can be implemented by ccan by settingM = 2. Alternatively,
we can use the following specialized version csos.c, which replaces sos:

/* csos.c - circular buffer implementation of a single SOS */

void wrap();

double csos(a, b, w, p, x) a,b,w are 3-dimensional

double *a, *b, *w, **p, x; p is circular pointer to w
{

double y, s0;

*(*p) = x; read input sample x

s0 = *(*p)++; wrap(2, w, p);
s0 -= a[1] * (*(*p)++); wrap(2, w, p);
s0 -= a[2] * (*(*p)++); wrap(2, w, p);

*(*p) = s0; p has wrapped around once

y = b[0] * (*(*p)++); wrap(2, w, p);
y += b[1] * (*(*p)++); wrap(2, w, p);
y += b[2] * (*(*p)); p now points to s2

return y;
}

As required, the pointer p points at the w-register containing w(n) and cycles
around modulo-3, because the state vector is three-dimensional:

s(n)=
⎡⎢⎣ w(n)
w(n− 1)
w(n− 2)

⎤⎥⎦
After the first three post-increments, p cycles around completely. The last two post-

increments leave p pointing at the register containing s2(n)= w(n−2), which is where
it should be pointing at the beginning of the next call.

The sample processing algorithm implemented by csos can be restated in the fol-
lowing form:
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for each input sample x do:
s1 = tap(2,w, p,1)
s2 = tap(2,w, p,2)
s0 = x− a1s1 − a2s2

y = b0s0 + b1s1 + b2s2

∗p = s0

cdelay(2,w,&p)

As in Eq. (7.3.5), the cascade of K second-order sections can be realized by K succes-
sive calls to the routine csos:

for each input sample x do:
y = x
for i = 0,1, . . . , K − 1 do:

y = csos(ai,bi,wi,&pi, y)

where each of theK sections has its own three-dimensional buffer wi and corresponding
circular pointer pi. The following routine ccas.c is an implementation, replacing cas:

/* ccas.c - circular buffer implementation of cascade realization */

double csos(); circular-buffer version of single SOS

double ccas(K, A, B, W, P, x)
int K;
double **A, **B, **W, **P, x; P = array of circular pointers

{
int i;
double y;

y = x;

for (i=0; i<K; i++)
y = csos(A[i], B[i], W[i], P+i, y); note, P+ i = &P[i]

return y;
}

As in the case of cas, we save the individual buffers wi as the rows of the matrixW.
Similarly, we save the individual pointers pi in an array of pointers P. The declaration
and allocation of A, B, and W are the same as in Section 7.3. The declaration of P and
initialization and usage of ccas is illustrated below:

double **P;

P = (double **) calloc(K, sizeof(double *)); array of K pointers

for (i=0; i<K; i++)
P[i] = W[i]; P[i] = ith row of W

for (n = 0; n < Ntot; n++)
y[n] = ccas(K, A, B, W, P, x[n]);
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Example 7.5.5: Write the circular version of the cascade realization of Example 7.3.1, depicted
in Fig. 7.3.2.

Solution: Let p0 and p1 denote the circular pointers of the two sections. Initially they point at
the first elements of the three-dimensional buffers w0 and w1 of the two sections, that is,
p0 = w0 and p1 = w1. The sample processing algorithm is:

for each input sample x do:
s1 = tap(2,w0, p0,1)
s2 = tap(2,w0, p0,2)
s0 = x+ 0.4s1 − 0.5s2

x1 = 3s0 − 4s1 + 2s2

∗p0 = s0

cdelay(2,w0,&p0)
s1 = tap(2,w1, p1,1)
s2 = tap(2,w1, p1,2)
s0 = x1 − 0.4s1 − 0.5s2

y = 3s0 + 4s1 + 2s2

∗p1 = s0

cdelay(2,w1,&p1)

where the output x1 of the first section becomes the input to the second. 	


We can also write versions of the routines that manipulate the offset index q instead
of the circular pointer p, in the same fashion as the FIR routine cfir2 of Section 4.2.4.
The following routine ccan2.c replaces ccan:

/* ccan2.c - circular buffer implementation of canonical realization */

void wrap2(); defined in Section 4.2.4

double ccan2(M, a, b, w, q, x)
double *a, *b, *w, x; q = circular pointer offset index

int M, *q; a,b have common order M
{

int i;
double y = 0;

w[*q] = x; read input sample x

for (i=1; i<=M; i++)
w[*q] -= a[i] * w[(*q+i)%(M+1)];

for (i=0; i<=M; i++)
y += b[i] * w[(*q+i)%(M+1)];

(*q)--; update circular delay line

wrap2(M, q);

return y; output sample

}

Its usage is illustrated by the following program segment. Note thatqmust be passed
by address:
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int q;
double *a, *b, *w;
a = (double *) calloc(M+1, sizeof(double));
b = (double *) calloc(M+1, sizeof(double));
w = (double *) calloc(M+1, sizeof(double)); initializes w to zero

a[0] = 1; not used in the routine

q = 0; initialize q

for (n = 0; n < Ntot; n++)
y[n] = ccan2(M, a, b, w, &q, x[n]); p is passed by address

Similarly, the following routines csos2.c and ccas2.c replace csos and ccas:

/* csos2.c - circular buffer implementation of a single SOS */

void wrap2();

double csos2(a, b, w, q, x)
double *a, *b, *w, x; a,b,w are 3-dimensional arrays

int *q; q is circular offset relative to w
{

double y;

w[*q] = x - a[1] * w[(*q+1)%3] - a[2] * w[(*q+2)%3];

y = b[0] * w[*q] + b[1] * w[(*q+1)%3] + b[2] * w[(*q+2)%3];

(*q)--;
wrap2(2, q);

return y;
}

and

/* ccas2.c - circular buffer implementation of cascade realization */

double csos2(); circular-buffer version of single SOS

double ccas2(K, A, B, W, Q, x)
int K, *Q; Q = array of circular pointer offsets

double **A, **B, **W, x;
{

int i;
double y;

y = x;

for (i=0; i<K; i++)
y = csos2(A[i], B[i], W[i], Q+i, y); note, Q + i = &Q[i]

return y;
}

The ith SOS has its own offset index qi. Therefore, the quantity Q is defined as
an array of K integers. The usage and initialization of ccas2 is illustrated below. The
quantities A, B, W are declared and allocated as usual, Q must be declared as:
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int *Q;

Q = (double *) calloc(K, sizeof(double)); array of K integers

for (i=0; i<K; i++)
Q[i] = 0; initialize Q[i]

for (n = 0; n < Ntot; n++)
y[n] = ccas2(K, A, B, W, Q, x[n]);

7.6 Quantization Effects in Digital Filters

There are two types of quantization effects in digital filters besides the quantization of
the input and output signals: roundoff errors in the internal computations of the filter
and coefficient quantization.

Coefficient quantization takes place whenever the filter coefficients are rounded
from their exact values to a finite number of digits (or, bits for hardware implemen-
tations). The direct and canonical realizations tend to be extremely sensitive to such
roundings, whereas the cascade realization remains very robust.

For higher-order filters whose poles are closely clustered in the z-plane, small changes
in the denominator coefficients can cause large shifts in the location of the poles. If any
of the poles moves outside the unit circle, the filter will become unstable, rendering
it completely unusable. But even if the poles do not move outside, their large shifts
may distort the frequency response of the filter so that it no longer satisfies the design
specifications.

In practice, one must always check that the stability and specifications of the filter
are preserved by the rounded coefficients. In using a software package to design a
filter, one must always copy the designed coefficients with enough digits to guarantee
these requirements. Problems 7.20 and 7.21 explore such quantization effects and some
common pitfalls.

We do not mean to imply that the direct and canonical forms are always to be avoided;
in fact, we saw in Examples 7.4.3 and 7.4.4 that the canonical forms were much simpler
to implement than the cascade ones, and were also very robust under coefficient quan-
tization.

In summary, the cascade form is recommended for the implementation of high-order
narrowband lowpass, bandpass, or highpass IIR filters that have closely clustered poles.
In this regard, it is convenient that many IIR filter design techniques, such as the bilinear
transformation method, give the results of the design already in cascaded form.

There are other realization forms, such as cascaded second-order sections in trans-
posed form, parallel forms, and lattice forms that are also very robust under coefficient
quantization [2].

Roundoff errors occur in the internal multiplication and accumulation operations,
for example, y :=y+ aw. The product aw requires twice as many bits as the factors to
be represented correctly. A roundoff error will occur if this product is rounded to the
original wordlength of the two factors. Such roundoff errors can be trapped into the
feedback loops of recursive filters and can get amplified, causing too much distortion
in the desired output.
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Special state-space realizations and the technique of quantization noise shaping (also
called in this context error spectrum shaping) can be used to minimize the accumula-
tion of roundoff error [14,70–76]. To prevent overflow of intermediate results in filter
computations, appropriate scaling factors must be introduced at various points within
the filter stages [19,77,78].

Modern DSP chips address the issues of quantization effects in two ways: by using
long wordlengths, such as 32 bits, for coefficient storage, and by using double-precision
accumulators that can perform several MAC operations without roundoff error before
the final result is rounded out of the accumulator.

7.7 Problems

7.1 A system has transfer function:

H(z)= z−1 + 2z−2 + 3z−3 + 4z−4

1 − z−5

a. Without using partial fractions, determine the causal impulse response h(n) of this
system, for all n ≥ 0, and sketch it versus n.

b. Draw the direct and canonical realization forms. Write the difference equations de-
scribing these realizations. Then, write the corresponding sample processing algo-
rithms.

c. Factor this transfer function in the formH(z)= H1(z)H2(z), whereH1(z) is the ratio
of two first-order polynomials, andH2(z) has numerator of degree 3 and denominator
of degree 4. Draw the corresponding cascade realization, with each factor realized in
its canonical form. Write the difference equations describing this realization, and the
corresponding sample processing algorithm.

7.2 A discrete-time model for a second-order delta-sigma A/D converter is shown below:

H1(z) H2(z)+ + ++
− −

e(n) = quantization noise

y(n)x(n)

a. Show that the output z-transform Y(z) is related to X(z) and E(z) by a transfer
function relationship of the form:

Y(z)= Hx(z)X(z)+He(z)E(z)

Express the transfer functionsHx(z) andHe(z) in terms of the loop filtersH1(z) and
H2(z).

b. Determine H1(z) and H2(z) in order for Hx(z) to act as a single delay and He(z) as
a second-order noise shaper, that is,

Hx(z)= z−1 and He(z)= (1 − z−1)2
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7.3 A digital filter has transfer function:

H(z)= z−1(1 + 2z−2)(1 + 3z−2)
1 − z−6

a. Draw the direct form realization (direct form I). Write the I/O difference equation and
corresponding sample processing algorithm for this realization.

b. Draw the canonical form realization (direct form II). Write the I/O difference equations
and corresponding sample processing algorithm for this realization.

c. FactorH(z) into second-order sections with real-valued coefficients, and draw the cor-
responding cascade realization. Write the I/O difference equations and corresponding
sample processing algorithm for this realization.

d. Without using partial fractions, determine the causal impulse response h(n) of this
filter for all n. Explain your reasoning.

7.4 A linear system is described by the system of difference equations:

v(n) = x(n)+v(n− 1)

y(n) = v(n)+v(n− 2)+v(n− 4)

Determine the transfer function from x(n) to y(n). Draw the direct, the canonical, and the
cascade of SOS realizations (with real coefficients). In each case, state the sample-by-sample
processing algorithm.

7.5 Draw the three realizations: (1) direct, (2) canonical, and (3) cascade of second-order sections
for the following filter:

H(z)= (2 − 3z−1)(1 + z−2)
1 − 0.25z−4

For each realization write the corresponding: (a) I/O difference equations and (b) sample
processing algorithm.

7.6 A filter has transfer function:

H(z)= 5

1 + 0.25z−2
− 4

1 − 0.25z−2
= 1 − 2.25z−2

(1 + 0.25z−2)(1 − 0.25z−2)

a. Determine all possible impulse responses h(n) and their ROCs.

b. Draw the direct realization form of H(z).

c. Draw the canonical realization form.

d. Draw the cascade form.

In all cases, write all the I/O difference equations describing the realization in the time do-
main, and the sample processing algorithm implementing it.

7.7 Draw the direct and the canonical realizations of the system:

H(z)= 1 − 2z−2 + z−4

1 − 0.4096z−4

a. Write the I/O difference equations and state the sample processing algorithms of these
two realizations. [Hint: 0.4096 = (0.8)4.]
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b. Factor the above transfer function into second-order sections (with real coefficients).
Draw the cascade realization (with each SOS realized in its canonical form). Write all
the I/O difference equations and state the sample processing algorithm describing this
realization.

7.8 An allpass digital reverberator with delay of 10 time units and having input x(n) and overall
output y(n), is described by the system of difference equations:

w(n) = 0.75w(n− 10)+x(n)
y(n) = −0.75w(n)+w(n− 10)

a. Draw a block diagram realization of this filter. The realization must use only one
10-fold delay.

b. Write the sample processing algorithm for this filter. Then, convert this algorithm into
a C routine that implements it.

c. Show that the magnitude response of the filter is identically equal to one, that is,
|H(ω)| = 1 for all ω.

7.9 A filter is described by the following sample processing algorithm relating the input and
output samples x and y:

for each input sample x do:
w0 = x+ 0.64w4

y = w0 +w3

w4 = w3

w3 = w2

w2 = w1

w1 = w0

Determine the transfer function H(z) of this filter. Factor H(z) into factors of order up
to two (with real-valued coefficients) and draw the corresponding cascade realization. State
the sample processing algorithm for that realization.

7.10 For the following three filters,

H(z)= (1 + z−2)3 , H(z)= 1

1 + 0.81z−2
, H(z)= 1 − z−4

1 − 0.9z−1

a. Determine all possible impulse responses h(n), corresponding ROCs, stability, and
causality properties.

b. Draw the direct, canonical, and cascade of SOS realization forms. Write the I/O differ-
ence equations for each realization. State the sample-by-sample processing algorithm
for each realization.

c. Determine the corresponding pole/zero plots and then make a rough sketch of the
magnitude responses |H(ω)| versus ω.

7.11 Consider a system with transfer function:

H(z)= (1 −√
2z−1 + z−2)(1 +√

2z−1 + z−2)
(1 + 0.81z−2)(1 − 0.81z−2)
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a. Determine the poles and zeros of this filter and place them on the z-plane. Then, draw
a rough sketch of the magnitude response of the filter versus frequency.

b. Draw the cascade of second-order sections realization. Write the I/O difference equa-
tions for this realization. State the corresponding sample-by-sample processing algo-
rithm.

Repeat for the canonical and direct form realizations.

7.12 Consider a stable system with transfer function H(z)=
1

16
+ z−4

1 + 1

16
z−4

.

a. Determine the poles and zeros of H(z) and place them on the complex z-plane. Pair
them in conjugate pairs to write H(z) as a cascade of second-order sections with real
coefficients.

b. Draw the direct, canonical, and cascade realization forms. In each case, write the
corresponding sample processing algorithm.

c. Determine the impulse response h(n) for all n. And, finally show that |H(ω)| = 1
for all ω, that is, it is an allpass filter.

7.13 Computer Experiment: IIR Filtering. A digital filter has transfer function:

H(z)= H0(z)H1(z)H2(z)H3(z)

where

H0(z) = 0.313(1 + z−1)
1 − 0.373z−1

,

H2(z) = 0.117(1 + 2z−1 + z−2)
1 − 0.891z−1 + 0.360z−2

,

H1(z) = 0.147(1 + 2z−1 + z−2)
1 − 1.122z−1 + 0.712z−2

H3(z) = 0.103(1 + 2z−1 + z−2)
1 − 0.780z−1 + 0.190z−2

a. Draw the cascade realization of H(z) and write all the difference equations required
for the time operation of this filter. Write the sample-by-sample processing algorithm
implementing the cascade realization.

b. Using the routine cas2can, determine the canonical and direct realizations of H(z)
and draw them. Write the corresponding sample processing algorithms and difference
equations for the two realizations.

c. Generate a length-100 input signal defined as

x(n)=
⎧⎨⎩1 if 0 ≤ n < 50

0 if 50 ≤ n < 100

Using the cascade routine cas compute the filter output yn for 0 ≤ n ≤ 99. Repeat
using the routines dir and can. In three parallel columns, print the signal samples yn
computed by the three routines cas, dir, can.

d. On the same graph, plot the two signals xn and yn versus n. You will be observing the
input-on transients, steady-state response to a constant input, and input-off transients.
What is the theoretical value of the steady-state response to a constant input?
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e. Send a unit impulse as input. For the cascade realization, using the routine cas, com-
pute the corresponding output impulse response for 0 ≤ n < 50, and plot it versus
n. Repeat for the canonical realization using the routine can. Do you get identical
results?

7.14 Computer Experiment: IIR Filtering in Canonical Form. Write a stand-alone C program, say
canfilt.c, that implements the canonical form of the IIR sample processing algorithm,
Eq. (7.2.5). The program must have usage:

canfilt a.dat b.dat < x.dat > y.dat

It must read and dynamically allocate the denominator and numerator coefficient vectors a,
b from two input files, say a.dat and b.dat, and must allocate the internal state vector w.
Using the routine can.c, it must keep processing input samples, reading them one at a time
from stdin or from a file x.dat, and writing the computed output samples to stdout or a
file y.dat. Filtering must stop when the end-of-file of the input file is encountered.

Using this program, calculate the filter outputs required in Problem 7.13.

7.15 Computer Experiment: IIR Filtering in Cascade Form. Write a stand-alone C program, say cas-
filt.c, that implements the cascade form of the IIR sample processing algorithm, Eq. (7.3.3).
The program must have usage:

casfilt A.dat B.dat < x.dat > y.dat

It must read and dynamically allocate the K×3 denominator and numerator coefficient ma-
trices A and B from two input files, say A.dat and B.dat (stored in row-wise fashion). and
must allocate the internal K×3 state matrix W. Using the routine cas.c, it must keep pro-
cessing input samples, reading them one at a time from stdin or from a file x.dat, and
writing the computed output samples to stdout or a file y.dat. Filtering must stop when
the end-of-file of the input file is encountered.

Alternatively or additionally, write a MATLAB version, say casfilt.m, that reads the input
vector x and the matricesA and B and computes the output vector y. It may use the MATLAB
functions sos.m and cas.m of Appendix D. Its usage must be:

y = casfilt(B, A, x);

Using these programs, calculate the filter outputs required in Problem 7.13.

7.16 Computer Experiment: Comb Filtering. Consider the two comb filters discussed in Examples
7.4.3 and 7.4.4. To understand the difference in their time-domain operation, consider as
input to both filters the “noisy” signal:

x(n)= s(n)+v(n), where
s(n) = A0 cos(w0n)+A2 cos(w1n)

v(n) = A2 cos(w2n)+A3 cos(w3n)

where n = 0,1, . . . ,499, andA0 = 1,A1 = A2 = A3 = 0.5. The frequency components of the
“desired” signal s(n) are chosen to lie in the flat part, between the zeros, of the frequency
response of the sharpened filter shown in Fig. 7.4.3: w0 = 0.50π/8, w1 = 0.75π/8. The
frequency components of the “noise” part v(n) are chosen to be two of the comb’s zeros:
w2 = π/8, w3 = 3π/8.

Plot the desired and noisy signals s(n) and x(n). Compute the corresponding output signals
y1(n), y2(n) for n = 0,1, . . . ,499 of the two filters, plot them, and compare them with the
desired signal s(n).
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To implement the filtering operations for the first filter, use the sample processing algorithm
of the canonical form given in Example 7.4.3, and for the second filter use the cascade of the
two combs given in Example 7.4.4. Moreover, to make a fair comparison normalize the two
magnitude responses to unity gain at one of the desired frequencies, say at w0.

7.17 Computer Experiment: Comb Impulse Response. First, derive closed-form analytical expres-
sions for the impulse responses of the two comb filters of Examples 7.4.3 and 7.4.4. [Hint:
You may do partial fractions in the variable z−8.]

Then, using their sample processing algorithms, compute the impulse responses by sending
in a unit impulse input. Compare the computed values and the analytical expressions. For
each filter, compute the impulse responses h(n) for 0 ≤ n < 200.

7.18 Computer Experiment: IIR Filtering Using Circular Buffers. For the canonical and cascade
realizations, repeat all the questions of Problem 7.13, using the circular buffer routines
ccan.c, ccas.c, and csos.c, instead of the standard linear buffer routines can, cas, and
sos.

Repeat this problem using the alternative circular buffer routines ccan2.c, ccas2.c, and
csos2.c.

7.19 Consider a filter with transfer function: H(z)= 6 − 2z−3

1 − 0.5z−3
.

a. Draw the canonical realization form ofH(z) and write the corresponding sample pro-
cessing algorithm both in its linear and circular buffer versions.

b. Determine the causal impulse response h(n) in two ways: (i) by doing and inverse
z-transform on H(z), and (ii) by sending in a unit impulse and iterating the circular
buffer sample processing algorithm. Perform seven iterations for n = 0,1, . . . ,6 filling
the entries of the following table:

n x w0 w1 w2 w3 s0 s1 s2 s3 y
0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
...

...
...

...
...

...
...

...
...

...
...

6 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
where [w0,w1,w2,w3] is the linear buffer over which the circular pointer circulates
and si are the internal states (i.e., the tap outputs) of the triple delay z−3.

c. Suppose the length-3 input signal x = [1,2,3] is applied. Compute the corresponding
output for n = 0,1, . . . ,6 by iterating the circular version of the sample processing
algorithm and filling the wi and si entries of the above table.

7.20 Computer Experiment: Coefficient Quantization. Consider the double resonator filter given
in cascade and direct forms:

H(z) = 1

1 − 1.8955z−1 + 0.9930z−2
· 1

1 − 1.6065z−1 + 0.9859z−2

= 1

1 − 3.5020z−1 + 5.0240z−2 − 3.4640z−3 + 0.9790z−4

(7.7.1)

using four-digit precision to represent the coefficients.

a. Calculate the zeros of the denominators in polar form and place them on the z-plane
with respect to the unit circle. Plot the magnitude response of the filter for 0 ≤ ω ≤
π/2. Then, using the routines cas or can, iterate the sample processing algorithm for
n = 0,1, . . . ,599 to determine the filter’s impulse response and plot it versus n.
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b. Consider the cascade form and round the coefficients of the individual second-order
sections to two-digit accuracy. Then, repeat all questions of part (a), using the routine
cas for the impulse response. Discuss the stability of the resulting filter and compare
its magnitude response with that of part (a).

c. Consider the fourth-order direct form denominator polynomial and round its coeffi-
cients to two-digit accuracy. Then, compute and plot its impulse response. Discuss its
stability.

7.21 Computer Experiment: Coefficient Quantization. It is desired to design and implement a digi-
tal lowpass Chebyshev type 1 filter having specifications: sampling rate of 10 kHz, passband
frequency of 0.5 kHz, stopband frequency of 1 kHz, passband attenuation of 1 dB, and stop-
band attenuation of 50 dB. Such a filter may be designed by the methods of Section 11.6.6,
for example, using Eq. (11.6.65), which are mechanized by the MATLAB routine lhcheb1.m of
Appendix D. The design method generates a sixth-order transfer function in cascade form:

H(z) = G · (1 + z−1)2

1 + a01z−1 + a02z−2
· (1 + z−1)2

1 + a11z−1 + a12z−2
· (1 + z−1)2

1 + a21z−1 + a22z−2

= G(1 + z−1)6

1 + a1z−1 + a2z−2 + a3z−3 + a4z−4 + a5z−5 + a6z−6

where the normalization gain factor isG = 8.07322364×10−7. The full precision coefficients
are given in terms of the matrix A:

A =
⎡⎢⎣ 1 a01 a02

1 a11 a12

1 a21 a22

⎤⎥⎦ =
⎡⎢⎣ 1 −1.86711351 0.96228613

1 −1.84679822 0.89920764
1 −1.85182222 0.86344488

⎤⎥⎦
where “full precision” means eight-digit precision. Let ai = [1, ai1, ai2] be the second-order
coefficient vectors. Using the routine cas2can, perform the following convolution to obtain
the seven-dimensional direct-form denominator vector:

a = a0 ∗ a1 ∗ a2 = [1, a1, a2, a3, a4, a5, a6]

a. Replace a by its quantized version rounded to eight-digit accuracy. Using a root finder
routine, such as MATLAB’s roots, determine the six zeros of a and their magnitudes.

Calculate and plot in dB the magnitude response, that is, 20 log10 |H(f)|, over the
interval 0 ≤ f ≤ 0.75 kHz, and verify that it meets the prescribed 1 dB passband
specification.

Generate a unit impulse input of length 300, that is, x(n)= δ(n), n = 0,1, . . . ,299, and
using the canonical routine can, calculate the impulse responseh(n), n = 0,1, . . . ,300
and plot it versus n.

b. Determine the quantized version of a, say â, rounded to five-digit accuracy and calcu-
late its 6 zeros and their magnitudes. Are all the zeros inside the unit circle? Compare
the zeros with the full precision zeros.

Calculate the relative rounding error, that is, the ratio of the vector lengths:

E = ‖Δa‖
‖a‖ = ‖â − a‖

‖a‖
Using â as the filter denominator vector, calculate and plot in dB the magnitude re-
sponse and compare it with the full-precision response. Does it meet the specs?

Using the routine can, calculate the impulse response h(n), n = 0,1, . . . ,300, and
compare it with the full precision response. Is it stable?
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c. Repeat all the questions of part (b), with â being the quantized version of a rounded to
four digits. You should find that the impulse response is unstable and therefore the
calculation of the magnitude response is meaningless (why is that?).

d. Round to four digits the individual second-order coefficient vectors ai, i = 0,1,2,
compute the corresponding equivalent direct-form vector by the convolution âcas =
â0 ∗ â1 ∗ â2, and round it to eight digits. Then, repeat all the questions of part (b)
using âcas instead of â. You should find that the filter is stable and its impulse and
magnitude responses agree very closely with the full precision responses.

Also, compare and discuss the relative errors E in parts (b,c,d).

7.22 Consider a second-order denominator polynomial for an IIR filter with conjugate poles:

1 + a1z−1 + a2z−2 = (1 − pz−1)(1 − p∗z−1)

Taking differentials of both sides of this identity, show that small changes {da1, da2} in the
polynomial coefficients induce the small change in the pole location:

dp = −pda1 + da2

p− p∗

7.23 Consider a fourth-order denominator polynomial for an IIR filter with conjugate poles:

1 + a1z−1 + a2z−2 + a3z−3 + a4z−4 = (1 − p0z−1)(1 − p∗0 z−1)(1 − p1z−1)(1 − p∗1 z−1)

Show that small changes {da1, da2, da3, da4} in the coefficients induce the following changes
in the pole locations, which may not be too small if p0 is close to p1:

dp0 = −p
3
0da1 + p2

0da2 + p0da3 + da4

(p0 − p∗0 )(p0 − p1)(p0 − p∗1 )

dp1 = −p
3
1da1 + p2

1da2 + p1da3 + da4

(p1 − p∗0 )(p1 − p0)(p1 − p∗1 )
Such pole sensitivity formulas can be generalized to polynomials of arbitrary degree; see
[2,3,246].

7.24 Consider the transposed realization of a third-order IIR filter shown in Fig. 7.7.1. First, de-
termine the transfer function H(z). Then, using the indicated variables vi(n), i = 0,1,2,3,
write the difference equations describing the time-domain operation of this realization.
Then, rewrite them as a sample-by-sample processing algorithm that transforms each in-
put x into an output sample y.

7.25 Computer Experiment: Transposed Realization Form. Generalize the transposed structure of
Fig. 7.7.1 to an arbitrary transfer function with numerator and denominator polynomials of
degree M. State the corresponding sample processing algorithm in this case. Then, convert
it into a C routine, say transp.c, that has usage:

y = transp(M, a, b, v, x);

where a, b, and v are (M+1)-dimensional vectors.

7.26 Computer Experiment: Filtering in Transposed Form. Repeat the filtering questions of Prob-
lem 7.13. Use the transpose of the canonical form implemented by the routine transp.c

of Problem 7.25. For the cascade form, realize each second-order section in its transposed
form. The output signals must agree exactly with those of Problem 7.13.
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v1(n)

v0(n)

v2(n)

v3(n)

z-1

z-1

z-1

x(n)
b0

b1

b2

b3

y(n)

-a1

-a2

-a3

Fig. 7.7.1 Transpose of canonical realization.

7.27 For the filter of Example 7.3.1, draw the transpose realizations of the canonical form. Also
draw a cascade realization in which every second-order section is realized in its transposed
form. In all cases, write the corresponding I/O difference equations and sample processing
algorithms.

7.28 A general feedback system is shown in Fig. 7.7.2, where the output of filterH1(z) is fed back
into filter H2(z) and then back to the input, and where the delay z−1 can be positioned at
the four points A, B, C, or D.

For each case, determine the transfer function of the overall closed-loop system, that is, from
x(n) to y(n). Assuming that the I/O equations of the filters H1(z) and H2(z) are known,
state the corresponding sample processing algorithms in the four cases. How does moving
the position of the delay change the order of computations? Finally, if the same input x(n)
is fed into the four filters, determine the relationships among the four output signals yA(n),
yB(n), yC(n), and yD(n).

x(n) y(n)z-1 H1(z)

H2(z)

A B

CD

Fig. 7.7.2 General feedback system.

7.29 Consider the block diagram of Fig. 7.7.3, where the feedback delay z−1 can be positioned at
points A or B. For the two cases, introduce appropriate internal state variables and write the
difference equations describing the time-domain operations of the overall feedback system.
Then, translate these difference equations into sample processing algorithms. What is the
effect of moving the delay from A to B on the order of computations? What happens if that
delay is removed altogether?
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x(n) y(n)

0.5

z-1

z-1

0.4

z-1

-0.4

0.4

A B

Fig. 7.7.3 Feedback system of Problem 7.29.

7.30 The three block diagrams (a,b,c) shown below are equivalent descriptions of the same low-
pass reverberator filter of the form:

H(z)= 1

1 −G(z)z−4
where G(z)= 0.2

1 − 0.8z−1

a. Draw a realization of the lowpass feedback filter G(z). Replace the block G(z) by its
realization.

b. Write the sample processing algorithms describing the time-domain operation of each
of the three block diagrams (a), (b), and (c).

c. In block diagram (a), replace the 4-fold delay z−4 by its reverberating version:

z−4 → z−4

1 − 0.8z−4

Draw the block diagram realization of the new overall filter. Your diagram must be
obtained from diagram (a) by replacing the 4-fold delay z−4 by the block diagram
realization of the given reverberating version. Write the sample processing algorithm
for the new filter.

z-4

G(z)

z-4

G(z)
z-2 z-2

G(z)

(a) (b) (c)



8
Signal Processing Applications

8.1 Digital Waveform Generators

It is often desired to generate various types of waveforms, such as periodic square waves,
sawtooth signals, sinusoids, and so on.

A filtering approach to generating such waveforms is to design a filter H(z) whose
impulse response h(n) is the waveform one wishes to generate. Then, sending an im-
pulse δ(n) as input will generate the desired waveform at the output.

In this approach, generating each sample by running the sample processing algo-
rithm of the filter requires a certain amount of computational overhead. A more effi-
cient approach is to precompute the samples of the waveform, store them in a table in
RAM which is usually implemented as a circular buffer, and access them from the table
whenever needed.

The period, or equivalently, the fundamental frequency of the generated waveform
is controlled either by varying the speed of cycling around the table or by accessing
a subset of the table at a fixed speed. This is the principle of the so-called wavetable
synthesis which has been used with great success in computer music applications [94–
115].

In this section, we discuss both the filtering and wavetable approaches and show
how to implement them with circular buffers.

8.1.1 Sinusoidal Generators

The above filtering approach can be used to generate a (causal) sinusoidal signal of
frequency f0 and sampled at a rate fs. Denoting the digital frequency byω0 = 2πf0/fs,
we have the z-transform pair:

h(n)= Rn sin(ω0n)u(n), H(z)= R sinω0 z−1

1 − 2R cosω0 z−1 +R2z−2
(8.1.1)

For 0 < R < 1, it corresponds to an exponentially decaying sinusoid of frequency
ω0. A pure sinusoid has R = 1. The canonical realization of this transfer function
is shown in Fig. 8.1.1. The corresponding sample processing algorithm for the input
x(n)= δ(n) and output y(n)= h(n) is:

316
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for n = 0,1,2, . . . do:
w0 = (2R cosω0)w1 −R2w2 + δ(n)
y = (R sinω0)w1

w2 = w1

w1 = w0

y(n)

δ(n) w0

z-1

2Rcosω0 Rsin ω0

z-1

w1

w2

-R2

Fig. 8.1.1 Digital sinusoidal generator

In a similar fashion, we can generate an exponentially decaying cosinusoidal signal
of frequency ω0 with the following generator filter:

h(n)= Rn cos(ω0n)u(n), H(z)= 1 −R cosω0 z−1

1 − 2R cosω0 z−1 +R2z−2
(8.1.2)

The canonical realization is shown in Fig. 8.1.2; its sample processing algorithm is:

for n = 0,1,2, . . . do:
w0 = (2R cosω0)w1 −R2w2 + δ(n)
y = w0 − (R cosω0)w1

w2 = w1

w1 = w0

Example 8.1.1: A common application of sinusoidal generators is the all-digital touch-tone
phone, known as a dual-tone multi-frequency (DTMF) transmitter/receiver [89–93]. Each
key-press on the keypad generates the sum of two audible sinusoidal tones, that is, the
signal

y(n)= cos(ωLn)+ cos(ωHn)

where the two frequencies {ωL,ωH} uniquely define the key that was pressed. Figure
8.1.3 shows the pairs of frequencies associated with each key.
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y(n)δ(n)
w0

z-1

2Rcosω0 -Rcosω0

z-1

w1

w2

-R2

Fig. 8.1.2 Digital cosinusoidal generator

The four frequencies belonging to the low-frequency group select the four rows of the
4×4 keypad,† and the four high-group frequencies select the columns. A pair {fL, fH}
with one frequency from the low and one from the high group will select a particular
key. With a typical sampling rate of fs = 8 kHz, the corresponding digital frequencies are
ωL = 2πfL/fs and ωH = 2πfH/fs.

A

1209 1336 1477 1633 Hz

697 Hz

770 Hz

852 Hz

941 Hz

1 2 3

B

C

D

4 5 6

7 8 9

* 0 #

High Group

Low
Group

Fig. 8.1.3 DTMF keypad.

The generation of the dual tone can be implemented by using two cosinusoidal generators
connected in parallel as in Fig. 8.1.4 and sending an impulse as input.

The particular values of the eight keypad frequencies have been chosen carefully so that
they do not interfere with speech. At the receiving end, the dual-tone signal y(n) must
be processed to determine which pair of frequencies {fL, fH} is present. This can be ac-
complished either by filtering y(n) through a bank of bandpass filters tuned at the eight
possible DTMF frequencies, or by computing the DFT of y(n) and determining which pairs
of frequency bins contain substantial energy.

Both approaches can be implemented with current DSP chips. We will discuss the DFT
detection method further in Chapter 9. 	


The poles of the transfer functions (8.1.1) and (8.1.2) are at the complex locations
p = Rejω0 and p∗ = Re−jω0 . The denominator of these transfer functions factors in
the form:

†The A,B,C,D keys appear on service keypads.
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y(n)δ(n)
2cosωL -cosωL

z-1

-1

z-1

2cosωH -cosωH

z-1

-1

z-1

cos(ωLn)

cos(ωHn)

Fig. 8.1.4 DTMF tone generator.

1 − 2R cosω0 z−1 +R2z−2 = (1 − pz−1)(1 − p∗z−1) (8.1.3)

Denoting by a and b the real and imaginary parts of the pole p = a + jb, that is,
a = R cosω0 and b = R sinω0, we have R2 = a2 + b2 and can express the common
denominator as

1 − 2R cosω0 z−1 +R2z−2 = 1 − 2az−1 + (a2 + b2)z−2

The cosinusoidal and sinusoidal transfer functions are expressed in terms of a and
b as follows:

H1(z) = 1 − az−1

1 − 2az−1 + (a2 + b2)z−2

H2(z) = bz−1

1 − 2az−1 + (a2 + b2)z−2

(8.1.4)

where H1(z) corresponds to Eq. (8.1.2) and H2(z) to Eq. (8.1.1).
Forming the following complex linear combination, and replacing the denominator

by its factored form (8.1.3), and noting that the numerators combine to give (1−p∗z−1),
with p∗ = a− jb, we obtain the pole/zero cancellation:

H1(z)+jH2(z) = 1 − az−1 + jbz−1

1 − 2az−1 + (a2 + b2)z−2
= 1 − p∗z−1

(1 − pz−1)(1 − p∗z−1)

= 1

1 − pz−1
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Taking causal inverse z-transforms, we find

h1(n)+jh2(n)= pnu(n)= Rnejω0nu(n)

Writing ejω0n = cos(ω0n)+j sin(ω0n) and extracting real and imaginary parts,
gives the impulse responses:

h1(n)= Rn cos(ω0n)u(n), h2(n)= Rn sin(ω0n)u(n)

which agree with Eqs. (8.1.2) and (8.1.1), respectively.
The filter coefficients in Figs. 8.1.1 and 8.1.2 involve both the real and imaginary

parts a, b, as well as the magnitude squared R2 = a2 + b2 of the poles. In a hardware
implementation, these coefficients must be quantized to a finite number of bits. One
potential drawback is that to be quantized accurately, the coefficient a2 + b2 will need
twice as many bits as the individual coefficients a and b.

An alternative realization [1] that combines both the sinusoidal and cosinusoidal
generators is the so-called coupled form and is depicted in Fig. 8.1.5. Because only a
and b, not their squares, appear as filter coefficients, this form will not suffer from the
above quantization drawback.

WhenR = 1, it is impossible in general to find quantized coefficients a, b that satisfy
a2 + b2 = 1 exactly. In that case, one settles for R slightly less than one. There exist
filter structures with improved quantization properties when the poles are near the unit
circle [73–76].

x(n)

−b

b

y1(n)

w1(n) w2(n)
y2(n)

a

z-1

a

z-1

Fig. 8.1.5 Coupled form sine/cosine generator.

Noting that w1(n)= y1(n − 1) and w2(n)= y2(n − 1), the difference equations
describing this form are in the time and z domains:

y1(n) = ay1(n− 1)−by2(n− 1)+x(n)
y2(n) = ay2(n− 1)+by1(n− 1)

Y1(z) = az−1Y1(z)−bz−1Y2(z)+X(z)
Y2(z) = az−1Y2(z)+bz−1Y1(z)

Solving for the transfer functions H1(z)= Y1(z)/X(z) and H2(z)= Y2(z)/X(z),
we obtain Eq. (8.1.4). The sample processing algorithm that simultaneously generates
the two outputs y1 and y2 will be:
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for each input sample x do:
y1 = aw1 − bw2 + x
y2 = aw2 + bw1

w1 = y1

w2 = y2

8.1.2 Periodic Waveform Generators

A periodic analog signal, such as a sinusoid, does not necessarily remain periodic when
sampled at a given rate fs. For example, the samples of x(t)= cos(2πft), obtained by
setting t = nT, are:

x(n)= cos(2πfnT)= cos(ωn)

where ω = 2πfT = 2πf/fs.
In order for x(n) to be periodic in the time index n with some period, say of D

samples, it is necessary that one whole period of the sinusoid fit within the D samples,
that is, at n = D, the sinusoid must cycle by one whole period. This requires that
x(D)= x(0), or,

cos(ωD)= 1

which requires that the frequency ω be such that†

ωD = 2π ⇒ ω = 2π
D

(8.1.5)

Writingω = 2πf/fs and solving for f , we find the condition that a sampled sinusoid
of frequency f is periodic if:

f = fs
D

(8.1.6)

or, equivalently, if the sampling rate is an integral multiple of the frequency:

fs = Df (8.1.7)

These results generalize to the case of an arbitrary analog periodic signal, not just a
sinusoid. Indeed, if a signal x(t) has period TD and is sampled at a rate fs = 1/T, then
the periodicity condition x(t + TD)= x(t) implies x(nT + TD)= x(nT). In order for
the sampled signal to be periodic in n, the time nT + TD must be one of the sampling
times, that is,

nT +TD = (n+D)T
†One could also haveω = 2πc/D, where c is an integer, but this would correspond to fitting more than

one sinusoidal cycles in the D samples, that is, c cycles.
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which requires that the period TD be an integral multiple of the sampling period T:

TD = DT (8.1.8)

Because the fundamental frequency of such a periodic signal is f = 1/TD, equation
(8.1.8) is equivalent to Eq. (8.1.6) or (8.1.7).

In this section, we consider the generation of such discrete-time periodic signals.
Because of the periodicity, it is enough to specify the signal over one period only. De-
noting the time samples over one period by bi, i = 0,1, . . . ,D− 1, we have the periodic
sequence:

h = [b0, b1, . . . , bD−1, b0, b1, . . . , bD−1, b0, b1, . . . , bD−1, . . . ] (8.1.9)

Figure 8.1.6 depicts such a sequence forD = 4. The filtering approach to generating
such a periodic sequence is to think of it as the impulse response of a filter and then
excite the filter with an impulsive input. The following filter has Eq. (8.1.9) as its causal
impulse response:

H(z)= b0 + b1z−1 + b2z−2 + · · · + bD−1z−(D−1)

1 − z−D (8.1.10)

b0

b1

b2
b3 b2

b0

b1

b3 b2

b0

b1

b3 b2

b0

b1

b3

1 2 3 4 5 6 7 8 9 100

...

... n

h(n)

Fig. 8.1.6 Discrete-time periodic signal of period D = 4.

As a concrete example, consider the case D = 4 with transfer function:

H(z)= b0 + b1z−1 + b2z−2 + b3z−3

1 − z−4
(8.1.11)

Its causal impulse response can be obtained by expanding the denominator using the
infinite geometric series:

H(z) = (b0 + b1z−1 + b2z−2 + b3z−3)(1 + z−4 + z−8 + · · · )
= (b0 + b1z−1 + b2z−2 + b3z−3)·1
+ (b0 + b1z−1 + b2z−2 + b3z−3)·z−4

+ (b0 + b1z−1 + b2z−2 + b3z−3)·z−8 + · · ·

Picking out the coefficients of the powers of z−1 gives the causal periodic impulse re-
sponse sequence:
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h = [b0, b1, b2, b3, b0, b1, b2, b3, b0, b1, b2, b3, . . . ] (8.1.12)

Writing

(1 − z−D)H(z)= b0 + b1z−1 + · · · + bD−1z−(D−1)

and transforming it to the time domain gives the difference equation for h(n):

h(n)= h(n−D)+b0δ(n)+b1δ(n− 1)+· · · + bD−1δ(n−D+ 1)

For example, with D = 4:

h(n)= h(n− 4)+b0δ(n)+b1δ(n− 1)+b2δ(n− 2)+b3δ(n− 3) (8.1.13)

which generates Eq. (8.1.12). Indeed, iterating Eq. (8.1.13) with causal initial conditions
gives:

h(0)= b0, h(1)= b1, h(2)= b2, h(3)= b3

h(n)= h(n− 4), for n ≥ 4

The transfer function (8.1.11) can be realized in its direct or canonical forms. It is
instructive to look at the time-domain operation of these two realizations. The direct
form is depicted in Fig. 8.1.7. Note that there are D = 4 feedback delays, but only
D − 1 = 3 feed-forward ones. The corresponding sample processing algorithm will be
as follows:

for n = 0,1,2, . . . do:
v0 = δ(n)
y = w0 = w4 + b0v0 + b1v1 + b2v2 + b3v3

delay(3,v)
delay(4,w)

The following table shows the contents of the delay registers at successive sampling
instants. The v and w delays are initialized to zero. Note that the v0 column is the
impulsive input δ(n). Similarly, the v1 column represents the delayed version of v0,
that is, δ(n− 1), and v2, v3 represent δ(n− 2), δ(n− 3).

n v0 v1 v2 v3 w0 w1 w2 w3 w4 y = w0

0 1 0 0 0 b0 0 0 0 0 b0

1 0 1 0 0 b1 b0 0 0 0 b1

2 0 0 1 0 b2 b1 b0 0 0 b2

3 0 0 0 1 b3 b2 b1 b0 0 b3

4 0 0 0 0 b0 b3 b2 b1 b0 b0

5 0 0 0 0 b1 b0 b3 b2 b1 b1

6 0 0 0 0 b2 b1 b0 b3 b2 b2

7 0 0 0 0 b3 b2 b1 b0 b3 b3

8 0 0 0 0 b0 b3 b2 b1 b0 b0

(8.1.14)
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During the first four sampling instants, n = 0,1,2,3, the initial impulse travels
through the v-delays and eventually these delays empty out. The only purpose of the
first four iterations of the algorithm is to load the w-delay registers with the values bi
of the signal. Indeed as can be seen from the table, the contents of the w-registers at
time n = 4 are the bi values loaded in reverse order :

[w1,w2,w3,w4]= [b3, b2, b1, b0]

and, in general, at time n = D the w-delays will contain the values:

wi = bD−i, i = 1,2, . . . ,D (8.1.15)

For n ≥ 4, the input part of the block diagram no longer plays a part because the v-
delays are empty, whereas the contents of thew-delays recirculate according tow0 = w4,
or w0 = wD, in general. Thus, an alternative way to formulate the sample processing
algorithm for the generation of a periodic waveform is to break the algorithm into two
parts: an initialization part

for n = 0,1, . . . ,D− 1 do:
w0 = bn
delay(D,w)

(8.1.16)

and a steady state part

repeat forever :
w0 = wD
delay(D,w)

(8.1.17)

where y = w0 is the corresponding output, as seen in Fig. 8.1.7.
Equation (8.1.16) effectively loads thew-registers with the b-values in reverse order.

Then, Eq. (8.1.17) repeatedly recirculates the delay line, producing the periodic output.

δ(n)

z-1

z-1

z-1

z-1

v1

v0

v2

y(n)

w1

b1

w0

b0

w2

b2

w3

b3

w4

z-1 z-1

v3

z-1

Fig. 8.1.7 Periodic generator in direct form.
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The canonical realization of the transfer function (8.1.11) is shown in Fig. 8.1.8. Its
operation is now by the following sample processing algorithm:

for n = 0,1,2, . . . do:
w0 = wD + δ(n)
y = b0w0 + b1w1 + · · · + bD−1wD−1

delay(D,w)

The contents of the w-register at successive sampling instants are shown below:

n w0 w1 w2 w3 w4 y = b0w0 + b1w1 + b2w2 + b3w3

0 1 0 0 0 0 b0

1 0 1 0 0 0 b1

2 0 0 1 0 0 b2

3 0 0 0 1 0 b3

4 1 0 0 0 1 b0

5 0 1 0 0 0 b1

6 0 0 1 0 0 b2

7 0 0 0 1 0 b3

The initial impulse gets trapped into the recirculatingw-delay line, each time passing
through only one of the bi filter multipliers as it gets shifted from register to register.

δ(n)

z-1

z-1

w1

w0

w2

w3

w4

z-1

z-1

b1

b0

b2

b3

y(n)

Fig. 8.1.8 Periodic generator in canonical form.

An intuitive way of understanding the operation of the canonical form is to separate
out the common set ofw-delays and think of the transfer function as the cascade of the
two filters:

H(z)= 1

1 − z−4
·N(z) (8.1.18)

where N(z)= b0 + b1z−1 + b2z−2 + b3z−3. Fig. 8.1.9 shows this interpretation. The
impulse response of the first factor is a train of pulses separated by the desired period
D = 4 with D− 1 zeros in between, that is, the sequence:
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[1,0,0,0,1,0,0,0,1,0,0,0, . . . ]

Every time one of these impulses hits the FIR filter N(z), it generates the impulse
response b = [b0, b1, b2, b3], translated in time to match the time of that input impulse,
as required by time invariance. Because the duration of b is only D samples, there is no
overlap of the generated impulse responses, that is, each impulse response ends just
before the next one begins.

4 48 80 0 0

1

1-z-4

n

b2
b0

b1

b3 b2
b0

b1

b3 b2
b0

b1

b3

nn

N(z)

1 1 1 1

b = [b0, b1, b2, b3]

Fig. 8.1.9 Periodic pulse train causes periodic output.

Both the direct and canonical realizations can be implemented using circular buffers.
For example, the direct-form sample processing algorithm described by Eqs.(8.1.16) and
(8.1.17) can be written with the help of the circular version of the delay routine, cdelay,
as follows:

for n = 0,1, . . . ,D− 1 do:
∗p = bn
cdelay(D,w,&p)

(8.1.19)

and

repeat forever :
∗p = tap(D,w, p,D)
cdelay(D,w,&p)

(8.1.20)

As discussed in Chapter 4, the circular pointer must be initialized byp = w. Eq. (8.1.19)
loads the circular buffer with theD waveform samples, and then Eq. (8.1.20) reproduces
them periodically. Alternatively, we may use the routines cdelay2 and tap2 that em-
ploy the offset index q such that p = w + q. Noting that ∗p = p[0]= w[q], we have
the generation algorithm:

for n = 0,1, . . . ,D− 1 do:
w[q]= bn
cdelay2(D,&q)

(8.1.21)

and
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repeat forever :
w[q]= tap2(D,w, q,D)
cdelay2(D,&q)

(8.1.22)

where q must be initialized by q = 0.
These circular versions provide more efficient implementations than the direct form

because at each time instant only the current w-register pointed to by p is updated—
being loaded with the value of the last state, that is, the Dth state. By contrast, in
the linear delay-line implementation, the entire delay line must be shifted at each time
instant.

To appreciate how the circular delay line is updated, the table below shows the
contents of the vector w for the case D = 4, at successive time instants (grouped every
D+ 1 = 5 samples):

n q w0 w1 w2 w3 w4 y
0 0 ↑b0 0 0 0 0 b0

1 4 b0 0 0 0 ↑b1 b1

2 3 b0 0 0 ↑b2 b1 b2

3 2 b0 0 ↑b3 b2 b1 b3

4 1 b0 ↑b0 b3 b2 b1 b0

5 0 ↑b1 b0 b3 b2 b1 b1

6 4 b1 b0 b3 b2 ↑b2 b2

7 3 b1 b0 b3 ↑b3 b2 b3

8 2 b1 b0 ↑b0 b3 b2 b0

9 1 b1 ↑b1 b0 b3 b2 b1

10 0 ↑b2 b1 b0 b3 b2 b2

11 4 b2 b1 b0 b3 ↑b3 b3

12 3 b2 b1 b0 ↑b0 b3 b0

13 2 b2 b1 ↑b1 b0 b3 b1

14 1 b2 ↑b2 b1 b0 b3 b2

15 0 ↑b3 b2 b1 b0 b3 b3

16 4 b3 b2 b1 b0 ↑b0 b0

17 3 b3 b2 b1 ↑b1 b0 b1

18 2 b3 b2 ↑b2 b1 b0 b2

19 1 b3 ↑b3 b2 b1 b0 b3

20 0 ↑b0 b3 b2 b1 b0 b0

21 4 b0 b3 b2 b1 ↑b1 b1

22 3 b0 b3 b2 ↑b2 b1 b2

23 2 b0 b3 ↑b3 b2 b1 b3

24 1 b0 ↑b0 b3 b2 b1 b0
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The up-arrow symbol ↑ indicates the w-register pointed to by the current value of
the output pointer p. The pointer p cycles around everyD+1 = 5 samples even though
the output is periodic every D = 4 samples. Equivalently, the current w-register can be
determined by the corresponding value of the offset index q, that is, the register w[q].

In the direct form version of Eq. (8.1.14), the linear delay line recirculates once every
D = 4 samples, so that at n = 8 the state vector w is the same as at time n = 4. By
contrast, the circular delay line recirculates much more slowly, that is, everyD(D+1)=
20 samples, so that the buffer w has the same contents at times n = 4 and n = 24.
In both cases, the first D = 4 samples correspond to the initialization phases of Eqs.
(8.1.16) and (8.1.19).

The following program segment illustrates the initialization and usage of the circular-
buffer generation algorithms. It is assumed that theD-dimensional array of values b[i],
i = 0,1, . . . ,D− 1, has already been defined:

double *b, *w, *p;

b = (double *) calloc(D, sizeof(double)); definition of b[n] is not shown

w = (double *) calloc(D+1, sizeof(double)); (D+1)-dimensional

p = w; initialize circular pointer

for (n=0; n<D; n++) { initialization part

*p = b[n]; fill buffer with b[n]’s
printf("%lf\n", *p); current output

cdelay(D, w, &p); update circular delay line

}

for (n=D; n<Ntot; n++) { steady state part

*p = tap(D, w, p, D); first state = last state

printf("%lf\n", *p); current output

cdelay(D, w, &p); update circular delay line

}

For comparison, we also list the linear delay-line version of Eqs. (8.1.16) and (8.1.17):

for (n=0; n<D; n++) { initialization part

w[0] = b[n]; fill buffer with b[n]’s
printf("%lf\n", w[0]); current output

delay(D, w); update linear delay line

}

for (n=D; n<Ntot; n++) { steady state part

w[0] = w[D]; first state = last state

printf("%lf\n", w[0]); current output

delay(D, w); update linear delay line

}

The spectra of double-sided periodic signals consist of sharp spectral lines at the
harmonics, which are integral multiples of the fundamental frequency.

One-sided, or causal, periodic sequences such as the sequence (8.1.9), have comb-like
spectra, as shown in Fig. 8.1.10, with dominant peaks at the harmonics.

The spectrum of (8.1.9) can be obtained by setting z = ejω = e2πjf/fs in the generat-
ing transfer function (8.1.10). Using the trigonometric identity
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Fig. 8.1.10 Comb-like frequency spectrum, for D = 8.

1 − z−D = 1 − e−jωD = e−jωD/2(ejωD/2 − e−jωD/2) = 2jejωD/2 sin
(ωD

2

)
we have

|H(ω)| = |N(ω)|
|1 − e−jωD| =

|N(ω)|
2

∣∣∣∣sin
(ωD

2

)∣∣∣∣
or, replacing ω = 2πf/fs in terms of the physical frequency f :

|H(f)| = |N(f)|
2

∣∣∣∣∣sin
(πfD
fs

)∣∣∣∣∣
(8.1.23)

The peaks in the spectrum are due to the zeros of the denominator which vanishes
at the harmonics, that is,

sin
(πfD
fs

) = 0 ⇒ πfD
fs

= πm

with m an integer. Solving for f :

fm =mfs
D

=mf1 (8.1.24)

where we denoted the fundamental frequency by f1 = fs/D.
Because the spectrumH(f) is periodic in f with period fs, we may restrict the index

m to the D values m = 0,1, . . . ,D− 1, which keep f within the Nyquist interval [0, fs).
These harmonics correspond to the poles of H(z). Indeed, solving for the zeros of the
denominator, we have

1 − z−D = 0 ⇒ zD = 1

with the D solutions:

z = pm = ejωm, ωm = 2πfm
fs

= 2πm
D

, m = 0,1, . . . ,D− 1

Note that they are the Dth roots of unity on the unit circle.
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8.1.3 Wavetable Generators

The linear and circular buffer implementations of the direct form generator both use
(D+1)-dimensional buffers w = [w0,w1, , . . . ,wD], whereas the periodic waveform has
onlyD samples in one period: b = [b0, b1, . . . , bD−1]. As we saw, this causes the buffer
contents to recirculate periodically.

A simpler approach is to use a buffer of length D, that is, w = [w0,w1, , . . . ,wD−1]
referred to as a wavetable and store in it a copy of one period of the desired waveform.
The periodic waveform is then generated by repeatedly cycling over the wavetable with
the aid of a circular pointer p, which always points at the current output sample.

Figure 8.1.11 shows such a wavetable for the case D = 4. Also shown are the posi-
tions of the circular pointer at successive sampling instants n, and the corresponding
values of the offset index q, such that ∗p = w[q].

pp
p

p

q=0 q=3 q=2 q=1
n=0 n=1 n=2 n=3

b0 w0

b1

w1

b2w2

b3

w3

b0

b1

b2

b3

b0

b1

b2

b3

b0

b1

b2

b3

Fig. 8.1.11 Circular pointer cycles over wavetable.

As in the previous section, the waveform samples are stored in circular reverse order.
The reverse loading of the table with the D waveform samples can be done with the
following loop, initialized at p = w:

for i = 0,1, . . . ,D− 1 do:
∗p = bi
cdelay(D− 1,w,&p)

(8.1.25)

or, in terms of the offset index q, initialized at q = 0:

for i = 0,1, . . . ,D− 1 do:
w[q]= bi
cdelay2(D− 1,&q)

(8.1.26)

Note that the only difference with Eqs. (8.1.19) and (8.1.21) is the dimension of the
buffer w, which requires the cdelay routine to have argumentD−1 instead ofD. Upon
exit from these initialization loops, the pointer p has wrapped around once and points
again at the beginning of the buffer, p = w or q = 0. Alternatively, the initialization of
the wavetable can be done with:

for i = 0,1, . . . ,D− 1 do:
w[i]= b[(D− i)%D] (8.1.27)
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where the modulo operation is felt only at i = 0, giving in this case w[0]= b[D%D]=
b[0]. After the wavetable is loaded with the waveform samples, the circular pointer can
be made to cycle over the wavetable by successive calls to cdelay:

repeat forever :
output y = ∗p
cdelay(D− 1,w,&p)

(8.1.28)

Each call to cdelay circularly decrements the pointer p to point to the next entry in
the wavetable. In terms of the offset index q, we have similarly:

repeat forever :
output y = w[q]
cdelay2(D− 1,&q)

(8.1.29)

Because the waveform was loaded in reverse order, decrementing the pointer will
generate the waveform in forward order, as shown in Fig. 8.1.11.

Traditionally in the computer music literature, the wavetable is loaded in forward
order, that is, w[i]= b[i], i = 0,1, . . . ,D − 1 and the circular pointer is incremented
circularly [94,95]. In signal processing language, this corresponds to time advance in-
stead of time delay. We will see how to implement time advances with the help of the
generalized circular delay routine gdelay2 discussed below.

The following program segment illustrates the initialization (8.1.25) and the steady-
state operation (8.1.28):

double *b, *w, *p;

b = (double *) calloc(D, sizeof(double)); definition of b[i] is not shown

w = (double *) calloc(D, sizeof(double)); Note, w is D-dimensional

p = w; initialize circular pointer

for (i=0; i<D; i++) { initialization:

*p = b[i]; fill buffer with b[i]’s
cdelay(D-1, w, &p); decrement pointer

}

for (n=0; n<Ntot; n++) { steady state operation:

printf("%lf\n", *p); current output

cdelay(D-1, w, &p); decrement pointer

}

Often, it is desired to generate a delayed version of the periodic waveform. Instead of
loading a delayed period into a new wavetable, we can use the same wavetable, but start
cycling over it at a shifted position. For a delay ofm time units such that 0 ≤m ≤ D−1,
the starting pointer p and corresponding offset index q should be:

p = w+m, q =m (8.1.30)

To understand this, denote by b(n) the original periodic sequence of period D, and
let y(n)= b(n − m) be its delayed version by m units. The starting sample will be
y(0)= b(−m), but because of the periodicity, we have y(0)= b(−m)= b(D − m),
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which by the reverse loading of the w-buffer is equal to w[m] according to Eq. (8.1.27).
Thus, the starting sample will be y(0)= w[m], corresponding to offset q =m. A time
advance by m units can be implemented by starting at q = −m, which wraps to the
positive value q = D−m.

For example, referring to Fig. 8.1.11, starting at position m and cycling clockwise
generates the successively delayed periodic sequences:

m = 0: [b0, b1, b2, b3, b0, b1, b2, b3, b0, b1, b2, b3, . . . ]

m = 1: [b3, b0, b1, b2, b3, b0, b1, b2, b3, b0, b1, b2, . . . ]

m = 2: [b2, b3, b0, b1, b2, b3, b0, b1, b2, b3, b0, b1, . . . ]

m = 3: [b1, b2, b3, b0, b1, b2, b3, b0, b1, b2, b3, b0, . . . ]

Wavetable synthesis of periodic waveforms lies at the heart of many computer music
applications and programs, such as Music V and its descendants [94–115]. Generating a
single periodic wave is not musically very interesting. However, the generated waveform
can be subjected to further operations to create more complex and interesting sounds,
such as:

• Varying its amplitude or envelope to imitate the attack and decay of various in-
struments, or for imposing tremolo-type effects.

• Varying or modulating its frequency to imitate various effects such as vibrato,
glissando, or portamento. This also leads to the popular family of FM synthesizers.

• Sending it through linear or nonlinear, time-invariant or time-varying filtering op-
erations, generically known as waveshaping operations, which modify it further.
They can be used to create models of various instruments, such as plucked strings
or drums, or to superimpose various audio effects, such as reverb, stereo imaging,
flanging, and chorusing [108–114].

• Adding together the outputs of several wavetables with different amplitudes and
frequencies to imitate additive Fourier synthesis of various sounds.

The possibilities are endless. They have been and are actively being explored by the
computer music community.

Here, we can only present some simple examples that illustrate the usage of waveta-
bles. We begin by discussing how the frequency of the generated waveform may be
changed.

Given a wavetable of length D, the period of the generated waveform is given by
Eq. (8.1.8), TD = DT, and its fundamental frequency by

f = fs
D

(8.1.31)

The frequency f can be changed in two ways: by varying the sampling rate fs or
changing the effective length D of the basic period. Changing the sampling rate is not
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practical, especially when one is dealing with several wavetables of different frequen-
cies, although digital music synthesizers have been built based on this principle. Thus,
varyingD is of more practical interest and is the preferred approach in most music syn-
thesis programs. Replacing D by a smaller length d ≤ D will increase the fundamental
frequency to:

f = fs
d

(8.1.32)

and will decrease the period to Td = dT.
For example, if d = D/2, the effective frequency is doubled f = fs/(D/2)= 2fs/D.

ReplacingD byd = D/2 is equivalent to cycling the pointerp over a subset of the circular
buffer w consisting of every other point in the buffer. Fig. 8.1.12 shows the positions
of the pointer p at successive time instants n for the case of D = 8 and d = D/2 = 4.
Skipping every other point can be accomplished by performing two calls to cdelay2 at
each time, that is, replacing Eq. (8.1.29) by:

repeat forever :
output y = w[q]
cdelay2(D− 1,&q)
cdelay2(D− 1,&q)

(8.1.33)
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Fig. 8.1.12 Circular pointer is decremented by 2, generating a subsequence of period 4.

The two calls to cdelay2 effectively decrement the offset index q by two, that is,
q = q − 2. The generated q values will be q = 0, q = 0 − 2, which wraps modulo-8 to
q = 6, q = 6−2 = 4, q = 4−2 = 2, and so on. Thus, the generated subsequence will be
the periodic repetition of the contents of the registers [w0,w6,w4,w2], or, as shown in
Fig. 8.1.12:

[b0, b2, b4, b6, b0, b2, b4, b6, b0, b2, b4, b6, b0, b2, b4, b6, . . . ]

which repeats with period d = 4. It should be compared to the full wavetable sequence,
which repeats every D = 8 samples:

[b0, b1, b2, b3, b4, b5, b6, b7, b0, b1, b2, b3, b4, b5, b6, b7, . . . ]
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Similarly, cycling every four wavetable samples will generate the periodic subse-
quence of period d = D/4 = 8/4 = 2 and frequency f = 4fs/D:

[b0, b4, b0, b4, b0, b4, b0, b4, b0, b4, b0, b4, b0, b4, b0, b4, . . . ]

In Fig. 8.1.12, it corresponds to decrementing the pointer p or offset q by 4, that is,
q = q− 4, and can be implemented by inserting 4 calls to cdelay2 at each iteration:

repeat forever :
output y = w[q]
cdelay2(D− 1,&q)
cdelay2(D− 1,&q)
cdelay2(D− 1,&q)
cdelay2(D− 1,&q)

(8.1.34)

Rather than making multiple calls to cdelay2, we define a generalized version of
this routine, gdelay2.c, which allows for an arbitrary real-valued shift of the pointer
index q:

/* gdelay2.c - generalized circular delay with real-valued shift */

void gdelay2(D, c, q)
int D;
double c, *q; c=shift, q=offset index

{
*q -= c; decrement by c

if (*q < 0)
*q += D+1;

if (*q > D)
*q -= D+1;

}

There are two basic differences with cdelay2. First, the offset index q is allowed to
take on real values as opposed to integer values. Second, each call decrements q by the
real-valued shift c, that is, q = q − c. The reason for allowing real values will become
clear shortly. Note that cdelay2 is a special case of gdelay2 with c = 1.0. In terms of
this routine, Eqs. (8.1.33) or (8.1.34) will read as:

repeat forever :
output y = w[q]
gdelay2(D− 1, c,&q)

(8.1.35)

with c = 2 or c = 4, respectively. The successive calls to gdelay2 in Eq. (8.1.35) update
the offset q according to the iteration:

qn+1 = (qn − c)%D (8.1.36)

where mod-D is used because the dimension of the circular buffer is D. Generally, we
have the following relationship between the shift c and the sub-period d:
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c = D
d

(8.1.37)

which gives the number of times the sub-period d fits into the full period D, or,

d = D
c

(8.1.38)

which expresses d as a fraction of the full period D, or,

D = cd (8.1.39)

Combining Eqs. (8.1.32) and (8.1.38), gives for the frequency of the generated sub-
sequence:

f = fs
d

= cfs
D

(8.1.40)

or, in terms of the digital frequency in radians/sample:

ω = 2πf
fs

= 2π
d

= 2πc
D

(8.1.41)

Equivalently, given a desired frequency f and table length D, we obtain the required
value of the shift:

c = D f
fs

= DF (8.1.42)

where F = f/fs is the digital frequency in units of cycles per sample. It follows from
Eq. (8.1.42) that c is the number of cycles of the subsequence that are contained in the
D samples of the full wavetable.

So far, our discussion assumed that both the sub-length d and the shift c were
integers. Because of the constraint (8.1.39), such restriction would not allow too many
choices for c or d, and consequently for f . Therefore, c, d, and q are allowed to take on
real values in the definition of gdelay2.

To keep f within the symmetric Nyquist interval |f| ≤ fs/2, requires that c satisfy
the condition: |cfs/D| ≤ fs/2, or,

|c| ≤ D
2

⇒ −D
2

≤ c ≤ D
2

(8.1.43)

Negative values of c correspond to negative frequencies f . This is useful for intro-
ducing 180o phase shifts in waveforms. Any value of c in the range D/2 < c ≤ D is
wrapped modulo-D to the value c − D, which lies in the negative part of the Nyquist
interval (8.1.43). The wrapping c → c − D is equivalent to the frequency wrapping
f → f − fs.

As we mentioned earlier, in the computer music literature, the circular wavetable
is loaded with the waveform in forward order. Cycling over the wavetable at frequency
f = cfs/D is accomplished by incrementing the offset index q according to the iteration:
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qn+1 = (qn + c)%D (8.1.44)

Such “forward” versions can be implemented easily by the routine gdelay2 by calling
it in Eq. (8.1.35) with c replaced by −c. The wrap-around tests in gdelay2 always force
q to lie in the range 0 ≤ q < D. If q is not an integer in that range, then it cannot
be an array index that defines the output buffer sample y = w[q]. However, it can
be approximated by an integer, for example, by truncating down, or truncating up, or
rounding to the nearest integer:

i = �q� (truncating down)
j = �q+ 1�%D (truncating up)
k = �q+ 0.5�%D (rounding)

(8.1.45)

The modulo-D operation is necessary to keep the index within the circular buffer
range {0,1, . . . ,D− 1}. The returned output will be in these cases:

y = w[i] (truncating down)
y = w[j] (truncating up)
y = w[k] (rounding)

(8.1.46)

For example, in the first case, Eq. (8.1.35) will be replaced by:

repeat forever :
i = �q�
output y = w[i]
gdelay2(D− 1, c,&q)

(8.1.47)

and similarly in the other cases.
Because q lies (circularly) between the integers i and j, a more accurate output can

be obtained by linearly interpolating between the wavetable values w[i] and w[j], that
is, returning the output:

y = w[i]+(q− i)(w[j]−w[i]) (8.1.48)

The geometric meaning of Eq. (8.1.48) is depicted in Fig. 8.1.13, where y lies on the
straight line connecting w[i] and w[j]. Note that j = i + 1, except when q falls in the
last integer subdivision of the [0,D) interval, that is, whenD−1 ≤ q < D. In that case,
i = D− 1 and j = D%D = 0, and we must interpolate between the values w[D− 1] and
w[0], as shown in Fig. 8.1.13. Equation (8.1.48) correctly accounts for this case with j
computed by Eq. (8.1.45), or equivalently by j = (i+ 1)%D.

The interpolation method produces a more accurate output than the other methods,
but at the expense of increased computation. The rounding method is somewhat more
accurate than either of the truncation methods. The differences between the methods
become unimportant as the length D of the wavetable increases. In computer music
applications typical values of D are 512–32768. The nature of the approximation error
for the truncation method and the other methods has been studied in [102–104].

The generation algorithm (8.1.47) starts producing the periodic sequence at the be-
ginning of the w buffer, that is, with q = 0. If a delayed version of the subsequence
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Fig. 8.1.13 Linear interpolation between two successive buffer samples.

is needed, we may shift the initial value of the offset q to a new starting position as in
Eq. (8.1.30). However, because q is measured in multiples of the shift c, we must replace
Eq. (8.1.30) by

q =mc =mDF (8.1.49)

Because gdelay2 decrements q, we can obtain Eq. (8.1.49) by starting with q = 0
and calling gdelay2 once with the opposite argument :

gdelay2(D− 1,−mc,&q) (8.1.50)

This expression implements both time delays (m > 0) and time advances (m < 0).
Becausemcmust be in the interval |mc| < D/2, it follows that the allowed values ofm
are in the interval |m| < d/2. After this call, the generation algorithm Eq. (8.1.47) may
be started with the desired value of the shift c.

Example 8.1.2: The eight waveform samples:

b = [b0, b1, b2, b3, b4, b5, b6, b7]

are stored in (circular) reverse order in the 8-dimensional circular wavetable:

w = [w0,w1,w2,w3,w4,w5,w6,w7]

It is desired to generate a periodic subsequence of period d = 3. Determine this sub-
sequence when the output is obtained by the four methods of: (a) truncating down, (b)
truncating up, (c) rounding, and (d) linear interpolation.

Solution: Here, D = 8 so that the shift is c = D/d = 8/3, which is not an integer. There are
d = 3 possible values of the offset index q obtained by iterating Eq. (8.1.36):

q0 = 0

q1 = q0 − c = −8

3
≡ 8 − 8

3
= 16

3
= 5

1

3

q2 = q1 − c = 16

3
− 8

3
= 8

3
= 2

2

3

The next q will be q3 = q2 − c = (8/3)−(8/3)= 0, and the above three values will
be repeated. Fig. 8.1.14 shows the relative locations of the three q’s with respect to the
circular buffer indices.
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Fig. 8.1.14 Successive positions of q when d = 3.

The three q’s can be obtained quickly by dividing the circular buffer D into d equal parts
and counting clockwise. The direction of the three q-arrows in Fig. 8.1.14 are at relative
angles ω as given by Eq. (8.1.41); here, ω = 2π/3.

It is seen that q1 points between the buffer samples w[5] and w[6]. If we truncate down,
then, we will output the content of w[5]= b3, and if we truncate up, w[6]= b2. Because,
q1 points nearer to w[5] than to w[6], we will output w[5]= b3, if we round to the
nearest buffer location. If we interpolate linearly between w[5] and w[6], we will output
the value:

y = w[5]+(q1 − i1)(w[6]−w[5])= b3 + 1

3
(b2 − b3)= 1

3
b2 + 2

3
b3

where i1 = �q1� = 5, and q1 − i1 = 1/3. Similarly, the next offset index q2 points between
w[2] and w[3]. If we truncate down, we will output w[2]= b6, and if we truncate up,
w[3]= b5. If we round, we will output w[3]= b5 because q2 points closer to w[3] than
to w[2]. And, if we interpolate, we will output the value:

y = w[2]+(q2 − i2)(w[3]−w[2])= b6 + 2

3
(b5 − b6)= 2

3
b5 + 1

3
b6

where i2 = �q2� = 2, and q2 − i2 = 2/3.

To summarize, at successive time instants n = 0,1,2, . . . , the offset q cycles repeatedly
over the three values {q0, q1, q2}. The output associated with each q depends on the cho-
sen approximation method. For the four methods, we will generate the following period-3
sequences:

[b0, b3, b6, b0, b3, b6, . . . ] (truncate down)
[b0, b2, b5, b0, b2, b5, . . . ] (truncate up)
[b0, b3, b5, b0, b3, b5, . . . ] (round)

and if we interpolate:

[b0,
1

3
b2 + 2

3
b3,

2

3
b5 + 1

3
b6, b0,

1

3
b2 + 2

3
b3,

2

3
b5 + 1

3
b6, . . . ]

Had we used the computer music convention of forward loading the circular buffer and
incrementing q according to Eq. (8.1.44), we would find that the down and up truncated
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sequences reverse roles, that is, the down-truncated sequence would be our up-truncated
one. 	


Example 8.1.3: Repeat Example 8.1.2 when the subsequence has period d = 3, but with an
initial delay of m = 1/2 samples.

Solution: The desired delay by m samples (in units of c) can be implemented by an initial call
to gdelay2, with an effective negative shift of −mc as in Eq. (8.1.50). This initializes the
offset index by shifting it from q0 = 0 to

q0 =mc = 1

2
· 8

3
= 4

3

The other two q’s are obtained as in Example 8.1.2:

q1 = q0 − c = 4

3
− 8

3
= −4

3
≡ 8 − 4

3
= 20

3
= 6

2

3

q2 = q1 − c = 20

3
− 8

3
= 4

The threeq’s are depicted in Fig. 8.1.15. The relative angle between theq-arrows is stillω =
2πc/D, but the initial arrow for q0 is displaced by an angle ω0 = 2πm/d = 2π(mc)/D
with respect to the horizontal axis. The original q’s are shown by the dashed arrows. Note
that the delay bym = 1/2 sample in units of c, rotates all the q’s by half the original angle
of 2π/d = 2π/3, that is, by π/3.

w0

q0

mc = 4/3

q1

q2 w4

w5

w6

w7

w2
w3 w1

b0

b7

b6
b5

b4

b3 b2

b1

Fig. 8.1.15 Successive positions of q with d = 3 and delay m = 1/2.

Down-truncation gives the following integer values for the q’s and corresponding buffer
entries:

[q0, q1, q2]= [1,6,4][
w[1],w[6],w[4]

] = [b7, b2, b4]

Up-truncation gives:

[q0, q1, q2]= [2,7,4][
w[2],w[7],w[4]

] = [b6, b1, b4]
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For the rounding case, we have

[q0, q1, q2]= [1,7,4][
w[1],w[7],w[4]

] = [b7, b1, b4]

For the linear interpolation case, we have the outputs:

1 < q0 < 2 ⇒ y0 = w[1]+(q0 − 1)(w[2]−w[1])= 1

3
b6 + 2

3
b7

6 < q1 < 7 ⇒ y1 = w[6]+(q1 − 6)(w[7]−w[6])= 2

3
b1 + 1

3
b2

q2 = 4 ⇒ y2 = w[4]= b4

Thus, depending on the output method, the following period-3 delayed subsequences will
be generated:

[b7, b2, b4, b7, b2, b4, . . . ] (truncate down)
[b6, b1, b4, b6, b1, b4, . . . ] (truncate up)
[b7, b1, b4, b7, b1, b4, . . . ] (round)
[y0, y1, y2, y0, y1, y2, . . . ] (interpolate)

Thus, non-integer delays can be implemented easily. 	


The purpose of these examples was to show the mechanisms of producing subse-
quences of different periods from a fixed wavetable of a given length D.

The generation algorithm of the truncation method given in Eq. (8.1.47), as well as
the algorithms of the rounding and interpolation methods, can be programmed easily
with the help of the routine gdelay2. To this end, we rewrite Eq. (8.1.47) in the following
way:

repeat forever :
i = �q�
output y = Aw[i]
gdelay2(D− 1,DF,&q)

(8.1.51)

where we introduced an amplitude scale factor A and expressed the shift c = DF in
terms of the digital frequency F = f/fs.

WithA and F as inputs to the algorithm, we can control the amplitude and frequency
of the generated waveform. The following routine wavgen.c is an implementation of
Eq. (8.1.51):

/* wavgen.c - wavetable generator (truncation method) */

void gdelay2();

double wavgen(D, w, A, F, q) usage: y = wavgen(D, w, A, F, &q);

int D; D = wavetable length

double *w, A, F, *q; A = amplitude, F = frequency, q = offset index

{
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double y;
int i;

i = (int) (*q); truncate down

y = A * w[i];

gdelay2(D-1, D*F, q); shift c = DF

return y;
}

The following routines wavgenr and wavgeni are implementations of the round-
ing and linear interpolation generator methods of Eqs. (8.1.46) and (8.1.48), with added
amplitude and frequency control:

/* wavgenr.c - wavetable generator (rounding method) */

void gdelay2();

double wavgenr(D, w, A, F, q) usage: y = wavgenr(D, w, A, F, &q);

int D; D = wavetable length

double *w, A, F, *q; A = amplitude, F = frequency, q = offset index

{
double y;
int k;

k = (int) (*q + 0.5); round

y = A * w[k];

gdelay2(D-1, D*F, q); shift c = DF

return y;
}

/* wavgeni.c - wavetable generator (interpolation method) */

void gdelay2();

double wavgeni(D, w, A, F, q) usage: y = wavgeni(D, w, A, F, &q);

int D; D = wavetable length

double *w, A, F, *q; A = amplitude, F = frequency, q = offset index

{
double y;
int i, j;

i = (int) *q; interpolate between w[i], w[j]
j = (i + 1) % D;

y = A * (w[i] + (*q - i) * (w[j] - w[i]));

gdelay2(D-1, D*F, q); shift c = DF

return y;
}
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In computer music, such routines are known as wavetable oscillators [94,95]. They
are the workhorses of many digital music synthesis algorithms. Our C routines are
modeled after [95]. Figure 8.1.16 depicts such an oscillator in computer music notation.

A
y(n)

F

amp

freq
out

Fig. 8.1.16 Wavetable generator with amplitude and frequency control.

The amplitude and frequency inputs A and F do not have to be constant in time—
they can be changing from one sampling instant to the next. In general, the generated
signal will be given by:

y(n)= wavgen(D,w,A(n), F(n),&q) (8.1.52)

for n = 0,1,2, . . . , where A(n) and F(n) can themselves be generated as the outputs
of other oscillators to provide amplitude and frequency modulation.

The length-D wavetable w can be filled with any waveform, such as sinusoids, linear
combination of sinusoids of different harmonics, square, triangular, trapezoidal waves,
and so on, as long as one complete period of the desired waveform fits into the full
wavetable. Figure 8.1.17 shows one period of a square, triangular, and trapezoidal wave.

D

i

0

1

D1 D2

D

i

0

1

D1

D1D

i

0

1

D1

D1

Fig. 8.1.17 Square, triangular, and trapezoidal waveforms.

The following C functions, sine, square, and trapez can be used to fill wavetables
with such basic waveforms.

/* sine.c - sine wavetable of length D */

#include <math.h>

double sine(D, i)
int D, i;
{

double pi = 4 * atan(1.0);

return sin(2 * pi * i / D);
}

/* square.c - square wavetable of length D, with D1 ones */

double square(D1, i)
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int D1, i;
{

if (i < D1)
return 1;

else
return 0;

}

/* trapez.c - trapezoidal wavetable: D1 rising, D2 steady */

double trapez(D, D1, D2, i)
int D, D1, D2, i;
{

if (i < D1)
return i/(double) D1;

else
if (i < D1+D2)

return 1;
else

return (D - i)/(double) (D - D1 - D2);
}

To illustrate the usage of the wavetable generator routines, consider a wavetable w
of length D = 1000 and fill it with one period of a sinusoid. The following program
segment illustrates the reverse loading of the table using the function sine, and the
generation of five sinusoids, shown in Fig. 8.1.18. The same wavetable is used by all
sinusoids, but each is assigned its own offset index q that cycles around the wavetable
according to a given frequency.

double *w;
w = (double *) calloc(D, sizeof(double)); use: D = 1000

q1 = q2 = q3 = q4 = q5 = 0; initialize qs

for (i=0; i<D; i++) { load wavetable with a sinusoid

w[q1] = sine(D, i); may need the cast w[(int)q1]

gdelay2(D-1, 1.0, &q1);
}

gdelay2(D-1, -m*D*F2, &q4); reset q4 =mDF2

gdelay2(D-1, m*D*F2, &q5); reset q5 = −mDF2

for (n=0; n<Ntot; n++) { use: A = 1, Ntot = 1000

y1[n] = wavgen(D, w, A, F1, &q1); use: F1 = 1.0/D
y2[n] = wavgen(D, w, A, F2, &q2); use: F2 = 5.0/D
y3[n] = wavgen(D, w, A, F3, &q3); use: F3 = 10.5/D
y4[n] = wavgen(D, w, A, F4, &q4); use: F4 = F2

y5[n] = wavgen(D, w, A, F5, &q5); use: F5 = F2

}

The signal y1(n) is the sinusoid stored in the wavetable that becomes the source of
all the other sinusoids. The first for-loop uses the offset index q1 to load the wavetable.
Upon exit from this loop, q1 has cycled back to q1 = 0. The frequency of y1(n) is one
cycle in D samples, or,
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Fig. 8.1.18 Waveforms generated from a common wavetable.

F1 = 1

D
= 0.001 cycles/sample

and the corresponding shift is c1 = DF1 = 1. The signal y2(n) is generated from the
same wavetable, but with frequency:

F2 = 5

D
= 0.005 cycles/sample

which corresponds to c2 = DF2 = 5 cycles in D samples. The wavetable is cycled over
every five of its entries. The signal y3(n) is also generated from the same wavetable,
but has frequency:

F3 = 10.5
D

= 0.0105 cycles/sample

which gives c3 = DF3 = 10.5, a non-integer value. The ten and a half cycles contained
in the D samples can be seen in the figure. The wavetable is cycled over every 10.5 of
its entries, and the output is obtained by the truncation method.

Finally, the last two signals y4(n) and y5(n) are the time-delayed and time-advanced
versions of y2(n) by m = 25 samples, that is, y4(n)= y2(n− 25) and y5(n)= y2(n+
25). They are right- and left-shifted relative to y2(n) by one-eighth cycle, as can be seen
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in Fig. 8.1.18, because each F2-cycle contains 1/F2 = 200 samples and thereforem = 25
corresponds to a (1/8) of a cycle.

Because they have frequency F2 and wavetable shift c2 = DF2 = 5, their effective
starting offsets will be q4 = mc2 = 25×5 = 125, and q5 = −mc2 = −125 (or, rather
q5 = 1000−125 = 855). These initial q-values are obtained by the two calls to gdelay2
preceding the generation loop, with arguments ∓mc2.

More complex waveforms can be generated by using several wavetables in combina-
tion. For example, Fig. 8.1.19 connects two wavetables together to implement amplitude
modulation.

A(n)

y(n)

F

Aenv wenv
wFenv

Fig. 8.1.19 Amplitude modulation.

The first generator wenv produces a time-varying envelope A(n) that becomes the
amplitude to the second generator whose wavetable w stores a copy of the desired
signal, such as a note from an instrument. The envelope shape stored in the wavetable
wenv could be triangular or trapezoidal, imitating instrument attack and decay. If we
denote the main signal stored in w by x(n), the configuration of Fig. 8.1.19 generates
the modulated signal:

y(n)= A(n)x(n)

The amplitude input to the envelope generatorAenv is a constant. Its frequency Fenv

is typically chosen such that the envelope cycles only over one cycle during the duration
Ntot of the signal, that is,

Fenv = 1

Ntot
(8.1.53)

As an example, consider the generation of a sinusoidal note of frequency F = 0.01
cycles/sample:

x(n)= sin(2πFn), n = 0,1, . . . ,Ntot − 1

with duration ofNtot = 1000 samples. The signal x(n) is to be modulated by a triangular
envelope whose attack portion is one-quarter its duration.

At a 44 kHz sampling rate, the frequency F would correspond to the 440 Hz note,
A440. Such a triangular envelope would be characteristic of a piano. Using wavetables
of durationD = 1000, the following program segment illustrates the loading (in reverse
order) of the wavetables with the appropriate waveforms, followed by the generation of
the triangular envelopeA(n) and the modulated sinusoid y(n). The truncation version,
wavgen, of the generator routines was used:
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double *w, *wenv, q, qenv;
w = (double *) calloc(D, sizeof(double)); allocate wavetables

wenv = (double *) calloc(D, sizeof(double)); use: D = 1000

q = qenv = 0; initialize offsets

for (i=0; i<D; i++) { load wavetables:

w[q] = sine(D, i); may need the cast w[(int)q]

wenv[qenv] = trapez(D, D/4, 0, i); triangular envelope

gdelay2(D-1, 1.0, &q); or, cdelay2(D-1, &q);

gdelay2(D-1, 1.0, &qenv);
}

use: Ntot = 1000 or 2000

Fenv = 1.0 / Ntot; envelope frequency

for (n=0; n<Ntot; n++) {
A[n] = wavgen(D, wenv, Aenv, Fenv, &qenv); use: Aenv = 1.0
y[n] = wavgen(D, w, A[n], F, &q); use: F = 0.01

}

Figure 8.1.20 shows the two casesNtot = 1000,2000. BecauseF = 0.01 cycles/sample,
there areFNtot cycles of the sinusoid in the duration ofNtot, that is, FNtot = 0.01×1000 =
10 cycles in the first case, and FNtot = 0.01×2000 = 20 cycles in the second. For visual
reference, the graphs also plot the triangular envelope A(n) and its negative, −A(n).

Fig. 8.1.20 Triangularly modulated sinusoid.

The triangular wave was generated from the trapezoidal function by setting D1 =
D/4 and D2 = 0. For both values of Ntot, the triangular envelope cycles only once,
because of the choice (8.1.53) of its frequency. Note that the offset shift c corresponding
to the frequency F will be c = DF = 1000×0.01 = 10, whereas the shift for the envelope
wavetable will be cenv = DFenv = D/Ntot = 1 or 0.5 in the two cases.

Figure 8.1.21 shows another example, where the envelope signal was chosen to be
varying sinusoidally about a constant value:

A(n)= 1 + 0.25 cos(2πFenvn)

so that the generated waveform will be:



8.1. DIGITAL WAVEFORM GENERATORS 347

Fig. 8.1.21 Sinusoidally modulated sinusoid.

y(n)= A(n)x(n)= (
1 + 0.25 cos(2πFenvn)

)
sin(2πFn)

The envelope frequency was chosen to be Fenv = 2/Ntot for the first graph and
Fenv = 3.5/Ntot for the second. These choices correspond to 2 and 3.5 envelope cycles
in Ntot samples. With these values of Fenv, the generation part for this example was
carried out by exactly the same for-loop as above. The initial loading of the wavetables
was carried out by:

q = qenv = 0; initialize offsets

for (i=0; i<D; i++) { load wavetables

w[q] = sine(D, i); sinusoidal signal

wenv[qenv] = 1 + 0.25 * sine(D, i); sinusoidal envelope

gdelay2(D-1, 1.0, &q); or, cdelay2(D-1, &q);

gdelay2(D-1, 1.0, &qenv);
}

In addition to amplitude modulation, we may introduce frequency modulation into
the generated waveform. Figure 8.1.22 shows this case, where the first generator pro-
duces a periodic output with amplitudeAm and frequency Fm which is added to a carrier
frequency Fc and the result becomes the frequency input to the second generator. For
example, using a sinusoidal wavetable wm will produce the frequency:

F(n)= Fc +Am sin(2πFmn) (8.1.54)

so that if the signal generator w is a unit-amplitude sinusoid, then the modulated output
will be:

y(n)= sin
(
2πF(n)n

)
(8.1.55)

The following program segment illustrates the generation of four types of frequency
modulated waveforms, shown in Fig. 8.1.23. The four cases can be obtained by uncom-
menting the applicable statements:
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A

y(n)

F(n)
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wm

w

Fm

Fig. 8.1.22 Frequency modulation.

double *w, *wm;
w = (double *) calloc(D, sizeof(double));
wm = (double *) calloc(D, sizeof(double));

q = qm = 0;

for (i=0; i<D; i++) { load wavetables

w[q] = sine(D, i); signals: y1(n), y2(n), y3(n)
/* w[q] = square(D/2, i); */ signal: y4(n)

gdelay2(D-1, 1.0, &q);

wm[qm] = sine(D, i); signal: y1(n)
/* wm[qm] = 2 * square(D/2, i) - 1; */ signal: y2(n)
/* wm[qm] = trapez(D, D, 0, i); */ signals: y3(n), y4(n)

gdelay2(D-1, 1.0, &qm);
}

for (n=0; n<Ntot; n++) { use: Ntot = 1000

F[n] = Fc + wavgen(D, wm, Am, Fm, &qm);
y[n] = wavgen(D, w, A, F[n], &q); use: A = 1

}

The lengths of the two wavetables w and wm wereD = 1000 and the signal duration
Ntot = 1000. The signal y1(n) was a frequency modulated sinusoid of the form of
Eq. (8.1.55) with signal parameters:

Fc = 0.02, Am = 0.5Fc, Fm = 0.003

It might be thought of as a vibrato effect. The modulation frequency has FmNtot =
3 cycles in the Ntot samples. The frequency F(n) rises and falls between the limits
Fc − Am ≤ F(n)≤ Fc + Am, or 0.5Fc ≤ F(n)≤ 1.5Fc. The quantity F(n)/Fc is also
plotted in order to help visualize the effect of increasing and decreasing frequency.

The signal y2(n) is a sinusoid whose frequency is modulated by a square wave that
switches between the values Fc + Am and Fc − Am, where again Am = 0.5Fc. The
modulating square wave has frequency of 3 cycles in 1000 samples or Fm = 0.003.
Note how the modulated signal y2(n) switches frequency more abruptly than y1(n).

The signal y3(n) is a sinusoid whose frequency is linearly swept between the values
Fc ≤ F(n)≤ Fc +Am, where here Am = Fc so that F(n) doubles. It might be thought
of as a portamento effect. The sawtooth generator was implemented with the function
trapez, with arguments D1 = D and D2 = 0. Its frequency was chosen to be 2 cycles
in 1000 samples, or Fm = 0.002.
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Fig. 8.1.23 Frequency modulated waveforms.

Finally, the signal y4(n) is a square wave, generated by square with D1 = D/2,
whose frequency is linearly swept between Fc and 2Fc with a modulation frequency of
2 cycles in 1000 samples, or Fm = 0.002.

Complex waveforms with rich sounds can be generated by combining amplitude
and frequency modulation, as well as introducing such modulations on more than one
level, for example, amplitude and/or frequency modulation of the amplitude generator
in which Aenv and Fenv are themselves modulated by a third wavetable generator, and
so on.

8.2 Digital Audio Effects

Audio effects, such as delay, echo, reverberation, comb filtering, flanging, chorusing,
pitch shifting, stereo imaging, distortion, compression, expansion, noise gating, and
equalization, are indispensable in music production and performance [115–151]. Some
are also available for home and car audio systems.

Most of these effects are implemented using digital signal processors, which may
reside in separate modules or may be built into keyboard workstations and tone gener-
ators. A typical audio effects signal processor is shown in Fig. 8.2.1.

The processor takes in the “dry” analog input, produced by an instrument such as
a keyboard or previously recorded on some medium, and samples it at an appropriate



350 8. SIGNAL PROCESSING APPLICATIONS
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Fig. 8.2.1 Audio effects signal processor.

audio rate, such as 44.1 kHz (or less, depending on the effect). The sampled audio
signal is then subjected to a DSP effects algorithm and the resulting processed signal is
reconstructed into analog form and sent on to the next unit in the audio chain, such as
a speaker system, a recording channel, a mixer, or another effects processor.

In all-digital recording systems, the sampling/reconstruction parts can be eliminated
and the original audio input can remain in digitized form throughout the successive
processing stages that subject it to various DSP effects or mix it with similarly processed
inputs from other recording tracks.

In this section, we discuss some basic effects, such as delays, echoes, flanging, cho-
rusing, reverberation, and dynamics processors. The design of equalization filters will
be discussed in Chapters 10 and 11.

8.2.1 Delays, Echoes, and Comb Filters

Perhaps the most basic of all effects is that of time delay because it is used as the building
block of more complicated effects such as reverb.

In a listening space such as a room or concert hall, the sound waves arriving at our
ears consist of the direct sound from the sound source as well as the waves reflected
off the walls and objects in the room, arriving with various amounts of time delay and
attenuation.

Repeated multiple reflections result in the reverberation characteristics of the lis-
tening space that we usually associate with a room, hall, cathedral, and so on.

A single reflection or echo of a signal can be implemented by the following filter,
which adds to the direct signal an attenuated and delayed copy of itself:

y(n)= x(n)+ax(n−D) (echo filter) (8.2.1)

The delay D represents the round-trip travel time from the source to a reflecting
wall and the coefficient a is a measure of the reflection and propagation losses, so that
|a| ≤ 1. The transfer function and impulse response of this filter are:

H(z)= 1 + az−D, h(n)= δ(n)+aδ(n−D) (8.2.2)

Its block diagram realization is shown in Fig. 8.2.2. The frequency response is ob-
tained from Eq. (8.2.2) by setting z = ejω:

H(ω)= 1 + ae−jωD, |H(ω)| =
√

1 + 2a cos(ωD)+a2 (8.2.3)
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Fig. 8.2.2 Digital echo processor.

Such a filter acts as an FIR comb filter whose frequency response exhibits peaks at
multiples of the fundamental frequency f1 = fs/D. The zeros of the transfer function
H(z) are the solutions of the equation (assuming 0 < a ≤ 1):

1 + az−D = 0 ⇒ zk = ρeπj(2k+1)/D, k = 0,1, . . . ,D− 1 (8.2.4)

where ρ = a1/D. The magnitude response and the zero pattern are shown in Fig. 8.2.3,
for the caseD = 8. Ifa = 1, thenρ = 1, and the zeros lie on the unit circle corresponding
to exact zeros in the frequency response.

2π
D

2π/D
π/D

4π
D

6π
D

2π
ω

0 . . .

1+a

1-a

|H(ω)|

ρ

=zeros
unit
circle

Fig. 8.2.3 FIR comb filter, with peaks at ωk = 2πk/D, k = 0,1, . . . ,D− 1.

At the dip frequencies ωk = (2k + 1)π/D, we have ejωkD = ejπ = −1 giving
H(ωk)= 1 − a. Between the dip frequencies, that is, at ωk = 2πk/D, we have peaks
with value H(ωk)= 1 + a, because ejωkD = 1. In units of Hz, these peak frequencies
are:

fk = kfsD = kf1 , k = 0,1, . . . ,D− 1 (8.2.5)

The sample processing algorithm for this filter is given below, implemented with
both a linear and circular delay line. As we mentioned in Chapter 4, for audio signals
the delay D can be very large and therefore the circular delay line is more efficient.
Denoting the (D+1)-dimensional delay-line buffer by w = [w0,w1, . . . ,wD], we have:

for each input sample x do:
y = x+ awD
w0 = x
delay(D,w)

for each input sample x do:
sD = tap(D,w, p,D)
y = x+ asD
∗p = x
cdelay(D,w,&p)
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Note that the quantitieswD in the linear case and sD = tap(D,w, p,D) in the circular
one represent theDth output of the tapped delay line, that is, the signal x(n−D). Comb
filters, like the above echo processor, arise whenever the direct signal is mixed with its
delayed replicas. For example, instead of adding the echo we can subtract it, obtaining
(with a > 0):

y(n)= x(n)−ax(n−D) (8.2.6)

The transfer function and frequency response are now

H(z)= 1 − az−D, H(ω)= 1 − ae−jωD (8.2.7)

having peaks at ωk = (2k+ 1)π/D and dips at ωk = 2πk/D, k = 0,1, . . . ,D− 1. The
magnitude response and zero pattern are shown in Fig. 8.2.4, for D = 8. Similarly, if we
add three successive echoes, we obtain the filter:

y(n)= x(n)+ax(n−D)+a2x(n− 2D)+a3x(n− 3D) (8.2.8)

Using the finite geometric series, we can express the transfer function as

H(z)= 1 + az−D + a2z−2D + a3z−3D = 1 − a4z−4D

1 − az−D (8.2.9)

2π
D

2π/D

4π
D

6π
D

2π
ω

0 . . .

1+a

1-a

|H(ω)|

ρ

=zeros
unit
circle

Fig. 8.2.4 Comb filter of Eq. (8.2.6), with dips at ωk = 2πk/D, k = 0,1, . . . ,D− 1.

It follows that H(z) vanishes at the zeros of the numerator which are not zeros of
the denominator, that is,

z4D = a4, but zD �= a

or, equivalently, at

zk = ρe2πjk/4D, k = 0,1, . . . ,4D− 1, but k not a multiple of 4

The filter has peaks at frequencies for which k is a multiple of 4, indeed, if k = 4m,
m = 0,1, . . . ,D− 1, then

ωk = 2πk
4D

= 2π(4m)
4D

= 2πm
D

⇒ ejωkD = 1

and the filter’s response takes on the maximum value H(ωk)= 1 + a+ a2 + a3.
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Fig. 8.2.5 Comb filter of Eq. (8.2.8), with peaks at ωk = 2πk/D, k = 0,1, . . . ,D− 1.

The magnitude response and zero pattern are shown in Fig. 8.2.5, for D = 8. The
dips occur at the 32nd roots of unity, except at the 8th roots of unity at which there are
peaks.

Adding up an infinite number of successive echoes imitates the reverberating nature
of a room and gives rise to an IIR comb filter :

y(n)= x(n)+ax(n−D)+a2x(n− 2D)+· · · (8.2.10)

which has impulse response:

h(n)= δ(n)+aδ(n−D)+a2δ(n− 2D)+· · · (8.2.11)

and transfer function:

H(z)= 1 + az−D + a2z−2D + · · ·

which can be summed by the geometric series into the form:

H(z)= 1

1 − az−D (plain reverberator) (8.2.12)

The I/O equation (8.2.10) can then be recast recursively as

y(n)= ay(n−D)+x(n) (8.2.13)

A block diagram realization is shown in Fig. 8.2.6. The feedback delay causes a unit
impulse input to reverberate at multiples of D, that is, at n = 0,D,2D, . . . . Such simple
recursive comb filters form the elementary building blocks of more complicated reverb
processors, and will be discussed further in Section 8.2.3.

The transfer function (8.2.12) has poles at pk = ρejωk , k = 0,1, . . . ,D − 1, where
ωk = 2πk/D and ρ = a1/D. They are spaced equally around the circle of radius ρ,
as shown in Fig. 8.2.7, for D = 8. At the pole frequencies ωk, the frequency response
develops peaks, just like the FIR comb of Fig. 8.2.3. Here, the sharpness of the peaks
depends on how close to the unit circle the radius ρ is.

The repetition of the echoes every D samples corresponds to the fundamental repe-
tition frequency of f1 = fs/D Hz, orω1 = 2π/D. In music performance, it is sometimes
desired to lock the frequency of the decaying echoes to some external frequency, such
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Fig. 8.2.6 Plain reverberator.
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Fig. 8.2.7 IIR comb filter, with peaks at ωk = 2πk/D, k = 0,1, . . . ,D− 1.

as a drum beat. If f1 is known, the proper value of D can be found from D = fs/f1, or
the delay in seconds TD = DT = D/fs = 1/f1.

The sample processing algorithm for the realization of Fig. 8.2.6 can be given in
terms of a linear or circular delay-line buffer, as follows:

for each input sample x do:
y = x+ awD
w0 = y
delay(D,w)

for each input sample x do:
sD = tap(D,w, p,D)
y = x+ asD
∗p = y
cdelay(D,w,&p)

(8.2.14)

Note that, at each time instant, the output of the delay line is available and can be
used to compute the filter’s output y. The delay line cannot be updated until after y
has been computed and fed back into the input of the delay. The quantities wD and sD
represent the Dth tap output of the delay, that is, the signal y(n−D).

The effective time constant for the filter response to decay below a certain level,
say ε, can be obtained following the discussion of Section 6.3.2. At time n = mD the
impulse response has dropped to ρn = ρmD = am; therefore, the effective time constant
neff =meffD will be such that

ρneff = ameff = ε

which can be solved for meff and neff:

neff =meffD = ln ε
lna

D = ln ε
lnρ

(8.2.15)
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and in seconds:

τeff = neffT = ln ε
lna

TD (8.2.16)

where T is the sampling interval, such that fs = 1/T, and TD = DT is the delayD in sec-
onds. The so-called 60 dB reverberation time constant has ε = 10−3, which corresponds
to a 60 dB attenuation of the impulse response.

8.2.2 Flanging, Chorusing, and Phasing

The value of the delayD in samples, or in seconds TD = DT, can have a drastic effect on
the perceived sound [119,120,128]. For example, if the delay is greater than about 100
milliseconds in the echo processor (8.2.1), the delayed signal can be heard as a quick
repetition, a “slap”. If the delay is less than about 10 msec, the echo blends with the
direct sound and because only certain frequencies are emphasized by the comb filter,
the resulting sound may have a hollow quality in it.

Delays can also be used to alter the stereo image of the sound source and are indis-
pensable tools in stereo mixing. For example, a delay of a few milliseconds applied to
one of the speakers can cause shifting and spreading of the stereo image. Similarly, a
mono signal applied to two speakers with such a small time delay will be perceived in
stereo.

More interesting audio effects, such as flanging and chorusing, can be created by
allowing the delay D to vary in time [119,120,128]. For example, Eq. (8.2.1) may be
replaced by:

y(n)= x(n)+ax(n− d(n)) (flanging processor) (8.2.17)

A flanging effect can be created by periodically varying the delay d(n) between 0 and
10 msec with a low frequency such as 1 Hz. For example, a delay varying sinusoidally
between the limits 0 ≤ d(n)≤ D will be:

d(n)= D
2

(
1 − cos(2πFdn)

)
(8.2.18)

where Fd is a low frequency, in units of [cycles/sample].
Its realization is shown in Fig. 8.2.8. The peaks of the frequency response of the

resulting time-varying comb filter, occurring at multiples of fs/d, and its notches at
odd multiples of fs/2d, will sweep up and down the frequency axis resulting in the
characteristic whooshing type sound called flanging. The parameter a controls the depth
of the notches. In units of [radians/sample], the notches occur at odd multiples ofπ/d.

In the early days, the flanging effect was created by playing the music piece simulta-
neously through two tape players and alternately slowing down each tape by manually
pressing the flange of the tape reel.

Because the variable delay d can take non-integer values within its range 0 ≤ d ≤ D,
the implementation of Eq. (8.2.17) requires the calculation of the output x(n − d) of
a delay line at such non-integer values. As we discussed in Section 8.1.3, this can be
accomplished easily by truncation, rounding or linear interpolation.
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Fig. 8.2.8 Flanging effect, created with a periodically varying delay d(n).

Linear interpolation is the more accurate method, and can be implemented with the
help of the following routine tapi.c, which is a generalization of the routine tap to
non-integer values of d.

/* tapi.c - interpolated tap output of a delay line */

double tap();

double tapi(D, w, p, d) usage: sd = tapi(D, w, p, d);

double *w, *p, d; d = desired non-integer delay

int D; p = circular pointer to w
{

int i, j;
double si, sj;

i = (int) d; interpolate between si and sj
j = (i+1) % (D+1); if i = D, then j = 0; otherwise, j = i+ 1

si = tap(D, w, p, i); note, si(n) = x(n− i)
sj = tap(D, w, p, j); note, sj(n) = x(n− j)

return si + (d - i) * (sj - si);
}

The input d must always be restricted to the range 0 ≤ d ≤ D. Note that if d is one
of the integers d = 0,1, . . . ,D, the routine’s output is the same as the output of tap.
The mod-(D+1) operation in the definition of j is required to keep j within the array
bounds 0 ≤ j ≤ D, and is effective only when d = D, in which case the output is the
content of the last register of the tapped delay line.

The following routine tapi2.c is a generalization of the routine tap2, which is im-
plemented in terms of the offset index q instead of the circular pointer p, such that
p = w+ q.

/* tapi2.c - interpolated tap output of a delay line */

double tap2();

double tapi2(D, w, q, d) usage: sd = tapi2(D, w, q, d);

double *w, d; d = desired non-integer delay

int D, q; q = circular offset index

{
int i, j;
double si, sj;



8.2. DIGITAL AUDIO EFFECTS 357

i = (int) d; interpolate between si and sj
j = (i+1) % (D+1); if i = D, then j = 0; otherwise, j = i+ 1

si = tap2(D, w, q, i); note, si(n) = x(n− i)
sj = tap2(D, w, q, j); note, sj(n) = x(n− j)

return si + (d - i) * (sj - si);
}

Linear interpolation should be adequate for low-frequency inputs, having maximum
frequency much less than the Nyquist frequency. For faster varying inputs, more accu-
rate interpolation methods can be used, designed by the methods of Chapter 12.

As an example illustrating the usage of tapi, consider the flanging of a plain sinu-
soidal signal of frequency F = 0.05 cycles/sample with length Ntot = 200 samples, so
that there are FNtot = 10 cycles in the 200 samples. The flanged signal is computed by

y(n)= 1

2

[
x(n)+x(n− d(n))] (8.2.19)

with d(n) given by Eq. (8.2.18), D = 20, and Fd = 0.01 cycles/sample, so that there are
FdNtot = 2 cycles in the 200 samples.

The following program segment implements the calculation of the term s(n)= x(n−
d(n)

)
and y(n). A delay-line buffer of maximal dimension D+ 1 = 21 was used:

double *w, *p;
w = (double *) calloc(D+1, sizeof(double));
p = w;

for (n=0; n<Ntot; n++) {
d = 0.5 * D * (1 - cos(2 * pi * Fd * n)); time-varying delay

x = cos(2 * pi * F * n); input x(n)
s = tapi(D, w, p, d); delay-line output x(n− d)
y = 0.5 * (x + s); filter output

*p = x; delay-line input

cdelay(D, w, &p); update delay line

}

Figure 8.2.9 shows the signals x(n), s(n)= x(n− d(n)), y(n), as well as the time-
varying delay d(n) normalized by D.

Recursive versions of flangers can also be used that are based on the all-pole comb
filter (8.2.13). The feedback delay D in Fig. 8.2.6 is replaced now by a variable delay d.
The resulting flanging effect tends to be somewhat more pronounced than in the FIR
case, because the sweeping comb peaks are sharper, as seen in Fig. 8.2.7.

Chorusing imitates the effect of a group of musicians playing the same piece simulta-
neously. The musicians are more or less synchronized with each other, except for small
variations in their strength and timing. These variations produce the chorus effect. A
digital implementation of chorusing is shown in Fig. 8.2.10, which imitates a chorus of
three musicians.

The small variations in the time delays and amplitudes can be simulated by varying
them slowly and randomly [119,120]. A low-frequency random time delay d(n) in the
interval 0 ≤ d(n)≤ D may be generated by
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Fig. 8.2.9 Flanged sinusoidal signal.
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Fig. 8.2.10 Chorus effect, with randomly varying delays and amplitudes.

d(n)= D(0.5 + v(n)) (8.2.20)

or, if the delay is to be restricted in the interval D1 ≤ d(n)< D2

d(n)= D1 + (D2 −D1)
(
0.5 + v(n)) (8.2.21)

The signal v(n) is a zero-mean low-frequency random signal varying between [−0.5,0.5).
It can be generated by the linearly interpolated generator routine ranl of Appendix B.2.
Given a desired rate of variation Fran cycles/sample for v(n), we obtain the period
Dran = 1/Fran of the generator ranl.

As an example, consider again the signal y(n) defined by Eq. (8.2.19), but with d(n)
varying according to Eq. (8.2.20). The input is the same sinusoid of frequency F = 0.05
and length Ntot = 200. The frequency of the random signal v(n) was taken to be
Fran = 0.025 cycles/sample, corresponding toNtotFran = 5 random variations in the 200
samples. The period of the periodic generator ranl was Dran = 1/Fran = 40 samples.
The same program segment applies here, but with the change:

d = D * (0.5 + ranl(Dran, u, &q, &iseed));

where the routine parameters u, q, iseed are described in Appendix B.2.
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Fig. 8.2.11 Chorusing or doubling of sinusoidal signal.

Figure 8.2.11 shows the signals x(n), s(n)= x
(
n − d(n)), y(n), as well as the

quantity d(n)/D.
Phasing or phase shifting is a popular effect among guitarists, keyboardists, and

vocalists. It is produced by passing the sound signal through a narrow notch filter and
combining a proportion of the filter’s output with the direct sound.

The frequency of the notch is then varied in a controlled manner, for example, using
a low-frequency oscillator, or manually with a foot control. The strong phase shifts that
exist around the notch frequency combine with the phases of the direct signal and cause
phase cancellations or enhancements that sweep up and down the frequency axis.

A typical overall realization of this effect is shown in Fig. 8.2.12. Multi-notch filters
can also be used. The effect is similar to flanging, except that in flanging the sweeping
notches are equally spaced along the frequency axis, whereas in phasing the notches
can be unequally spaced and independently controlled, in terms of their location and
width.

x(n) y(n)

a

variable
multi-notch
filter H(z)

direct sound

Fig. 8.2.12 Phasing effect with multi-notch filter.

The magnitude and phase responses of a typical single-notch filter are shown in
Fig. 8.2.13. Note that the phase response argH(ω) remains essentially zero, except in
the vicinity of the notch where it has rapid variations.

In Section 6.4.3, we discussed simple methods of constructing notch filters. The
basic idea was to start with the notch polynomial N(z), whose zeros are at the desired
notch frequencies, and place poles behind these zeros inside the unit circle, at some
radial distance ρ. The resulting pole/zero notch filter was thenH(z)= N(z)/N(ρ−1z).
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Such designs are simple and effective, and can be used to construct the multi-notch
filter of a phase shifter. Choosing ρ to be near unity gives very narrow notches. However,
we cannot have complete and separate control of the widths of the different notches.

π
ω

0

1

1/2

|H(ω)|2

π

π

-π

ω
0

argH(ω)

Δω

ω0

ω0

3 dB

Fig. 8.2.13 Narrow notch filter causes strong phase shifts about the notch frequency.

A design method that gives precise control over the notch frequency and its 3-dB
width is the bilinear transformation method, to be discussed in detail in Chapter 11.
Using this method, a second-order single-notch filter can be designed as follows:

H(z)= b 1 − 2 cosω0 z−1 + z−2

1 − 2b cosω0 z−1 + (2b− 1)z−2
(8.2.22)

where the filter parameter b is expressible in terms of the 3-dB width Δω (in units of
radians per sample) as follows:

b = 1

1 + tan(Δω/2)
(8.2.23)

The Q-factor of a notch filter is another way of expressing the narrowness of the
filter. It is related to the 3-dB width and notch frequency by:

Q = ω0

Δω
⇒ Δω = ω0

Q
(8.2.24)

Thus, the higher the Q, the narrower the notch. The transfer function (8.2.22) is
normalized to unity gain at DC. The basic shape of H(z) is that of Fig. 8.2.13. Because
|H(ω)| is essentially flat except in the vicinity of the notch, several such filters can be
cascaded together to create a multi-notch filter, with independently controlled notches
and widths.

As an example, consider the design of a notch filter with notch frequency ω0 =
0.35π, for the two cases of Q = 3.5 and Q = 35. The corresponding 3-dB widths are in
the two cases:

Δω = ω0

Q
= 0.35π

3.5
= 0.10π and Δω = ω0

Q
= 0.35π

35
= 0.01π

The filter coefficients are then computed from Eq. (8.2.23), giving the transfer func-
tions in the two cases:
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H(z) = 0.8633
1 − 0.9080z−1 + z−2

1 − 0.7838z−1 + 0.7265z−2
, (for Q = 3.5)

H(z) = 0.9845
1 − 0.9080z−1 + z−2

1 − 0.8939z−1 + 0.9691z−2
, (for Q = 35)

The magnitude squared and phase responses are shown in Fig. 8.2.14.

Fig. 8.2.14 Notch filters with ω0 = 0.35π, Q = 3.5 and Q = 35.

Given a time-varying notch frequency, sayω0(n), and a possibly time-varying width
Δω(n), the filter coefficients in Eq. (8.2.22) will also be time-varying. The time-domain
implementation of the filter can be derived using a particular realization, such as the
canonical realization. For example, if the notch frequency sweeps sinusoidally between
the values ω1 ±ω2 at a rate ωsweep, that is, ω0(n)= ω1 +ω2 sin(ωsweepn), then the
following sample processing algorithm will determine the filter coefficients on the fly
and use them to perform the filtering of the current input sample (here, Δω and b
remain fixed):

for each time instant n and input sample x do:
compute current notch ω0 =ω1 +ω2 sin(ωsweepn)
w0 = bx+ 2b cosω0w1 − (2b− 1)w2

y = w0 − 2 cosω0w1 +w2

w2 = w1

w1 = w0

An alternative technique for designing multi-notch phasing filters was proposed by
Smith [148]. The method uses a cascade of second-order allpass filters, each having a
phase response that looks like that of Fig. 8.2.13 and changes by 180o at the notch. If
the output of the allpass filter is added to its input, the 180o phase shifts will introduce
notches at the desired frequencies.

The three effects of flanging, chorusing, and phasing are based on simple filter struc-
tures that are changed into time-varying filters by allowing the filter coefficients or delays
to change from one sampling instant to the next.
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The subject of adaptive signal processing [27] is also based on filters with time-
varying coefficients. The time dependence of the coefficients is determined by certain
design criteria that force the filter to adjust and optimize itself with respect to its inputs.
The implementation of an adaptive algorithm is obtained by augmenting the sample
processing algorithm of the filter by adding to it the part that adjusts the filter weights
from one time instant to the next [28].

Adaptive signal processing has widespread applications, such as channel equaliza-
tion, echo cancellation, noise cancellation, adaptive antenna systems, adaptive loud-
speaker equalization, adaptive system identification and control, neural networks, and
many others.

8.2.3 Digital Reverberation

The reverberation of a listening space is typically characterized by three distinct time
periods: the direct sound, the early reflections, and the late reflections [115–151], as
illustrated in Fig. 8.2.15.

The early reflections correspond to the first few reflections off the walls of the room.
As the waves continue to bounce off the walls, their density increases and they disperse,
arriving at the listener from all directions. This is the late reflection part.

The reverberation time constant is the time it takes for the room’s impulse response
to decay by 60 dB. Typical concert halls have time constants of about 1.8–2 seconds.

early
reflections

earliest
reflection

direct
sound

direct

early

late

late
reflections

t

predelay reverberation time

Fig. 8.2.15 Reverberation impulse response of a listening space.

The sound quality of a concert hall depends on the details of its reverberation im-
pulse response, which depends on the relative locations of the sound source and the
listener. Therefore, simulating digitally the reverb characteristics of any given hall is
an almost impossible task. As a compromise, digital reverb processors attempt to sim-
ulate a typical reverberation impulse response of a hall, and give the user the option
of tweaking some of the parameters, such as the duration of the early reflections (the
predelay time), or the overall reverberation time.

Other interesting reverb effects can be accomplished digitally that are difficult or
impossible to do by analog means. For example, gated reverb is obtained by truncating
the IIR response to an FIR one, as shown in Fig. 8.2.16, with a user-selectable gate time.
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This type of reverb is very effective with snare drums [133]. Time-reversing a gated
response results in a reverse reverb that has no parallel in analog signal processing.

n n

gated reverb reverse reverb

h(n) h(n)

0 0
gate time gate time

Fig. 8.2.16 Gated and reversed reverberation responses.

The plain reverb filter shown in Fig. 8.2.6 is too simple to produce a realistic reverber-
ation response. However, as suggested by Schroeder [143], it can be used as the building
block of more realistic reverb processors that exhibit the discrete early reflections and
the diffuse late ones.

In most applications of DSP, we are interested in the steady state response of our
filters. Reverberation is an exception. Here, it is the transient response of a hall that gives
it its particular reverberation characteristics. The steady-state properties, however, do
have an effect on the overall perceived sound.

The peaks in the steady-state spectrum of the plain reverb filter of Eq. (8.2.12), shown
in Fig. 8.2.7, tend to accentuate those frequencies of the input signal that are near the
peak frequencies. To prevent such coloration of the input sound, Schroeder also pro-
posed [143] an allpass version of the plain reverberator that has a flat magnitude re-
sponse for all frequencies:

H(z)= −a+ z−D
1 − az−D (allpass reverberator) (8.2.25)

It has I/O difference equation:

y(n)= ay(n−D)−ax(n)+x(n−D) (8.2.26)

Its frequency and magnitude responses are obtained by setting z = ejω:

H(ω)= −a+ e−jωD
1 − ae−jωD ⇒ |H(ω)| = 1, for all ω (8.2.27)

The magnitude response is constant in ω because the numerator and denominator
of H(ω) have the same magnitude, as can be seen from the simple identity:

| − a+ e−jωD| =
√

1 − 2a cos(ωD)+a2 = |1 − ae−jωD|

Although its magnitude response is flat, its transient response exhibits the same ex-
ponentially decaying pattern of echoes as the plain reverb. Indeed, the impulse response
of Eq. (8.2.25) can be obtained by splittingH(z) into the partial fraction expansion form:
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H(z)= A+ B
1 − az−D (8.2.28)

where A = −1/a and B = (1 − a2)/a. Expanding the B-term into its geometric series,
gives

H(z)= (A+ B)+B(az−D + a2z−2D + a3z−3D + · · · )

and taking inverse z-transforms leads to the impulse response:

h(n)= (A+ B)δ(n)+Baδ(n−D)+Ba2δ(n− 2D)+· · · (8.2.29)

Figure 8.2.17 shows the canonical realization of Eq. (8.2.25) realized by a common
delay z−D. It also shows the parallel realization of Eq. (8.2.28), which was Schroeder’s
original realization [143].

x(n) w0(n)

wD(n)

z-D

y(n)

a

-a

a

-1/a
y(n)

z-D

(1-a2)/a

x(n)

Fig. 8.2.17 Allpass reverberator in canonical and parallel form.

The sample processing algorithm of the canonical form, implemented with linear or
circular delay lines, is given below:

for each input sample x do:
w0 = x+ awD
y = −aw0 +wD
delay(D,w)

for each input sample x do:
sD = tap(D,w, p,D)
s0 = x+ asD
y = −as0 + sD
∗p = s0

cdelay(D,w,&p)

(8.2.30)

The circular delay versions of sample processing algorithms of the plain reverber-
ator, Eq. (8.2.14), and the allpass reverberator, Eq. (8.2.30), can be implemented by the
following C routines plain.c and allpass.c:

/* plain.c - plain reverberator with circular delay line */

double tap();
void cdelay();

double plain(D, w, p, a, x) usage: y=plain(D,w,&p,a,x);

double *w, **p, a, x; p is passed by address
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int D;
{

double y, sD;

sD = tap(D, w, *p, D); Dth tap delay output

y = x + a * sD; filter output

**p = y; delay input

cdelay(D, w, p); update delay line

return y;
}

/* allpass.c - allpass reverberator with circular delay line */

double tap();
void cdelay();

double allpass(D, w, p, a, x) usage: y=allpass(D,w,&p,a,x);

double *w, **p, a, x; p is passed by address

int D;
{

double y, s0, sD;

sD = tap(D, w, *p, D); Dth tap delay output

s0 = x + a * sD;
y = -a * s0 + sD; filter output

**p = s0; delay input

cdelay(D, w, p); update delay line

return y;
}

The linear buffer w is (D+1)-dimensional, and the circular pointer p must be ini-
tialized to p = w, before the first call. The following program segment illustrates their
usage:

double *w1, *p1;
double *w2, *p2;

w1 = (double *) calloc(D+1, sizeof(double));
w2 = (double *) calloc(D+1, sizeof(double));
p1 = w1; p2 = w2;

for (n=0; n<Ntot; n++) {
y1[n] = plain(D, w1, &p1, a, x[n]);
y2[n] = allpass(D, w2, &p2, a, x[n]);
}

The plain and allpass reverberator units can be combined to form more realistic
reverb processors. Schroeder’s reverberator [143,115,119,137,127,139] consists of sev-
eral plain units connected in parallel, which are followed by allpass units in cascade, as
shown in Fig. 8.2.18. The input signal can also have a direct connection to the output,
but this is not shown in the figure.

The implementation of the sample processing reverb algorithm can be carried out
with the help of the routines plain and allpass. It is assumed that each unit has
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Fig. 8.2.18 Schroeder’s reverb processor.

its own (Di+1)-dimensional circular delay-line buffer wi and corresponding circular
pointer pi :

for each input sample x do:
x1 = plain(D1,w1,&p1, a1, x)
x2 = plain(D2,w2,&p2, a2, x)
x3 = plain(D3,w3,&p3, a3, x)
x4 = plain(D4,w4,&p4, a4, x)
x5 = b1x1 + b2x2 + b3x3 + b4x4

x6 = allpass(D5,w5,&p5, a5, x5)
y = allpass(D6,w6,&p6, a6, x6)

(8.2.31)

The different delays in the six units cause the density of the reverberating echoes
to increase, generating an impulse response that exhibits the typical early and late re-
flection characteristics. Figure 8.2.19 shows the impulse response of the above filter for
the following choices of parameters:

D1 = 29, D2 = 37, D3 = 44, D4 = 50, D5 = 27, D6 = 31

a1 = a2 = a3 = a4 = a5 = a6 = 0.75

b1 = 1, b2 = 0.9, b3 = 0.8, b4 = 0.7
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Fig. 8.2.19 Impulse response of Schroeder’s reverberator.

Another variation [137,139] of the plain reverb filter of Fig. 8.2.6 is obtained by
replacing the simple feedback multiplier a by a nontrivial lowpass filter G(z), resulting
in the transfer function:

H(z)= 1

1 − z−DG(z) (lowpass reverberator) (8.2.32)

Figure 8.2.20 shows a realization. The presence of the lowpass filter in the feedback
loop causes each echo to spread out more and more, resulting in a mellower and more
diffuse reverberation response. To see this, expand H(z) using the geometric series
formula to get:

H(z)= 1 + z−DG(z)+z−2DG2(z)+z−3DG3(z)+· · ·

giving for the impulse response h(n):

h(n)= δ(n)+g(n−D)+(g∗ g)(n− 2D)+(g∗ g∗ g)(n− 3D)+· · ·

where g(n) is the impulse response of G(z).
It follows that the first echo of the impulse response h(n) at n = D will have the

shape of impulse response g(n) the lowpass filter G(z), and will be more spread out
than just a single impulse. Similarly, the echo at n = 2D will be the impulse response
of G2(z), which is the convolution g ∗ g of g(n) with itself, and therefore it will be
even more spread out than g(n), and so on. The graphs of Fig. 8.2.22 illustrate these
remarks.

The feedback filterG(z) can be FIR or IIR. It is described, in general, by the following
Mth order transfer function, which also includes the FIR case:

G(z)= N(z)
D(z)

= b0 + b1z−1 + b2z−2 + · · · + bMz−M
1 + a1z−1 + a2z−2 + · · · + aMz−M (8.2.33)

The filtering operation by G(z) can be implemented by the canonical realization
routine can. Assuming a (D+1)-dimensional circular buffer w for the delay D, and an
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Fig. 8.2.20 Lowpass reverberator.

(M+1)-dimensional linear delay-line buffer v = [v0, v1, . . . , vM] for G(z), we can write
the sample processing algorithm of Eq. (8.2.32), as follows:

for each input sample x do:
u = can(M, a,M,b,v,wD)
y = x+ u
w0 = y
delay(D,w)

for each input sample x do:
sD = tap(D,w, p,D)
u = can(M, a,M,b,v, sD)
y = x+ u
∗p = y
cdelay(D,w,&p)

(8.2.34)

where the input to the filter G(z) is the Dth tap output wD or sD of the delay line. The
following routine lowpass.c is an implementation using a circular delay line forD, and
a linear delay line and the routine can for G(z).

/* lowpass.c - lowpass reverberator with feedback filter G(z) */

double tap(), can();
void cdelay();

double lowpass(D, w, p, M, a, b, v, x)
double *w, **p, *a, *b, *v, x; v = state vector for G(z)
int D; a,b, v are (M + 1)-dimensional

{
double y, sD;

sD = tap(D, w, *p, D); delay output is G(z) input

y = x + can(M, a, M, b, v, sD); reverb output

**p = y; delay input

cdelay(D, w, p); update delay line

return y;
}

As a simple example, consider the following first-order IIR filter [139] with transfer
function:

G(z)= b0 + b1z−1

1 + a1z−1
= 0.3 + 0.15z−1

1 − 0.5z−1
(8.2.35)

and weight vectors a = [1, a1]= [1,−0.5] and b = [b0, b1]= [0.3,0.15].



8.2. DIGITAL AUDIO EFFECTS 369

The corresponding realization of the reverb processor Eq. (8.2.32) is shown in Fig. 8.2.21.
The following program segment illustrates the usage lowpass for this example:

double *w, *p;
double v[2] = {0.0, 0.0}; G(z) states

double a[2] = {1.0, -0.5}; G(z) denominator

double b[2] = {0.3, 0.15}; G(z) numerator

w = (double *) calloc(D+1, sizeof(double));
p = w;

for (n=0; n<Ntot; n++)
y[n] = lowpass(D, w, &p, M, a, b, v, x[n]); use M = 1

x(n) y(n)

z-D

-a1b1

b0

w0(n)

v0(n)
u(n)

v1(n)

wD(n)

z-1

G(z)

Fig. 8.2.21 Lowpass reverberator, with first-order feedback filter.

Figure 8.2.22 compares the reverberation responses of the plain reverb (8.2.12), all-
pass reverb (8.2.25), and lowpass reverb (8.2.32) with the loop filter of Eq. (8.2.35), with
the parameter values D = 20 and a = 0.75.

The three inputs were an impulse, a length-5 square pulse, and a length-11 triangular
pulse, that is,

x = [1]
x = [1,1,1,1,1]
x = [0,1,2,3,4,5,4,3,2,1,0]

The duration of the inputs was chosen to be less thanD so that the generated echoes
do not overlap, except for the lowpass case in which the echoes become progressively
smoother (being successively lowpass filtered) and longer, and eventually will overlap
as they decay.

The plain and allpass reverberators have poles that are equidistant from the origin
of the unit circle at radius ρ = a1/D, and are equally spaced around the circle at the D
root-of-unity angles ωk = 2πk/D, k = 0,1, . . . ,D− 1. Therefore, all the poles have the
same transient response time constants, as given by Eq. (8.2.15).

The reflectivity and absorptivity properties of the walls and air in a real room depend
on frequency, with the higher frequencies decaying faster than the lower ones.
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Fig. 8.2.22 Comparison of plain, allpass, and lowpass reverberators.

The lowpass reverberator Eq. (8.2.32) exhibits such frequency-dependent behavior.
To understand it, consider the first-order example of Eq. (8.2.35). Its magnitude response
|G(ω)| is shown in Fig. 8.2.23.

2ππ
ω

0

|G(ω)| =poles
=zerosunit

circle
0.9

0.1
0.5-0.5

Fig. 8.2.23 Magnitude response of lowpass feedback filter G(z).

The magnitude response and pole locations of the lowpass reverberator (8.2.32) are
shown in Fig. 8.2.24. It can be seen that the poles are still approximately equally spaced
around the circle, but the high-frequency poles have shorter radii and hence shorter
time constants than the low-frequency ones.

The pole locations of Eq. (8.2.32) are obtained as the roots of the denominator, that
is, they are the solutions of
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Fig. 8.2.24 Magnitude response of lowpass reverberator, for D = 8.

zD = G(z)= N(z)
D(z)

(8.2.36)

For our example,D(z) has order one and therefore Eq. (8.2.36) will haveD+1 poles,
say, pi, i = 1,2, . . . ,D+ 1. Writing pi in its polar form pi = ρiejωi , we have

ρDi e
jωiD = G(pi)= |G(pi)|ej argG(pi)

Defining the phase delay of the ith pole by

di = −argG(pi)
ωi

we have

ρDi e
jωiD = |G(pi)|e−jωidi

which can be separated into the two equations:

ρDi = |G(pi)|, ejωi(D+di) = 1

and give

ρi = |G(pi)|1/D, ωi = 2πki
D+ di (8.2.37)

for some integer ki.
Although these are coupled equations in the unknowns ρi,ωi, we can see how the an-

glesωi will be distributed around the unit circle, near the Dth roots of unity. Similarly,
assuming ρi is near 1 and replacing G(pi)� G(ejωi)= G(ωi), we have the approxima-
tion:

ρi � |G(ωi)|1/D (8.2.38)

which by the lowpass nature of G(ω) implies that ρi will be smaller for higher frequen-
ciesωi and larger for lower ones, in qualitative agreement with the exact pole locations
shown in Fig. 8.2.24. Using Eq. (8.2.15), we find for the exact and approximate ε-level
time constants, in units of the delay time TD = TD:
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τi = ln ε
D lnρi

TD � ln ε
ln |G(ωi)| TD (8.2.39)

It follows from Eq. (8.2.38) that the stability of the reverb filterH(z), that is, ρi < 1,
will be guaranteed if the feedback filter is normalized such that |G(ω)| < 1, for all
ω. Regardless of the above approximation, this condition implies stability by Nyquist’s
stability criterion or Rouché’s theorem [31]. For our example of Eq. (8.2.35), we have
|G(ω)| ≤ 0.9.

Besides theD poles that are approximately equally distributed around the unit circle,
there is an extra one that essentially corresponds to the zero of the filter G(z). Indeed,
for that pole, say p, we have

pD = G(p)= N(p)
D(p)

Because p is well inside the unit circle, if D is large, then pD � 0 and therefore, it
corresponds to N(p)� 0. For our example filter, this extra pole is near the z = −0.5
zero of the numerator filter N(z)= 0.3 + 0.15z−1.

Table 8.2.1 shows for D = 8 the exact poles pi = ρiejωi of Fig. 8.2.24, their frequen-
ciesωi and magnitudes ρi, as well as the approximate magnitudes given by Eq. (8.2.38),
and the exact 60-dB (ε = 10−3) time constants τi.

The first D pole angles are approximately equal to the Dth root of unity angles. The
approximation of Eq. (8.2.38) works well for all but the last pole, which is the one near
the zero of N(z).

pi = ρiejωi ωi/π ρi |G(ωi)|1/D τi/TD
0.9888 0 0.9888 0.9869 76.594
0.7282 ± j0.6026 ±0.2201 0.9452 0.9412 15.314
0.1128 ± j0.8651 ±0.4587 0.8724 0.8715 6.326

−0.4866 ± j0.6303 ±0.7093 0.7962 0.8047 3.789
−0.6801 1 0.6801 0.7499 2.240
−0.5174 1 0.5174 0.7499 1.310

Table 8.2.1 Reverberator poles and time constants, for D = 8.

An alternative way to understand the frequency dependence of the time constants
is to look at the input-on and input-off transients and steady-state behavior of the filter
H(z) of Eq. (8.2.32). Fig. 8.2.25 compares the plain and lowpass reverberator transient
outputs for a sinusoid that is turned on atn = 0 and off atn = 150. The filter parameters
were D = 30, a = 0.75, and G(z) was given by Eq. (8.2.35). The frequencies of the two
sinusoids were ω = 0.2π and ω = π radians/cycle.

At the moment the input is cut off, there are D samples of the sinusoid stored in
the delay line. As these samples recirculate around the feedback loop every D samples,
they get attenuated effectively by the gain of the loop filter |G(ω)|. For the lowpass
reverberator, the loop gain is about 0.9 at low frequencies and 0.1 at high frequencies.
Thus, the low-frequency sinusoid dies out slowly, whereas the high-frequency one dies
out (and starts up) rapidly, leaving behind the slower but weaker low-frequency mode.
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For the plain reverberator, both the high- and low- frequency sinusoids die out with the
same time constants.

Fig. 8.2.25 Time constants of high- and low-frequency transients, for D = 30.

Besides its use in reverberation effects, the lowpass reverberator filter (8.2.32) has
also been used in computer music to model and synthesize guitar string and drum
sounds [108–111]. The Karplus-Strong algorithm [108] for modeling plucked strings
uses the following FIR lowpass feedback filter:

G(z)= 1

2
(1 + z−1) (8.2.40)

A guitar-string sound is generated by simulating the plucking of the string by initially
filling the delay-line buffer w = [w0,w1, . . . ,wD] with zero-mean random numbers,
and then letting the filter run with zero input. The value D of the delay is chosen to
correspond to any desired fundamental frequency f1, that is, D = fs/f1.

The recirculating block of random numbers gets lowpass filtered during each pass
through the loop filter G(z) and loses its high-frequency content. As a result, the high
frequencies in the generated sound decay faster than the low frequencies, as is the case
for natural plucked-string sounds.

Physical modeling of instruments is an active research area in computer music.
Discrete-time models of the equations describing the physics of an instrument, such
as linear or nonlinear wave equations, can be used to generate sounds of the instrument
[108–114].
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8.2.4 Multitap Delays

Most DSP audio effects processors have built-in a wide class of specialized multiple-
delay type effects. They can be obtained from simple low-order FIR or IIR filters by
replacing each single unit-delay z−1 by the progressively more general substitutions:

z−1 −→ z−D −→ z−D

1 − az−D −→ z−D

1 − z−DG(z) (8.2.41)

which represent a multiple delay, a ringing delay, and a lowpass ringing delay. As a first
example, consider the plain ringing delay with transfer function:

H(z)= z−D

1 − az−D (8.2.42)

Expanding in powers of z−D, we have

H(z)= z−D + az−2D + a2z−3D + · · ·

The corresponding impulse response will consist of the first delayed impulse δ(n−
D), followed by its successive echoes of exponentially diminishing strength:

h(n)= δ(n−D)+aδ(n− 2D)+a2δ(n− 3D)+· · ·

This impulse response and a block diagram realization of Eq. (8.2.42) are shown in
Fig. 8.2.26. This is basically the same as the plain reverberator of Fig. 8.2.6, but with the
output taken after the delay, not before it. Its sample processing algorithm is a variation
of Eq. (8.2.14):

for each input sample x do:
y = wD
w0 = x+ awD
delay(D,w)

for each input sample x do:
sD = tap(D,w, p,D)
y = sD
∗p = x+ asD
cdelay(D,w,&p)

D 2D 3D
n

0

1 h(n)

a
a2

x(n) y(n)

a

w0(n) wD(n)
sD

z-D

...

Fig. 8.2.26 Reverberating multi-delay.

As a second example, consider the following second-order FIR filter:

H(z)= b0 + b1z−1 + b2z−2



8.2. DIGITAL AUDIO EFFECTS 375

The replacements (8.2.41) lead to the following three multi-delay filters, which are
progressively more complicated:

H(z) = b0 + b1z−D1 + b2z−D1z−D2

H(z) = b0 + b1

[
z−D1

1 − a1z−D1

]
+ b2

[
z−D1

1 − a1z−D1

][
z−D2

1 − a2z−D2

]

H(z) = b0 + b1

[
z−D1

1 − z−D1G1(z)

]
+ b2

[
z−D1

1 − z−D1G1(z)

][
z−D2

1 − z−D2G2(z)

]

In the last two cases, the reverberating echoes fromD1 are passed intoD2 causing it
to reverberate even more densely. Figure 8.2.27 shows the realization of the third case.
Its sample processing algorithm can be stated as follows:

for each input sample x do:
y = b0x+ b1w1D + b2w2D
u2 = can(G2,w2D)
w20 = w1D + u2

delay(D2,w2)
u1 = can(G1,w1D)
w10 = x+ u1

delay(D1,w1)

where the statement u2 = can(G2,w2D) denotes the generic filtering operation of the
filter G2(z) whose input is w2D, and similarly for G1(z).

x(n)

y(n)

b0 b1 b2

z
-D2z

-D1

G1(z) G2(z)

w10 w1D w20 w2D

u1 u2

Fig. 8.2.27 Multi-delay effects processor.

Figure 8.2.28 shows the impulse response of such a multi-delay filter, computed by
the above sample processing algorithm, with forward taps and delay values:

b0 = 1, b1 = 0.8, b2 = 0.6

D1 = 30, D2 = 40

and the two cases for the feedback filters:

G1(z)= G2(z)= 0.75 (plain)

G1(z)= G2(z)= 0.3 + 0.15z−1

1 − 0.5z−1
(lowpass)
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The impulse response exhibits a few early reflections, followed by more dense ones,
especially in the lowpass case where successive echoes get spread and overlap more
and more with each other. Such multi-delay filters can also be used as preprocessors to
reverb units for better modeling of the early reflection part of a reverberation response
[119,137,127,144].

Fig. 8.2.28 Impulse response of plain and lowpass multi-delay.

As a third example, we can start with the simple second-order IIR filter:

H(z)= b0 + b1z−1 + b2z−2

1 − a1z−1 − a2z−2

and replace each single delay z−1 by a multiple delay z−D, getting the transfer function:

H(z)= b0 + b1z−D1 + b2z−D1−D2

1 − a1z−D1 − a2z−D1−D2
(8.2.43)

Its realization is shown in Fig. 8.2.29. It may be thought of as a multitap delay line,
tapped at delays D1 and D1 +D2. The tap outputs are sent to the overall output and
also fed back to the input of the delay line. The b0 term represents the direct sound.

Its sample processing algorithm can be implemented with a circular (D1+D2)-dimensional
delay-line buffer w and pointer p, as follows:

for each input sample x do:
s1 = tap(D1 +D2,w, p,D1)
s2 = tap(D1 +D2,w, p,D1 +D2)
y = b0x+ b1s1 + b2s2

s0 = x+ a1s1 + a2s2

∗p = s0

cdelay(D1 +D2,w,&p)

One potential problem with this arrangement is that the feedback gains can render
the filter unstable, if they are taken to be too large. For example, Fig. 8.2.30 shows the
impulse response of the filter for the parameter choices
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z-D2
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Fig. 8.2.29 Multitap delay effects processor.

b0 = 1, b1 = 0.8, b2 = 0.6

D1 = 30, D2 = 40

and for the following two choices of feedback gains, one of which is stable and the other
unstable:

a1 = 0.20, a2 = 0.75 (stable)
a1 = 0.30, a2 = 0.75 (unstable)

Fig. 8.2.30 Impulse response of multi-tap delay line.

The condition |a1|+|a2| < 1 guarantees stability by the Nyquist stability criterion or
Rouché’s theorem [31], because it ensures that |G(ω)| < 1, where G(z)= a1 +a2z−D2 .

Typical DSP effects units include both types of delay effects shown in Figures 8.2.27
and 8.2.29, with five or more multiple delay segments and user-selectable feedback and
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feed-forward multipliers, and delay timesDi adjustable from 0–2000 msec; for example,
see [147].

8.2.5 Compressors, Limiters, Expanders, and Gates

Compressors, limiters, expanders, and gates have a wide variety of uses in audio sig-
nal processing [124–126,129–132,139,255]. Compressors attenuate strong signals; ex-
panders attenuate weak signals. Because they affect the dynamic range of signals, they
are referred to as dynamics processors.

Compressors are used mainly to decrease the dynamic range of audio signals so that
they fit into the dynamic range of the playback or broadcast system; for example, for
putting a recording on audio tape. But there are several other applications, such as
announcers “ducking” background music, “de-essing” for eliminating excessive micro-
phone sibilance, and other special effects [130].

Expanders are used for increasing the dynamic range of signals, for noise reduction,
and for various special effects, such as reducing the sustain time of instruments [130].

A typical steady-state input/output relationship for a compressor or expander is as
follows, in absolute and decibel units:

y = y0

(
x
x0

)ρ
⇒ 20 log10

(
y
y0

)
= ρ20 log10

(
x
x0

)
(8.2.44)

where x is here a constant input, x0 a desired threshold, and ρ defines the compression
or expansion ratio. A compressor is effective only for x ≥ x0 and has ρ < 1, whereas an
expander is effective for x ≤ x0 and has ρ > 1. Fig. 8.2.31 shows these relationships in
dB, so that a 1 dB change in the input causes ρ dB change in the output, that is, ρ is the
slope of the input/output straight lines.

ρ=1

ρ<1

ρ<<1y0 y0

x0 x0

ρ=1

ρ>1 ρ>>1

compressor

(limiter)

(gate)

expander

xdB xdB

ydB ydB

Fig. 8.2.31 Input/output relationship of compressor or expander.

Typical practical values are ρ = 1/4–1/2 for compression, and ρ = 2–4 for expan-
sion. Limiters are extreme forms of compressors that prevent signals from exceeding
certain maximum thresholds; they have very small slope ρ� 1, for example, ρ = 1/10.
Noise gates are extreme cases of expanders that infinitely attenuate weak signals, and
therefore, can be used to remove weak background noise; they have very large slopes
ρ� 1, for example, ρ = 10.

The I/O equation (8.2.44) is appropriate only for constant signals. Writing y = Gx,
we see that the effective gain of the compressor is a nonlinear function of the input of
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the form G = G0xρ−1. For time-varying signals, the gain must be computed from a local
average of the signal which is representative of the signal’s level.

A model of a compressor/expander is shown in Fig. 8.2.32. The level detector gen-
erates a control signal cn that controls the gain Gn of the multiplier through a nonlinear
gain processor. Depending on the type of compressor, the control signal may be (1) the
instantaneous peak value |xn|, (2) the envelope of xn, or (3) the root-mean-square value
of xn. A simple model of the envelope detector is as follows:

cn = λcn−1 + (1 − λ)|xn| (8.2.45)

The difference equation for cn acts as a rectifier followed by a lowpass filter. The
time constant of this filter, neff = ln ε/ lnλ, controls the time to rise or fall to a new input
level. The time to rise to a level above the threshold (where the compressor is active)
is called the attack time constant. This time may be increased further by introducing
a delay D in the detector’s input, that is, |xn−D|. The time to drop to a level below the
threshold (where the compressor is inactive) is called the release time.

level
detector

gain
processor

xn

xn

= control signalcn

yn = Gn xn

= gainGn

Fig. 8.2.32 Compressor/expander dynamics processor.

For λ = 0, Eq. (8.2.45) becomes an instantaneous peak detector. This case is useful
when the compressor is used as a limiter. If in Eq. (8.2.45) the absolute value |xn| is
replaced by its square, |xn|2, the control signal will track the mean-square value of the
input.

The gain processor is a nonlinear function of the control signal imitating the I/O
equation (8.2.44). For a compressor, we may define the gain function to be:

f(c)=
{
(c/c0)ρ−1, if c ≥ c0

1, if c ≤ c0
(8.2.46)

where c0 is a desired threshold and ρ < 1. For an expander, we have ρ > 1 and:

f(c)=
{

1, if c ≥ c0

(c/c0)ρ−1, if c ≤ c0
(8.2.47)

Thus, the gain Gn and the final output signal yn are computed as follows:

Gn = f(cn)
yn = Gnxn

(8.2.48)

Compressors/expanders are examples of adaptive signal processing systems, in which
the filter coefficients (in this case, the gainGn) are time-dependent and adapt themselves



380 8. SIGNAL PROCESSING APPLICATIONS

to the nature of the input signals [27]. The level detector (8.2.45) serves as the “adapta-
tion” equation and its attack and release time constants are the “learning” time constants
of the adaptive system; the parameter λ is called the “forgetting factor” of the system
[28].

As a simulation example, consider a sinusoid of frequency ω0 = 0.15π rads per
sample whose amplitude changes to the three values A1 = 2, A2 = 4, and A3 = 0.5
every 200 samples, as shown in Fig. 8.2.33, that is, xn = An cos(ω0n), with:

An = A1(un − un−200)+A2(un−200 − un−400)+A3(un−400 − un−600)

A compressor is used with parameters λ = 0.9, c0 = 0.5, and ρ = 1/2 (that is, 2:1
compression ratio). The output yn is shown in Fig. 8.2.33; the control signal cn and gain
Gn in Fig. 8.2.34.

Fig. 8.2.33 Compressor input and output signals (ρ = 1/2, λ = 0.9, c0 = 0.5).

The first two sinusoids A1 and A2 lie above the threshold and get compressed. The
third one is left unaffected after the release time is elapsed. Although only the stronger
signals are attenuated, the overall reduction of the dynamic range will be perceived as
though the weaker signals also got amplified. This property is the origin of the popular,
but somewhat misleading, statement that compressors attenuate strong signals and
amplify weak ones.

Jumping between the steady-state levels A1 and A2 corresponds to a 6 dB change.
Because both levels get compressed, the steady-state output levels will differ by 6ρ = 3
dB. To eliminate some of the overshoots, an appropriate delay may be introduced in the
main signal path, that is, computing the output by yn = Gnxn−d.

Another improvement is to smooth further the nonlinear gain gn = f(cn) by a
lowpass filter, such as an L-point smoother, so that the final gain is computed by:

Gn = 1

L
[
gn + gn−1 + · · · + gn−L+1

]
(8.2.49)

The overall model for a compressor/expander can be summarized as the following
sample processing algorithm, expressed with the help of the routine fir:
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Fig. 8.2.34 Compressor control signal and gain (ρ = 1/2, λ = 0.9, c0 = 0.5).

for each input sample x do:
c = λc1 + (1 − λ)|x|
c1 = c
G = fir

(
M,h,w, f(c)

)
y = Gx

(8.2.50)

where h is the impulse response of the L-point smoother, M = L − 1 is its order, w is
its L-dimensional delay-line buffer, and c1 represents cn−1.

Figure 8.2.35 shows the output signal and compressor gain using a seven-point
smoother. The initial transients in Gn are caused by the input-on transients of the
smoother.

Fig. 8.2.35 Compressor output with smoothed gain (ρ = 1/2, λ = 0.9, c0 = 0.5).

Figure 8.2.36 shows the output signal and compressor gain of a limiter, which has a
10:1 compression ratio, ρ = 1/10, and uses also a seven-point smoother. The threshold
was increased here to c0 = 1.5, so that only A2 lies above it and gets compressed.

Figure 8.2.37 shows an example of an expander, with parameters λ = 0.9, c0 = 0.5,
ρ = 2, and gain function computed by Eq. (8.2.47) and smoothed by a seven-point
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Fig. 8.2.36 Limiter output with smoothed gain (ρ = 1/10, λ = 0.9, c0 = 1.5).

smoother. OnlyA3 lies below the threshold and gets attenuated. This causes the overall
dynamic range to increase. Although the expander affects only the weaker signals, the
overall increase in the dynamic range is perceived as making the stronger signals louder
and the weaker ones quieter.

Fig. 8.2.37 Expander output and gain (ρ = 2, λ = 0.9, c0 = 0.5).

Finally, Fig. 8.2.38 shows an example of a noise gate implemented as an expander
with a 10:1 expansion ratio, ρ = 10, having the same threshold as Fig. 8.2.37. It essen-
tially removes the sinusoid A3, which might correspond to unwanted noise.

8.3 Noise Reduction and Signal Enhancement

8.3.1 Noise Reduction Filters

One of the most common problems in signal processing is to extract a desired signal,
say s(n), from a noisy measured signal:

x(n)= s(n)+v(n) (8.3.1)
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Fig. 8.2.38 Noise gate output and gain (ρ = 10, λ = 0.9, c0 = 0.5).

where v(n) is the undesired noise component.
The noise signal v(n) depends on the application. For example, it could be (1) a white

noise signal, which is typical of the background noise picked up during the measurement
process; (2) a periodic interference signal, such as the 60 Hz power-frequency pickup; (3)
a low-frequency noise signal, such as radar clutter; (4) any other signal—not necessarily
measurement noise—that must be separated from s(n) as, for example, in separating
the luminance and chrominance signal components embedded in the composite video
signal in a color TV receiver.

The standard method of extracting s(n) from x(n) is to design an appropriate filter
H(z) which removes the noise component v(n) and at the same time lets the desired
signal s(n) go through unchanged. Using linearity, we can express the output signal
due to the input of Eq. (8.3.1) in the form:

y(n)= ys(n)+yv(n) (8.3.2)

where ys(n) is the output due to s(n) and yv(n) the output due to v(n).
The two design conditions for the filter are that yv(n) be as small as possible and

ys(n) be as similar to s(n) as possible; that is, ideally we require:†

H(z)
x(n)

s(n)+v(n) ys(n)+yv(n)

y(n) ys(n) = s(n)
yv(n) = 0

(8.3.3)

In general, these conditions cannot be satisfied simultaneously. To determine when
they can be satisfied, we express them in the frequency domain in terms of the corre-
sponding frequency spectra as follows: Ys(ω)= S(ω) and Yv(ω)= 0.

Applying the filtering equation Y(ω)= H(ω)X(ω) separately to the signal and
noise components, we have the conditions:

Ys(ω) = H(ω)S(ω)= S(ω)
Yv(ω) = H(ω)V(ω)= 0

(8.3.4)

†An overall delay in the recovered signal is also acceptable, that is, ys(n)= s(n−D).
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The first requires that H(ω)= 1 at all ω for which the signal spectrum is nonzero,
S(ω)≠ 0. The second requires that H(ω)= 0 at all ω for which the noise spectrum is
nonzero, V(ω)≠ 0.

These two conditions can be met simultaneously only if the signal and noise spectra
do not overlap, as shown in Fig. 8.3.1. In such cases, the filterH(ω)must have passband
that coincides with the signal band, and stopband that coincides with the noise band.
The filter removes the noise spectrum and leaves the signal spectrum unchanged.

ω ω
π π

H(ω) H(ω)

signal
band

signal
spectrum

filtered noise
spectrum

noise
spectrum

signal
band

S(ω) V(ω) Ys(ω)

Yv(ω)

ωc0 ωc0
noise
band

noise
band

Fig. 8.3.1 Signal and noise spectra before and after filtering.

If the signal and noise spectra overlap, as is the typical case in practice, the above
conditions cannot be satisfied simultaneously, because there would be values ofω such
that both S(ω)≠ 0 and V(ω)≠ 0 and therefore the conditions (8.3.4) would require
H(ω)= 1 and H(ω)= 0 for the same ω.

In such cases, we must compromise between the two design conditions and trade
off one for the other. Depending on the application, we may decide to design the filter
to remove as much noise as possible, but at the expense of distorting the desired signal.
Alternatively, we may decide to leave the desired signal as undistorted as possible, but
at the expense of having some noise in the output.

The latter alternative is depicted in Fig. 8.3.2 where a low-frequency signal s(n)
exists in the presence of a broadband noise component, such as white noise, having a
flat spectrum extending over the entire† Nyquist interval, −π ≤ω ≤ π.

The filter H(ω) is chosen to be an ideal lowpass filter with passband covering the
signal bandwidth, say 0 ≤ω ≤ωc. The noise energy in the filter’s stopbandωc ≤ω ≤
π is removed completely by the filter, thus reducing the strength (i.e., the rms value) of
the noise. The spectrum of the desired signal is not affected by the filter, but neither is
the portion of the noise spectrum that falls within the signal band. Thus, some noise
will survive the filtering process.

The amount of noise reduction achieved by this filter can be calculated using the noise
reduction ratio (NRR) of Eq. (A.18) of Appendix A.2, which is valid for white noise input
signals. Denoting the input and output mean-square noise values by σ2

v = E[v(n)2]
and σ2

yv = E[yv(n)2], we have

†For discrete-time signals, the spectra are periodic in ω with period 2π.
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ω ω
π π

H(ω) H(ω)

signal
band

signal
band

noise
band

signal
spectrum

noise
spectrum

filtered noise
spectrum

S(ω)

V(ω)

Ys(ω)

Yv(ω)

ωc0 ωc0

noise
band

Fig. 8.3.2 Signal enhancement filter with partial noise reduction.

NRR = σ2
yv

σ2
v

=
∫ π
−π

|H(ω)|2 dω
2π

=
∑
n
h2
n (8.3.5)

BecauseH(ω) is an ideal lowpass filter, the integration range collapses to the filter’s
passband, that is, −ωc ≤ω ≤ωc. Over this range, the value of H(ω) is unity, giving:

NRR = σ2
yv

σ2
v

=
∫ωc

−ωc

1 · dω
2π

= 2ωc

2π
= ωc

π
(8.3.6)

Thus, the NRR is the proportion of the signal bandwidth with respect to the Nyquist
interval. The same conclusion also holds when the desired signal is a high-frequency
or a mid-frequency signal. For example, if the signal spectrum extends only over the
mid-frequency band ωa ≤ |ω| ≤ωb, then H(ω) can be designed to be unity over this
band and zero otherwise. A similar calculation yields in this case:

NRR = σ2
yv

σ2
v

= ωb −ωa

π
(8.3.7)

The noise reduction/signal enhancement capability of a filter can also be formulated
in terms of the signal-to-noise ratio. The SNRs at the input and output of the filter are
defined in terms of the mean-square values as:

SNRin = E[s(n)2]
E[v(n)2]

, SNRout = E[ys(n)2]
E[yv(n)2]

Therefore, the relative improvement in the SNR introduced by the filter will be:

SNRout

SNRin
= E[ys(n)2]
E[yv(n)2]

· E[v(n)
2]

E[s(n)2]
= 1

NRR
· E[ys(n)

2]
E[s(n)2]

If the desired signal is not changed by the filter, ys(n)= s(n), then

SNRout

SNRin
= 1

NRR
(8.3.8)
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Thus, minimizing the noise reduction ratio is equivalent to maximizing the signal-to-
noise ratio at the filter’s output.

The NRRs computed in Eqs. (8.3.6) or (8.3.7) give the maximum noise reductions
achievable with ideal lowpass or bandpass filters that do not distort the desired signal.
Such ideal filters are not realizable because they have double-sided impulse responses
with infinite anticausal tails. Thus, in practice, we must use realizable approximations
to the ideal filters. Chapters 10 and 11 discuss filter design methods that approximate
the ideal responses to any desired degree.

The use of realizable noise reduction filters introduces two further design issues
that must be dealt with in practice: One is the transient response of the filter and the
other is the amount of delay introduced into the output.

The more closely a filter approximates the sharp transition characteristics of an
ideal response, the closer to the unit circle its poles get, and the longer its transient
response becomes. Stated differently, maximum noise reduction, approaching the ideal
limit (8.3.6), can be achieved only at the expense of introducing long transients in the
output.

The issue of the delay introduced into the output has to do with the steady-state
response of the filter. We recall from Eq. (6.3.8) of Chapter 6 that after steady state has
set in, different frequency components of an input signal suffer different amounts of
delay, as determined by the phase delay d(ω) of the filter.

In particular, if the filter has linear phase, then it causes an overall delay in the
output. Indeed, assuming that the filter has unity magnitude, |H(ω)| = 1, over its
passband (i.e., the signal band) and is zero over the stopband, and assuming a constant
phase delay d(ω)= D, we find for the filtered version of the desired signal:

ys(n) =
∫ π
−π
Ys(ω)ejωn

dω
2π

=
∫ π
−π

|H(ω)|S(ω)ejω(n−D) dω
2π

=
∫ωc

−ωc

S(ω)ejω(n−D)
dω
2π

= s(n−D)

the last equation following from the inverse DTFT of the desired signal:

s(n)=
∫ωc

−ωc

S(ω)ejωn
dω
2π

Essentially all practical FIR noise reduction filters, such as the Savitzky-Golay smooth-
ing filters discussed in Section 8.3.5 and the Kaiser window designs discussed in Section
10.2, have linear phase.

Next, we consider some noise reduction examples based on simple filters, calcu-
late the corresponding noise reduction ratios, discuss the tradeoff between transient
response times and noise reduction, and present some simulation examples.

Example 8.3.1: First-order IIR smoother. It is desired to extract a constant signal s(n)= s from
the noisy measured signal

x(n)= s(n)+v(n)= s+ v(n)

where v(n) is zero-mean white Gaussian noise of variance σ2
v . To this end, the following

IIR lowpass filter is used:
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H(z)= b
1 − az−1

, H(ω)= b
1 − ae−jω , |H(ω)|2 = b2

1 − 2a cosω+ a2

where the parameter a is restricted to the range 0 < a < 1. Because the desired signal
s(n) is constant in time, the signal band will only be the DC frequencyω = 0. We require,
therefore, that the filter have unity response at ω = 0 or equivalently at z = 1. This
condition fixes the overall gain b of the filter:

H(1)= b
1 − a = 1 ⇒ b = 1 − a

The NRR of this filter can be calculated from Eq. (8.3.5) by summing the impulse response
squared. Here, hn = banu(n); therefore, using the geometric series, we find

NRR = σ2
yv

σ2
v

=
∑
n
h2
n = b2

∞∑
n=0

a2n = b2

1 − a2
= (1 − a)2

1 − a2
= 1 − a

1 + a

This ratio is always less than one because a is restricted to 0 < a < 1. To achieve high
noise reduction, a must be chosen near one. But, then the filter’s transient time constant,
given by Eq. (6.3.12), will become large:

neff = ln ε
lna

→ ∞ as a→ 1

The filter’s magnitude response, pole-zero pattern, and the corresponding input and out-
put noise spectra are shown in Fig. 8.3.3. The shaded area under the |H(ω)|2 curve is the
same as the NRR computed above.

π
ω

0

1

1/2

|H(ω)|2

input noise
spectrum |V(ω)|2

output noise
spectrum |Yv (ω)|2

1+a
1-a( (2

=pole
unit
circle

a
0

1-1

ωc

Fig. 8.3.3 Lowpass noise reduction filter of Example 8.3.1.

The filter’s 3-dB cutoff frequency ωc can be calculated by requiring that |H(ωc)|2 drops
by 1/2, that is,

|H(ωc)|2 = b2

1 − 2a cosωc + a2
= 1

2

which can be solved to give cosωc = 1 − (1 − a)2/2a. If a is near one, a � 1, we can use
the approximation cosx � 1 − x2/2 and solve for ωc approximately:
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ωc � 1 − a

This shows that as a → 1, the filter becomes a narrower lowpass filter, removing more
noise from the input, but at the expense of increasing the time constant.

The tradeoff between noise reduction and speed of response is illustrated in Fig. 8.3.4,
where 200 samples of a simulated noisy signal x(n) were filtered using the difference
equation of the filter, that is, with b = 1 − a

y(n)= ay(n− 1)+bx(n) (8.3.9)

and implemented with the sample processing algorithm, where w1(n)= y(n− 1)

for each input sample x do:
y = aw1 + bx
w1 = y

Fig. 8.3.4 Noisy input and smoothed output for Example 8.3.1.

The value of the constant signal was s = 5 and the input noise variance σ2
v = 1. The

random signal v(n) was generated by successive calls to the Gaussian generator routine
gran of Appendix B.1. The figure on the left corresponds to a = 0.90, which has 1-percent
time constant and NRR:

neff = ln(0.01)
ln(0.90)

= 44, NRR = 1 − 0.90

1 + 0.90
= 1

19

It corresponds to an improvement of the SNR by 10 log10(1/NRR)= 12.8 dB. The right
figure has a = 0.98, with a longer time constant and smaller NRR:

neff = ln(0.01)
ln(0.98)

= 228, NRR = 1 − 0.98

1 + 0.98
= 1

99

and an SNR improvement by 10 log10(1/NRR)= 20 dB.
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To understand how this filter works in the time domain and manages to reduce the noise,
we rewrite the difference equation (8.3.9) in its convolutional form:

y(n)= b
n∑

m=0

amx(n−m)= b(x(n)+ax(n− 1)+a2x(n− 2)+· · · + anx(0))
This sum corresponds to the accumulation or averaging of all the past samples up to the
present time instant. As a result, the rapid fluctuations of the noise component v(n) are
averaged out. The closer a is to 1, the more equal weighting the terms get, resulting in
more effective averaging of the noise. The exponential weighting deemphasizes the older
samples and causes the sum to behave as though it had effectively a finite number of
terms, thus, safeguarding the mean-square value of y(n) from diverging. Because of the
exponential weights, this filter is also called an exponential smoother.

The first-order IIR smoother can be applied to the smoothing of any low-frequency signal,
not just constants. It is a standard tool in many applications requiring the smoothing of
data, such as signal processing, statistics, economics, physics, and chemistry.

In general, one must make sure that the bandwidth of the desired signal s(n) is narrower
than the filter’s lowpass width ωc, so that the filter will not remove any of the higher
frequencies present in s(n). 	


Example 8.3.2: Highpass signal extraction filter. It is desired to extract a high-frequency signal
s(n)= (−1)ns from the noisy signal

x(n)= s(n)+v(n)= (−1)ns+ v(n)

where v(n) is zero-mean, white Gaussian noise with variance σ2
v . Because, the signal band

is now at the Nyquist frequency ω = π, we may use a first-order highpass IIR filter:

H(z)= b
1 + az−1

, H(ω)= b
1 + ae−jω , |H(ω)|2 = b2

1 + 2a cosω+ a2

where 0 < a < 1. The gain b is fixed such that H(π)= 1, or equivalently H(z)= 1 at
z = ejπ = −1, which gives the condition:

H(−1)= b
1 − a = 1 ⇒ b = 1 − a

The impulse response is nowhn = b(−a)nu(n). The corresponding NRR can be calculated
as in the previous example:

NRR =
∑
n
h2
n = b2

∞∑
n=0

(−a)2n= b2

1 − a2
= (1 − a)2

1 − a2
= 1 − a

1 + a

The noise reduction frequency characteristics of this highpass filter and its pole/zero pat-
tern are shown in Fig. 8.3.5. Note that the pole is now at z = −a. The 3-dB widthωc is the
same as in the previous example.

Fig. 8.3.6 shows a simulation of 200 samples x(n) filtered via the difference equation

y(n)= −ay(n− 1)+(1 − a)x(n)
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Fig. 8.3.5 Highpass noise reduction filter of Example 8.3.2.

Fig. 8.3.6 Noisy input and high-frequency output for Example 8.3.2.

The following values of the parameters were used: s = 2, a = 0.99, σ2
v = 1. The corre-

sponding one-percent time constant and NRR are in this case:

neff = ln(0.01)
ln(0.99)

= 458, NRR = 1 − 0.99

1 + 0.99
= 1

199

which corresponds to an SNR improvement by 10 log10(1/NRR)= 23 dB. 	

Example 8.3.3: First-order IIR smoother with prescribed cutoff frequency. The NRR of Example

8.3.1 can be improved slightly, without affecting the speed of response, by adding a zero
in the transfer function at z = −1 or equivalently, at ω = π. The resulting first-order
filter will be:

H(z)= b(1 + z−1)
1 − az−1

⇒ |H(ω)|2 = 2b2(1 + cosω)
1 − 2a cosω+ a2

where b is fixed by requiring unity gain at DC:

H(1)= 2b
1 − a = 1 ⇒ b = 1 − a

2

The zero at ω = π suppresses the high-frequency portion of the input noise spectrum
even more than the filter of Example 8.3.1, thus, resulting in smaller NRR for the same
value of a. The impulse response of this filter can be computed using partial fractions:
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H(z)= b(1 + z−1)
1 − az−1

= A0 + A1

1 − az−1

where

A0 = −b
a
, A1 = b(1 + a)

a

Therefore, the (causal) impulse response will be:

hn = A0δ(n)+A1anu(n)

Note, in particular, h0 = A0 +A1 = b. It follows that

NRR =
∞∑
n=0

h2
n = h2

0 +
∞∑
n=1

h2
n = b2 +A2

1
a2

1 − a2
= 1 − a

2

This is slightly smaller than the NRR of Example 8.3.1, because of the inequality:

1 − a
2

<
1 − a
1 + a

The 3-dB cutoff frequency can be calculated easily in this example. We have

|H(ωc)|2 = 2b2(1 + cosωc)
1 − 2a cosωc + a2

= 1

2

which can be solved for ωc in terms of a:

cosωc = 2a
1 + a2

(8.3.10)

Conversely, we can solve for a in terms of ωc:

a = 1 − sinωc

cosωc
= 1 − tan(ωc/2)

1 + tan(ωc/2)
(8.3.11)

It is easily checked that the condition 0 < a < 1 requires thatωc < π/2. We will encounter
this example again in Chapter 11 and redesign it using the bilinear transformation. Note
also that the replacement z → −z changes the filter into a highpass one. Such simple
first-order lowpass or highpass filters with easily controllable widths are useful in many
applications, such as the low- and high-frequency shelving filters of audio equalizers. 	


Example 8.3.4: FIR averaging filters. The problem of extracting a constant or a low-frequency
signal s(n) from the noisy signal x(n)= s(n)+v(n) can also be approached with FIR
filters. Consider, for example, the third-order filter

H(z)= h0 + h1z−1 + h2z−2 + h3z−3
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The condition that the constant signal s(n) go through the filter unchanged is the condition
that the filter have unity gain at DC, which gives the constraint among the filter weights:

H(1)= h0 + h1 + h2 + h3 = 1 (8.3.12)

The NRR of this filter will be simply:

NRR =
∑
n
h2
n = h2

0 + h2
1 + h2

2 + h2
3 (8.3.13)

The best third-order FIR filter will be the one that minimizes this NRR, subject to the
lowpass constraint (8.3.12). To solve this minimization problem, we use the constraint
to solve for one of the unknowns, say h3:

h3 = 1 − h0 − h1 − h2

Substituting into the NRR, we find

NRR = h2
0 + h2

1 + h2
2 + (h0 + h1 + h2 − 1)2

The minimization of this expression can be carried out easily by setting the partial deriva-
tives of NRR to zero and solving for the h’s:

∂
∂h0

NRR = 2h0 + 2(h0 + h1 + h2 − 1)= 2(h0 − h3)= 0

∂
∂h1

NRR = 2h1 + 2(h0 + h1 + h2 − 1)= 2(h1 − h3)= 0

∂
∂h2

NRR = 2h2 + 2(h0 + h1 + h2 − 1)= 2(h2 − h3)= 0

It follows that all four h’s will be equal to each other, h0 = h1 = h2 = h3. But, because
they must sum up to 1, we must have the optimum solution:

h0 = h1 = h2 = h3 = 1

4

and the minimized NRR becomes:

NRRmin = (1

4

)2 + (1

4

)2 + (1

4

)2 + (1

4

)2 = 4 · (1

4

)2 = 1

4

The I/O equation for this optimum smoothing filter becomes:

y(n)= 1

4

(
x(n)+x(n− 1)+x(n− 2)+x(n− 3)

)
More generally, the optimum length-N FIR filter with unity DC gain and minimum NRR is
the filter with equal weights:

hn = 1

N
, n = 0,1, . . . ,N − 1 (8.3.14)
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and I/O equation:

y(n)= 1

N
(
x(n)+x(n− 1)+x(n− 2)+· · · + x(n−N + 1)

)
(8.3.15)

Its NRR is:

NRR = h2
0 + h2

1 + · · · + h2
N−1 = N · ( 1

N
)2 = 1

N
(8.3.16)

Thus, by choosingN large enough, the NRR can be made as small as desired. Again, as the
NRR decreases, the filter’s time constant increases.

How does the FIR smoother compare with the IIR smoother of Example 8.3.1? First, we
note the IIR smoother is very simple computationally, requiring only 2 MACs per output
sample, whereas the FIR requires N MACs.

Second, the FIR smoother typically performs better in terms of both the NRR and the
transient response, in the sense that for the same NRR value, the FIR smoother has shorter
time constant, and for the same time constant, it has smaller NRR.

Given a time constant neff for an IIR smoother, the “equivalent” FIR smoother should be
chosen to have the same length, that is,

N = neff = ln ε
lna

For example, if a = 0.90, then N = neff = 44 as in Example 8.3.1. But then, the NRR of
the FIR smoother will be NRR = 1/N = 1/44, which is better than that of the IIR filter,
NRR = 1/19. This case is illustrated in the left graph of Fig. 8.3.7, where the FIR output
was computed by Eq. (8.3.15) with N = 44, and implemented with the routine cfir for
the same noisy input of Example 8.3.1. The IIR output was already computed in Example
8.3.1.

Fig. 8.3.7 Comparison of FIR and IIR smoothing filters.

Similarly, given an IIR smoother that achieves a certain NRR value, the “equivalent” FIR
filter with the same NRR should have length N such that:
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NRR = 1 − a
1 + a = 1

N
⇒ N = 1 + a

1 − a , a = 1 − (1/N)
1 + (1/N)

For example, if a = 0.98, then we get N = 99, which is much shorter than the IIR time
constant neff = 228 computed in Example 8.3.1. The right graph of Fig. 8.3.7 illustrates
this case, where the FIR output was computed by Eq. (8.3.15) with N = 99.

An approximate relationship between the IIR time constant neff and N can be derived as
follows. Using the small-x approximation ln

(
(1 + x)/(1 − x)) � 2x, we have for large N:

ln(1/a)= ln
(

1 + (1/N)
1 − (1/N)

)
� 2

N

It follows that

neff = ln(1/ε)
ln(1/a)

� N 1

2
ln
(1

ε
)

Typically, the factor (ln(1/ε)/2) is greater than one, resulting in a longer IIR time constant
neff than N. For example, we have:

neff = 1.15N , if ε = 10−1 (10% time constant)
neff = 1.50N , if ε = 5 · 10−2 (5% time constant)
neff = 2.30N , if ε = 10−2 (1% or 40 dB time constant)
neff = 3.45N , if ε = 10−3 (0.1% or 60 dB time constant)

Finally, we note that a further advantage of the FIR smoother is that it is a linear phase
filter. Indeed, using the finite geometric series formula, we can write the transfer function
of Eq. (8.3.15) in the form:

H(z)= 1

N
(
1 + z−1 + z−2 + · · · + z−(N−1)) = 1

N
1 − z−N
1 − z−1

(8.3.17)

Setting z = ejω, we obtain the frequency response:

H(ω)= 1

N
1 − e−jNω
1 − e−jω = 1

N
sin(Nω/2)
sin(ω/2)

e−jω(N−1)/2 (8.3.18)

which has a linear phase response. The transfer function (8.3.17) has zeros at the Nth
roots of unity, except at z = 1, that is,

zk = ejωk , ωk = 2πk
N

, k = 1,2, . . . ,N − 1

The zeros are distributed equally around the unit circle and tend to suppress the noise
spectrum along the Nyquist interval, except at z = 1 where there is a pole/zero cancellation
and we have H(z)= 1.

Fig. 8.3.8 shows the magnitude and phase response of H(ω) for N = 16. Note that the
phase response is piece-wise linear with slope (N−1)/2. It exhibits 180o jumps atω =ωk,
where the factor sin(Nω/2)/ sin(ω/2) changes algebraic sign.
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π
2π/N

ω
0

1
|H(ω)|

π

π

-π

ω
0

argH(ω)

ωc

Fig. 8.3.8 Magnitude and phase responses of FIR smoother, for N = 16.

The cutoff frequency of the filter can be taken to be approximately half of the base of the
mainlobe, that is,

ωc = π
N

This frequency corresponds to a 3.9 dB drop of the magnitude response. Indeed, setting
ω =ωc = π/N we have:

∣∣∣∣ 1

N
sin(Nπ/2N)
sin(π/2N)

∣∣∣∣2

�
∣∣∣∣ 1

N
sin(π/2)
(π/2N)

∣∣∣∣2

=
∣∣∣∣ 2

π

∣∣∣∣2

where we used the approximation sin(π/2N)� π/2N, for large N. In decibels, we have
−10 log10

(
(2/π)2

) = 3.9 dB. (Thus, ωc is the 3.9-dB frequency.)

Like its IIR counterpart of Example 8.3.1, the FIR averaging filter (8.3.15) can be applied to
any low-frequency signal s(n)—not just a constant signal. The averaging of the N succes-
sive samples in Eq. (8.3.15) tends to smooth out the highly fluctuating noise component
v(n), while it leaves the slowly varying component s(n) almost unchanged.

However, if s(n) is not so slowly varying, the filter will also tend to average out these vari-
ations, especially when the averaging operation (8.3.15) reaches across many time samples
when N is large. In the frequency domain, the same conclusion follows by noting that as
N increases, the filter’s cutoff frequency ωc decreases, thus removing more and more of
the higher frequencies present in the desired signal.

Thus, there is a limit to the applicability of this type of smoothing filter: Its length must
be chosen to be large enough to reduce the noise, but not so large as to start distorting the
desired signal by smoothing it too much.

A rough quantitative criterion for the selection of the lengthN is as follows. If it is known
that the desired signal s(n) contains significant frequencies up to a maximum frequency,
say ωmax, then we may choose N such that ωc ≥ωmax, which gives N ≤ π/ωmax, and in
units of Hz, N ≤ fs/2fmax.

The FIR smoothing filter (8.3.15) will be considered in further detail in Section 8.3.5 and gen-
eralized to include additional linear constraints on the filter weights. Like the IIR smoother,
the FIR smoother is widely used in many data analysis applications. 	
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Example 8.3.5: Recursive realization of the FIR averager. The FIR averaging filter can also be
implemented in a recursive form based on the summed version of the transfer function
(8.3.17). For example, the direct form realization of H(z) will be described by the I/O
difference equation:

y(n)= y(n− 1)+ 1

N
(
x(n)−x(n−N)) (direct form) (8.3.19)

and the canonical realization by the system of equations:

w(n) = x(n)+w(n− 1)

y(n) = 1

N
(
w(n)−w(n−N)) (canonical form) (8.3.20)

These realizations are prone to roundoff accumulation errors and instabilities, and there-
fore, are not recommended even though they are efficient computationally.

To see the problems that may arise, consider the canonical realization. Assuming that
the input x(n) is a white noise signal, the equation w(n)= w(n− 1)+x(n) corresponds
to the accumulation of x(n) and, as we discuss in Appendix A.2, this causes the mean-
square value ofw(n) to become unstable. This is unacceptable becausew(n) is a required
intermediate signal in this realization.

Similarly, considering the direct form realization of Eq. (8.3.19), if y(n) is inadvertently
initialized not to zero, but to some other constant, this constant cannot be rid of from
the output because it gets canceled from the difference y(n)−y(n − 1). Similarly, if the
operation (x(n)−x(n−N))/N is done with finite arithmetic precision, which introduces
a small roundoff error, this error will get accumulated and eventually grow out of bounds.

The above recursive implementation can be stabilized using the standard procedure of
pushing all the marginal poles into the unit circle. The replacement of Eq. (A.21) gives in
this case:

H(z)= 1

N
1 − ρNz−N
1 − ρz−1

where 0 < ρ � 1. If so desired, the filter may be renormalized to unity gain at DC resulting
in

H(z)= 1 − ρ
1 − ρN

1 − ρNz−N
1 − ρz−1

In the limit as ρ→ 1, this expression converges to the original filter (8.3.17).

This stabilized version behaves comparably to the first-order smoother of Example 8.3.1.
Indeed, if N is taken to be large for a fixed value of ρ, then we can set approximately
ρN � 0. In this limit, the filter reduces to the IIR smoother. 	


Example 8.3.6: Highpass FIR signal extraction. In general, the substitution z→ −z changes any
lowpass filter into a highpass one. It corresponds to a change in the transfer function:

H(z)=
∑
n
hnz−n −→ H(−z)=

∑
n
hn(−z)−n=

∑
n
(−1)nhnz−n

and to the change in the impulse response:
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hn −→ (−1)nhn

We may think of Example 8.3.2 as being obtained from Example 8.3.1 by this substitution.
Similarly, applying the substitution to the lowpass FIR smoother will result into a highpass
FIR filter with impulse response:

hn = (−1)n
1

N
, n = 0,1, . . . ,N − 1 (8.3.21)

and transfer function:

H(z)= 1

N

N−1∑
n=0

(−1)nz−n = 1

N
1 − (−1)Nz−N

1 + z−1

The transfer function has unity gain at ω = π, or z = −1; indeed,

H(−1)=
N−1∑
n=0

(−1)nhn = 1 (8.3.22)

The noise reduction ratio remains the same, namely, Eq. (8.3.16). In fact, one can obtain
the filter (8.3.21) by minimizing the NRR of (8.3.16) subject to the highpass constraint
(8.3.22). 	


Example 8.3.7: Bandpass signal extraction. A noisy sinusoid of frequency f0 = 500 Hz is sam-
pled at a rate of fs = 10 kHz:

x(n)= s(n)+v(n)= cos(ω0n)+v(n)

whereω0 = 2πf0/fs, and v(n) is a zero-mean, unit-variance, white Gaussian noise signal.
The sinusoid can be extracted by a simple resonator filter of the type discussed in Section
6.4.2. The poles of the filter are placed at z = Re±jω0 , as shown in Fig. 6.4.2.

If R is near 1, the resonator’s 3-dB width given by Eq. (6.4.4), Δω = 2(1−R), will be small,
resulting in a very narrow bandpass filter. The narrower the filter, the more the noise
will be reduced. The transfer function and impulse response of the filter were derived in
Section 6.4.2:

H(z)= G
1 + a1z−1 + a2z−2

, hn = G
sinω0

Rn sin(ω0n+ω0)u(n)

where a1 = −2R cosω0 and a2 = R2.

The gain G is adjusted such that the filter’s magnitude response is unity at the sinusoid’s
frequency, that is, |H(ω0)| = 1. In Section 6.4.2, we found

G = (1 −R)
√

1 − 2R cos(2ω0)+R2

The NRR can be calculated in closed form:
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NRR =
∞∑
n=0

h2
n = (1 −R)(1 +R2)(1 − 2R cos(2ω0)+R2)

(1 +R)(1 − 2R2 cos(2ω0)+R4)
(8.3.23)

For R = 0.99 andω0 = 0.1π, we have NRR = 1/99.6, and filter parameters a1 = −1.8831,
a2 = 0.9801, and G = 6.1502×10−3. Fig. 8.3.9 shows 300 samples of the noisy sinusoidal
input x(n) and the corresponding output signal y(n) plotted together with desired sinu-
soid s(n). The noise v(n) was generated by the routine gran. The output was computed
by the sample processing algorithm of the filter:

for each input sample x do:
y = −a1w1 − a2w2 +Gx
w2 = w1

w1 = y

Fig. 8.3.9 Noisy sinusoidal input and extracted sinusoid.

The recovered sinusoid is slightly shifted with respect to s(n) by an amount corresponding
to the phase delay of the filter atω =ω0, that is, d(ω0)= − argH(ω0)/ω0. For the given
numerical values, we find d(ω0)= 3.95 samples. 	


8.3.2 Notch and Comb Filters

Two special cases of the signal enhancement/noise reduction problem arise when:

1. The noise signal v(n) in Eq. (8.3.1) is periodic . Its spectrum is concentrated at
the harmonics of a fundamental frequency. The noise reduction filter is an ideal
notch filter with notches at these harmonics, as shown in Fig. 8.3.10.

2. The desired signal s(n) is periodic and the noise is a wideband signal. Now, the
signal enhancement filter is an ideal comb filter with peaks at the harmonics of
the desired signal, as shown in Fig. 8.3.11.

The ideal notch and comb filters of Figs. 8.3.10 and 8.3.11 are complementary filters,
in the sense that one is zero where the other is one, so that their frequency responses
add up to unity:
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ω ω

Hnotch(ω) Hnotch(ω)
S(ω)

V(ω) filtered signal
spectrum Ys(ω)

ω1 ω12ω1 2ω13ω1 3ω14ω1 5ω1 5ω14ω10 0

noise
signal

Fig. 8.3.10 Notch filter for reducing periodic interference.

ω ω

Hcomb(ω) Hcomb(ω)
signal
S(ω)

noise
V(ω) Ys(ω)

filtered noise
spectrum Yv (ω)

ω1 ω12ω1 2ω13ω1 3ω14ω1 5ω1 5ω14ω10 0

Fig. 8.3.11 Comb filter for enhancing periodic signal.

Hnotch(ω)+Hcomb(ω)= 1 (8.3.24)

A typical application of the notch case is the 60 Hz power-frequency interference
picked up through insufficiently shielded instrumentation. This problem is especially
acute in biomedical applications, such as measuring an electrocardiogram (ECG) by chest
electrodes—a procedure which is prone to such interference. The literature on biomedi-
cal applications of DSP is extensive, with many filter design methods that are specialized
for efficient microprocessor implementations [152–170].

Let f1 be the fundamental frequency of the periodic noise (e.g., f1 = 60 Hz), or, in
radians per sample ω1 = 2πf1/fs. If only one notch at f1 must be canceled, then a
single-notch filter, such as that given in Eqs. (8.2.22) and (8.2.23) of Section 8.2.2, will
be adequate.

Example 8.3.8: Single-notch filter for ECG processing. It is desired to design a single-notch filter
to cancel the 60 Hz power-frequency pickup in an ECG recording. The ECG is sampled at a
rate of 1 kHz, and we assume that the beat rate is 2 beats/sec. Thus, there are 500 samples
in each beat.

The digital notch frequency will be:

ω1 = 2πf1
fs

= 2π60

1000
= 0.12π radians/sample
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Assuming a Q-factor of 60 for the notch filter, we have a 3-dB width:

Δf = f1
Q

= 1 Hz ⇒ Δω = 2πΔf
fs

= 0.002π radians/sample

Using the design equations (8.2.22) and (8.2.23), we find the notch filter:

H(z)= 0.99687
1 − 1.85955z−1 + z−2

1 − 1.85373z−1 + 0.99374z−2

Figure 8.3.12 shows three beats of a simulated ECG with 60 Hz noise generated by

x(n)= s(n)+0.5 cos(ω1n), n = 0,1, . . . ,1500

Fig. 8.3.12 Removing 60 Hz noise from ECG signal.

The ECG signal s(n) was normalized to maximum value of unity (i.e., unity QRS-peak).
Thus, the noise amplitude is 50% the QRS-peak amplitude. Fig. 8.3.12 shows the noisy
signal x(n) and the notch filter’s magnitude characteristics. The filtered signal y(n) is
juxtaposed next to the noise-free ECG for reference.

Except for the initial transients, the filter is very effective in removing the noise. The
filter’s time constant can be estimated from the filter pole radius, that is, from the last
denominator coefficient a2 = R2:
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R2 = 0.99374 ⇒ R = 0.99686

which gives for the 1% time constant neff = ln(0.01)/ ln(R)= 1464 samples. In seconds,
this is τ = neffT = 1464/1000 = 1.464 sec, where T = 1/fs = 1 msec. 	


If all the harmonics of f1 must be canceled, then it proves convenient to choose the
sampling rate to be a multiple of the fundamental frequency, that is, fs = Df1. Then,
the noise harmonics will occur at the Dth roots-of-unity frequencies:

fk = kf1 = kfs
D
, or, ωk = kω1 = 2πk

D
, k = 0,1, . . . ,D− 1 (8.3.25)

In this case, we can use the general procedure discussed in Section 6.4.3. The notch
polynomial having as roots the Dth roots of unity, zk = ejωk = e2πjk/D is given by
N(z)= 1 − z−D. The corresponding multi-notch filter is obtained by sharpening the
zeros, that is, putting poles behind the zeros by the replacement z→ z/ρ:

Hnotch(z)= bN(z)
N(ρ−1z)

= b 1 − z−D
1 − az−D , b = 1 + a

2
(8.3.26)

where a = ρD.
The choice b = (1+a)/2 ensures thatH(z) is normalized to unity half-way between

the notches, that is, at ωk = (2k+ 1)π/D.
The value of the parameter a depends on the desired 3-dB width Δω = 2πΔf/fs of

the notch dips. Using the bilinear transformation method† of Chapter 11, we obtain the
following design equations, for a given Δω:

β = tan
(DΔω

4

)
, a = 1 − β

1 + β, b = 1

1 + β (8.3.27)

Because amust be in the interval 0 ≤ a < 1, we find the restriction 0 < β ≤ 1, which
translates into the following bound on the desired 3-dB width: DΔω/4 ≤ π/4, or

Δω ≤ π
D

⇒ Δf ≤ fs
2D

(8.3.28)

Its maximum value Δω = π/D corresponds to β = 1 and a = 0.
It follows from the bilinear transformation that the magnitude response squared of

the filter (8.3.26) can be written in the simple form:

|Hnotch(ω)|2 = tan2(ωD/2)
tan2(ωD/2)+β2

(8.3.29)

†Here, the highpass analog filter s/(s+ β) is transformed by s = (1 − z−D)/(1 + z−D).
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Example 8.3.9: Multi-notch filter design. As an example of the above design method, consider
the case D = 10. According to Eq. (8.3.28), the 3-dB width is allowed to be in the range
0 < Δω ≤ π/D = 0.1π.

Using Eqs. (8.3.27), we design the filter for the following three values of Δω:

Δω = 0.1π ⇒ β = 1 a = 0 b = 0.5
Δω = 0.05π ⇒ β = 0.4142 a = 0.4142 b = 0.7071
Δω = 0.0125π ⇒ β = 0.0985 a = 0.8207 b = 0.9103

corresponding to the three transfer functions:

Hnotch(z) = 0.5(1 − z−10)

Hnotch(z) = 0.7071
1 − z−10

1 − 0.4142z−10

Hnotch(z) = 0.9103
1 − z−10

1 − 0.8207z−10

Fig. 8.3.13 Multi-notch filters of different widths (Δω in units of π).

The magnitude squared responses, |Hnotch(ω)|2, are plotted in Fig. 8.3.13. 	


Example 8.3.10: Multi-notch filter for ECG processing. To illustrate the filtering operation with
the notch filter of the type (8.3.26), consider the following simulated ECG signal, generated
by adding a 60 Hz square wave to two beats of a noise-free ECG:

x(n)= s(n)+v(n), n = 0,1, . . . ,1199

where s(n) is a one-beat-per-second ECG signal sampled at a rate of 600 Hz, thus, having
600 samples per beat. The QRS-peak is normalized to unity as in Example 8.3.8. The square
wave noise signal v(n) has period

D = fs
f1

= 600

60
= 10
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and is defined as follows:

v(n)= 1 + 0.5w(n), w(n)= [1,1,1,1,1,−1,−1,−1,−1,−1, . . . ]

where w(n) alternates between +1 and −1 every 5 samples. The alternating square wave
w(n) has only odd harmonics, namely, f1, 3f1, 5f1, and so on.

This particular v(n) is used here only for illustrating the behavior of a multi-notch filter
and does not represent any real-life noise. The nonzero mean of v(n) is meant to imitate
a typical baseline shift that can occur in ECG measurements, in addition to the 60 Hz
harmonics.

The filter (8.3.26) was designed by requiring that its Q-factor be 80. This gives the 3-dB
width:

Δf = f1
Q

= 60

80
= 0.75 Hz ⇒ Δω = 2πΔf

fs
= 0.0025π rads/sample

The design equations (8.3.27) give: a = 0.9615, b = 0.9807, with a resulting transfer
function:

Hnotch(z)= 0.9807
1 − z−10

1 − 0.9615z−10

Its magnitude response is similar to those of Fig. 8.3.13, but narrower. It can be imple-
mented in its canonical form using the 11-dimensional vector of internal states w = [w0,
w1, . . . ,w10] by the sample processing algorithm:

for each input sample x do:
w0 = 0.9615w10 + 0.9807x
y = w0 −w10

delay(10, w)

z-10

x y

-1

w0

w10

0.9615

0.9807

Fig. 8.3.14 shows the input x(n) and the filtered output y(n). To improve the visibility of
the graphs, the two beats, for 0 ≤ t ≤ 1 sec and 1 ≤ t ≤ 2 sec, have been split into two
side-by-side graphs.

Notice how the filter’s zero at DC eliminates the baseline shift, while its notches at the 60
Hz harmonics eliminate the alternating square wave.

A single-notch filter at 60 Hz would not be adequate in this case, because it would not
remove the DC and the higher harmonics of the noise. For example, using the method of
Example 8.3.8, the single notch filter with the same Q = 80 and width Δf as the above
multi-notch filter, is found to be:

H1(z)= 0.99609
1 − 1.61803z−1 + z−2

1 − 1.61170z−1 + 0.99218z−2

Fig. 8.3.15 shows the filtered ECG in this case. Only the 60 Hz harmonic of the square wave
noise is removed. The DC and the higher harmonics at 3f1, 5f1, and so on, are still in the
output.
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Fig. 8.3.14 Eliminating baseline shifts and 60 Hz harmonics from ECG.

Fig. 8.3.15 Inadequate filtering by the single-notch filter H1(z).

Actually, for this example, the highest harmonic is 5f1 and coincides with the Nyquist
frequency 5f1 = fs/2 = 300 Hz. Because D is even, all the higher odd harmonics will be
aliased with one of the three odd Nyquist-interval harmonics: f1, 3f1, or, 5f1.

We can attempt to cancel these additional harmonics by designing separate notch filters
for each one. For example, using a common width Δf = 0.75 Hz, we design the following
notch filters:
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H3(z) = 0.99609
1 + 0.61803z−1 + z−2

1 + 0.61562z−1 + 0.99218z−2
(notch at 3f1)

H5(z) = 0.99609
1 + z−1

1 + 0.99218z−1
(notch at 5f1)

H0(z) = 0.99609
1 − z−1

1 − 0.99218z−1
(notch at 0)

Fig. 8.3.16 shows the output of the cascaded filter H1(z)H3(z)H5(z), which removes
completely all the harmonics in the square wave, except DC. That can be removed by
sending the output through the DC notch filter H0(z).

Fig. 8.3.16 Output from the cascade filter H1(z)H3(z)H5(z).

Note that the notch filters at DC and Nyquist frequency are first-order filters of the form:

H0(z)= b 1 − z−1

1 − az−1
, H5(z)= b 1 + z−1

1 + az−1

These are limiting cases of the designs of Eq. (8.2.22) for ω0 = 0 and ω0 = π. In both
cases, b = 1/(1 + tan(Δω/2)) and a = 2b− 1. 	


The multi-notch filter (8.3.26) can be obtained from the first-order filterH(z)= b(1−
z−1)/(1 − az−1) by the substitution

z −→ zD (8.3.30)

that is,

H(z)= b 1 − z−1

1 − az−1
−→ H(zD)= b 1 − z−D

1 − az−D (8.3.31)

The effect of this substitution is theD-fold replication of the spectrum of the original
filter. Indeed, in the frequency domain Eq. (8.3.30) gives:

H(ω)−→ H(ωD),

ωω
2π2π/D2π 00

H(ωD)

D=4

H(ω)
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This transformation shrinks the original spectrum H(ω) by a factor of D and repli-
cates it D times. Because the spectrum H(ω) has period 0 ≤ ω ≤ 2π, the new
spectrum H(ωD) will have period 0 ≤ ωD ≤ 2π, which becomes the scaled period
0 ≤ω ≤ 2π/D fitting exactly D times into the new Nyquist interval 0 ≤ω ≤ 2π.

The first-order filter in Eq. (8.3.31) has a single notch atω = 0, which gets replicated
D times and becomes a multi-notch filter.

The replicating transformation (8.3.30) can also be applied to any narrow lowpass
filter, replicating it D times into a comb filter. For example, applying it to the filter of
Example 8.3.1 we get:

H(z)= 1 − a
1 − az−D (8.3.32)

which has a comb structure similar to that of the plain reverberator shown in Fig. 8.2.7.
Similarly, the transformation (8.3.30) applied to the filter of Example 8.3.3, gives the
following comb filter with unity-gain peaks at ωk = 2kπ/D and zeros at ωk = (2k +
1)π/D:

Hcomb(z)= b 1 + z−D
1 − az−D , b = 1 − a

2
(8.3.33)

This filter can also be designed directly using the bilinear transformation method†

of Chapter 11. Given a prescribed 3-dB width for the peaks, Δω, the filter parameters
can be calculated from the design equations:

β = tan
(DΔω

4

)
, a = 1 − β

1 + β, b = β
1 + β (8.3.34)

where, as in Eq. (8.3.27), the width is constrained to be in the interval: 0 ≤ Δω ≤ π/D.
Like Eq. (8.3.29), the magnitude response squared of (8.3.33) can be expressed simply
in the form:

|Hcomb(ω)|2 = β2

tan2(ωD/2)+β2
(8.3.35)

The comb and notch filters of Eqs. (8.3.33) and (8.3.26) are complementary in the
sense of Eq. (8.3.24); indeed, we have the identity in z:

Hcomb(z)+Hnotch(z)= 1 − a
2

1 + z−D
1 − az−D + 1 + a

2

1 − z−D
1 − az−D = 1

It follows by inspecting Eqs. (8.3.29) and (8.3.35) that their magnitude responses
squared also add up to one:

|Hcomb(ω)|2 + |Hnotch(ω)|2 = 1 (8.3.36)

This implies that both filters have the same width, as seen in the design equations
(8.3.27) and (8.3.34). But, how is it possible to satisfy simultaneously Eq. (8.3.36) and

†Here, the lowpass analog filter β/(s+ β) is transformed by s = (1 − z−D)/(1 + z−D).
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Hcomb(ω)+Hnotch(ω)= 1? This happens because their phase responses differ by 90o.
Indeed, it is left as an exercise to show that:

Hcomb(ω)= jHnotch(ω)tan(ωD/2)/β

Example 8.3.11: Comb filter design. As a design example, consider the case D = 10. Using
Eqs. (8.3.34), we design the filter for the following three values of Δω:

Δω = 0.1π ⇒ β = 1 a = 0 b = 0.5
Δω = 0.05π ⇒ β = 0.4142 a = 0.4142 b = 0.2929
Δω = 0.0125π ⇒ β = 0.0985 a = 0.8207 b = 0.0897

corresponding to the three transfer functions:

Hcomb(z) = 0.5(1 + z−10)

Hcomb(z) = 0.2929
1 + z−10

1 − 0.4142z−10

Hcomb(z) = 0.0897
1 + z−10

1 − 0.8207z−10

The magnitude squared responses, |H(ω)|2, are plotted in Fig. 8.3.17. 	


Fig. 8.3.17 Comb filters of different widths (Δω in units of π).

Either comb filter, (8.3.32) or (8.3.33), can be used to enhance a periodic signal buried
in white noise. Their NRRs are the same as those of Examples 8.3.1 and 8.3.3, that is,
NRR = (1 − a)/(1 + a) and NRR = (1 − a)/2, respectively. This follows from the
property that the substitution (8.3.30) leaves the NRR unchanged. Indeed, in the time
domain the transformation is equivalent to inserting D−1 zeros between the original
impulse response samples:

h = [h0, h1, h2, . . . ] −→ h = [h0,0,0, . . . ,0, h1,0,0, . . . ,0, h2, . . . ] (8.3.37)

and, therefore, the quantity
∑
h2
n remains invariant.
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Example 8.3.12: Comb filter for periodic signal enhancement. To illustrate the noise reduction
capability of the comb filter (8.3.33), consider the following signal of length 2000:

x(n)= s(n)+v(n), n = 0,1, . . . ,1999, n
s(n) 50

1

-1

where s(n) is a periodic triangular wave of period D = 50, linearly alternating between
±1 every 25 samples. Thus, there are 40 periods in x(n). The noise signal v(n) is a
zero-mean, white Gaussian noise of rms amplitude equal to 0.5, that is, 50 percent of the
triangular wave.

The width of the comb filter is chosen to be Δω = 0.0008π radians/sample, with corre-
sponding Q-factor of:

Q = ω1

Δω
= 2π/D

Δω
= 50

Using the design equations (8.3.34), we find a = 0.9391 and b = 0.0305, and the transfer
function:

Hcomb(z)= 0.0305
1 + z−50

1 − 0.9391z−50

The filter’s magnitude response |Hcomb(ω)|2 and its canonical realization are shown in
Fig. 8.3.18. The peaks are at ωk = 2kπ/50, and the zeros at ωk = (2k+ 1)π/50.

z-50

x y
w0

w50

0.9391

0.0305

Fig. 8.3.18 Comb filter with D = 50 and Q = 50.

The canonical form uses a 51-dimensional state vector w = [w0,w1, . . . ,w50] to implement
the delay z−50. The corresponding sample processing algorithm can be formulated with a
linear or a circular delay line, as follows:

for each input sample x do:
w0 = 0.9391w50 + 0.0305x
y = w0 +w50

delay(50, w)

for each input sample x do:
s50 = tap(50, w, p, 50)
s0 = 0.9391 s50 + 0.0305x
y = s0 + s50

∗p = s0

cdelay(50, w, &p)
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where p is a circular pointer to the linear buffer w, and s50, s0 denote the 50th and 0th
components of the circular state vector pointed to by p.

Fig. 8.3.19 shows the input x(n) and the filtered output y(n). For plotting purposes, the
signals have been split into two consecutive segments of length-1000.

Fig. 8.3.19 Periodic signal enhancement by comb filtering.

The noise reduction ratio of this filter is NRR = (1−a)/2 = 0.0305, which corresponds to
a 10 log10(1/NRR)= 15.16 dB improvement of the SNR, or equivalently, to a suppression
of the rms noise value by a factor of 1/

√
NRR = 5.7. 	


The replicating transformation (8.3.30) can also be applied to the FIR averager filter
of Example 8.3.4. The resulting periodic comb filter is equivalent to the method of signal
averaging and is discussed further in Section 8.3.4.

8.3.3 Line and Frame Combs for Digital TV

Another application of notch and comb filters is in the case when both signals s(n) and
v(n) in Eq. (8.3.1) are periodic and must be separated from each other.

To extract s(n), one may use either a comb filter with peaks at the harmonics of
s(n), or a notch filter at the harmonics of v(n). Similarly, to extract v(n), one may use
a comb at the harmonics of v(n), or a notch at the harmonics of s(n). For the method
to work, the harmonics of s(n) may not coincide with the harmonics of v(n).
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A major application of this idea is in color TV, digital videodisc systems, and pro-
posed HDTV systems [171–191]. The notch/comb filters are used to separate the lumi-
nance (black & white) and chrominance (color) signals from the composite video signal,
and also to reduce noise.

Consider a scanned two-dimensional still picture of horizontal and vertical dimen-
sions a and b, as shown in Fig. 8.3.20, and assume there are N horizontal scan lines.
If TH is the time to scan one line, then the time to scan the complete picture (i.e., one
frame) is equal to the scanning time forN lines, that is, (ignoring horizontal retrace and
blanking times):

TF = NTH (8.3.38)

The quantities TH and TF are called the line and frame delays, and their inverses are
the line and frame rates:

fH = 1

TH
, fF = 1

TF
⇒ fH = NfF (8.3.39)

The frequencies fH and fF are related to the horizontal and vertical velocities of the
scanning spot by

fH = vx
a
, fF = vy

b
(8.3.40)

The typical spectrum of a video signal, shown in Fig. 8.3.20, has a macro-structure
consisting of the harmonics of the line rate fH. About each of these, it has a micro-
structure consisting of the harmonics of the frame rate fF. There are N fF-harmonics
between any two fH-harmonics. The fH-harmonics represent the horizontal variations
in the image, and the fF-harmonics the vertical variations.

0

b

a

y

x

fH

fF

fF = 30 Hz

fH = 15.7 kHz

2fH 3fH 4fH 5fH

f

vx

vy

Fig. 8.3.20 Scanned image and corresponding video spectrum.

If there is motion in the image, the sharp spectral lines get smeared somewhat, but
the basic macro/micro-structure is preserved. In the rest of this section, we will assume
that there is no motion and that we are dealing with a still picture. At the end, we will
discuss what happens when motion is introduced.

This type of spectrum can be understood qualitatively as follows: Suppose we have
a still picture consisting only of a test pattern of vertical bars. Then, each scan line will
be the same and the resulting signal will be periodic in time with period TH = 1/fH. Its
spectrum will consist of the harmonics of fH. Now, if there is some vertical detail in
the picture, the signal will only be periodic with respect to the frame period TF, and its
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spectrum will consist of the harmonics of fF. However, because adjacent lines tend to
be similar, the harmonics of fH will still dominate the macro-structure of the spectrum.

A more mathematical explanation is as follows [178]. Let g(x, y) be the brightness of
the picture at position (x, y). Expanding g(x, y) into a double Fourier series, we obtain:

g(x, y)=
∑
k,m
ckme2πjkx/ae2πjmy/b

The indices k andm correspond to the horizontal and vertical variations in g(x, y).
A scanned picture, with a uniformly moving scanning spot, is obtained by replacing
x = vxt and y = vyt, resulting in the video signal :

V(t)= g(vxt, vyt)=
∑
k,m
ckme2πjkvxt/ae2πjmvyt/b

Using Eq. (8.3.40), we can rewrite:

V(t)=
∑
k,m
ckme2πjfkmt (8.3.41)

where

fkm = kfH +mfF = (kN +m)fF = (k+ m
N
)fH (8.3.42)

Thus, the video signal V(t) will have spectrum with sharp spectral lines at fkm.
Because of the large difference in value between fH and fF, the spectrum will look as in
Fig. 8.3.20, that is, exhibiting a coarse structure at the harmonics kfH and a fine structure
at the harmonics mfF.

In the NTSC† TV system used in the U.S., there are N = 525 lines in each frame, but
they are interlaced, with each half (i.e., a field) being presented at double the frame rate,
that is, ffield = 2fF. The field rate is approximately 60 Hz in the U.S., and the frame rate
approximately 30 Hz. The exact values are [182]:

fH = 4.5 MHz

286
= 15.73426 kHz, fF = fH

525
= 29.97 Hz (8.3.43)

where, by convention, the values are derived from the sound carrier frequency of 4.5
MHz. The corresponding time delays are TH = 63.55 μsec and TF = 33.37 msec.

In a color TV system, there are three scanning beams for red, green, and blue (RGB),
which can be combined to yield other colors. To reduce the transmission bandwidth
requirements and maintain compatibility with black and white receivers, appropriate
linear combinations of the RGB colors are formed.

The black and white information (brightness and spatial details) is contained in the
luminance signal defined by:

Y = 0.299R+ 0.587G+ 0.114B
†National Television System Committee.
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Color information (hue and saturation) can be transmitted by the difference signals
R− Y and G− Y. In the NTSC system, the following linear combinations—called the I
and Q chrominance signals—are transmitted instead:

I = 0.736(R−Y)−0.269(B−Y)
Q = 0.478(R−Y)+0.413(B−Y)

The three RGB colors can be recovered from the three YIQ signals. The advantage
of the IQ linear combinations is that they have reduced bandwidth requirements. The
luminance bandwidth is 4.2 MHz, whereas the bandwidths of I and Q are 1.3 MHz and
0.5 MHz, respectively.

To transmit the YIQ signals efficiently, the I and Q are placed on a color subcarrier
signal by quadrature modulation and added to the luminance component, that is, the
following composite video signal is transmitted:

V(t)= Y(t)+I(t)cos(2πfsct +φ)+Q(t)sin(2πfsct +φ)

where φ = 33o.
To simplify the algebra, we work with the following complex-valued version of the

above, with the understanding that we must take real parts:

V(t)= Y(t)+ej2πfsctC(t)≡ Y(t)+Z(t) (8.3.44)

where C(t)≡ (
I(t)−jQ(t))ejφ.

The spectra of the separate component signals {Y, I,Q} are all similar to the ba-
sic video spectrum of Fig. 8.3.20. The subcarrier modulation shifts the spectra of the
chrominance signals I andQ and centers them about the subcarrier frequency fsc. Thus,
the frequencies of the modulated chrominance signal Z(t) will be at:

fsc + fkm = fsc + kfH +mfF (8.3.45)

By choosing fsc to be a half-multiple of the line frequency fH, the chrominance peaks
will fall exactly half-way between the luminance peaks, as shown in Fig. 8.3.21. We can
take, for example,

fsc =
(
dH + 1

2

)
fH = 1

2
(2dH + 1)fH (8.3.46)

Therefore, the chrominance macro-structure peaks are centered at half-multiples of
fH:

fsc + fkm = (
dH + k+ 1

2

)
fH +mfF (8.3.47)

Moreover, because fH = NfF with N odd, the subcarrier frequency fsc will also be
equal to a half-multiple of the frame frequency fF:

fsc =
(
dH + 1

2

)
fH = (

dH + 1

2

)
NfF
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Setting

dF + 1

2
= (

dH + 1

2

)
N ⇒ dF = NdH + N − 1

2

we find,

fsc =
(
dF + 1

2

)
fF = 1

2
(2dF + 1)fF (8.3.48)

It follows that the chrominance micro-structure peaks will be centered at half-multiples
of fF (about the kfH macro-structure peaks), falling half-way between the micro-structure
peaks of the luminance signal, as shown in Fig. 8.3.21:

fsc + fkm = kfH + (dF +m+ 1

2

)
fF (8.3.49)

In the NTSC system, we have the choices:

dH = 227, dF = NdH + N − 1

2
= 119437 (8.3.50)

which give the subcarrier frequency:

fsc = 227.5 fH = 119437.5 fF = 3.579545 MHz

In summary, the luminance and modulated chrominance signals have spectra that
are interleaved both at the macro- and micro-structure levels. This property makes them
ideal candidates for comb filtering.

0 fHfH/2

fF

2fH

f
. . .

fsc

227fH 228fH

fF

Y

Y

Y

Y

Y
Y

Y

YY

C

C

C

C

C

C

C C

area of detail

Fig. 8.3.21 Interleaved luminance and chrominance spectra.

In Fig. 8.3.21, the extent of the chrominance spectrum is somewhat exaggerated and
shown to reach almost down to zero frequency. In fact, because of the small bandwidth
of C, the effective extent of the chrominance spectrum about fsc will be ±0.5 MHz [182],
which translates to about ±32fH harmonics about fsc; indeed, 227.5×0.5/3.58 � 32.
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In a conventional color TV receiver, the luminance part is extracted by lowpass fil-
tering of the composite signal V(t) with a lowpass filter having passband from zero to
about fsc − 0.5 = 3.08 MHz. The chrominance component is extracted by a bandpass
filter centered at fsc, with passband fsc±0.5 = 3.58±0.5 MHz. The extracted C compo-
nent is then demodulated and the I and Q parts are linearly combined with Y to form
the RGB signals.

These filtering operations can cause various degradations in image quality. For ex-
ample, the high-frequency part of Y is filtered out, causing some loss of spatial details
in the image. Moreover, because of the finite transition widths of the lowpass and band-
pass filters, some chrominance will survive the luminance lowpass filter and show up as
the so-called cross-luminance or “dot-crawl” effect [183]. Similarly, some high-frequency
luminance will survive the chrominance bandpass filter and will appear as the “cross-
color” rainbow-type effect around sharp edges [183].

A better method of separation is to take advantage of the interlaced comb-like nature
of the composite video spectrum of Fig. 8.3.21 and use digital comb filters to separate
the Y and C signals. The development of large-scale digital memories that can be used
to store a whole line or a whole frame [174] has made this approach possible.

A common sampling rate for digital video systems is four times the color subcarrier
frequency, that is,

fs = 4fsc (8.3.51)

Using Eqs. (8.3.46) and (8.3.48), we may express the sampling rate in terms of the
line frequency fH and the frame frequency fF:

fs = DH fH = DF fF (8.3.52)

where

DH = 2(2dH + 1), DF = NDH = 2(2dF + 1) (8.3.53)

For the NTSC system, we have from Eq. (8.3.50)

DH = 910, DF = 477750

and

fs = 910 fH = 477750 fF = 14.31818 MHz

with a corresponding sampling time interval of T = 1/fs = 69.84 nsec.
Equation (8.3.52) implies that there are DH samples along each scan line and DF

samples in each frame. In units of radians per sample, the subcarrier frequency fsc
becomes:

ωsc = 2πfsc
fs

= π
2

(8.3.54)

Similarly, the frame and line frequencies are in these units:
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ωF = 2πfF
fs

= 2π
DF
, ωH = 2πfH

fs
= 2π
DH

= NωF

Using Eq. (8.3.52), the luminance video frequencies fkm become:

ωkm = 2πfkm
fs

= 2πk
DH

+ 2πm
DF

= kωH +mωF (8.3.55)

The shifted chrominance frequencies Eq. (8.3.45) can be expressed as half-multiples
of either the line or the frame digital frequencies:

ωsc +ωkm = (2dH + 2k+ 1)
π
DH

+ 2πm
DF

= 2πk
DH

+ (2dF + 2m+ 1)
π
DF

= (2kN + 2dF + 2m+ 1)
π
DF

(8.3.56)

where in the last line we replaced DH = DF/N.
The comb filters used in video systems are of the type (8.3.33), where D can be

either a line delayD = DH or a frame delayD = DF. Because of the high sampling rates
involved, to minimize the computational cost, the filter parameters are chosen to have
simple values, such as powers of two. For example, the simplest choice is the following
FIR comb filter, obtained by setting a = 0 and b = 1/2 in Eq. (8.3.33):

Hcomb(z)= 1

2
(1 + z−D) (8.3.57)

with a complementary notch filter Hnotch(z)= 1 −Hcomb(z):

Hnotch(z)= 1

2
(1 − z−D) (8.3.58)

Their magnitude responses have been plotted in Figs. 8.3.17 and 8.3.13 for D = 10.
They have the maximum allowed 3-dB width of all the comb/notch filters of the types
(8.3.33) and (8.3.26), that is, Δω = π/D.

The comb filterHcomb(z) has (unity-gain) peaks at the multiples 2kπ/D and notches
at the half-multiples (2k+ 1)π/D. Conversely, the notch filter Hnotch(z) has peaks at
the half-multiples (2k+ 1)π/D and notches at 2kπ/D.

IfD is a line delay,D = DH, then the peaks ofHcomb(z)will coincide with the macro-
structure line-frequency peaks of the luminance signal Y; and its notches will coincide
with the macro-structure peaks of the modulated chrominance signal C. Thus, filtering
the composite video signal V through Hcomb(z) will tend to remove C and let Y pass
through, at least at the macro-structure level which is the dominant part the spectrum.

Conversely, filtering V through the notch filter Hnotch(z) will tend to remove Y and
let C pass through. Thus, the two filters can be used in parallel to extract the Y and
C components. A block diagram implementation of (8.3.57) and (8.3.58) is shown in
Fig. 8.3.22.
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Vn

Vn =Yn

ΔVn = e jωscnCn

composite
video

luminance
1-H delay

or, 1-F delay

chrominance

z-D
0.5

−

+

+

+

Fig. 8.3.22 Line or frame comb filters.

The separation of Y and C is not perfect, because the line comb Hcomb(z) does
not remove from the C signal its micro-structure frequencies, that is, the terms mfF in
Eq. (8.3.47). Similarly, Hnotch(z) does not remove the micro-structure frequencies of Y.

Moreover, because Eq. (8.3.57) is equivalent to the averaging of two successive hor-
izontal lines, some vertical detail will be lost or averaged out, resulting in a blurrier
Y signal. However, as we see below, the lost vertical detail can be restored by further
filtering.

Because the luminance and chrominance spectra are interleaved at their micro-structure
frame-frequency level, the delay D can also be chosen to be a frame delay, D = DF.
This type of comb/notch filter would do a much better job in separating the Y and C
components because Hcomb(z) now has nulls at all the chrominance frequencies, and
Hnotch(z) has nulls at all the luminance frequencies. However, such frame-delay filters
can be used only if there is very little motion from frame to frame. The effect of motion
is to broaden the fF-harmonics making the separation of Y and C less than perfect.

Another simple popular type of comb filter uses two D-fold delays and is obtained
by squaring Eq. (8.3.57):

Hcomb(z)= 1

4
(1 + z−D)2= 1

4
(1 + 2z−D + z−2D) (8.3.59)

When D = DH, it is referred to as a 2-H comb because it requires the storage of
two horizontal lines. It is also known as a 1-2-1 comb because of the particular weights
given to the three horizontal lines.

Its peaks and notches are the same as those of the 1-H comb (8.3.57), but here the
squaring operation has the effect of making the peaks narrower and the notches flatter.
The corresponding complementary notch filter is defined as:

Hnotch(z)= −1

4
(1 − z−D)2= 1

4
(−1 + 2z−D − z−2D) (8.3.60)

These definitions imply Hcomb(z)+Hnotch(z)= z−D. This is required because the
filters have an inherent delay of D samples. Indeed, if we advance them by D samples,
we get the more symmetric definitions corresponding to truly complementary filters:

zDHcomb(z) = 1

2
+ 1

4
(zD + z−D)

zDHnotch(z) = 1

2
− 1

4
(zD + z−D)

(8.3.61)
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It is instructive to also understand the above comb/notch filtering operations in the
time domain. The sampled version of Eq. (8.3.44) is

Vn = Yn + Zn = Yn + ejωscnCn (8.3.62)

The video time index n can be mapped uniquely onto a particular pixel (i, j) on
the image, as shown in Fig. 8.3.23. The row index i corresponds to the quotient of the
division of n by DH and the column index j corresponds to the remainder. That is, we
can write uniquely:

(i, j) −→ n = iDH + j, j = 0,1, . . . ,DH − 1 (8.3.63)

The row index i takes on the values i = 0,1, . . .N − 1, for N lines per frame. The
maximum value of n corresponding to the last pixel of the last line is obtained by setting
i = N − 1 and j = DH − 1, giving n = (N − 1)DH +DH − 1 = NDH − 1 = DF − 1.

Subsequent values of n will map to pixels on the next frame, and so on. Thus, two
values of n separated by DF samples correspond to the same pixel (i, j) on the image,
as shown in Fig. 8.3.23.

N
(i,j)=n

i

i
j

j

(i−1,j)=n−DH
i−1

(i+1,j)=n+DH

DH

i+1
n

n

n−DF

. . .

(i,j)=n−DF

(i,j)=n

Fig. 8.3.23 Successive lines and successive frames.

Pixels on successive lines on the same column are separated by a time delay of DH
samples, as shown in Fig. 8.3.23. Indeed, we have from Eq. (8.3.63):

n±DH = iDH + j ±DH = (i± 1)DH + j −→ (i± 1, j)

With Vn as input, the output signals of the 1-H luminance and chrominance comb
filters, (8.3.57) and (8.3.58), are the sum and difference signals:

Vn = 1

2
(Vn +Vn−D)

ΔVn = 1

2
(Vn −Vn−D)

(8.3.64)
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If D = DH, we may think of Vn as being the average of the current horizontal line
with the previous one. Indeed, using the map (8.3.63), we can rewrite Eq. (8.3.64) in the
equivalent form:

Vi, j = 1

2
(Vi, j +Vi−1, j)

ΔVi, j = 1

2
(Vi, j −Vi−1, j)

In a similar fashion, the outputs of the 2-H filters (8.3.61) can be expressed in terms
of the video time index n:

Vn = 1

2
Vn + 1

4
(Vn+D +Vn−D)

ΔVn = 1

2
Vn − 1

4
(Vn+D +Vn−D)

or, in terms of the pixel locations, showing the weighted averaging of the current line
with the lines above and below it:

Vi, j = 1

2
Vi, j + 1

4
(Vi+1, j +Vi−1, j)

ΔVi, j = 1

2
Vi, j − 1

4
(Vi+1, j +Vi−1, j)

Using Eq. (8.3.62), we have for the delayed signal Vn−D:

Vn−D = Yn−D + Zn−D = Yn−D + ejωsc(n−D)Cn−D

The property that makes possible the comb filtering separation of the luminance
and chrominance is that the subcarrier signal ejωscn changes sign from line to line and
from frame to frame. This follows from the (intentional) choice of DH and DF to be
even multiples of an odd integer, Eq. (8.3.53). Indeed, assuming that D is of the form
D = 2(2d+ 1), we find:

ωscD = π
2

2(2d+ 1)= 2πd+π

which corresponds to a 180o phase shift. Indeed,

ejωscD = e2πjd+jπ = ejπ = −1

It follows that:

Vn−D = Yn−D − ejωscnCn−D (8.3.65)

The outputs of the luminance and chrominance combs can be expressed then in the
form:

Vn = 1

2
(Vn +Vn−D)= 1

2
(Yn +Yn−D)+ejωscn 1

2
(Cn −Cn−D)

ΔVn = 1

2
(Vn −Vn−D)= 1

2
(Yn −Yn−D)+ejωscn 1

2
(Cn +Cn−D)
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which can be written in terms of the corresponding sum and difference signals:

Vn = Yn + ejωscnΔCn

ΔVn = ΔYn + ejωscn Cn
(8.3.66)

Consider the line-comb case first, D = DH. Assuming that the chrominance signal
Cn does not change much from line to line (i.e., ignoring its micro-structure frequency
content), we may set ΔCn � 0. Similarly, ignoring the micro-structure of Y, we may set
ΔYn � 0. Then, (8.3.66) simplifies as follows:

Vn = Yn
ΔVn = ejωscn Cn

(8.3.67)

Thus, the comb outputs are effectively the desired luminance and chrominance com-
ponents. The chrominance part ejωscn Cn is then sent into a subcarrier demodulator and
Cn is extracted.

For the frame-comb case, D = DF, the difference signals will be identically zero,
ΔCn = ΔYn = 0, because of the periodicity with period DF. Thus, the frame combs are
capable of separating Y and C exactly. However, they will fail when there is motion in
the image which makes the video signal non-periodic. Advanced digital video systems
use frame combs when there is no or very little motion, and switch to line combs when
substantial motion is detected [174].

In the line-comb case, the approximation ΔYn � 0 is more severe than ΔCn � 0,
because the luminance signal carries most of the spatial detail information. Setting
ΔYn = 0 implies a loss of vertical detail, because the output of Eq. (8.3.67) gives a
luminance value Yn averaged across two lines, instead of Yn itself.

It follows from the above that a better approximation may be obtained by setting
ΔCn to zero, but not ΔYn. The filtering equations (8.3.66) become in this case:

Vn = Yn
ΔVn = ΔYn + ejωscn Cn

(8.3.68)

The averaged signal Yn can be expressed in terms of the desired one Yn and the
missing vertical detail signal ΔYn, as follows:

Yn = 1

2
(Yn +Yn−D)= Yn − 1

2
(Yn −Yn−D)= Yn −ΔYn

Therefore, we may write Eq. (8.3.68) as:

Vn = Yn −ΔYn
ΔVn = ΔYn + ejωscn Cn

(8.3.69)

This result suggests a method of restoring the lost vertical detail [171,183,185]. Be-
cause the vertical detail signal ΔYn is common in both outputs, it can be extracted from
the second output ΔVn by lowpass filtering and then reinserted into the first to recover
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Yn. This works because most of the energy in ΔYn is between 0–1 MHz, whereas the
C-term in ΔVn is centered around 3.58 MHz. Moreover, the term ΔYn can be removed
from ΔVn by a bandpass filter centered at the subcarrier frequency.

Figure 8.3.24 shows the above method of vertical detail restoration. The delay z−M

compensates for the delay introduced by the filter HLP(z). The required lowpass filter
HLP(z) must be chosen to remove the C-term from the ΔVn output and be flat at
low frequencies. Therefore, it is really a bandstop filter with a zero at the subcarrier
frequency ωsc = π/2. In the z-domain, the filter must have zeros at z = e±jωsc =
e±jπ/2 = ±j.

e jωscnCn +ΔYn

Vn

Yn −ΔYn

ΔYn

Yn

1-H delay

z-DH

0.5

−

+

+

+
HBP(z)

HLP(z)

z-M

= vertical
detail

e jωscnCn

Fig. 8.3.24 Vertical detail reinsertion filters.

Another requirement for such a filter is that it have simple coefficients, expressible
as sums of powers of two. Some examples of such filters are given below [171,183,185],
normalized to unity gain at DC:

HLP(z) = 1

4
(1 + z−2)2

HLP(z) = 1

16
(1 + z−2)2(−1 + 6z−2 − z−4)

HLP(z) = 1

32
(1 + z−2)2(−3 + 14z−2 − 3z−4)

HLP(z) = 1

64
(1 + z−2)4(1 − 4z−2 + 5z−4 + 5z−8 − 4z−10 + z−12)

(8.3.70)

The factors (1+z−2) vanish at z = ±j. The corresponding bandpass filtersHBP(z)
are obtained by requiring that they be complementary to HLP(z), that is, they satisfy
HLP(z)+HBP(z)= z−M, where M is the inherent delay introduced by the filters (i.e.,
half the filter order). Thus, we define:

HBP(z)= z−M −HLP(z) (8.3.71)

For the above four examples, we haveM = 2,4,4,10. Using Eqs. (8.3.70) and (8.3.71),
we find:
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HBP(z) = −1

4
(1 − z−2)2

HBP(z) = 1

16
(1 − z−2)4

HBP(z) = 1

32
(1 − z−2)2(3 − 2z−2 + 3z−4)

HBP(z) = − 1

64
(1 − z−2)4(1 + 4z−2 + 5z−4 + 5z−8 + 4z−10 + z−12)

(8.3.72)

all having a common factor (1 − z−2), vanishing at DC and the Nyquist frequency.
Figure 8.3.25 shows the magnitude responses of the fourth filters in (8.3.70) and

(8.3.72) [171], plotted over the effective video band 0 ≤ f ≤ 4.2 MHz. Over this band,
they behave as lowpass and highpass filters. The passband of the lowpass filter coin-
cides with the significant frequency range of the vertical detail signal ΔVn, whereas the
passband of the highpass/bandpass filter coincides with the chrominance band.

Fig. 8.3.25 Vertical detail restoration filters.

We note finally that in Fig. 8.3.24, the bandpass filter blockHBP(z)may be eliminated
and replaced by Eq. (8.3.71), which can be used to construct the required bandpass out-
put from the lowpass output and another delay z−M, thus making the implementation
more efficient computationally; see, for example, Fig. 10.2.7.

8.3.4 Signal Averaging

As we saw in Section 8.3.2, IIR comb filters of the type (8.3.33) can be used to extract a
periodic signal buried noise, provided the teeth of the comb coincide with the harmonics
of the periodic signal.

A widely used alternative method is that of signal averaging, which is equivalent to
comb filtering, but with an FIR comb filter instead of an IIR one.

It can be derived by applying the D-fold replicating transformation (8.3.30) to the
length-N FIR averager filter of Example 8.3.4. Replacing z by zD in the transfer function
(8.3.17) gives:
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H(z)= 1

N
(
1 + z−D + z−2D + · · · + z−(N−1)D) = 1

N
1 − z−ND
1 − z−D (8.3.73)

The frequency response is obtained by setting z = ejω:

H(ω)= 1

N
1 − e−jNDω
1 − e−jωD = 1

N
sin(NDω/2)
sin(Dω/2)

e−jω(N−1)D/2 (8.3.74)

The effect of the transformation is to shrink the spectrum of Fig. 8.3.8 by a factor
of D and then replicate it D times to fill the Nyquist interval. The first zero at 2π/N
shrinks to become 2π/ND. The cutoff frequency of the main lobe, ωc = π/N, scales
down to ωc = π/ND. The resulting widths of the D peaks will be Δω = 2ωc, or,

Δω = 2π
ND

⇒ Δf = fs
ND

= 1

NDT
= 1

NTD
(8.3.75)

that is, the inverse of the total duration of the N periods.
The frequency response H(ω) vanishes at the (ND)th root-of-unity frequencies,

ωk = 2πk/ND, except when they coincide with the Dth roots of unity ωk = 2πk/D
(i.e., the signal harmonics) where it is equal to one.

The NRR of the filter remains the same, that is, NRR = 1/N. As the number of
periods N increases, the NRR decreases reducing the noise. Equivalently, the widths
(8.3.75) of the D peaks become smaller, thus removing more noise.

Figure 8.3.26 shows a plot of the filter’s magnitude response squared for the two
values N = 5 and N = 10, and period D = 10. The higher the N, the higher the density
of the zeros along the Nyquist interval; the narrower the signal harmonic peaks; and the
more the filter suppresses the noise.

Fig. 8.3.26 Magnitude response of signal averager; D = 10, and N = 5, N = 10.

The time-domain operation of the signal averager comb filter is given by the I/O
difference equation:

y(n)= 1

N
[
x(n)+x(n−D)+x(n− 2D)+· · · + x(n− (N − 1)D

)]
(8.3.76)
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It is not as efficient as the IIR comb (8.3.33) because it requiresN−1 multiple delays
z−D, whereas the IIR comb requires only one. However, in practice, the FIR and IIR comb
filters are used differently.

Because of its efficient implementation, the IIR comb is better suited for continuous
processing of a noisy periodic signal—the objective being to eliminate the noise from
the on-going signal. An application of this is in digital color TV systems, where an IIR
frame comb [174] can be used to eliminate transmission noise.

On the other hand, the FIR comb is more appropriately used as a signal averager,
processing only a finite number of periods, that is, N periods of the noisy signal—the
objective being to get a better estimate of one period of the desired signal s(n).

This approach is used widely in applications where the desired noisy signal can be
measured repeatedly. For example, evoked brain waves generated by repeated applica-
tion of visual stimuli can be averaged to reduce the on-going background brain activity,
which is typically much stronger than the evoked signal.

The I/O filtering equation (8.3.76) can be cast in a signal averaging form as follows.
We assume that the noisy input x(n) has finite length, consisting of N noisy periods,
that is, it has length ND samples. The ith period can be defined as follows:

xi(n)= x(iD+ n), n = 0,1, . . . ,D− 1 (8.3.77)

where i = 0,1, . . . ,N − 1 for a total of N periods. Figure 8.3.27 depicts the case N = 4,
for which the I/O equation becomes:

y(n)= 1

4

[
x(n)+x(n−D)+x(n− 2D)+x(n− 3D)

]

x0 x1 x2x(n)

0

n

D 2D 3D 4D 5D 6D 7D

y(n)

x(n-D)

x(n-2D)

x(n-3D)

D D D D

x3

x0 x1 x2 x3

x0 x1 x2 x3

x0 x1 x2 x3

(N-1)D ND

y

Fig. 8.3.27 Signal averaging as FIR comb filtering.

As seen in Fig. 8.3.27, the terms x(n − iD) are successively delayed by D samples
at a time. Because of the finite length of the input, the time periods for the input-on,
steady-state, and input-off transients will be:

0 ≤ n ≤ 3D− 1 (input-on)
3D ≤ n ≤ 4D− 1 (steady state)
4D ≤ n ≤ 7D− 1 (input-off)
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In particular, steady state lasts for only one period during which all terms in Eq. (8.3.76)
are contributing to the output. The contributing periods of each term are shaded in
Fig. 8.3.27.

The time interval [3D, 4D) of the steady state can be parametrized by the shifted
time index (3D + n), which runs over this interval provided n takes on the values:
n = 0,1, . . . ,D− 1. Thus, replacing n by 3D+ n in the I/O equation, gives the steady-
state output samples of the fourth period:

y(3D+ n)= 1

4

[
x(3D+ n)+x(2D+ n)+x(D+ n)+x(n)]

for n = 0,1, . . . ,D− 1.
Using the definition (8.3.77), we can rewrite the I/O equation in a form that shows

the averaging of the four periods. Denoting the steady-state output samples by ŷ(n)=
y(3D+ n), we have:

ŷ(n)= 1

4

[
x3(n)+x2(n)+x1(n)+x0(n)

]
, n = 0,1, . . . ,D− 1

More generally, the outputs ŷ(n)= y((N − 1)D+ n), n = 0,1, . . . ,D− 1 are the D
outputs over the steady-state period covering the time interval

[
(N − 1)D, ND

)
. They

are computed by averaging all N periods in the input:

ŷ(n)= 1

N

N−1∑
i=0

xi(n)= 1

N
[
x0(n)+x1(n)+· · · + xN−1(n)

]
(8.3.78)

The output ŷ(n) provides an estimate of one period of the desired signal s(n). To
see this, we use the periodicity of s(n) to write:

xi(n)= x(iD+ n)= s(iD+ n)+v(iD+ n)= s(n)+vi(n)

where vi(n)= v(iD + n) are the noise samples during the ith period. Inserting these
into Eq. (8.3.78), we find:

ŷ(n)= 1

N

N−1∑
i=0

(
s(n)+vi(n)

) = s(n)+ 1

N

N−1∑
i=0

vi(n)

Defining the averaged noise over N periods by

v̂(n)= 1

N

N−1∑
i=0

vi(n)

we have

ŷ(n)= s(n)+v̂(n) (8.3.79)

Assuming that the noise samples have zero mean and are mutually independent (at
least from period to period), we can verify that the averaged noise v̂(n) will have a
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mean-square value reduced by the NRR, that is, by a factor of N. Indeed, denoting the
variance of the input noise by σ2

v , we have for the variance of v̂(n):

σ2
v̂ =

1

N2

(
σ2
v +σ2

v + · · · +σ2
v
) = 1

N2

(
Nσ2

v
) = 1

N
σ2
v

The computation of Eq. (8.3.78) can be implemented using the filtering equation
(8.3.76), applied to N periods of the input and returning the output only for the last
period. Because of the finite length of the input, it proves convenient to work with the
recursive version of Eq. (8.3.76) based on the transfer function (8.3.73), that is,

y(n)= y(n−D)+ 1

N
(
x(n)−x(n−ND))

The roundoff noise accumulation problems discussed in Example 8.3.5 do not arise
in this case because the input remains finite. In fact, because of the finite length of x(n)
over the N periods, 0 ≤ n ≤ ND − 1, the delayed term x(n −ND) will not contribute
to the output, giving the recursion:

y(n)= y(n−D)+ 1

N
x(n), 0 ≤ n ≤ ND− 1 (8.3.80)

Figure 8.3.28 shows a block diagram implementation that uses only oneD-fold delay
z−D. The corresponding sample processing algorithm can be split into two parts: the
accumulation of N periods, followed by the output of the averaged values ŷ(n). The
algorithm, formulated with a linear and a circular delay line, is then:

for each of the ND inputs x do:
w0 = wD + x/N
delay(D, w)

for each of the ND inputs x do:
∗p = tap(D, w, p, D)+x/N
cdelay(D, w, &p)

where w is the (D+1)-dimensional state vector wi(n)= y(n− i), i = 0,1, . . . ,D.
After theN periods have been accumulated, the lastD outputs are returned into the

signal ŷ(n). Because of the last call to delay, these outputs are now shifted one position
ahead into the delay line. They can be returned by reading the delay-line contents from
the bottom up:

for n = 0,1, . . . ,D− 1,
ŷ(n)= wD−n

for n = 0,1, . . . ,D− 1,
ŷ(n)= tap(D, w, p, D− n)

The circular delay line version is the more efficient implementation, especially in
hardware, when the period D is large, for example, larger than 1000.

To appreciate the manner in which the difference equation (8.3.80) accumulates the
periods of the input and builds up the steady-state output ŷ(n), consider a small exam-
ple where D = 3 and N = 4. The input signal is assumed to be the noise-free repetition
of four periods of the samples [s0, s1, s2]. The input and output sequences of Eq. (8.3.80)
will be in this case:
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x
1/N w0

w0

y0

w1

y1

wD

wD

wD-1

yD-1
read in N periods
or, ND samples after N periods 

are accumulated,
write out the last
D tap outputs,
in reverse order

...

...z-D

delay

Fig. 8.3.28 Signal averaging implementation with a D-fold delay.

x = [s0 s1 s2 | s0 s1 s2 | s0 s1 s2 | s0 s1 s2]

y = 1

4
[s0 s1 s2 | 2s0 2s1 2s2 | 3s0 3s1 3s2 | 4s0 4s1 4s2]

The last three outputs are the averaged signal ŷ(n), which is exactly equal to one
period of s(n). Table 8.3.1 shows the successive contents of the delay-line buffer w =
[w0,w1,w2,w3] (in the linear buffer case).

n x w0 w1 w2 w3 y = w0/4

0 s0 s0 0 0 0 s0/4
1 s1 s1 s0 0 0 s1/4
2 s2 s2 s1 s0 0 s2/4

3 s0 2s0 s2 s1 s0 2s0/4
4 s1 2s1 2s0 s2 s1 2s1/4
5 s2 2s2 2s1 2s0 s2 2s2/4

6 s0 3s0 2s2 2s1 2s0 3s0/4
7 s1 3s1 3s0 2s2 2s1 3s1/4
8 s2 3s2 3s1 3s0 2s2 3s2/4

9 s0 4s0 3s2 3s1 3s0 s0

10 s1 4s1 4s0 3s2 3s1 s1

11 s2 4s2 4s1 4s0 3s2 s2

12 − − 4s2 4s1 4s0 −

Table 8.3.1 Delay line contents for D = 3, N = 4.

Note that in each line, the contents of [w1,w2,w3] are obtained by right-shifting
the contents of [w0,w1,w2] of the previous line, and w0 is computed by the recursion
w0 = w3 + x. For convenience, we have moved the multiplier 1/N to the output side,
that is, the output samples are computed by y = w0/4.



8.3. NOISE REDUCTION AND SIGNAL ENHANCEMENT 427

The last call of delay at time n = ND−1 = 11 causes the delay-line contents to shift
once more, in preparation for the filtering at time n = ND = 12. Thus, as seen in the
table, the buffer entries [w1,w2,w3] are left containing the desired period in reverse
order.

The following program segment illustrates the usage of the circular version of the
sample processing algorithm. The input samples are read sequentially from a data file
containing at least N periods and pointed to by the file pointer fpx:

double *w, *p;
w = (double *) calloc(D+1, sizeof(double)); D+1 dimensional

p = w; initialize p

for (i=0; i<N; i++) N periods

for (n=0; n<D; n++) { D samples per period

fscanf(fpx, "%lf", &x); read input x
*p = tap(D, w, p, D) + x / N; accumulate x with Dth tap

cdelay(D, w, &p); update delay line

}

for (n=0; n<D; n++) output D taps

yhat[n] = tap(D, w, p, D-n); in reverse order

Figure 8.3.29 shows a simulation of the algorithm. The desired periodic signal s(n)
was taken to be the following square wave of period D = 100:

s(n)=
{

1, for 0 ≤ n ≤ D/2 − 1
−1, for D/2 ≤ n ≤ D− 1

The noise v(n) was zero-mean, unit-variance, white noise generated by the routine
gran. Because the rms noise value is unity, the noise is as strong as the square wave.
The averaged signal ŷ(n) was computed withN = 1, 16, 64, and 256 periods. Note that
asN increases by a factor of four, the rms noise value drops by a factor of two, namely,
σv̂ = σv/

√
N.

8.3.5 Savitzky-Golay Smoothing Filters∗

We mentioned in Example 8.3.4 that there are limits to the applicability of the plain FIR
averager filter. In order to achieve a high degree of noise reduction, its length N may
be required to be so large that the filter’s passband ωc = π/N becomes smaller than
the signal bandwidth, causing the removal of useful high frequencies from the desired
signal.

In other words, in its attempt to smooth out the noise v(n), the filter begins to
smooth out the desired signal s(n) to an unacceptable degree. For example, if s(n)
contains some fairly narrow peaks, corresponding to the higher frequencies present in
s(n), and the filter’s length N is longer than the duration of the peaks, the filter will
tend to smooth the peaks too much, broadening them and reducing their height.

The Savitzky-Golay FIR smoothing filters, also known as polynomial smoothing, or
least-squares smoothing filters [200–216,303], are generalizations of the FIR averager
filter that can preserve better the high-frequency content of the desired signal, at the
expense of not removing as much noise as the averager.
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Fig. 8.3.29 Signal averaging with D = 100, and N = 1, 16, 64, 256 sweeps.

They can be characterized in three equivalent ways: (1) They are optimal lowpass
filters, in the sense that they minimize the NRR, but their impulse response coefficients
hn are subject to additional constraints than the DC condition (8.3.12); (2) they are the
optimal filters whose frequency response H(ω) satisfies certain flatness constraints
at DC; (3) they are the filters that optimally fit a set of data points to polynomials of
different degrees.

We begin with the third point of view. Figure 8.3.30 shows five noisy signal samples
[x−2, x−1, x0, x1, x2] positioned symmetrically about the origin. Later on, we will shift
them to an arbitrary position along the time axis.

Polynomial smoothing of the five samples is equivalent to replacing them by the
values that lie on smooth polynomial curves drawn between the noisy samples. In
Fig. 8.3.30, we consider fitting the five data to a constant signal, a linear signal, and
a quadratic signal. The corresponding smoothed values are given by the 0th, 1st, and
2nd degree polynomials, for m = −2,−1,0,1,2:

x̂m = c0 (constant)
x̂m = c0 + c1m (linear)
x̂m = c0 + c1m+ c2m2 (quadratic)

(8.3.81)

For each choice of the polynomial order, the coefficients ci must be determined
optimally such that the corresponding polynomial curve best fits the given data. This
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Fig. 8.3.30 Data smoothing with polynomials of degrees d = 0,1,2.

can be accomplished by a least-squares fit, which chooses the ci that minimize the total
mean-square error. For example, in the quadratic case, we have the performance index
to be minimized:

J =
2∑

m=−2

e2
m =

2∑
m=−2

(
xm − (c0 + c1m+ c2m2)

)2 = min (8.3.82)

where the fitting errors are defined as

em = xm − x̂m = xm − (c0 + c1m+ c2m2), m = −2,−1,0,1,2

It proves convenient to express Eqs. (8.3.81) and (8.3.82) in a vectorial form, which
generalizes to higher polynomial orders and to more than five data points. We define
the five-dimensional vectors:

x =

⎡⎢⎢⎢⎢⎢⎢⎣
x−2

x−1

x0

x1

x2

⎤⎥⎥⎥⎥⎥⎥⎦ , x̂ =

⎡⎢⎢⎢⎢⎢⎢⎣
x̂−2

x̂−1

x̂0

x̂1

x̂2

⎤⎥⎥⎥⎥⎥⎥⎦ , e =

⎡⎢⎢⎢⎢⎢⎢⎣
e−2

e−1

e0

e1

e2

⎤⎥⎥⎥⎥⎥⎥⎦ = x − x̂

Similarly, we define the five-dimensional polynomial basis vectors s0, s1, s2, whose
components are:

s0(m)= 1, s1(m)=m, s2(m)=m2, −2 ≤m ≤ 2

Vectorially, we have:

s0 =

⎡⎢⎢⎢⎢⎢⎢⎣
1
1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎦ , s1 =

⎡⎢⎢⎢⎢⎢⎢⎣
−2
−1

0
1
2

⎤⎥⎥⎥⎥⎥⎥⎦ , s2 =

⎡⎢⎢⎢⎢⎢⎢⎣
4
1
0
1
4

⎤⎥⎥⎥⎥⎥⎥⎦ (8.3.83)

In this notation, we may write the third of Eq. (8.3.81) vectorially:
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x̂ = c0

⎡⎢⎢⎢⎢⎢⎢⎣
1
1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎦+ c1

⎡⎢⎢⎢⎢⎢⎢⎣
−2
−1

0
1
2

⎤⎥⎥⎥⎥⎥⎥⎦+ c2

⎡⎢⎢⎢⎢⎢⎢⎣
4
1
0
1
4

⎤⎥⎥⎥⎥⎥⎥⎦ = c0s0 + c1s1 + c2s2

Therefore,

x̂ = c0s0 + c1s1 + c2s2 = [s0, s1, s2]

⎡⎢⎣ c0

c1

c2

⎤⎥⎦ ≡ Sc (8.3.84)

The 5×3 basis matrix S has as columns the three basis vectors s0, s1, s2. It is given
explicitly as follows:

S = [s0, s1, s2]=

⎡⎢⎢⎢⎢⎢⎢⎣
1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4

⎤⎥⎥⎥⎥⎥⎥⎦ (8.3.85)

Writing e = x− x̂ = x−Sc, we can express the performance index (8.3.82) as the dot
product:

J = eTe = (x − Sc)T(x − Sc)= xTx − 2cTSTx + cTSTSc (8.3.86)

To minimize this expression with respect to c, we must set the gradient ∂J/∂c to
zero and solve for c. It is left as an exercise to show that this gradient is:

∂J
∂c

= −2STe = −2ST
(
x − Sc

) = −2
(
STx − STSc

)
(8.3.87)

Therefore, the minimization condition gives the so-called orthogonality equations:

∂J
∂c

= 0 ⇒ STe = 0 (8.3.88)

which can be written as the normal equations:

STSc = STx (8.3.89)

with optimal solution:

c = (STS)−1STx ≡ GTx (8.3.90)

where we defined the 5×3 matrix G by

G = S(STS)−1 (8.3.91)

Inserting the optimal coefficients c into Eq. (8.3.84), we find the smoothed values:
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x̂ = Sc = SGTx = S(STS)−1STx ≡ Bx (8.3.92)

where we defined the 5×5 matrix B by

B = SGT = GST = S(STS)−1ST (8.3.93)

We define the symmetric 3×3 matrix F = STS, which appears in the expressions for
G and B. Its matrix elements are the dot products of the basis vectors, that is, the ijth
matrix element is Fij = (STS)ij= sTi sj. Indeed, using Eq. (8.3.85), we find

F = STS =
⎡⎢⎣ sT0

sT1
sT2

⎤⎥⎦ [s0, s1, s2]=
⎡⎢⎣ sT0 s0 sT0 s1 sT0 s2

sT1 s0 sT1 s1 sT1 s2

sT2 s0 sT2 s1 sT2 s2

⎤⎥⎦ (8.3.94)

Using Eq. (8.3.85), we calculate F and its inverse F−1:

F =
⎡⎢⎣ 5 0 10

0 10 0
10 0 34

⎤⎥⎦ , F−1 = 1

35

⎡⎢⎣ 17 0 −5
0 3.5 0
−5 0 2.5

⎤⎥⎦ (8.3.95)

Then, we calculate the 5×3 matrix G = S(STS)−1= SF−1:

G = SF−1 = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣ 17 0 −5

0 3.5 0
−5 0 2.5

⎤⎥⎦ or,

G = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
−3 −7 5
12 −3.5 −2.5
17 0 −5
12 3.5 −2.5
−3 7 5

⎤⎥⎥⎥⎥⎥⎥⎦ ≡ [g0, g1, g2] (8.3.96)

As we see below, the three columns of G have useful interpretations as differentia-
tion filters. Next, using Eq. (8.3.93), we calculate the 5×5 matrix B:

B = GST = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
−3 −7 5
12 −3.5 −2.5
17 0 −5
12 3.5 −2.5
−3 7 5

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣ 1 1 1 1 1

−2 −1 0 1 2
4 1 0 1 4

⎤⎥⎦ or,

B = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
31 9 −3 −5 3

9 13 12 6 −5
−3 12 17 12 −3
−5 6 12 13 9

3 −5 −3 9 31

⎤⎥⎥⎥⎥⎥⎥⎦ ≡ [b−2, b−1, b0, b1, b2] (8.3.97)
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Because B is symmetric, its rows are the same as its columns. Thus, we can write it
either in column-wise or row-wise form:

B = [b−2, b−1, b0, b1, b2]=

⎡⎢⎢⎢⎢⎢⎢⎣
bT−2

bT−1

bT0
bT1
bT2

⎤⎥⎥⎥⎥⎥⎥⎦ = BT

The five columns or rows of B are the Savitzky-Golay (SG) smoothing filters of length
5 and polynomial order 2. The corresponding smoothed values x̂ can be expressed
component-wise in terms of these filters, as follows:⎡⎢⎢⎢⎢⎢⎢⎣

x̂−2

x̂−1

x̂0

x̂1

x̂2

⎤⎥⎥⎥⎥⎥⎥⎦ = x̂ = Bx = BTx =

⎡⎢⎢⎢⎢⎢⎢⎣
bT−2

bT−1

bT0
bT1
bT2

⎤⎥⎥⎥⎥⎥⎥⎦x =

⎡⎢⎢⎢⎢⎢⎢⎣
bT−2x
bT−1x
bT0 x
bT1 x
bT2 x

⎤⎥⎥⎥⎥⎥⎥⎦
or, for m = −2,−1,0,1,2:

x̂m = bTmx (8.3.98)

Thus, the mth filter bm dotted into the data vector x generates the mth smoothed
data sample. In a similar fashion, we can express the polynomial coefficients ci as dot
products. Using the solution Eq. (8.3.90), we have⎡⎢⎣ c0

c1

c2

⎤⎥⎦ = c = GTx =
⎡⎢⎣ gT0

gT1
gT2

⎤⎥⎦x =
⎡⎢⎣ gT0 x

gT1 x
gT2 x

⎤⎥⎦
Thus, the coefficients ci can be expressed as the dot products of the columns of G

with the data vector x:

ci = gTi x, i = 0,1,2 (8.3.99)

Of the five columns of B, the middle one, b0, is the most important because it
smoothes the value x0, which is symmetrically placed with respect to the other sam-
ples in x, as shown in Fig. 8.3.30.

In smoothing a long block of data, the filter b0 is used during the steady-state period,
whereas the other columns of B are used only during the input-on and input-off tran-
sients. We will refer to b0 and the other columns of B as the steady-state and transient
Savitzky-Golay filters.

Setting m = 0 into Eq. (8.3.81), we note that the middle smoothed value x̂0 is equal
to the polynomial coefficient c0. Denoting it by y0 = x̂0 and using Eqs. (8.3.98) and
(8.3.99), we find

y0 = x̂0 = c0 = bT0 x = gT0 x (8.3.100)
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The dot products are the same because the middle column of B and the first column
of G are always the same, b0 = g0. Using the numerical values of b0, we have:

y0 = bT0 x = 1

35
[−3, 12, 17, 12, −3]

⎡⎢⎢⎢⎢⎢⎢⎣
x−2

x−1

x0

x1

x2

⎤⎥⎥⎥⎥⎥⎥⎦
= 1

35
(−3x−2 + 12x−1 + 17x0 + 12x1 − 3x2)

(8.3.101)

To express this as a true filtering operation acting on an input sequence xn, we shift
the group of five samples to be centered around the nth time instant, that is, we make
the substitution:

[x−2, x−1, x0, x1, x2] −→ [xn−2, xn−1, xn, xn+1, xn+2]

The middle sample xn is then smoothed by forming the same linear combination of
the shifted samples as in Eq. (8.3.101):

yn = 1

35

(−3xn−2 + 12xn−1 + 17xn + 12xn+1 − 3xn+2
)

(8.3.102)

The filter corresponds to fitting every group of five samples {xn−2, xn−1, xn, xn+1,
xn+2} to a quadratic polynomial and replacing the middle sample xn by its smoothed
value yn. It is a lowpass filter and is normalized to unity gain at DC, because its coeffi-
cients add up to one.

Its NRR is the sum of the squared filter coefficients. It can be proved in general that
the NRR of any steady-state Savitzky-Golay filter b0 is equal to the middle value of its
impulse response, that is, the coefficient b0(0). Therefore,

NRR = bT0 b0 =
2∑

m=−2

b0(m)2= b0(0)= 17

35
= 17/7

5
= 2.43

5
= 0.49

By comparison, the length-5 FIR averager operating on the same five samples is:

yn = 1

5

(
xn−2 + xn−1 + xn + xn+1 + xn+2

)
(8.3.103)

with NRR = 1/N = 1/5. Thus, the length-5 SG filter performs 2.43 times worse in
reducing noise than the FIR averager. However, the SG filter has other advantages to be
discussed later.

We saw in Eq. (8.3.100) that the coefficient c0 represents the smoothed value of x0

at m = 0. Similarly, the coefficient c1 represents the slope—the derivative—of x0 at
m = 0. Indeed, we have from Eq. (8.3.81) by differentiating and setting m = 0:

˙̂x0 = dx̂m
dm

∣∣∣∣
0
= c1 , ¨̂x0 = d2x̂m

dm2

∣∣∣∣∣
0

= 2c2
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Thus, c1 and 2c2 represent the polynomial estimates of the first and second deriva-
tives at m = 0. Denoting them by ẏ0 = c1 and ÿ0 = 2c2, and using Eq. (8.3.99) we can
express them in terms of the second and third columns of the matrix G:

ẏ0 = ˙̂x0 = c1 = gT1 x

ÿ0 = ¨̂x0 = 2c2 = 2gT2 x
(8.3.104)

Using the numerical values of g1 and g2, we have:

ẏ0 = 1

35
(−7x−2 − 3.5x−1 + 3.5x1 + 7x2)

ÿ0 = 2

35
(5x−2 − 2.5x−1 − 5x0 − 2.5x1 + 5x2)

Shifting these to the nth time sample, we find the length-5 Savitzky-Golay filters for
estimating the first and second derivatives of xn:

ẏn = 1

35

(−7xn−2 − 3.5xn−1 + 3.5xn+1 + 7xn+2
)

ÿn = 2

35

(
5xn−2 − 2.5xn−1 − 5xn − 2.5xn+1 + 5xn+2

) (8.3.105)

The above designs can be generalized in a straightforward manner to an arbitrary
degree d of the polynomial fit and to an arbitrary length N of the data vector x. We
require only that N ≥ d+ 1, a restriction to be clarified later.

Assuming thatN is odd, say,N = 2M+1, the five-dimensional data vector x = [x−2,
x−1, x0, x1, x2]T is replaced by an N-dimensional one, havingM points on either side of
x0:

x = [x−M, . . . , x−1, x0, x1, . . . , xM]T (8.3.106)

The N data samples in x are then fitted by a polynomial of degree d, generalizing
Eq. (8.3.81):

x̂m = c0 + c1m+ · · · + cdmd, −M ≤m ≤M (8.3.107)

In this case, there are d+1 polynomial basis vectors si, i = 0,1, . . . , d, defined to
have components:

si(m)=mi, −M ≤m ≤M (8.3.108)

The corresponding N×(d+1) matrix S is defined to have si as columns:

S = [s0, s1, . . . , sd] (8.3.109)

The smoothed values (8.3.107) can be written in the vector form:
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x̂ =
d∑
i=0

cisi = [s0, s1, . . . , sd]

⎡⎢⎢⎢⎢⎢⎣
c0

c1

...
cd

⎤⎥⎥⎥⎥⎥⎦ = Sc (8.3.110)

The design steps for the SG filters can be summarized then as follows:

F = STS � Fij = sTi sj, i, j = 0,1, . . . , d

G = SF−1 ≡ [g0,g1, . . . ,gd]

B = SGT = GST = SF−1ST ≡ [b−M, . . . ,b0, . . . ,bM]

(8.3.111)

The corresponding coefficient vector c and smoothed data vector will be:

c = GTx � ci = gTi x, i = 0,1, . . . , d

x̂ = Bx � x̂m = bTmx, −M ≤m ≤M
(8.3.112)

The middle smoothed value y0 = x̂0 is given in terms of the middle SG filter b0:

y0 = bT0 x =
M∑

m=−M
b0(m)xm

The N-dimensional vector x can be shifted to the nth time instant by:

x −→ [xn−M, . . . , xn−1, xn, xn+1, . . . , xn+M]T

The resulting length-N, order-d, Savitzky-Golay filter for smoothing a noisy sequence
x(n) will be, in its steady-state form:

y(n)=
M∑

m=−M
b0(m)x(n+m)=

M∑
m=−M

b0(−m)x(n−m) (8.3.113)

The second equation expresses the output in convolutional form. Because the filter
b0 is symmetric about its middle, we can replace b0(−m)= b0(m).

The d+1 columns of theN×(d+1)-dimensional matrix G give the SG differentiation
filters, for derivatives of orders i = 0,1, . . . , d. It follows by differentiating Eq. (8.3.107)
i times and setting m = 0:

y(i)0 = x̂(i)0 = dix̂m
dmi

∣∣∣∣∣
0

= i! ci = i! gTi x

Shifting these to time n, gives the differentiation filtering equations:

y(i)(n)= i!
M∑

m=−M
gi(−m)x(n−m), i = 0,1, . . . , d (8.3.114)
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where, as in Eq. (8.3.113), we reversed the order of writing the terms, but here the
filters gi are not necessarily symmetric. Actually, they are symmetric for even i, and
antisymmetric for odd i.

Example 8.3.13: We construct the length-5 SG filters for the cases d = 0 and d = 1. For d = 0,
corresponding to the constant x̂m = c0 in Eq. (8.3.81), there is only one basis vector s0

defined in Eq. (8.3.83). The basis matrix S = [s0] will have just one column, and the
matrix F will be the scalar

F = STS = sT0 s0 = [1,1,1,1,1]

⎡⎢⎢⎢⎢⎢⎢⎣
1
1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎦ = 5

The matrix G will then be

G = SF−1 = 1

5
s0 = 1

5
[1,1,1,1,1]T

resulting in the SG matrix B:

B = GST = 1

5
s0sT0 = 1

5

⎡⎢⎢⎢⎢⎢⎢⎣
1
1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎦ [1,1,1,1,1]=
1

5

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎦
Thus, the steady-state SG filter is the length-5 averager:

b0 = 1

5
[1,1,1,1,1]T

For the case d = 1, corresponding to the linear fit x̂m = c0 + c1m, we have the two basis
vectors s0 and s1, given in Eq. (8.3.83). We calculate the matrices S, F, and F−1:

S = [s0, s1]=

⎡⎢⎢⎢⎢⎢⎢⎣
1 −2
1 −1
1 0
1 1
1 2

⎤⎥⎥⎥⎥⎥⎥⎦ , F = STS =
[

5 0
0 10

]
, F−1 = 1

5

[
1 0
0 0.5

]

This gives for G and B:

G = SF−1 = 1

5

⎡⎢⎢⎢⎢⎢⎢⎣
1 −1
1 −0.5
1 0
1 0.5
1 1

⎤⎥⎥⎥⎥⎥⎥⎦ , B = GST = 1

5

⎡⎢⎢⎢⎢⎢⎢⎣
3 2 1 0 −1
2 1.5 1 0.5 0
1 1 1 1 1
0 0.5 1 1.5 2

−1 0 1 2 3

⎤⎥⎥⎥⎥⎥⎥⎦
Thus, the steady-state SG filter b0 is still equal to the length-5 FIR averager. It is a general
property of SG filters, that the filter b0 is the same for successive polynomial orders, that
is, for d = 0,1, d = 2,3, d = 4,5, and so on. However, the transient SG filters are different.
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Example 8.3.14: Here, we construct the Savitzky-Golay filters of lengthN = 5 and order d = 3.
The smoothed estimates are given by the cubic polynomial:

x̂m = c0 + c1m+ c2m2 + c3m3

There is an additional basis vector s3 with components s3(m)= m3. Therefore, the basis
matrix S is:

S = [s0, s1, s2, s3]=

⎡⎢⎢⎢⎢⎢⎢⎣
1 −2 4 −8
1 −1 1 −1
1 0 0 0
1 1 1 1
1 2 4 8

⎤⎥⎥⎥⎥⎥⎥⎦ ⇒ F = STS =

⎡⎢⎢⎢⎣
5 0 10 0
0 10 0 34

10 0 34 0
0 34 0 130

⎤⎥⎥⎥⎦

Because of the checkerboard pattern of this matrix, its inverse can be obtained from the
inverses of the two 2×2 interlaced submatrices:

[
5 10

10 34

]−1

= 1

70

[
34 −10

−10 5

]
,
[

10 34
34 130

]−1

= 1

144

[
130 −34
−34 10

]

Interlacing these inverses, we obtain:

F−1 =

⎡⎢⎢⎢⎣
34/70 0 −10/70 0

0 130/144 0 −34/144
−10/70 0 5/70 0

0 −34/144 0 10/144

⎤⎥⎥⎥⎦
Then, we compute the derivative filter matrix G:

G = SF−1 = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
−3 35/12 5 −35/12
12 −70/3 −2.5 35/6
17 0 −5 0
12 70/3 −2.5 −35/6
−3 −35/12 5 35/12

⎤⎥⎥⎥⎥⎥⎥⎦
and the SG matrix B:

B = SGT = 1

35

⎡⎢⎢⎢⎢⎢⎢⎣
34.5 2 −3 2 −0.5

2 27 12 −8 2
−3 12 17 12 −3

2 −8 12 27 2
−0.5 2 −3 2 34.5

⎤⎥⎥⎥⎥⎥⎥⎦
As mentioned above, the steady-state SG filter b0 is the same as that of case d = 2. But,
the transient and differentiation filters are different. 	


In practice, the most common values of d are 0,1,2,3,4. For these ds and arbitrary
filter lengthsN, the SG matrix B can be constructed in closed form; see references [200–
216], as well as the extensive tables in [208]. Denoting the inverse of the (d+1)×(d+1)
matrix F = STS by Φ = F−1, we can write



438 8. SIGNAL PROCESSING APPLICATIONS

B = SF−1ST = SΦST =
d∑
i=0

d∑
j=0

sis
T
j Φij

which gives for the mkth matrix element

Bmk =
d∑
i=0

d∑
j=0

si(m)sj(k)Φij or,

Bmk =
d∑
i=0

d∑
j=0

mikjΦij , −M ≤m,k ≤M (8.3.115)

Because of symmetry, Bmk = Bkm, they are the kth component of the SG filter bm or
the mth component of the filter bk, that is,

Bmk = Bkm = bm(k)= bk(m)=
d∑
i=0

d∑
j=0

mikjΦij (8.3.116)

The matrix Φ can be determined easily for the cases 0 ≤ d ≤ 4. The matrix F is what
is known as a Hankel matrix, that is, having the same entries along each antidiagonal
line. Therefore, its matrix elements Fij depend only on the sum i+ j of the indices. To
see this, we write Fij as the inner product:

Fij = (STS)ij= sTi sj =
M∑

m=−M
si(m)sj(m)

and because si(m)=mi, we have:

Fij =
M∑

m=−M
mi+j ≡ Fi+j , 0 ≤ i, j ≤ d (8.3.117)

Note that because of the symmetric limits of summation, Fi+j will be zero whenever
i + j is odd. This leads to the checkerboard pattern of alternating zeros in F that we
saw in the above examples. Also, because d ≤ 4, the only values of i + j that we need
are: i+ j = 0,2,4,6,8. For those, the summations over m can be done in closed form,
giving:



8.3. NOISE REDUCTION AND SIGNAL ENHANCEMENT 439

F0 =
M∑

m=−M
m0 = 2M + 1 = N

F2 =
M∑

m=−M
m2 = 1

3
M(M + 1)F0

F4 =
M∑

m=−M
m4 = 1

5
(3M2 + 3M − 1)F2

F6 =
M∑

m=−M
m6 = 1

7
(3M4 + 6M3 − 3M + 1)F2

F8 =
M∑

m=−M
m8 = 1

15
(5M6 + 15M5 + 5M4 − 15M3 −M2 + 9M − 3)F2

(8.3.118)

We can express F in terms of these definitions, for various values of d. For example,
for d = 0,1,2,3, the F matrices are:

[F0] ,
[
F0 0
0 F2

]
,

⎡⎢⎣ F0 0 F2

0 F2 0
F2 0 F4

⎤⎥⎦ ,
⎡⎢⎢⎢⎣
F0 0 F2 0
0 F2 0 F4

F2 0 F4 0
0 F4 0 F6

⎤⎥⎥⎥⎦
The corresponding inverse matricesΦ = F−1 are obtained by interlacing the inverses

of the checkerboard submatrices, as in Example 8.3.14. For d = 0,1,2, we have for Φ:

[1/F0] ,
[

1/F0 0
0 1/F2

]
,

⎡⎢⎣ F4/D4 0 −F2/D4

0 1/F2 0
−F2/D4 0 F0/D4

⎤⎥⎦ ,
and for d = 3:

Φ = F−1 =

⎡⎢⎢⎢⎣
F4/D4 0 −F2/D4 0

0 F6/D8 0 −F4/D8

−F2/D4 0 F0/D4 0
0 −F4/D8 0 F6/D8

⎤⎥⎥⎥⎦
where the D4 and D8 are determinants of the interlaced submatrices:

D4 = F0F4 − F2
2 , D8 = F2F6 − F2

4 (8.3.119)

Inserting the above expressions for Φ into Eq. (8.3.116), we determine the corre-
sponding SG filters. For d = 0, we find for −M ≤m,k ≤M:

bm(k)= Bmk = 1

F0
= 1

N
(8.3.120)

For d = 1:
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bm(k)= Bmk = 1

F0
+ mk
F2

(8.3.121)

For d = 2:

bm(k)= Bmk = F4

D4
+ 1

F2
mk− F2

D4
(m2 + k2)+ F0

D4
m2k2 (8.3.122)

For d = 3:

bm(k)= Bmk = F4

D4
+ F6

D8
mk− F2

D4
(m2 + k2)+ F0

D4
m2k2

− F4

D8
(km3 +mk3)+ F2

D8
m3k3

(8.3.123)

In a similar fashion, we also find for the case d = 4:

bm(k)= Bmk =D12

D
+ F6

D8
mk− D10

D
(m2 + k2)+E8

D
m2k2

− F4

D8
(km3 +mk3)+ F2

D8
m3k3 + D8

D
(m4 + k4)

− D6

D
(m2k4 + k2m4)+D4

D
m4k4

(8.3.124)

where

D6 = F0F6 − F2F4

D10 = F2F8 − F4F6

D = F0D12 − F2D10 + F4D8

E8 = F0F8 − F2
4

D12 = F4F8 − F2
6 (8.3.125)

In this case, the matrix F and its two interlaced submatrices are:

F =

⎡⎢⎢⎢⎢⎢⎢⎣
F0 0 F2 0 F4

0 F2 0 F4 0
F2 0 F4 0 F6

0 F4 0 F6 0
F4 0 F6 0 F8

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎣ F0 F2 F4

F2 F4 F6

F4 F6 F8

⎤⎥⎦ , [
F2 F4

F4 F6

]

Its inverse—obtained by interlacing the inverses of these two submatrices—can be
expressed in terms of the determinant quantities of Eq. (8.3.125):

Φ = F−1 =

⎡⎢⎢⎢⎢⎢⎢⎣
D12/D 0 −D10/D 0 D8/D

0 F6/D8 0 −F4/D8 0
−D10/D 0 E8/D 0 −D6/D

0 −F4/D8 0 F2/D8 0
D8/D 0 −D6/D 0 D4/D

⎤⎥⎥⎥⎥⎥⎥⎦
Setting m = 0, we obtain the steady-state SG filters b0(k). For d = 0,1 and −M ≤

k ≤M, we have:
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b0(k)= 1

N
(8.3.126)

For d = 2,3:

b0(k)= F4 − F2k2

D4
(8.3.127)

where the ratios F4/D4 and F2/D4 can be simplified to:

F4

D4
= 3(3M2 + 3M − 1)
(2M + 3)(4M2 − 1)

,
F2

D4
= 15

(2M + 3)(4M2 − 1)
(8.3.128)

Finally, for d = 4,5:

b0(k)= D12 −D10k2 +D8k4

D
(8.3.129)

The coefficient ratios can also be simplified to:

D12

D
= 15(15M4 + 30M3 − 35M2 − 50M + 12)

4(2M + 5)(4M2 − 1)(4M2 − 9)

D10

D
= 525(2M2 + 2M − 3)

4(2M + 5)(4M2 − 1)(4M2 − 9)

D8

D
= 945

4(2M + 5)(4M2 − 1)(4M2 − 9)

(8.3.130)

Example 8.3.15: Determine the quadratic/cubic SG filters of lengthsN = 5,7,9. Using Eq. (8.3.127)
with M = 2,3,4, we find (for −M ≤ k ≤M):

b0(k)= 17 − 5k2

35
= 1

35
[−3,12,17,12,−3]

b0(k)= 7 − k2

21
= 1

21
[−2,3,6,7,6,3,−2]

b0(k)= 59 − 5k2

231
= 1

231
[−21,14,39,54,59,54,39,14,−21]

where the coefficients have been reduced to integers as much as possible. 	


Example 8.3.16: Determine the quartic and quintic SG filters of lengthN = 7,9. Using Eq. (8.3.129)
with M = 3,4, we find:

b0(k)= 131 − 61.25k2 + 5.25k4

231
= 1

231
[5,−30,75,131,75,−30,5]

b0(k)= 179 − 46.25k2 + 2.25k4

429
= 1

429
[15,−55,30,135,179,135,30,−55,15]

where again the coefficients have been reduced as much as possible. 	
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The Savitzky-Golay filters admit a nice geometric interpretation, which is standard in
least-squares problems. Let X be the vector space of theN-dimensional real-valued vec-
tors x, and let S be the (d+1)-dimensional subspace spanned by all linear combinations
of the basis vectors si, i = 0,1, . . . , d.

Then, the smoothed vector x̂ of Eq. (8.3.110) will belong to the subspace S. Moreover,
because of the orthogonality equations (8.3.88), x̂ is orthogonal to the error vector e.
Indeed,

x̂Te = (Sc)Te = cTSTe = 0

Solving the equation e = x − x̂ for x, we obtain the orthogonal decomposition:

x = x̂ + e (8.3.131)

It expresses x as a sum of a part that belongs to the subspace S and a part that
belongs to the orthogonal complement subspace S⊥. The decomposition is unique and
represents the direct sum decomposition of the full vector space X:

X = S⊕ S⊥

This requires that the dimension of the subspace S not exceed the dimension of the
full space X, that is, d + 1 ≤ N. The component x̂ that lies in S is the projection of x
onto S. The matrix B in Eq. (8.3.92) is the corresponding projection matrix. As such, it
will be symmetric, BT = B, and idempotent :

B2 = B (8.3.132)

The proof is straightforward:

B2 = (
SF−1ST

)(
SF−1ST

) = SF−1(STS)F−1ST = SF−1ST = B
The matrix (I−B), where I is theN-dimensional identity matrix, is also a projection

matrix, projecting onto the orthogonal subspace S⊥. Thus, the error vector e belonging
to S⊥ can be obtained from x by the projection:

e = x − x̂ = (I − B)x
Because (I−B) is also idempotent and symmetric, (I−B)2= (I−B), we obtain for

the minimized value of the performance index J of Eq. (8.3.86):

Jmin = eTe = xT(I − B)2x = xT(I − B)x = xTx − xTBx (8.3.133)

The projection properties of B have some other useful consequences. For example,
the NRR property mentioned previously follows from Eq. (8.3.132). Using the symmetry
of B, we have

BT = B = B2 = BTB
Taking matrix elements, we have Bkm = (BT)mk= (BTB)mk. But, Bkm is the kth

component of the mth column bm. Using a similar argument as in Eq. (8.3.94), we also
have (BTB)mk= bTmbk. Therefore,
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bTmbk = bm(k)

For k =m, we have the diagonal elements of BTB = B:

NRR = bTmbm = bm(m) (8.3.134)

These are recognized as the NRRs of the filters bm. In particular, form = 0, we have
NRR = bT0 b0 = b0(0). Setting k = 0 in Eqs. (8.3.126)–(8.3.129), we find that the NRRs of
the cases d = 0,1, d = 2,3, and d = 4,5 are given by the coefficient ratios 1/F0, F4/D4,
and D12/D. Therefore:

(d = 0,1) NRR = 1

N

(d = 2,3) NRR = 3(3M2 + 3M − 1)
(2M + 3)(4M2 − 1)

(d = 4,5) NRR = 15(15M4 + 30M3 − 35M2 − 50M + 12)
4(2M + 5)(4M2 − 1)(4M2 − 9)

(8.3.135)

In the limit of large N or M, we have the approximate asymptotic expressions:

(d = 0,1) NRR = 1

N

(d = 2,3) NRR � 9/4
N

= 2.25

N

(d = 4,5) NRR � 225/64

N
= 3.52

N

(8.3.136)

Thus, the noise reductions achieved by the quadratic/cubic and quartic/quintic cases
are 2.25 and 3.52 times worse than that of the plain FIR averager of the same length N.
Another consequence of the projection nature of B is:

BS = S, STB = ST (8.3.137)

Indeed, BS = S(STS)−1STS = S. Column-wise the first equation states:

B[s0, s1, . . . , sd]= [s0, s1, . . . , sd] ⇒ Bsi = si, i = 0,1, . . . , d

Thus, the basis vectors si remain invariant under projection, but that is to be ex-
pected because they already lie in S. In fact, any other linear combination of them, such
as Eq. (8.3.110), remains invariant under B, that is, Bx̂ = x̂.

This property answers the question: When are the smoothed values equal to the
original ones, x̂ = x, or, equivalently, when is the error zero, e = 0? Because e = x−Bx,
the error will be zero if and only if Bx = x, which means that x already lies in S, that is,
it is a linear combination of si. This implies that the samples xm are already dth order
polynomial functions of m, as in Eq. (8.3.107).

The second equation in (8.3.137) implies certain constraints on the filters bm, which
can be used to develop an alternative approach to the SG filter design problem in terms
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of minimizing the NRR subject to constraints. To see this, write the transposed matrix
ST column-wise:

ST = [u−M, . . . ,u−1,u0,u1, . . . ,uM] (8.3.138)

For example, in the N = 5, d = 2 case, we have:

ST =
⎡⎢⎣ 1 1 1 1 1

−2 −1 0 1 2
4 1 0 1 4

⎤⎥⎦ ≡ [u−2, u−1, u0, u1, u2]

It is easily verified that the mth column um is simply

um =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
m
m2

...
md

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , −M ≤m ≤M (8.3.139)

Using B = GST, we can express the SG filters bm in terms of um, as follows:

[b−M, . . . ,b−1,b0,b1, . . . ,bM]= B = GST = G[u−M, . . . ,u−1,u0,u1, . . . ,uM]

which implies:

bm = Gum = SF−1um (8.3.140)

Multiplying by ST, we find STbm = STSF−1um = um, or,

STbm = um ⇒

⎡⎢⎢⎢⎢⎢⎣
sT0 bm
sT1 bm

...
sTdbm

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
1
m
...
md

⎤⎥⎥⎥⎥⎥⎦ (8.3.141)

These relationships are the column-wise equivalent of STB = ST. Thus, each SG
filter bm satisfies (d+1) linear constraints:

sTi bm =mi, i = 0,1, . . . , d (8.3.142)

Writing the dot products explicitly, we have equivalently:

M∑
n=−M

nibm(n)=mi, i = 0,1, . . . , d (8.3.143)

In particular, for the steady-state SG filter b0, we have u0 = [1,0,0, . . . ,0]T, with ith
component δ(i). Therefore, the constraint STb0 = u0 reads component-wise:

M∑
n=−M

nib0(n)= δ(i), i = 0,1, . . . , d (8.3.144)
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For i = 0, this is the usual DC constraint:

M∑
n=−M

b0(n)= 1 (8.3.145)

and for i = 1,2, . . . , d:

M∑
n=−M

nib0(n)= 0 (8.3.146)

The quantity in the left-hand side of Eq. (8.3.144) is called the ith moment of the
impulse response b0(n). Because of the symmetric limits of summation over n and the
symmetry of b0(n) about its middle, the moments (8.3.146) will be zero for odd i, and
therefore are not extra constraints. However, for even i, they are nontrivial constraints.

These moments are related to the derivatives of the frequency response at ω = 0.
Indeed, defining:

B0(ω)=
M∑

n=−M
b0(n)e−jωn

and differentiating it i times, we have:

jiB(i)0 (ω)= ji d
i

dωi B0(ω)=
M∑

n=−M
nib0(n)e−jωn

Setting ω = 0, we obtain:

jiB(i)0 (0)= ji d
i

dωi B0(0)=
M∑

n=−M
nib0(n) (8.3.147)

Thus, the moment constraints (8.3.145) and (8.3.146) are equivalent to the DC con-
straint and the flatness constraints on the frequency response at ω = 0:

B0(0)= 1, B(i)0 (0)= di

dωi B0(0)= 0, i = 1,2, . . . , d (8.3.148)

The larger the d, the more derivatives vanish at ω = 0, and the flatter the response
B0(ω) becomes. This effectively increases the cutoff frequency of the lowpass filter—
letting through more noise, but at the same time preserving more of the higher frequen-
cies in the desired signal.

Figure 8.3.31 shows the magnitude response |B0(ω)| for the cases N = 7,15 and
d = 0,2,4. The quadratic filters are flatter at DC than the plain FIR averager because
of the extra constraint B′′

0 (0)= 0. Similarly, the quartic filters are even flatter because

they satisfy two flatness conditions: B′′
0 (0)= B(4)0 (0)= 0. The cutoff frequencies are

approximately doubled and tripled in the cases d = 2 and d = 4, as compared to d = 0.
A direct consequence of the moment constraints (8.3.144) is that the moments of

the input signal x(n) are preserved by the filtering operation (8.3.113), that is,
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Fig. 8.3.31 Savitzky-Golay filters of lengths N = 7,15, and orders d = 0,2,4.

∑
n
niy(n)=

∑
n
nix(n), i = 0,1, . . . , d (8.3.149)

This can be proved easily working in the frequency domain. Differentiating the
filtering equation Y(ω)= B0(ω)X(ω) i times, and using the product rules of differ-
entiation, we obtain:

Y(i)(ω)=
i∑
j=0

(
i
j

)
B(j)0 (ω)X(i−j)(ω)

Setting ω = 0 and using the moment constraints satisfied by the filter, B(j)0 (0)=
δ(j), we observe that only the j = 0 term will contribute to the above sum, giving:

Y(i)(0)= B0(0)X(i)(0)= X(i)(0), i = 0,1, . . . , d

which implies Eq. (8.3.149), by virtue of Eq. (8.3.147) as applied to x(n) and y(n).
The preservation of moments is a useful property in applications, such as spectro-

scopic analysis or ECG processing, in which the desired signal has one or more sharp
peaks, whose widths must be preserved by the smoothing operation. In particular, the
second moment corresponding to i = 2 in Eq. (8.3.149) is a measure of the square of the
width [200–216,303].

The above moment constraints can be used in a direct way to design the Savitzky-
Golay filters. We consider the general problem of designing an optimum length-N filter
that minimizes the NRR and satisfies d+ 1 moment constraints. That is, minimize

NRR = bTb =
M∑

n=−M
b(n)2= min (8.3.150)

subject to the d+ 1 constraints, with given u = [u0, u1, . . . , ud]T:

sTi b =
M∑

n=−M
nib(n)= ui, i = 0,1, . . . , d ⇒ STb = u (8.3.151)
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The minimization of Eq. (8.3.150) subject to (8.3.151) can be carried out with the
help of Lagrange multipliers, that is, adding the constraint terms to the performance
index:

NRR = bTb + 2
d∑
i=0

λi(ui − sTi b) (8.3.152)

The gradient of NRR with respect to the unknown filter b is:

∂
∂b

NRR = 2b − 2
d∑
i=0

λisi

Setting the gradient to zero, and solving for b gives:

b =
d∑
i=0

λisi = [s0, s1, . . . , sd]

⎡⎢⎢⎢⎢⎢⎣
λ0

λ1

...
λd

⎤⎥⎥⎥⎥⎥⎦ = Sλ

Component-wise this means that b(n) has the polynomial form:

b(n)=
d∑
i=0

λisi(n)=
d∑
i=0

λini, −M ≤ n ≤M

The Lagrange multiplier vector λ is determined by imposing the desired constraint,
that is,

u = STb = STSλ = Fλ ⇒ λ = F−1u

which gives finally for the optimum b:

b = Sλ = SF−1u = Gu (8.3.153)

Comparing this solution with Eqs. (8.3.140) and (8.3.141), we conclude that the SG
filters bm can be thought of as the optimum filters that have minimum NRR with con-
straint vectors u = um. In particular, the steady-state SG filter b0 minimizes the NRR
with the constraint vector u = u0 = [1,0, . . . ,0]T.

Next, we discuss the implementation of the Savitzky-Golay filters and the role played
by the steady-state and transient filters bm. In implementing the smoothing equation
Eq. (8.3.113), we would like to use our existing FIR filtering tools, such as the routines
fir, delay, and dot, or their circular-buffer versions, as discussed in Chapter 4.

Because of the presence of the terms x(n+M), . . . , x(n+1) in (8.3.113), the filtering
operation is not completely causal. However, we can do one of two things to make our
processing causal: (1) delay the filter byM time units to make it causal, which will have
the effect of producing the correct output, but with a delay of M samples; (2) advance
the input by M time units and then filter it causally. In this case, the output comes out
undelayed.
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We can understand these remarks in the z-domain. We denote the filter by B0(z)
and its delayed causal version byH0(z)= z−MB0(z). For example, forN = 5 and d = 2,
we have:

B0(z) = 1

35
(−3z2 + 12z+ 17 + 12z−1 − 3z−2)

H0(z) = z−2B0(z)= 1

35
(−3 + 12z−1 + 17z−2 + 12z−3 − 3z−4)

The filtering equation (8.3.113) becomes in the z-domain:

Y(z)= B0(z)X(z)

Multiplying both sides by z−M gives:

z−MY(z)= z−MB0(z)X(z)= H0(z)X(z)

which states that if X(z) is processed by the causal filter H0(z), the output will be
delayed by M units. Alternatively, we can write:

Y(z)= B0(z)X(z)= z−MB0(z)zMX(z)= H0(z)
(
zMX(z)

)
which states that the causal filtering of the time-advanced input zMX(z) will result into
the same output as that obtained by the non-causal filter.

For smoothing problems, we prefer to use the second alternative because it pro-
duces the smoothed output undelayed. Because the filter length is N, we need an N-
dimensional delay-line buffer w to hold the internal states of the filter. Normally, the
internal states are defined as the successively delayed inputs x(n−i). However, because
the input is advanced byM units, we must definewi(n)= x(n+M−i), i = 0,1, . . . ,N−1,
that is,

w(n)= [x(n+M), . . . , x(n), . . . , x(n−M)]T (8.3.154)

For example, if N = 5 and M = (N − 1)/2 = 2,

w(n)=

⎡⎢⎢⎢⎢⎢⎢⎣
w0(n)
w1(n)
w2(n)
w3(n)
w4(n)

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
xn+2

xn+1

xn
xn−1

xn−2

⎤⎥⎥⎥⎥⎥⎥⎦
In particular, at n = 0 we recognize w as being the reverse of the vector x, that is,

w =

⎡⎢⎢⎢⎢⎢⎢⎣
x2

x1

x0

x−1

x−2

⎤⎥⎥⎥⎥⎥⎥⎦ = xR ⇒ wR = x =

⎡⎢⎢⎢⎢⎢⎢⎣
x−2

x−1

x0

x1

x2

⎤⎥⎥⎥⎥⎥⎥⎦
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For implementation purposes, we must rewrite all of the previous dot products in
terms of the state vector w. To do this, we use the property that dot products remain
unchanged if both vectors are reversed; for example,

aTb = [a1, a2, a3]

⎡⎢⎣ b1

b2

b3

⎤⎥⎦ = [a3, a2, a1]

⎡⎢⎣ b3

b2

b1

⎤⎥⎦ = aRTbR

where the superscript RT means the transpose of the reversed vector. To express the
smoothed samples (8.3.112) in terms of w, we replace both vectors by their reverses:

x̂m = bTmx = bRTm xR = bRTm w (8.3.155)

It is a general property of the SG matrix B that its columns are the reverse of each
other with respect to the middle column, that is,

bRm = b−m (8.3.156)

In particular, bR0 = b0, so that the middle column is a symmetric filter. Using
Eqs. (8.3.155) and (8.3.156), we can rewrite Eq. (8.3.112) in the “filtering” form:

x̂m = bT−mw (8.3.157)

In practice, we have typically a block of noisy samples xn, n = 0,1, . . . , L − 1 and
wish to replace them by their smoothed versions yn, n = 0,1, . . . , L − 1. Because the
computation of each yn requires M input samples above xn and M below, we can use
the filtering equation (8.3.113) only after the first M and before the last M inputs. That
is, only for M ≤ n ≤ L− 1 −M.

Thus, the initial value of the state vector w is obtained by settingn =M in Eq. (8.3.154),
and the final value by setting n = L− 1 −M:

w(M)=

⎡⎢⎢⎢⎢⎢⎣
xN−1

xN−2

...
x0

⎤⎥⎥⎥⎥⎥⎦ , w(L− 1 −M)=

⎡⎢⎢⎢⎢⎢⎣
xL−1

xL−2

...
xL−N

⎤⎥⎥⎥⎥⎥⎦ (8.3.158)

In other words, the initial state vector consists of the first N input samples, whereas
the final one consists of the last N samples.

Once the first N input samples have been read into the state vector w(M), we may
use them to compute the first steady output yM = bT0 w(M), but we can also use them
to estimate the first M input-on transients using Eq. (8.3.157). For example, the sample
xM−1 that lies just to the left of xM will be smoothed by x̂m with m = −1, that is,
yM−1 = bT1 w(M), and so on. Thus, given the initial state w(M), we compute the first
M + 1 outputs:

yM−m = bTmw(M), m = 0,1, . . . ,M

or, re-indexing them from y0 to yM:
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yi = bTM−iw(M), i = 0,1, . . . ,M (8.3.159)

Similarly, once the last N input samples have been read into the last state vector,
we can use them to compute the last steady output yL−1−M, and the last M input-off
transients, that is, using Eq. (8.3.157) with m = 0,1, . . . ,M:

yL−1−M+m = bT−mw(L− 1 −M), m = 0,1, . . . ,M (8.3.160)

Note that the computations of the first and last steady-state outputs at n = M and
n = L − 1 − M are also included in Eqs. (8.3.159) and (8.3.160). Between these two
extremes, we can calculate all of the remaining smoothed samples using the steady-
state filter b0, that is,

yn = bT0 w(n), M + 1 ≤ n ≤ L− 2 −M (8.3.161)

In order that there be at least one steady-state output, the length L of the input signal
must be L ≥ N + 1.

Example 8.3.17: For an input signal of length L = 10 and the quadratic, length-5, SG filters
given in Eq. (8.3.97), we compute the input-on, steady, and input-off transients as follows:

y0 = bT2 w(2)= 1

35
[3,−5,−3,9,31]w(2)

y1 = bT1 w(2)= 1

35
[−5,6,12,13,9]w(2)

y2 = bT0 w(2)= 1

35
[−3,12,17,12,−3]w(2)

yn = bT0 w(n)= 1

35
[−3,12,17,12,−3]w(n), 3 ≤ n ≤ 6

y7 = bT0 w(7)= 1

35
[−3,12,17,12,−3]w(7)

y8 = bT−1w(7)= 1

35
[9,13,12,6,−5]w(7)

y9 = bT−2w(7)= 1

35
[31,9,−3,5,3]w(7)

where

w(2)=

⎡⎢⎢⎢⎢⎢⎢⎣
x4

x3

x2

x1

x0

⎤⎥⎥⎥⎥⎥⎥⎦ , w(n)=

⎡⎢⎢⎢⎢⎢⎢⎣
xn+2

xn+1

xn
xn−1

xn−2

⎤⎥⎥⎥⎥⎥⎥⎦ , w(7)=

⎡⎢⎢⎢⎢⎢⎢⎣
x9

x8

x7

x6

x5

⎤⎥⎥⎥⎥⎥⎥⎦
Figure 8.3.32 illustrates these computations, indicating what filters are used with what
outputs. 	
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Fig. 8.3.32 Steady-state and transient outputs for L = 10, N = 5.

Example 8.3.18: Filter the following input signal through the length-5 Savitzky-Golay filters of
polynomial orders d = 0,1,2:

x = [7,0,7,28,63,7,0,7,28,63]

This signal was generated by the expression xm = 7 − 14m + 7m2, m = 0,1,2,3,4 and
repeated once. The outputs of the SG filters for d = 0,1,2 are:

y = [21,21,21,21,21,21,21,21,21,21]

y = [−7,7,21,21,21,21,21,21,35,49]

y = [7,0,7,37,42,22,−3,7,28,63]

The d = 0 filter gives the same answer because it so happened that the average of any 5
successive samples is 21. The d = 1 filter tries to predict the first 2 and last 2 values on
the basis of the first 5 and last 5 input samples, but its steady outputs are still 21 because
the b0 filters are the same for d = 0,1. The d = 2 filter also predicts the first and last 2
samples, but it predicts them exactly because by design the first 5 and last 5 inputs were
taken to be quadratic functions of time. 	


The C implementation of the filtering equations (8.3.159)–(8.3.161) requires theN×N
SG matrix B and N-dimensional state vector w. They can be declared as follows:

double *w, **B;
w = (double *) calloc(N, sizeof(double));

B = (double **) calloc(N, sizeof(double *)); allocate N rows

for (m=0; m<N; m++)
B[m] = (double *) calloc(N, sizeof(double)); allocate mth row

The matrix elements B[m][k] can be defined via the closed form expressions of
(8.3.120)–(8.3.124), with appropriate shifting of the indices. For example, the matrix
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element B[M+m][M+k] represents Bmk, −M ≤ m,k ≤ M. Similarly, the mth filter bm
will be represented by the row B[M+m].

We may assume that the input samples are read sequentially from an input file x.dat
and the smoothed data are returned sequentially into the file y.dat. The pointers to
these files may be defined by:

FILE *fpx, *fpy;
fpx = fopen("x.dat", "r"); note that fpx could also be stdin

fpy = fopen("y.dat", "w"); and fpy could be stdout

The filtering steps are as follows: The state vector w is loaded with the firstN input
samples, with the following for-loop:

for (i=0; i<N; i++) { read N samples

fscanf(fpx, "%lf", &x); read sample x
delay(N-1, w); shift delay line

w[0] = x;
}

We assume that the input file fpx contains at least N samples. The reason for
shifting the delay before w[0] is loaded with x is that after the Nth sample has been
read, the state vector w will be left as in Eq. (8.3.158).

The state vector is then frozen for the firstM+1 output computations, correspond-
ing to Eq. (8.3.159). The outputs are computed by the dot product routine dot and
dumped into the output file:

for (i=0; i<=M; i++) {
y = dot(N-1, B[N-1-i], w); note, B[N − 1 − i] = B[2M − i] = bM−i
fprintf(fpy, "%lf\n", y);
}

delay(N-1, w); updates delay after first steady output

The last dot product, together with the subsequent call to delay, are effectively
equivalent to a call to fir for computing the first steady output yM.

Then, we keep reading input samples until the end of the file fpx is encountered,
and processing them with fir:

while(fscanf(fpx, "%lf", &x) != EOF) {
u = w[N-1]; needed to unshift the delay line

y = fir(N-1, B[M], w, x); note, B[M] = b0

fprintf(fpy, "%lf\n", y);
}

We assume that there is at least one such sample to process in fpx; thus, the input
signal should have length L ≥ N+1. After the last input sample is read and processed,
the delay line is updated by fir. Therefore, upon exiting from this loop, we must unshift
the delay line and restore w to its last steady value, given by Eq. (8.3.158). The auxiliary
quantity u keeps track of the last tap of the delay line, and enables us to unshift it:

for (i=0; i<N-1; i++) unshift delay line

w[i] = w[i+1]; w[0]= w[1], w[1]= w[2], etc.

w[N-1] = u; restore Nth tap
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Finally, the unshifted state vector w is kept constant and the lastM transient outputs
are computed using the filters b−i, which are represented in C by the columns B[M-i]:

for (i=1; i<=M; i++) {
y = dot(N-1, B[M-i], w); note, B[M − i] = b−i
fprintf(fpy, "%lf\n", y);
}

The above C implementation is appropriate for sample-by-sample processing. If the
length L of the input is known, one could use a block processing implementation based
on Eqs. (8.3.159)–(8.3.161).

Using MATLAB, we can implement very efficiently both the design equations for the
SG filters and the filtering equations. The M-file sg.m of Appendix D implements the SG
design equations (8.3.111) for arbitrary N and d.

The M-file sgfilt.m implements the filtering operations (8.3.159)–(8.3.161). It calls
sg.m to design the filter and, then, filters a given length-L block of data x. The returned
filtered vector y also has length L.

Finally, we present a simulation example illustrating the behavior of the Savitzky-
Golay smoothing filters. Figure 8.3.33 shows a noise-free ECG signal of length L =
500, whose QRS peak is normalized to unity. The noisy ECG has 30% zero-mean white
Gaussian noise added to it; that is, the rms noise value is σv = 0.3.

Figures 8.3.33 and 8.3.34 compare the plain FIR averager, the quadratic and quartic
Savitzky-Golay filters corresponding to d = 0,2,4, for two filter lengths, N = 11 and
N = 41.

As expected, the FIR averager is more effective in removing noise than the quadratic
and quartic SG filters, but at the expense of smoothing out the QRS peak too much,
especially for N = 41 when the filter’s length is comparable to the width of the QRS
peak. The quadratic and quartic SG filters preserve the peaks much better than the FIR
averager.

Further guidelines on the use of Savitzky-Golay filters may be found in references
[200–216,303]. FIR lowpass filters designed by more conventional methods, such as the
Kaiser window method, can also be used [217] in data smoothing applications.

Multiple filtering of the data by the same filter has often been used in conjunction
with Savitzky-Golay filters, but it can be used with any other lowpass FIR filter. A sys-
tematic discussion of how to use a given filter repeatedly so that both the passband
and stopband of the filter are improved simultaneously has been given by Kaiser and
Hamming [218].

8.4 Problems

8.1 It is desired to generate the periodic sequence h = [0,1,2,0,1,2,0,1,2, . . . ] of period three.
Determine the filter H(z) whose impulse response is h.

a. Realize the filter in its direct and canonical forms. Write the corresponding sample
processing algorithms for generating the periodic sequence. Crank the algorithms for
a total of 9 iterations, making a list of the values of the internal states and output of
the filter.
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Fig. 8.3.33 Savitzky-Golay filter comparisons, for N = 11,41 and d = 0.

b. For the direct form realization, rewrite the generation algorithm in its circular-buffer
form of Eq. (8.1.20) or (8.1.22), and initialized by Eq. (8.1.19).

Iterate the algorithm 15 times, making a table of the internal states w, the output y,
the circular pointer index q, and indicating the buffer entry that holds the current
output for each iteration. Why did we choose to iterate 15 times? Do you observe the
repetition period of the buffer entries?

8.2 Consider the filter H(z)= 1 + 2z−1 + 3z−2 − 4z−3 − 5z−4

1 − z−5
. What is its periodic causal im-

pulse response? Realize the filter in its direct and canonical forms.

a. For each realization, write the corresponding sample processing algorithm for gener-
ating the periodic impulse response. Crank the algorithm for a total of 15 iterations,
making a list of the values of the internal states and output of the filter.

b. For the direct form realization, iterate the generation algorithm in its circular buffer
form, making a table as in Problem 8.1(b). How many iterations are needed before we
observe the repetition of the buffer entries?

8.3 The eight waveform samples:

b = [b0, b1, b2, b3, b4, b5, b6, b7]

are stored in reverse order in the eight-dimensional circular wavetable:
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Fig. 8.3.34 Savitzky-Golay filter comparisons, for N = 11,41 and d = 2,4.

w = [w0,w1,w2,w3,w4,w5,w6,w7]

It is desired to generate a periodic subsequence of period d = 5. Determine this subsequence
when the output is obtained by the four methods of: (a) truncating down, (b) truncating up,
(c) rounding, and (d) linear interpolation.

8.4 Repeat Problem 8.3 when the subsequence has period d = 6.

8.5 The waveform samples b = [1,2,3,4,5,6,7,8] are stored (in reverse order) into an eight-
dimensional circular wavetable w. It is desired to use the wavetable to generate a periodic
subsequence of period 3. Determine this subsequence when the output is obtained by the
four approximations of: (a) truncating down, (b) truncating up, (c) rounding, and (d) linear
interpolation.

8.6 Repeat Problem 8.5, for generating a subsequence of period 5. Repeat for a subsequence of
period 6.

8.7 Computer Experiment: Wavetable Generators. Using the wavetable generator wavgen, write
a C program to reproduce all the graphs of Fig. 8.1.18.

Then, repeat using the rounding and interpolation versions of the wavetable generator, wav-
genr and wavgeni. Compare the outputs of the three generator types.

8.8 Computer Experiment: Wavetable Amplitude and Frequency Modulation. Write a program to
reproduce all the graphs of Figures 8.1.20–8.1.23.
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8.9 Consider the four comb filters:

y(n)= x(n)+x(n− 8),

y(n)= x(n)−x(n− 8),

y(n)= x(n)+x(n− 8)+x(n− 16)

y(n)= x(n)−x(n− 8)+x(n− 16)

Determine their transfer functions and their impulse responses. Place their zeros on the
z-plane relative to the unit circle. Sketch their magnitude responses. How are they similar
or different? Draw their canonical realization forms using 8-fold delays z−8. Write the cor-
responding sample processing algorithms both in their linear and circular-buffer versions.

8.10 Computer Experiment: Flanging and Chorusing. Write a C program to reproduce the graphs
of Figures 8.2.9 and 8.2.11.

Repeat the chorusing experiment using the following model for the chorus processor, shown
in Fig. 8.2.10:

y(n)= 1

3

[
x(n)+a1(n)x

(
n− d1(n)

)+ a2(n)x
(
n− d2(n)

)]
where d1(n) and d2(n) are generated as in Eq. (8.2.20) by the low-frequency noise routine
ranl of Appendix B.2 using two different seeds. The amplitudes a1(n), a2(n) are also
low-frequency random numbers with unity mean.

Repeat the flanging experiment using the recursive flanging processor:

y(n)= ay(n− d(n))+ x(n)
where a = 0.8. State the processing algorithm in this case, using a circular buffer for the
feedback delay line and the routine tapi to interpolate between buffer entries.

8.11 Computer Experiment: Reverberation Examples. Using the circular-buffer reverberator rou-
tines plain, allpass, lowpass, write a C program to reproduce all the graphs of Fig. 8.2.22.
[Caution: Use different circular buffers for the three reverb filters.]

8.12 Computer Experiment: Schroeder’s Reverberator. Write a C program that implements Schroeder’s
reverberator shown in Fig. 8.2.18 and uses the sample processing algorithm (8.2.31). Iter-
ate the sample processing algorithm for 0 ≤ n ≤ 500 and reproduce the impulse response
shown in Fig. 8.2.19.

8.13 Consider the lowpass reverberator shown in Fig. 8.2.21. Write explicitly all the difference
equations required for its time-domain implementation. Then, write the corresponding sam-
ple processing algorithm, with the D-fold delay implemented circularly.

8.14 Consider the lowpass reverberator H(z) of Eq. (8.2.32) with the first-order feedback filter
(8.2.35). Let pi, Ai, i = 1,2, . . . ,D+ 1 be the poles and residues of the H(z), that is,

H(z)= 1

1 − z−DG(z) =
D+1∑
i=1

Ai
1 − piz−1

Assume that all pi are inside the unit circle. Note that if b1 = 0, then there are only D poles.
Suppose a sinusoid of frequency ω and duration L is applied to the input:

x(n)= ejωn(u(n)−u(n− L))
Show that the output signal will be given by:

y(n)= H(ω)ejωn(u(n)−u(n− L))+ D+1∑
i=1

Bipni
(
u(n)−ejωLp−Li u(n− L))

where Bi = piAi/(pi − ejω), i = 1,2, . . . ,D+ 1. See also Problem 6.29.
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8.15 Computer Experiment: Reverberator Time Constants. Reproduce all the graphs of Figure
8.2.25 by iterating the sample processing algorithms of the plain and lowpass reverberators.
The input is defined as:

x(n)= cos(ωn)
(
u(n)−u(n− 150)

)
with ω = 0.2π and ω = π. Generate similar graphs also for the following frequencies:
ω = 0.4π, 0.6π, 0.8π, and 0.99π.

For the lowpass cases, verify that the output obtained by iterating the sample processing
algorithm agrees with (the real part of) the analytical expression given in Problem 8.14. For
this part, you will need to use MATLAB to calculate the poles pi, residuesAi, Bi, and evaluate
the expression for y(n), for 0 ≤ n ≤ 299.

8.16 Computer Experiment: Karplus-Strong String Algorithm. The Karplus-Strong algorithm for
generating plucked-string sounds [108–110] is defined by the lowpass reverberator filter of
Eq. (8.2.32) with feedback filter G(z)= (1 + z−1)/2. It was described in Section 8.2.3.

For the two delay values D = 25, 50, initialize the delay-line buffer by filling it with zero-
mean random numbers, for example, w[i]= ran(&iseed)−0.5, for i = 0,1, . . . ,D. Then, run
the sample processing algorithm (8.2.34) with zero input x(n)= 0, for 0 ≤ n ≤ 499. Plot the
resulting output signals y(n).
The harshness of the initial plucking of the string is simulated by the initial random numbers
stored in the delay line. As these random numbers recirculate the delay line, they get lowpass
filtered by G(z), thus losing their high-frequency content and resulting in a decaying signal
that is dominated basically by the frequency f1 = fs/D.

8.17 A prototypical delay effect usually built into commercial audio DSP effects processors is
given by the transfer function:

H(z)= c+ b z−D

1 − az−D
where c represents the direct sound path. Draw a block diagram of this filter using only
one D-fold delay z−D. Write the difference equations describing it and translate them into
a sample processing algorithm implemented with a circular buffer.

8.18 Computer Experiment: Plain and Lowpass Reverberating Delays. The basic building blocks
of many multi-delay effects are the following plain and lowpass reverberating delays:

H(z)= z−D

1 − az−D , H(z)= z−D

1 − z−DG(z)
where G(z) is a lowpass feedback filter. Draw the block diagrams of these filters and write
their sample processing algorithms implementing z−D circularly. Then, translate the algo-
rithms into C routines, say plaindel.c and lpdel.c. How do they differ from the routines
plain and lowpass of Section 8.2.3?

8.19 Computer Experiment: Multi-Delay Effects. Commercial audio DSP effects processors have
built-in multi-delay effects obtained by cascading several basic reverberating delay of the
type of Problem 8.18; for example, see Ref. [147].

A typical example was shown in Fig. 8.2.27. Write a C program that implements this block
diagram. The program must make use of the two routines plaindel and lpdel that you
wrote in the previous problem.

Note, that you will need to use two circular buffers {w1, w2} and their circular pointers
{p1, p2}, for the two delays.
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Using this program, and the parameter values that were used in Fig. 8.2.28, compute and
plot the outputs of the filter, for 0 ≤ n ≤ 2000, for the two inputs:

x(n)= δ(n), x(n)= u(n)−u(n− 100)

8.20 Computer Experiment: Multi-Tap Delay Effects. In the electronic music community, a multi-
tap delay is usually defined to have both feed forward and feedback paths, as well as a direct
sound path, with user-adjustable gains; for example, see Ref. [147].

Write a C routine that implements the circular-buffer version of the sample processing al-
gorithm of the multitap delay line shown in Fig. 8.2.29. The inputs to the routine should be
the current input audio sample x, the values of the forward taps {b0, b1, b2}, feedback taps
{a1, a2}, delay values {D1,D2}, and the (D1+D2)-dimensional delay-line buffer w and its
associated circular pointer p.

Using this routine, and the parameter values that were used for the stable case of Fig. 8.2.30,
compute and plot the outputs of the filter, for 0 ≤ n ≤ 1000, for the two inputs:

x(n)= δ(n), x(n)= u(n)−u(n− 200)

8.21 Show that the condition |a1|+|a2| < 1 is sufficient to guarantee the stability of the multitap
delay line filter of Eq. (8.2.43). [Hint: Work with the pole equation zD1+D2 = a1zD2 + a2.]

8.22 Stereo delay effects can be accomplished by the block diagram of Fig. 8.4.1. Two basic
delays of the type of Problem 8.18 are used in the left and right channels and are coupled by
introducing cross-feedback coefficients, such that the reverberating output of one is fed into
the input of the other; for example, see Ref. [147]. Show that the input/output relationships
can be expressed in the z-domain as:

YL(z)= HLL(z)XL(z)+HLR(z)XR(z)
YR(z)= HRL(z)XL(z)+HRR(z)XR(z)

Determine the direct and cross-transfer functions HLL(z), HLR(z), HRL(z), HRR(z), in
terms of the indicated multipliers and feedback filters GL(z), GR(z). What conclusions do
you draw in the special cases: (1) dL = 0, dR �= 0; (2) dL �= 0, dR = 0; (3) dL = 0, dR = 0?

Consider the case of the plain feedback filters: GL(z)= aL, GR(z)= aR. Introduce two
delay-line buffers wL and wR for the indicated delays z−L and z−R and write the difference
equations describing the time-domain operation of the block diagram. Then, translate the
difference equations into a sample processing algorithm that transforms each input stereo
pair {xL, xR} into the corresponding output stereo pair {yL, yR}. Implement the delays cir-
cularly; therefore, you will also need to introduce two circular pointers {pL, pR}.

8.23 Computer Experiment: Stereo Delay Effects. Write a C routine that implements the stereo
sample processing algorithm of the previous problem. Using this routine, compute and plot
the left and right output signals yL(n), yR(n), for n = 0,1, . . . ,299, for the case when there
is only a left input pulse of duration 5, that is,

xL(n)= u(n)−u(n− 5), xR(n)= 0

Use L = 30 and R = 70 for the left and right delays, and the multiplier values:

aL = aR = 0.6, bL = bR = 1, cL = cR = 0, dL = dR = 0.3

Identify on your graphs the origin of the various length-5 pulses that appear in the outputs.
Next, repeat the experiment using dL = 0.3, dR = 0, so that only the left output is fed into
the right input. Again, identify the origin of the pulses in your outputs.
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Fig. 8.4.1 Stereo delay effects processor.

8.24 Computer Experiment: Compressors and Limiters. Consider the compressor and limiter pre-
sented in Figures 8.2.33—8.2.36.

a. Reproduce these graphs. Is it better to apply the smoothing filter to the output of the
gain processor f(cn), rather than to its input cn?

b. Given a sinusoid x(n)= A cos(ω0n), calculate its theoretical mean absolute value |xn|
and its rms value (|xn|2)1/2, both averaged over one period of the sinusoid.

Are the steady-state values of the control signal in the above graphs consistent with the
theoretical values calculated here? In your program in (a), include the numerical cal-
culation of the mean absolute values of the three output sinusoids, averaged over the
three length-200 segments. Are these averages consistent with the given compression
ratio?

c. Redo the graphs in (a), but without using any smoothing filter.

d. Repeat part (a) using a 3:1 compression ratio, ρ = 1/3 and then a 4:1 ratio.

e. Repeat part (a) using a delay of d = 40 samples in the direct signal path, as described
in Section 8.2.5. Too much of such a delay can introduce a “backward playing” quality
into the output. Can you observe this?

Repeat using a delay D = 40 in the level detector’s input (but not in the direct signal
path).

f. Repeat part (a) using a seven-point smoother, but with filter parameter λ = 0.99. Re-
peat with λ = 0.2. Do you observe the effect on the attack and release time constants.?

8.25 Computer Experiment: Expanders and Gates. Consider the expander and gate of Figures
8.2.37 and 8.2.38.

a. Redo these graphs using no additional smoothing filter, and then, redo them using a
seven-point smoother.

b. Repeat part (a) using a 3:1 expansion ratio, ρ = 3.
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c. Repeat part (a) using a 2:1 expansion ratio, ρ = 2, but moving the threshold higher to
the value c0 = 1.5. What happens to the three sinusoids in this case? What happens
in the case of the noise gate?

8.26 A zero-mean white noise sequence x(n), n ≥ 0, of variance σ2
x is sent through a stable and

causal filter. Using convolution, show that the variance of the output sequence y(n) will be
given by:

σ2
y(n)= E[y(n)2]= σ2

x

n∑
m=0

h(m)2

so that for large n it converges to the theoretical NRR of Eq. (A.18).

8.27 Show that the NRR summation of Eq. (A.18) always converges for a stable and causal filter
with rational transfer function. In particular, show that it is bounded by:

NRR =
∞∑
n=0

h2
n ≤ C

1 − |pmax|2

where pmax is the pole of maximum magnitude and C is a constant that depends on the PF
expansion coefficients. You may assume the PF expansion: hn =∑M

i=1Aip
n
i u(n).

8.28 For an ideal bandpass filter with passbandωa ≤ |ω| ≤ωb, prove the theoretical NRR given
by Eq. (8.3.7).

8.29 Computer Experiment: Exponential Smoother. Write a C program, say smooth.c, that imple-
ments the first-order smoother of Example 8.3.1 with transfer functionH(z)= (1−a)/(1−
az−1), where 0 < a < 1. The program must have usage:

smooth a < x.dat > y.dat

where a is a command-line argument. The input signal to be smoothed must be read from
stdin or a file x.dat, and the smoothed output must be written to the stdout or a file
y.dat.

8.30 Computer Experiment: Exponential Smoother. Using the above program smooth.c reproduce
the graphs in Fig. 8.3.4. Generate also two similar graphs for the filter parameter values
a = 0.99 and a = 0.8.

In all four cases, compute the experimental NRRs computed from the sample variances based
on the L = 200 input and output data sequences x(n), y(n) with means mx, my:

σ̂2
x =

1

L

L−1∑
n=0

(
x(n)−mx

)2, σ̂2
y =

1

L

L−1∑
n=0

(
y(n)−my

)2, ,NRR = σ̂2
y

σ̂2
x

and compare them with the theoretical values. Explain any discrepancies.

8.31 Normally, you would use a lowpass (or highpass) filter to extract a low- (or high-) frequency
signal. Suppose instead you used the lowpass filter H(z)= b/(1 − az−1), where 0 < a < 1,
to extract the high-frequency signal x(n)= s(−1)n+v(n), where v(n) is zero-mean white
noise of variance σ2

v .

How should you choose b so that the part s(−1)n comes out unchanged? Show that in
this case the noise will be amplified. Explain this result by calculating the NRR as well as
graphically by sketching the frequency spectra of the signals and filter, as in Fig. 8.3.3.
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8.32 Consider the highpass FIR averager filter of Example 8.3.6. Using the minimization tech-
niques outlined in Example 8.3.4, show that the optimum length-N FIR filter that minimizes
the NRR subject to the highpass constraint (8.3.22) is given by Eq. (8.3.21).

8.33 Using partial fractions, derive Eq. (8.3.23) for the NRR of the bandpass resonator filter of
Example 8.3.7.

8.34 Computer Experiment: Bandpass Signal Extraction. An improved version of the bandpass
filter of Example 8.3.7, which has prescribed 3-dB width Δω and center frequency ω0, can
be designed with the methods of Chapter 11. Using the design equations (11.3.21) and
(11.3.22), design the following two peaking filters that have specifications:

a. Center frequencyω0 = 0.1π, 3-dB width Δω = 0.05π. Determine the filter’s transfer
function, write its sample processing algorithm, compute its NRR and its 5% time con-
stant neff, and plot its magnitude response squared |H(ω)|2 over 400 equally spaced
frequencies over 0 ≤ω < π.

b. Center frequency ω0 = 0.1π, but with 5% time constant of neff = 300. Then, repeat
all the questions of part (a).

c. Using the Gaussian generator gran, generate a noisy sinusoidal input of the form:

x(n)= s(n)+v(n)= cos(ω0n)+v(n), n = 0,1, . . . ,N − 1

whereω0 = 0.1π,N = 300, and v(n)= gran(0,1,&iseed) is zero-mean, unit-variance,
white Gaussian noise. Send x(n) through the above two filters and compute the output
y(n). Plot x(n) versus n. Plot the two outputs y(n) together with the desired signal
s(n).

8.35 Computer Experiment: Single-Notch Filter. Consider Example 8.3.8, but with a simplified
signal instead of the ECG, defined to be a double pulse which is replicated three times at a
period of 0.5 sec, with a 60 Hz noise component added to it:

f(t) = [
u(t − 0.15)−u(t − 0.30)

]− 0.75
[
u(t − 0.30)−u(t − 0.45)

]
s(t) = f(t)+f(t − 0.5)+f(t − 1)

x(t) = s(t)+0.5 cos(2πf1t)

where t is in seconds, u(t) is the unit-step function, and f1 = 60 Hz. The signal x(t)
is sampled at a rate of 1 kHz for a period of 1.5 seconds. Let x(n) denote the resulting
samples. Plot x(n) and the noise-free signal s(n) for 0 ≤ n ≤ 1499.

Using the design method described in Example 8.3.8, design two second-order notch filters
with notch frequency at f1, one having Q = 6 and the other Q = 60. Determine their filter
coefficients and their 1% time constants. Plot their magnitude responses over 0 ≤ f ≤ fs/2.

Filter the sampled signal x(n) through both filters, and plot the resulting output signals y(n)
for 0 ≤ n ≤ 1499. Discuss the capability of the filters in removing the 60 Hz interference.
Discuss also the residual ringing that is left in the output after the 60 Hz sinusoid has died
out. (To study it, you may use superposition and filter s(n) and the noise part separately;
you may also look at the impulse responses.)

8.36 Computer Experiment: Multi-Notch Filter. Consider the signal x(n) consisting of three peri-
ods of a pulse signal f(n) plus additive noise, defined for 0 ≤ n < 1800:
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f(n) = [
u(n− 150)−u(n− 300)

]− 0.75
[
u(n− 300)−u(n− 450)

]
s(n) = f(n)+f(n− 600)+f(n− 1200)

x(n) = s(n)+v(n)

where v(n) is defined as in Example 8.3.10 to be a periodic square wave of period D = 10.
Therefore, a periodic notch filter with notches at the harmonics of f1 = fs/D orω1 = 2π/D
will remove the noise component. Using the design method of Example 8.3.10, design such
a multi-notch filter having Q = 80.

Implement the filter using the sample processing algorithm of Example 8.3.10, and process
the noisy signal x(n) through it to get the output signal y(n). On separate graphs, plot the
signals s(n), x(n), and y(n), for 0 ≤ n < 1800. For display purposes, split each graph
into three separate graphs that cover the time periods 0 ≤ n < 600, 600 ≤ n < 1200, and
1200 ≤ n < 1800.

The noise is removed fairly well, but you will notice that the filter also distorts the desired
signal s(n) rather severely. To understand the origin of this distortion, filter s(n) separately
through the filter and plot the corresponding output. Then, design three other periodic notch
filters having Q = 200, 400, and 800, filter s(n) through them, and plot the outputs. In all
cases, compute the 1% time constants of the filters and discuss the tradeoff between speed
of response, noise reduction, and non-distortion of the input.

Moreover, for the two cases Q = 80 and Q = 800, plot the corresponding magnitude
responses |H(f)| over one Nyquist interval 0 ≤ f ≤ fs assuming fs = 600 Hz, so that
f1 = fs/D = 60 Hz.

8.37 Computer Experiment: ECG Processing. Reproduce all the designs, results, and graphs of
Example 8.3.8. The simulated ECG data s(n) may be generated by the MATLAB routine
ecg.m of Appendix D, as follows:

s = ecg(500)’; one beat of length 500

s = [s; s; s]; three beats

s0 = sgfilt(0, 5, s); 5-point smoother

s = s0 / max(s0); normalized to unity maximum

8.38 Computer Experiment: ECG Processing. Reproduce all the designs, results, and graphs of
Example 8.3.10. The simulated ECG data s(n) may be generated by the MATLAB routine
ecg.m of Appendix D, as follows:

s = ecg(600)’; one beat of length 600

s = [s; s; s]; three beats

s0 = sgfilt(0, 9, s); 9-point smoother

s = s0 / max(s0); normalized to unity maximum

8.39 Show that the following periodic comb filter has NRR:

H(z)= 1 − a
2

1 + z−D
1 − az−D ⇒ NRR = 1 − a

2

Then show that if we define itsQ-factor in terms of its 3-dB width Δω and its first harmonic
ω1 = 2π/D by Q =ω1/Δω, then the parameter a can be calculated as:

a = 1 − tan(π/2Q)
1 + tan(π/2Q)

Finally, determine and sketch its causal impulse response h(n).
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8.40 Computer Experiment: Periodic Signal Enhancement. Reproduce all the results and graphs
of Example 8.3.12. Implement the comb filter using the circular-buffer version of the sample
processing algorithm. (This is more appropriate because in practice the signal’s period may
be large.)

Repeat using Q-factors: Q = 40 and Q = 30. In all cases, compute the filter’s 5% time
constant and discuss the tradeoff between speed of response, signal enhancement, and noise
reduction.

8.41 Computer Experiment: TV Vertical Detail Filters. First, verify that the vertical detail re-
insertion filters given in Eqs. (8.3.70) and (8.3.72) satisfy the complementarity property
of Eq. (8.3.71).

Then, plot their magnitude response |H(f)| using the same scales as in Fig. 8.3.25.

8.42 Table 8.3.1 illustrating the signal averaging algorithm of Section 8.3.4 uses a linear delay-line
buffer w = [w0,w1,w2,w3]. Prepare a similar table for the circular-buffer version of the
algorithm. Your table must also show the successive values of the circular pointer indices
pointing to the 0th andDth taps, q and qD = (q+D)%(D+1), so thatw[q]= w[qD]+x/N.
Note how only one element of w changes at each time.

8.43 Computer Experiment: Signal Averaging. Write a stand-alone C program, say sigav.c, that
implements the signal averaging of a signal consisting of N periods each of length D. The
program must have usage:

sigav D N < x.dat > y.dat

It must read the requiredND input data samples from stdin or from a file x.dat, and write
the computed length-D averaged output into stdout or a file y.dat.

Note that such a program was essentially given in Section 8.3.4. Test your program on some
simple data.

8.44 Computer Experiment: Signal Averaging. Using your program sigav.c from the previ-
ous problem or the MATLAB routine sigav.m of Appendix D, reproduce all the graphs in
Fig. 8.3.29. In addition, to the values N = 1,16,64,256, do also N = 32,128.

8.45 Computer Experiment: Savitzky-Golay Filters. Reproduce all the results and graphs of Figures
8.3.33 and 8.3.34. The simulated noise-free ECG can be generated by the MATLAB statements:

s0 = sgfilt(0, 15, ecg(500)’); noise-free ECG

s = s0 / max(s0); normalize to unity maximum

where ecg.m and sgfilt.m are given in Appendix D. To that, you must add the noise
component and filter it with the various cases of sgfilt.m.

Often a second pass through the smoothing filter helps. For each of the above cases, filter
the output through the same SG filter, plot the results, and compare them with those of the
single pass.



9
DFT/FFT Algorithms

The discrete Fourier transform (DFT) and its fast implementation, the fast Fourier trans-
form (FFT), have three major uses in DSP: (a) the numerical computation of the frequency
spectrum of a signal; (b) the efficient implementation of convolution by the FFT; and (c)
the coding of waveforms, such as speech or pictures, for efficient transmission and
storage [219–244,303]. The discrete cosine transform, which is a variant of the DFT, is
especially useful for coding applications [238–240].

9.1 Frequency Resolution and Windowing

To compute the spectrum of an analog signal digitally, a finite-duration record of the
signal is sampled and the resulting samples are transformed to the frequency domain
by a DFT or FFT algorithm. The sampling rate fs must be fast enough to minimize
aliasing effects. If necessary, an analog antialiasing prefilter may precede the sampling
operation.

The spectrum of the sampled signal X̂(f) is the replication of the desired analog
spectrum X(f) at multiples of the sampling rate fs, as given by the Poisson summation
formula, Eq. (1.5.14) of Chapter 1. We saw there that with the proper choice of sampling
rate and prefilter, it can be guaranteed that X̂(f) agree with the desired X(f) over the
Nyquist interval, that is, by Eq. (1.5.15):

TX̂(f)= X(f), − fs
2

≤ f ≤ fs
2

(9.1.1)

This property is a direct consequence of the sampling theorem, following from the
non-overlapping of the spectral replicas in X̂(f). However, if the replicas overlap, they
will contribute to the right-hand side of Eq. (9.1.1), making the sampled spectrum dif-
ferent from the desired one:

TX̂(f)= X(f)+X(f − fs)+X(f + fs)+· · · , − fs
2

≤ f ≤ fs
2

(9.1.2)

Because digitally we can only compute X̂(f), it is essential that Eq. (9.1.1) be satis-
fied, or that the extra terms in Eq. (9.1.2) remain small over the Nyquist interval, which

464
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happens whenX(f) falls off sufficiently fast with f . Example 1.5.2 illustrates the nature
of the approximation of Eq. (9.1.2) for a non-bandlimited signal.

Even though X̂(f) is the closest approximation to X(f) that we can achieve by DSP,
it is still not computable because generally it requires an infinite number of samples
x(nT), −∞ < n < ∞. To make it computable, we must make a second approximation
to X(f), keeping only a finite number of samples, say, x(nT), 0 ≤ n ≤ L − 1. This
time-windowing process is illustrated in Fig. 9.1.1.

In terms of the time samples x(nT), the original sampled spectrum X̂(f) and its
time-windowed version X̂L(f) are given by:

X̂(f) =
∞∑

n=−∞
x(nT)e−2πjfnT

X̂L(f) =
L−1∑
n=0

x(nT)e−2πjfnT

(9.1.3)

n

x(n)

w(n)

L-10 1 2

length-L
rectangular
window

. . .

L samples

(L-1)T sec LT sec

n

xL(n)

w(n)

L-10 1 2 . . .

L samples

Fig. 9.1.1 Time windowing.

As seen in Fig. 9.1.1, the duration of the windowed data record from the time sample
at n = 0 to the sample at n = L− 1 is (L− 1)T seconds, where T is the sampling time
interval T = 1/fs. Because each sample lasts for T seconds, the last sample will last
until time LT. Therefore, we may take the duration of the data record to be:

TL = LT (9.1.4)

The windowed signal may be thought of as an infinite signal which is zero outside
the range of the window and agrees with the original one within the window. To express
this mathematically, we define the rectangular window of length L:

w(n)=
{

1, if 0 ≤ n ≤ L− 1
0, otherwise

(9.1.5)

Then, define the windowed signal as follows:

xL(n)= x(n)w(n)=
{
x(n), if 0 ≤ n ≤ L− 1
0, otherwise

(9.1.6)
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The multiplication by w(n) ensures that xL(n) vanish outside the window. Equations
(9.1.3) can now be expressed more simply in the form:

X(ω) =
∞∑

n=−∞
x(n)e−jωn

XL(ω) =
L−1∑
n=0

x(n)e−jωn =
∞∑

n=−∞
xL(n)e−jωn

(9.1.7)

where ω = 2πf/fs. Thus, XL(ω) is the DTFT of the windowed signal xL(n) and is
computable for any desired value of ω.

As the length L of the data window increases, the windowed signal xL(n) becomes
a better approximation of x(n), and thus, XL(ω) a better approximation of X(ω).
Example 1.5.2 illustrates this approximation as L increases.

In general, the windowing process has two major effects: First, it reduces the fre-
quency resolution of the computed spectrum, in the sense that the smallest resolvable
frequency difference is limited by the length of the data record, that is, Δf = 1/TL.
This is the well-known “uncertainty principle.” Second, it introduces spurious high-
frequency components into the spectrum, which are caused by the sharp clipping of the
signal x(n) at the left and right ends of the rectangular window. This effect is referred
to as “frequency leakage.”

Both effects can be understood by deriving the precise connection of the windowed
spectrum XL(ω) to the unwindowed one X(ω) of Eq. (9.1.7). Using the property that
the Fourier transform of the product of two time functions is the convolution of their
Fourier transforms, we obtain the frequency-domain version of xL(n)= x(n)w(n):

XL(ω)=
∫ π
−π
X(ω′)W(ω−ω′)

dω′

2π
(9.1.8)

where W(ω) is the DTFT of the rectangular window w(n), that is,

W(ω)=
L−1∑
n=0

w(n)e−jωn

It can be thought of as the evaluation of the z-transform on the unit circle at z = ejω.
Setting w(n)= 1 in the sum, we find:

W(z)=
L−1∑
n=0

w(n)z−n =
L−1∑
n=0

z−n = 1 − z−L
1 − z−1

Setting z = ejω, we find for W(ω):

W(ω)= 1 − e−jLω
1 − e−jω = sin(ωL/2)

sin(ω/2)
e−jω(L−1)/2 (9.1.9)

The magnitude spectrum |W(ω)| = | sin(ωL/2)/ sin(ω/2)| is depicted in Fig. 9.1.2.
It consists of a mainlobe of height L and base width 4π/L centered atω = 0, and several
smaller sidelobes.
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ω

|W(ω)|

Δωw
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R=13 dB = 
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0 2π
L

−2π
L

4π
L

π−π ......

L

Fig. 9.1.2 Magnitude spectrum of rectangular window.

The sidelobes are between the zeros ofW(ω), which are the zeros of the numerator
sin(ωL/2)= 0, that is, ω = 2πk/L, for k = ±1,±2, . . . (with k = 0 excluded).

The mainlobe peak at DC dominates the spectrum, becausew(n) is essentially a DC
signal, except when it cuts off at its endpoints. The higher frequency components that
have “leaked” away from DC and lie under the sidelobes represent the sharp transitions
of w(n) at the endpoints.

The width of the mainlobe can be defined in different ways. For example, we may
take it to be the width of the base, 4π/L, or, take it to be the 3-dB width, that is, where
|W(ω)|2 drops by 1/2. For simplicity, we will define it to be half the base width, that
is, in units of radians per sample:

Δωw = 2π
L

(rectangular window width) (9.1.10)

In units of Hz, it is defined through Δωw = 2πΔfw/fs. Using Eq. (9.1.4), we have:

Δfw = fs
L

= 1

LT
= 1

TL
(9.1.11)

We will see shortly that the mainlobe width Δfw determines the frequency resolution
limits of the windowed spectrum. As L increases, the height of the mainlobe increases
and its width becomes narrower, getting more concentrated around DC. However, the
height of the sidelobes also increases, but relative to the mainlobe height, it remains
approximately the same and about 13 dB down.

For example, the peak of the first sidelobe occurs approximately halfway between
the two zeros 2π/L and 4π/L, that is, at ω = 3π/L. Using W(0)= L, we find that the
relative heights are essentially independent of L:∣∣∣∣W(ω)W(0)

∣∣∣∣
ω=3π/L

=
∣∣∣∣ sin(ωL/2)
L sin(ω/2)

∣∣∣∣ =
∣∣∣∣ sin(3π/2)
L sin(3π/2L)

∣∣∣∣ � 1

L · (3π/2L) = 2

3π

We assumed that L was fairly large (typically, L ≥ 10), and used the small-x approx-
imation sinx � x with x = 3π/2L. In decibels, the relative sidelobe level is
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R = 20 log10

∣∣∣∣W(ω)W(0)

∣∣∣∣
ω=3π/L

� 20 log10

(
2

3π

)
= −13.46 dB

To illustrate the effect of the convolutional equation (9.1.8), we consider the case of
a single analog complex sinusoid of frequency f1 and its sampled version:

x(t)= e2πjf1t, −∞ < t <∞ ⇒ x(n)= e2πjf1nT = ejω1n, −∞ < n <∞

where ω1 = 2πTf1 = 2πf1/fs. The spectrum of the analog signal x(t) is the Fourier
transform:

X(f)=
∫∞

−∞
x(t)e−2πjft dt =

∫∞

−∞
e−2πj(f−f1)t dt = δ(f − f1)

Therefore, X(f) consists of a single sharp spectral line at f = f1. For a real sinusoid
x(t)= cos(2πf1t), we would get two half-height lines at f = ±f1. Indeed, the Fourier
transform of the cosine is:

cos(2πf1t)= 1

2
e2πjf1t + 1

2
e−2πjf1t −→ 1

2
δ(f − f1)+1

2
δ(f + f1)

Assuming that f1 lies within the Nyquist interval, that is, |f1| ≤ fs/2, we may use
Eq. (9.1.1) to determine the spectrum of the signal x(n) for −fs/2 ≤ f ≤ fs/2:

X(ω)= X̂(f)= 1

T
X(f)= 1

T
δ(f − f1)

Using the delta function property, |a|δ(ax)= δ(x), we can express the spectrum in
terms of the digital frequency ω = 2πf/fs = 2πTf , as follows:

2πδ(ω−ω1)= 1

T
2πTδ(2πTf − 2πTf1)= 1

T
δ(f − f1)

Therefore, the spectrum of the sampled signal will be, over the Nyquist interval:

X(ω)= 2πδ(ω−ω1), −π ≤ω ≤ π (9.1.12)

Outside the Nyquist interval, the spectral line is replicated at multiples of 2π, that
is, 2πδ(ω−ω1 − 2πm). This was also discussed in Section 5.4. It can be verified that
Eq. (9.1.12) generates the sampled sinusoid from the inverse DTFT formula, Eq. (1.5.5):

x(n)=
∫ π
−π
X(ω)ejωn

dω
2π

=
∫ π
−π

2πδ(ω−ω1)ejωn
dω
2π

= ejω1n

The windowed sinusoid consists of the L samples:

xL(n)= ejω1n, n = 0,1, . . . , L− 1

Its spectrum is obtained by inserting Eq. (9.1.12) into (9.1.8):

XL(ω)=
∫ π
−π
X(ω′)W(ω−ω′)

dω′

2π
=
∫ π
−π

2πδ(ω′ −ω1)W(ω−ω′)
dω′

2π
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Because of the delta function δ(ω′ −ω1) in the integrand, we obtain:

XL(ω)=W(ω−ω1) (9.1.13)

This is the translation ofW(ω) centered aboutω1, as shown in Fig. 9.1.3. Thus, the
windowing process has the effect of smearing the sharp spectral line δ(ω−ω1) atω1

and replacing it by W(ω−ω1).

ωω1 ω1 ω2 ω

W(ω−ω1)

δ(ω−ω1)

A1W(ω−ω1) A2W(ω−ω2)

A2δ(ω−ω2)A1δ(ω−ω1)

ΔωwΔωw
frequency 
leakage

Δω

Fig. 9.1.3 Spectra of windowed single and double sinusoids.

A similar analysis can be made in the case when x(t) is a linear combination of two
complex sinusoids with frequencies f1 and f2 and (complex) amplitudes A1 and A2. We
have for the analog, sampled, and windowed signals and their spectra:

x(t) = A1e2πjf1t +A2e2πjf2t, −∞ < t <∞
X(f) = A1δ(f − f1)+A2δ(f − f2)
x(n) = A1ejω1n +A2ejω2n, −∞ < n <∞
X(ω) = 2πA1δ(ω−ω1)+2πA2δ(ω−ω2), −π ≤ω ≤ π
xL(n) = A1ejω1n +A2ejω2n, 0 ≤ n ≤ L− 1

XL(ω) = A1W(ω−ω1)+A2W(ω−ω2)

Again, the two sharp spectral lines are replaced by their smeared versions, as shown
in Fig. 9.1.3. In this figure, we have taken the frequency separation, Δf = |f2 − f1|,
or Δω = |ω2 −ω1|, of the two sinusoids to be large enough so that the mainlobes
are distinct and do not overlap. However, if Δf is decreased, the mainlobes will begin
merging with each other and will not appear as distinct. This will start to happen when
Δf is approximately equal to the mainlobe width Δfw.

The resolvability condition that the two sinusoids appear as two distinct ones is that
their frequency separation Δf be greater than the mainlobe width:

Δf ≥ Δfw = fs
L

(frequency resolution) (9.1.14)

or, in radians per sample:
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Δω ≥ Δωw = 2π
L

(9.1.15)

These equations can be rewritten to give the minimum number of samples required
to achieve a desired frequency resolution Δf . The smaller the desired separation, the
longer the data record:

L ≥ fs
Δf

= 2π
Δω

(9.1.16)

The mainlobe width of W(ω) determines the amount of achievable frequency res-
olution. The sidelobes, on the other hand, determine the amount of frequency leakage
and are undesirable artifacts of the windowing process. They must be suppressed as
much as possible because they may be confused with the mainlobes of weaker sinusoids
that might be present.

The standard technique for suppressing the sidelobes is to use a non-rectangular
window—a window that cuts off to zero less sharply and more gradually than the rect-
angular one. There are literally dozens of possible shapes for such windows, such as
trapezoidal, triangular, Gaussian, raised cosine, and many others [219–222].

One of the simplest and most widely used window is the Hamming window. It pro-
vides a suppression of the sidelobes by at least 40 dB. Another one that allows the user
to control the desired amount of sidelobe suppression is the Kaiser window [221], which
we will discuss later in Section 10.2.2. The Hamming window, depicted in Fig. 9.1.4, is a
raised-cosine type of window defined as follows:

w(n)=
⎧⎨⎩ 0.54 − 0.46 cos

(
2πn
L− 1

)
, if 0 ≤ n ≤ L− 1

0, otherwise
(9.1.17)

At its center, n = (L − 1)/2, the value of w(n) is 0.54 + 0.46 = 1, and at its
endpoints, n = 0 and n = L− 1, its value is 0.54 − 0.46 = 0.08. Because of the gradual
transition to zero, the high frequencies that are introduced by the windowing process
are deemphasized. Fig. 9.1.4 shows the magnitude spectrum |W(ω)|. The sidelobes are
still present, but are barely visible because they are suppressed relative to the mainlobe
by R = 40 dB.

The main tradeoff in using any type of non-rectangular window is that its mainlobe
becomes wider and shorter, thus, reducing the frequency resolution capability of the
windowed spectrum. For any type of window, the effective width of the mainlobe is still
inversely proportional to the window length:

Δfw = c fs
L

= c 1

TL
(9.1.18)

or, in radians per sample:

Δωw = c 2π
L

(9.1.19)

where the constant c depends on the window used and is always c ≥ 1.
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Fig. 9.1.4 Hamming window in the time and frequency domains.

The rectangular window has the narrowest width, corresponding to c = 1. As seen
in Fig. 9.1.4, the Hamming window has approximately c = 2, that is, its mainlobe is twice
as wide as the rectangular one. The Kaiser window has variable c that depends on the
prescribed amount of relative sidelobe level R; see Eq. (10.2.25).

Given a finite data record of L samples, x(n), n = 0,1, . . . , L − 1, the windowed
signal is defined by Eq. (9.1.6); for example, for the Hamming window:

xL(n)= w(n)x(n)=
[

0.54 − 0.46 cos
(

2πn
L− 1

)]
x(n) (9.1.20)

for n = 0,1, . . . , L− 1.
The corresponding spectrumXL(ω) will still be given by Eq. (9.1.8). If x(n) consists

of a linear combination of sinusoids, then each sharp spectral line δ(ω−ωi) of x(n)will
be replaced by the Hamming window spectrum W(ω−ωi). The frequency resolution
depends now on the width of the Hamming window Δfw. It follows that the minimum
resolvable frequency difference will be:

Δf ≥ Δfw = c fs
L

= c 1

TL
(9.1.21)

This implies that the minimum data record required to achieve a given value of Δf
is c-times longer than that of a rectangular window:

L ≥ c fs
Δf

= c 2π
Δω

(9.1.22)

In summary, the windowing process introduces artificial high-frequency compo-
nents, which can be suppressed by using a non-rectangular window, but at the expense
of reducing the frequency resolution. The lost frequency resolution can be recovered
only by increasing the length L of the data record.

For random signals, such as sinusoids in noise, one must also deal with the statistical
reliability of the computed spectra. In Appendix A.1, we discuss the periodogram aver-
aging method which may be used to reduce the statistical variability of the spectrum
estimate.
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The method consists of dividing the total length-L data record into K segments
of length N, such that L = KN. In order to reduce frequency leakage, a length-N non-
rectangular window, such as a Hamming window, may be applied to each signal segment
before its DFT is computed. The resulting reduction in resolution must be compensated
for by increasing the length N. For a fixed total length L, this will reduce the number of
segments K, thus worsening the spectrum estimate. Therefore, N must be chosen to be
large enough to achieve a desired frequency resolution, but not larger.

The relationships L = KN and N = cfs/Δf capture these issues: We want K to
be large to get a reliable spectrum estimate, and we want N to be large to give us the
desired resolution Δf for the particular window that we chose. Thus, together the two
conditions require the total length L to be large. In some applications, this may be
impossible to achieve either because we cannot collect more data, or because beyond a
certain length L, the signal will no longer remain stationary.

Parametric spectrum estimation methods, such as those based on linear prediction,
maximum likelihood, and eigenvector techniques, offer the possibility of obtaining high-
resolution spectrum estimates based on short data records [25,26,28].

Example 9.1.1: A signal consisting of four sinusoids of frequencies of 1, 1.5, 2.5, and 2.75 kHz
is sampled at a rate of 10 kHz. What is the minimum number of samples that should be
collected for the frequency spectrum to exhibit four distinct peaks at these frequencies?
How many samples should be collected if they are going to be preprocessed by a Hamming
window and then Fourier transformed?

Solution: The smallest frequency separation that must be resolved by the DFT is Δf = 2.75 −
2.5 = 0.25 kHz. Using Eq. (9.1.16) for a rectangular window, we get

L ≥ fs
Δf

= 10

0.25
= 40 samples

Because the mainlobe width of the Hamming window is twice as wide as that of the rect-
angular window, it follows that twice as many samples must be collected, that is, L = 80.
This value can also be calculated from Eq. (9.1.22) with c = 2. 	


Example 9.1.2: A 10-millisecond portion of a signal is sampled at a rate of 10 kHz. It is known
that the signal consists of two sinusoids of frequencies f1 = 1 kHz and f2 = 2 kHz. It is
also known that the signal contains a third component of frequency f3 that lies somewhere
between f1 and f2. (a) How close to f1 could f3 be in order for the spectrum of the collected
samples to exhibit three distinct peaks? How close to f2 could f3 be? (b) What are the
answers if the collected samples are windowed by a Hamming window?

Solution: The total number of samples collected is L = fsTL = 10×10 = 100. The frequency
resolution of the rectangular window is Δf = fs/L = 10/100 = 0.1 kHz. Thus, the closest
f3 to f1 and f2 will be:

f3 = f1 +Δf = 1.1 kHz, and f3 = f2 −Δf = 1.9 kHz

In the Hamming case, the minimum resolvable frequency separation doubles, that is, Δf =
cfs/L = 2 · 10/100 = 0.2 kHz, which gives f3 = 1.2 kHz or f3 = 1.8 kHz. 	
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Example 9.1.3: The sinusoid x(t)= cos(2πf0t), where f0 = 50 Hz is sampled at a rate of fs = 1
kHz. The sampled signal is x(n)= cos(ω0n), whereω0 = 2πf0/fs = 2π·50/1000 = 0.1π
rads/sample. A length-L portion of x(n) is windowed by a rectangular and a Hamming
window, that is, for n = 0,1, . . . , L− 1:

xL(n) = wrec(n)x(n)= cos(ω0n)

xL(n) = wham(n)x(n)=
[

0.54 − 0.46 cos
( 2πn
L− 1

)]
cos(ω0n)

Figure 9.1.5 shows the rectangularly windowed signals, for L = 100 and L = 200. Figure
9.1.6 shows the Hamming windowed signals. Figure 9.1.7 shows the corresponding spectra,
|XL(ω)|, plotted over the Nyquist subinterval, 0 ≤ω ≤ 0.2π. The spectra were computed
by successive calls to the routine dtft of the next section, for 200 equally spaced values
of ω in the interval 0 ≤ω ≤ 0.2π.

Fig. 9.1.5 Rectangularly windowed sinusoids of lengths L = 100 and L = 200.

Fig. 9.1.6 Hamming windowed sinusoids of lengths L = 100 and L = 200.

As L doubles, both the rectangular and the Hamming mainlobe widths become narrower,
with the Hamming one always lagging behind the rectangular one. Note also that as L
doubles, the sidelobes of the rectangular window get more compressed, but also higher so
that their relative depth compared to the mainlobe remains the same.
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Fig. 9.1.7 Rectangular and Hamming spectra for L = 100 and L = 200.

The reason why the peak height of the rectangular mainlobe is L/2 instead of L is that
we are working with a real-valued sinusoid and looking only at its positive-frequency half-
height peak. 	


Example 9.1.4: The following analog signal consisting of three equal-strength sinusoids of fre-
quencies f1 = 2 kHz, f2 = 2.5 kHz, and f3 = 3 kHz:

x(t)= cos(2πf1t)+ cos(2πf2t)+ cos(2πf3t)

where t is in milliseconds, is sampled at a rate of 10 kHz. We consider four data records
of lengths L = 10, 20, 40, and 100 samples. They correspond to the time durations of 1,
2, 4, and 10 msec. To facilitate comparison, the same vertical scale has been used in all
figures.

Figures 9.1.8 and 9.1.9 show the magnitude spectra of the rectangularly and Hamming
windowed signals for the above four values of L. The spectra were computed by calling a
256-point FFT routine and plotted over an entire Nyquist interval, 0 ≤ f ≤ fs. For each L,
the 256-point input to the FFT routine was obtained by padding (256−L) zeros at the end
of the L-point signal x to make it of length 256. (The padding operation does not affect
the DTFT—see Section 9.2.2.)

As we will see in the next section, the three peaks in the right half of the Nyquist interval
correspond to the negative-frequency peaks of the sinusoids, but they have been shifted
to the right by one fs, using the periodicity property of the spectra with respect to fs.

The minimum frequency separation is Δf = 2.5 − 2 = 0.5 kHz. According to (9.1.16),
the minimum length L to resolve all three sinusoids should be L = fs/Δf = 10/0.5 = 20
samples for the rectangular window, and L = 40 samples for the Hamming case.

In the case L = 10, the signal does not have enough length to separate the sinusoids, which
appear merged into one wide peak.

For L = 20, corresponding to the minimum acceptable length, the sinusoids begin to be
separated for the rectangular window, but not yet for the Hamming window. Note also in
the Hamming case, the destructive interference taking place exactly at the position of the
middle sinusoid, f2/fs = 0.25.

For L = 40, the Hamming windowed spectra are beginning to show the separate peaks.
Finally, when L = 100, both windows have clearly separated peaks.
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Fig. 9.1.8 Rectangular and Hamming spectra for L = 10 and 20.

The Hamming window spectra lag behind the rectangular ones in resolution, but improve
with increasing L, while they provide higher sidelobe suppression. 	


9.2 DTFT Computation

9.2.1 DTFT at a Single Frequency

In this section, we turn our attention to the computational aspects of the DTFT. We
consider a length-L signal x(n), n = 0,1, . . . , L− 1, which may have been prewindowed
by a length-L non-rectangular window. Its DTFT, defined by Eq. (9.1.7), can be written
in the simplified notation:

X(ω)=
L−1∑
n=0

x(n)e−jωn (DTFT of length-L signal) (9.2.1)

This expression may be computed at any desired value of ω in the Nyquist interval
−π ≤ω ≤ π. It is customary in the context of developing computational algorithms to
take advantage of the periodicity ofX(ω) and map the conventional symmetric Nyquist
interval −π ≤ ω ≤ π onto the right-sided one 0 ≤ ω ≤ 2π. We will refer to the latter
as the DFT Nyquist interval. This mapping is shown in Fig. 9.2.1.
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Fig. 9.1.9 Rectangular and Hamming spectra for L = 40 and 100.
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Fig. 9.2.1 Equivalent Nyquist intervals.

The positive-frequency subinterval 0 ≤ω ≤ π remains unchanged, but the negative-
frequency one, −π ≤ ω ≤ 0, gets mapped onto the second half of the DFT Nyquist
interval, π ≤ω ≤ 2π.

For example, a cosinusoidal signal cos(ω1n) with two spectral peaks at ±ω1 will
be represented by the two shifted peaks:

{ω1, −ω1}� {ω1, 2π−ω1}

or, in Hz
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{f1, −f1}� {f1, fs − f1}
As we saw in Section 5.4, the DTFT (9.2.1) can be thought of as the evaluation of the

z-transform of the sequence x(n) on the unit circle:

X(ω)=
L−1∑
n=0

x(n)e−jωn =
L−1∑
n=0

x(n)z−n
∣∣∣∣∣∣
z=ejω

= X(z)∣∣z=ejω (9.2.2)

Thus, X(ω) can be computed by evaluating the polynomial X(z) at z = ejω.
Hörner’s rule of synthetic division that was discussed in the problems of Chapter 2
is an efficient polynomial evaluator. It can be adapted in the following form for the
evaluation of the z-transform X(z):

for each complex z do:
X = 0
for n = L−1 down to n = 0 do:

X = xn + z−1X

(Hörner’s rule) (9.2.3)

Upon exit, X is the desired value of X(z). To see how the iterations build up the
z-transform, we iterate them for the case L = 4. Starting with X = 0 at n = L− 1 = 3,
we have:

X = x3 + z−1X = x3

X = x2 + z−1X = x2 + z−1x3

X = x1 + z−1X = x1 + z−1x2 + z−2x3

X = x0 + z−1X = x0 + z−1x1 + z−2x2 + z−3x3 = X(z)
This algorithm can then be applied to any point on the unit circle z = ejω to evaluate

X(ω). The following routine dtft.c is an implementation:

/* dtft.c - DTFT of length-L signal at a single frequency w */

#include <cmplx.h> complex arithmetic

complex dtft(L, x, w) usage: X=dtft(L, x, w);

double *x, w; x is L-dimensional

int L;
{

complex z, X;
int n;

z = cexp(cmplx(0, -w)); set z = e−jω

X = cmplx(0,0); initialize X = 0

for (n=L-1; n>=0; n--)
X = cadd(cmplx(x[n], 0), cmul(z, X));

return X;
}
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The routine uses the suite of complex arithmetic functions defined in the file com-
plex.c of Appendix C. The header file cmplx.h contains all the necessary declarations.
For each value ofω, the routine returns the DTFT valueX(ω) as a complex number. The
L-dimensional time data array x is assumed real, although the routine can be modified
easily when it is complex.

9.2.2 DTFT over Frequency Range

Often, we must compute the DTFT over a frequency range,ωa ≤ω <ωb. The following
routine dtftr.c computes the DTFTX(ω) atN frequencies that are equally spaced over
this interval, that is,

ωk =ωa + k ωb −ωa

N
=ωa + kΔωbin , k = 0,1, . . .N − 1 (9.2.4)

where Δωbin is the bin width, that is, the spacing of the frequencies ωk:

Δωbin = ωb −ωa

N
, or, in Hz Δfbin = fb − fa

N
(9.2.5)

The routine returns theN-dimensional complex-valued arrayX[k]= X(ωk) by mak-
ing N successive calls to dtft:

/* dtftr.c - N DTFT values over frequency range [wa, wb) */

#include <cmplx.h> complex arithmetic

complex dtft(); DTFT at one frequency

void dtftr(L, x, N, X, wa, wb) usage: dtftr(L, x, N, X, wa, wb);

double *x, wa, wb; x is L-dimensional real

complex *X; X is N-dimensional complex

int L, N;
{

int k;
double dw = (wb-wa)/N; frequency bin width

for (k=0; k<N; k++)
X[k] = dtft(L, x, wa + k*dw); kth DTFT value X(ωk)

}

The usage of these routines is illustrated by the following program segment, which
computes the DTFT of Example 9.1.3 for a rectangularly windowed sinusoid of length
L = 100. The DTFT was computed overN = 200 frequencies in the interval [ωa,ωb)=
[0,0.2π).

double *x;
complex *X;

x = (double *) calloc(L, sizeof(double)); use L = 100

X = (complex *) calloc(N, sizeof(complex)); use N = 200

for (n=0; n<L; n++)
x[n] = cos(w0 * n); use ω0 = 0.1π

dtftr(L, x, N, X, wa, wb); use ωa = 0.0 and ωb = 0.2π
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The main program must include the header file cmplx.h and must be linked with
the arithmetic routines complex.c of Appendix C.

The computational cost of the routine dtft is L complex MACs for each call. Simi-
larly, the cost of dtftr isNL complex MACs, because it calls dtftN times. The so-called
Goertzel algorithm [2] for computing the DFT is a variant of Hörner’s rule that uses
mostly real multiplications, and therefore is somewhat more efficient than the above
routines.

The routines dtft and dtftr are useful, and even competitive with the FFT, when
we need to know the DTFT at only very few frequencies. A MATLAB version dtft.m,
which replaces both dtft.c and dtftr.c, is given in Appendix D.

Example 9.2.1: In Example 8.1.1, we discussed the generation of dual sinusoidal tones for DTMF
touch-tone phones. Each keypress generates two frequencies ωH and ωL, one from the
high and one from the low group of frequencies. A total of 4×4 = 16 pairs of frequencies
can be generated.

Such a signal can be detected by computing its DTFT at the 4 high and 4 low group fre-
quencies and then deciding with the help of a threshold which pair {X(ωH),X(ωL)} of
DTFT values has the largest magnitudes. The corresponding pair of frequencies {ωH,ωL}
can then be decoded into the appropriate key.

Because the DTFT is needed only at 8 positive frequencies, the use of the routine dtft

or Goertzel’s algorithm is more efficient than using an FFT. Such DTMF detectors can be
implemented easily on present-day DSP chips [91–93].

The minimum duration L of the received dual tone may be estimated by requiring that the
high and low groups of frequencies remain distinct, so that the DTFT will consist of one
peak lying in the high group and one in the low group.

The resolvability condition depends on the minimum frequency difference between the
groups, that is, from Fig. 8.1.3 we have

Δf = fH,min − fL,max = 1209 − 941 = 268 Hz

which at sampling rate of fs = 8 kHz and rectangular windowing gives the minimum length
L = fs/Δf = 8000/268 � 30 samples. 	


9.2.3 DFT

The N-point DFT of a length-L signal is defined to be the DTFT evaluated at N equally
spaced frequencies over the full Nyquist interval, 0 ≤ω ≤ 2π. These “DFT frequencies”
are defined in radians per sample as follows:

ωk = 2πk
N

, k = 0,1, . . . ,N − 1 (9.2.6)

or, in Hz

fk = kfs
N

, k = 0,1, . . . ,N − 1 (9.2.7)

Thus, the N-point DFT will be, for k = 0,1, . . . ,N − 1:
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X(ωk)=
L−1∑
n=0

x(n)e−jωkn (N-point DFT of length-L signal) (9.2.8)

The N-dimensional complex DFT array X[k]= X(ωk), k = 0,1, . . . ,N − 1 can be
computed by calling the routine dtftr over the frequency range [ωa,ωb)= [0,2π).
The following routine dft.c is an implementation:

/* dft.c - N-point DFT of length-L real-valued signal */

#include <cmplx.h> complex arithmetic

void dtftr(); DTFT over a frequency range

void dft(L, x, N, X) usage: dft(L, x, N, X);

double *x; x is L-dimensional real

complex *X; X is N-dimensional complex

int L, N;
{

double pi = 4 * atan(1.0);

dtftr(L, x, N, X, 0.0, 2*pi); N frequencies over [0,2π)
}

Note that the value at k = N, corresponding to ωN = 2π, is not computed because
by periodicity it equals the value at ω0 = 0, that is, X(ωN)= X(ω0).

The only difference between dft and dtftr is that the former has itsN frequencies
distributed evenly over the full Nyquist interval, [0,2π), as shown in Fig. 9.2.2, whereas
the latter has them distributed over any desired subinterval. The bin width (9.2.5) is in
the DFT case, in rads/sample or Hz:

Δωbin = 2π
N

or, Δfbin = fs
N

(9.2.9)

In Fig. 9.2.2, the same number of frequenciesN was used for the full Nyquist interval
and the subinterval [ωa,ωb). Therefore, theN frequencies in the dtftr case are more
closely spaced. We took the subinterval [ωa,ωb) to be symmetric with respect to the
origin, but it could have been any other subinterval.

ω1 ω2 ωN−1ω0 2ππ
ω

X(ω)

X0 X1 X2
XN-1XN-2

XN

XN/2

Δωbin = 2π/N

... ... ωa 0 ωb−π π
ω

X(ω)

Δωbin = (ωb-ωa)/N

Fig. 9.2.2 N-point DTFTs over [0,2π) and over subinterval [ωa,ωb), for N = 10.
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The N computed values X(ωk) can also be thought of as the evaluation of the z-
transform X(z) at the following z-points on the unit circle:

X(ωk)= X(zk)=
L−1∑
n=0

x(n)z−nk (9.2.10)

where

zk = ejωk = e2πjk/N , k = 0,1, . . . ,N − 1 (9.2.11)

These are recognized as theNth roots of unity, that is, theN solutions of the equation
zN = 1. They are evenly spaced around the unit circle at relative angle increments of
2π/N, as shown in Fig. 9.2.3.

2π/N

−2π/N

z1

z2

z3

z5

z6

z7 = zN-1 = WN

z4 z0

Fig. 9.2.3 Nth roots of unity, for N = 8.

Note also that the periodicity of X(ω) with period 2π is reflected in the periodicity
of the DFT X(k)= X(ωk) in the index k with period N. This follows from:

ωk+N = 2π(k+N)
N

= 2πk
N

+ 2π =ωk + 2π

which implies:

X(k+N)= X(ωk+N)= X(ωk + 2π)= X(ωk)= X(k)

9.2.4 Zero Padding

In principle, the two lengths L and N can be specified independently of each other: L is
the number of time samples in the data record and can even be infinite;N is the number
of frequencies at which we choose to evaluate the DTFT.

Most discussions of the DFT assume thatL = N. The reason for this will be discussed
later. If L < N, we can padN−L zeros at the end of the data record to make it of length
N. If L > N, we may reduce the data record to length N by wrapping it modulo-N—a
process to be discussed in Section 9.5.

Padding any number of zeros at the end of a signal has no effect on its DTFT. For
example, padding D zeros will result into a length-(L+D) signal:
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x = [x0, x1, . . . , xL−1]

xD = [x0, x1, . . . , xL−1,0,0, . . . ,0︸ ︷︷ ︸
D zeros

]

Because xD(n)= x(n) for 0 ≤ n ≤ L− 1 and xD(n)= 0 for L ≤ n ≤ L+D− 1, the
corresponding DTFTs will remain the same:

XD(ω) =
L+D−1∑
n=0

xD(n)e−jωn =
L−1∑
n=0

xD(n)e−jωn +
L+D−1∑
n=L

xD(n)e−jωn

=
L−1∑
n=0

x(n)e−jωn = X(ω)

Therefore, their evaluation at the N DFT frequencies will be the same: XD(ωk)=
X(ωk). We note also that padding the D zeros to the front of the signal will be equiv-
alent to a delay by D samples, which in the z-domain corresponds to multiplication by
z−D and in the frequency domain by e−jωD. Therefore, the signals:

x = [x0, x1, . . . , xL−1]

xD = [0,0, . . . ,0︸ ︷︷ ︸
D zeros

, x0, x1, . . . , xL−1] (9.2.12)

will have DTFTs and DFTs:

XD(ω) = e−jωDX(ω)
XD(ωk) = e−jωkDX(ωk), k = 0,1, . . . ,N − 1

(9.2.13)

9.3 Physical versus Computational Resolution

The bin width Δfbin represents the spacing between the DFT frequencies at which the
DTFT is computed and must not be confused with the frequency resolution width Δf =
fs/L of Eq. (9.1.14), which refers to the minimum resolvable frequency separation be-
tween two sinusoidal components. To avoid confusion, we will refer to Eq. (9.1.14) as
the physical frequency resolution and to Eq. (9.2.9) as the computational frequency res-
olution.

The interplay between physical and computational resolution is illustrated in Fig. 9.3.1
for the triple sinusoidal signal of Example 9.1.4. The N = 32 and N = 64 point DFTs of
the rectangularly windowed signals of lengths L = 10 and L = 20 are shown together
with their full DTFTs (computed here as 256-point DFTs).

It is evident from these graphs that if the length L of the signal is not large enough
to provide sufficient physical resolution, then there is no point increasing the length N
of the DFT—that would only put more points on the wrong curve.

Another issue related to physical and computational resolution is the question of
how accurately the DFT represents the peaks in the spectrum. For each sinusoid that is
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Fig. 9.3.1 Physical versus computational resolution in DTFT computation.

present in the signal, say, at frequency f0, the DTFT will exhibit a mainlobe peak arising
from the shifted window W(f − f0). When we evaluate the N-point DFT, we would like
the peak at f0 to coincide with one of the N DFT frequencies (9.2.7). This will happen if
there is an integer 0 ≤ k0 ≤ N − 1, such that

f0 = fk0 = k0fs
N

⇒ k0 = Nf0
fs

(9.3.1)

Similarly, the peak at the negative frequency, −f0, or at the equivalent shifted one,
fs − f0, will correspond to the integer, −k0, or to the shifted one N − k0:

−f0 = −k0
fs
N

⇒ fs − f0 = fs − k0
fs
N

= (N − k0)
fs
N

In summary, for each sinusoid with peaks at ±f0, we would like our DFT to show
these peaks at the integers:

{f0, −f0} ⇒ {f0, fs − f0} ⇒ {k0, N − k0} (9.3.2)

In general, this is not possible because k0 computed from Eq. (9.3.1) is not an integer,
and the DFT will miss the exact peaks. However, for large N, we may round k0 to the
nearest integer and use the corresponding DFT frequency as an estimate of the actual
peak frequency.
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A pitfall of using the DFT can be seen in the lower two graphs of Fig. 9.3.1, where
it appears that the DFT correctly identifies the three peaks in the spectrum, for both
N = 32 and N = 64.

However, this is misleading for two reasons: First, it is a numerical accident in this
example that the mainlobe maxima coincide with the DFT frequencies. Second, it can
be seen in the figure that these maxima correspond to the wrong frequencies and not
to the correct ones, which are:

f1
fs

= 0.20,
f2
fs

= 0.25,
f3
fs

= 0.30 (9.3.3)

This phenomenon, whereby the maxima of the peaks in the spectrum do not quite
correspond to the correct frequencies, is called biasing and is caused by the lack of
adequate physical resolution, especially when the sinusoidal frequencies are too close to
each other and the sum of terms W(f − f0) interact strongly.

Using Eq. (9.3.1), we can calculate the DFT indices k and N − k to which the true
frequencies (9.3.3) correspond. For N = 32, we have:

k1 = Nf1
fs

= 32 · 0.20 = 6.4, N − k1 = 25.6

k2 = Nf2
fs

= 32 · 0.25 = 8, N − k2 = 24

k3 = Nf3
fs

= 32 · 0.30 = 9.6, N − k3 = 22.4

Similarly, for N = 64, we find:

k1 = Nf1
fs

= 64 · 0.20 = 12.8, N − k1 = 51.2

k2 = Nf2
fs

= 64 · 0.25 = 16, N − k2 = 48

k3 = Nf3
fs

= 64 · 0.30 = 19.2, N − k3 = 44.8

Only the middle one at f2 corresponds to an integer, and therefore, coincides with
a DFT value. The other two are missed by the DFT. We may round k1 and k3 to their
nearest integers and then compute the corresponding DFT frequencies. We find for
N = 32:

k1 = 6.4 ⇒ k1 = 6 ⇒ f1
fs

= k1

N
= 0.1875

k3 = 9.6 ⇒ k3 = 10 ⇒ f3
fs

= k3

N
= 0.3125

and for N = 64:

k1 = 12.8 ⇒ k1 = 13 ⇒ f1
fs

= k1

N
= 0.203125

k3 = 19.2 ⇒ k3 = 19 ⇒ f3
fs

= k3

N
= 0.296875
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The rounding error in the frequencies remains less than fs/2N. It decreases with
increasing DFT length N. The biasing error, on the other hand, can only be decreased
by increasing the data length L.

Figure 9.3.2 shows the spectrum of the same signal of Example 9.1.4, but with length
L = 100 samples. Biasing is virtually eliminated with the peak maxima at the correct
frequencies. The spectrum is plotted versus the DFT index k, which is proportional to
the frequency f via the mapping (9.2.7), or

k = N f
fs

(frequency in units of the DFT index) (9.3.4)

The Nyquist interval 0 ≤ f ≤ fs corresponds to the index interval 0 ≤ k ≤ N. The
N-point DFT is at the integer values k = 0,1, . . . ,N−1. For plotting purposes, the graph
of the spectrum over the full interval 0 ≤ k ≤ N has been split into two side-by-side
graphs covering the half-intervals: 0 ≤ k ≤ N/2 and N/2 ≤ k ≤ N.

Fig. 9.3.2 DFT can miss peaks in the spectrum.

In the upper two graphs having N = 32, the DFT misses the f1 and f3 peaks com-
pletely (the peak positions are indicated by the arrows). The actual peaks are so narrow
that they fit completely within the computational resolution width Δfbin.

In the lower two graphs havingN = 64, the DFT still misses these peaks, but less so.
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Further doubling of N will interpolate half-way between the frequencies of the 64-point
case resulting in a better approximation.

Example 9.3.1: A 5 kHz sinusoidal signal is sampled at 40 kHz and 128 samples are collected
and used to compute the 128-point DFT of the signal. What is the time duration in seconds
of the collected samples? At what DFT indices do we expect to see any peaks in the
spectrum?

Solution: The time duration is TN = NT = N/fs = 128/40 = 3.2 msec. Using Eq. (9.3.1), we
calculate k = Nf/fs = 128 · 5/40 = 16. The negative frequency −5 kHz is represented by
the DFT index N − k = 128 − 16 = 112. 	


Example 9.3.2: A 10 msec segment of a signal is sampled at a rate of 10 kHz and the resulting
samples are saved. It is desired to compute the spectrum of that segment at 128 equally
spaced frequencies covering the range 2.5 ≤ f < 5 kHz. We would like to use an off-
the-shelf N-point FFT routine to perform this computation. The routine takes as input an
N-dimensional vector x of time samples. Its output is an N-dimensional DFT vector X. (a)
What value ofN should we use? (b) How is the routine’s input vector x defined in terms of
the time samples that we collected? (c) Exactly what DFT indices k and DFT values X[k]
correspond to the 128 spectral values that we wish to compute?

Solution: The interval [2.5,5] kHz is one-quarter the Nyquist interval [0,10] kHz. Thus, the
DFT size should beN = 4×128 = 512. This choice places 128 frequencies over the [2.5,5)
interval. Another way is to identify the bin width over the [2.5,5] subinterval with the bin
width over the full interval:

Δfbin = 5 − 2.5
128

= 10

N
⇒ N = 512

The number of collected samples is L = TLfs = (10 msec)×(10 kHz)= 100. Thus, the
subroutine’s 512-dimensional input vector x will consist of the 100 input samples with
412 zeros padded at the end.

Because the range [2.5,5) is the second quarter of the Nyquist interval, it will be repre-
sented by the second quarter of DFT indices, that is, 128 ≤ k < 256. 	


9.4 Matrix Form of DFT

The N-point DFT (9.2.8) can be thought of as a linear matrix transformation of the L-
dimensional vector of time data into an N-dimensional vector of frequency data:

x =

⎡⎢⎢⎢⎢⎢⎣
x0

x1

...
xL−1

⎤⎥⎥⎥⎥⎥⎦ DFT−→ X =

⎡⎢⎢⎢⎢⎢⎣
X0

X1

...
XN−1

⎤⎥⎥⎥⎥⎥⎦
where we denoted the DFT components by Xk = X(ωk), k = 0,1, . . . ,N − 1.

The linear transformation is implemented by an N×L matrix A, to be referred to as
the DFT matrix, and can be written compactly as follows:
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X = DFT(x)= Ax (matrix form of DFT) (9.4.1)

or, component-wise:

Xk =
L−1∑
n=0

Aknxn , k = 0,1, . . . ,N − 1 (9.4.2)

The matrix elements Akn are defined from Eq. (9.2.8):

Akn = e−jωkn = e−2πjkn/N =Wkn
N (9.4.3)

for 0 ≤ k ≤ N− 1 and 0 ≤ n ≤ L− 1. For convenience, we defined the so-called twiddle
factor WN as the complex number:

WN = e−2πj/N (9.4.4)

Thus, the DFT matrix for an N-point DFT is built from the powers of WN. Note that
the first row (k = 0) and first column (n = 0) of A are always unity:

A0n = 1, 0 ≤ n ≤ L− 1 and Ak0 = 1, 0 ≤ k ≤ N − 1

The matrix A can be built from its second row (k = 1), consisting of the successive
powers of WN:

A1n =Wn
N, n = 0,1, . . . , L− 1

It follows from the definition that the kth row is obtained by raising the second row to
the kth power—element by element:

Akn =Wkn
N = (

Wn
N
)k = Ak1n

Some examples of twiddle factors, DFT matrices, and DFTs are as follows: For L = N
and N = 2,4,8, we have:

W2 = e−2πj/2 = e−πj = −1

W4 = e−2πj/4 = e−πj/2 = cos(π/2)−j sin(π/2)= −j

W8 = e−2πj/8 = e−πj/4 = cos(π/4)−j sin(π/4)= 1 − j√
2

(9.4.5)

The corresponding 2-point and 4-point DFT matrices are:

A =
[

1 1
1 W2

]
=
[

1 1
1 −1

]

A =

⎡⎢⎢⎢⎣
1 1 1 1
1 W4 W2

4 W3
4

1 W2
4 W4

4 W6
4

1 W3
4 W6

4 W9
4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤⎥⎥⎥⎦
(9.4.6)
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And, the 2-point and 4-point DFTs of a length-2 and a length-4 signal will be:[
X0

X1

]
=
[

1 1
1 −1

][
x0

x1

]
=
[
x0 + x1

x0 − x1

]
⎡⎢⎢⎢⎣
X0

X1

X2

X3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x0

x1

x2

x3

⎤⎥⎥⎥⎦
(9.4.7)

Thus, the 2-point DFT is formed by taking the sum and difference of the two time
samples. We will see later that the 2-point DFT is a convenient starting point for the
merging operation in performing the FFT by hand.

The twiddle factor WN satisfies WN
N = 1, and therefore it is one of the Nth roots of

unity; indeed, in the notation of Eq. (9.2.11), it is the root WN = zN−1 and is shown in
Fig. 9.2.3. Actually, all the successive powers Wk

N, k = 0,1, . . . ,N − 1 are Nth roots of
unity, but in reverse order (i.e., clockwise) than the zk of Eq. (9.2.11):

Wk
N = e−2πjk/N = z−k = z−1

k , k = 0,1, . . . ,N − 1 (9.4.8)

Figure 9.4.1 showsWN and its successive powers for the valuesN = 2,4,8. Because
WN
N = 1, the exponents in Wkn

N can be reduced modulo-N, that is, we may replace them

by W(nk)mod(N)
N .

-1=W2

W4 = -j

W8

W8
2

W8
3

W8
4

W8
5

W8
6

W8
7

W4
2

W4
3

1 1 1
2π/8

2π/4

Fig. 9.4.1 Twiddle factor lookup tables for N = 2,4,8.

For example, using the property W4
4 = 1, we may reduce all the powers of W4 in the

4-point DFT matrix of Eq. (9.4.6) to one of the four powersWk
4 , k = 0,1,2,3 and write it

as

A =

⎡⎢⎢⎢⎣
1 1 1 1
1 W4 W2

4 W3
4

1 W2
4 W4

4 W6
4

1 W3
4 W6

4 W9
4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 1 1 1
1 W4 W2

4 W3
4

1 W2
4 1 W2

4

1 W3
4 W2

4 W4

⎤⎥⎥⎥⎦
The entries in A can be read off from the circular lookup table of powers of W4 in
Fig. 9.4.1, giving

W4 = −j, W2
4 = −1, W3

4 = j
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9.5 Modulo-N Reduction

The modulo-N reduction or wrapping of a signal plays a fundamental part in the theory
of the DFT. It is defined by dividing the signal x into contiguous non-overlapping blocks
of length N, wrapping the blocks around to be time-aligned with the first block, and
adding them up. The process is illustrated in Fig. 9.5.1. The resulting wrapped block x̃
has length N.

The length L of the signal x could be finite or infinite. If L is not an integral multiple
of N, then the last sub-block will have length less than N; in this case, we may pad
enough zeros at the end of the last block to increase its length to N.

x0x = x1

x1

x2

x2

x3

x3

x~ =

N N N N

x0+x1+x2+x3

Fig. 9.5.1 Modulo-N reduction of a signal.

The wrapping process can also be thought of as partitioning the signal vector x into
N-dimensional subvectors and adding them up. For example, if L = 4N, the signal x
will consist of four length-N subvectors:

x =

⎡⎢⎢⎢⎣
x0

x1

x2

x3

⎤⎥⎥⎥⎦ ⇒ x̃ = x0 + x1 + x2 + x3 (9.5.1)

Example 9.5.1: Determine the mod-4 and mod-3 reductions of the length-8 signal vector:

x = [1, 2, −2, 3, 4, −2, −1, 1]T

For the N = 4 case, we may divide x into two length-4 sub-blocks to get:

x̃ =

⎡⎢⎢⎢⎣
1
2

−2
3

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
4

−2
−1

1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
5
0

−3
4

⎤⎥⎥⎥⎦
Similarly, for N = 3 we divide x into length-3 blocks:

x̃ =
⎡⎢⎣ 1

2
−2

⎤⎥⎦+
⎡⎢⎣ 3

4
−2

⎤⎥⎦+
⎡⎢⎣ −1

1
0

⎤⎥⎦ =
⎡⎢⎣ 3

7
−4

⎤⎥⎦
where we padded a zero at the end of the third sub-block. 	
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We may express the sub-block components in terms of the time samples of the signal
x(n), 0 ≤ n ≤ L− 1, as follows. For m = 0,1, . . .

xm(n)= x(mN + n), n = 0,1, . . . ,N − 1 (9.5.2)

Thus, the mth sub-block occupies the time interval
[
mN, (m + 1)N

)
. The wrapped

vector x̃ will be in this notation:

x̃(n) = x0(n)+x1(n)+x2(n)+x3(n)+· · ·
= x(n)+x(N + n)+x(2N + n)+x(3N + n)+· · ·

(9.5.3)

for n = 0,1, . . . ,N − 1, or, more compactly

x̃(n)=
∞∑
m=0

x(mN + n) , n = 0,1, . . . ,N − 1 (9.5.4)

This expression can be used to define x̃(n) for all n, not just 0 ≤ n ≤ N − 1. The
resulting double-sided infinite signal is the so-called periodic extension of the signal x(n)
with period N. More generally, it is defined by

x̃(n)=
∞∑

m=−∞
x(mN + n), −∞ < n <∞ (9.5.5)

The signal x̃(n) is periodic innwith periodN, that is, x̃(n+N)= x̃(n). The definition
(9.5.4) evaluates only one basic period 0 ≤ n ≤ N−1 of x̃(n), which is all that is needed
in the DFT.

The periodic extension interpretation of mod-N reduction is shown in Fig. 9.5.2.
The terms x(n + N), x(n + 2N), and x(n + 3N) of Eq. (9.5.3) can be thought as the
time-advanced or left-shifted versions of x(n) by N, 2N, and 3N time samples. The
successive sub-blocks of x(n) get time-aligned one under the other over the basic period
0 ≤ n ≤ N − 1, thus, their sum is the wrapped signal x̃.

x0

x0

x0

x1

x1

x1

x2

x2

x2

x3

x3

x3x0

x1

x2

x3

x~

x(n+3N) =

x(n+2N) =

x(n+N) =

x(n) =

x(n) =~

N N N N

Fig. 9.5.2 Periodic extension interpretation of mod-N reduction of a signal.

The connection of the mod-N reduction to the DFT is the theorem that the length-N
wrapped signal x̃ has the same N-point DFT as the original unwrapped signal x, that is,

X̃k = Xk or, X̃(ωk)= X(ωk) , k = 0,1, . . . ,N − 1 (9.5.6)



9.5. MODULO-N REDUCTION 491

where X̃k = X̃(ωk) is the N-point DFT of the length-N signal x̃(n):

X̃k = X̃(ωk)=
N−1∑
n=0

x̃(n)e−jωkn , k = 0,1, . . . ,N − 1 (9.5.7)

In the notation of Eq. (9.4.2), we may write:

X̃k =
N−1∑
n=0

Wkn
N x̃(n)=

N−1∑
n=0

Ãknx̃(n) (9.5.8)

where Ã is the DFT matrix defined as in Eq. (9.4.3):

Ãkn =Wkn
N , 0 ≤ k ≤ N − 1, 0 ≤ n ≤ N − 1 (9.5.9)

The DFT matrices A and Ã have the same definition, except they differ in their
dimensions, which are N×L and N×N, respectively. We can write the DFT of x̃ in the
compact matrix form:

X̃ = DFT(x̃)= Ãx̃ (9.5.10)

Thus, the above theorem can be stated in vector form:

X̃ = X = Ax = Ãx̃ (9.5.11)

Symbolically, we will write DFT(x̃)= DFT(x) to denote Eqs. (9.5.6) or (9.5.11). The
above theorem can be proved in many ways. In matrix form, it follows from the property
that theN×N submatrices of the fullN×L DFT matrixA are all equal to the DFT matrix
Ã.

These submatrices are formed by grouping the first N columns of A into the first
submatrix, the next N columns into the second submatrix, and so on. The matrix ele-
ments of the mth submatrix will be:

Ak,mN+n =Wk(mN+n)
N =WmkN

N Wkn
N

Using the property WN
N = 1, it follows that WkmN

N = 1, and therefore:

Ak,mN+n =Wkn
N = Akn = Ãkn, 0 ≤ k,n ≤ N − 1

Thus, in general, A is partitioned in the form:

A = [Ã, Ã, Ã, . . . ] (9.5.12)

As an example, consider the case L = 8, N = 4. The 4×8 DFT matrix A can be
partitioned into two 4×4 identical submatrices, which are equal to Ã. Using W4 =
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e−2πj/4 = −j, we have:

A =

⎡⎢⎢⎢⎣
1 1 1 1 1 1 1 1
1 W4 W2

4 W3
4 W4

4 W5
4 W6

4 W7
4

1 W2
4 W4

4 W6
4 W8

4 W10
4 W12

4 W14
4

1 W3
4 W6

4 W9
4 W12

4 W15
4 W18

4 W21
4

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
1 1 1 1 1 1 1 1
1 W4 W2

4 W3
4 1 W4 W2

4 W3
4

1 W2
4 W4

4 W6
4 1 W2

4 W4
4 W6

4

1 W3
4 W6

4 W9
4 1 W3

4 W6
4 W9

4

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
1 1 1 1 1 1 1 1
1 −j −1 j 1 −j −1 j
1 −1 1 −1 1 −1 1 −1
1 j −1 −j 1 j −1 −j

⎤⎥⎥⎥⎦ = [Ã, Ã]

where in the second submatrix, we partially reduced the powers of W4 modulo-4.
The proof of the theorem follows now as a simple consequence of this partitioning

property. For example, we have for the N-point DFT of Eq. (9.5.1):

X = Ax = [Ã, Ã, Ã, Ã]

⎡⎢⎢⎢⎣
x0

x1

x2

x3

⎤⎥⎥⎥⎦ = Ãx0 + Ãx1 + Ãx3 + Ãx3

= Ã(x0 + x1 + x2 + x3)= Ãx̃ = X̃

Figure 9.5.3 illustrates the relative dimensions of these operations. The DFT (9.5.10)
of x̃ requiresN2 complex multiplications, whereas that of x requiresNL. Thus, if L > N,
it is more efficient to first wrap the signal mod-N and then take its DFT.

x

A A
~

A
~

A
~

A
~

A
~N

N N
L

X

x2

x1

x0

x3

x~= = =

Fig. 9.5.3 N-point DFTs of the full and wrapped signals are equal.

Example 9.5.2: Compute the 4-point DFT of the length-8 signal of Example 9.5.1 in two ways:
(a) working with the full unwrapped vector x and (b) computing the DFT of its mod-4
reduction.
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Solution: The 4×8 DFT matrix was worked out above. The corresponding DFT is:

X = Ax =

⎡⎢⎢⎢⎣
1 1 1 1 1 1 1 1
1 −j −1 j 1 −j −1 j
1 −1 1 −1 1 −1 1 −1
1 j −1 −j 1 j −1 −j

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

−2
3
4

−2
−1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣
6

8 + 4j
−2

8 − 4j

⎤⎥⎥⎥⎦

The same DFT can be computed by the DFT matrix Ã acting on the wrapped signal x̃,
determined in Example 9.5.1:

X̃ = Ãx̃ =

⎡⎢⎢⎢⎣
1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

5
0

−3
4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
6

8 + 4j
−2

8 − 4j

⎤⎥⎥⎥⎦
The two methods give identical results. 	


Example 9.5.3: The length L of the signal x can be infinite, as long as the signal is stable, so
that the sum (9.5.4) converges. To illustrate the theorem (9.5.6) or (9.5.11), consider the
causal signal x(n)= anu(n), where |a| < 1.

To compute its N-point DFT, we determine its z-transform and evaluate it at the Nth root
of unity points zk = ejωk = e2πjk/N . This gives:

X(z)= 1

1 − az−1
⇒ Xk = X(zk)= 1

1 − az−1
k
, k = 0,1, . . . ,N − 1

Next, we compute its mod-N reduction by the sum (9.5.4):

x̃(n)=
∞∑
m=0

x(mN + n)=
∞∑
m=0

amNan = an

1 − aN , n = 0,1, . . . ,N − 1

where we used the geometric series sum. Computing its z-transform, we find:

X̃(z)=
N−1∑
n=0

x̃(n)z−n = 1

1 − aN
N−1∑
n=0

anz−n = 1 − aNz−N
(1 − aN)(1 − az−1)

Evaluating it at z = zk and using the property that zNk = 1, we find

X̃k = X̃(zk)= 1 − aNz−Nk
(1 − aN)(1 − az−1

k )
= 1 − aN
(1 − aN)(1 − az−1

k )
= 1

1 − az−1
k

= Xk

Thus, even though x(n) and x̃(n) are different and have different z-transforms and DTFTs,
their N-point DFTs are the same. 	
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The following C routine modwrap.c implements the modulo-N reduction operation.
If L < N, it pads N − L zeros at the end of x so that x̃ will have length N. If L > N,
it determines how many length-N blocks fit into L, and adds them up, also taking into
account the few excess points at the end.

/* modwrap.c - modulo-N wrapping of length-L signal */

void modwrap(L, x, N, xtilde) usage: modwrap(L, x, N, xtilde);

int L, N; x is L-dimensional

double *x, *xtilde; xtilde is N-dimensional

{
int n, r, m, M;

r = L % N; remainder r = 0,1, . . . ,N − 1

M = (L-r) / N; quotient of division L/N

for (n=0; n<N; n++) {
if (n < r) non-zero part of last block

xtilde[n] = x[M*N+n]; if L < N, this is the only block

else
xtilde[n] = 0; if L < N, pad N − L zeros at end

for (m=M-1; m>=0; m--) remaining blocks

xtilde[n] += x[m*N+n]; if L < N, this loop is skipped

}
}

Using this routine, we may compute the N-point DFT of a length-L signal by first
wrapping it modulo-N and then computing the N-point DFT of the wrapped signal:

modwrap(L, x, N, xtilde); wrap input modulo-N
dft(N, xtilde, N, X); DFT(x̃) = DFT(x)

Assuming L is a multiple of N, L = MN, the computational cost of the routine
modwrap is N(M − 1)� MN MACs, whereas that of the above dft is N2 MACS. Thus,
the total cost of computing the DFT is N2 + MN MACs. This is to be compared to
LN = MN2 MACs for the routine dft acting on the full length-L input. Replacing the
above DFT by an FFT routine gives an even more efficient implementation, requiring
N log2(N)/2 +MN operations.

Example 9.5.4: Compare the cost of computing the 128-point DFT of a length-1024 signal, using
a direct DFT, a prewrapped DFT, and a prewrapped FFT.

The number of length-N segments is M = L/N = 1024/128 = 8. The cost of wrapping
the signal to length 128 is N(M − 1)= 896. The cost of the three methods will be:

(direct DFT) LN = 1024 · 128 = 131,072

(wrapped DFT) N2 +N(M − 1)= 1282 + 128 · (8 − 1)= 17,280

(wrapped FFT)
1

2
N log2(N)+N(M − 1)= 1

2
· 128 · 7 + 128 · (8 − 1)= 1,344

where we assumed that all the MAC operations are complex-valued. We may also compare
the above with the cost of a direct 1024-point FFT on the 1024-point input:



9.5. MODULO-N REDUCTION 495

(1024-point FFT)
1

2
L log2(L)=

1

2
· 1024 · 10 = 5,120

The DFT frequencies of the desired 128-point DFT are a subset of the DFT frequencies of
the 1024-point DFT; indeed, we have:

ωk = 2πk
128

= 2π(8k)
1024

, k = 0,1, . . . ,127

Thus, the 128-point DFT can be extracted from the 1024-point FFT by taking every eighth
entry, that is, X128(k)= X1024(8k). 	


The two signals x and x̃ are not the only ones that have a common DFT. Any other
signal that has the same mod-N reduction as x will have the same DFT as x. To see this,
consider a length-L signal y such that ỹ = x̃; then its N-point DFT can be obtained by
applying Eq. (9.5.11):

Y = Ay = Ãỹ = Ãx̃ = Ax = X

For example, the following length-8 signals all have the same 4-point DFT,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

x2

x3

x4

x5

x6

x7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0 + x4

x1

x2

x3

0
x5

x6

x7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0 + x4

x1 + x5

x2

x3

0
0
x6

x7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0 + x4

x1 + x5

x2 + x6

x3

0
0
0
x7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0 + x4

x1 + x5

x2 + x6

x3 + x7

0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
because all have the same mod-4 reduction:

x̃ =

⎡⎢⎢⎢⎣
x0 + x4

x1 + x5

x2 + x6

x3 + x7

⎤⎥⎥⎥⎦
The above signals have a bottom half that becomes progressively zero, until the last

vector which is recognized as the x̃, viewed as a length-8 vector. In fact, the mod-N
wrapped signal x̃ is unique in the above class of signals in the sense that it is shortest
signal, that is, of length N, that has the same DFT as the signal x.

An equivalent characterization of the class of signals that have a common DFT can
be given in the z-domain. Suppose the length-L signals y and x have equal mod-N
reductions, ỹ = x̃ and, therefore, equal DFTs Xk = Yk. We form the difference of their
z-transforms:

F(z)= X(z)−Y(z)=
L−1∑
n=0

x(n)z−n −
L−1∑
n=0

y(n)z−n
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Evaluating F(z) at the Nth roots of unity and using the equality of their N-point
DFTs, we find:

F(zk)= X(zk)−Y(zk)= Xk −Yk = 0, k = 0,1, . . . ,N − 1

Thus, theN complex numbers zk are roots of the difference polynomial F(z). There-
fore, F(z) will be divisible by the Nth order product polynomial:

1 − z−N =
N−1∏
k=0

(1 − zkz−1)

which represents the factorization of 1−z−N into itsNth root-of-unity zeros. Therefore,
we can write:

X(z)−Y(z)= F(z)= (
1 − z−N)Q(z) or,

X(z)= Y(z)+(1 − z−N)Q(z) (9.5.13)

Because X(z) and Y(z) have degree L − 1, it follows that Q(z) is an arbitrary
polynomial of degree L − 1 −N. Denoting the coefficients of Q(z) by q(n), 0 ≤ n ≤
L− 1 −N, we may write Eq. (9.5.13) in the time domain:

x(n)= y(n)+q(n)−q(n−N) , n = 0,1, . . . , L− 1 (9.5.14)

Thus, any two sequences x(n) and y(n) related by Eq. (9.5.14) will have the same
N-point DFT. The mod-N reduction x̃ and its z-transform X̃(z) are also related by
Eq. (9.5.13):

X(z)= (
1 − z−N)Q(z)+X̃(z) (9.5.15)

Because X̃(z) has degreeN−1, Eq. (9.5.15) represents the division of the polynomial
X(z) by the DFT polynomial 1 − z−N, with X̃(z) being the remainder polynomial and
Q(z) the quotient polynomial. The remainder X̃(z) is the unique polynomial satisfying
Eq. (9.5.15) that has minimal degree N − 1.

9.6 Inverse DFT

The problem of inverting anN-point DFT is the problem of recovering the original length-
L signal x from its N-point DFT X, that is, inverting the relationship:

X = Ax = Ãx̃ (9.6.1)

When L > N, the matrix A is not invertible. As we saw, there are in this case several
possible solutions x, all satisfying Eq. (9.6.1) and having the same mod-N reduction x̃.

Among these solutions, the only one that is uniquely obtainable from the knowledge
of the DFT vector X is x̃. The corresponding DFT matrix Ã is an N×N square invertible
matrix. Thus, we define the inverse DFT by
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x̃ = IDFT(X)= Ã−1X (inverse DFT) (9.6.2)

or, component-wise,

x̃n =
N−1∑
k=0

(Ã−1)nkXk , n = 0,1, . . . ,N − 1 (9.6.3)

The inverse Ã−1 can be obtained without having to perform a matrix inversion by
using the following unitarity property of the DFT matrix Ã:

1

N
ÃÃ∗ = IN (9.6.4)

where IN is the N-dimensional identity matrix and Ã∗ is the complex conjugate of Ã,
obtained by conjugating every matrix element of Ã. For example, for N = 4, we can
verify easily:

1

4
ÃÃ∗ = 1

4

⎡⎢⎢⎢⎣
1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦
Multiplying both sides of Eq. (9.6.4) by Ã−1, we obtain for the matrix inverse:

Ã−1 = 1

N
Ã∗ (9.6.5)

Thus, the IDFT (9.6.2) can be written in the form:

x̃ = IDFT(X)= 1

N
Ã∗X (inverse DFT) (9.6.6)

We note also that the IDFT can be thought of as a DFT in the following sense. Intro-
ducing a second conjugation instruction, we have:

Ã∗X = (ÃX∗)∗= [
DFT(X∗)

]∗
where the matrix Ã acting on the conjugated vector X∗ is the DFT of that vector. Dividing
by N, we have:

IDFT(X)= 1

N
[
DFT(X∗)

]∗
(9.6.7)

Replacing DFT by FFT, we get a convenient inverse FFT formula, which uses an FFT
to perform the IFFT. It is used in most FFT routines.

IFFT(X)= 1

N
[
FFT(X∗)

]∗
(9.6.8)
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Example 9.6.1: To illustrate Eqs. (9.6.6) and (9.6.7), we calculate the IDFT of the 4-point DFT of
Example 9.5.2. We have:

x̃ = IDFT(X)= 1

N
Ã∗X = 1

4

⎡⎢⎢⎢⎣
1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

6
8 + 4j
−2

8 − 4j

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
5
0

−3
4

⎤⎥⎥⎥⎦
and using Eq. (9.6.7), we conjugate X and transform it:

1

N
(ÃX∗)∗= 1

4

⎡⎢⎢⎢⎣
1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

6
8 − 4j
−2

8 + 4j

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
5
0

−3
4

⎤⎥⎥⎥⎦
where the final overall conjugation was omitted because x̃ is real. 	


Using Eq. (9.4.3) the matrix elements of Ã−1 are:

(Ã−1)nk= 1

N
Ã∗
nk =

1

N
(Wnk

N )
∗= 1

N
W−nk
N

where we used the propertyW∗
N = e2πj/N =W−1

N . Then, Eq. (9.6.3) can be written in the
form:

(IDFT) x̃n = 1

N

N−1∑
k=0

W−nk
N Xk , n = 0,1, . . . ,N − 1 (9.6.9)

In terms of the DFT frequencies ωk, we have Xk = X(ωk) and

W−nk
N = e2πjkn/N = ejωkn

Therefore, the inverse DFT can be written in the alternative form:

(IDFT) x̃(n)= 1

N

N−1∑
k=0

X(ωk)ejωkn , n = 0,1, . . . ,N − 1 (9.6.10)

It expresses the signal x̃(n) as a sum of N complex sinusoids of frequencies ωk,
whose relative amplitudes and phases are given by the DFT values X(ωk).

The forward DFT of Eq. (9.2.8) is sometimes called an analysis transform, analyzing
a signal x(n) into N Fourier components. The inverse DFT (9.6.10) is called a synthesis
transform, resynthesizing the signal x̃(n) from those Fourier components. The forward
and inverse N-point DFTs are akin to the more general forward and inverse DTFTs that
use all frequencies, not just the N DFT frequencies:

X(ω)=
L−1∑
n=0

x(n)e−jωn, x(n)=
∫ 2π

0
X(ω)ejωn

dω
2π

(9.6.11)
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The difference between this inverse DTFT and (9.6.10) is that (9.6.11) reconstructs
the full original signal x(n), whereas (9.6.10) reconstructs only the wrapped signal x̃(n).
Eq. (9.6.10) can be thought of as a numerical approximation of the integral in (9.6.11),
obtained by dividing the integration range into N equal bins:

∫ 2π

0
X(ω)ejωn

dω
2π

�
N−1∑
k=0

X(ωk)ejωkn Δωbin

2π

where from the definition (9.2.9), we have Δωbin/2π = 1/N.
In summary, the inverse of an N-point DFT reconstructs only the wrapped version

of the original signal that was transformed. This property is shown in Fig. 9.6.1.

x

X

x~N

N

L

mod-N
reduction

DFT

DFT

IDFT

Fig. 9.6.1 Forward and inverse N-point DFTs.

In order for the IDFT to generate the original unwrapped signal x, it is necessary to
have x̃ = x. This happens only if the DFT length N is at least L, so that there will be
only one length-N sub-block in x and there will be nothing to wrap around. Thus, we
have the condition:

x̃ = x only if N ≥ L (9.6.12)

IfN = L, then Eq. (9.6.12) is exact. IfN > L, then we must padN−L zeros at the end
of x so that the two sides of Eq. (9.6.12) have compatible lengths. IfN < L, the wrapped
and original signals will be different because there will be several length-N sub-blocks
in x that get wrapped around. Thus, we also have the condition:

x̃ �= x if N < L (9.6.13)

9.7 Sampling of Periodic Signals and the DFT

The inverse DFT (9.6.10) defines the signal x̃(n) for n = 0,1, . . . ,N − 1. However, the
same expression can be used to define it for any value of n. The resulting x̃(n) will
be periodic in n with period N. This follows from the periodicity of the discrete-time
sinusoids:

ejωk(n+N) = e2πjk(n+N)/N = e2πjkn/Ne2πjk = e2πjkn/N = ejωkn
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The periodic signal x̃(n) is equivalent to the periodic extension of x(n), as discussed
in Section 9.5. Therefore, if the original signal x(n) is also periodic with period N and
we compute its N-point DFT over one period L = N, then we will have x = x̃, or,
x(n)= x̃(n). It follows that the periodic signal x(n)may be represented by the discrete
Fourier series (DFS):

x(n)= 1

N

N−1∑
k=0

X(ωk)ejωkn (DFS) (9.7.1)

with the DFT playing the role of Fourier series coefficients:

X(ωk)=
N−1∑
n=0

x(n)e−jωkn (DFS coefficients) (9.7.2)

These relationships are helpful in the analysis of analog periodic signals. We saw in
Example 1.4.6 and Section 8.1.2 that for a periodic signal to remain periodic after sam-
pling, it is necessary that the sampling rate be a multiple of the fundamental frequency
of the signal:

fs = Nf1
The periodic analog signal will have an ordinary Fourier series expansion into a sum

of sinusoids at the harmonics of the fundamental, fm =mf1:

x(t)=
∞∑

m=−∞
cme2πjfmt

In general, an infinite number of harmonics are necessary to represent x(t), and
therefore, if the signal is sampled at a rate fs, all harmonics that lie outside the Nyquist
interval will be aliased with the harmonics inside the interval.

Taking the Nyquist interval to be the right-sided one [0, fs], we note that the har-
monics within that interval are none other than the N DFT frequencies:

fk = kf1 = k fs
N
, k = 0,1, . . . ,N − 1

Given an integer m, we determine its quotient and remainder of the division by N:

m = qN + k, 0 ≤ k ≤ N − 1

and therefore, the corresponding harmonic will be:

fm =mf1 = qNf1 + kf1 = qfs + fk
which shows that fm will be aliased with fk. Therefore, if the signal x(t) is sampled, it
will give rise to the samples:

x(nT)=
∞∑

m=−∞
cme2πjfmn/fs =

N−1∑
k=0

∞∑
q=−∞

cqN+ke2πj(qfs+fk)n/fs
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where we wrote the summation over m as an equivalent double summation over q and
k. Noting that,

e2πjqfsn/fs = e2πjqn = 1

and defining the aliased Fourier series amplitudes,

bk =
∞∑

q=−∞
cqN+k, k = 0,1, . . . ,N − 1

we obtain:

x(nT)=
N−1∑
k=0

bke2πjfkn/fs =
N−1∑
k=0

bkejωkn (9.7.3)

Comparing it with Eq. (9.7.1), we may identify the aliased amplitudes:

bk = 1

N
X(ωk) , k = 0,1, . . . ,N − 1 (9.7.4)

Thus, the aliased amplitudes bk are computable by performing an N-point DFT on
the N samples comprising one period of the signal x(nT). If the samples x(nT) were
to be reconstructed back into analog form using an ideal reconstructor, the following
aliased analog waveform would be obtained:

xal(t)=
N−1∑
k=0

bke2πjfkt (9.7.5)

with the proviso that those harmonics fk that lie in the right half of the Nyquist interval,
fs/2 < fk ≤ fs, will be replaced by their negative selves, fk − fs.
Example 9.7.1: In Example 1.4.6, we determined the aliased signal xal(t) resulting by sampling

a square wave of frequency f1 = 1 Hz.

For a sampling rate of fs = 4 Hz, we consider one period consisting of N = 4 samples and
perform its 4-point DFT:

x =

⎡⎢⎢⎢⎣
0
1
0

−1

⎤⎥⎥⎥⎦ ⇒ X = Ax =

⎡⎢⎢⎢⎣
1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0
1
0

−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

−2j
0

2j

⎤⎥⎥⎥⎦
Thus, the Fourier coefficients are:

[b0, b1, b2, b3]= 1

4
[0, −2j, 0, 2j]= [0, 1

2j
, 0, − 1

2j
]

corresponding to the harmonics:

[f0, f1, f2, f3]= [0,1,2,3]≡ [0,1,2,−1]
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where f3 = 3 was replaced by its negative version f3 − fs = 3 − 4 = −1. It follows that the
aliased signal will be:

xal(t)= b1e2πjt + b3e−2πjt = 1

2j
e2πjt − 1

2j
e−2πjt = sin(2πt)

Similarly, forN = 8 corresponding to fs = 8 Hz, we perform the 8-point DFT of one period
of the square wave, and divide by 8 to get the aliased amplitudes:

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
1
0

−1
−1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
DFT−→ X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−2j(

√
2 + 1)

0
−2j(

√
2 − 1)

0
2j(

√
2 − 1)
0

2j(
√

2 + 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
(
√

2 + 1)/4j
0

(
√

2 − 1)/4j
0

−(√2 − 1)/4j
0

−(√2 + 1)/4j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
These amplitudes correspond to the frequencies fk = kf1:

[0,1,2,3,4,5,6,7]≡ [0,1,2,3,4,−3,−2,−1]

It follows that the aliased signal will be:

xal(t) = (
√

2 + 1)
4j

e2πjt + (
√

2 − 1)
4j

e2πj3t

− (
√

2 − 1)
4j

e−2πj3t − (
√

2 + 1)
4j

e−2πjt

=
√

2 + 1

2
sin(2πt)+

√
2 − 1

2
sin(6πt)

which agrees with Example 1.4.6. The above 8-point DFT can be done using the 8×8 DFT
matrix, or, more quickly using an FFT by hand, as done in Example 9.8.3. 	


Example 9.7.2: Without performing any DFT or FFT computations, determine the 16-point DFT
of the signal:

x(n)= 1 + 2 sin
(πn

2

)+ 2 cos
(3πn

4

)+ cos(πn), n = 0,1, . . . ,15

Then, determine its 8-point DFT.

Solution: The signal x(n) is already given as a sum of sinusoids at frequencies which are 16-
point DFT frequencies. Thus, all we have to do is compare the given expression with the
16-point IDFT formula and identify the DFT coefficients Xk:

x(n)= 1

16

15∑
k=0

Xkejωkn

Using Euler’s formula, we write the given signal as:
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x(n)= 1 − jejπn/2 + je−jπn/2 + e3jπn/4 + e−3jπn/4 + ejπn

Shifting the negative frequencies by 2π, noting that the 16-point DFT frequencies are
ωk = 2πk/16 = πk/8, and writing the terms in increasing DFT index k, we have:

x(n)= 1

16

[
16ejω0n − 16jejω4n + 16ejω6n + 16ejω8n + 16ejω10n + 16jejω12n

]
where the frequencies, their negatives, and their relative locations with respect to the 16
DFT roots of unity are as follows:

ω4 = 2π · 4

16
= π

2

ω12 = 2π · 12

16
= 2π− 2π · 4

16
= 2π−ω4

ω6 = 2π · 6

16
= 3π

4

ω10 = 2π · 10

16
= 2π− 2π · 6

16
= 2π−ω6

ω8 = 2π · 8

16
= π

ω4

ω0

ω10

ω6

ω8

ω12

Comparing with the IDFT, we identify the coefficients of the exponentials:

X0 = 16, X4 = −16j, X6 = X8 = X10 = 16, X12 = 16j

Thus, the 16-point DFT vector will be:

X = [16, 0, 0, 0, −16j, 0, 16, 0, 16, 0, 16, 0, 16j, 0, 0, 0]T

The 8-point DFT is obtained by picking every other entry of X, that is,

X = [16, 0, −16j, 16, 16, 16, 16j, 0]T (9.7.6)

This follows because the 8-point DFT frequencies are a subset of the 16-point ones, that
is, ωk = 2πk/8 = 2π(2k)/16, k = 0,1, . . . ,7. 	


Example 9.7.3: The 8-point DFT determined in the previous example was that of the 16-point
signal. If the signal x(n) is considered as a length-8 signal over 0 ≤ n ≤ 7, then its 8-point
DFT will be different.

To find it, we follow the same method of writing x(n) in its IDFT form, but now we identify
the frequencies as 8-point DFT frequencies ωk = 2πk/8. We have:

ω2 = 2π · 2

8
= π

2
, ω3 = 2π · 3

8
= 3π

4
, ω4 = 2π · 4

8
= π

and x(n) can be written as:
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x(n)= 1

8

[
8ejω0n − 8jejω2n + 8ejω3n + 8ejω4n + 8ejω5n + 8jejω6n

]
comparing with the 8-point IDFT,

x(n)= 1

8

7∑
k=0

Xkejωkn

we obtain:

X = [8, 0, −8j, 8, 8, 8, 8j, 0]T

The answer of Eq. (9.7.6) is doubled because the length-16 signal of the previous problem
consists of two length-8 periods, which double when wrapped mod-8. 	


9.8 FFT

The fast Fourier transform is a fast implementation of the DFT. It is based on a divide-
and-conquer approach in which the DFT computation is divided into smaller, simpler,
problems and the final DFT is rebuilt from the simpler DFTs. For a comprehensive
review, history, and recent results, see [237]. For general references, see [223–244,303].

Another application of this divide-and-conquer approach is the computation of very
large FFTs, in which the time data and their DFT are too large to be stored in main
memory. In such cases the FFT is done in parts and the results are pieced together to
form the overall FFT, and saved in secondary storage such as on hard disk [241–244,303].

In the simplest Cooley-Tukey version of the FFT, the dimension of the DFT is suc-
cessively divided in half until it becomes unity. This requires the initial dimension N to
be a power of two:

N = 2B ⇒ B = log2(N) (9.8.1)

The problem of computing the N-point DFT is replaced by the simpler problems of
computing two (N/2)-point DFTs. Each of these is replaced by two (N/4)-point DFTs,
and so on.

We will see shortly that an N-point DFT can be rebuilt from two (N/2)-point DFTs
by an additional cost ofN/2 complex multiplications. This basic merging step is shown
in Fig. 9.8.1.

Thus, if we compute the two (N/2)-DFTs directly, at a cost of (N/2)2 multiplications
each, the total cost of rebuilding the full N-DFT will be:

2
(
N
2

)2

+ N
2

= N2

2
+ N

2
� N2

2

where for large N the quadratic term dominates. This amounts to 50 percent savings
over computing the N-point DFT directly at a cost of N2.
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N/2-DFT

N-DFT

1
1

2

2

1

1

1

1

1

1

1

1

1

1

4 8

4

4

2

2

2

2

stage 1 stage 2 stage 3

1-DFT 2-DFT 4-DFT 8-DFT

Basic Merging Unit

no. of additional
multiplications

Fig. 9.8.1 Merging two N/2-DFTs into an N-DFT and its repeated application.

Similarly, if the two (N/2)-DFTs were computed indirectly by rebuilding each of
them from two (N/4)-DFTs, the total cost for rebuilding an N-DFT would be:

4
(
N
4

)2

+ 2
N
4

+ N
2

= N2

4
+ 2

N
2

� N2

4

Thus, we gain another factor of two, or a factor of four in efficiency over the direct
N-point DFT. In the above equation, there are 4 direct (N/4)-DFTs at a cost of (N/4)2

each, requiring an additional cost of N/4 each to merge them into (N/2)-DFTs, which
require another N/2 for the final merge.

Proceeding in a similar fashion, we can show that if we start with (N/2m)-point DFTs
and perform m successive merging steps, the total cost to rebuild the final N-DFT will
be:

N2

2m
+ N

2
m (9.8.2)

The first term, N2/2m, corresponds to performing the initial (N/2m)-point DFTs
directly. Because there are 2m of them, they will require a total cost of 2m(N/2m)2=
N2/2m.

However, if the subdivision process is continued for m = B stages, as shown in
Fig. 9.8.1, the final dimension will beN/2m = N/2B = 1, which requires no computation
at all because the 1-point DFT of a 1-point signal is itself.

In this case, the first term in Eq. (9.8.2) will be absent, and the total cost will arise
from the second term. Thus, carrying out the subdivision/merging process to its logical
extreme of m = B = log2(N) stages, allows the computation to be done in:

1

2
NB = 1

2
N log2(N) (FFT computational cost) (9.8.3)

It can be seen Fig. 9.8.1 that the total number of multiplications needed to perform
all the mergings in each stage is N/2, and B is the number of stages. Thus, we may
interpret Eq. (9.8.3) as
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(total multiplications) = (multiplications per stage) × (no. stages) = N
2
B

For the N = 8 example shown in Fig. 9.8.1, we have B = log2(8)= 3 stages and
N/2 = 8/2 = 4 multiplications per stage. Therefore, the total cost is BN/2 = 3 ·4 = 12
multiplications.

Next, we discuss the so-called decimation-in-time radix-2 FFT algorithm. There is
also a decimation-in-frequency version, which is very similar. The term radix-2 refers to
the choice of N as a power of 2, in Eq. (9.8.1).

Given a length-N sequence x(n), n = 0,1, . . . ,N−1, itsN-point DFTX(k)= X(ωk)
can be written in the component-form of Eq. (9.4.2):

X(k)=
N−1∑
n=0

Wkn
N x(n), k = 0,1, . . . ,N − 1 (9.8.4)

The summation index n ranges over both even and odd values in the range 0 ≤ n ≤
N− 1. By grouping the even-indexed and odd-indexed terms, we may rewrite Eq. (9.8.4)
as

X(k)=
∑
n
Wk(2n)
N x(2n)+

∑
n
Wk(2n+1)
N x(2n+ 1)

To determine the proper range of summations over n, we consider the two terms
separately. For the even-indexed terms, the index 2n must be within the range 0 ≤
2n ≤ N− 1. But, because N is even (a power of two), the upper limit N− 1 will be odd.
Therefore, the highest even index will be N − 2. This gives the range:

0 ≤ 2n ≤ N − 2 ⇒ 0 ≤ n ≤ N
2

− 1

Similarly, for the odd-indexed terms, we must have 0 ≤ 2n + 1 ≤ N − 1. Now the
upper limit can be realized, but the lower one cannot; the smallest odd index is unity.
Thus, we have:

1 ≤ 2n+ 1 ≤ N − 1 ⇒ 0 ≤ 2n ≤ N − 2 ⇒ 0 ≤ n ≤ N
2

− 1

Therefore, the summation limits are the same for both terms:

X(k)=
N/2−1∑
n=0

Wk(2n)
N x(2n)+

N/2−1∑
n=0

Wk(2n+1)
N x(2n+ 1) (9.8.5)

This expression leads us to define the two length-(N/2) subsequences:

g(n) = x(2n)
h(n) = x(2n+ 1)

, n = 0,1, . . . ,
N
2

− 1 (9.8.6)

and their (N/2)-point DFTs:
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G(k) =
N/2−1∑
n=0

Wkn
N/2g(n)

H(k) =
N/2−1∑
n=0

Wkn
N/2h(n)

, k = 0,1, . . . ,
N
2

− 1 (9.8.7)

Then, the two terms of Eq. (9.8.5) can be expressed in terms of G(k) and H(k). We
note that the twiddle factorsWN andWN/2 of orders N and N/2 are related as follows:

WN/2 = e−2πj/(N/2) = e−4πj/N =W2
N

Therefore, we may write:

Wk(2n)
N = (W2

N)
kn=Wkn

N/2, Wk(2n+1)
N =Wk

NW
2kn
N =Wk

NW
kn
N/2

Using the definitions (9.8.6), Eq. (9.8.5) can be written as:

X(k)=
N/2−1∑
n=0

Wkn
N/2g(n)+Wk

N

N/2−1∑
n=0

Wkn
N/2h(n)

and using Eq. (9.8.7),

X(k)= G(k)+Wk
NH(k) , k = 0,1, . . . ,N − 1 (9.8.8)

This is the basic merging result. It states that X(k) can be rebuilt out of the two
(N/2)-point DFTs G(k) and H(k). There are N additional multiplications, Wk

NH(k).
Using the periodicity of G(k) and H(k), the additional multiplications may be reduced
by half to N/2. To see this, we split the full index range 0 ≤ k ≤ N − 1 into two
half-ranges parametrized by the two indices k and k+N/2:

0 ≤ k ≤ N
2

− 1 ⇒ N
2

≤ k+ N
2

≤ N − 1

Therefore, we may write the N equations (9.8.8) as two groups of N/2 equations:

X(k)= G(k)+Wk
NH(k)

X(k+N/2)= G(k+N/2)+W(k+N/2)
N H(k+N/2)

k = 0,1, . . . ,
N
2

− 1

Using the periodicity property that any DFT is periodic in k with period its length,
we have G(k+N/2)= G(k) and H(k+N/2)= H(k). We also have the twiddle factor
property:

WN/2
N = (e−2πj/N)N/2= e−jπ = −1

Then, the DFT merging equations become:
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X(k) = G(k)+Wk
NH(k)

X(k+N/2) = G(k)−Wk
NH(k)

, k = 0,1, . . . ,
N
2

− 1 (9.8.9)

They are known as the butterfly merging equations. The upper group generates the
upper half of theN-dimensional DFT vector X, and the lower group generates the lower
half. The N/2 multiplications Wk

NH(k) may be used both in the upper and the lower
equations, thus reducing the total extra merging cost to N/2. Vectorially, we may write
them in the form:⎡⎢⎢⎢⎢⎢⎣

X0

X1

...
XN/2−1

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
G0

G1

...
GN/2−1

⎤⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎣
H0

H1

...
HN/2−1

⎤⎥⎥⎥⎥⎥⎦×

⎡⎢⎢⎢⎢⎢⎣
W0
N

W1
N

...
WN/2−1
N

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
XN/2
XN/2+1

...
XN−1

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
G0

G1

...
GN/2−1

⎤⎥⎥⎥⎥⎥⎦−

⎡⎢⎢⎢⎢⎢⎣
H0

H1

...
HN/2−1

⎤⎥⎥⎥⎥⎥⎦×

⎡⎢⎢⎢⎢⎢⎣
W0
N

W1
N

...
WN/2−1
N

⎤⎥⎥⎥⎥⎥⎦

(9.8.10)

where the indicated multiplication is meant to be component-wise. Together, the two
equations generate the full DFT vector X. The operations are shown in Fig. 9.8.2.

G

H

N/2

N/2

N-DFTN/2-DFT

WN
k

−

+
X

Fig. 9.8.2 Butterfly merging builds upper and lower halves of length-N DFT.

As an example, consider the case N = 2. The twiddle factor is now W2 = −1, but
only its zeroth power appearsW0

2 = 1. Thus, we get two 1-dimensional vectors, making
up the final 2-dimensional DFT:[

X0

]
=
[
G0

]
+
[
H0W0

2

]
[
X1

]
=
[
G0

]
−
[
H0W0

2

]
For N = 4, we have W4 = −j, and only the powers W0

4, W1
4 appear:
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[
X0

X1

]
=
[
G0

G1

]
+
[
H0W0

4

H1W1
4

]
[
X2

X3

]
=
[
G0

G1

]
−
[
H0W0

4

H1W1
4

]

And, for N = 8, we have: ⎡⎢⎢⎢⎣
X0

X1

X2

X3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
G0

G1

G2

G3

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
H0W0

8

H1W1
8

H2W2
8

H3W3
8

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
X4

X5

X6

X7

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
G0

G1

G2

G3

⎤⎥⎥⎥⎦−

⎡⎢⎢⎢⎣
H0W0

8

H1W1
8

H2W2
8

H3W3
8

⎤⎥⎥⎥⎦
To begin the merging process shown in Fig. 9.8.1, we need to know the starting one-

dimensional DFTs. Once these are known, they may be merged into DFTs of dimension
2,4,8, and so on. The starting one-point DFTs are obtained by the so-called shuffling
or bit reversal of the input time sequence. Thus, the typical FFT algorithm consists of
three conceptual parts:

1. Shuffling the N-dimensional input into N one-dimensional signals.
2. Performing N one-point DFTs.
3. Merging the N one-point DFTs into one N-point DFT.

Performing the one-dimensional DFTs is only a conceptual part that lets us pass from
the time to the frequency domain. Computationally, it is trivial because the one-point
DFT X = [X0] of a 1-point signal x = [x0] is itself, that is, X0 = x0, as follows by setting
N = 1 in Eq. (9.8.4).

The shuffling process is shown in Fig. 9.8.3 for N = 8. It has B = log2(N) stages.
During the first stage, the given length-N signal block x is divided into two length-(N/2)
blocks g and h by putting every other sample into g and the remaining samples into h.

During the second stage, the same subdivision is applied to g, resulting into the
length-(N/4) blocks {a,b} and to h resulting into the blocks {c,d}, and so on. Eventu-
ally, the signal x is time-decimated down to N length-1 subsequences.

These subsequences form the starting point of the DFT merging process, which is
depicted in Fig. 9.8.4 for N = 8. The butterfly merging operations are applied to each
pair of DFTs to generate the next DFT of doubled dimension.

To summarize the operations, the shuffling process generates the smaller and smaller
signals:

x → {g,h} → {{a,b}, {c,d}} → ·· · → {1-point signals}

and the merging process rebuilds the corresponding DFTs:
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Fig. 9.8.3 Shuffling process generates N 1-dimensional signals.
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Fig. 9.8.4 DFT merging.

{1-point DFTs} → · · · → {{A,B}, {C,D}} → {G,H} → X

The shuffling process may also be understood as a bit-reversal process, shown in
Fig. 9.8.5. Given a time index n in the range 0 ≤ n ≤ N − 1, it may be represented in
binary by B = log2(N) bits. For example, if N = 8 = 23, we may represent n by three
bits {b0, b1, b2}, which are zero or one:

n = (b2 b1 b0)≡ b222 + b121 + b020
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The binary representations of the time index n for xn are indicated in Fig. 9.8.5, for
both the input and the final shuffled output arrays. The bit-reversed version of n is
obtained by reversing the order of the bits:

r = bitrev(n)= (b0 b1 b2)≡ b022 + b121 + b220

We observe in Fig. 9.8.5 that the overall effect of the successive shuffling stages is
to put the nth sample of the input array into the rth slot of the output array, that is,
swap the locations of xn with xr , where r is the bit-reverse of n. Some slots are reverse-
invariant so that r = n; those samples remain unmoved. All the others get swapped
with the samples at the corresponding bit-reversed positions.
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Fig. 9.8.5 Shuffling is equivalent to bit reversal.

The following C routine fft.c implements the FFT algorithm, as described above.
It consists of two parts: bit-reversal and merging.

/* fft.c - decimation-in-time radix-2 FFT */

#include <cmplx.h>

void shuffle(), dftmerge();

void fft(N, X) usage: fft(N, X);

complex *X;
int N;
{

shuffle(N, X); bit-reversal

dftmerge(N, X); merging of DFTs

}

The bit-reversal operation is implemented by the routine shuffle.c, which calls
the routines swap.c and bitrev.c that implement the swapping of the bit-reversed
locations:

/* shuffle.c - in-place shuffling (bit-reversal) of a complex array */

#include <cmplx.h>
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void swap();
int bitrev();

void shuffle(N, X)
complex *X;
int N; N must be a power of 2

{
int n, r, B=1;

while ( (N >> B) > 0 ) B = number of bits

B++;

B--; N = 2B

for (n = 0; n < N; n++) {
r = bitrev(n, B); bit-reversed version of n
if (r < n) continue; swap only half of the ns

swap(X+n, X+r); swap by addresses

}
}

/* swap.c - swap two complex numbers (by their addresses) */

#include <cmplx.h>

void swap(a,b)
complex *a, *b;
{

complex t;

t = *a;
*a = *b;
*b = t;

}

/* bitrev.c - bit reverse of a B-bit integer n */

#define two(x) (1 << (x)) 2x by left-shifting

int bitrev(n, B)
int n, B;
{

int m, r;

for (r=0, m=B-1; m>=0; m--)
if ((n >> m) == 1) { if 2m term is present, then

r += two(B-1-m); add 2B−1−m to r, and

n -= two(m); subtract 2m from n
}

return(r);
}

A B-bit number n and its reverse can be expressed in terms of their bits as:
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n =
B−1∑
m=0

bm2m

r =
B−1∑
m=0

bm2B−1−m

The routine bitrev builds r by determining if themth bit bm is one and adding the
corresponding power 2B−1−m to r.

The DFT merging operation is given by the routine dftmerge.c. It is basically a loop
that runs over the successive merging stages of dimensions M = 2,4, . . . ,N.

/* dftmerge.c - DFT merging for radix 2 decimation-in-time FFT */

#include <cmplx.h>

void dftmerge(N, XF)
complex *XF;
int N;
{

double pi = 4. * atan(1.0);
int k, i, p, q, M;
complex A, B, V, W;

M = 2;
while (M <= N) { two (M/2)-DFTs into one M-DFT

W = cexp(cmplx(0.0, -2 * pi / M)); order-M twiddle factor

V = cmplx(1., 0.); successive powers of W
for (k = 0; k < M/2; k++) { index for an (M/2)-DFT

for (i = 0; i < N; i += M) { ith butterfly; increment by M
p = k + i; absolute indices for

q = p + M / 2; ith butterfly

A = XF[p];
B = cmul(XF[q], V); V = Wk

XF[p] = cadd(A, B); butterfly operations

XF[q] = csub(A, B);
}

V = cmul(V, W); V = VW = Wk+1

}
M = 2 * M; next stage

}
}

The appropriate twiddle factors Wk
M are computed on the fly and updated from

stage to stage. For each stage M and value of k, all the butterflies that use the power
Wk
M are computed. For example, in Fig. 9.8.4 the butterflies filling the slots {G0, G2} and

{H0,H2} are done together because they use the same power W0
4. Then, the butterflies

for the slots {G1, G3} and {H1,H3} are done, using the power W1
4.

The routine performs the computations in place, that is, the input time data vector
X is overwritten by its shuffled version, which is repeatedly overwritten by the higher
and higher DFTs during the merging process. The final merge produces the desired DFT
and stores it in X.
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The following routine ifft.c implements the inverse FFT via Eq. (9.6.8). The routine
conjugates the input DFT, performs its FFT, conjugates the answer, and divides by N.

/* ifft.c - inverse FFT */

#include <cmplx.h>

void fft();

void ifft(N, X)
complex *X;
int N;
{

int k;

for (k=0; k<N; k++)
X[k] = conjg(X[k]); conjugate input

fft(N, X); compute FFT of conjugate

for (k=0; k<N; k++)
X[k] = rdiv(conjg(X[k]), (double)N); conjugate and divide by N

}

Next, we present some FFT examples. In the merging operations from 2-point to
4-point DFTs and from to 4-DFTs to 8-DFTs, the following twiddle factors are used:

[
W0

4

W1
4

]
=
[

1
−j

]
,

⎡⎢⎢⎢⎣
W0

8

W1
8

W2
8

W3
8

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1

(1 − j)/√2
−j

−(1 + j)/√2

⎤⎥⎥⎥⎦
Example 9.8.1: Using the FFT algorithm, compute the 4-point DFT of the 4-point wrapped signal

of Example 9.5.2.

Solution: The sequence of FFT operations are shown in Fig. 9.8.6. The shuffling operation was
stopped at dimension 2, and the corresponding 2-point DFTs were computed by taking the
sum and difference of the time sequences, as in Eq. (9.4.7).

The DFT merging stage merges the two 2-DFTs into the final 4-DFT. 	
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Fig. 9.8.6 4-point FFT of Example 9.8.1.
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Example 9.8.2: Using the FFT algorithm, compute the 8-point DFT of the following 8-point
signal:

x = [4, −3, 2, 0, −1, −2, 3, 1]T

Then, compute the inverse FFT of the result to recover the original time sequence.

Solution: The required FFT operations are shown in Fig. 9.8.7. Again, the shuffling stages stop
with 2-dimensional signals which are transformed into their 2-point DFTs by forming sums
and differences.
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5-j-j√2

shuffling 2-DFT DFT merging

Fig. 9.8.7 8-point FFT of Example 9.8.2.

We find it more convenient to indicate the butterfly operations vectorially, that is, comput-
ing the sum and difference of the two 2-dimensional DFT vectors to form the upper and
lower parts of the 4-dimensional DFTs, and computing the sum and difference of the two
4-DFT vectors to form the upper and lower parts of the final 8-DFT vector.

The inverse FFT is carried out by the expression (9.6.8). The calculations are shown in
Fig. 9.8.8. First, the just computed DFT is complex conjugated. Then, its FFT is computed
by carrying out the required shuffling and merging processes. The result must be conju-
gated (it is real already) and divided by N = 8 to recover the original sequence x. 	


Example 9.8.3: The 8-point DFT of the square wave of Example 9.7.1 can be calculated easily
using the FFT. Figure 9.8.9 shows the details. 	


9.9 Fast Convolution

9.9.1 Circular Convolution

In the frequency domain, convolution of two sequences h and x is equivalent to multi-
plication of the respective DTFTs:
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Fig. 9.8.8 8-point inverse FFT of the FFT in Fig. 9.8.7.
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Fig. 9.8.9 8-point FFT of the square wave in Example 9.8.3.

y = h ∗ x � Y(ω)= H(ω)X(ω) (9.9.1)

Therefore, y(n) can be recovered by the inverse DTFT of the product of the two DTFTs:

y(n)=
∫ π
−π
Y(ω)ejωn

dω
2π

=
∫ π
−π
H(ω)X(ω)ejωn

dω
2π

(9.9.2)

Symbolically, we write Eq. (9.9.2) as:

y = IDTFT
(
DTFT(h)·DTFT(x)

)
(9.9.3)

Equation (9.9.2) is not a practical method of computing y(n) even in the case of finite-
duration signals, because theω-integration requires knowledge ofY(ω) at a continuous
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range of ω’s.
A practical approach is to replace all the DTFTs by N-point DFTs. If Eq. (9.9.2) is

replaced by an inverse DFT, we saw in Eq. (9.6.10) that it will reconstruct the wrapped
signal ỹ(n) instead of the desired one:

ỹ(n)= 1

N

N−1∑
k=0

Y(ωk)ejωkn = 1

N

N−1∑
k=0

H(ωk)X(ωk)ejωkn (9.9.4)

for n = 0,1, . . . ,N − 1, or, written symbolically:

ỹ = IDFT
(
DFT(h)·DFT(x)

)
(9.9.5)

Because the unwrapped y is the ordinary convolution y = h ∗ x, we can write the
above as the wrapped convolution:

ỹ = -h ∗ x = IDFT
(
DFT(h)·DFT(x)

)
(mod-N circular convolution) (9.9.6)

This expression is the definition of the length-N or modulo-N circular convolution
of the two signals h and x. A fast version is obtained by replacing DFT by FFT resulting
in:

ỹ = -h ∗ x = IFFT
(
FFT(h)·FFT(x)

)
(9.9.7)

If h and x are length-N signals, the computational cost of Eq. (9.9.7) is the cost
for three FFTs (i.e., of x, h, and the inverse FFT) plus the cost of the N complex mul-
tiplications Y(ωk)= H(ωk)X(ωk), k = 0,1, . . . ,N − 1. Thus, the total number of
multiplications to implement Eq. (9.9.7) is:

3
1

2
N log2(N)+N (9.9.8)

Some alternative ways of expressing ỹ can be obtained by replacing h and/or x by
their wrapped versions. This would not change the result because the wrapped signals
have the same DFTs as the unwrapped ones, that is, DFT(h)= DFT(h̃) and DFT(x)=
DFT(x̃). Thus, we can write:

ỹ = -h ∗ x = IDFT
(
DFT(h)·DFT(x)

)
= -̃h ∗ x̃ = IDFT

(
DFT(h̃)·DFT(x̃)

)
= -̃h ∗ x = IDFT

(
DFT(h̃)·DFT(x)

)
= -h ∗ x̃ = IDFT

(
DFT(h)·DFT(x̃)

)
(9.9.9)

According to Eq. (9.6.12), in order for the circular convolution ỹ to agree with the
ordinary “linear” convolution y, the DFT lengthNmust be chosen to be at least the length
Ly of the sequence y. Recall from Eq. (4.1.12) that if a length-L signal x is convolved
with an order-M filter h, the length of the resulting convolution will be Ly = L +M.
Thus, we obtain the constraint on the choice of N:
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ỹ = y only if N ≥ Ly = L+M (9.9.10)

With this choice of N, Eq. (9.9.7) represents a fast way of computing linear convolu-
tion. Because both the filter and input vectors h, x have lengths less than N (because
L +M = Ly ≤ N), we must increase them to length N by padding zeros at their ends,
before we actually compute their N-point FFTs.

If N < Ly, part of the tail of y gets wrapped around to ruin the beginning part of y.
The following example illustrates the successive improvement of the circular convolu-
tion as the length N increases to the value required by (9.9.10).

Example 9.9.1: For the values N = 3,5,7,9,11, compute the mod-N circular convolution of
the two signals of Example 4.1.1:

h = [1,2,−1,1], x = [1,1,2,1,2,2,1,1]

Solution: For this example, we work exclusively in the time domain and perform ordinary con-
volution and wrap it modulo-N. The convolution table of Example 4.1.1, gives the output
signal:

y = x ∗ h = [1,3,3,5,3,7,4,3,3,0,1]

The mod-3 circular convolution is obtained by dividing y into length-3 contiguous blocks,
wrapping them around, and summing them to get:

y = [1,3,3][5,3,7][4,3,3][0,1,0] ⇒ ỹ = [10,10,13]

where we padded a 0 at the end to make the last block of length-3. In a similar fashion,
we determine the other cases:

(mod-5): y = [1,3,3,5,3][7,4,3,3,0][1] ⇒ ỹ = [9,7,6,8,3]
(mod-7): y = [1,3,3,5,3,7,4][3,3,0,1] ⇒ ỹ = [4,6,3,6,3,7,4]
(mod-9): y = [1,3,3,5,3,7,4,3,3][0,1] ⇒ ỹ = [1,4,3,5,3,7,4,3,3]
(mod-11): y = [1,3,3,5,3,7,4,3,3,0,1] ⇒ ỹ = [1,3,3,5,3,7,4,3,3,0,1]

As N increases to Ly = L +M = 8 + 3 = 11, the lengths of the parts that get wrapped
around become less and less, making ỹ resemble y more and more. 	


Example 9.9.2: Recompute the length-3 circular convolution of the previous example by first
wrapping mod-3 the signals h and x, performing their linear convolution, and wrapping it
mod-3.

Solution: We find for the mod-3 reductions:

h = [1,2,−1][1] ⇒ h̃ = [2,2,−1]

x = [1,1,2][1,2,2][1,1] ⇒ x̃ = [3,4,4]

The convolution of the wrapped signals is:
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h̃ ∗ x̃ = [2,2,−1]∗[3,4,4]= [6,14,13,4,−4]

and, its mod-3 reduction:

h̃ ∗ x̃ = [6,14,13][4,−4] ⇒ -̃h ∗ x̃ = [10,10,13]

which agrees with ỹ, in accordance with Eq. (9.9.9). 	

Example 9.9.3: Compute the mod-4 circular convolution of the following signals in two ways:

(a) working in the time domain, and (b) using DFTs.

h = [1,2,2,1], x = [1,3,3,1]

Solution: The linear convolution is:

y = h ∗ x = [1,2,2,1]∗[1,3,3,1]= [1,5,11,14,11,5,1]

wrapping it mod-4, we get:

y = [1,5,11,14][11,5,1] ⇒ ỹ = [12,10,12,14]

Alternatively, we compute the 4-point DFTs of h and x:

H =

⎡⎢⎢⎢⎣
1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
2
2
1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
6

−1 − j
0

−1 + j

⎤⎥⎥⎥⎦

X =

⎡⎢⎢⎢⎣
1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
3
3
1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
8

−2 − 2j
0

−2 + 2j

⎤⎥⎥⎥⎦
Multiplying them pointwise, we get:

Y =

⎡⎢⎢⎢⎣
Y0

Y1

Y2

Y3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
H0X0

H1X1

H2X2

H3X3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
48
4j
0

−4j

⎤⎥⎥⎥⎦
To take the inverse DFT, we conjugate, take the 4-point DFT, divide by 4, and conjugate
the answer:

ỹ = IDFT(Y)= 1

N
[
DFT(Y∗)

]∗

ỹ = 1

4

⎡⎢⎢⎢⎣
1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

48
−4j

0
4j

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
12
10
12
14

⎤⎥⎥⎥⎦
The final conjugation is not necessary because ỹ is real. 	
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Besides the efficient computation of convolution, the FFT can also be used to deter-
mine the impulse response of an unknown system, such as the reverberation impulse
response of a room. Given a length-N input and a corresponding length-N measured
output, we may compute their N-point DFTs and solve for the DFT of the impulse re-
sponse of the system:

Y(ωk)= H(ωk)X(ωk) ⇒ H(ωk)= Y(ωk)
X(ωk)

, k = 0,1, . . . ,N − 1

Then, taking the inverse DFT, we have:

h̃(n)= 1

N

N−1∑
k=0

H(ωk)ejωkn = 1

N

N−1∑
k=0

Y(ωk)
X(ωk)

ejωkn (9.9.11)

or, symbolically,

h̃ = IDFT
[

DFT(y)
DFT(x)

]
= IFFT

[
FFT(y)
FFT(x)

]
(9.9.12)

The result is again the wrapped version h̃(n) of the desired impulse response. For
this type of application, the true impulse response h(n) is typically infinite, and there-
fore, its wrapped version will be different from h(n). However, if the wrapping length
N is sufficiently large, such that the exponentially decaying tails of h(n) can be ignored,
then h̃(n) may be an adequate approximation.

Example 9.9.4: The reverberation impulse response of a room is of the form

h(n)= Aan + Bbn, n ≥ 0

Determine the response h̃(n) that might be measured by the above procedure of dividing
the output DFT by the input DFT and taking the IDFT of the result.

Solution: The mod-N reduction of h(n) can be computed as in Example 9.5.3:

h̃(n)=
∞∑
m=0

h(mN + n)= A
1 − aN a

n + B
1 − bN b

n, 0 ≤ n ≤ N − 1

IfN is large enough such that aN and bN are small enough to be ignored, then h̃(n)� h(n)
for n = 0,1, . . . ,N − 1. 	


9.9.2 Overlap-Add and Overlap-Save Methods

When the length L of the input signal x is infinite or very long, the length Ly = L +M
of the output will be infinite and the condition (9.9.10) cannot be satisfied.

In this case, we may apply the overlap-add block convolution method that we dis-
cussed in Section 4.1.10. In this method shown in Fig. 4.1.6, the input is partitioned into
contiguous non-overlapping blocks of length L, each block is convolved with the filter
h, and the resulting output blocks are summed to form the overall output.
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A fast version of the method can be obtained by performing the convolutions of the
input blocks using circular convolution and the FFT by Eq. (9.9.7). The FFT length N
must satisfy Eq. (9.9.10) in order for the output blocks to be correct. Given a desired
power of two for the FFT length N, we determine the length of the input segments via:

N = L+M ⇒ L = N −M (9.9.13)

With this choice ofN, there would be no wrap-around errors, and the outputs of the
successive input blocks {x0,x1, . . . }, can be computed by:

y0 = ỹ0 = IFFT
(
FFT(h)·FFT(x0)

)
y1 = ỹ1 = IFFT

(
FFT(h)·FFT(x1)

)
y2 = ỹ2 = IFFT

(
FFT(h)·FFT(x2)

) (9.9.14)

and so on.
In counting the computational cost of this method, the FFT of h need not be counted.

It can be computed once, H = FFT(h), and used in all convolutions of Eq. (9.9.14). We
must only count the cost of two FFTs plus the N pointwise multiplications. Thus, the
number of multiplications per input block is:

2
1

2
N log2N +N = N(log2N + 1)

This must be compared with the cost of (M+1)L = (M+1)(N−M) for performing
the ordinary time-domain convolution of each block with the filter. The relative cost of
the fast versus the conventional slow method is:

fast

slow
= N(log2N + 1)
(M + 1)(N −M) � log2N

M
(9.9.15)

where the last equation follows in the limit N�M� 1.
The routine blockconv of Section 4.1.10 can be modified by replacing the internal

call to conv by a part that implements the operation:

y = ỹ = IFFT
(
H · FFT(x)

)
The part of the routine that keeps track of the length-M tails of the output blocks

and overlaps them, remains the same.
The overlap-save fast convolution method is an alternative method that also involves

partitioning the input into blocks and filtering each block by Eq. (9.9.7). The method is
shown in Fig. 9.9.1.

In this method, the input blocks have length equal to the FFT length, L = N, but they
are made to overlap each other by M points, where M is the filter order. The output
blocks will have length Ly = L+M = N+M and therefore, do not satisfy the condition
Eq. (9.9.10).

If the output blocks are computed via Eq. (9.9.7), then the last M points of each
output block will get wrapped around and be added to the firstM output points, ruining
them. This is shown in Fig. 9.9.2. Assuming N > M, the remaining output points will
be correct.
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Fig. 9.9.1 Overlap-save method of fast convolution.

M

M

M

N

N-M

N

N+M

y =

y =~

Fig. 9.9.2 Mod-N reduction of output block ruins first M output samples.

As shown in Fig. 9.9.1, because the input blocks overlap by M points, when the
wrapped output blocks are aligned according to their absolute timings, the firstM points
of each block can be ignored because the correct outputs have already been computed
from the previous block.

There is only one exception, that is, the very first M points of the output sequence
are not computed correctly. This can be corrected by delaying the input byM time units
before commencing the filtering operation.

The computational cost of the method is essentially the same as that of the overlap-
add method, with the relative performance over conventional convolution given by
Eq. (9.9.15).

Example 9.9.5: Using the overlap-save method of fast convolution, implemented in the time
domain by mod-8 circular convolutions, compute the linear convolution of the “long” input:

x = [1,1,1,1,3,3,3,3,1,1,1,2,2,2,2,1,1,1,1]
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with the “short” filter:

h = [1,−1,−1,1]

Solution: For comparison, we compute the linear convolution using the convolution table:

y = [1,0,−1,0,2,0,−2,0,−2,0,2,1,0,−1,0,−1,0,1,0,−1,0,1]

For the overlap-save method, we divide the input into length-8 blocks which overlap by
M = 3 points. These blocks are:

x = [1,1,1,1,3, (3,3,3],1,1, [1,2,2),2,2, (1,1,1],1,0,0,0,0)
Convolving these blocks with h gives:

y0 = h ∗ [1,1,1,1,3,3,3,3]= [1,0,−1,0,2,0,−2,0,−3,0,3]

y1 = h ∗ [3,3,3,1,1,1,2,2]= [3,0,−3,−2,0,2,1,0,−3,0,2]

y2 = h ∗ [1,2,2,2,2,1,1,1]= [1,1,−1,−1,0,−1,0,1,−1,0,1]

y3 = h ∗ [1,1,1,1,0,0,0,0]= [1,0,−1,0,−1,0,1,0,0,0,0]

Reducing these modulo-8 and ignoring the first M = 3 points (indicated by ∗), we obtain:

ỹ0 = [∗,∗,∗,0,2,0,−2,0]

ỹ1 = [∗,∗,∗,−2,0,2,1,0]

ỹ2 = [∗,∗,∗,−1,0,−1,0,1]

ỹ3 = [∗,∗,∗,0,−1,0,1,0]

These would be the outputs computed via the FFT method. Putting them together, we
obtain the overall output signal:

y = [∗,∗,∗,0,2,0,−2,0][−2,0,2,1,0][−1,0,−1,0,1][0,−1,0,1,0]

With the exception of the first 3 points, the answer is correct. 	


9.10 Problems

9.1 A 128-millisecond portion of an analog signal is sampled at a rate of 8 kHz and the resulting
L samples are saved for further processing. What is L? The 256-point DFT of these samples
is computed. What is the frequency spacing in Hz of the computed DFT values? What is
the total number of required multiplications: (a) if the computations are done directly using
the definition of the DFT, (b) if the L samples are first wrapped modulo 256 and then the
256-point DFT is computed, and (c) if a 256-point FFT is computed of the wrapped signal?

9.2 A 10 kHz sinusoidal signal is sampled at 80 kHz and 64 samples are collected and used to
compute the 64-point DFT of this signal. At what DFT indices k = 0,1, . . . ,63 would you
expect to see any peaks in the DFT?
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9.3 A 5 kHz sinusoidal signal is sampled at 40 kHz and 16 periods of the signal are collected.
What is the lengthN of the collected samples? Suppose anN-point DFT is performed. Then,
at what DFT indices, k = 0,1, . . . ,N−1, do you expect to see any peaks in the DFT spectrum?

In general, how is the number of periods contained in the N samples related to the DFT
index at which you get a peak?

9.4 An 18 kHz sinusoid is sampled at a rate of 8 kHz and a 16-point DFT of a finite portion of
the signal is computed. At what DFT indices in the range 0 ≤ k ≤ 15 do you expect to see
any peaks in the DFT spectrum? Would it matter if first we folded the 18 kHz frequency to
lie within the Nyquist interval and then computed the DFT? Explain.

9.5 It is known that the frequency spectrum of a narrowband signal has a peak of width of 20
Hz but it is not known where this peak is located. To find out, an FFT must be computed
and plotted versus frequency. If the signal is sampled at a rate of 8 kHz, what would be the
minimum number of samples L that must be collected in order for the peak to be resolvable
by the length-L data window? What is the duration in seconds of this data segment? What
would be the minimum sizeN of the FFT in order for theN FFT spectral values to represent
the L time samples accurately?

9.6 Computer Experiment: Rectangular and Hamming Windows. Using the routine dtftr.c,
reproduce the results and graphs of Example 9.1.3.

9.7 Computer Experiment: Frequency Resolution and Windowing. Reproduce the results and
graphs of Example 9.1.4. The spectra of the windowed signals must be computed by first
windowing them using a length-L window and then padding 256 − L zeros at their ends to
make them of length-256, and finally calling a 256-point FFT routine.

9.8 Computer Experiment: Physical versus Computational Resolution. Reproduce the results of
Figs. 9.3.1 and 9.3.2. The theoretical DTFTs may be computed by 256-point FFTs. The 32-
point and 64-point DFTs may be extracted from the 256-point FFTs by keeping every 8th
point (256/32 = 8) and every 4th point (256/64 = 4.)

9.9 A dual-tone multi-frequency (DTMF) transmitter (touch-tone phone) encodes each keypress
as a sum of two sinusoidal tones, with one frequency taken from group A and one from
group B, where:

group A = 697, 770, 852, 941 Hz

group B = 1209, 1336, 1477 Hz

A digital DTMF receiver computes the spectrum of the received dual-tone signal and deter-
mines the two frequencies that are present, and thus, the key that was pressed.

What is the smallest number of time samples L that we should collect at a sampling rate of
8 kHz, in order for the group-A frequencies to be resolvable from the group-B frequencies?
What is L if a Hamming window is used prior to computing the spectrum?

9.10 Suppose we collect 256 samples of the above DTMF signal and compute a 256-point FFT.
Explain why each keypress generates substantial signal energy in 2 out of 7 possible DFT
frequency bins (and their negatives). What are the indices k for these 7 bins? [Hint: Round
k to its nearest integer. Do not ignore negative frequencies.]

Note that in practice, it may be more economical to just compute the value of X(k) at those
14 k’s instead of computing a full 256-point FFT.

9.11 Computer Experiment: DTMF Sinusoids. Consider the following artificial signal consisting of
the sum of all seven DTMF sinusoids:
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x(t)=
4∑
a=1

sin(2πfat)+
3∑
b=1

sin(2πfbt)

where fa and fb are the group A and B frequencies given in Problem 9.9 and t is in seconds.
(In practice, of course, only one fa term and one fb term will be present.)

The signal x(t) is sampled at a rate of 8 kHz and 256 samples are collected, say, x(n),
n = 0,1, . . . ,255. The spectrum of this signal should consist of seven peaks clustered in
two clearly separable groups (and, seven more negative-frequency peaks).

a. Plot the signal x(n) versus n.

b. Compute the 256-point DFT or FFT of the signal x(n) and plot the corresponding
magnitude spectrum |X(f)| only over the frequency range 0 ≤ f ≤ 4 kHz.

c. Window the signal x(n) by a length-256 Hamming window w(n), that is, xham(n)=
w(n)x(n), and plot it versus n. Then, compute its 256-point DFT and plot the mag-
nitude spectrum |Xham(f)| over 0 ≤ f ≤ 4 kHz.

9.12 Let x = [1,2,2,1,2,1,1,2]. Compute the 4-point DFT of x using the definition in matrix
form. Recompute it by first reducing x modulo 4 and then computing the 4-DFT of the
result. Finally, compute the 4-point IDFT of the result and verify that you recover the mod-4
wrapped version of x.

9.13 Compute the 8-point FFT of the length-8 signal x = [5, −1, −3, −1, 5, −1, −3, −1]. Noting
that these samples are the first 8 samples of x(n)= 4 cos(πn/2)+ cos(πn), discuss whether
the 8 computed FFT values accurately represent the expected spectrum of x(n). What FFT
indices correspond to the two frequencies of the cosinusoids?

9.14 The 8-point DFT X of an 8-point sequence x is given by

X = [0,4,−4j,4,0,4,4j,4]

Using the FFT algorithm, compute the inverse DFT: x = IFFT(X). Using the given FFT X,
express x as a sum of real-valued (co)sinusoidal signals.

9.15 When a very large FFT of a very large data set is required (e.g., of size 216 or larger), it may
be computed in stages by partially decimating the time data down to several data sets of
manageable dimension, computing their FFTs, and then rebuilding the desired FFT from the
smaller ones. See [241–244,303] for a variety of approaches.

In this context, suppose you want to compute a (4N)-point FFT but your FFT hardware can
only accommodate N-point FFTs. Explain how you might use this hardware to compute
that FFT. Discuss how you must partition the time data, what FFTs must be computed, how
they must be combined, and how the partial results must be shipped back and forth from
secondary storage to the FFT processor in groups of no more than N samples. What is the
total number of complex multiplications with your method? Compare this total to the cost
of performing the (4N)-point FFT in a single pass? Do you observe anything interesting?

9.16 Compute the length-4 circular convolution of the two signals h = [1,2,1,2,1], x = [1,1,1,1,1]
in two ways: (a) by computing their linear convolution and then reducing the result mod-4,
(b) by first reducing h and x mod-4, computing the linear convolution of the reduced signals,
and reducing the result mod-4.
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9.17 Compute the 8-point FFT of x = [4,2,4,−6,4,2,4,−6]. Without performing any additional
computations, determine the 4-point DFT and the 2-point DFT of the above signal. Explain
your reasoning. Using the computed DFT and the inverse DFT formula, express the sequence
x(n), n = 0,1, . . . ,7 as a linear combination of real-valued sinusoidal signals. Does your
x(n) agree with the given sequence?

9.18 Let x = [1,2,3,4,5]. (a) Determine a length-6 signal that has the same 5-point DFT as x.
(b) Determine a length-7 signal that has the same 5-point DFT as x. Your answers should be
nontrivial, that is, do not increase the length of x by padding zeros at its end.

9.19 Show the property:

1

N
[
1 +Wk

N +W2k
N +W3k

N + · · · +W(N−1)k
N

] = δ(k), k = 0,1, . . . ,N − 1

9.20 Show the following properties:

a. WN =W2
2N =W3

3N = · · · =Wp
pN

b. XN(k)= XpN(pk), k = 0,1, . . . ,N − 1

where WpN is the twiddle factor of order pN, p is any integer, XN(k) denotes the N-point
DFT, and XpN(k) the (pN)-point DFT of a common signal x(n) of length L.

9.21 Consider a 16-point signal xn, 0 ≤ n ≤ 15, with 16-point DFT Xk, 0 ≤ k ≤ 15, namely,

[
X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15

]
Show that the 8-point DFT of the given 16-point signal is:

[
X0, X2, X4, X6, X8, X10, X12, X14

]
9.22 The following analog signal x(t), where t is in msec, is sampled at a rate of 8 kHz:

x(t)= cos(24πt)+2 sin(12πt)cos(8πt)

a. Determine the signal xa(t) that is aliased with x(t).

b. Eight consecutive samples of x(t) are collected. Without performing any DFT or FFT
operations, determine the 8-point DFT of these 8 samples.

9.23 Consider the following 8-point signal, defined for n = 0,1, . . . ,7:

x(n)= 1 + 2 sin(
πn
4
)−2 sin(

πn
2
)+2 sin(

3πn
4
)+3(−1)n

Without performing any DFT or FFT computations, determine the 8-point DFT of this signal.

9.24 Let x(n)= cos(πn/2)+2 cos(πn/8), n = 0,1, . . . ,15. Without performing any actual
DFT/FFT computations, determine the 16-point DFT of this 16-point signal. [Hint: Com-
pare x(n) with the 16-point inverse DFT formula.]

9.25 Let x(n)= cos(πn/2)+2 cos(πn/8), n = 0,1, . . . ,31. Without performing any actual
DFT/FFT computations, determine the 32-point DFT of this 32-point signal.

9.26 Consider the following length-16 signal:

x(n)= 0.5 + 2 sin(0.5πn)+1.5 cos(πn), n = 0,1, . . . ,15
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a. Determine the DTFT X(ω) of this finite sequence, and sketch it roughly versus ω in
the range 0 ≤ ω ≤ 2π. [Hint: Remember that each spectral line gets replaced by the
rectangular window’s frequency response.]

b. Without performing any DFT or FFT computations, determine the 16-point DFT of this
sequence. Then, determine the 8-point DFT of the same sequence.

c. Place the 16-point DFT values on the graph of X(ω) of part (a).

9.27 Let X = Ax be the N-point DFT of the length-N signal x expressed in matrix form, where A
is the N ×N DFT matrix defined by its matrix elements Akn = Wkn

N , k,n = 0,1, . . . ,N − 1.
Show that the inverse of this matrix can be obtained essentially by conjugating A, that is,

A−1 = 1

N
A∗

Therefore the IDFT can be expressed by x = A−1X = A∗X/N. Explain how this result justifies
the rule:

IFFT(X)= 1

N
(
FFT(X∗)

)∗
9.28 Let X(k) be the N-point DFT of a length-N (complex-valued) signal x(n). Use the results of

Problem 9.27 to show the Parseval relation:

N−1∑
n=0

|x(n)|2 = 1

N

N−1∑
k=0

|X(k)|2

9.29 Compute the mod-4, mod-5, mod-6, mod-7, and mod-8 circular convolutions of the signals
x = [2, 1, 1, 2] and h = [1, −1, −1, 1]. For what value of N does the mod-N circular
convolution agree with the ordinary linear convolution?

9.30 Compute the modulo-8 circular convolution of the two signals

h = [2,1,1,1,2,1,1,1], x = [2,1,2,−3,2,1,2,−3]

in two ways:

a. Working exclusively in the time domain.

b. Using the formula:

ỹ = IFFT
(
FFT(h)·FFT(x)

)
implemented via 8-point FFTs. All the computational details of the required FFTs must
be shown explicitly.

9.31 a. Compute the 8-point FFT of the 8-point signal x = [6,1,0,1,6,1,0,1].
b. Using the inverse DFT formula, express x as a linear combination of real-valued sinu-

soids.

c. Find two other signals, one of length-9 and one of length-10, that have the same 8-point
DFT as x. These signals must not begin or end with zeros.

d. Compute the 4-point FFT of x by carrying out a single 4-point FFT.
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9.32 Let A(k) be the N-point DFT of a real-valued signal a(n), n = 0,1, . . . ,N − 1. Prove the
symmetry property:

A(k)∗= A(N − k), k = 0,1, . . . ,N − 1

If we think ofA(k) as anN-dimensional array, then how can we state the above relationship
at k = 0?

9.33 Two Real-Valued Signals at a Time. Let x(n)= a(n)+jb(n) be a length-N complex-valued
signal and let X(k) be its N-point DFT. Let A(k) and B(k) denote the N-point DFTs of the
real and imaginary parts a(n) and b(n) of x(n). Show that they can be recovered from
X(k) by

A(k)= 1

2

[
X(k)+X(N − k)∗], B(k)= 1

2j
[
X(k)−X(N − k)∗]

for k = 0,1, . . . ,N − 1. If we think of X(k) as an N-dimensional array, then how can we
state the above relationships at k = 0?

Thus, the DFTs of real-valued signals can be computed two at a time by computing the DFT
of a single complex-valued signal.

9.34 FFT of Real-Valued Signal. Using the results of Problem 9.33, show that the N-point FFT
X(k) of an N-point real-valued signal x(n), n = 0,1, . . . ,N− 1 can be computed efficiently
as follows: First, pack the even and odd parts of x(n) into a complex-valued signal of length
N/2, that is, define

y(n)= x(2n)+jx(2n+ 1)≡ g(n)+jh(n), n = 0,1, . . . ,
N
2

− 1

Then, compute the N/2-point FFT of y(n), say, Y(k), k = 0,1, . . . ,N/2− 1, and extract the
N/2-point FFTs of g(n) and h(n) by

G(k)= 1

2

[
Y(k)+Y(N

2
− k)∗], H(k)= 1

2j
[
Y(k)−Y(N

2
− k)∗]

for k = 0,1, . . . ,N/2 − 1. And finally, construct the desired N-point FFT by

X(k)= G(k)+Wk
NH(k), X(k+ N

2
)= G(k)−Wk

NH(k)

for k = 0,1, . . . ,N/2 − 1. What happens at k = 0?

Determine the relative computational savings of this method versus performing theN-point
FFT of x(n) directly.

9.35 Computer Experiment: FFT of Real-Valued Signal. Write a C routine fftreal.c that imple-
ments the method of Problem 9.34. The routine must have inputs/output declarations:

void fftreal(N, x, X)
int N; must be a power of 2

double *x; real-valued N-dimensional time data

complex *X; complex N-dimensional FFT array

The routine must invoke the routine fft.c once on the time-decimated, complexified, input.
In rebuilding the final DFT X(k), special care must be exercised at k = 0.

Write a small main program to test the routine by comparing its output to the output of fft
called on the full input array as usual.
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9.36 Consider the following N-point signal and its reverse:

x = [x0, x1, . . . , xN−1]

xR = [xN−1, . . . , x1, x0]

Show that the z-transform and N-point DFT of the reversed signal can be expressed as:

XR(z) = z−(N−1)X(z−1)

XR(k) =W−k
N X(N − k), k = 0,1, . . . ,N − 1

Show that in the time domain the reversal process is equivalent to a two-step process of first
reflecting the signal around the origin n = 0, and then delaying it by N − 1 units.

9.37 Discrete Cosine Transform (DCT). Consider a length-N real-valued signal x and its reverse as
defined in Problem 9.36. Construct the concatenated signal of length 2N:

y = [x,xR]= [x0, x1, . . . , xN−1, xN−1, . . . , x1, x0]

a. Show that its z-transform can be expressed in terms of the z-transform of x:

Y(z)= X(z)+z−NXR(z)= X(z)+z−(2N−1)X(z−1)

b. Let Yk be the (2N)-point DFT of y. Show that it can be expressed in the form:

Yk = 2ejωk/2Ck , k = 0,1, . . . ,2N − 1

where ωk = 2πk/(2N)= πk/N is the kth frequency for the (2N)-point DFT and Ck
is one form of the discrete cosine transform of xn given by:

Ck =
N−1∑
n=0

xn cos
(
ωk(n+ 1/2)

)
(9.10.1)

[Hint: Evaluate part (a) at the (2N)th roots of unity and multiply by z−1/2.]

c. Using the results of Problem 9.32, show that Ck satisfies the symmetry property:

C2N−k = −Ck , k = 0,1, . . . ,2N − 1

In particular, show CN = 0.

d. Applying the inverse DFT equation on Yk, show the inverse DCT:

xn = 1

N

2N−1∑
k=0

Ckejωk(n+1/2) , n = 0,1, . . . ,N − 1

Using the symmetry property of part (c), show the alternative inverse DCT, which uses
only the first N DCT coefficients Ck, k = 0,1, . . . ,N − 1:

xn = 1

N

⎡⎣C0 + 2
N−1∑
k=1

Ck cos
(
ωk(n+ 1/2)

)⎤⎦ , n = 0,1, . . . ,N − 1 (9.10.2)

Together, Eqs. (9.10.1) and (9.10.2) form a forward/inverse DCT pair. The relationship
to the doubled signal y allows an efficient calculation using (2N)-point FFTs [238–240].
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9.38 a. Let XN(k) denote the N-point DFT of a length-L sequence x(n), n = 0,1, . . . , L − 1.
Show the relationships:

XN(k)= X2N(2k), k = 0,1, . . . ,N − 1

b. In particular, we have X4(k)= X8(2k), for k = 0,1,2,3. That is, the 4-point DFT of
a sequence can be obtained by keeping every other entry of the 8-point DFT of that
sequence.

9.39 Consider a length-5 sequence and its “circular shifts”

x0 = [x0, x1, x2, x3, x4]

x1 = [x4, x0, x1, x2, x3]

x2 = [x3, x4, x0, x1, x2]

x3 = [x2, x3, x4, x0, x1]

x4 = [x1, x2, x3, x4, x0]

Show that the 5-point DFT Xi(k) of xi is related to the 5-point DFT X0(k) of x0 by

Xi(k)=Wik
5 X0(k), for i = 1,2,3,4

Explain this result in terms of ordinary “linear” shifts of the original sequence x0.

9.40 Show that the following, successively shorter, signals all have the same 4-point DFT:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

x2

x3

x4

x5

x6

x7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

x2

x3 + x7

x4

x5

x6

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

x2 + x6

x3 + x7

x4

x5

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1 + x5

x2 + x6

x3 + x7

x4

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0 + x4

x1 + x5

x2 + x6

x3 + x7

0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
9.41 Using the overlap-save method of fast convolution implemented in the time domain using

length-8 circular convolutions, compute the ordinary convolution of the “long” signal

x = [1,1,1,1,3,3,3,3,1,1,1,2,2,2,2,1,1,1,1]

with the “short” filter
h = [1,−1,−1,1]

and explain any discrepancies from the correct answer. Repeat using the overlap-add method.

9.42 A periodic triangular waveform of period T0 = 1 sec is defined over one period 0 ≤ t ≤ 1
sec as follows (see also Fig. 1.8.1):

x(t)=
⎧⎪⎨⎪⎩
t, if 0 ≤ t ≤ 0.25
0.5 − t, if 0.25 ≤ t ≤ 0.75
t − 1, if 0.75 ≤ t ≤ 1
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The signal x(t) is sampled at a rate of 8 Hz and the sampled signal x(nT) is immediately
reconstructed into analog form using an ideal reconstructor. Because x(t) is not bandlim-
ited, aliasing effects will cause the reconstructed signal to be different from x(t). Show that
the aliased reconstructed signal will have the form:

xal(t)= A sin(2πf1t)+B sin(2πf2t)

What are the frequencies f1 and f2? Determine the amplitudes A and B by performing
an appropriate 8-point FFT by hand. Explain how the negative frequencies in xal(t) are
represented in this FFT.

9.43 A length-L input signal is to be filtered by an order-M FIR filter using the overlap-save method
of fast convolution, implemented via N-point FFTs. Assume that L� N and N > M.

a. Derive an expression for the total number of multiplications required to compute the
output, in terms of L, N, and M.

b. Repeat part (a) if the overlap-add method is used.

9.44 Computer Experiment: Overlap-Save Method. Write a stand-alone C or MATLAB program,
say ovsave.c, that implements the overlap-save method of fast convolution. The program
must have usage:

ovsave h.dat N < x.dat > y.dat

Like the program firfilt.c of Problem 4.10, it must read dynamically the impulse response
coefficients from a file h.dat. It must keep reading the input samples in blocks of length
N (overlapped by M points), processing each block, and writing the output block. The pro-
cessing of each block must be implemented by N-point FFTs, that is,

ỹ = IFFT
(
H · FFT(x)

)
where the FFT of the filter H = FFT(h) may be computed once and used in processing all
the input blocks.

Care must be exercised in handling the first M inputs, where M zeros must be padded to
the beginning of the input. When the end-of-file of the input is detected, the program must
calculate correctly the input-off output transients. (The output of this program and that of
firfilt.c must be identical, up to perhaps some last zeros.)
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FIR Digital Filter Design

The filter design problem is the problem of constructing the transfer function of a filter
that meets prescribed frequency response specifications.

The input to any filter design method is the set of desired specifications and the
output is the finite impulse response coefficient vector h = [h0, h1, . . . , hN−1] in the case
of FIR filters, or the numerator and denominator coefficient vectors b = [b0, b1, . . . , bM],
a = [1, a1, . . . , aM] in the case of IIR filters.

The subject of FIR and IIR digital filter design is very extensive [2–8]. In this and the
next chapter, we present only a small cross section of available design methods—our
objective being to give the flavor of the subject, while at the same time presenting some
practical methods.

The two main advantages of FIR filters are their linear phase property and their
guaranteed stability because of the absence of poles. Their potential disadvantage is
that the requirement of sharp filter specifications can lead to long filter lengths N, con-
sequently increasing their computational cost. Recall from Chapter 4 that modern DSP
chips require N MACs per output point computed.

The main advantages of IIR filters are their low computational cost and their efficient
implementation in cascade of second-order sections. Their main disadvantage is the
potential for instabilities introduced when the quantization of the coefficients pushes
the poles outside the unit circle. For IIR filters, linear phase cannot be achieved exactly
over the entire Nyquist interval, but it can be achieved approximately over the relevant
passband of the filter, for example, using Bessel filter designs.

10.1 Window Method

10.1.1 Ideal Filters

The window method is one of the simplest methods of designing FIR digital filters. It
is well suited for designing filters with simple frequency response shapes, such as ideal
lowpass filters. Some typical filter shapes that can be designed are shown in Figs. 10.1.1
and 10.1.2. For arbitrary shapes, a variant of the method, known as frequency sampling
method, may be used; it will be discussed in Section 10.3.

532



10.1. WINDOW METHOD 533

ω

D(ω)

ωc−ωc π−π 0

1

ω

D(ω)

ωa ωb−ωa−ωb π−π 0

1
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lowpass

ω

D(ω)

ωc−ωc π−π 0

1

ω

D(ω)

ωa ωb−ωa−ωb π−π 0

1bandstop

highpass

Fig. 10.1.1 Ideal lowpass, highpass, bandpass, and bandstop filters.

ω

D(ω)/j

π−π 0

differentiator
ω

D(ω)/j

π−π 0

1

−1Hilbert
transformer

Fig. 10.1.2 Ideal differentiator and Hilbert transformer filters.

A given desired ideal frequency response, sayD(ω), being periodic inωwith period
2π, need only be specified over one complete Nyquist interval −π ≤ ω ≤ π. The
corresponding impulse response, say d(k), is related toD(ω) by the DTFT and inverse
DTFT relationships:

D(ω)=
∞∑

k=−∞
d(k)e−jωk � d(k)=

∫ π
−π
D(ω)ejωk

dω
2π

(10.1.1)

In general, the impulse response d(k) will be double-sided and infinite. For many
ideal filter shapes, the ω-integration in Eq. (10.1.1) can be done in closed form. For
example, for the lowpass filter shown in Fig. 10.1.1, the quantity D(ω) is defined over
the Nyquist interval by

D(ω)=
{

1, if −ωc ≤ω ≤ωc
0, if −π ≤ω < −ωc, or ωc < ω ≤ π

Therefore, Eq. (10.1.1) gives:

d(k) =
∫ π
−π
D(ω)ejωk

dω
2π

=
∫ωc

−ωc

1 · ejωk dω
2π

=
[
ejωk

2πjk

]ωc

−ωc

= ejωck − e−jωck

2πjk
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which can be rewritten as

(lowpass filter) d(k)= sin(ωck)
πk

, −∞ < k <∞ (10.1.2)

For computational purposes, the case k = 0 must be handled separately. Taking the
limit k→ 0, we find from Eq. (10.1.2):

d(0)= ωc

π
(10.1.3)

Similarly, we find for the highpass, bandpass, and bandstop filters of Fig. 10.1.1,
defined over −∞ < k <∞

(highpass filter) d(k)= δ(k)−sin(ωck)
πk

(bandpass filter) d(k)= sin(ωbk)− sin(ωak)
πk

(bandstop filter) d(k)= δ(k)−sin(ωbk)− sin(ωak)
πk

(10.1.4)

Note that for the same values of the cutoff frequenciesωc,ωa,ωb, the lowpass/highpass
and bandpass/bandstop filters are complementary, that is, their impulse responses add
up to a unit impulse δ(k) and their frequency responses add up to unity (as can also be
seen by inspecting Fig. 10.1.1):

dLP(k)+dHP(k)= δ(k) � DLP(ω)+DHP(ω)= 1

dBP(k)+dBS(k)= δ(k) � DBP(ω)+DBS(ω)= 1
(10.1.5)

As we see below, such complementarity properties can be exploited to simplify the
implementation of loudspeaker cross-over networks and graphic equalizers.

The ideal differentiator filter of Fig. 10.1.2 has frequency response D(ω)= jω, de-
fined over the Nyquist interval. The ideal Hilbert transformer response can be expressed
compactly asD(ω)= −jsign(ω), where sign(ω) is the signum function which is equal
to ±1 depending on the algebraic sign of its argument. Theω-integrations in Eq. (10.1.1)
give the impulse responses:

(differentiator) d(k)= cos(πk)
k

− sin(πk)
πk2

(Hilbert transformer) d(k)= 1 − cos(πk)
πk

(10.1.6)

Both filters have d(0)= 0, as can be verified by carefully taking the limit k → 0.
Both impulse responses d(k) are real-valued and odd (antisymmetric) functions of k.
By contrast, the filters of Fig. 10.1.1 all have impulse responses that are real and even
(symmetric) in k. We will refer to the two classes of filters of Figs. 10.1.1 and 10.1.2 as
the symmetric and antisymmetric classes.

In the frequency domain, the symmetric types are characterized by a frequency re-
sponse D(ω) which is real and even inω; the antisymmetric ones have D(ω) which is
imaginary and odd in ω. One of the main consequences of these frequency properties
is the linear phase property of the window designs.
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10.1.2 Rectangular Window

The window method consists of truncating, or rectangularly windowing, the double-
sided d(k) to a finite length. For example, we may keep only the coefficients:

d(k)=
∫ π
−π
D(ω)ejωk

dω
2π

, −M ≤ k ≤M (10.1.7)

Because the coefficients are taken equally for positive and negative k’s, the total
number of coefficients will be odd, that is, N = 2M + 1 (even values of N are also
possible, but not discussed in this text). The resulting N-dimensional coefficient vector
is the FIR impulse response approximating the infinite ideal response:

d = [d−M, . . . , d−2, d−1, d0, d1, d2, . . . , dM] (10.1.8)

The time origin k = 0 is at the middle d0 of this vector. To make the filter causal we
may shift the time origin to the left of the vector and re-index the entries accordingly:

h = d = [h0, . . . , hM−2, hM−1, hM,hM+1, hM+2, . . . , h2M] (10.1.9)

where we defined h0 = d−M, h1 = d−M+1, . . . , hM = d0, . . . , h2M = dM. Thus, the
vectors d and h are the same, with the understanding that d’s origin is in its middle and
h’s at its left. The definition of h may be thought of as time-delaying the double-sided
sequence d(k), −M ≤ k ≤M, by M time units to make it causal:

h(n)= d(n−M), n = 0,1, . . . ,N − 1 (10.1.10)

The operations of windowing and delaying are shown in Fig. 10.1.3. To summarize,
the steps of the rectangular window method are simply:

1. Pick an odd length N = 2M + 1, and let M = (N − 1)/2.

2. Calculate the N coefficients d(k) from Eq. (10.1.7), and

3. Make them causal by the delay (10.1.10).

0 k

d(k)

1 2 3 4 5 ...-1-2-3-4-5...

rectangular
window

0 n

h(n)

w(n)

1 2 3 4 875 96 ...-1-2

rectangular
window

Fig. 10.1.3 Rectangularly windowed impulse response, with N = 9, M = 4.

For example, theN-dimensional approximation to the ideal lowpass filter of Eq. (10.1.2)
will be:

h(n)= d(n−M)= sin
(
ωc(n−M))
π(n−M) , n = 0, . . . ,M, . . . ,N − 1 (10.1.11)
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where we must calculate separately h(M)= d(0)=ωc/π. For other ideal filter shapes,
we can use the functions d(k) of Eqs. (10.1.4) or (10.1.6). Once the impulse response
coefficients are calculated, the filter may be implemented by its FIR filtering equation,
using the routines fir or cfir of Chapter 4:

yn =
N−1∑
m=0

hmxn−m (10.1.12)

Example 10.1.1: Determine the length-11, rectangularly windowed impulse response that ap-
proximates (a) an ideal lowpass filter of cutoff frequencyωc = π/4, (b) the ideal differen-
tiator filter, and (c) the ideal Hilbert transformer filter.

Solution: With N = 11, we have M = (N − 1)/2 = 5. For the lowpass filter, we evaluate
Eq. (10.1.2), that is,

d(k)= sin(πk/4)
πk

, for −5 ≤ k ≤ 5

We find the numerical values:

h = d =
[
−

√
2

10π
, 0,

√
2

6π
,

1

2π
,
√

2

2π
,

1

4
,
√

2

2π
,

1

2π
,
√

2

6π
, 0, −

√
2

10π

]

For the differentiator filter, the second term, sin(πk)/πk2, vanishes for all values k �= 0.
Therefore, we find:

h = d =
[

1

5
, −1

4
,

1

3
, −1

2
, 1, 0, −1,

1

2
, −1

3
,

1

4
, −1

5

]

And, for the Hilbert transformer:

h = d =
[
− 2

5π
, 0, − 2

3π
, 0, − 2

π
, 0,

2

π
, 0,

2

3π
, 0,

2

5π

]

Note that the lowpass filter’s impulse response is symmetric about its middle, whereas the
differentiator’s and Hilbert transformer’s are antisymmetric. Note also that because of the
presence of the factor 1− cos(πk), every other entry of the Hilbert transformer vanishes.
This property can be exploited to reduce by half the total number of multiplications re-
quired in the convolutional equation Eq. (10.1.12). 	


In the frequency domain, the FIR approximation toD(ω) is equivalent to truncating
the DTFT Fourier series expansion (10.1.1) to the finite sum:

D̂(ω)=
M∑

k=−M
d(k)e−jωk (10.1.13)

Replacing z = ejω, we may also write it as the double-sided z-transform:

D̂(z)=
M∑

k=−M
d(k)z−k (10.1.14)
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The final length-N filter obtained by Eq. (10.1.10) will have transfer function:

H(z)= z−MD̂(z)= z−M
M∑

k=−M
d(k)z−k (10.1.15)

and frequency response:

H(ω)= e−jωMD̂(ω)= e−jωM
M∑

k=−M
d(k)e−jωk (10.1.16)

Example 10.1.2: To illustrate the definition ofH(z), consider a case withN = 7 andM = (N−
1)/2 = 3. Let the FIR filter weights be d = [d−3, d−2, d−1, d0, d1, d2, d3] with truncated
z-transform:

D̂(z)= d−3z3 + d−2z2 + d−1z+ d0 + d1z−1 + d2z−2 + d3z−3

Delaying it by M = 3, we get the causal transfer function:

H(z)= z−3D̂(z) = z−3
(
d−3z3 + d−2z2 + d−1z+ d0 + d1z−1 + d2z−2 + d3z−3

)
= d−3 + d−2z−1 + d−1z−2 + d0z−3 + d1z−4 + d2z−5 + d3z−6

= h0 + h1z−1 + h2z−2 + h3z−3 + h4z−4 + h5z−5 + h6z−6

where we defined h(n)= d(n− 3), n = 0,1,2,3,4,5,6. 	


The linear phase property of the window design is a direct consequence of Eq. (10.1.16).
The truncated D̂(ω) has the same symmetry/antisymmetry properties asD(ω). Thus,
in the symmetric case, D̂(ω) will be real and even in ω. It follows from Eq. (10.1.16)
that the designed FIR filter will have linear phase, arising essentially from the delay fac-
tor e−jωM. More precisely, we may write the real factor D̂(ω) in terms of its positive
magnitude and its sign:

D̂(ω)= sign
(
D̂(ω)

) |D̂(ω)| = ejπβ(ω) |D̂(ω)|
where β(ω)= [

1 − sign
(
D̂(ω)

)]
/2, which is zero or one depending on the sign of

D̂(ω). It follows that H(ω) will be:

H(ω)= e−jωMD̂(ω)= e−jωM+jπβ(ω) |D̂(ω)|

Thus, its magnitude and phase responses will be:

|H(ω)| = |D̂(ω)| , argH(ω)= −ωM +πβ(ω) (10.1.17)

making the phase response piece-wise linear in ω with 180o jumps at those ω where
D̂(ω) changes sign. For the antisymmetric case, D̂(ω) will be pure imaginary, that is,
of the form D̂(ω)= jA(ω). The factor j may be made into a phase by writing it as
j = ejπ/2. Thus, we have
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H(ω)= e−jωMD̂(ω)= e−jωMejπ/2A(ω)= e−jωMejπ/2ejπα(ω) |A(ω)|

where α(ω)= [
1 − sign

(
A(ω)

)]
/2, which gives for the magnitude and phase re-

sponses:

|H(ω)| = |A(ω)| , argH(ω)= −ωM + π
2

+πα(ω) (10.1.18)

How good is the rectangular window design? How well does the truncated D̂(ω)
represent the desired response D(ω)? In other words, how good is the approximation
D̂(ω)� D(ω)?

Intuitively one would expect that D̂(ω)→ D(ω) asN increases. This is true for any
ω which is a point of continuity of D(ω), but it fails at points of discontinuity , such as
at the transition edges from passband to stopband. Around these edges one encounters
the celebrated Gibbs phenomenon of Fourier series, which causes the approximation to
be bad regardless of how large N is.

To illustrate the nature of the approximation D̂(ω)� D(ω), we consider the design
of an ideal lowpass filter of cutoff frequency ωc = 0.3π, approximated by a rectangu-
larly windowed response of length N = 41 and then by another one of length N = 121.
For the case N = 41, we have M = (N − 1)/2 = 20. The designed impulse response is
given by Eq. (10.1.10):

h(n)= d(n− 20)= sin
(
0.3π(n− 20)

)
π(n− 20)

, n = 0,1, . . . ,40

and in particular, h(20)= d(0)= ωc/π = 0.3. The second design has N = 121 and
M = 60. Its impulse response is, with h(60)= d(0)= 0.3:

h(n)= d(n− 60)= sin
(
0.3π(n− 60)

)
π(n− 60)

, n = 0,1, . . . ,120

The two impulse responses are plotted in Fig. 10.1.4. Note that the portion of the
second response extending ±20 samples around the central peak at n = 60 coincides
numerically with the first response. The corresponding magnitude responses are shown
in Fig. 10.1.5. An intermediate case having N = 81 is shown in Figs. 10.1.6 and 10.1.7.
In Fig. 10.1.5, the magnitude responses were computed by evaluating:

H(ω)=
N−1∑
n=0

h(n)e−jωn (10.1.19)

The length-N impulse response h(n) defined in Eq. (10.1.10) may be thought of
formally as the rectangularly windowed double-sided sequence defined by

h(n)= w(n)d(n−M) , −∞ < n <∞ (10.1.20)

where w(n) is the length-N rectangular window. In the frequency domain, this trans-
lates to the convolution of the corresponding spectra, as in Eq. (9.1.8):
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Fig. 10.1.4 Rectangularly windowed impulse responses for N = 41 and N = 121.

Fig. 10.1.5 Rectangularly windowed magnitude responses for N = 41 and N = 121.

H(ω)=
∫ π
−π
W(ω−ω′)e−jω

′MD(ω′)
dω′

2π
(10.1.21)

where the e−jω′M arises from the delay in d(n−M).
The spectrumW(ω) of the rectangular window was given in Eq. (9.1.9) (with L = N).

Thus, the designed filter H(ω) will be a smeared version of the desired shape D(ω).
In particular, for the ideal lowpass case, because D(ω′) is nonzero and unity only over
the subinterval −ωc ≤ω′ ≤ωc, the frequency convolution integral becomes:

H(ω)=
∫ωc

−ωc

W(ω−ω′)e−jω
′M dω′

2π
(10.1.22)

The ripples in the frequency response H(ω), observed in Fig. 10.1.5, arise from the
(integrated) ripples of the rectangular window spectrum W(ω). As N increases, we
observe three effects in Fig. 10.1.5:

1. Forω’s that lie well within the passband or stopband (i.e., points of continuity), the
ripple size decreases as N increases, resulting in flatter passband and stopband.
For such ω, we have D̂(ω)→ D(ω) as N → ∞.
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2. The transition width decreases with increasing N. Note also that for any N, the
windowed responseH(ω) is always equal to 0.5 at the cutoff frequencyω =ωc.
(This is a standard property of Fourier series.)

3. The largest ripples tend to cluster near the passband-to-stopband discontinuity
(from both sides) and do not get smaller with N. Instead, their size remains
approximately constant, about 8.9 percent, independent ofN. Eventually, asN →
∞, these ripples get squeezed onto the discontinuity at ω =ωc, occupying a set
of measure zero. This behavior is the Gibbs phenomenon.

10.1.3 Hamming Window

To eliminate the 8.9% passband and stopband ripples, we may replace the rectangular
window w(n) in Eq. (10.1.20) by a non-rectangular one, which tapers off gradually at
its endpoints, thus reducing the ripple effect. There exist dozens of windows [219–222]
and among these the Hamming window is a popular choice; it is defined by:

w(n)= 0.54 − 0.46 cos
(

2πn
N − 1

)
, n = 0,1, . . . ,N − 1 (10.1.23)

In particular, the Hamming windowed impulse response for a length-N lowpass filter
will be, where N = 2M + 1 and n = 0,1, . . . ,N − 1:

h(n)= w(n)d(n−M)=
[

0.54 − 0.46 cos
( 2πn
N − 1

)] · sin
(
ωc(n−M))
π(n−M) (10.1.24)

As an example, consider the design of a length N = 81 lowpass filter with cutoff
frequency ωc = 0.3π. Fig. 10.1.6 shows the rectangularly and Hamming windowed
impulse responses. Note how the Hamming impulse response tapers off to zero more
gradually. It was computed by Eq. (10.1.24) with N = 81 and M = 40. Fig. 10.1.7 shows
the corresponding magnitude responses.

Fig. 10.1.6 Rectangular and Hamming windowed impulse responses for N = 81.
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Fig. 10.1.7 Rectangular and Hamming windowed magnitude responses for N = 81.

The passband/stopband ripples of the rectangular window design are virtually elim-
inated from the Hamming window design. Actually, there are small ripples with max-
imum overshoot of about 0.2%, but they are not visible in the scale of Fig. 10.1.7. The
price for eliminating the ripples is loss of resolution, which is reflected into a wider
transition width.

10.2 Kaiser Window

10.2.1 Kaiser Window for Filter Design

The rectangular and Hamming window designs are very simple, but do not provide
good control over the filter design specifications. With these windows, the amount of
overshoot is always fixed to 8.9% or 0.2% and cannot be changed to a smaller value if so
desired.

A flexible set of specifications is shown in Fig. 10.2.1 in which the designer can
arbitrarily specify the amount of passband and stopband overshoot δpass, δstop, as well
as the transition width Δf .

The passband/stopband frequencies {fpass, fstop} are related to the ideal cutoff fre-
quency fc and transition width Δf by

fc = 1

2
(fpass + fstop) , Δf = fstop − fpass (10.2.1)

Thus, fc is chosen to lie exactly in the middle between fpass and fstop. Eqs. (10.2.1)
can be inverted to give:

fpass = fc − 1

2
Δf , fstop = fc + 1

2
Δf (10.2.2)

The normalized versions of the frequencies are the digital frequencies:

ωpass = 2πfpass

fs
, ωstop = 2πfstop

fs
, ωc = 2πfc

fs
, Δω = 2πΔf

fs
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In practice, the passband and stopband overshoots are usually expressed in dB:

Apass = 20 log10

(
1 + δpass

1 − δpass

)
, Astop = −20 log10 δstop (10.2.3)

A simplified version of the passband equation can be obtained by expanding it to
first order in δpass, giving:

Apass = 17.372δpass (10.2.4)

which is valid for small values of δpass. Eqs. (10.2.3) can be inverted to give:

δpass = 10Apass/20 − 1

10Apass/20 + 1
, δstop = 10−Astop/20 (10.2.5)

Thus, one can pass back and forth between the specification sets:

{fpass, fstop,Apass,Astop} � {fc,Δf, δpass, δstop}

Apass1

1/2

1+δpass

1−δpass

δstop

0

f

fpass fstop

fc

fs/2

designed 
filter |H( f )|

desired ideal
filter |D( f )|

AstopΔf = transition
width

passband stopband

Fig. 10.2.1 Magnitude response specifications for a lowpass filter.

Although δpass and δstop can be specified independently of each other, it is a prop-
erty of all window designs that the final designed filter will have equal passband and
stopband ripples. Therefore, we must design the filter on the basis of the smaller of the
two ripples, that is,

δ = min(δpass, δstop) (10.2.6)

The designed filter will have passband and stopband ripple equal to δ. The value of
δ can also be expressed in dB:

A = −20 log10 δ , δ = 10−A/20 (10.2.7)
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In practice, the design is usually based on the stopband ripple δstop. This is so
because any reasonably good choices for the passband and stopband attenuations (e.g.,
Apass = 0.1 dB and Astop = 60 dB) will almost always result into δstop < δpass, and
therefore, δ = δstop, and in dB, A = Astop. Thus, it is useful to think of A as the
stopband attenuation.

The main limitation of most windows is that they have a fixed value of δ, which
depends on the particular window shape. Such windows limit the achievable passband
and stopband attenuations {Apass,Astop} to only certain specific values.

For example, Table 10.2.1 shows the attenuations achievable by the rectangular and
Hamming windows, calculated from Eq. (10.2.3) with the values δ = δpass = δstop =
0.089 and δ = δpass = δstop = 0.002, respectively. The table also shows the correspond-
ing value of the transition width parameter D of Eq. (10.2.11).

The only windows that do not suffer from the above limitation are the Kaiser window
[245–247], the Dolph-Chebyshev window [248–253], and the Saramäki windows [254].
These windows have an adjustable shape parameter that allows the window to achieve
any desired value of ripple δ or attenuation A.

Window δ Astop Apass D

Rectangular 8.9% −21 dB 1.55 dB 0.92
Hamming 0.2% −54 dB 0.03 dB 3.21
Kaiser variable δ −20 log10 δ 17.372δ (A− 7.95)/14.36

Table 10.2.1 Specifications for rectangular, Hamming, and Kaiser windows.

The Kaiser window is unique in the above class in that it has near-optimum per-
formance (in the sense of minimizing the sidelobe energy of the window), as well as
having the simplest implementation. It depends on two parameters: its length N and
the shape parameter α. Assuming odd length N = 2M + 1, the window is defined, for
n = 0,1, . . . ,N − 1, as follows:

(Kaiser window) w(n)=
I0
(
α
√

1 − (n−M)2/M2
)

I0(α)
(10.2.8)

where I0(x) is the modified Bessel function of the first kind and 0th order. This function
and its evaluation by the routine I0.c are discussed at the end of this section. The nu-
merator in Eq. (10.2.8) can be rewritten in the following form, which is more convenient
for numerical evaluation:

w(n)= I0
(
α
√
n(2M − n)/M)
I0(α)

, n = 0,1, . . . ,N − 1 (10.2.9)

Like all window functions, the Kaiser window is symmetric about its middle, n =M,
and has the value w(M)= 1 there. At the endpoints, n = 0 and n = N − 1, it has the
value 1/I0(α) because I0(0)= 1.

Figure 10.2.2 compares a Hamming window of lengthN = 51 to the Kaiser windows
of the same length and shape parameters α = 7 and α = 5. For α = 5 the Kaiser and
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Hamming windows agree closely, except near their endpoints. For α = 0 the Kaiser
window reduces to the rectangular one.

Fig. 10.2.2 Kaiser and Hamming windows for N = 51 and α = 5,7.

The window parameters {N,α} are computable in terms of the filter specifications,
namely, the ripple δ and transition width Δf . The design equations developed by Kaiser
[245–247] are as follows. The shape parameter α is calculated from:

α =
⎧⎪⎨⎪⎩

0.1102(A− 8.7), if A≥ 50
0.5842(A− 21)0.4+0.07886(A− 21), if 21<A< 50
0, if A ≤ 21

(10.2.10)

where A is the ripple in dB, given by Eq. (10.2.7). The filter length N is inversely related
to the transition width:

Δf = Dfs
N − 1

� N − 1 = Dfs
Δf

(10.2.11)

where the factor D is computed also in terms of A by

D =
⎧⎨⎩
A− 7.95

14.36
, if A > 21

0.922, if A ≤ 21
(10.2.12)

The most practical range of these formulas is for A ≥ 50 dB, for which they simplify
to:

α = 0.1102(A− 8.7) , D = A− 7.95

14.36
(for A ≥ 50 dB) (10.2.13)

To summarize, the steps for designing a lowpass filter are as follows. Given the
specifications {fpass, fstop,Apass,Astop}:

1. Calculate fc and Δf from Eq. (10.2.1). Then, calculate ωc = 2πfc/fs.
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2. Calculate δpass and δstop from Eq. (10.2.5).

3. Calculate δ = min(δpass, δstop) and A = −20 log10 δ in dB.

4. Calculate α and D from Eqs. (10.2.10) and (10.2.12).

5. Calculate the filter length N from Eq. (10.2.11) and round it up to the next odd
integer, N = 2M + 1, and set M = (N − 1)/2.

6. Calculate the window function w(n), n = 0,1, . . . ,N − 1 from Eq. (10.2.8).

7. Calculate the windowed impulse response, for n = 0,1, . . . ,N − 1:

h(n)= w(n)d(n−M)= w(n)·sin
(
ωc(n−M))
π(n−M) (10.2.14)

In particular, we have h(M)= w(M)ωc/π =ωc/π, because w(M)= 1.

Note that the window parameters {N,α} depend only on the specifications {A,Δf} and
not on fc. However, h(n) does depend on fc.

The design steps can be modified easily to design highpass and bandpass filters. For
highpass filters, the role of fpass and fstop are interchanged; therefore, the only change in
the steps is to defineΔf = fpass−fstop and to use the highpass response from Eq. (10.1.4).
The highpass impulse response will be:

h(n)= w(n)d(n−M)= w(n)·
[
δ(n−M)−sin

(
ωc(n−M))
π(n−M)

]

The first term can be simplified to w(n)δ(n −M)= w(M)δ(n −M)= δ(n −M)
because w(M)= 1. Therefore, the designed filter will be:

h(n)= δ(n−M)−w(n)·sin
(
ωc(n−M))
π(n−M) (10.2.15)

For the same value of ωc, the lowpass and highpass filters are complementary. The
sum of Eqs. (10.2.14) and (10.2.15) gives:

hLP(n)+hHP(n)= δ(n−M) , n = 0,1, . . . ,N − 1 (10.2.16)

which becomes in the z-domain:

HLP(z)+HHP(z)= z−M (10.2.17)

For bandpass filters, the desired specifications may be given as in Fig. 10.2.3. There
are now two stopbands and two transition widths. The final design will have equal
transition widths, given by Eq. (10.2.11). Therefore, we must design the filter based on
the smaller of the two widths, that is,

Δf = min(Δfa,Δfb) (10.2.18)

where the left and right transition widths are:
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Δfa = fpa − fsa , Δfb = fsb − fpb (10.2.19)

Figure 10.2.3 shows the case where the left transition width is the smaller one and,
thus, definesΔf . The ideal cutoff frequencies fa and fb can be calculated by taking them
to be Δf/2 away from the passband or from the stopbands. The standard definition is
with respect to the passband:

fa = fpa − 1

2
Δf , fb = fpb + 1

2
Δf (10.2.20)

This choice makes the passband just right and the stopband somewhat wider than
required. The alternative definition makes the stopbands right and the passband wider:

fa = fsa + 1

2
Δf , fb = fsb − 1

2
Δf (10.2.21)

Apass1
1+δpass

1−δpass

δstop

0

f

fpa fpbfsa fsb

fa fb fb

fs/2

desired ideal
filter |D( f )| standard

design alternative
design

Astop

Δfa Δfb

Δf
2

Δf
2

Δf
2

Δf
2

stopbandpassbandstopband

Fig. 10.2.3 Bandpass filter specifications.

Once the cutoff frequencies {fa, fb} and the window parameters {N,α} are calcu-
lated, the bandpass impulse response may be defined, for n = 0,1, . . . ,N − 1:

h(n)= w(n)d(n−M)= w(n)·sin
(
ωb(n−M))− sin

(
ωa(n−M))

π(n−M) (10.2.22)

where h(M)= (ωb −ωa)/π, and ωa = 2πfa/fs, ωb = 2πfb/fs. Next, we present a
lowpass and a bandpass design example.

Example 10.2.1: Lowpass Design. Using the Kaiser window, design a lowpass digital filter with
the following specifications:

fs = 20 kHz
fpass = 4 kHz, fstop = 5 kHz
Apass = 0.1 dB, Astop = 80 dB
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Solution: First, we calculate δpass and δstop from Eq. (10.2.5):

δpass = 100.1/20 − 1

100.1/20 + 1
= 0.0058, δstop = 10−80/20 = 0.0001

Therefore, δ = min(δpass, δstop)= δstop = 0.0001, which in dB is A = −20 log10 δ =
Astop = 80. The D and α parameters are computed by:

α = 0.1102(A− 8.7)= 0.1102(80 − 8.7)= 7.857, D = A− 7.95

14.36
= 5.017

The filter width and ideal cutoff frequency are:

Δf = fstop − fpass = 1 kHz, fc = 1

2
(fpass + fstop)= 4.5 kHz, ωc = 2πfc

fs
= 0.45π

Eq. (10.2.11) gives for the filter length (rounded up to the nearest odd integer):

N = 1 + Dfs
Δf

= 101.35 ⇒ N = 103, M = 1

2
(N − 1)= 51

The windowed impulse response will be, for n = 0,1, . . . ,102:

h(n)= w(n)d(n−M)= I0
(
7.857

√
n(102 − n)/51

)
I0(7.857)

· sin
(
0.45π(n− 51)

)
π(n− 51)

with h(51)= ωc/π = 0.45. Figure 10.2.4 shows the magnitude response in dB of h(n),
that is, 20 log10 |H(ω)|, where H(ω) was evaluated by Eq. (10.1.19). Note the transi-
tion width extending from 4 to 5 kHz and the stopband specification defined by the
horizontal grid line at −80 dB. The passband specification is more than satisfied. It is
Apass � 17.372δ = 0.0017 dB.

Fig. 10.2.4 Kaiser, Hamming, and rectangular window designs, N = 103.

The figure also shows the corresponding Hamming and rectangularly windowed designs
for the same length ofN = 103. They both have a smaller transition width—the rectangular
one even more so, but their stopband attenuations are limited to the standard values of
54 dB and 21 dB, respectively. 	
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Example 10.2.2: Bandpass Design. Using the Kaiser window, design a bandpass digital filter
with the following specifications:

fs = 20 kHz
fsa = 3 kHz, fpa = 4 kHz, fpb = 6 kHz, fsb = 8 kHz
Apass = 0.1 dB, Astop = 80 dB

Solution: The parameters {δpass, δstop, δ,A,α,D} are the same as in the previous example. The
two transition widths are:

Δfa = fpa − fsa = 4 − 3 = 1 kHz, Δfb = fsb − fpb = 8 − 6 = 2 kHz

Therefore, the minimum width is Δf = min(Δfa,Δfb)= 1 kHz, and the filter length:

N = 1 + Dfs
Δf

= 101.35 ⇒ N = 103, M = 1

2
(N − 1)= 51

Using the standard definition of Eq. (10.2.20), we find for the left and right ideal cutoff
frequencies:

fa = fpa − 1

2
Δf = 4 − 0.5 = 3.5 kHz, fb = fpb + 1

2
Δf = 6 + 0.5 = 6.5 kHz

with the normalized values ωa = 2πfa/fs = 0.35π, ωb = 2πfb/fs = 0.65π.

For the alternative definition of Eq. (10.2.21), we have fa = 3+0.5 = 3.5 and fb = 8−0.5 =
7.5 kHz, resulting in ωa = 0.35π and ωb = 0.75π. Figure 10.2.5 shows the magnitude
response of the designed filter in dB, both for the standard and the alternative definitions.
The standard design has just the right passband extending over [4,6] kHz and a wider
stopband that starts at 7 kHz. The alternative design has a wider passband extending over
[4,7] kHz. 	


Fig. 10.2.5 Kaiser window design of a bandpass filter.

Next, we discuss three more Kaiser design examples for digital audio applications,
namely, two-way and three-way loudspeaker crossover filters and a five-band graphic
equalizer.
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In all three cases, the sampling rate is fs = 44.1 kHz, the stopband attenuation is
Astop = 65 dB, and all the transition widths are taken to be equal to Δf = 2 kHz. This
implies that all the filters will have the same length N and Kaiser parameters D and α.
With A = Astop = 65 dB, we find

D = A− 7.95

14.36
= 3.973, α = 0.1102(A− 8.7)= 6.204,

N − 1 = Dfs
Δf

= 3.973 × 44.1
2

= 87.6 ⇒ N = 89, M = 1

2
(N − 1)= 44

Note that the given value of A = 65 dB corresponds to δpass = δstop = 10−65/20 =
0.00056, which results in the small passband attenuation Apass = 0.0097 dB.

Such filters are to within the capabilities of modern DSP chips. Assuming a typical
instruction rate of 20 MIPS, which is 20 instructions per μsec, or, Tinstr = 50 nsec per
instruction, and assuming the sample processing implementation requires N MACs per
output sample computed, the total computational time for processing each input sample
will beNTinstr = 89×50 = 4.45μsec, which fits well within the time separating each input
sample, T = 1/fs = 1/44.1 = 22.68 μsec.

Several such filters can even be implemented simultaneously on the same DSP chip,
namely, 22.68/4.45 = 5.1, or, about five length-89 filters. Conversely, the longest single
filter that can be implemented will have length such thatNTinstr = T, or,N = T/Tinstr =
finstr/fs = 20000/44.1 � 453, resulting in the smallest implementable transition width
of

Δfmin � Dfs
N

= Dfs2

finstr
= 0.386 kHz

Example 10.2.3: Two-Way Crossover Filters. All conventional loudspeakers contain an analog
crossover network that splits the incoming analog audio signal into its low- and high-
frequency components that drive the woofer and tweeter parts of the loudspeaker. More
advanced loudspeakers may contain even a third component for the mid-frequency part
of the input [255].

Digital loudspeaker systems operate on the digitized audio input and use (FIR or IIR) digital
filters to split it into the appropriate frequency bands, which are then converted to analog
format, amplified, and drive the corresponding parts of the loudspeaker [256,257]. Such
“digital” loudspeakers have been available for a while in professional digital studios and
are becoming commercially available for home use (where typically the digital output of a
CD player is connected to the digital input of the loudspeaker).

In this example, we take the cutoff frequency of the lowpass and highpass filters, known as
the crossover frequency, to be fc = 3 kHz, which leads to the normalized frequency ωc =
2πfc/fs = 0.136π. (This numerical value of fc is chosen only for plotting convenience—a
more realistic value would be 1 kHz.) The designed low- and high-frequency driver filters
are then: For n = 0,1, · · · ,N − 1

hLP(n) = w(n)dLP(n−M)= w(n)
[

sin
(
ωc(n−M))
π(n−M)

]

hHP(n) = w(n)dHP(n−M)= w(n)
[
δ(n−M)− sin

(
ωc(n−M))
π(n−M)

]
=

= δ(n−M)−hLP(n)
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where w(n) is the Kaiser window given by Eq. (10.2.8). The magnitude responses of the
designed filters are shown in Fig. 10.2.6, plotted both in absolute scales, |H(ω)|, and in
decibels, 20 log10 |H(ω)|.

Fig. 10.2.6 Low- and high-frequency magnitude responses.

The complementarity relationship between the impulse responses implies in the z-domain:

HHP(z)= z−M −HLP(z)

It leads to the realization of Fig. 10.2.7. Instead of realizing the lowpass and highpass
filters separately, it requires only the lowpass filter and one multiple delay. 	


HLP(z)

z-M -
+

audio in woofer

tweeter

Fig. 10.2.7 Complementary implementation of two-way crossover filters.

Example 10.2.4: Three-Way Crossover Filters. In this example, the audio input must be split
into its low-, mid-, and high-frequency components. The crossover frequencies are chosen
to be fa = 3 kHz and fb = 7 kHz. The midpass filter will be a bandpass filter with these
cutoff frequencies. The designed impulse responses will be:

hLP(n) = w(n)dLP(n−M)= w(n)
[

sin
(
ωa(n−M))
π(n−M)

]

hMP(n) = w(n)dMP(n−M)= w(n)
[

sin
(
ωb(n−M))− sin

(
ωa(n−M))

π(n−M)

]

hHP(n) = w(n)dHP(n−M)= w(n)
[
δ(n−M)− sin

(
ωb(n−M))
π(n−M)

]
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where, ωa = 2πfa/fs = 0.136π and ωb = 2πfb/fs = 0.317π. Adding the three impulse
responses, we find

hLP(n)+hMP(n)+hHP(n)= δ(n−M)

and, in the z-domain

HLP(z)+HMP(z)+HHP(z)= z−M

which allows us to express one of them in terms of the other two, for example

HHP(z)= z−M −HLP(z)−HMP(z)

The magnitude responses of the designed filters are shown in Fig. 10.2.8. A realization
that uses the above complementarity property and requires only two filtering operations
instead of three is shown in Fig. 10.2.9. 	


Fig. 10.2.8 Lowpass, midpass, and highpass magnitude responses.

HLP(z)

HMP(z)

z-M --
+

audio in woofer

mid-range

tweeter

Fig. 10.2.9 Complementary implementation of three-way crossover filters.

Example 10.2.5: Five-Band Graphic Equalizer. Present-day graphic equalizers typically employ
second-order IIR filters. However, there is no reason not to use FIR filters, if the computa-
tional cost is manageable. In this example, we choose the crossover frequencies of the five
bands to be fa = 3 kHz, fb = 7 kHz, fc = 11 kHz, fd = 15 kHz, defining the five frequency
bands:
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[0, fa] band 1
[fa, fb] band 2
[fb, fc] band 3
[fc, fd] band 4
[fd, fs/2] band 5

The designed filter impulse responses will be:

h1(n) = w(n)
[

sin
(
ωa(n−M))
π(n−M)

]

h2(n) = w(n)
[

sin
(
ωb(n−M))− sin

(
ωa(n−M))

π(n−M)

]

h3(n) = w(n)
[

sin
(
ωc(n−M))− sin

(
ωb(n−M))

π(n−M)

]

h4(n) = w(n)
[

sin
(
ωd(n−M))− sin

(
ωc(n−M))

π(n−M)

]

h5(n) = w(n)
[
δ(n−M)− sin

(
ωd(n−M))
π(n−M)

]

where, ωa = 2πfa/fs = 0.136π, ωb = 2πfb/fs = 0.317π, ωc = 2πfc/fs = 0.499π,
ωd = 2πfd/fs = 0.680π. Adding the five filters we find the relationship:

h1(n)+h2(n)+h3(n)+h4(n)+h5(n)= δ(n−M)

and, in the z-domain

H1(z)+H2(z)+H3(z)+H4(z)+H5(z)= z−M

It can be solved for one of the transfer functions in terms of the other ones:

H5(z)= z−M −H1(z)−H2(z)−H3(z)−H4(z)

The magnitude responses are shown in Fig. 10.2.10. A realization that uses the above
complementarity property and requires only four filtering operations instead of five is
shown in Fig. 10.2.11.

The outputs of the five filters are weighted by the user-selectable gainsGi and then summed
up to form the “equalized” audio signal. The overall transfer function from the input to
the overall output is:

H(z)= G1H1(z)+G2H2(z)+G3H3(z)+G4H4(z)+G5H5(z)

In practice, the crossover frequencies are chosen to follow standard ISO (International Stan-
dards Organization) frequencies, dividing the 20 kHz audio range into octaves or fractions
of octaves. 	
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Fig. 10.2.10 Graphic equalizer magnitude responses.

H1(z)
G1

G2

G3

G4

G5

H3(z)

H2(z)

H4(z)

z-M
-

+

audio in

variable gains

audio out

Fig. 10.2.11 Complementary implementation of graphic equalizer.

The above three examples are special cases of parallel filter banks in which the in-
put is split into several non-overlapping frequency bands covering the Nyquist interval.
Applications include multirate filter banks and subband coding of speech, audio, and
picture signals in which the outputs of the bank filters are quantized with fewer num-
ber of bits and at the same time their sampling rates are dropped, such that the overall
bit rate required for the digital transmission or storage of the signal is substantially re-
duced [275]. For example, in the recent DCC audio cassette system, the allocation of bits
in each band is governed by psychoacoustic perceptual criteria in which fewer bits are
assigned to bands that will be less audible [295–300]. Wavelets and the discrete wavelet
transform are also examples of filter banks [275].

Finally, we consider the definition and computation of the Bessel function I0(x). It
is defined by its Taylor series expansion:
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I0(x)=
∞∑
k=0

[
(x/2)k

k!

]2

(10.2.23)

The Kaiser window (10.2.8) requires the evaluation of I0(x) over the range of argu-
ment 0 ≤ x ≤ α. The following C function I0.c evaluates I0(x) for any x. The routine
is essentially a C version of the Fortran routine given by Kaiser in [247].

/* I0.c - Modified Bessel Function I0(x)
*
* I0(x) = ∑∞

k=0
[
(x/2)k /k!

]2

*
*/

#include <math.h>

#define eps (1.E-9) ε = 10−9

double I0(x) usage: y = I0(x)

double x;
{

int n = 1;
double S = 1, D = 1, T;

while (D > eps * S) {
T = x / (2 * n++);
D *= T * T;
S += D;
}

return S;
}

The routine is based on the following recursions, which evaluate the power series
(10.2.23) by keeping enough terms in the expansion. We define the partial sum of the
series (10.2.23):

Sn =
n∑
k=0

[
(x/2)k

k!

]2

It is initialized to S0 = 1 and satisfies the recursion, for n ≥ 1:

Sn = Sn−1 +Dn , where Dn =
[
(x/2)n

n!

]2

In turn, Dn itself satisfies a recursion, for n ≥ 1:

Dn =
[
x

2n

]2

Dn−1 = T2
nDn−1 , where Tn = x

2n

and it is initialized toD0 = 1. The iteration stops when the successiveDn terms become
much smaller than the accumulated terms Sn, that is, when

Dn
Sn

= Sn − Sn−1

Sn
< ε
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where ε is a small number, such as, ε = 10−9. The Kaiser window itself may be calculated
by invoking the routine I0.c; for example:

I0a = I0(alpha);

for (n=0; n<N; n++)
w[n]= I0(alpha * sqrt(n*(2*M-n)) / M) / I0a;

10.2.2 Kaiser Window for Spectral Analysis

We saw in Section 9.1 that one of the main issues in spectral analysis was the tradeoff
between frequency resolution and leakage. The more one tries to suppress the sidelobes,
the wider the mainlobe of the window becomes, reducing the amount of achievable
resolution.

For example, the Hamming window provides about 40 dB sidelobe suppression at
the expense of doubling the mainlobe width of the rectangular window. Recall from
Eq. (9.1.18) that the mainlobe width Δfw of a window depends inversely on the data
record length L:

Δfw = cfs
L− 1

� L− 1 = cfs
Δfw

(10.2.24)

where the factor c depends on the window used. For the Kaiser window, we use the more
accurate denominator L − 1, instead of L of Eq. (9.1.18); the difference is insignificant
in spectral analysis where L is large.

The more the sidelobe suppression, the larger the factor c. Thus, to maintain a
certain required value for the resolution width Δfw, one must increase the data length
L commensurately with c.

Most windows have fixed values for the amount of sidelobe suppression and width
factor c. Table 10.2.2 shows these values for the rectangular and Hamming windows.
Adjustable windows, like the Kaiser window, have a variable sidelobe level R that can
be chosen as the application requires.

Window R c

Rectangular −13 dB 1
Hamming −40 dB 2
Kaiser variable R 6(R+ 12)/155

Table 10.2.2 Relative sidelobe levels.

Kaiser and Schafer [221] have developed simple design equations for the use of the
Kaiser window in spectral analysis. Given a desired relative sidelobe level R in dB and
a desired amount of resolution Δfw, the design equations determine the length L and
shape parameter α of the window. The length is determined from Eq. (10.2.24), where
c is given in terms of R by:
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c = 6(R+ 12)
155

(10.2.25)

Note that our values for c given in Eq. (10.2.25) and Table 10.2.2 are smaller by a
factor of 2 than in most texts, because we defineΔfw to be half the base of the mainlobe,
instead of the base itself. The window shape parameterα can be calculated also in terms
of R by:

α =
⎧⎪⎨⎪⎩

0, R < 13.26
0.76609(R− 13.26)0.4+0.09834(R− 13.26), 13.26<R<60
0.12438(R+ 6.3), 60<R< 120

(10.2.26)

Once the window parameters {L,α} have been determined, the window may be cal-
culated by:

w(n)=
I0
(
α
√

1 − (n−M)2/M2
)

I0(α)
, n = 0,1, . . . , L− 1 (10.2.27)

where M = (L− 1)/2, and then applied to a length-L data record by

xL(n)= w(n)x(n), n = 0,1, . . . , L− 1 (10.2.28)

The sidelobe levelRmust be distinguished from the attenuationA of the filter design
case. There, the attenuation A and ripple δ arise from the integrated window spectrum
W(ω), as in Eq. (10.1.22), whereas R arises from W(ω) itself.

Because of the adjustable sidelobe levelR, the Kaiser window can be used to pull very
weak sinusoids out of the DFT spectrum of a windowed signal, whereas another type of
window, such as a Hamming window, might fail. The following example illustrates this
remark.

Example 10.2.6: The following analog signal consisting of three sinusoids of frequencies f1 = 2
kHz, f2 = 2.5 kHz, and f3 = 3 kHz is sampled at a rate of fs = 10 kHz:

x(t)= A1 cos(2πf1t)+A2 cos(2πf2t)+A3 cos(2πf3t)

where t is in msec. The relative amplitudes are

A1 = A3 = 1, A2 = 10−50/20 = 0.0032

so that the middle sinusoid is 50 dB below the other two. A finite duration portion of
length L is measured and the DFT spectrum is computed for the purpose of detecting the
presence of the sinusoids by their peaks.

If we use a length-L Hamming window on the time data, the f2-component will be lost
below the 40 dB sidelobes of the window. Thus, we must use a window whose sidelobe
level is well below 50 dB. We choose a Kaiser window with R = 70 dB. Moreover, to make
the peaks clearly visible, we choose the resolution width to be Δf = (f2 − f1)/3 = 0.167
kHz. The Kaiser window parameters are calculated as follows:
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α = 0.12438(R+ 6.3)= 9.490, c = 6(R+ 12)
155

= 3.174

L = 1 + cfs
Δf

= 191.45 ⇒ L = 193, M = 1

2
(L− 1)= 96

The length-L sampled signal is, for n = 0,1, . . . , L− 1:

x(n)= A1 cos(2πf1n/fs)+A2 cos(2πf2n/fs)+A3 cos(2πf3n/fs)

The Kaiser and Hamming windowed signals will be, for n = 0,1, . . . , L− 1:

xK(n) = w(n)x(n)= I0
(
α
√
n(2M − n)/M)
I0(α)

· x(n)

xH(n) = w(n)x(n)=
[

0.54 − 0.46 cos
( 2πn
L− 1

)] · x(n)

The corresponding spectra are:

XK(f)=
L−1∑
n=0

xK(n)e−2πjfn/fs , XH(f)=
L−1∑
n=0

xH(n)e−2πjfn/fs

Figure 10.2.12 shows these spectra in dB, that is, 20 log10 |XK(f)|, computed at 256 equally
spaced frequencies in the interval [0, fs/2]. (This can be done by the MATLAB function
dtft.m of Appendix D.)

Fig. 10.2.12 Kaiser and Hamming spectra.

Both spectra are normalized to 0 dB at their maximum value. The Kaiser spectrum shows
three clearly separated peaks, with the middle one being 50 dB below the other two. The
sidelobes are suppressed by at least 70 dB and do not swamp the middle peak, as they do
in the Hamming spectrum. That spectrum, on the other hand, has narrower peaks because
the length L is somewhat larger than required to resolve the given Δf . The width of the
Hamming peaks is Δf = cfs/(L− 1) with c = 2, or, Δf = 0.104 kHz. 	
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10.3 Frequency Sampling Method

The window method is very convenient for designing ideally shaped filters, primarily
because the frequency integral in Eq. (10.1.7) can be carried out in closed form.

For arbitrary frequency responsesD(ω), we may use the frequency sampling method,
in which the integral (10.1.7) is replaced by the approximate sum:

d̃(k)= 1

N

M∑
i=−M

D(ωi)ejωik, −M ≤ k ≤M (10.3.1)

where N = 2M + 1. The approximation is essentially an inverse N-point DFT, with the
DFT frequenciesωi spanning equally the interval [−π,π], instead of the standard DFT
interval [0,2π]:

ωi = 2πi
N
, −M ≤ i ≤M (10.3.2)

The forward DFT applied to Eq. (10.3.1) gives:

D(ωi)=
M∑

k=−M
d̃(k)e−jωik (10.3.3)

The rest of the window method may be applied as before, that is, given an appropri-
ate length-N window w(n), the final designed filter will be the delayed and windowed
version of d̃(k):

h(n)= w(n)d̃(n−M), n = 0,1, . . . ,N − 1 (10.3.4)

We will discuss some examples of the frequency sampling method in Section 12.4.3,
where we will design FIR filters for equalizing the slight passband droop of D/A con-
verters and imperfect analog anti-image postfilters.

10.4 Other FIR Design Methods

The Kaiser window method is simple and flexible and can be applied to a variety of filter
design problems. However, it does not always result in the smallest possible filter length
N, which may be required in some very stringent applications.

The Parks-McClellan method [2–8] based on the so-called optimum equiripple Cheby-
shev approximation generally results in shorter filters. Kaiser [247] has shown that the
filter length can be estimated in such cases by a variant of Eq. (10.2.12) that uses the

geometric mean of the two ripples, δg =
√
δpassδstop:

N − 1 = Dfs
Δf

, D = Ag − 13

14.6
, Ag = −20 log10(δg) (10.4.1)

Moreover, it may be desirable at times to design filters that have additional prop-
erties, such as convexity constraints, monotonicity constraints in the passband, or a
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certain degree of flatness at DC. A recent linear-programming-based filter design pro-
gram called “meteor” by Steiglitz, Parks, and Kaiser [258,259] addresses such type of
designs with constraints.

10.5 Problems

10.1 Consider thed(k),D(ω) pair of Eq. (10.1.1). For the symmetric case, show that the condition
that d(k) be real and even in k is equivalent toD(ω) being real and even inω. Similarly for
the antisymmetric case, show that the condition that d(k) be real and odd in k is equivalent
to D(ω) being imaginary and odd in ω.

In both cases, use Euler’s formula to writeD(ω) is a form that shows its symmetry properties
explicitly.

If you only had the reality condition that d(k) be real-valued (with no other symmetry con-
straints), what would be the equivalent condition on D(ω)?

10.2 By performing the appropriate integrations in Eq. (10.1.1), verify the expressions for d(k)
of the five filters in Eqs. (10.1.4) and (10.1.6).

10.3 Consider the lowpass differentiator and Hilbert transformer filters with ideal frequency re-
sponses defined over one Nyquist interval:

D(ω)=
{
jω, if |ω| ≤ωc

0, if ωc < |ω| ≤ π , D(ω)=
{

−jsign(ω), if |ω| ≤ωc

0, if ωc < |ω| ≤ π

Show that the corresponding ideal impulse responses are given by:

d(k) = ωc cos(ωck)
πk

− sin(ωck)
πk2

d(k) = 1 − cos(ωck)
πk

(differentiator)

(Hilbert transformer)

They reduce to those of Eq. (10.1.6) in the full-band case of ωc = π. Do they have the right
value at k = 0?

10.4 Determine the ideal impulse response d(k) of the bandpass differentiator defined over one
Nyquist interval by:

D(ω)=
{
jω, if ωa ≤ |ω| ≤ωb

0, if 0 ≤ |ω| < ωa, or ωb < |ω| ≤ π

10.5 Differentiation is an inherently noisy operation in the sense that it amplifies any noise in the
data. To see this, calculate the NRR of the FIR differentiation filter y(n)= x(n)−x(n − 1).
In what sense is this filter an approximation to the ideal differentiator?

Then, calculate the NRR of the ideal lowpass differentiator of Problem 10.3 and compare it
with NRR of the full-band case. How does it vary with the cutoff frequency ωc?

By choosing ωc to be the bandwidth of the desired signal, lowpass differentiators strike a
compromise between differentiating the data and keeping the noise amplification as low as
possible.

Lowpass differentiators designed by the Kaiser window method (see Problem 10.20), perform
better than the optimal Savitzky-Golay least-squares differentiators of Section 8.3.5; see Refs.
[207,217].
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10.6 Show that the mean-square approximation error between the desired and windowed fre-
quency responses of Eqs. (10.1.1) and (10.1.13) can be expressed in the form:

EM =
∫ π
−π

|D(ω)−D̂(ω)|2 dω
2π

=
∫ π
−π

|D(ω)|2 dω
2π

−
M∑

k=−M
d(k)2

Then, show the limit EM → 0 as M → ∞.

10.7 Using the differentiator and Hilbert transformer filters and the result of Problem 10.6, show
the infinite series:

∞∑
k=1

1

k2
= π2

6
,

∞∑
k=1
k=odd

1

k2
= π2

8
,

∞∑
k=2
k=even

1

k2
= π2

24

10.8 The ideal Hilbert transformer has frequency responseD(ω)= −jsign(ω), for−π ≤ω ≤ π.
Show that it acts as 90o phase shifter converting a cosinusoidal input into a sinusoidal output
and vice versa, that is, show the input/output pairs:

cos(ωn) D−→ sin(ωn), sin(ωn) D−→ − cos(ωn)

10.9 Consider the length-(2M+1) FIR filter of Eq. (10.1.14). Show that it satisfies D̂(z)= D̂(z−1)
in the symmetric case, and D̂(z)= −D̂(z−1) in the antisymmetric one.

Then, assuming real coefficients d(k), show that in both the symmetric and antisymmetric
cases, if z0 is a zero of D̂(z) not on the unit circle, then necessarily the complex numbers
{z−1

0 , z∗0 , z−1∗
0 } are also zeros. Indicate the relative locations of these four zeros on the

z-plane with respect to the unit circle.

Moreover, show that in the antisymmetric case, the points z = ±1 are always zeros of D̂(z).
Can you also see this result from the expression of D̂(ω)?
Show that the results of this problem still hold if the impulse response d(k) is windowed
with a Hamming, Kaiser, or any other window.

10.10 It is desired to design a linear-phase, odd-length FIR filter having real-valued symmetric
impulse response. The filter is required to have the smallest possible length and to have a
zero at the complex location z = 0.5+0.5j. Determine the impulse response h of this filter.
[Hint: Use the results of Problem 10.9.]

Determine expressions for the magnitude and phase responses of this filter. Is the phase
response linear in ω?

Repeat the problem if the filter is to have an antisymmetric impulse response. Is your answer
antisymmetric?

10.11 Determine the (a) symmetric and (b) antisymmetric linear-phase FIR filter that has the short-
est possible length and has at least one zero at the location z = 0.5j.

10.12 Expanding Eq. (10.2.3) to first-order in δpass, show the approximation of (10.2.4).

10.13 It is desired to design a digital lowpass linear-phase FIR filter using the Kaiser window
method. The design specifications are as follows: sampling rate of 10 kHz, passband fre-
quency of 1.5 kHz, stopband frequency of 2 kHz, passband attenuation of 0.1 dB, and stop-
band attenuation of 80 dB. Determine the number of filter taps N.

10.14 It is desired to design a digital lowpass FIR linear phase filter using the Kaiser window
method. The maximum passband attenuation is 0.1 dB and the minimum stopband at-
tenuation is 80 dB. At a sampling rate of 10 kHz, the maximum filter length that can be
accommodated by your DSP hardware is 251 taps. What is the narrowest transition width
Δf in kHz that you can demand?
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10.15 Your DSP chip can accommodate FIR filters of maximum length 129 at audio rates of 44.1
kHz. Suppose such a filter is designed by the Kaiser method.

a. What would be the minimum transition width Δf between passband and stopband that
you can demand if the stopband attenuation is to be 80 dB?

b. If the minimum transition width Δf between passband and stopband is taken to be
2 kHz, then what would be the maximum stopband attenuation in dB that you can
demand? What would be the corresponding passband attenuation in dB of the designed
filter in this case?

c. Suppose your DSP chip could handle length-129 FIR filters at four times the audio
rate, that is, 4 × 44.1 = 176.4 kHz. You wish to use such a filter as a four-times
oversampling FIR interpolator filter for a CD player. The filter is required to have
passband from 0 kHz to 19.55 kHz and stopband from 24.55 kHz up to the Nyquist
frequency 176.4/2 = 88.2 kHz. Using a Kaiser design, how much stopband attenuation
in dB would you have for such a filter?

10.16 A lowpass FIR filter operating at a rate fs is implemented on a DSP chip that has instruction
rate finstr. Suppose the filter is designed using the Kaiser method. Show that the maxi-
mum filter length and minimum transition width (in Hz) that can be implemented are given
approximately by:

Nmax = finstr

fs
, Δfmin = Dfs2

finstr

whereD is the Kaiser design parameter of Eq. (10.2.12). What assumptions were made about
the DSP chip?

10.17 A lowpass FIR filter designed by the Kaiser method is required to have transition width Δf
Hz and sampling rate fs. If the filter is to be implemented on a DSP chip that has instruction
rate finstr, show that the maximum attainable stopband attenuation for the filter is given by:

Amax = 14.36FinstrΔF + 7.95

where we defined the normalized frequencies Finstr = finstr/fs, ΔF = Δf/fs.
10.18 Computer Experiment: Rectangular and Hamming Windows. For the lengths N = 11, 41,

81, and 121, and using a rectangular window, design a lowpass FIR filter of cutoff frequency
ωc = 0.3π. Plot the impulse responses h(n) and magnitude responses |H(ω)| of the
designed filters. Repeat using a Hamming window. Compare the two windows.

10.19 Computer Experiment: Kaiser Window Designs. Reproduce the designs and graphs of Exam-
ples 10.2.1 and 10.2.2. Plot also the phase responses of the designed filters for 0 ≤ f ≤ fs/2.

You may find useful the MATLAB routines klh.m and kbp.m. Write versions of these routines
for the Hamming window and use them in this experiment.

Finally, using a Kaiser window, design a highpass filter with specifications: fs = 20 kHz,
fpass = 5 kHz, fstop = 4 kHz, Apass = 0.1 dB, and Astop = 80 dB. Plot its magnitude (in dB)
and phase response. Compare the Kaiser design with the rectangular and Hamming window
designs of the same length.

10.20 Computer Experiment: Kaiser Window Differentiator Design. Using the MATLAB routine
kdiff, design a lowpass FIR differentiator for the following values of the cutoff frequency,
transition width, and stopband attenuation parameters {ωc,Δω,A}:
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ωc = 0.40π, 0.80π

Δω = 0.10π, 0.05π

A = 30, 60

[rads/sample]

[rads/sample]

[dB]

For each of the eight cases, plot the magnitude response |H(ω)| of the designed filter over
the interval 0 ≤ω ≤ π.

10.21 Computer Experiment: Comparison of Kaiser and Savitzky-Golay Differentiators. For the two
cases of Problem 10.20 having ωc = 0.4π, A = 60 dB, and Δω = {0.1π,0.05π}, you will
find that the corresponding filter lengths are N = 75 and N = 147. Using the MATLAB
routine sg.m, design the order-2 and order-3 Savitzky-Golay differentiator filters of lengths
N = 75 and 147. This can be done by the MATLAB statements:

[B, S] = sg(d, N); F = S’ * S; G = S * F^(-1);

and extract the second column of G. On the same graph, plot and compare the magnitude
responses of the Kaiser design, the order-2, and order-3 SG designs for the two values of N.
Use frequency scales 0 ≤ ω ≤ π. Then replot only over the range 0 ≤ ω ≤ 0.1π and use
vertical scales [0,0.1] to magnify the graphs.

Comment on the bandwidth of the SG designs versus the Kaiser design. See also the com-
ments of Problem 10.5.

10.22 Computer Experiment: Kaiser Window Hilbert Transformer Design. Using the MATLAB rou-
tine khilb, design a lowpass FIR Hilbert transformer for the following values of the cutoff
frequency, transition width, and stopband attenuation parameters {ωc,Δω,A}:

ωc = 0.80π, 1.00π

Δω = 0.10π, 0.05π

A = 30, 60

[rads/sample]

[rads/sample]

[dB]

For each of the eight cases, plot the magnitude response |H(ω)| of the designed filter over
the interval 0 ≤ω ≤ π.

10.23 Computer Experiment: Kaiser Window for Spectral Analysis. (a) Reproduce all the results and
graphs of Example 10.2.6. You may use the MATLAB routine kparm2 to calculate the window
parameters and the routine dtft.m to calculate the spectra. (b) Keeping the Kaiser sidelobe
level at R = 70 dB, repeat part (a) when the middle sinusoid is 35 dB below the other two,
and when it is 70 dB below. (c) Repeat parts (a,b) when the transition width is chosen to be
Δf = (f2 − f1)/6, and when it is Δf = (f2 − f1)/12.



11
IIR Digital Filter Design

11.1 Bilinear Transformation

One of the simplest and effective methods of designing IIR digital filters with prescribed
magnitude response specifications is the bilinear transformation method.

Instead of designing the digital filter directly, the method maps the digital filter into
an equivalent analog filter, which can be designed by one of the well-developed analog
filter design methods, such as Butterworth, Chebyshev, or elliptic filter designs. The
designed analog filter is then mapped back into the desired digital filter. The procedure
is illustrated in Fig. 11.1.1.

bilinear
transformation

bilinear
transformation

digital filter
specifications

analog filter
specifications

analog filter
design method

digital filter
H(z)

analog filter
Ha(s)

Ω = g(ω)

s = f(z)

Fig. 11.1.1 Bilinear transformation method.

The z-plane design of the digital filter is replaced by an s-plane design of the equiv-
alent analog filter. The mapping between the s and z planes is carried out by a transfor-
mation of the form:

s = f(z) (11.1.1)

The corresponding mapping between the physical digital frequencyω = 2πf/fs and
the equivalent analog frequency† Ω is obtained by replacing s = jΩ and z = ejω into
Eq. (11.1.1), giving jΩ = f(ejω), which can be written as:

†Here, Ω is the frequency of a fictitious equivalent analog filter. It has arbitrary units and should not be
confused with the physical frequency 2πf in radians/sec.

563
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Ω = g(ω) (11.1.2)

The bilinear transformation is a particular case of Eq. (11.1.1) defined by:

s = f(z)= 1 − z−1

1 + z−1
(bilinear transformation) (11.1.3)

The corresponding mapping of frequencies is obtained as follows:

jΩ = f(ejω)= 1 − e−jω
1 + e−jω = ejω/2 − e−jω/2

ejω/2 + e−jω/2 = j sin(ω/2)
cos(ω/2)

= j tan
(
ω
2

)
which gives:

Ω = g(ω)= tan
(
ω
2

)
(bilinear transformation) (11.1.4)

Because of the nonlinear relationship between the physical frequency ω and the
fictitious analog frequency Ω, Eq. (11.1.4) is sometimes referred to as a frequency pre-
warping transformation.

Other versions of the bilinear transformation, which are appropriate for designing
highpass, bandpass, or bandstop digital filters by starting from an equivalent lowpass
analog filter, are as follows:

(highpass) s = f(z)= 1 + z−1

1 − z−1

(bandpass) s = f(z)= 1 − 2cz−1 + z−2

1 − z−2

(bandstop) s = f(z)= 1 − z−2

1 − 2cz−1 + z−2

(11.1.5)

with corresponding frequency maps:

(highpass) Ω = g(ω)= − cot
(
ω
2

)
(bandpass) Ω = g(ω)= c− cosω

sinω

(bandstop) Ω = g(ω)= sinω
cosω− c

(11.1.6)

The overall design method can be summarized as follows: Starting with given mag-
nitude response specifications for the digital filter, the specifications are transformed
by the appropriate prewarping transformation, Eqs. (11.1.4) or (11.1.6), into the spec-
ifications of an equivalent analog filter. Using an analog filter design technique, the
equivalent analog filter, say Ha(s), is designed. Using the bilinear transformation, Eqs.
(11.1.3) or (11.1.5), the analog filter is mapped back into the desired digital filter H(z),
by defining:
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H(z)= Ha(s)
∣∣∣∣
s=f(z)

= Ha
(
f(z)

)
(11.1.7)

The corresponding frequency responses also map in a similar fashion:

H(ω)= Ha(Ω)
∣∣∣∣
Ω=g(ω)

= Ha
(
g(ω)

)
(11.1.8)

A useful property of the bilinear transformation (11.1.3) is that it maps the left-hand
s-plane into the inside of the unit circle on the z-plane. Figure 11.1.2 shows this property.
Because all analog filter design methods give rise to stable and causal transfer functions
Ha(s), this property guarantees that the digital filter H(z) obtained by Eq. (11.1.7) will
also be stable and causal.

The alternative transformations of Eqs. (11.1.5) also share this property, where in
the bandpass and bandstop cases it is required that |c| ≤ 1.

Res

s=jΩ
z=ejω

Ims

z-plane

s-plane

00

unit
circle

left-hand
plane

Fig. 11.1.2 Interior of unit z-circle gets mapped onto left-hand s-plane.

A related property of the bilinear transformation is that it maps the s-plane fre-
quency axis, that is, the imaginary axis s = jΩ onto the z-plane frequency axis, that is,
the periphery of the unit circle z = ejω. The above properties can be proved easily by
taking real parts of Eq. (11.1.3):

Re s = 1

2
(s+ s∗)= 1

2

[
z− 1

z+ 1
+ z∗ − 1

z∗ + 1

]
= (z− 1)(z∗ + 1)+(z+ 1)(z∗ − 1)

2(z+ 1)(z∗ + 1)
or,

Re s = |z|2 − 1

|z+ 1|2
which shows that

Re s < 0 � |z| < 1 and Re s = 0 � |z| = 1

Next, we apply the bilinear transformation method to the design of simple first- and
second-order filters, and then to higher-order filters based on Butterworth and Cheby-
shev analog designs.
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11.2 First-Order Lowpass and Highpass Filters

Perhaps the simplest filter design problem is that of designing a first-order lowpass filter
that has a prescribed cutoff frequency, say fc, and operates at a given sampling rate fs.
Such a filter will have a transfer function of the form:

H(z)= b0 + b1z−1

1 + a1z−1

The design problem is to determine the filter coefficients {b0, b1, a1} in terms of
the cutoff frequency fc and rate fs. The definition of the cutoff frequency is a matter of
convention. Roughly speaking, it defines the range of frequencies that pass through, that
is, 0 ≤ f ≤ fc, and the range of frequencies that are filtered out, that is, fc ≤ f ≤ fs/2.
The digital cutoff frequency ωc in units of radians per sample is defined to be:

ωc = 2πfc
fs

By convention, ωc is usually taken to be the so-called 3-dB cutoff frequency, that is,
the frequency at which the magnitude response squared drops by a factor of two (i.e., 3
dB) compared to its value at DC:

|H(ωc)|2
|H(0)|2 = 1

2
⇒ −10 log10

[
|H(ωc)|2
|H(0)|2

]
= −10 log10

[
1

2

]
= 3 dB

Assuming that H(z) is normalized to unity gain at DC, |H(0)| = 1, this condition
reads equivalently:

|H(ωc)|2 = 1

2
(11.2.1)

More generally, we may defineωc or fc to be the frequency at which |H(ω)|2 drops
by a factor of G2

c < 1, or a drop in dB:

Ac = −10 log10(G2
c)= −20 log10 Gc (11.2.2)

which can be inverted to give:

Gc = 10−Ac/20 (11.2.3)

Thus, in this case, the defining condition for ωc is:

|H(ωc)|2 = G2
c = 10−Ac/10 (11.2.4)

IfAc = 3 dB, we haveG2
c = 1/2, and (11.2.4) reduces to (11.2.1). Figure 11.2.1 shows

this type of magnitude response specification, both in the general and 3-dB cases. The
design problem is then to determine the filter coefficients {b0, b1, a1} for given values
of the cutoff specifications {fc,Ac}.

The bilinear transformation method can be applied as follows. First, we prewarp the
cutoff frequency to get the cutoff frequency of the equivalent analog filter:
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|H( f )|
2

1

1/2

3 dB

fc fs /20

f

|H( f )|
2

Gc
2

Ac dB
1

fc fs /20

f

Fig. 11.2.1 Cutoff frequency specifications for lowpass digital filter.

Ωc = tan
(
ωc

2

)
= tan

(
πfc
fs

)

Then, we design a first-order analog filter and adjust its parameters so that its cutoff
frequency is Ωc. Figure 11.2.2 shows the transformation of the specifications. The
analog filter’s transfer function is taken to be:

Ha(s)= α
s+α (11.2.5)

|H(ω )|
2

Gc
2

Ac dB
1

ωc π0

ω

|Ha(Ω )|
2

Gc
2

Ac dB
1

Ωc
0

Ω

desired digital
lowpass filter

equivalent analog
lowpass filter

Fig. 11.2.2 Equivalent cutoff specifications of lowpass digital and analog filters.

Note that Ha(s) has been normalized to unity gain at DC, or at s = 0. Its frequency
and magnitude responses are obtained by setting s = jΩ:

Ha(Ω)= α
jΩ+α ⇒ |Ha(Ω)|2 = α2

Ω2 +α2
(11.2.6)

Because the design method satisfies Eq. (11.1.8) for the frequency and magnitude
responses, we can determine the filter parameter α by requiring the cutoff condition:
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|H(ωc)|2 = |Ha(Ωc)|2 = α2

Ω2
c +α2

= G2
c (11.2.7)

which can be solved for α:

α = Gc√
1 −G2

c

Ωc = Gc√
1 −G2

c

tan
(
ωc

2

)
(11.2.8)

Once the parameter α of the analog filter is fixed, we may transform the filter to the
z-domain by the bilinear transformation (11.1.3):

H(z)= Ha(s)= α
s+α

∣∣∣∣
s= 1−z−1

1+z−1

= α
1 − z−1

1 + z−1
+α

= α(1 + z−1)
1 − z−1 +α(1 + z−1)

which gives after some algebra:

H(z)= b 1 + z−1

1 − az−1
(11.2.9)

where its coefficients are computed in terms of α:

a = 1 −α
1 +α, b = α

1 +α (11.2.10)

The overall design is summarized as follows: Given the cutoff frequency ωc and
corresponding gain Ac in dB, compute Gc using Eq. (11.2.3); then compute the analog
parameter α and the digital filter coefficients {b,a}.

Note that because Ha(s) is stable and causal, its pole s = −α lies in the left-hand
s-plane. This follows from the fact that tan(ωc/2)> 0 for any value of ωc in the range
0 < ωc < π. This pole gets mapped onto the z-plane pole z = a, which satisfies |a| < 1
for α > 0. The zero of the digital filter at z = −1 corresponds to the Nyquist frequency
ω = π or f = fs/2. Also note that the normalizing gain b can be expressed directly in
terms of a, as follows:

b = 1 − a
2

(11.2.11)

If ωc is taken to be the 3-dB cutoff frequency, then G2
c = 1/2 and Eq. (11.2.8) sim-

plifies to:

α = Ωc = tan
(
ωc

2

)
(11.2.12)

The frequency response of the digital filter can be obtained by setting z = ejω in
Eq. (11.2.9), or more simply in terms of the frequency response of the transformed
analog filter, that is, using Eq. (11.1.8):

H(ω)= Ha(Ω)= α
α+ jΩ = α

α+ j tan(ω/2)
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Thus, we have the two equivalent expressions:

H(ω)= b 1 + e−jω
1 − ae−jω = α

α+ j tan(ω/2)

and similarly for the magnitude response:

|H(ω)|2 = b2 2(1 + cosω)
1 − 2a cosω+ a2

= α2

α2 + tan2(ω/2)
(11.2.13)

The bilinear transformation is not necessary. In fact, using the first of the two expres-
sions in Eq. (11.2.13), the digital filter can be designed directly without the intermediate
step of an analog filter, as was done in Example 8.3.3. However, for higher-order filters
the bilinear transformation approach is algebraically simpler than the direct design.

Example 11.2.1: Design a lowpass digital filter operating at a rate of 10 kHz, whose 3-dB fre-
quency is 1 kHz. Then, redesign it such that at 1 kHz its attenuation is G2

c = 0.9, corre-
sponding to Ac = −10 log10(0.9)= 0.46 dB.

Then, redesign the above two filters such that their cutoff frequency is now 3.5 kHz.

Solution: The digital cutoff frequency is

ωc = 2πfc
fs

= 2π · 1 kHz

10 kHz
= 0.2π rads/sample

and its prewarped analog version:

Ωc = tan
(
ωc

2

)
= tan(0.1π)= 0.3249

For the first filter, we have G2
c = 0.5 corresponding to Eq. (11.2.12), which gives the filter

parameters:

α = Ωc = 0.3249, a = 1 −α
1 +α = 0.5095, b = 1 − a

2
= 0.2453

and digital filter transfer function:

H(z)= 0.2453
1 + z−1

1 − 0.5095z−1

For the second filter, ωc corresponds to attenuation G2
c = 0.9. Using Eq. (11.2.8) we find:

α = Ωc Gc√
1 −G2

c

= 0.3249

√
0.9√

1 − 0.9
= 0.9748

corresponding to filter coefficients and transfer function:

a = 1 −α
1 +α = 0.0128, b = 1 − a

2
= 0.4936, H(z)= 0.4936

1 + z−1

1 − 0.0128z−1

The magnitude responses of the two designed filters and their specifications are shown in
the left graph of Fig. 11.2.3.
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Fig. 11.2.3 First-order lowpass digital filters of Example 11.2.1.

For the next two cases, we have fc = 3.5 kHz, resulting in the digital frequency ωc =
2πfc/fs = 0.7π, and corresponding prewarped version Ωc = tan(ωc/2)= tan(0.35π)=
1.9626.

For the 3-dB case, we haveα = Ωc = 1.9626, which gives the filter coefficients and transfer
function:

a = 1 −α
1 +α = −0.3249, b = 1 − a

2
= 0.6625, H(z)= 0.6625

1 + z−1

1 + 0.3249z−1

For the 0.46-dB case having G2
c = 0.9, we calculate:

α = Ωc Gc√
1 −G2

c

= 1.9626

√
0.9√

1 − 0.9
= 5.8878

which gives for the digital filter coefficients and transfer function:

a = 1 −α
1 +α = −0.7096, b = 1 − a

2
= 0.8548, H(z)= 0.8548

1 + z−1

1 + 0.7096z−1

The corresponding magnitude responses are shown in the right graph of Fig. 11.2.3. Note
that in the last two cases the cutoff frequency is ωc > π/2 which results in a negative
value of the filter pole a. 	


Highpass digital filters can be designed just as easily. Starting with a highpass analog
first-order filter of the form:

Ha(s)= s
s+α (11.2.14)

we can transform it into a highpass digital filter by the bilinear transformation:

H(z)= Ha(s)= s
s+α

∣∣∣∣
s= 1−z−1

1+z−1

=
1 − z−1

1 + z−1

1 − z−1

1 + z−1
+α

= 1 − z−1

1 − z−1 +α(1 + z−1)
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which gives:

H(z)= b 1 − z−1

1 − az−1
(11.2.15)

where its coefficients are computed in terms of α:

a = 1 −α
1 +α, b = 1

1 +α = 1 + a
2

(11.2.16)

To determine the parameter α, we require that at a given highpass cutoff frequency
ωc the attenuation is Ac dB. That is, we demand

|H(ωc)|2 = G2
c = 10−Ac/10 (11.2.17)

Figure (11.2.4) depicts the mapping of the specifications of the digital filter to the
equivalent analog filter. Setting s = jΩ into Eq. (11.2.14), we obtain for the frequency
and magnitude responses:

Ha(Ω)= jΩ
jΩ+α ⇒ |Ha(Ω)|2 = Ω2

Ω2 +α2
(11.2.18)

The design condition (11.2.17) gives then:

|H(ω )|
2

Gc
2

Ac dB
1

ωc π0

ω

|Ha(Ω )|
2

Gc
2

Ac dB
1

Ωc
0

Ω

equivalent analog
highpass filter

desired digital
highpass filter

Fig. 11.2.4 Equivalent cutoff specifications of highpass digital and analog filters.

|H(ωc)|2 = |Ha(Ωc)|2 = Ω2
c

Ω2
c +α2

= G2
c

which can be solved for α:

α =
√

1 −G2
c

Gc
Ωc =

√
1 −G2

c

Gc
tan

(
ωc

2

)
(11.2.19)

In summary, given the specifications {ωc,Ac}, we compute the analog parameter α
and then the digital filter parameters {b,a} which define the desired transfer function
(11.2.15).
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As in the lowpass case, we can replace Ω = tan(ω/2) and write the frequency and
magnitude responses of the designed filter in the two equivalent forms:

H(ω)= b 1 − e−jω
1 − ae−jω = j tan(ω/2)

α+ j tan(ω/2)

|H(ω)|2 = b2 2(1 − cosω)
1 − 2a cosω+ a2

= tan2(ω/2)
α2 + tan2(ω/2)

We note again that if ωc represents the 3-dB cutoff frequency corresponding to
G2
c = 1/2, then Eq. (11.2.19) simplifies to:

α = Ωc = tan
(
ωc

2

)
(11.2.20)

This and Eq. (11.2.12) imply that if the lowpass and highpass filters have the same
3-dB cutoff frequency ωc, then they will have the same analog filter parameter α, and
hence the same z-plane pole parameter a. Thus, in this case, the analog filters will be:

HLP(s)= α
s+α, HHP(s)= s

s+α (11.2.21)

and the corresponding digital filters:

HLP(z)= 1 − a
2

1 + z−1

1 − az−1
, HHP(z)= 1 + a

2

1 − z−1

1 − az−1
(11.2.22)

They are complementary filters in the sense that their transfer functions add up to
unity:

HLP(s)+HHP(s)= α
s+α + s

s+α = s+α
s+α = 1

and similarly,

HLP(z)+HHP(z)= 1 (11.2.23)

We have already encountered such complementary filters in the comb and notch
filters of Section 8.3.2. The corresponding frequency and magnitude responses squared
also add up to unity; for example,

|HLP(ω)|2 + |HHP(ω)|2 = α2

α2 + tan2(ω/2)
+ tan2(ω/2)
α2 + tan2(ω/2)

= 1

Example 11.2.2: Design a highpass digital filter operating at a rate of 10 kHz, whose 3-dB
cutoff frequency is 1 kHz. Then, redesign it such that at 1 kHz its attenuation is G2

c = 0.9,
corresponding to Ac = −10 log10(0.9)= 0.46 dB.

Solution: The digital cutoff frequency is as in Example 11.2.1,ωc = 0.2π. Its prewarped analog
version is Ωc = tan(ωc/2)= 0.3249.

For the first filter, we have G2
c = 0.5 corresponding to Eq. (11.2.20), which gives the filter

parameters:
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α = Ωc = 0.3249, a = 1 −α
1 +α = 0.5095, b = 1 + a

2
= 0.7548

and transfer function:

H(z)= 0.7548
1 − z−1

1 − 0.5095z−1

For the second filter, we set G2
c = 0.9 into Eq. (11.2.19) to get:

α = Ωc
√

1 −G2
c

Gc
= 0.1083

corresponding to filter coefficients and transfer function:

a = 1 −α
1 +α = 0.8046, b = 1 + a

2
= 0.9023, H(z)= 0.9023

1 − z−1

1 − 0.8046z−1

The magnitude responses of the two designed filters and their specifications are shown in
the left graph of Fig. 11.2.5.

Fig. 11.2.5 Highpass and complementary lowpass digital filters.

The right graph shows the complementarity property of the highpass and lowpass filters,
with 3-dB frequency of ωc = 0.2π. The magnitude responses intersect at precisely the
3-dB point. 	


11.3 Second-Order Peaking and Notching Filters

In Section 6.4, we designed second-order resonator and notch filters using pole/zero
placement. For narrow-width filters this technique is adequate. But, it becomes cum-
bersome for wider peak widths, such as those that might be used in graphic and para-
metric audio equalizers. The bilinear transformation method offers precise control over
the desired specifications of such filters [260–268].
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Consider first the design of notch filters. The desired specifications are the sam-
pling rate fs, notch frequency f0, and bandwidth Δf of the notch, or, equivalently, the
corresponding digital frequencies:

ω0 = 2πf0
fs

, Δω = 2πΔf
fs

Alternatively, we may specify ω0 and the Q-factor, Q = ω0/Δω = f0/Δf . The
specifications together with their bilinear analog equivalents are shown in Fig. 11.3.1.
The bandwidth Δω is usually defined to be the 3-dB width, that is, the full width at half
maximum of the magnitude squared response. More generally, it can be defined to be
the full width at a level G2

B, or in decibels:

AB = −10 log10(G2
B) ⇒ GB = 10−AB/20 (11.3.1)

The bandwidth Δω is defined as the difference Δω =ω2 −ω1 of the left and right
bandwidth frequenciesω1 andω2 that are solutions of the equation |H(ω)|2 = G2

B, as
shown in Fig. 11.3.1. For the 3-dB width, we have the condition |H(ω)|2 = 1/2.

|H(ω )|
2

ω

|Ha(Ω )|
2

Ω00

Ω

desired digital
notch filter

equivalent analog
notch filter

GB
2

AB dB
1

ω0

ω1 ω2

Δω

π0

GB
2

AB dB
1

Ω1 Ω2

ΔΩ

Fig. 11.3.1 Digital notch filter and its analog equivalent.

Given the desired specifications {ω0, Δω,G2
B}, the design procedure begins with

the following expression for the equivalent analog filter, which has a notch at frequency
Ω = Ω0:

Ha(s)= s2 +Ω2
0

s2 +αs+Ω2
0

(11.3.2)

We will see below that the filter parameters {α,Ω0} can be calculated from the given
specifications by:

Ω0 = tan
(
ω0

2

)
, α =

√
1 −G2

B

GB
(1 +Ω2

0)tan
(
Δω

2

)
(11.3.3)

Then, using the bilinear transformation s = (1− z−1)/(1+ z−1), the filter Ha(s) is
transformed into the digital filter H(z) as follows:
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H(z) = Ha(s)= s2 +Ω2
0

s2 +αs+Ω2
0
=

(
1 − z−1

1 + z−1

)2

+Ω2
0(

1 − z−1

1 + z−1

)2

+α
(

1 − z−1

1 + z−1

)
+Ω2

0

= (1 − z−1)2+Ω2
0(1 + z−1)2

(1 − z−1)2+α(1 − z−1)(1 + z−1)+Ω2
0(1 + z−1)2

=
(

1 +Ω2
0

1 +Ω2
0 +α

) 1 − 2

(
1 −Ω2

0

1 +Ω2
0

)
z−1 + z−2

1 − 2

(
1 −Ω2

0

1 +Ω2
0 +α

)
z−1 +

(
1 +Ω2

0 −α
1 +Ω2

0 +α

)
z−2

The coefficients of the digital filter can be simplified considerably by recognizing
that α already has a factor (1 +Ω2

0) in its definition (11.3.3). Thus, we may replace it
by

α = (1 +Ω2
0)β

where

β =
√

1 −G2
B

GB
tan

(
Δω

2

)
(11.3.4)

Using some trigonometry, we can write also

1 −Ω2
0

1 +Ω2
0
= 1 − tan2(ω0/2)

1 + tan2(ω0/2)
= cosω0

Canceling several common factors of (1 +Ω2
0), we can write the transfer function

H(z) in the simplified form:

H(z)=
(

1

1 + β

)
1 − 2 cosω0 z−1 + z−2

1 − 2

(
cosω0

1 + β

)
z−1 +

(
1 − β
1 + β

)
z−2

(11.3.5)

Defining the overall normalization gain by

b = 1

1 + β = 1

1 +
√

1 −G2
B

GB
tan

(
Δω

2

) (11.3.6)

we may write (1 − β)/(1 + β)= 2b− 1, and therefore, the coefficients of H(z) can be
expressed in terms of b as follows:

H(z)= b 1 − 2 cosω0 z−1 + z−2

1 − 2b cosω0 z−1 + (2b− 1)z−2
(notch filter) (11.3.7)
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This is the final design. It expresses the filter coefficients in terms of the design spec-
ifications {ω0, Δω,G2

B}. Note that the numerator has a notch at the desired frequency
ωo and its conjugate −ω0, because it factors into:

1 − 2 cosω0 z−1 + z−2 = (1 − ejω0z−1)(1 − e−jω0z−1)

It remains to justify the design equations (11.3.3). The first one,Ω0 = tan(ω0/2), is
simply the bilinear transformation ofω0 and makes the analog filter’s notch correspond
to the digital filter’s notch. The equation forα can be derived as follows. Setting s = jΩ
in Eq. (11.3.2), we obtain the frequency and magnitude responses:

Ha(Ω)= −Ω2 +Ω2
0

−Ω2 + jαΩ+Ω2
0

⇒ |Ha(Ω)|2 = (Ω2 −Ω2
0)2

(Ω2 −Ω2
0)2+α2Ω2

It is evident from these expressions thatHa(Ω) has a notch atΩ = ±Ω0. The analog
bandwidth frequencies Ω1 and Ω2 are solutions of the equation |Ha(Ω)|2 = G2

B, that
is,

(Ω2 −Ω2
0)2

(Ω2 −Ω2
0)2+α2Ω2

= G2
B (11.3.8)

Eliminating the denominator and rearranging terms, we can write it as the quartic
equation in Ω:

Ω4 − (2Ω2
0 +

G2
B

1 −G2
B
α2)Ω2 +Ω4

0 = 0 (11.3.9)

It may be thought of as a quadratic equation in the variable x = Ω2, that is,

x2 − (2Ω2
0 +

G2
B

1 −G2
B
α2)x+Ω4

0 = 0

Let x1 = Ω2
1 and x2 = Ω2

2 be its two solutions. Rather than solving it, we use the
properties that the sum and product of the two solutions are related to the first and
second coefficients of the quadratic by:

Ω2
1 +Ω2

2 = x1 + x2 = 2Ω2
0 +

G2
B

1 −G2
B
α2

Ω2
1Ω

2
2 = x1x2 = Ω4

0

(11.3.10)

From the second equation, we obtain:

Ω1Ω2 = Ω2
0 (11.3.11)

which states thatΩ0 is the geometric mean of the left and right bandwidth frequencies.
Using this result in the first of (11.3.10), we obtain:

Ω2
1 +Ω2

2 = 2Ω1Ω2 + G2
B

1 −G2
B
α2
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which allows us to solve for the analog bandwidth:

ΔΩ2 = (Ω2 −Ω1)2= Ω2
1 +Ω2

2 − 2Ω1Ω2 = G2
B

1 −G2
B
α2

or,

ΔΩ = Ω2 −Ω1 = GB√
1 −G2

B

α (AB-dB width) (11.3.12)

Solving for α, we have:

α =
√

1 −G2
B

GB
ΔΩ (11.3.13)

Note that for the 3-dB case, G2
B = 1/2, the parameter α is equal to the 3-dB band-

width:

α = ΔΩ (3-dB width) (11.3.14)

Finally, we must relate the analog bandwidth ΔΩ to the physical bandwidth Δω =
ω2 −ω1. Using the bilinear transformations Ω1 = tan(ω1/2), Ω2 = tan(ω2/2), and
some trigonometry, we find:

tan
(
Δω

2

)
= tan

(
ω2 −ω1

2

)
= tan(ω2/2)− tan(ω1/2)

1 + tan(ω2/2)tan(ω1/2)

= Ω2 −Ω1

1 +Ω2Ω1
= ΔΩ

1 +Ω2
0

where we used Ω1Ω2 = Ω2
0. Solving for ΔΩ, we have:

ΔΩ = (1 +Ω2
0)tan

(
Δω

2

)
(11.3.15)

Thus, combining Eqs. (11.3.13) and (11.3.15), we obtain Eq. (11.3.3). The design
equations (11.3.6) and (11.3.7) and some design examples were discussed also in Sections
8.2.2 and 8.3.2. For example, see Fig. 8.2.14.

In the limit as ω0 or Ω0 tend to zero, the notch filter will behave as a highpass
filter. The transfer functionsH(z) andHa(s) become in this case the highpass transfer
functions of the previous section. For example, setting Ω0 = 0 in Eq. (11.3.2), we have:

Ha(s)= s2 +Ω2
0

s2 +αs+Ω2
0

∣∣∣∣∣
Ω0=0

= s2

s2 +αs = s
s+α

Peaking or resonator filters can be designed in a similar fashion. The desired spec-
ifications are shown in Fig. 11.3.2. The design procedure starts with the second-order
analog resonator filter:
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Ha(s)= αs
s2 +αs+Ω2

0
(11.3.16)

which has frequency and magnitude responses:

Ha(Ω)= jαΩ
−Ω2 + jαΩ+Ω2

0
⇒ |Ha(Ω)|2 = α2Ω2

(Ω2 −Ω2
0)2+α2Ω2

|H(ω )|
2

ω

|Ha(Ω )|
2

Ω00

Ω

desired digital
peaking filter

equivalent analog
peaking filter

GB
2

1

ω0

ω1 ω2

Δω

π0

GB
2

1

Ω1 Ω2

ΔΩ
AB dB AB dB

Fig. 11.3.2 Digital peaking filter and its analog equivalent.

Note thatHa(Ω) is normalized to unity gain at the peak frequenciesΩ = ±Ω0. The
bandwidth frequencies Ω1 and Ω2 will satisfy the bandwidth condition:

|Ha(Ω)|2 = α2Ω2

(Ω2 −Ω2
0)2+α2Ω2

= G2
B

It can be written as the quartic:

Ω4 − (2Ω2
0 +

1 −G2
B

G2
B

α2)Ω2 +Ω4
0 = 0

which is similar to Eq. (11.3.9). Its two solutions Ω2
1 and Ω2

2 satisfy the conditions:

Ω2
1 +Ω2

2 = 2Ω2
0 +

1 −G2
B

G2
B

α2

Ω2
1Ω

2
2 = Ω4

0

from which we obtain Ω1Ω2 = Ω2
0 and

ΔΩ = Ω2 −Ω1 =
√

1 −G2
B

GB
α ⇒ α = GB√

1 −G2
B

ΔΩ

The relationship (11.3.15) between the analog and digital bandwidth remains the
same. Therefore, we obtain the analog filter parameters {α,Ω0} by equations similar
to (11.3.3):
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Ω0 = tan
(
ω0

2

)
, α = GB√

1 −G2
B

(1 +Ω2
0)tan

(
Δω

2

)
(11.3.17)

The digital filter is obtained by the bilinear transformation:

H(z)= Ha(s)= αs
s2 +αs+Ω2

0

∣∣∣∣∣
s= 1−z−1

1+z−1

which can be written in the form:

H(z)=
(

β
1 + β

)
1 − z−2

1 − 2

(
cosω0

1 + β

)
z−1 +

(
1 − β
1 + β

)
z−2

(11.3.18)

where β is similar, but not identical, to that in Eq. (11.3.4):

β = GB√
1 −G2

B

tan
(
Δω

2

)
(11.3.19)

Defining the gain b as in Eq. (11.3.6)

b = 1

1 + β = 1

1 + GB√
1 −G2

B

tan
(
Δω

2

) (11.3.20)

we may write (1 − β)/(1 + β)= 2b − 1, and β/(1 + β)= 1 − b, and therefore, the
coefficients of H(z) can be expressed in terms of b as follows:

H(z)= (1 − b) 1 − z−2

1 − 2b cosω0 z−1 + (2b− 1)z−2
(peak filter) (11.3.21)

Note that the numerator vanishes at z = ±1, that is, at DC and the Nyquist frequency.
For the 3-dB widths, we haveG2

B = 1/2, and the parameters β or b are the same as those
of the notch filter:

β = tan
(
Δω

2

)
, b = 1

1 + β = 1

1 + tan(Δω/2)
(11.3.22)

In this case, the notch and peak filters are complementary with transfer functions,
frequency responses, and magnitude responses squared that add up to unity. For ex-
ample, adding Eqs. (11.3.7) and (11.3.21), we have:

Hnotch (z)+Hpeak(z)= 1 (11.3.23)

Note, finally, that in the limit asω0 orΩ0 tend to zero, the peaking filter will behave
as a lowpass filter. The transfer functions H(z) and Ha(s) become in this case the
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lowpass transfer functions of the previous section. For example, setting Ω0 = 0 in
Eq. (11.3.16), we have:

Ha(s)= αs
s2 +αs+Ω2

0

∣∣∣∣∣
Ω0=0

= αs
s2 +αs = α

s+α

Example 11.3.1: Design a peaking digital filter operating at a rate of 10 kHz that has a peak
at 1.75 kHz and 3-dB width of 500 Hz. Then, redesign it such that 500 Hz represents its
10-dB width.

For the 3-dB width case, determine also the corresponding complementary notch filter.

Solution: The digital frequencies in radians per sample are:

ω0 = 2πf0
fs

= 2π · 1.75

10
= 0.35π, Δω = 2πΔf

fs
= 2π · 0.5

10
= 0.1π

For the 3-dB case, we calculate the parameter, cosω0 = 0.4540, and:

β = tan
(
Δω

2

)
= 0.1584, b = 1

1 + β = 0.8633, 1 − b = 0.1367

For the caseAB = 10 dB, we have bandwidth gainG2
B = 10−AB/10 = 0.1. Then, we calculate:

β = GB√
1 −G2

B

tan
(
Δω

2

)
= 0.0528, b = 1

1 + β = 0.9499, 1 − b = 0.0501

Inserting the above two sets of parameter values into Eq. (11.3.21), we obtain the transfer
functions:

H(z)= 0.1367(1 − z−2)
1 − 0.7838z−1 + 0.7265z−2

, H(z)= 0.0501(1 − z−2)
1 − 0.8624z−1 + 0.8997z−2

The squared magnitude responses are shown in Fig. 11.3.3. They were calculated using
the simpler analog expressions:

|H(ω)|2 = |Ha(Ω)|2 = α2Ω2

(Ω2 −Ω2
0)2+α2Ω2

Replacing Ω = tan(ω/2)= tan(πf/fs), we have in terms of the physical frequency f in
Hz:

|H(f)|2 = α2 tan2(πf/fs)(
tan2(πf/fs)−Ω2

0

)2 +α2 tan2(πf/fs)

The right graph of Fig. 11.3.3 shows the complementary peak and notch filters. The pa-
rameters β and b of the notch filter were already calculated above. Using Eq. (11.3.7), we
find its transfer function:

H(z)= 0.8633
1 − 0.9080z−1 + z−2

1 − 0.7838z−1 + 0.7265z−2



11.4. PARAMETRIC EQUALIZER FILTERS 581

Fig. 11.3.3 Peaking and complementary notch filters.

The zeros of the denominator, 1−0.7838z−1 +0.7265z−2 = 0, determine the poles of the
transfer function. They are:

p, p∗ = 0.3919 ± j0.7569 = 0.8524e±j0.3479π

The poles are not exactly at the desired frequency ω0 = 0.35π. Naive pole placement
would have placed them there. For example, choosing the same radius R = 0.8524, we
would have in that case:

p, p∗ = 0.8524e±j0.35π = 0.3870 ± j0.7597

corresponding to the denominator polynomial 1 − 0.7739z−1 + 0.7265z−2. The bilinear
transformation method places the poles at appropriate locations to achieve the desired
peak and width. 	


11.4 Parametric Equalizer Filters

Frequency equalization (EQ) is a common requirement in audio systems—analog, digital,
home, car, public, or studio recording/mixing systems [255].

Graphic equalizers are the more common type, in which the audio band is divided
into a fixed number of frequency bands, and the amount of equalization in each band
is controlled by a bandpass filter whose gain can be varied up and down. The center
frequencies of the bands and the filter 3-dB widths are fixed, and the user can vary only
the overall gain in each band. Usually, second-order bandpass filters are adequate for
audio applications.

A more flexible equalizer type is the parametric equalizer , in which all three filter
parameters—gain, center frequency, and bandwidth—can be varied. Cascading four or
five such filters together can achieve almost any desired equalization effect.

Figure 11.4.1 shows the frequency response of a typical second-order parametric
equalizer. The specification parameters are: a reference gain G0 (typically taken to
be unity for cascadable filters), the center frequency ω0 of the boost or cut, the filter
gain G at ω0, and a desired width Δω at an appropriate bandwidth level GB that lies
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|H(ω )|
2

|H(ω )|
2

ω ω

GB
2

G0
2

G2

GB
2

G0
2

G2

ω0 ω0π π0 0

Δω

Δω

boost cut

Fig. 11.4.1 Parametric EQ filter with boost or cut.

betweenG0 andG. As shown in Fig. 11.4.1, the relative gains must be chosen as follows,
depending on whether we have a boost or a cut:

G2
0 < G

2
B < G

2 (boost)

G2 < G2
B < G

2
0 (cut)

(11.4.1)

The notch and peak filters of the previous section can be thought of as special cases
of such a filter. The peaking filter corresponds to G0 = 0, G = 1 and the notching filter
to G0 = 1, G = 0.

The definition of Δω is arbitrary, and not without ambiguity. For example, we can
define it to be the 3-dB width. But, what exactly do we mean by “3 dB”?

For the boosting case, we can take it to mean 3 dB below the peak, that is, choose
G2
B = G2/2; alternatively, we can take it to mean 3 dB above the reference, that is,

G2
B = 2G2

0. Moreover, because G2
B must lie between G2

0 and G2, the first alternative
implies that G2

0 < G2
B = G2/2, or 2G2

0 < G2, and the second 2G2
0 = G2

B < G2. Thus,
either alternative requires that G2 > 2G2

0, that is, the boost gain must be at least 3 dB
higher than the reference. So, what do we do when G2

0 < G2 < 2G2
0? In that case, any

G2
B that lies in G2

0 < G
2
B < G2 will do. A particularly interesting choice is to take it to be

the arithmetic mean of the end values:

G2
B = G2

0 +G2

2
(11.4.2)

Another good choice is the geometric mean, G2
B = GG0, corresponding to the arith-

metic mean of the dB values of the endpoints [265,268] (see Problem 11.4.)
Similar ambiguities arise in the cutting case: we can take 3 dB to mean 3 dB above the

dip, that is, G2
B = 2G2, or, alternatively, we can take it to mean 3 dB below the reference,

G2
B = G2

0/2. Either alternative requires that G2 < G2
0/2, that is, the cut gain must be

at least 3 dB below the reference. If G2
0/2 < G2 < G2

0, we may again use the average
(11.4.2). To summarize, some possible (but not necessary) choices forG2

B are as follows:
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G2
B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G2/2, if G2 > 2G2
0 (boost, alternative 1)

2G2
0, if G2 > 2G2

0 (boost, alternative 2)
(G2

0 +G2)/2, if G2
0 < G2 < 2G2

0 (boost)

2G2, if G2 < G2
0/2 (cut, alternative 1)

G2
0/2, if G2 < G2

0/2 (cut, alternative 2)
(G2

0 +G2)/2, if G2
0/2 < G2 < G2

0 (cut)

(11.4.3)

The filter design problem is to determine the filter’s transfer function in terms of
the specification parameters: {G0, G,GB,ω0, Δω}. In this section, we present a simple
design method based on the bilinear transformation, which is a variation of the methods
in [260–268].

We define the parametric equalizer filter as the following linear combination of the
notching and peaking filters of the previous section:

H(z)= G0Hnotch(z)+GHpeak(z) (11.4.4)

At ω0 the gain is G, because the notch filter vanishes and the peak filter has unity
gain. Similarly, at DC and the Nyquist frequency, the gain is equal to the reference G0,
because the notch is unity and the peak vanishes. From the complementarity property
(11.3.23) it follows that when G = G0 we have H(z)= G0, that is, no equalization.
Inserting the expressions (11.3.5) and (11.3.18) into Eq. (11.4.4), we obtain:

H(z)=

(
G0 +Gβ

1 + β

)
− 2

(
G0 cosω0

1 + β

)
z−1 +

(
G0 −Gβ

1 + β

)
z−2

1 − 2

(
cosω0

1 + β

)
z−1 +

(
1 − β
1 + β

)
z−2

(11.4.5)

The parameter β is a generalization of Eqs. (11.3.4) and (11.3.19) and is given by:

β =
√√√√G2

B −G2
0

G2 −G2
B

tan
(
Δω

2

)
(11.4.6)

Note that because of the assumed inequalities (11.4.1), the quantity under the square
root is always positive. Also, for the special choice of G2

B of Eq. (11.4.2), the square root
factor is unity. This choice (and those of Problem 11.4) allows a smooth transition to the
no-equalization limit G → G0. Indeed, because β does not depend on the G’s, setting
G = G0 in the numerator of Eq. (11.4.5) gives H(z)= G0.

The design equations (11.4.5) and (11.4.6) can be justified as follows. Starting with
the same linear combination of the analog versions of the notching and peaking filters
given by Eqs. (11.3.2) and (11.3.16), we obtain the analog version of H(z):

Ha(s)= G0Hnotch(s)+GHpeak(s)= G0(s2 +Ω2
0)+Gαs

s2 +αs+Ω2
0

(11.4.7)
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Then, the bandwidth condition |Ha(Ω)|2 = G2
B can be stated as:

|Ha(Ω)|2 = G2
0(Ω2 −Ω2

0)2+G2α2Ω2

(Ω2 −Ω2
0)2+α2Ω2

= G2
B (11.4.8)

It can be cast as the quartic equation:

Ω4 − (2Ω2
0 +

G2 −G2
B

G2
B −G2

0
α2)Ω2 +Ω4

0 = 0

Proceeding as in the previous section and using the geometric-mean propertyΩ1Ω2 =
Ω2

0 and Eq. (11.3.15), we find the relationship between the parameter α and the analog
bandwidth ΔΩ = Ω2 −Ω1:

α =
√√√√G2

B −G2
0

G2 −G2
B
ΔΩ =

√√√√G2
B −G2

0

G2 −G2
B
(1 +Ω2

0)tan
(
Δω

2

)
≡ (1 +Ω2

0)β

This defines β. Then, the bilinear transformation of Eq. (11.4.7) leads to Eq. (11.4.5).

Example 11.4.1: Design the following six parametric EQ filters operating at 10 kHz rate that
satisfy the specifications: G0 = 1 and

(a) center frequency of 1.75 kHz, 9-dB boost gain, and 3-dB width of 500 Hz defined to
be 3 dB below the peak (alternative 1).

(b) same as (a), except the width is 3 dB above the reference (alternative 2).

(c) center frequency of 3 kHz, 9-dB cut gain, and 3-dB width of 1 kHz defined to be 3 dB
above the dip (alternative 1).

(d) same as (c), except the width is 3 dB below the reference (alternative 2).

(e) center frequency of 1.75 kHz, 2-dB boost, and 500 Hz width defined by Eq. (11.4.2).

(f) center frequency of 3 kHz, 2-dB cut, and 1 kHz width defined by Eq. (11.4.2).

Solution: The boost examples (a), (b), and (e) have digital frequency and width:

ω0 = 2π · 1.75

10
= 0.35π, Δω = 2π · 0.5

10
= 0.1π

and the cut examples (c), (d), and (f) have:

ω0 = 2π · 3

10
= 0.6π, Δω = 2π · 1

10
= 0.2π

Normally, a “3-dB” change means a change by a factor of 2 in the magnitude square. Here,
for plotting purposes, we take “3 dB” to mean literally 3 dB, which corresponds to changes
by 103/10 = 1.9953 � 2. Therefore, in case (a), a boost gain of 9 dB above the reference G0

corresponds to the value:

G = 109/20G0 = 2.8184, G2 = 7.9433 (instead of 8)

The bandwidth level is defined to be 3 dB below the peak, that is, AB = 9 − 3 = 6 dB, and
therefore:
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GB = 10−3/20G = 106/20G0 = 1.9953, G2
B = 3.9811

With these values of {G0, G,GB,ω0, Δω}, we calculate the value of β from Eq. (11.4.6):

β =
√√√√G2

B −G2
0

G2 −G2
B

tan
(
Δω

2

)
=
√

3.9811 − 1

7.9433 − 3.9811
tan

(
0.1π

2

)
= 0.1374

We calculate also cosω0 = cos(0.35π)= 0.4540. The transfer function of filter (a), ob-
tained from Eq. (11.4.5), is then:

Ha(z)= 1.2196 − 0.7983z−1 + 0.5388z−2

1 − 0.7983z−1 + 0.7584z−2

For filter (b), the width is defined to be 3 dB above the reference, that is, AB = 3 dB:

GB = 103/20G0 = 103/20 = 1.4125, G2
B = 1.9953

From Eq. (11.4.6), we calculate β = 0.0648, and from Eq. (11.4.5) the filter:

Hb(z)= 1.1106 − 0.8527z−1 + 0.7677z−2

1 − 0.8527z−1 + 0.8783z−2

For filter (c), we have a 9-dB cut gain, that is, 9 dB below the reference:

G = 10−9/20G0 = 0.3548, G2 = 0.1259

and the bandwidth level is 3 dB above this dip, that is, AB = −9 + 3 = −6 dB:

GB = 103/20G = 10−6/20G0 = 0.5012, G2
B = 0.2512

Then, we calculate cosω0 = cos(0.6π)= −0.3090 and β = 0.7943, and the transfer
function:

Hc(z)= 0.7144 + 0.3444z−1 + 0.4002z−2

1 + 0.3444z−1 + 0.1146z−2

For filter (d), the width is 3 dB below the reference, that is, AB = 0 − 3 = −3 dB:

GB = 10−3/20G0 = 0.7079, G2
B = 0.5012

We calculate β = 0.3746 and the transfer function:

Hd(z)= 0.8242 + 0.4496z−1 + 0.6308z−2

1 + 0.4496z−1 + 0.4550z−2

The four filters (a)–(d) are shown in the left graph of Fig. 11.4.2. The magnitude responses
are plotted in dB, that is, 20 log10 |H(ω)|. The reference level G0 = 1 corresponds to 0
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Fig. 11.4.2 Parametric EQ filters of Example 11.4.1.

dB. Notice the horizontal grid lines at 6 dB, 3 dB, −3 dB, and −6 dB, whose intersections
with the magnitude responses define the corresponding bandwidths Δω.

For filter (e), the boost gain is 2 dB and therefore, the bandwidth level cannot be chosen
to be 3 dB below the peak or 3 dB above the reference. We must use an intermediate
level between 0 and 2 dB. In particular, we may use Eq. (11.4.2). Thus, we calculate the
parameters:

G = 102/20G0 = 1.2589, G2
B = G2

0 +G2

2
= 1.2924

corresponding to AB = 10 log10(G2
B)= 1.114 dB. The square root factor in the definition

of β is unity, therefore, we calculate:

β = tan
(
Δω

2

)
= tan

(
0.1π

2

)
= 0.1584

and the transfer function:

He(z)= 1.0354 − 0.7838z−1 + 0.6911z−2

1 − 0.7838z−1 + 0.7265z−2

Finally, in case (f), we have a 2-dB cut, giving the values:

G = 10−2/20G0 = 0.7943, G2
B = G2

0 +G2

2
= 0.8155

corresponding toAB = 10 log10(G2
B)= −0.886 dB. The parameterβ is nowβ = tan(Δω/2)=

tan(0.2π/2)= 0.3249, resulting in the transfer function:

Hf(z)= 0.9496 + 0.4665z−1 + 0.5600z−2

1 + 0.4665z−1 + 0.5095z−2

Filters (e) and (f) are shown in the right graph of Fig. 11.4.2. The vertical scales are expanded
compared to those of the left graph. The horizontal lines defining the bandwidth levels
AB = 1.114 dB and AB = −0.886 dB are also shown.

In practice, parametric EQ filters for audio have cut and boost gains that vary typically
from −18 dB to 18 dB with respect to the reference gain. 	
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Example 11.4.2: Instead of specifying the parameters {ω0, Δω}, it is often convenient to spec-
ify either one or both of the corner frequencies {ω1,ω2} that define the width Δω =
ω2 −ω1.

Design four parametric EQ filters that have a 2.5-dB cut and bandwidth defined at 1 dB
below the reference, and have center or corner frequencies as follows:

(a) Center frequency ω0 = 0.6π and right corner ω2 = 0.7π. Determine also the left
corner ω1 and the bandwidth Δω.

(b) Center frequency ω0 = 0.6π and left corner ω1 = 0.5π. Determine also the right
corner ω2 and the bandwidth Δω.

(c) Left and right corner frequencies ω1 = 0.5π and ω2 = 0.7π. Determine also the
center frequency ω0.

(d) Compare the above to the standard design that has ω0 = 0.6π, and Δω = 0.2π.
Determine the values of ω1, ω2.

Solution: Assuming G0 = 1, the cut and bandwidth gains are:

G = 10−2.5/20 = 0.7499, GB = 10−1/20 = 0.8913

Note that GB was chosen arbitrarily in this example and not according to Eq. (11.4.2). For
case (a), we are givenω0 andω2. Under the bilinear transformation they map to the values:

Ω0 = tan(ω0/2)= 1.3764, Ω2 = tan(ω2/2)= 1.9626

Using the geometric-mean property (11.3.11), we may solve for ω1:

tan
(
ω1

2

)
= Ω1 = Ω2

0

Ω2
= 0.9653 ⇒ ω1 = 0.4887π

Thus, the bandwidth is Δω = ω2 −ω1 = 0.2113π. The design equations (11.4.5) and
(11.4.6) give then β = 0.3244 and the transfer function:

Ha(z)= 0.9387 + 0.4666z−1 + 0.5713z−2

1 + 0.4666z−1 + 0.5101z−2

For case (b), we are given ω0 and ω1 and calculate ω2:

Ω1 = tan
(
ω1

2

)
= 1, tan

(
ω2

2

)
= Ω2 = Ω2

0

Ω1
= 1.8944 ⇒ ω2 = 0.6908π

where Ω0 was as in case (a). The width is Δω = ω2 −ω1 = 0.1908π. Then, we find
β = 0.2910 and the transfer function:

Hb(z)= 0.9436 + 0.4787z−1 + 0.6056z−2

1 + 0.4787z−1 + 0.5492z−2

The magnitude responses (in dB) of cases (a) and (b) are shown in the left graph of Fig. 11.4.3.
The bandwidths are defined by the intersection of the horizontal grid line at −1 dB and
the curves.
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Fig. 11.4.3 Parametric EQ filters.

For case (c), we are given ω1 and ω2. Their bilinear transformations are:

Ω1 = tan(ω1/2)= 1, Ω2 = tan(ω2/2)= 1.9626

The center frequency is computed from:

tan(ω0/2)= Ω0 =
√
Ω1Ω2 = 1.4009 ⇒ ω0 = 0.6053π

Using the calculatedω0 and the width Δω =ω2−ω1 = 0.2π, we find cosω0 = −0.3249,
β = 0.3059, and the transfer function:

Hc(z)= 0.9414 + 0.4976z−1 + 0.5901z−2

1 + 0.4976z−1 + 0.5315z−2

Finally, in the standard case (d), we start with ω0 and Δω. We find cosω0 = −0.3090,
β = 0.3059, and the transfer function:

Hd(z)= 0.9414 + 0.4732z−1 + 0.5901z−2

1 + 0.4732z−1 + 0.5315z−2

With Ω0 = tan(ω0/2)= 1.3764, the exact values of ω1 and ω2 are obtained by solving
the system of equations:

Ω1Ω2 = Ω2
0 = 1.8944, Ω2 −Ω1 = ΔΩ = (1 +Ω2

0)tan(Δω/2)= 0.9404

which have positive solutions Ω1 = 0.9843, Ω2 = 1.9247. It follows that

ω1 = 2 arctan(Ω1)= 0.494951π, ω2 = 2 arctan(Ω2)= 0.694951π

where as expected Δω = ω2 −ω1 = 0.2π. The magnitude responses are shown in the
right graph of Fig. 11.4.3. Note that cases (c) and (d) have the same β because their widths
Δω are the same. But, the values of cosω0 are different, resulting in different values for
the coefficients of z−1; the other coefficients are the same. 	
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In addition to parametric equalizers with variable center frequencies ω0, in audio
applications we also need lowpass and highpass filters, referred to as “shelving” fil-
ters, with adjustable gains and cutoff frequencies. Such filters can be obtained from
Eq. (11.4.5) by replacingω0 = 0 for the lowpass case andω0 = π for the highpass one.

In the lowpass limit,ω0 = 0, we have cosω0 = 1 and the numerator and denomina-
tor of Eq. (11.4.5) develop a common factor (1 − z−1). Canceling this factor, we obtain
the lowpass shelving filter :

HLP(z)=

(
G0 +Gβ

1 + β

)
−
(
G0 −Gβ

1 + β

)
z−1

1 −
(

1 − β
1 + β

)
z−1

(11.4.9)

where β is still given by Eq. (11.4.6), but withΔω replaced by the filter’s cutoff frequency
ωc and with GB replaced by the defining level Gc of the cutoff frequency:

β =
√√√G2

c −G2
0

G2 −G2
c

tan
(
ωc

2

)
(11.4.10)

In the highpass limit, ω0 = π, we have cosω0 = −1 and the numerator and de-
nominator of Eq. (11.4.5) have a common factor (1 + z−1). Canceling it, we obtain the
highpass shelving filter :

HHP(z)=

(
G0 +Gβ

1 + β

)
+
(
G0 −Gβ

1 + β

)
z−1

1 +
(

1 − β
1 + β

)
z−1

(11.4.11)

It can also be obtained from Eq. (11.4.9) by the replacement z→ −z. The parameter
β is obtained from Eq. (11.4.6) by the replacements GB → Gc and Δω → π −ωc. The
latter is necessary becauseΔω is measured from the center frequencyω0 = π, whereas
ωc is measured from the originω = 0. Noting that tan

(
(π−ωc)/2

) = cot(ωc/2), we
have:

β =
√√√G2

c −G2
0

G2 −G2
c

cot
(
ωc

2

)
(11.4.12)

For both the lowpass and highpass cases, the filter specifications are the parameters
{G0, G,Gc,ωc}. They must satisfy Eq. (11.4.1) for boosting or cutting. Figure 11.4.4
depicts these specifications. Some possible choices for G2

c are still given by Eq. (11.4.3).
The limiting forms of the corresponding analog filter (11.4.7) can be obtained by

taking the appropriate limits in the variable Ω0 = tan(ω0/2). For the lowpass case,
we have the limit Ω0 → 0 and for the highpass case, the limit Ω0 → ∞. We must also
replace α = (1 +Ω2

0)β before taking these limits.
Taking the limits, we obtain the analog filters whose bilinear transformations are the

shelving filters Eq. (11.4.9) and (11.4.11):
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|H(ω )|
2

|H(ω )|
2

ω ω
ωc ωcπ π0 0

boost

cut

boost

cut

Gc
2 Gc

2

G0
2

G2

G0
2

G2

lowpass highpass

Fig. 11.4.4 Lowpass and highpass shelving filters with boost or cut.

HLP(s)= G0s+Gβ
s+ β , HHP(s)= G0 +Gβs

1 + βs (11.4.13)

The special case G0 = 0, G = 1 was considered in Section 11.2. In that section, the
lowpass case corresponded to α = β and the highpass to α = 1/β.

Setting Ω = Ωc = tan(ωc/2), the following bandwidth conditions may be solved
for β, resulting into the design equations (11.4.10) and (11.4.12):

|HLP(Ω)|2 = G2
0Ω2 +G2β2

Ω2 + β2
= G2

c , |HHP(Ω)|2 = G2
0 +G2β2Ω2

1 + β2Ω2
= G2

c

11.5 Comb Filters

The lowpass and highpass shelving filters of the previous section can be turned into
periodic comb or notch filters with adjustable gains and peak widths. This can be ac-
complished by the replicating transformation of Eq. (8.3.30), that is, z → zD, which
shrinks the frequency response by a factor of D and replicates it D times such that D
copies of it fit into the Nyquist interval. Under this transformation, the lowpass filter
HLP(z) of Eq. (11.4.9) becomes the comb filter:

H(z)= b− cz−D
1 − az−D , a = 1 − β

1 + β , b = G0 +Gβ
1 + β , c = G0 −Gβ

1 + β (11.5.1)

This transfer function can also be obtained from the analog lowpass shelving filter
HLP(s) of Eq. (11.4.13) by the generalized bilinear transformation:

s = 1 − z−D
1 + z−D , Ω = tan

(
ωD

2

)
= tan

(
πfD
fs

)
(11.5.2)

The DC peak of the lowpass filter HLP(z) has full width 2ωc, counting also its sym-
metric negative-frequency side. Under D-fold replication, the symmetric DC peak will
be shrunk in width by a factor ofD and replicatedD times, with replicas centered at the
Dth root-of-unity frequencies ωk = 2πk/D, k = 0,1, . . . ,D − 1. Thus, the full width
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Δω of the individual replicas can be obtained by the substitution 2ωc/D → Δω, or
ωc → DΔω/2.

Making this substitution in Eq. (11.4.10) and replacing the cutoff frequency gain Gc
by the bandwidth gain GB, the filter parameter β can be expressed as:

β =
√√√√G2

B −G2
0

G2 −G2
B

tan
(
DΔω

4

)
(11.5.3)

The resulting comb filter can be thought of as a “comb equalizer” with variable
gain and peak width. The boost or cut choices of the gain G given in Eq. (11.4.1) will
correspond to either a peaking or a notching periodic comb filter.

The periodic notch and comb filters of Section 8.3.2 are special cases of the general
comb filter (11.5.1). The notch filter of Eq. (8.3.26) is obtained in the limit G0 = 1,
G = 0, and the comb filter of Eq. (8.3.33) in the limit G0 = 0, G = 1. In both cases, the
bandwidth gain can be chosen to be G2

B = 1/2, that is, 3 dB.
The replicating transformation z→ zD can also be applied to the highpass shelving

filter HHP(z) of Eq. (11.4.11), resulting in the comb filter:

H(z)= b+ cz−D
1 + az−D (11.5.4)

The sign change of the coefficients causes the peaks to shift by π/D, placing them
between the peaks of the comb (11.5.1), that is, at the odd-multiple frequencies ωk =
(2k+ 1)π/D, k = 0,1, . . . ,D− 1. The parameter β is still calculated from Eq. (11.5.3).
This type of comb filter can be useful in some applications, as we saw in Section 8.3.3.

Example 11.5.1: Design a peaking comb filter of period 10, reference gain of 0 dB, peak gain
of 9 dB, bandwidth gain of 3 dB (above the reference), and bandwidth Δω = 0.025π
rads/sample.

Then, design a notching comb filter with dip gain of −12 dB and having the same period,
reference gain, and bandwidth as the peaking filer. The bandwidth is defined to be 3 dB
below the reference.

Then, redesign both of the above peaking and notching comb filters such that their peaks
or dips are shifted to lie exactly between the peaks of the previous filters.

Solution: For the peaking filter, we have:

G0 = 1, G = 109/20G0 = 2.8184, GB = 103/20G0 = 1.4125

and for the notching filter:

G0 = 1, G = 10−12/20G0 = 0.2512, GB = 10−3/20G0 = 0.7079

With D = 10 and Δω = 0.025π, we find the values: β = 0.0814 for the peaking filter
and β = 0.2123 for the notching filter. Then, the transfer functions are obtained from
Eq. (11.5.1):

Hpeak(z)= 1.1368 − 0.7127z−10

1 − 0.8495z−10
, Hnotch(z)= 0.8689 − 0.7809z−10

1 − 0.6498z−10
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Their peaks/dips are at the multiples ωk = 2πk/D = 0.2πk, k = 0,1, . . . ,9. The filters
with the shifted peaks are obtained by changing the sign of z−10:

Hpeak(z)= 1.1368 + 0.7127z−10

1 + 0.8495z−10
, Hnotch(z)= 0.8689 + 0.7809z−10

1 + 0.6498z−10

The magnitude responses of the four filters are shown in Fig. 11.5.1, plotted in dB, that is,
20 log10 |H(ω)|, over one complete Nyquist interval, 0 ≤ω ≤ 2π. 	


Fig. 11.5.1 Periodic peaking and notching comb filters.

Figure 11.5.1 also shows the peak width Δω as well as the quantity Δω′, which is
a measure of the separation of two successive peaks at the bandwidth level. Because of
symmetry, the D equal peak widths and the D equal separations must make up the full
2π Nyquist interval. Thus, we have the condition:

DΔω+DΔω′ = 2π ⇒ Δω+Δω′ = 2π
D

(11.5.5)

Decreasing the peak width increases the separation and vice versa. The maximum
possible value of Δω corresponds to the case when Δω′ = 0, that is, zero separation
between peaks. This gives Δωmax = 2π/D. However, a more useful practical limit is
when Δω ≤ Δω′, which causes the peaks to be narrower than their separation. This
condition requires that 2Δω ≤ Δω+Δω′ = 2π/D, and gives the maximum for Δω:

Δω ≤ π
D

⇒ Δf ≤ fs
2D

(11.5.6)

This maximum was also discussed in Section 8.3.2.

11.6 Higher-Order Filters

The first- and second-order designs of the above sections are adequate in some appli-
cations such as audio equalization, but are too limited when we need filters with very
sharp cutoff specifications. Higher-order filters can achieve such sharp cutoffs, but at
the price of increasing the filter complexity, that is, the filter order.



11.6. HIGHER-ORDER FILTERS 593

Figure 11.6.1 shows the specifications of a typical lowpass filter and its analog equiv-
alent obtained by the bilinear transformation. The specification parameters are the four
numbers {fpass, fstop,Apass,Astop}, that is, the passband and stopband frequencies and
the desired passband and stopband attenuations in dB.

|H(f )|2

Apass Apass
1

1/(1+εpass
2 )

1/(1+εstop
2 )

1

0

f

fpass Ωpassfstop Ωstopfs/2

|Ha(Ω )| 2

0

desired digital
lowpass filter

equivalent analog
lowpass filter

Astop Astop

passband stopband passband stopband

Ω

Fig. 11.6.1 Lowpass digital filter and its analog equivalent.

Within the passband range 0 ≤ f ≤ fpass, the filter’s attenuation is required to be
less than Apass decibels. And, within the stopband fstop ≤ f ≤ fs/2, it is required to
be greater than Astop decibels. Thus, the quantity Apass is the maximum attenuation
that can be tolerated in the passband and Astop the minimum attenuation that must be
achieved in the stopband.

The filter can be made into a better lowpass filter in three ways: (1) decreasing Apass

so that the passband becomes flatter, (2) increasing Astop so that the stopband becomes
deeper, and (3) moving fstop closer to fpass so that the transition region between pass-
band and stopband becomes narrower. Thus, by appropriate choice of the specification
parameters, the filter can be made as close to an ideal lowpass filter as desired.

Assuming the filter’s magnitude response squared |H(f)|2 is normalized to unity
at DC, we can express the specification requirements as the following conditions on the
filter’s attenuation response in dB, defined as A(f)= −10 log10 |H(f)|2 :

0 ≤A(f)≤ Apass , for 0 ≤ f ≤ fpass

A(f)≥ Astop , for fstop ≤ f ≤ fs/2
(11.6.1)

Equivalently, in absolute units, the design specifications are:

1 ≥|H(f)|2 ≥ 1

1 + ε2
pass

, for 0 ≤ f ≤ fpass

|H(f)|2 ≤ 1

1 + ε2
stop

, for fstop ≤ f ≤ fs/2
(11.6.2)

where {εpass, εstop} are defined in terms of {Apass,Astop} as follows:
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|H(fpass)|2 = 1

1 + ε2
pass

= 10−Apass/10 ,

|H(fstop)|2 = 1

1 + ε2
stop

= 10−Astop/10 ,
(11.6.3)

The quantities {εpass, εstop} control the depths of the passband and stopband. They
can be written in the equivalent forms:

εpass =
√

10Apass/10 − 1

εstop =
√

10Astop/10 − 1

�
Apass = 10 log10(1 + ε2

pass)

Astop = 10 log10(1 + ε2
stop)

(11.6.4)

The specifications of the equivalent analog filter are {Ωpass,Ωstop,Apass,Astop}, or,
{Ωpass,Ωstop, εpass, εstop}, where the analog frequencies are obtained by prewarping the
digital frequencies:

Ωpass = tan
(ωpass

2

)
, Ωstop = tan

(ωstop

2

)
(11.6.5)

where

ωpass = 2πfpass

fs
, ωstop = 2πfstop

fs
(11.6.6)

The parameters {εpass, εstop} are useful in the design of both Butterworth and Cheby-
shev filters. In the next section, we begin with the Butterworth case.

11.6.1 Analog Lowpass Butterworth Filters

Analog lowpass Butterworth filters are characterized by just two parameters: the filter
orderN and the 3-dB normalization frequencyΩ0. Their magnitude response is simply:

|H(Ω)|2 = 1

1 +
(
Ω
Ω0

)2N (11.6.7)

and the corresponding attenuation in decibels:

A(Ω)= −10 log10 |H(Ω)|2 = 10 log10

[
1 +

(
Ω
Ω0

)2N
]

(11.6.8)

Note that, as N increases for fixed Ω0, the filter becomes a better lowpass filter. At
Ω = Ω0, the magnitude response is |H(Ω0)|2 = 1/2, or, 3-dB attenuation A(Ω0)= 3
dB. The two filter parameters {N,Ω0} can be determined from the given specifications
{Ωpass,Ωstop,Apass,Astop} by requiring the conditions:
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A(Ωpass) = 10 log10

[
1 +

(Ωpass

Ω0

)2N]
= Apass = 10 log10(1 + ε2

pass)

A(Ωstop) = 10 log10

[
1 +

(Ωstop

Ω0

)2N]
= Astop = 10 log10(1 + ε2

stop)

Because of the monotonicity of the magnitude response, these conditions are equiv-
alent to the passband/stopband range conditions (11.6.1). To solve them forN andΩ0,
we rewrite them in the form:

(Ωpass

Ω0

)2N
= 10Apass/10 − 1 = ε2

pass

(Ωstop

Ω0

)2N
= 10Astop/10 − 1 = ε2

stop

(11.6.9)

Taking square roots and dividing, we get an equation for N :(
Ωstop

Ωpass

)N
= εstop

εpass
=
√

10Astop/10 − 1

10Apass/10 − 1

with exact solution:

Nexact = ln(εstop/εpass)
ln(Ωstop/Ωpass)

= ln(e)
ln(w)

(11.6.10)

where we defined the stopband to passband ratios:

e = εstop

εpass
=
√

10Astop/10 − 1

10Apass/10 − 1
, w = Ωstop

Ωpass
(11.6.11)

Since N must be an integer, we choose it to be the next integer above Nexact, that is,

N = ⌈
Nexact

⌉
(11.6.12)

BecauseN is slightly increased from its exact value, the resulting filter will be slightly
better than required. But, because N is different from Nexact, we can no longer satisfy
simultaneously both of Eqs. (11.6.9). So we choose to satisfy the first one exactly. This
determines Ω0 as follows:

Ω0 = Ωpass(
10Apass/10 − 1

)1/2N = Ωpass

ε1/N
pass

(11.6.13)

With these values of N and Ω0, the stopband specification is more than satisfied,
that is, the actual stopband attenuation will be nowA(Ωstop)> Astop. In summary, given
{Ωpass,Ωstop,Apass,Astop}, we solve Eqs. (11.6.10)–(11.6.13) to get the filter parameters
N and Ω0. We note also that we may rewrite Eq. (11.6.7) in terms of the passband
parameters; replacing Ω0 by Eq. (11.6.13), we have
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|H(Ω)|2 = 1

1 +
(
Ω
Ω0

)2N = 1

1 + ε2
pass

(
Ω
Ωpass

)2N (11.6.14)

An alternative design can be obtained by matching the stopband specification ex-
actly, resulting in a slightly better passband, that is, A(Ωstop)= Astop and A(Ωpass)<
Apass. The 3-dB frequency Ω0 is now computed from the second of Eqs. (11.6.9):

Ω0 = Ωstop(
10Astop/10 − 1

)1/2N = Ωstop

ε1/N
stop

In this case, Eq. (11.6.7) can be written in terms of the stopband parameters:

|H(Ω)|2 = 1

1 + ε2
stop

(
Ω
Ωstop

)2N =

(Ωstop

Ω

)2N

(Ωstop

Ω

)2N
+ ε2

stop

(11.6.15)

We will see in Section 11.6.6 that the expressions (11.6.14) and (11.6.15) generalize
to the Chebyshev type 1 and type 2 filters.

The analog Butterworth transfer function H(s) can be constructed from the knowl-
edge of {N,Ω0} by the method of spectral factorization, as described below. Using
s = jΩ and noting that

(
H(Ω)

)∗ = H∗(−Ω), we may write Eq. (11.6.7) in terms of the
variable s†

H(s)H∗(−s)= 1

1 +
(
s
jΩ0

)2N = 1

1 + (−1)N
(
s
Ω0

)2N

Setting H(s)= 1

D(s)
, we have

D(s)D∗(−s)= 1 + (−1)N
(
s
Ω0

)2N
(11.6.16)

Because the right-hand side is a polynomial of degree 2N in s, D(s) will be a poly-
nomial of degree N. There exist 2N different polynomials D(s) of degree N satisfying
Eq. (11.6.16). But, among them, there is a unique one that has all its zeros in the left-hand
s-plane. This is the one we want, because then the transfer functionH(s)= 1/D(s) will
be stable and causal. To find D(s), we first determine all the 2N roots of Eq. (11.6.16)
and then choose those that lie in the left-hand s-plane. The 2N solutions of

1 + (−1)N
(
s
Ω0

)2N
= 0 ⇒ s2N = (−1)N−1Ω0

2N

are given by

†The notation H∗(−s) denotes complex conjugation of the filter coefficients and replacement of s by
−s, for example, H∗(−s)=∑

a∗n (−s)n if H(s)=∑
ansn.
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si = Ω0ejθi , θi = π
2N

(N − 1 + 2i) , i = 1,2, . . . ,N, . . . ,2N (11.6.17)

The index i is chosen such that the first N of the si lie in the left-hand s-plane, that
is,π/2 < θi < 3π/2 for i = 1,2, . . . ,N. Because |si| = Ω0, all of the zeros lie on a circle
of radius Ω0, called the Butterworth circle and shown in Fig. 11.6.2.

.
.

.

.
.
.

s1

sN

s2

sN-1

s3

sN-2

0
−Ω0

s-plane

Butterworth
circle

Ω0

π/N

Fig. 11.6.2 Butterworth filter poles lie on Butterworth circle.

It is evident from Eq. (11.6.17) that the si can be paired in complex conjugate pairs;
that is, sN = s∗1 , sN−1 = s∗2 , and so on. If N is even, say N = 2K, then there are exactly
K conjugate pairs, namely, {si, s∗i }, i = 1,2, . . . , K. In this case, D(s) will factor into
second-order sections as follows:

D(s)= D1(s)D2(s)· · ·DK(s) (11.6.18)

where

Di(s)=
(

1 − s
si

)(
1 − s

s∗i

)
, i = 1,2, . . . , K (11.6.19)

On the other hand, if N is odd , say N = 2K + 1, there will be K conjugate pairs
and one additional zero that cannot be paired and must necessarily be real-valued. That
zero must lie in the left-hand s-plane and on the Butterworth circle; thus, it must be the
point s = −Ω0. The polynomial D(s) factors now as:

D(s)= D0(s)D1(s)D2(s)· · ·DK(s), where D0(s)=
(

1 + s
Ω0

)
The remaining factors Di(s) are the same as in Eq. (11.6.19). They can be rewritten

as factors with real coefficients as follows. Inserting si = Ω0ejθi into Eq. (11.6.19), we
find for i = 1,2, . . . , K:

Di(s)=
(

1 − s
si

)(
1 − s

s∗i

)
= 1 − 2

s
Ω0

cosθi + s2

Ω2
0

(11.6.20)
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Inserting these factors into the Butterworth analog transfer functionH(s)= 1/D(s),
we can express it as a cascade of second-order sections:

H(s)= H0(s)H1(s)H2(s)· · ·HK(s) (11.6.21)

where

H0(s) =

⎧⎪⎪⎨⎪⎪⎩
1, if N = 2K
1

1 + s
Ω0

, if N = 2K + 1

Hi(s) = 1

1 − 2
s
Ω0

cosθi + s2

Ω2
0

, i = 1,2, . . . , K

(11.6.22)

Example 11.6.1: The Butterworth polynomialsD(s) of orders 1–7 and unity 3-dB normalization
frequency Ω0 = 1 are shown in Table 11.6.1. For other values of Ω0, s must be replaced
by s/Ω0 in each table entry.

The coefficients of s of the second-order sections are the cosine factors, −2 cosθi, of
Eq. (11.6.20). For example, in the case N = 7, we have K = 3 and the three θ’s are
calculated from Eq. (11.6.17):

θi = π
14
(6 + 2i)= 8π

14
,

10π
14

,
12π
14

, for i = 1,2,3

−2 cosθi = 0.4450, 1.2470, 1.8019

The corresponding Butterworth filters H(s) of orders 1–7 are obtained as the inverses of
the table entries. 	


Example 11.6.2: Determine the 2N possibleNth degree polynomialsD(s) satisfying Eq. (11.6.16),
for the cases N = 2 and N = 3. Take Ω0 = 1.

Solution: For N = 2, we must find all second-degree polynomials that satisfy Eq. (11.6.16),
D(s)D∗(−s)= 1 + (−1)2s4. They are:

D(s) = 1 +√
2s+ s2

D(s) = 1 −√
2s+ s2

D(s) = 1 + js2

D(s) = 1 − js2

⇒

D∗(−s) = 1 −√
2s+ s2

D∗(−s) = 1 +√
2s+ s2

D∗(−s) = 1 − js2

D∗(−s) = 1 + js2

Only the first one has all of its zeros in the left-hand s-plane. Similarly, for N = 3 the
23 = 8 different third-degree polynomials D(s) are:
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N K θ1, θ2, . . . , θK D(s)

1 0 (1 + s)

2 1
3π
4

(1 + 1.4142s+ s2)

3 1
4π
6

(1 + s)(1 + s+ s2)

4 2
5π
8
,

7π
8

(1 + 0.7654s+ s2)(1 + 1.8478s+ s2)

5 2
6π
10
,

8π
10

(1 + s)(1 + 0.6180s+ s2)(1 + 1.6180s+ s2)

6 3
7π
12
,

9π
12
,

11π
12

(1 + 0.5176s+ s2)(1 + 1.4142s+ s2)(1 + 1.9319s+ s2)

7 3
8π
14
,

10π
14

,
12π
14

(1 + s)(1 + 0.4450s+ s2)(1 + 1.2470s+ s2)(1 + 1.8019s+ s2)

Table 11.6.1 Butterworth polynomials.

D(s) = (1 + s)(1 + s+ s2)

D(s) = (1 + s)(1 − s+ s2)

D(s) = (1 + s)(1 − s2e2jπ/3)

D(s) = (1 + s)(1 − s2e−2jπ/3)

D(s) = (1 − s)(1 − s2e−2jπ/3)

D(s) = (1 − s)(1 − s2e2jπ/3)

D(s) = (1 − s)(1 + s+ s2)

D(s) = (1 − s)(1 − s+ s2)

⇒

D∗(−s) = (1 − s)(1 − s+ s2)

D∗(−s) = (1 − s)(1 + s+ s2)

D∗(−s) = (1 − s)(1 − s2e−2jπ/3)

D∗(−s) = (1 − s)(1 − s2e2jπ/3)

D∗(−s) = (1 + s)(1 − s2e2jπ/3)

D∗(−s) = (1 + s)(1 − s2e−2jπ/3)

D∗(−s) = (1 + s)(1 − s+ s2)

D∗(−s) = (1 + s)(1 + s+ s2)

They all satisfy D(s)D∗(−s)= 1 + (−1)3s6 but, only the first one has its zeros in the
left-hand s-plane.

Note also that not all solutions of Eq. (11.6.16) have real coefficients. If we restrict our
search to those with real coefficients (pairing the zeros in conjugate pairs), then there are
2K such polynomials D(s) if N = 2K, and 2K+1 if N = 2K + 1. 	


11.6.2 Digital Lowpass Filters

Under the bilinear transformation, the lowpass analog filter will be transformed into
a lowpass digital filter. Each analog second-order section will be transformed into a
second-order section of the digital filter, as follows:
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Hi(z)= 1

1 − 2
s
Ω0

cosθi + s2

Ω2
0

∣∣∣∣∣∣∣∣∣
s= 1−z−1

1+z−1

= Gi(1 + z−1)2

1 + ai1z−1 + ai2z−2
(11.6.23)

where the filter coefficients Gi, ai1, ai2 are easily found to be:

Gi = Ω2
0

1 − 2Ω0 cosθi +Ω0
2

ai1 = 2(Ω2
0 − 1)

1 − 2Ω0 cosθi +Ω0
2

ai2 = 1 + 2Ω0 cosθi +Ω2
0

1 − 2Ω0 cosθi +Ω0
2

(11.6.24)

for i = 1,2, . . . , K. If N is odd, then there is also a first-order section:

H0(z)= 1

1 + s
Ω0

∣∣∣∣∣∣∣∣
s= 1−z−1

1+z−1

= G0(1 + z−1)
1 + a01z−1

(11.6.25)

where

G0 = Ω0

Ω0 + 1
, a01 = Ω0 − 1

Ω0 + 1
(11.6.26)

If N is even, we may set H0(z)= 1. The overall transfer function of the designed
lowpass digital filter is given by:

H(z)= H0(z)H1(z)H2(z)· · ·HK(z) (11.6.27)

with the factors given by Eqs. (11.6.23)–(11.6.26). Note that the 3-dB frequency f0 in Hz
is related to the Butterworth parameter Ω0 by

Ω0 = tan
(
ω0

2

)
= tan

(
πf0
fs

)
⇒ f0 = fs

π
arctan(Ω0) (11.6.28)

Note that the filter sections have zeros at z = −1, that is, the Nyquist frequency
ω = π. Setting Ω = tan(ω/2), the magnitude response of the designed digital filter
can be expressed simply via Eq. (11.6.7), as follows:

|H(ω)|2 = 1

1 + (Ω/Ω0
)2N = 1

1 + (tan(ω/2)/Ω0
)2N (11.6.29)

Note also that each second-order section has unity gain at zero frequency, f = 0,
ω = 0, or z = 1. Indeed, setting z = 1 in Eq. (11.6.23), we obtain the following condition,
which can be verified from the definitions (11.6.24):

4Gi
1 + ai1 + ai2 = 1 and

2G0

1 + a01
= 1
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In summary, the design steps for a lowpass digital filter with given specifications
{fpass, fstop,Apass,Astop} are:

1. Calculate the digital frequencies {ωpass,ωstop} and the corresponding prewarped
versions {Ωpass,Ωstop} from Eqs. (11.6.6) and (11.6.5).

2. Calculate the orderN and 3-dB frequencyΩ0 of the equivalent lowpass analog But-
terworth filter based on the transformed specifications {Ωpass,Ωstop,Apass,Astop}
by Eqs. (11.6.10)–(11.6.13).

3. The transfer function of the desired lowpass digital filter is then obtained from
Eq. (11.6.27), where the SOS coefficients are calculated from Eqs. (11.6.24) and
(11.6.26).

Example 11.6.3: Using the bilinear transformation and a lowpass analog Butterworth proto-
type, design a lowpass digital filter operating at a rate of 20 kHz and having passband
extending to 4 kHz with maximum passband attenuation of 0.5 dB, and stopband starting
at 5 kHz with a minimum stopband attenuation of 10 dB.

Then, redesign it such that its magnitude response satisfies 1 ≥ |H(f)|2 ≥ 0.98 in the
passband, and |H(f)|2 ≤ 0.02 in the stopband.

Solution: The digital frequencies in radians per sample are:

ωpass = 2πfpass

fs
= 2π · 4

20
= 0.4π, ωstop = 2πfstop

fs
= 2π · 5

20
= 0.5π

and their prewarped versions:

Ωpass = tan
(ωpass

2

)
= 0.7265, Ωstop = tan

(ωstop

2

)
= 1

Eq. (11.6.4) can be used with Apass = 0.5 dB and Astop = 10 dB to calculate the parameters
{εpass, εstop}:

εpass =
√

10Apass/10 − 1 =
√

100.5/10 − 1 = 0.3493

εstop =
√

10Astop/10 − 1 =
√

1010/10 − 1 = 3

Then, Eq. (11.6.10) gives:

Nexact = ln(e)
ln(w)

= ln(εstop/εpass)
ln(Ωstop/Ωpass)

= ln(3/0.3493)
ln(1/0.7265)

= 6.73 ⇒ N = 7

Thus, there is one first-order sectionH0(z) and three second-order sections. Eq. (11.6.13)
gives for Ω0 and its value in Hz:

Ω0 = Ωpass

ε1/N
pass

= 0.7265

(0.3493)1/7 = 0.8443

f0 = fs
π

arctan(Ω0)= 20

π
arctan(0.8443)= 4.4640 kHz
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The Butterworth angles θ1, θ2, θ3 were calculated in Example 11.6.1. The SOS coefficients
are calculated from Eqs. (11.6.26) and (11.6.24):

i Gi ai1 ai2
0 0.4578 −0.0844
1 0.3413 −0.2749 0.6402
2 0.2578 −0.2076 0.2386
3 0.2204 −0.1775 0.0592

resulting in the transfer function:

H(z) = H0(z)H1(z)H2(z)H3(z)

= 0.4578(1 + z−1)
1 − 0.0844z−1

· 0.3413(1 + z−1)2

1 − 0.2749z−1 + 0.6402z−2

· 0.2578(1 + z−1)2

1 − 0.2076z−1 + 0.2386z−2
· 0.2204(1 + z−1)2

1 − 0.1775z−1 + 0.0592z−2

It can be implemented in the time domain by the routines cas or ccas. The left graph of
Fig. 11.6.3 shows the magnitude response squared, |H(f)|2. The brick-wall specifications
and the 3-dB line intersecting the response at f = f0 are shown on the graph. The mag-
nitude response was calculated using the simpler formula Eq. (11.6.29), withω expressed
in kHz, ω = 2πf/fs:

|H(f)|2 = 1

1 + (tan(πf/fs)/Ω0
)2N = 1

1 + (tan(πf/20)/0.8443
)14

The passband attenuation in absolute units is 10−0.5/10 = 0.89125 and the stopband at-
tenuation 10−10/10 = 0.1. Note that the actual stopband attenuation at f = fstop = 5 kHz
is slightly better than required, that is, A(fstop)= 10.68 dB.

Fig. 11.6.3 Digital lowpass Butterworth filters.

The second filter has more stringent specifications. The desired passband attenuation is
Apass = −10 log10(0.98)= 0.0877 dB, and the stopband attenuationAstop = −10 log10(0.02)=
16.9897 dB. With these values, we find the design parameters {εpass, εstop} = {0.1429,7}
and:
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Nexact = 12.18, N = 13, Ω0 = 0.8439, f0 = 4.4622 kHz

The digital filter will have one first-order and six second-order sections. The SOS coeffi-
cients were calculated with the MATLAB function lhbutt.m of Appendix D:

i Gi ai1 ai2
0 0.4577 −0.0847
1 0.3717 −0.3006 0.7876
2 0.3082 −0.2492 0.4820
3 0.2666 −0.2156 0.2821
4 0.2393 −0.1935 0.1508
5 0.2221 −0.1796 0.0679
6 0.2125 −0.1718 0.0219

Its magnitude response is shown in the right graph of Fig. 11.6.3. As is always the case,
making the specifications more stringent results in higher order N. 	


11.6.3 Digital Highpass Filters

There are two possible approaches one can follow to design a highpass digital filter with
the bilinear transformation: One is to use the transformation (11.1.3) to map the given
specifications onto the specifications of an equivalent highpass analog filter. The other
is to use the highpass version of the bilinear transformation given in Eq. (11.1.5) to map
the given highpass specifications onto equivalent analog lowpass specifications.

The first approach was used in the design of the first-order highpass filters of Section
11.2. Here, we will follow the second method, which is more convenient for high-order
designs because we can use the lowpass Butterworth design we developed already. The
mapping of the highpass specifications to the equivalent analog lowpass ones is depicted
in Fig. 11.6.4.

|H(f )|2

Apass Apass
1

1/(1+εpass
2 )

1/(1+εstop
2 )

1

0

f

fpass Ωpassfstop Ωstopfs/2

|Ha(Ω )|2

0

desired digital
highpass filter

equivalent analog
lowpass filter

Astop Astop

passbandstopband passband stopband

Ω

Fig. 11.6.4 Highpass digital filter and its analog lowpass equivalent.

The mapping is accomplished by the highpass version of the bilinear transformation,
given in Eqs. (11.1.5) and (11.1.6):
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s = 1 + z−1

1 − z−1
, Ω = − cot

(
ω
2

)
, ω = 2πf

fs
(11.6.30)

It maps the point z = −1 to s = 0, or equivalently, the center of the passband of the
highpass filter at ω = π to the center of the passband of the lowpass filter at Ω = 0.
The prewarped versions of the passband and stopband frequencies are computed as
follows:

Ωpass = cot
(ωpass

2

)
= cot

(
πfpass

fs

)

Ωstop = cot
(ωstop

2

)
= cot

(
πfstop

fs

) (11.6.31)

According to Eq. (11.6.30), we should have used Ωpass = − cot(ωpass/2). However,
as far as the determination of the parameters N and Ω0 is concerned, it does not mat-
ter whether we use positive or negative signs because we are working only with the
magnitude response of the analog filter, which is even as a function of Ω.

Using Eqs. (11.6.10)–(11.6.13), we determine the parameters N and Ω0, and the cor-
responding analog filter sections given by Eq. (11.6.21). Under the highpass bilinear
transformation of Eq. (11.6.30), each SOS of the analog filter will be transformed into an
SOS of the digital filter, as follows:

Hi(z)= 1

1 − 2
s
Ω0

cosθi + s2

Ω2
0

∣∣∣∣∣∣∣∣∣
s= 1+z−1

1−z−1

= Gi(1 − z−1)2

1 + ai1z−1 + ai2z−2
(11.6.32)

where the filter coefficients Gi, ai1, ai2 are easily found to be

Gi = Ω2
0

1 − 2Ω0 cosθi +Ω0
2

ai1 = − 2(Ω2
0 − 1)

1 − 2Ω0 cosθi +Ω0
2

ai2 = 1 + 2Ω0 cosθi +Ω2
0

1 − 2Ω0 cosθi +Ω0
2

(11.6.33)

for i = 1,2, . . . , K. If N is odd, then there is also a first-order section given by

H0(z)= 1

1 + s
Ω0

∣∣∣∣∣∣∣∣
s= 1+z−1

1−z−1

= G0(1 − z−1)
1 + a01z−1

(11.6.34)

where

G0 = Ω0

Ω0 + 1
, a01 = − Ω0 − 1

Ω0 + 1
(11.6.35)
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If N is even, we may set H0(z)= 1. The overall transfer function of the designed
highpass digital filter will be given by

H(z)= H0(z)H1(z)H2(z)· · ·HK(z) (11.6.36)

with the factors given by Eqs. (11.6.32–11.6.35). The 3-dB frequency f0 of the designed
filter may be calculated from:

Ω0 = cot
(
ω0

2

)
= cot

(
πf0
fs

)
⇒ f0 = fs

π
arctan

(
1

Ω0

)

and the magnitude response from:

|H(ω)|2 = 1

1 + (cot(ω/2)/Ω0
)2N

Note the similarities and differences between the highpass and lowpass cases: The
coefficients Gi and ai2 are the same, but ai1 has reverse sign. Also, the numerator of
the SOS is now (1 − z−1)2 instead of (1 + z−1)2, resulting in a zero at z = 1 or ω = 0.
These changes are easily understood by noting that the lowpass bilinear transformation
(11.1.3) becomes the highpass one given by Eq. (11.6.30) under the substitution z→ −z.

Example 11.6.4: Using the bilinear transformation and a lowpass analog Butterworth proto-
type, design a highpass digital filter operating at a rate of 20 kHz and having passband
starting at 5 kHz with maximum passband attenuation of 0.5 dB, and stopband ending at
4 kHz with a minimum stopband attenuation of 10 dB.

Then, redesign it such that its magnitude response satisfies 1 ≥ |H(f)|2 ≥ 0.98 in the
passband, and |H(f)|2 ≤ 0.02 in the stopband.

Solution: The digital frequencies and their prewarped versions are:

ωpass = 2πfpass

fs
= 2π · 5

20
= 0.5π,

ωstop = 2πfstop

fs
= 2π · 4

20
= 0.4π,

⇒
Ωpass = cot

(ωpass

2

)
= 1

Ωstop = cot
(ωstop

2

)
= 1.3764

The dB attenuations {Apass,Astop} = {0.5,10} correspond to {εpass, εstop} = {0.3493,3}.
Then, Eq. (11.6.10) can be solved for the filter order:

Nexact = ln(εstop/εpass)
ln(Ωstop/Ωpass)

= ln(3/0.3493)
ln(1.3764/1)

= 6.73 ⇒ N = 7

Thus, there is one first-order sectionH0(z) and three second-order sections. Eq. (11.6.13)
gives for Ω0:

Ω0 = Ωpass(
10Apass/10 − 1

)1/2N = Ωpass

ε1/N
pass

= 1

(0.3493)1/7 = 1.1621

The SOS coefficients are calculated from Eqs. (11.6.33) and (11.6.35):
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i Gi ai1 ai2
0 0.5375 −0.0750
1 0.4709 −0.2445 0.6393
2 0.3554 −0.1845 0.2372
3 0.3039 −0.1577 0.0577

resulting in the transfer function:

H(z) = H0(z)H1(z)H2(z)H3(z)

= 0.5375(1 − z−1)
1 − 0.0750z−1

· 0.4709(1 − z−1)2

1 − 0.2445z−1 + 0.6393z−2

· 0.3554(1 − z−1)2

1 − 0.1845z−1 + 0.2372z−2
· 0.3039(1 − z−1)2

1 − 0.1577z−1 + 0.0577z−2

As in Example 11.6.3, the second filter has passband and stopband attenuations: Apass =
−10 log10(0.98)= 0.0877 dB andAstop = −10 log10(0.02)= 16.9897 dB. With these values,
we find the design parameters {εpass, εstop} = {0.1429,7} and:

Nexact = 12.18, N = 13, Ω0 = 1.1615, f0 = 4.5253 kHz

The coefficients of the first- and second-order sections are:

i Gi ai1 ai2
0 0.5374 −0.0747
1 0.5131 −0.2655 0.7870
2 0.4252 −0.2200 0.4807
3 0.3677 −0.1903 0.2806
4 0.3300 −0.1708 0.1493
5 0.3062 −0.1584 0.0663
6 0.2930 −0.1516 0.0203

The magnitude responses of the two designs are shown in Fig. 11.6.5. 	


11.6.4 Digital Bandpass Filters

As in the highpass case, we can follow two possible approaches to the design of a dig-
ital bandpass filter. We can map the digital bandpass filter onto an equivalent analog
bandpass filter using the transformation (11.1.3). Alternatively, we can use the band-
pass version of the transformation (11.1.5) to map the bandpass digital filter onto an
equivalent lowpass analog filter.

The first method was used in Sections 11.3 to design bandpass peaking filters. The
second method is, however, more convenient because it reduces the bandpass design
problem to a standard lowpass analog design problem. Figure 11.6.6 shows the band-
pass specifications and their analog equivalents.

The specifications are the quantities {fpa, fpb, fsa, fsb,Apass,Astop}, defining the pass-
band range fpa ≤ f ≤ fpb, the left stopband 0 ≤ f ≤ fsa, and the right stopband
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Fig. 11.6.5 Digital highpass Butterworth filters.

Fig. 11.6.6 Bandpass digital filter and its analog lowpass equivalent.

fsb ≤ f ≤ fs/2. The stopband attenuations were assumed to be equal in the two stop-
bands; if they are not, we may design the filter based on the maximum of the two.

The bandpass version of the bilinear† transformation and the corresponding fre-
quency mapping are in this case:

s = 1 − 2cz−1 + z−2

1 − z−2
, Ω = c− cosω

sinω
, ω = 2πf

fs
(11.6.37)

A new parameter c has been introduced. Note that c = 1 recovers the lowpass case,
and c = −1 the highpass one. The parameter c is required to be |c| ≤ 1 in order to map
the left-hand s-plane into the inside of the unit circle in the z-plane.

Therefore, we may set c = cosωc, for some value of ωc. The center of the analog
passband Ω = 0 corresponds to cosω = c = cosωc, or, ω = ωc. Therefore, ωc may
be thought of as the “center” frequency of the bandpass filter (although it need not be
exactly at the center of the passband).

†It should really be called “biquadratic” in this case.
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The given bandpass specifications, must be mapped onto the specifications of the
equivalent analog filter, {Ωpass,Ωstop,Apass,Astop}. This can be done as follows. We
require that the passband [fpa, fpb] of the digital filter be mapped onto the entire pass-
band [−Ωpass,Ωpass] of the analog filter. This requires that:

−Ωpass = c− cosωpa

sinωpa

Ωpass = c− cosωpb

sinωpb

where ωpa = 2πfpa/fs and ωpb = 2πfpb/fs. By adding them, we solve for c. Then,
inserting the computed value of c into one or the other we find Ωpass. The resulting
solution is:

c = sin(ωpa +ωpb)
sinωpa + sinωpb

, Ωpass =
∣∣∣∣∣c− cosωpb

sinωpb

∣∣∣∣∣ (11.6.38)

Note that for ωpa, ωpb in the interval [0,π], the above expression for c implies
|c| ≤ 1, as required for stability. Next, we compute the two numbers:

Ωsa = c− cosωsa

sinωsa
, Ωsb = c− cosωsb

sinωsb

where ωsa = 2πfsa/fs and ωsb = 2πfsb/fs.
Ideally, the stopband of the digital filter should map exactly onto the stopband of

the analog filter so that we should have Ωsb = Ωstop and Ωsa = −Ωstop. But this is
impossible because c has already been determined from Eq. (11.6.38).

Because the Butterworth magnitude response is a monotonically decreasing function
of Ω, it is enough to choose the smallest of the two stopbands defined above. Thus, we
define:

Ωstop = min
(|Ωsa|, |Ωsb|) (11.6.39)

With the computed values ofΩpass andΩstop, we proceed to compute the Butterworth
parametersN andΩ0 and the corresponding SOSs of Eq. (11.6.21). Because s is quadratic
in z, the substitution of s into these SOSs will give rise to fourth-order sections in z:

Hi(z) = 1

1 − 2
s
Ω0

cosθi + s2

Ω2
0

∣∣∣∣∣∣∣∣∣
s= 1−2cz−1+z−2

1−z−2

= Gi(1 − z−2)2

1 + ai1z−1 + ai2z−2 + ai3z−3 + ai4z−4

(11.6.40)

where, for i = 1,2, . . . , K:

Gi = Ω2
0

1 − 2Ω0 cosθi +Ω0
2
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ai1 = 4c(Ω0 cosθi − 1)
1 − 2Ω0 cosθi +Ω0

2

ai3 = − 4c(Ω0 cosθi + 1)
1 − 2Ω0 cosθi +Ω0

2

ai2 = 2(2c2 + 1 −Ω2
0)

1 − 2Ω0 cosθi +Ω0
2

ai4 = 1 + 2Ω0 cosθi +Ω2
0

1 − 2Ω0 cosθi +Ω0
2

(11.6.41)

IfN is odd, then there is also a first-order section in s which becomes a second-order
section in z:

H0(z)= 1

1 + s
Ω0

∣∣∣∣∣∣∣∣
s= 1−2cz−1+z−2

1−z−2

= G0(1 − z−2)
1 + a01z−1 + a02z−2

(11.6.42)

where

G0 = Ω0

1 +Ω0
, a01 = − 2c

1 +Ω0
, a02 = 1 −Ω0

1 +Ω0
(11.6.43)

The overall transfer function of the designed bandpass digital filter will be given as
the cascade of fourth-order sections with the possibility of one SOS:

H(z)= H0(z)H1(z)H2(z)· · ·HK(z)
The order of the digital filter is 2N, because s is quadratic in z. The filter sections

have zeros at z = ±1, that is, ω = 0 and ω = π. The left and right 3-dB frequencies
can be calculated from the equations:

c− cosω0

sinω0
= ∓Ω0

They can be solved by writing cosω0 and sinω0 in terms of tan(ω0/2), solving the
resulting quadratic equation, and picking the positive solutions:

tan
(
ω0a

2

)
= tan

(
πf0a
fs

)
=
√
Ω2

0 + 1 − c2 −Ω0

1 + c

tan
(
ω0b

2

)
= tan

(
πf0b
fs

)
=
√
Ω2

0 + 1 − c2 +Ω0

1 + c

(11.6.44)

Example 11.6.5: Using the bilinear transformation and a lowpass analog Butterworth proto-
type, design a bandpass digital filter operating at a rate of 20 kHz and having left and right
passband frequencies of 2 and 4 kHz, and left and right stopband frequencies of 1.5 and
4.5 kHz. The maximum passband attenuation is required to be 0.5 dB, and the minimum
stopband attenuation 10 dB.

Then, redesign it such that its magnitude response satisfies 1 ≥ |H(f)|2 ≥ 0.98 in the
passband, and |H(f)|2 ≤ 0.02 in the stopbands.

Solution: The digital passband frequencies are:

ωpa = 2πfpa
fs

= 2π · 2

20
= 0.2π, ωpb = 2πfpb

fs
= 2π · 4

20
= 0.4π
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Then, we calculate c and Ωpass:

c = sin(ωpa +ωpb)
sinωpa + sinωpb

= 0.6180, Ωpass =
∣∣∣∣∣c− cosωpb

sinωpb

∣∣∣∣∣ = 0.3249

With the stopband digital frequencies:

ωsa = 2πfsa
fs

= 2π · 1.5
20

= 0.15π, ωsb = 2πfsb
fs

= 2π · 4.5
20

= 0.45π

we calculate:

Ωsa = c− cosωsa

sinωsa
= −0.6013, Ωsb = c− cosωsb

sinωsb
= 0.4674

andΩstop = min
(|Ωsa|, |Ωsb|) = 0.4674. The analog filter with the specifications {Ωpass,Ωstop,Apass,Astop}

has parameters {εpass, εstop} = {0.3493,3} and:

Nexact = 5.92, N = 6, Ω0 = 0.3872

The left-right 3-dB frequencies are calculated from Eq. (11.6.44) to be: f0a = 1.8689 kHz,
f0b = 4.2206 kHz. The coefficients of the three fourth-order sections of the digital filter
are (computed by the MATLAB function bpsbutt.m):

i Gi ai1 ai2 ai3 ai4
1 0.1110 −2.0142 2.3906 −1.6473 0.7032
2 0.0883 −1.8551 1.9017 −1.0577 0.3549
3 0.0790 −1.7897 1.7009 −0.8154 0.2118

The magnitude response can be calculated from:

|H(ω)|2 = 1

1 +
(
Ω
Ω0

)2N = 1

1 +
(
c− cosω
Ω0 sinω

)2N

The magnitude response is shown in the left graph of Fig. 11.6.7. The passband specifi-
cations are met exactly by design. Because the maximum stopband frequency was on the
right,Ωstop = |Ωsb|, the right stopband specification is met stringently. The left stopband
specification is more than required.

For the second set of specifications, we have Apass = −10 log10(0.98)= 0.0877 dB, and
Astop = −10 log10(0.02)= 16.9897 dB and {εpass, εstop} = {0.1429,7}. The design has the
same c, Ωpass, and Ωstop, which lead to the Butterworth parameters:

Nexact = 10.71, N = 11, Ω0 = 0.3878

The left and right 3-dB frequencies are now f0a = 1.8677 kHz, f0b = 4.2228 kHz. The
digital filter coefficients of the second- and fourth-order sections are:
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Fig. 11.6.7 Digital bandpass Butterworth filters.

i Gi ai1 ai2 ai3 ai4
0 0.2794 −0.8907 0.4411
1 0.1193 −2.0690 2.5596 −1.8526 0.8249
2 0.1021 −1.9492 2.1915 −1.4083 0.5624
3 0.0907 −1.8694 1.9460 −1.1122 0.3874
4 0.0834 −1.8186 1.7900 −0.9239 0.2762
5 0.0794 −1.7904 1.7033 −0.8193 0.2144

Again, the right stopband specification is more stringently met than the left one. The
“center” frequency of the passband is the same for both filters and can be obtained by
inverting cosωc = c. In Hz, we have fc = fs arccos(c)/(2π)= 2.8793 kHz. The magnitude
response is normalized to unity at fc. 	


11.6.5 Digital Bandstop Filters

The specifications of a bandstop digital filter are shown in Fig. 11.6.8, together with their
analog equivalents. There are now two passbands, that is, 0 ≤ f ≤ fpa and fpb ≤ f ≤
fs/2, and one stopband fsa ≤ f ≤ fsb.

The bandstop version of the bilinear transformation and the corresponding fre-
quency mapping were given in Eqs. (11.1.5) and (11.1.6):

s = 1 − z−2

1 − 2cz−1 + z−2
, Ω = sinω

cosω− c , ω = 2πf
fs

(11.6.45)

The design steps are summarized as follows. First, we compute the digital frequen-
cies in radians per sample:

ωpa = 2πfpa
fs

, ωpb = 2πfpb
fs

, ωsa = 2πfsa
fs

, ωsb = 2πfsb
fs

Then, we calculate c and Ωpass by requiring:

−Ωpass = sinωpa

cosωpa − c , Ωpass = sinωpb

cosωpb − c
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|H(f )|2

Apass Apass

Apass
1

1/(1+εpass
2 )

1/(1+εstop
2 )

1

0

f

fpa fpbfsa fsb Ωpass Ωstopfs/2

|Ha(Ω )|2

0

desired digital
bandstop filter

equivalent analog
lowpass filter

Astop Astop

passband passband passband stopbandstopband

Ω

Fig. 11.6.8 Bandstop digital filter and its analog lowpass equivalent.

which may be solved as follows:

c = sin(ωpa +ωpb)
sinωpa + sinωpb

, Ωpass =
∣∣∣∣∣ sinωpb

cosωpb − c

∣∣∣∣∣
Next, we compute the two possible stopbands:

Ωsa = sinωsa

cosωsa − c , Ωsb = sinωsb

cosωsb − c
and define:

Ωstop = min
(|Ωsa|, |Ωsb|)

Then, use the analog specifications {Ωpass,Ωstop,Apass,Astop} to compute the But-
terworth parameters {N,Ω0}. And finally, transform the analog filter sections into
fourth-order sections by Eq. (11.6.45):

Hi(z) = 1

1 − 2
s
Ω0

cosθi + s2

Ω2
0

∣∣∣∣∣∣∣∣∣
s= 1−z−2

1−2cz−1+z−2

= Gi(1 − 2cz−1 + z−2)2

1 + ai1z−1 + ai2z−2 + ai3z−3 + ai4z−4

where the coefficients are given for i = 1,2, . . . , K:

Gi = Ω2
0

1 − 2Ω0 cosθi +Ω0
2

ai1 = 4cΩ0(cosθi −Ω0)
1 − 2Ω0 cosθi +Ω0

2

ai3 = − 4cΩ0(cosθi +Ω0)
1 − 2Ω0 cosθi +Ω0

2

ai2 = 2(2c2Ω2
0 +Ω2

0 − 1)
1 − 2Ω0 cosθi +Ω0

2

ai4 = 1 + 2Ω0 cosθi +Ω2
0

1 − 2Ω0 cosθi +Ω0
2
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If N is odd, we also have a second-order section in z:

H0(z)= 1

1 + s
Ω0

∣∣∣∣∣∣∣∣
s= 1−z−2

1−2cz−1+z−2

= G0(1 − 2cz−1 + z−2)
1 + a01z−1 + a02z−2

where

G0 = Ω0

1 +Ω0
, a01 = − 2cΩ0

1 +Ω0
, a02 = −1 −Ω0

1 +Ω0

Note that each section has zeros at 1 − 2cz−1 + z−2 = 0, which correspond to the
anglesω = ±ωc, where cosωc = c. The 3-dB frequencies at the edges of the passbands
can be determined by solving for the positive solutions of the equations:

sinω0

cosω0 − c = ±Ω0

which give:

tan
(
ω0a

2

)
= tan

(
πf0a
fs

)
=
√

1 +Ω2
0(1 − c2)− 1

Ω0(1 + c)

tan
(
ω0b

2

)
= tan

(
πf0b
fs

)
=
√

1 +Ω2
0(1 − c2)+ 1

Ω0(1 + c)
Example 11.6.6: Using the bilinear transformation and a lowpass analog Butterworth proto-

type, design a bandstop digital filter operating at a rate of 20 kHz and having left and right
passband frequencies of 1.5 and 4.5 kHz, and left and right stopband frequencies of 2 and
4 kHz. The maximum passband attenuation is required to be 0.5 dB, and the minimum
stopband attenuation 10 dB.

Then, redesign it such that its magnitude response satisfies 1 ≥ |H(f)|2 ≥ 0.98 in the
passbands, and |H(f)|2 ≤ 0.02 in the stopband.

Solution: The digital passband and stopband frequencies are:

ωpa = 2πfpa
fs

= 2π · 1.5
20

= 0.15π,

ωsa = 2πfsa
fs

= 2π · 2

20
= 0.2π,

ωpb = 2πfpb
fs

= 2π · 4.5
20

= 0.45π

ωsb = 2πfsb
fs

= 2π · 4

20
= 0.4π

Then, we calculate c and Ωpass:

c = sin(ωpa +ωpb)
sinωpa + sinωpb

= 0.6597, Ωpass =
∣∣∣∣∣ sinωpb

cosωpb − c

∣∣∣∣∣ = 1.9626

Then, we calculate the stopband frequencies:

Ωsa = sinωsa

cosωsa − c = 3.9361, Ωsb = sinωsb

cosωsb − c = −2.7121
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and define Ωstop = min
(|Ωsa|, |Ωsb|) = 2.7121. The analog filter parameters are:

Nexact = 6.65, N = 7, Ω0 = 2.2808

The left-right 3-dB frequencies are calculated to be f0a = 1.6198 kHz, f0b = 4.2503 kHz.
The coefficients of the SOS and the three fourth-order sections of the digital filter are:

i Gi ai1 ai2 ai3 ai4
0 0.6952 −0.9172 0.3904
1 0.7208 −2.0876 2.4192 −1.7164 0.7187
2 0.5751 −1.9322 1.9301 −1.1026 0.3712
3 0.5045 −1.8570 1.6932 −0.8053 0.2029

The magnitude response of the designed filter is shown in the left graph of Fig. 11.6.9.

Fig. 11.6.9 Digital bandstop Butterworth filters.

For the second set of specifications, we have Apass = −10 log10(0.98)= 0.0877 dB, and
Astop = −10 log10(0.02)= 16.9897 dB. The design has the same c, Ωpass, and Ωstop, which
lead to the Butterworth parameters:

Nexact = 12.03, N = 13, Ω0 = 2.2795

The left-right 3-dB frequencies are now f0a = 1.6194 kHz, f0b = 4.2512 kHz. The digital
filter coefficients of the second- and fourth-order sections are:

i Gi ai1 ai2 ai3 ai4
0 0.6951 −0.9171 −0.3902
1 0.7703 −2.1401 2.5850 −1.9251 0.8371
2 0.6651 −2.0280 2.2319 −1.4820 0.5862
3 0.5914 −1.9495 1.9847 −1.1717 0.4105
4 0.5408 −1.8956 1.8148 −0.9584 0.2897
5 0.5078 −1.8604 1.7041 −0.8194 0.2110
6 0.4892 −1.8406 1.6415 −0.7410 0.1666

The magnitude response is shown on the right graph of Fig. 11.6.9. The rounding of the
exact N of 12.03 to 13 is perhaps overkill in this case. It causes the actual stopband
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attenuation at the right edge of the stopband to be A(Ωstop)= 19.67 dB, corresponding to
a magnitude square of 0.011 instead of the required 0.02.

For both designs, the “center” notch frequency of the stopband can be obtained by inverting
cosωc = c. In Hz, we have fc = fs arccos(c)/(2π)= 2.7069 kHz. 	


11.6.6 Chebyshev Filter Design∗

In designing the equivalent analog lowpass filters one can use alternative filter proto-
types, such as Chebyshev or elliptic filters [269–271]. For the same set of specifications,
they provide steeper transition widths and lead to smaller filter orders than the Butter-
worth filters.

Chebyshev filters come in two varieties. Type 1 has equiripple passband and mono-
tonic stopband, and type 2, also known as inverse Chebyshev, has equiripple stop-
band and monotonic passband. A typical Chebyshev magnitude response is shown in
Fig. 11.6.10.

|H(Ω )|2

1

|H(Ω )|2

1/(1+εpass
2 )

1/(1+εstop
2 )

Type 1

Apass

Ωpass Ωstop0

Ω

Astop

passband stopband

1

Type 2

Apass

Ωpass Ωstop
0

Ω

Astop

passband stopband

Fig. 11.6.10 Magnitude square responses of type 1 and type 2 Chebyshev filters.

It is the equiripple property that is responsible for the narrower transition widths of
these filters. For example, for the type 1 case, because the passband response is allowed
to go slightly up near the edge of the passband, it can fall off more steeply.

The specifications of the filter are {Ωpass,Ωstop,Apass,Astop} and are obtained by
prewarping the desired digital filter specifications using the appropriate bilinear trans-
formation (lowpass, highpass, bandpass, or bandstop). Two important design parame-
ters are the quantities {εpass, εstop} that were defined in Eq. (11.6.4), and are shown in
Figs. 11.6.1 and 11.6.10.

The magnitude response squared of an Nth order Chebyshev filter is expressible in
terms of these parameters as follows. For the type 1 case:

|H(Ω)|2 = 1

1 + ε2
passC

2
N

(
Ω
Ωpass

) (11.6.46)

and, for the type 2 case:
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|H(Ω)|2 =
C2
N

(Ωstop

Ω

)
C2
N

(Ωstop

Ω

)
+ ε2

stop

(11.6.47)

where CN(x) is the Chebyshev polynomial [272] of degree N, defined by

CN(x)=
{

cos
(
N cos−1(x)

)
, if |x| ≤ 1

cosh
(
N cosh−1(x)

)
, if |x| > 1

(11.6.48)

Chebyshev polynomials can be understood by defining the angle θ = cos−1 x, so that
x = cosθ and CN(x)= cos(Nθ). When |x| > 1, the equation x = cosθ requires θ to be
imaginary, say θ = jβ, so that x = cos(jβ)= cosh(β) and

CN(x)= cos(Nθ)= cos(Njβ)= cosh(Nβ)= cosh(N cosh−1 x)

Using trigonometric identities, it can be shown that cos(Nθ) is expressible as an
Nth order polynomial in cosθ, that is,

cos(Nθ)=
N∑
i=0

ci(cosθ)i

The ci are the coefficients of the Chebyshev polynomials:

CN(x)=
N∑
i=0

cixi

For example, we have C1(x)= cosθ = x, and

cos(2θ) = 2 cos2 θ− 1

cos(3θ) = 4 cos3 θ− 3 cosθ

cos(4θ) = 8 cos4 θ− 8 cos2 θ+ 1

⇒
C2(x) = 2x2 − 1

C3(x) = 4x3 − 3x

C4(x) = 8x4 − 8x2 + 1

The following routine cheby.c returns the value of the Nth order Chebyshev poly-
nomial for non-negative values of x and can be used in the numerical evaluation of the
magnitude responses:

/* cheby.c - Chebyshev polynomial CN(x) */

#include <math.h>

double cheby(N, x) usage: y = cheby(N, x);

int N; N = polynomial order

double x; x must be non-negative

{
if (x <= 1)

return cos(N * acos(x));
else

return cosh(N * log(x + sqrt(x*x-1)));
}
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For x > 1, the values are computed by the alternative expression:

cosh(N cosh−1 x)= cosh
(
N ln

(
x+

√
x2 − 1

))
Next, we consider the details of the type 1 case. The argument ofCN(x) in Eq. (11.6.46)

is x = Ω/Ωpass. Therefore, within the passband range 0 ≤ Ω ≤ Ωpass we have 0 ≤ x ≤ 1,
which makes CN(x) oscillatory and results in the passband ripples.

Within the passband, the magnitude response remains bounded between the values
1 and 1/(1 + ε2

pass). At the edge of the passband, corresponding to x = Ω/Ωpass = 1,
we have CN(x)= 1, giving the value |H(Ωpass)|2 = 1/(1 + ε2

pass). The value at Ω = 0
depends on N. Because CN(0) equals zero for odd N and unity for even N, we have:

|H(0)|2 = 1 (odd N), |H(0)|2 = 1

1 + ε2
pass

(even N) (11.6.49)

The order N can be determined by imposing the stopband specification, that is,
|H(Ω)|2 ≤ 1/(1 + ε2

stop) for Ω ≥ Ωstop. Because of the monotonicity of the stopband,
this condition is equivalent to the stopband edge condition:

|H(Ωstop)|2 = 1

1 + ε2
stop

Using Eq. (11.6.46), we obtain:

1

1 + ε2
pass cosh2(N cosh−1(Ωstop/Ωpass)

) = 1

1 + ε2
stop

which gives:

cosh
(
N cosh−1(Ωstop/Ωpass)

) = εstop/εpass ⇒ cosh(N cosh−1w)= e

where, as in Eq. (11.6.11), we used the stopband to passband ratios:

e = εstop

εpass
=
√

10Astop/10 − 1

10Apass/10 − 1
, w = Ωstop

Ωpass
(11.6.50)

Thus, solving for N, we find:

Nexact = cosh−1 e
cosh−1w

= ln
(
e+√

e2 − 1
)

ln
(
w+√

w2 − 1
) (11.6.51)

The final value of N is obtained by rounding Nexact up to the next integer, that is,
N = ⌈

Nexact
⌉
. As in the Butterworth case, increasing N slightly from its exact value

results in a slightly better stopband than required, that is, |H(Ωstop)|2 < 1/(1+ ε2
stop).

The 3-dB frequency can be calculated by requiring |H(Ω)|2 = 1/2, which can be solved
to give:

1

1 + ε2
passC

2
N(Ω3dB/Ωpass)

= 1

2
⇒ cosh

(
N cosh−1(Ω3dB/Ωpass)

) = 1

εpass

or,
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tan

(
πf3dB

fs

)
= Ω3dB = Ωpass cosh

(
1

N
cosh−1( 1

εpass

))
(11.6.52)

The transfer function H(s) of the Chebyshev filter can be constructed by determin-
ing the left-hand-plane poles of Eq. (11.6.46) and pairing them in conjugate pairs to form
second-order sections. These conjugate pairs are {si, s∗i }, where

si = Ωpass sinha cosθi + jΩpass cosha sinθi, i = 1,2, . . . , K (11.6.53)

where N = 2K or N = 2K + 1. In the odd case, there is also a real pole at

s0 = −Ωpass sinha (11.6.54)

where the parameter a is the solution of

sinh(Na)= 1

εpass
(11.6.55)

that is,

a = 1

N
sinh−1

(
1

εpass

)
= 1

N
ln

(
1

εpass
+
√

1

ε2
pass

+ 1

)
(11.6.56)

The angles θi are the same as the Butterworth angles of Eq. (11.6.17):

θi = π
2N

(N − 1 + 2i) , i = 1,2, . . . , K (11.6.57)

The second-quadrant values of these angles place the si in the left-hand s-plane. The
second-order sections are then:

Hi(s)= 1(
1 − s

si

)(
1 − s

s∗i

) = |si|2
s2 − (2Resi)s+ |si|2

For convenience, we define the parameters:

Ω0 = Ωpass sinha, Ωi = Ωpass sinθi , i = 1,2, . . . , K (11.6.58)

Then, we may express the second-order sections in the form:

Hi(s)= Ω2
0 +Ωi2

s2 − 2Ω0 cosθi s+Ω2
0 +Ωi2

, i = 1,2, . . . , K (11.6.59)

The first-order factor H0(s) is defined by

H0(s)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

1

1 + ε2
pass

if N is even, N = 2K

Ω0

s+Ω0
if N is odd, N = 2K + 1

(11.6.60)

If N is odd, all filter sections are normalized to unity gain at DC, as required by
Eq. (11.6.49). If N is even, the overall gain is 1/(1+ ε2

pass)1/2. It follows that the overall
transfer function will be the cascade:
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H(s)= H0(s)H1(s)H2(s)· · ·HK(s) (11.6.61)

Next, we verify that the poles are properly given by Eq. (11.6.53). Replacing s = jΩ
orΩ = −js into Eq. (11.6.46), we see that the zeros of the denominator are the solutions
of the equation:

1 + ε2
pass cosh2(N cosh−1(−js/Ωpass)

) = 0 , or

cosh
(
N cosh−1(−js/Ωpass)

) = ±j
εpass

(11.6.62)

Replacing θi = φi +π/2, where φi = (2i− 1)π/(2N), into Eq. (11.6.53), we find

−jsi/Ωpass = cosha sinθi − j sinha cosθi = cosha cosφi + j sinha sinφi

Using the trigonometric identity

cosh(x+ jy)= coshx cosy + j sinhx siny

we find

−jsi/Ωpass = cosh(a+ jφi) ⇒ cosh−1(−jsi/Ωpass)= a+ jφi
and therefore,

cosh
(
N cosh−1(−jsi/Ωpass)

) = cosh(Na+ jNφi)

= cosh(Na)cos(Nφi)+j sinh(Na)sin(Nφi)= ±j
εpass

where we used cos(Nφi)= cos
(
(2i− 1)π/2

) = 0, sin(Nφi)= sin
(
(2i− 1)π/2

) = ±1,
and Eq. (11.6.55). Thus, the si are solutions of the root equation Eq. (11.6.62).

Once the analog transfer function is constructed, each second-order section may
be transformed into a digital second-order section by the appropriate bilinear trans-
formation. For example, applying the lowpass version of the bilinear transformation
s = (1 − z−1)/(1 + z−1), we find the digital transfer function:

H(z)= H0(z)H1(z)H2(z)· · ·HK(z) (11.6.63)

where Hi(z) are the transformations of Eq. (11.6.59):

Hi(z)= Gi(1 + z−1)2

1 + ai1z−1 + ai2z−2
, i = 1,2, . . . , K (11.6.64)

where the coefficients are computed in terms of the definitions Eq. (11.6.58):

Gi = Ω2
0 +Ωi2

1 − 2Ω0 cosθi +Ω2
0 +Ωi2

ai1 = 2(Ω2
0 +Ωi2 − 1)

1 − 2Ω0 cosθi +Ω2
0 +Ωi2

ai2 = 1 + 2Ω0 cosθi +Ω2
0 +Ωi2

1 − 2Ω0 cosθi +Ω2
0 +Ωi2

(11.6.65)
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The first-order factor is given by

H0(z)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

1

1 + ε2
pass

if N is even

G0(1 + z−1)
1 + a01z−1

if N is odd

(11.6.66)

where

G0 = Ω0

Ω0 + 1
, a01 = Ω0 − 1

Ω0 + 1
(11.6.67)

Example 11.6.7: Using the bilinear transformation and a lowpass analog Chebyshev type 1
prototype, design a lowpass digital filter operating at a rate of 20 kHz and having passband
extending to 4 kHz with maximum passband attenuation of 0.5 dB, and stopband starting
at 5 kHz with a minimum stopband attenuation of 10 dB.

Then, redesign it such that its magnitude response satisfies 1 ≥ |H(f)|2 ≥ 0.98 in the
passband, and |H(f)|2 ≤ 0.02 in the stopband.

Solution: The specifications and the prewarped digital frequencies are the same as in Example
11.6.3, that is, Ωpass = 0.7265 and Ωstop = 1.

We calculate εpass = 0.3493 and εstop = 3 and the quantities in Eq. (11.6.50) e = εstop/εpass =
8.5883, w = Ωstop/Ωpass = 1.3764. Then, Eq. (11.6.51) gives Nexact = 3.37, which is
rounded up to N = 4. Thus, there are K = 2 second-order sections. The 3-dB frequency
can be calculated by inverting the bilinear transformation and Eq. (11.6.52):

tan

(
πf3dB

fs

)
= Ω3dB = Ωpass cosh

(
1

N
cosh−1( 1

εpass

))

which gives f3dB = 4.2729 kHz. The actual stopband attenuation is larger than Astop

because of the increased value of N. We calculate:

A(Ωstop)= 10 log10

(
1 + ε2

passC
2
N(Ωstop/Ωpass)

) = 14.29 dB

The parameter a is calculated from Eq. (11.6.55) to be a = 0.4435. Then, the coefficients
of the digital filter are calculated from Eqs. (11.6.65) and (11.6.67), resulting in the transfer
function:

H(z)= 0.9441 · 0.3091(1 + z−1)2

1 − 0.4830z−1 + 0.7194z−2
· 0.1043(1 + z−1)2

1 − 0.9004z−1 + 0.3177z−2

The magnitude response squared is shown in the left graph of Fig. 11.6.11. It was computed
by inserting the bilinear transformation into Eq. (11.6.46) and evaluating it with cheby, that
is,

|H(f)|2 = 1

1 + ε2
pass

(
cheby(N, tan(πf/fs)/Ωpass)

)2

For the more stringent specifications, we have Apass = 0.08774 dB and Astop = 16.9897
dB. We calculate the parameters:
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Fig. 11.6.11 Digital lowpass Chebyshev type 1 filters.

εpass = 0.1429, εstop = 7, Nexact = 5.44, N = 6, a = 0.4407

The 3-dB frequency is found to be f3dB = 4.2865 kHz. The actual stopband attenuation is
A(Ωstop)= 21.02 dB, instead of the nominal one of Astop = 16.9897 dB. The digital filter
coefficients are then:

i Gi ai1 ai2
0 0.9899
1 0.3394 −0.4492 0.8069
2 0.2028 −0.6809 0.4920
3 0.0811 −0.9592 0.2837

The gain factor G0 represents here the overall gain 1/
√

1 + ε2
pass = √

0.98 = 0.9899. The
magnitude response is shown in the right graph of Fig. 11.6.11. By comparison, recall that
the two Butterworth filters of Example 11.6.3 had filter orders of 7 and 13, respectively. 	


Example 11.6.8: Redesign the highpass digital filters of Example 11.6.4 using a Chebyshev type
1 analog lowpass prototype filter.

Solution: The equivalent analog lowpass specifications {Ωpass,Ωstop,Apass,Astop} are the same
as in Example 11.6.4. We have Ωpass = 1 and Ωstop = 1.3764. Based on the first set of
specifications, we find the Chebyshev design parameters:

εpass = 0.3493, εstop = 3, Nexact = 3.37, N = 4, a = 0.4435

and based on the second set:

εpass = 0.1429, εstop = 7, Nexact = 5.44, N = 6, a = 0.4407

The 3-dB frequencies can be calculated by inverting:

cot

(
πf3dB

fs

)
= Ω3dB = Ωpass cosh

(
1

N
cosh−1( 1

εpass

))
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which gives for the two specification sets: f0 = 4.7170 and 4.7031 kHz. The actual stop-
band attenuations attained by the designed filter are in the two cases: A(Ωstop)= 14.29
and 21.02 dB.

The digital transfer functions are obtained by transforming the analog filter sections by
the highpass bilinear transformation s = (1 + z−1)/(1 − z−1).

The digital filter coefficients are obtained from Eqs. (11.6.65) and (11.6.67) by changing the
sign of the ai1 coefficients. We have for the two specification sets:

i Gi ai1 ai2
0 0.9441
1 0.4405 −0.0526 0.7095
2 0.1618 0.5843 0.2314

i Gi ai1 ai2
0 0.9899
1 0.4799 −0.1180 0.8017
2 0.3008 0.2492 0.4524
3 0.1273 0.6742 0.1834

Thus, for example, the first transfer function will be:

H(z)= 0.9441 · 0.4405(1 − z−1)2

1 − 0.0526z−1 + 0.7095z−2
· 0.1618(1 − z−1)2

1 + 0.5843z−1 + 0.2314z−2

The designed magnitude responses are shown in Fig. 11.6.12. 	


Fig. 11.6.12 Digital highpass Chebyshev type 1 filters.

Next, we discuss type 2 Chebyshev filters. The argument of the Chebyshev polynomi-
als in Eq. (11.6.47) is now x = Ωstop/Ω. Therefore, the stopband range Ω ≥ Ωstop maps
to 0 ≤ x ≤ 1 where the Chebyshev polynomial is oscillatory resulting in the stopband
ripples.

At the edge of the stopband, Ω = Ωstop, we have x = 1, CN(x)= 1, and magnitude

response equal to |H(Ωstop)|2 = 1/
√

1 + ε2
stop. At large frequencies, Ω → ∞, we have

x → 0. Because the value of CN(0) depends on N being zero for odd N and unity for
even N, it follows that the magnitude response will either tend to zero for odd N or to

1/
√

1 + ε2
stop for even N.

The zero frequency Ω = 0 corresponds to the limit x→ ∞ which causes the Cheby-
shev polynomials to grow like a power xN. It follows that the numerator and denom-
inator of the magnitude response (11.6.47) will both diverge but in such a way that
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|H(0)|2 = 1. Thus, type 2 filters are always normalized to unity at DC. The filter order
N can be determined by requiring the passband specification:

|H(Ωpass)|2 =
C2
N

(
Ωstop

Ωpass

)

C2
N

(
Ωstop

Ωpass

)
+ ε2

stop

= 1

1 + ε2
pass

It has the same solution Eq. (11.6.51) as the type 1 case. Once N is fixed, the 3-dB
frequency can be obtained by solving |H(Ω3dB)|2 = 1/2 which gives the solution:

Ω3dB = Ωstop

cosh
( 1

N
cosh−1(εstop)

) (11.6.68)

Because of the non-trivial numerator in Eq. (11.6.47), the filter will have both zeros
and poles. They are solutions of the following equations obtained by replacingΩ = −js:

cosh2

(
N cosh−1(Ωstop

−js
)) = 0, cosh2

(
N cosh−1( jΩstop

−js
))+ ε2

stop = 0

The zeros are the conjugate pairs {zi, z∗i }:

zi = jΩstop

sinθi
, i = 1,2, . . . , K (11.6.69)

where N = 2K or N = 2K + 1. The poles are essentially the reciprocals of the type 1
poles, that is, the pairs {si, s∗i }:

si = Ωstop

sinha cosθi + j cosha sinθi
, i = 1,2, . . . , K (11.6.70)

In the odd-N case, there is also a real pole at

s0 = − Ωstop

sinha
(11.6.71)

where the parameter a is the solution of

sinh(Na)= εstop (11.6.72)

that is,

a = 1

N
sinh−1(εstop)= 1

N
ln
(
εstop +

√
ε2

stop + 1
)

(11.6.73)

The angles θi are the same as in the type 1 case and given by Eq. (11.6.57). The
second-order sections are formed by pairing the zeros and poles in conjugate pairs:

Hi(s)=

(
1 − s

zi

)(
1 − s

z∗i

)
(

1 − s
si

)(
1 − s

s∗i

) (11.6.74)
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For convenience, we define the parameters:

Ω0 = Ωstop

sinha
, Ωi = Ωstop

sinθi
, i = 1,2, . . . , K (11.6.75)

Then, we may express the second-order sections in the form:

Hi(s)= 1 +Ωi−2s2

1 − 2Ω−1
0 cosθi s+ (Ω−2

0 +Ωi−2)s2
, i = 1,2, . . . , K (11.6.76)

The first-order factor H0(s) is defined by

H0(s)=
⎧⎪⎨⎪⎩

1, if N is even
Ω0

Ω0 + s , if N is odd
(11.6.77)

Again, all filter sections are normalized to unity gain at DC. Under the bilinear trans-
formation s = (1− z−1)/(1+ z−1), the analog sections transform to digital versions of
the form:

Hi(z)= Gi(1 + bi1z−1 + z−2)
1 + ai1z−1 + ai2z−2

, i = 1,2, . . . , K (11.6.78)

where the coefficients are computed in terms of the definitions in Eq. (11.6.75):

Gi = 1 +Ωi−2

1 − 2Ω−1
0 cosθi +Ω−2

0 +Ωi−2 , bi1 = 2
1 −Ωi−2

1 +Ωi−2

ai1 = 2(1 −Ω−2
0 −Ωi−2)

1 − 2Ω−1
0 cosθi +Ω−2

0 +Ωi−2

ai2 = 1 + 2Ω−1
0 cosθi +Ω−2

0 +Ωi−2

1 − 2Ω−1
0 cosθi +Ω−2

0 +Ωi−2

(11.6.79)

The first-order factor, if present, is given by

H0(z)= G0(1 + z−1)
1 + a01z−1

(11.6.80)

where

G0 = Ω0

Ω0 + 1
, a01 = Ω0 − 1

Ω0 + 1
(11.6.81)

The overall digital transfer function is then:

H(z)= H0(z)H1(z)H2(z)· · ·HK(z) (11.6.82)

Example 11.6.9: Redesign the two filters of Example 11.6.7 using a type 2 Chebyshev design.

Solution: The values of εpass, εstop, Nexact, N remain the same as in Example 11.6.7. The pa-
rameter a, calculated from Eq. (11.6.73), is for the two specification sets: a = 0.4546 and
0.4407.
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The actual passband attenuations are slightly higher than the specified ones. Evaluating
Eq. (11.6.47) for the two designs, we find the values A(Ωpass)= 0.18 and 0.03 dB, instead
of the required ones 0.5 and 0.08774. The 3-dB frequencies are obtained by inverting:

tan

(
πf3dB

fs

)
= Ω3dB = Ωstop

cosh
( 1

N
cosh−1(εstop)

)
which gives the values f3dB = 4.7009 and 4.7031 kHz. For the first specification set, we have
two second-order sections whose coefficients are calculated from Eq. (11.6.79), resulting
in the transfer function:

H(z)= 0.7612(1 + 0.1580z−1 + z−2)
1 − 0.0615z−1 + 0.7043z−2

· 0.5125(1 + 1.4890z−1 + z−2)
1 + 0.5653z−1 + 0.2228z−2

For the second specification set, we have three sections with coefficients:

i Gi bi1 ai1 ai2
1 0.8137 0.0693 −0.1180 0.8017
2 0.6381 0.6667 0.2492 0.4524
3 0.4955 1.7489 0.6742 0.1834

The designed magnitude responses are shown in Fig. 11.6.13. 	


Fig. 11.6.13 Digital lowpass Chebyshev type 2 filters.

The Chebyshev filter can also be transformed by the bandpass or bandstop versions
of the bilinear transformation to design bandpass or bandstop digital filters. For exam-
ple, transforming a type 2 filter by the bandpass transformation in Eq. (11.1.5) gives rise
to fourth-order sections of the form:

Hi(z)= Gi 1 + bi1z−1 + bi2z−2 + bi1z−3 + z−4

1 + ai1z−1 + ai2z−2 + ai3z−3 + ai4z−4
, i = 1,2, . . . , K (11.6.83)

where by symmetry, the numerator coefficients of z−1 and z−3 are the same. The coef-
ficients are given by:
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Gi = 1 +Ωi−2

1 − 2Ω−1
0 cosθi +Ω−2

0 +Ωi−2

bi1 = − 4cΩi−2

1 +Ωi−2 , bi2 = 2
(
Ωi−2(2c2 + 1)−1

)
1 +Ωi−2

ai1 = 4c
(
Ω−1

0 cosθi −Ω−2
0 −Ωi−2)

1 − 2Ω−1
0 cosθi +Ω−2

0 +Ωi−2 , ai2 = 2
(
(Ω−2

0 +Ωi−2)(2c2 + 1)−1
)

1 − 2Ω−1
0 cosθi +Ω−2

0 +Ωi−2

ai3 = − 4c
(
Ω−1

0 cosθi +Ω−2
0 +Ωi−2)

1 − 2Ω−1
0 cosθi +Ω−2

0 +Ωi−2 , ai4 = 1 + 2Ω−1
0 cosθi +Ω−2

0 +Ωi−2

1 − 2Ω−1
0 cosθi +Ω−2

0 +Ωi−2

IfN is odd, the first-order analog sectionH0(s) is transformed to the same quadratic
section H0(z) given in Section 11.6.4. Similarly, applying the bandstop transformation
of Eq. (11.6.45), the type 2 Chebyshev second-order sections in s are transformed into
fourth-order sections in z in the same form of Eq. (11.6.83), but with coefficients given
by:

Gi = 1 +Ωi−2

1 − 2Ω−1
0 cosθi +Ω−2

0 +Ωi−2

bi1 = − 4c
1 +Ωi−2 , bi2 = 2

(
2c2 + 1 −Ωi−2)

1 +Ωi−2

ai1 = − 4c
(
1 −Ω−1

0 cosθi
)

1 − 2Ω−1
0 cosθi +Ω−2

0 +Ωi−2 , ai2 = 2
(
2c2 + 1 −Ω−2

0 −Ωi−2)
1 − 2Ω−1

0 cosθi +Ω−2
0 +Ωi−2

ai3 = − 4c
(
1 +Ω−1

0 cosθi
)

1 − 2Ω−1
0 cosθi +Ω−2

0 +Ωi−2 , ai4 = 1 + 2Ω−1
0 cosθi +Ω−2

0 +Ωi−2

1 − 2Ω−1
0 cosθi +Ω−2

0 +Ωi−2

The first-order sectionH0(s) transforms to the sameH0(z) as that of Section 11.6.5,
but with Ω0 given by Eq. (11.6.75).

Example 11.6.10: Redesign the bandpass digital filters of Example 11.6.5 using a type 2 Cheby-
shev analog prototype.

Solution: The prewarped frequencies and bilinear transformation parameter c are as in that
example: Ωpass = 0.3249, Ωstop = 0.4674, c = 0.6180.

The Chebyshev design parameters are for the two specification sets:

εpass = 0.3493, εstop = 3, Nexact = 3.14, N = 4, a = 0.4546

εpass = 0.1429, εstop = 7, Nexact = 5.07, N = 6, a = 0.4407

For the first set, there are two fourth-order sections with coefficients:

i Gi bi1 bi2 ai1 ai2 ai3 ai4
1 0.7334 −1.9684 2.4015 −1.9604 2.2956 −1.6758 0.7697
2 0.3677 −0.9922 0.2187 −1.4221 0.8671 −0.4101 0.1813
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For the second set, there are three fourth-order sections:

i Gi bi1 bi2 ai1 ai2 ai3 ai4
1 0.7840 −2.0032 2.4793 −2.0118 2.4413 −1.8265 0.8501
2 0.5858 −1.7205 1.8472 −1.7286 1.6780 −1.1223 0.5094
3 0.3159 −0.5802 −0.7026 −1.3122 0.5868 −0.1879 0.0904

The designed magnitude responses are shown in Fig. 11.6.14. 	


Fig. 11.6.14 Digital bandpass Chebyshev type 2 filters.

Example 11.6.11: Redesign the bandstop digital filters of Example 11.6.6 using a type 2 Cheby-
shev analog prototype.

Solution: The prewarped frequencies and bilinear transformation parameter c are as in that
example: Ωpass = 1.9626, Ωstop = 2.7121, c = 0.6597.

For the two specification sets, the exact Chebyshev orders are Nexact = 3.35 and 5.40,
which round up toN = 4 and 6, respectively. The other Chebyshev parameters remain the
same as in Example 11.6.10. For the first set, the fourth-order sections have coefficients:

i Gi bi1 bi2 ai1 ai2 ai3 ai4
1 0.8727 −2.3644 3.1438 −2.2003 2.6965 −1.9264 0.7924
2 0.7442 −2.5872 3.6287 −2.2339 2.6565 −1.6168 0.5323

For the second set, there are three fourth-order sections:

i Gi bi1 bi2 ai1 ai2 ai3 ai4
1 0.9074 −2.3417 3.0945 −2.2171 2.7626 −2.0326 0.8601
2 0.8009 −2.4708 3.3754 −2.2137 2.6612 −1.7441 0.6441
3 0.7412 −2.6149 3.6889 −2.2524 2.6929 −1.6241 0.5238

The designed magnitude responses are shown in Fig. 11.6.15. 	
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Fig. 11.6.15 Digital bandstop Chebyshev type 2 filters.

11.7 Problems

11.1 Consider the peaking filter of Eq. (11.3.21). Derive an analytical expression for its impulse
response h(n) in terms of the parametersω0 and Δω. Show that its transient (ε-level) time
constant is given by:

neff = ln ε
lnρ

, ρ =
√

1 − β
1 + β

11.2 Consider the peaking filter of Eq. (11.3.21). Taking the limit Δω → 0 and keeping only the
lowest-order terms in Δω, show that the pole radius R is related approximately to Δω by
Eq. (6.4.4), that is, Δω � 2(1 −R). Show also that neff � −2 ln ε/Δω.

11.3 Verify the complementarity properties for the filters of Eqs. (11.3.7) and (11.3.21):

Hnotch(z)+Hpeak(z)= 1, |Hnotch(ω)|2 + |Hpeak(ω)|2 = 1, (when G2
B = 1/2)

11.4 Consider the three choices for the bandwidth reference gain in parametric equalizer filters:
G2
B = (G2

0 +G2)/2 (arithmetic mean), G2
B = G0G (geometric mean), and G2

B = 2G2
0G2/(G2

0 +
G2) (harmonic mean). For each case, discuss how the design parameter β of Eq. (11.4.6)
simplifies. For the geometric mean case [268], show that if you design two boost and
cut digital filters centered at the same frequency and having equal bandwidths and equal
and opposite boost/cut gains (in dB), then their magnitude responses will be related by
|Hboost(ω)|2|Hcut(ω)|2 = G4

0. Show that the more general weighted geometric mean choice
G2
B = G1−c

0 G1+c, 0 ≤ c < 1 also satisfies this property.

11.5 Computer Experiment: Peaking and Notching Filters. Reproduce the results and graphs of
Example 11.3.1. Plot also the phase responses of all the filters. For each filter, draw its
canonical realization and write the corresponding sample processing algorithm. (You may
use the MATLAB function parmeq.m to design them.)

Calculate the 5% time constants of the filters. Send a unit impulse δ(n) into the input and
calculate and plot the impulse responses h(n) of these filters. You must compute h(n) for
a period of at least two 5% time constants. (You may use the routines sos.c or sos.m to
implement them.)

11.6 Computer Experiment: Parametric EQ Filter Design. Reproduce the results and graphs of
Examples 11.4.1 and 11.4.2. Plot also the phase responses of all the filters. (You may use
the MATLAB function parmeq.m to design them.)
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For the filters of Example 11.4.1, compute their 5% time constants and compute and plot
their impulse responses h(n) versus n.

11.7 Computer Experiment: Lowpass/Highpass EQ Filters. Write a MATLAB function (similar
to parmeq.m) to design the lowpass or highpass shelving equalizer filters defined by Eqs.
(11.4.9) and (11.4.11).

Use the function to reproduce the results and graphs of Examples 11.2.1 and 11.2.2.

11.8 Computer Experiment: Periodic Comb/Notch Parametric EQ Design. Reproduce the results
and graphs of Example 11.5.1. Plot also the phase responses of all the filters. (You may use
the MATLAB function combeq.m to design them.)

Write a C or MATLAB function, say combfilt, that implements the sample processing algo-
rithm of the time domain operation of the comb filter. It must have usage:

y = combfilt(a, b, c, D, w, x); (C version)

[y, w] = combfilt(a, b, c, D, w, x); (MATLAB version)

where w is the (D+1)-dimensional delay-line buffer, and {x, y} are the input and output
samples. The parameters {a,b, c} are generated by combeq. For the C case, you may use a
circular buffer. Using this function, calculate and plot the impulse response h(n) of all the
designed filters.

11.9 The passband and stopband specifications are defined somewhat differently in FIR and IIR
designs. Discuss these differences and explain why the parameter sets {δpass, δstop} of
Eq. (10.2.5) and {εpass, εstop} of Eq. (11.6.4) are appropriate for FIR and IIR designs.

11.10 The parametersN andΩ0 of an analog Butterworth filter are determined by solving the two
specification equations A(Ωpass)= Apass, A(Ωstop)= Astop. The resulting filter order is then
rounded up to the next integer value N.

Using this slightly larger N, show that if Ω0 is found from the passband specification, that
is, by solving A(Ωpass)= Apass, then the stopband specification is more than satisfied, that
is, A(Ωstop)> Astop.

Similarly, show that if we find Ω0 from the stopband specification A(Ωstop)= Astop, then
the passband specification is more than satisfied, that is, A(Ωpass)< Apass.

11.11 Using the bilinear transformation and a lowpass analog Butterworth prototype filter, design
a lowpass digital filter operating at a rate of 40 kHz and having the following specifications:
fpass = 10 kHz, Apass = 3 dB, fstop = 15 kHz, Astop = 35 dB. Carry out all the design steps by
hand.

Draw the cascade realization form and write the difference equations and the corresponding
sample processing algorithm implementing this realization in the time domain.

11.12 Using the bilinear transformation method and a Butterworth lowpass analog prototype, de-
sign (by hand) a digital highpass filter operating at a rate of 10 kHz and having passband
and stopband frequencies of 3 kHz and 2 kHz, respectively. The maximum passband and
minimum stopband attenuations are required to be 0.5 dB and 10 dB respectively.

a. What are the actual maximum passband and minimum stopband attenuations in dB
achieved by the designed filter?

b. Draw the cascade realization and write the corresponding difference equations de-
scribing the time-domain operation of the filter.

c. Give a simple closed-form expression of the magnitude response of the designed fil-
ter as a function of the variable cot(ω/2). Sketch the magnitude response over the
frequency interval 0 ≤ f ≤ 20 kHz.
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11.13 Show that the generalized bilinear transformation

s = 1 − 2cz−1 + z−2

1 − z−2
(11.7.1)

maps the left-hand s-plane onto the inside of the unit circle of the z-plane, provided the real
constant c is such that |c| ≤ 1.

11.14 In the design of bandpass/bandstop filters, we found that the constant c of the generalized
bilinear transformation of Eq. (11.7.1) was given by an expression of the form:

c = sin(ω1 +ω2)
sin(ω1)+ sin(ω2)

Show that it satisfies the stability condition |c| ≤ 1, regardless of the values of ω1 and ω2

in the interval [0,π].

11.15 Using a third-order analog lowpass Butterworth prototype filter and the bandpass bilinear
transformation of Eq. (11.7.1), design a digital bandpass filter operating at 20 kHz and having
attenuation of 0.5 dB at the frequencies 2 kHz and 8 kHz.

What is the transfer function of the designed filter? What are the upper and lower 3-dB
frequencies of this filter? What is its center frequency in kHz? Sketch roughly the magnitude
response over the range 0 ≤ f ≤ 30 kHz.

11.16 Carry out the algebra in Eq. (11.6.23) to show the coefficient equations (11.6.24) for designing
a digital lowpass Butterworth filter. Verify also Eq. (11.6.26).

Repeat for the highpass case, Eqs. (11.6.32)—(11.6.35). Repeat for the bandpass case, Eqs.
(11.6.40)–(11.6.43).

11.17 Prove Eqs. (11.6.44) for the left and right 3-dB frequencies of a bandpass Butterworth design.

11.18 The bandpass and bandstop Butterworth designs discussed in Sections 11.6.4 and 11.6.5
match the passband specifications exactly and use the more conservative of the two stop-
bands. Instead, if we were to match the stopbands exactly and use the more conservative
passband, what changes in the design procedure should we make?

11.19 Carry out the algebra of the bilinear transformation to verify the design equations of Eqs.
(11.6.65) and (11.6.79) for designing digital lowpass type 1 and type 2 Chebyshev filters.

11.20 Equations (11.6.53) and (11.6.58) define the Chebyshev poles si and the quantities {Ω0,Ωi}.
Show that they satisfy the following relationship, which is used in the second-order Cheby-
shev sections (11.6.59):

|si|2 = Ω2
0 +Ωi2

11.21 The IIR cascade filtering routines cas.c or cas.m are appropriate for cascading second-
order sections and can be used in the lowpass and highpass designs. In bandpass and
bandstop designs, however, we have the cascade of fourth-order sections whose coefficients
are stored in the K×5 matrices A and B that are generated by the filter design functions,
such as bpcheb2.m, where K is the number of fourth-order sections.

Write C and/or MATLAB versions of the routine cas, say cas4, that works with fourth-order
sections. Its inputs must be the matrices A and B, a K×5 state matrix W whose rows are
the state vectors of the cascaded fourth-order sections, and the current input sample x. Its
outputs must be the current output sample y and the updated state matrixW. It must have
usage:
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y = cas4(K, B, A, W, x); (C version)

[y, W] = cas4(K, B, A, W, x); (MATLAB version)

It must call K times a single fourth-order section routine, like the sos routine. Then, write
C and/or MATLAB filtering routines, like casfilt of Problem 7.15, that can filter a vector of
input samples producing a vector of output samples.

11.22 Computer Experiment: Butterworth Digital Filter Designs. Reproduce all the results and
graphs of the lowpass, highpass, bandpass, and bandstop Butterworth design Examples
11.6.3–11.6.6. You may use the MATLAB functions lhbutt.m and bpsbutt.m to design
the filters.

For each design, also do the following: Plot the phase response of the filter. Compute the
filter’s 5% time constant (you will need to use MATLAB’s root finder roots). Then, using
the routines cas.c or cas.m, (or cas4.c, cas4.m of Problem 11.21), compute and plot the
impulse response h(n) of the filter over a period lasting two time constants.

11.23 Computer Experiment: Chebyshev Digital Filter Designs. Reproduce all the results and graphs
of the lowpass, highpass, bandpass, and bandstop Chebyshev design Examples 11.6.7–11.6.11.
You may use the MATLAB functions lhcheb1, lhcheb2, bpcheb2, and bscheb2 to design the
filters.

For each design, also do the following: Plot the phase response of the filter. Compute the
filter’s 5% time constant. Then, compute and plot the impulse response h(n) of the filter
over a period lasting two time constants.

Since the specifications of the filters are the same as those of Problem 11.22, compare the
Butterworth and Chebyshev designs in terms of their order N and their phase response.

In both problems, the frequency responses can be computed with the included MATLAB
functions cas2can and dtft. For example, the frequency response of a type 2 bandstop
design can be computed as follows:

[A, B, P] = bscheb2(fs, fpa, fpb, fsa, fsb, Apass, Astop);
a = cas2can(A); direct-form denominator

b = cas2can(B); direct-form numerator

w = (0:NF-1) * pi / NF; NF frequencies over [0,π]
H = dtft(b, w) ./ dtft(a, w); compute H(ω) = N(ω)/D(ω)



12
Interpolation, Decimation, and

Oversampling

12.1 Interpolation and Oversampling

Sampling rate changes are useful in many applications, such as interconnecting digital
processing systems operating at different rates [273–276]. Sampling rate increase is ac-
complished by interpolation, that is, the process of inserting additional samples between
the original low-rate samples. The inserted, or interpolated, samples are calculated by
an FIR digital filter.† This is illustrated in Fig. 12.1.1 for the case of a 4-fold interpolator
which increases the sampling rate by a factor of four, that is, fs′ = 4fs.

FIR
interpolation

filter

ttt

T T′=T/4 T′=T/4

low rate
fs

high rate
4fs

upsampler high rate
4fs

4

Fig. 12.1.1 Sampling rate increase with digital interpolation.

With respect to the fast time scale, the low-rate samples may be thought of as being
separated by three zero samples. The 4-fold rate expander or upsampler simply inserts
three zero samples for every low-rate sample. The job of the FIR filter is to replace the
three zeros by the calculated interpolated values.

The interpolating filter is sometimes called an oversampling digital filter because
it operates at the fast rate 4fs. However, because only one out of every four input
samples is non-zero, the required filtering operations may be rearranged in such a way
as to operate only on the low-rate samples, thus, effectively reducing the computational
requirements of the filter—by a factor of four in this case.

This is accomplished by replacing the high-rate interpolating FIR filter by four shorter
FIR subfilters, known as polyphase filters, operating at the low rate fs. The length of each

†IIR filters can also be used, but are less common in practice.

632
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subfilter is one-quarter that of the original filter. Because each low-rate input sample
generates four high-rate interpolated outputs (itself and three others), each of the four
low-rate subfilters is dedicated to computing only one of the four outputs. Such real-
ization is computationally efficient and lends itself naturally to parallel multiprocessor
hardware implementations in which a different DSP chip may be used to implement each
subfilter.

An interesting application of interpolation is the use of oversampling digital filters
in CD or DAT players, where they help to alleviate the need for high-quality analog
anti-image postfilters in the playback system. Moreover, each high-rate sample can be
requantized without loss of quality to fewer number of bits (even as low as 1 bit per
sample) using appropriate noise shaping quantizers, thus, trading off bits for samples
and simplifying the structure of the analog part of the playback system.

To understand the motivation behind this application, consider an analog signal
sampled at a rate fs, such as 44.1 kHz for digital audio. The analog signal is prefiltered
by an analog lowpass antialiasing prefilter having cutoff frequency fc ≤ fs/2 and then
sampled at rate fs and quantized. This operation is shown in Fig. 12.1.2.

A/D
converter

bandlimited
analog signal digital signalanalog input lowpass

antialiasing
prefilter rate fs

fc < fs/2

xa(t)

Fig. 12.1.2 Prefiltering and sampling of analog signal.

The prefilter ensures that the spectral images generated by the sampling process at
integral multiples of fs do not overlap, as required by the sampling theorem. This is
shown in Fig. 12.1.3 (we ignore here the scaling factor 1/T).

0 fs/2-fs/2 fs-fs 2fs-2fs 3fs-3fs 4fs-4fs

f

Nyquist
interval

original spectrum Xa( f )
X( f ) spectral images

Fig. 12.1.3 Spectrum of signal sampled at low rate fs.

After digital processing, the sampled signal is reconstructed back to analog form by
a D/A staircase reconstructor, followed by an analog anti-image lowpass postfilter with
effective cutoff fs/2, as seen in Fig. 12.1.4.

The D/A converter, with its typical sinx/x response, removes the spectral images
partially; the postfilter completes their removal. The combination of the staircase DAC
and the postfilter emulates the ideal reconstructing analog filter. The ideal reconstruc-
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lowpass
anti-image
postfilter

staircase
analog signaldigital signal analog output

D/A
converter

rate fs
fc < fs/2

Fig. 12.1.4 Analog reconstruction of sampled signal.

tor is a lowpass filter with cutoff the Nyquist frequency fs/2. It has a very sharp tran-
sition between its passband, that is, the Nyquist interval, and its stopband, as shown in
Fig. 12.1.5.

0 fs/2-fs/2 fs-fs 2fs-2fs 3fs-3fs 4fs-4fs

f

ideal reconstructor sharp transition

Fig. 12.1.5 Ideal reconstructor removes spectral images due to sampling.

In hi-fi applications such as digital audio, to maintain high quality in the resulting
reconstructed analog signal, a very high quality analog postfilter is required, which may
be expensive. One way to alleviate the need for a high quality postfilter is to increase
the sampling rate. This would cause the spectral images to be more widely separated
and, therefore, require a less stringent, simpler, lowpass postfilter. This is depicted in
Fig. 12.1.6, for a new sampling rate that is four times higher than required, fs′ = 4fs.

0 fs′/8 7fs′/8fs′/2-fs′/8-fs′/2-fs′ fs′
f

postfilter
passband

postfilter
stopband

wide
transition

Nyquist interval

X′( f )

Fig. 12.1.6 Spectrum of signal resampled at high rate 4fs, and postfilter requirements.

The passband of the postfilter extends up to fpass = fs′/8 = fs/2, but its stopband
need only begin at fstop = fs′ − fs′/8 = 7fs′/8. It is this wide transition region between
passband and stopband that allows the use of a less stringent postfilter. For example, in
oversampled digital audio applications, simple third-order Butterworth or Bessel analog
postfilters are used. See Section 12.4.4.

The same conclusion can also be drawn in the time domain. Figure 12.1.7 shows the
staircase output of the D/A converter for the two sampling rates fs and fs′ = 4fs. It is
evident from this figure that the higher the sampling rate, the more closely the staircase
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output approximates the true signal, and the easier it is for the postfilter to smooth out
the staircase levels.

t t
T T ′=T/4

DAC output DAC output

Fig. 12.1.7 Staircase DAC output is smoothed more easily in the oversampled case.

The above approach, however, is impractical because it requires the actual resam-
pling of the analog signal at the higher rate fs′. For example, in a CD player the low rate
samples are already stored on the CD at the prescribed rate of 44.1 kHz and the audio
signal cannot be resampled.

The philosophy of oversampling is to increase the sampling rate digitally using an
interpolation filter which operates only on the available low-rate input samples. With
respect to the new rate fs′ and new Nyquist interval [−fs′/2, fs′/2], the spectrum of
the low-rate samples depicted in Fig. 12.1.3 will be as shown in Fig. 12.1.8. This is also
the spectrum of the high-rate upsampled signal at the output of the rate expander in
Fig. 12.1.1.

0 fs′/8 fs′/2-f ′/8s-fs′/2-fs′ fs′
f

Nyquist interval

Xup( f ) = X( f )upsampled spectrum

Fig. 12.1.8 Spectrum of low-rate samples with respect to the high rate 4fs.

A digital lowpass FIR filter with cutoff frequency fs′/8 and operating at the high rate
fs′, would eliminate the three spectral replicas that lie between replicas at multiples of
fs′, resulting in a spectrum that is identical to that of a signal sampled at the high rate
fs′, like that shown in Fig. 12.1.6.

The digital filter, being periodic in f with period fs′, cannot of course remove the
spectral replicas that are centered at integral multiples of fs′. Those are removed later
by the D/A reconstructor and the anti-image analog postfilter.

The effect of such a digital filter on the spectrum of the low-rate samples is shown
in Fig. 12.1.9, both with respect to the physical frequency f in Hz and the corresponding
digital frequency, ω′ = 2πf/fs′, in radians/sample.

In summary, a substantial part of the analog reconstruction process is accomplished
by DSP methods, that is, using a digital oversampling filter to remove several adjacent
spectral replicas and thereby easing the requirements of the analog postfilter. The re-
quired sharp transition characteristics of the overall reconstructor are provided by the
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0 fs′/8 fs′/2-fs′/8-fs′/2-fs′ fs′
f

Nyquist interval

lowpass digital filter D( f )
digital filter is periodic
with period fs′

0 π/4 π−π/4-π-2π 2π
ω′

Nyquist interval

lowpass digital filter D(ω′)
digital filter is periodic
with period 2π

Fig. 12.1.9 High-rate FIR interpolator removes intermediate spectral images.

digital filter. Thus, the high-quality analog postfilter is traded off for a high-quality
digital filter operating at a higher sampling rate. The overall system is depicted in
Fig. 12.1.10.

upsampler

4fsfs 4fsFIR
interpolation

filter 

D/A
converter

anti-image
lowpass
postfilter

analog
output4

Fig. 12.1.10 4-times oversampling digital filter helps analog reconstruction.

How does an interpolation filter operate in the time domain and calculate the missing
signal values between low-rate samples? To illustrate the type of operations it must
carry out, consider a 4-fold interpolator and a set of six successive low-rate samples
{A,B,C,D,E, F} as shown in Fig. 12.1.11.

A
B

T T′=T/4

C

D

E
F

Y
Z

X

time

Fig. 12.1.11 Filter calculates missing samples from the surrounding low-rate samples.

The filter calculates three intermediate samples, such as {X,Y,Z}, between any two
low-rate samples by forming linear combinations of the surrounding low-rate samples.
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Depending on the type of interpolator and desired quality of the calculated values, sev-
eral different ways of calculating {X,Y,Z} are possible. For example, the simplest one
is to keep the value of the previous sample C constant throughout the sampling interval
and define:

X = Y = Z = C

This choice corresponds to the so-called hold interpolator. Another simple possibil-
ity is to interpolate linearly between samples {C,D} calculating {X,Y,Z} as follows:

X = 0.75C+ 0.25D

Y = 0.50C+ 0.50D

Z = 0.25C+ 0.75D

(12.1.1)

Indeed, the straight line connecting C andD is parametrized as C+(D−C)t/T, for
0 ≤ t ≤ T. Setting t = T′, 2T′, 3T′ with T′ = T/4 gives the above expressions for {X,
Y,Z}. For more accurate interpolation, more surrounding samples must be taken into
account. For example, using four samples we have:

X = −0.18B+ 0.90C+ 0.30D− 0.13E

Y = −0.21B+ 0.64C+ 0.64D− 0.21E

Z = −0.13B+ 0.30C+ 0.90D− 0.18E

(12.1.2)

corresponding to a length-17 FIR approximation to the ideal interpolation filter. Simi-
larly, a length-25 approximation to the ideal interpolator uses six surrounding low-rate
samples as follows:

X = 0.10A− 0.18B+ 0.90C+ 0.30D− 0.13E + 0.08F

Y = 0.13A− 0.21B+ 0.64C+ 0.64D− 0.21E + 0.13F

Z = 0.08A− 0.13B+ 0.30C+ 0.90D− 0.18E + 0.10F

(12.1.3)

In general, the more the surrounding samples, the more accurate the calculated
values. In typical CD players with 4-times oversampling filters, about 20–30 surrounding
low-rate samples are used.

The above expressions do not quite look like the convolutional equations of linear
filtering. They are special cases of the polyphase realizations of the interpolation filters
and are equivalent to convolution. They will be discussed in detail in the next section,
where starting with the frequency domain specifications of the filter, its impulse re-
sponse and corresponding direct and polyphase realization forms are derived. See also
Section 12.4.1.
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12.2 Interpolation Filter Design∗

12.2.1 Direct Form

Consider the general case of an L-fold interpolator, which increases the sampling rate
by a factor of L, that is, fs′ = Lfs. The L-fold rate expander inserts L− 1 zeros between
adjacent low-rate samples and the corresponding L−1 interpolated values are calculated
by an FIR digital filter operating at the high rate Lfs, as shown in Fig. 12.2.1.

FIR interpolation
filter d(k ′)

H

L-fold
rate expander

L
low rate

fs

low rate
input

upsampled
input

high rate
output

high rate
Lfs

high rate
Lfs

n

T

x(n)

n′

T′=T/L

xup(n′) yup(n′)

n′

T′=T/L

Fig. 12.2.1 L-fold digital interpolator.

Let x(n) denote the low-rate samples that are input to the rate expander and let
xup(n′) be its high-rate output, consisting of the low-rate samples separated by L − 1
zeros. With respect to the high-rate time index n′, the low-rate samples occur every L
high-rate ones, that is, at integral multiples of L, n′ = nL,

xup(nL)= x(n) (12.2.1)

The L− 1 intermediate samples between xup(nL) and xup(nL+ L) are zero:

xup(nL+ i)= 0, i = 1,2, . . . , L− 1 (12.2.2)

This is shown in Fig. 12.2.2. More compactly, the upsampled signal xup(n′) can be
defined with respect to the high-rate time index n′ by:

xup(n′)=
{
x(n), if n′ = nL
0, otherwise

(12.2.3)

Given an arbitrary value of the high-rate index n′, we can always write it uniquely in
the form n′ = nL+ i, where i is restricted to the range of values i = 0,1, . . . , L− 1.

Mathematically, the integers n and i are the quotient and remainder of the division
of n′ by L. Intuitively, this means that n′ will either fall exactly on a low-rate sample
(when i = 0), or will fall strictly between two of them (i �= 0). Using T = LT′, we find
the absolute time in seconds corresponding to n′

t = n′T′ = nLT′ + iT′ = nT + iT′

that is, it will be offset from a low-rate sampling time by i high-rate sampling units T′.
The interpolated values must be computed at these times.
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Fig. 12.2.2 Low-rate samples with respect to the slow and fast time scales.

The ideal L-fold interpolation filter is a lowpass filter, operating at the fast rate fs′,
with cutoff frequency equal to the low-rate Nyquist frequency fc = fs/2, or in terms of
fs′,

fc = fs
2

= fs′

2L
(12.2.4)

and expressed in units of the digital frequency, ω′ = 2πf/fs′:

ω′
c =

2πfc
fs′

= π
L

(12.2.5)

The frequency response of this filter is shown in Fig. 12.2.3. Its passband gain is
taken to be L instead of unity. This is justified below. The ideal impulse response
coefficients are obtained from the inverse Fourier transform:

d(k′)=
∫ π
−π
D(ω′)ejω

′k′ dω′

2π
=
∫ π/L
−π/L

Lejω
′k′ dω′

2π
= sin(πk′/L)

πk′/L

0 π/L

LL L

π−π/L-π-2π 2π
ω′

Nyquist interval

lowpass digital filter D(ω′)
digital filter is periodic
with period 2π

Fig. 12.2.3 Ideal lowpass digital filter operating at high rate Lfs.

An FIR approximation to the ideal interpolator is obtained by truncating d(k′) to
finite length, say N = 2LM + 1:
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d(k′)= sin(πk′/L)
πk′/L

, −LM ≤ k′ ≤ LM (12.2.6)

A causal version of the filter may be obtained by delaying it by LM samples:

h(n′)= d(n′ − LM)= sin
(
π(n′ − LM)/L)
π(n′ − LM)/L , n′ = 0,1, . . . ,N − 1

And a windowed version is obtained by:

h(n′)= w(n′)d(n′ − LM) , n′ = 0,1, . . . ,N − 1 (12.2.7)

where w(n′) is an appropriate length-N window, such as a Hamming window:

w(n′)= 0.54 − 0.46 cos
(

2πn′

N − 1

)
, n′ = 0,1, . . . ,N − 1

or a Kaiser window. The output of the ideal FIR interpolation filter is obtained by the
convolution of the upsampled input xup(n′) with the impulse response d(k′):

yup(n′)=
LM∑

k′=−LM
d(k′)xup(n′ − k′) , n′ = 0,1, . . . ,N − 1 (12.2.8)

12.2.2 Polyphase Form

The interpolated values between the low-rate samples xup(nL) and xup(nL + L), that
is, the values at the high-rate time instants n′ = nL + i, are calculated by the filter as
follows:

yup(nL+ i)=
LM∑

k′=−LM
d(k′)xup(nL+ i− k′), i = 0,1, . . . , L− 1 (12.2.9)

Writing uniquely k′ = kL+ j, with 0 ≤ j ≤ L−1, and replacing the single summation
over k′ by a double summation over k and j, we find

yup(nL+ i)=
M−1∑
k=−M

L−1∑
j=0

d(kL+ j)xup(nL+ i− kL− j)

To be precise, for the case i = 0, the summation over k should be over the range
−M ≤ k ≤ M. But as we will see shortly, the term k = M does not contribute to the
sum. Defining the ith polyphase subfilter by†

di(k)= d(kL+ i) , −M ≤ k ≤M − 1 (12.2.10)

for i = 0,1, . . . , L− 1, we can rewrite the ith interpolated sample value as:

†For i = 0, the range of k is −M ≤ k ≤M.
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yup(nL+ i)=
M−1∑
k=−M

L−1∑
j=0

dj(k)xup(nL− kL+ i− j)

But the upsampled input signal is non-zero only at times that are integral multiples
of L. Therefore, using Eqs. (12.2.1) and (12.2.2), we have

xup(nL− kL+ i− j)= 0, if i �= j
This follows from the fact that |i− j| ≤ L− 1. Thus, keeping only the j = i term in

the above convolution sum, we obtain

yup(nL+ i)=
M−1∑
k=−M

di(k)xup(nL− kL), i = 0,1, . . . , L− 1 (12.2.11)

or, in terms of the low-rate samples:

yi(n)=
M−1∑
k=−M

di(k)x(n− k) , i = 0,1, . . . , L− 1 (12.2.12)

where we set yi(n)= yup(nL + i). Thus, the ith interpolated value, yup(nL + i), is
computed by the ith polyphase subfilter, di(k), which has length 2M and is acting only
on the low-rate input samples x(n). Each interpolated value is computed as a linear
combination of M low-rate samples above and M below the desired interpolation time,
as shown in Fig. 12.2.4.

n-1 n+M

x(n-1)

x(n+M)

n

x(n)

yi(n)

n+1

x(n+1)

n+2n-M+1

n′=nL+i

x(n+2)
x(n-M+1)

n...

... ...

...

M low-rate samples M low-rate samples

Fig. 12.2.4 Interpolator uses M low-rate samples before and after yup(nL+ i).

Using the L subfilters, interpolation is performed at a reduced computational cost
as compared with the cost of the full, length-N, interpolation filter d(k′) acting on the
upsampled signal xup(n′) by Eq. (12.2.9).

The computational cost of Eq. (12.2.9) is essentially 2LMmultiplications per interpo-
lated value, or, 2L2M multiplications for computing L interpolated values. By contrast,
Eq. (12.2.11) requires 2M multiplications per polyphase subfilter, or, 2LM multiplica-
tions for L interpolated values. Thus, the polyphase subfilter implementation achieves
a factor of L in computational savings.
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Another way to view the computational rate is in terms of the total number of mul-
tiplications per second required for the filtering operations, that is,

R = N(Lfs)= NLfs (direct form)

R = L(2M)fs = Nfs (polyphase form)

where in the direct form we have a single filter of length N operating at rate Lfs and
in the polyphase form we have L filters operating at fs, each having computational rate
(2M)fs multiplications per second.†

The polyphase implementation is depicted in Fig. 12.2.5, where during each low-rate
sampling period T, the commutator reads, in sequence of T′ = T/L seconds, the L
interpolated values at the outputs of the subfilters.

n′n

T T′=T/L
T/L

T

low rate
fs

high rate
Lfs

x(n) yup(n′)
subfilter

d0(k)

subfilter
d1(k)

subfilter
dL-1(k)

y0(n)

y1(n)

yL-1(n)

Fig. 12.2.5 Polyphase subfilter implementation of digital interpolator.

This can be seen more formally, as follows. Let ζ−1 denote the unit delay with
respect to the high rate Lfs and let z−1 denote the low-rate delay. Since L high-rate
delays equal one low-rate delay, that is, LT′ = T, we will have:

z = ζL � ζ = z1/L (12.2.13)

The ζ-transform of the high-rate filter output yup(n′) can be expressed in terms of
the z-transforms of the L low-rate output signals yi(n) as follows. Writing uniquely
n′ = nL+ i with 0 ≤ i ≤ L− 1, we have

Yup(ζ) =
∞∑

n′=−∞
yup(n′)ζ−n′ =

L−1∑
i=0

∞∑
n=−∞

yup(nL+ i)ζ−nL−i

=
L−1∑
i=0

ζ−i
∞∑

n=−∞
yi(n)ζ−Ln , or,

Yup(ζ)=
L−1∑
i=0

ζ−iYi(ζL)=
L−1∑
i=0

z−i/LYi(z) (12.2.14)

†Actually, there are L−1 subfilters of length (2M) and one (the filter d0) of length (2M+1), giving rise
to R = (L− 1)(2M)fs + (2M + 1)fs = Nfs, where N = 2LM + 1.
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which shows how the L low-rate output signals are put together, in sequence of T/L
high-rate delays to make up the high-rate interpolated output signal. In a similar fashion,
we can derive the relationship between the ζ-transform of the high-rate filter (12.2.6)
and the z-transforms of its polyphase subfilters (12.2.10), justifying the realization of
Fig. 12.2.5:

D(ζ)=
L−1∑
i=0

ζ−iDi(ζL)=
L−1∑
i=0

z−i/LDi(z) (12.2.15)

Next, we consider the 0th polyphase subfilter, d0(k), which plays a special role. It
follows from Eqs. (12.2.6) and (12.2.10) that:

d0(k)= d(kL)= sin(πk)
πk

= δ(k), −M ≤ k ≤M

and therefore, its output will be trivially equal to its input, that is, the low-rate input
sample x(n)= xup(nL). We have from Eq. (12.2.12):

y0(n)= yup(nL)=
M−1∑
k=−M

d0(k)x(n− k)=
M−1∑
k=−M

δ(k)x(n− k)= x(n)

This property is preserved even for the windowed case of Eq. (12.2.7), because all
windows w(n′) are equal to unity at their middle. This result justifies the requirement
for the passband gain of the interpolator filter in Fig. 12.2.3 to be L instead of 1. If
the gain were 1, we would have yup(nL)= x(n)/L. An alternative, frequency domain
justification is given in Section 12.2.3.

The causal filter implementation of Eq. (12.2.12) requires that we either delay the
output or advance the input byM units. We choose the latter. The polyphase subfilters
in Eqs. (12.2.12) can be made causal by a delay of M low-rate samples:

hi(n)= di(n−M)= d((n−M)L+ i) = d(nL+ i− LM) (12.2.16)

for n = 0,1, . . . ,2M − 1. For the windowed case, we have:

hi(n)= d(nL+ i− LM)w(nL+ i), n = 0,1, . . . ,2M − 1 (12.2.17)

In terms of the causal subfilters hi(n), Eq. (12.2.12) becomes

yi(n)=
M−1∑
k=−M

di(k)x(n− k)=
M−1∑
k=−M

hi(k+M)x(n− k)

or, setting m = k+M and k =m−M,

yi(n)=
P∑

m=0

hi(m)x(M + n−m) , i = 0,1, . . . , L− 1 (12.2.18)

where P = 2M − 1 denotes the order of each polyphase subfilter. In other words, the
interpolated samples are obtained by ordinary causal FIR filtering of the time-advanced
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low-rate input samples. The same result can also be obtained by z-transforms (recall
also the implementation of Savitzky-Golay filters in Section 8.3.5.) Definition (12.2.16)
reads in the z-domain:

Hi(z)= z−MDi(z)

where z−1 represents a low-rate delay. Similarly, Eq. (12.2.12) reads

Yi(z)= Di(z)X(z)

Writing Di(z)= zMHi(z), we obtain the z-domain equivalent of Eq. (12.2.18):

Yi(z)= Di(z)X(z)= Hi(z)
(
zMX(z)

)
The sample-by-sample processing implementation of Eq. (12.2.18) requires a com-

mon low-rate tapped delay line which is used in sequence by all the subfilters hi(n)
before its contents are updated. Figure 12.4.5 shows a concrete example when L = 4
and M = 2. The required time-advance by M samples is implemented by initially filling
the delay line with the first M low-rate samples. The internal states of the tapped delay
line can be defined as

wm(n)= x(M + n−m), m = 0,1, . . . , P

Then, Eq. (12.2.18) can be written in the dot-product notation of Chapter 4:

yi(n)= dot
(
P,hi,w(n)

) = P∑
m=0

hi(m)wm(n), i = 0,1, . . . , L− 1

After computing the outputs of the L subfilters, the internal state w may be updated
to the next time instant by a call to the routine delay, which shifts the contents:

wm(n+ 1)= wm−1(n), m = 1,2, . . . , P

This leads to the following sample processing algorithm for the polyphase form:
Initialize the internal state vector w(n)= [w0(n),w1(n), . . . ,wP(n)] by filling it with
the firstM low-rate input samples, x(0), x(1), . . . , x(M− 1), that is, at time n = 0 start
with

w(0)= [0, xM−1, xM−2, . . . , x0, 0, 0, . . . , 0︸ ︷︷ ︸
M−1 zeros

]

The value w0(0) need not be initialized—it is read as the current input sample. If
the low-rate samples are being read sequentially from a file or an input port, then this
initialization can be implemented by the following algorithm:

for m =M down to m = 1 do:
read low-rate input sample x
wm = x

(12.2.19)
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Then, proceed by reading each successive low-rate sample, x(M + n), n = 0,1, . . . ,
and processing it by the algorithm:

for each low-rate input sample x do:
w0 = x
for i = 0,1, . . . , L− 1 compute:

yi = dot(P,hi,w)
delay(P,w)

(12.2.20)

12.2.3 Frequency Domain Characteristics

Finally, we look in more detail at the passband and stopband characteristics of the ideal
lowpass interpolation filter. Let T = 1/fs and T′ = 1/fs′ = T/L be the sampling time
periods with respect to the low and high rates fs and fs′. With reference to Fig. 12.1.2,
let xa(t) be the output of the prefilter and let Xa(f) be its bandlimited spectrum. The
spectrum of the sampled low-rate signal x(n)= xa(nT), shown in Fig. 12.1.3, will be
related to Xa(f) by the Poisson summation formula:

X(f)=
∑
n
x(n)e−2πjfnT = 1

T

∞∑
m=−∞

Xa(f −mfs)

The upsampled signal xup(n′) at the output of the L-fold rate expander of Fig. 12.2.1
has exactly the same spectrum as x(n), as indicated in Fig. 12.1.8. Indeed, using Eqs. (12.2.1)
and (12.2.2) and T = LT′, we have

Xup(f) =
∑
n′
xup(n′)e−2πjfn′T′ =

∑
n
xup(nL)e−2πjfnLT′

=
∑
n
xup(nL)e−2πjfnT =

∑
n
x(n)e−2πjfnT = X(f)

Thus,

Xup(f)= X(f)= 1

T

∞∑
m=−∞

Xa(f −mfs) (12.2.21)

The same relationship can be expressed in terms of the digital frequencies as:

Xup(ω′)= X(ω)= X(ω′L)

where

ω = 2πf
fs

= 2πfT, ω′ = 2πf
fs′

= 2πfT′, ω =ω′L

and

Xup(ω′)=
∑
n′
xup(n′)e−jω

′n′ , X(ω)=
∑
n
x(n)e−jωn
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Similarly, using Eq. (12.2.13), their z-transforms will be related by

Xup(ζ)= X(z)= X(ζL)

where the slow and fast z variables are related to the corresponding digital frequencies
by

z = ejω = e2πjf/fs , ζ = ejω′ = e2πjf/fs′ = e2πjf/Lfs

If the analog signal xa(t) had actually been resampled at the higher rate fs′ giving
rise to the sampled signal x′(n′)= xa(n′T′), then the corresponding spectrum, depicted
in Fig. 12.1.6, would be:

X′(f)=
∑
n′
xa(n′T′)e−2πjfn′T′ = 1

T′
∑
m′
Xa(f −m′fs′) (12.2.22)

The difference between x′(n′) and xup(n′) is that x′(n′) contains the correct inter-
polated values between low-rate samples, whereas the xup(n′) is zero there.

In the time domain, the job of an ideal interpolation filter is to reproduce the inter-
polated samples correctly, that is, its output is required to be yup(n′)= x′(n′) for all
n′. In the frequency domain, its job is to reshape the low-rate sampled spectrum X(f),
shown in Fig. 12.1.8, into the high-rate spectrum X′(f) shown in Fig. 12.1.6. Denoting
the ideal interpolation filter by D(f), we have for the spectrum of the output yup(n′):

Yup(f)= D(f)Xup(f)= D(f)X(f)

The filter output is required to be Yup(f)= X′(f), thus,

X′(f)= D(f)X(f) (ideal interpolation) (12.2.23)

for all f . This condition determines the ideal passband and stopband specifications for
D(f). Using Eqs. (12.2.21) and (12.2.22) and separating out the central replica of X′(f)
and the first L replicas of X(f), we rewrite the above condition as

1

T′Xa(f)+replicas = 1

T
D(f)Xa(f)︸ ︷︷ ︸

passband

+ 1

T
D(f)

L−1∑
m=1

Xa(f −mfs)︸ ︷︷ ︸
stopband

+ replicas

Because Xa(f) is bandlimited to within [−fs/2, fs/2], it follows that the L− 1 interme-
diate replicas

∑L−1
m=1Xa(f −mfs) will be bandlimited to within [fs/2, Lfs − fs/2]. The

filter D(f) is required to remove these replicas, that is,

D(f)= 0,
fs
2

≤ |f| ≤ Lfs − fs
2

as shown in Fig. 12.2.3. Similarly, within the low-rate Nyquist interval −fs/2 ≤ f ≤ fs/2,
the filter must satisfy:

1

T′Xa(f)=
1

T
D(f)Xa(f) ⇒ D(f)= T

T′ = L
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This justifies the choice L for the passband gain. In summary, the ideal digital inter-
polation filterD(f) is defined as follows over the high-rate Nyquist interval [−fs′/2, fs′/2]:

(ideal interpolator) D(f)=

⎧⎪⎪⎨⎪⎪⎩
L, if |f| ≤ fs

2

0, if
fs
2
< |f| ≤ fs′

2

(12.2.24)

and is periodically extended outside that interval. It is depicted in Figs. 12.1.9 and
12.2.3. Its impulse response is given by Eq. (12.2.6).

The operation of the ideal interpolation filter, expressed by Eq. (12.2.23), can also be
understood in the time domain in terms of the sampling theorem. The sampled analog
signal x(n)= xa(nT) can be reconstructed to analog form by the analog reconstructor
:

xa(t)=
∑
n
xa(nT)h(t − nT)

where h(t) is the ideal reconstructor for the rate fs:

h(t)= sin(πt/T)
πt/T

(12.2.25)

Resampling at the higher rate fs′ gives the sampled signal:

x′(n′)= xa(n′T′)=
∑
n
xa(nT)h(n′T′ − nT)=

∑
n
xa(nLT′)h(n′T′ − nLT′)

Denoting

d(k′)= h(k′T′)= sin(πk′T′/T)
πk′T′/T

= sin(πk′/L)
πk′/L

(12.2.26)

and using xa(nLT′)= xa(nT)= x(n), we obtain h(n′T′ −nLT′)= d(n′ −nL) and the
filtering equation:

x′(n′)=
∑
n
d(n′ − nL)x(n)=

∑
m′
d(n′ −m′)xup(m′)

which is recognized as the time-domain version of Eq. (12.2.23).
In summary, the effect of the ideal interpolator in the frequency domain is shown in

Fig. 12.2.6. The input spectrum consists of replicas at multiples of the input sampling
rate fs. The filter removes all of these replicas, except those that are multiples of the
output rate Lfs. The output spectrum consists only of replicas at multiples of Lfs. (The
scaling by the gain L is not shown.)

12.2.4 Kaiser Window Designs

Digital interpolation filters can be designed by a variety of filter design methods, such
as the Fourier series method with windowing, Parks-McClellan, or IIR designs. Here we
summarize FIR designs based on the Kaiser window method.



648 12. INTERPOLATION, DECIMATION, AND OVERSAMPLING

upsampler

digital filter
D( f )

ideal interpolator

rate Lfs rate Lfsrate fs

fs ...2fs Lfs0
f 

input spectrum X(f)

fs ...2fs Lfs0
f 

output spectrum Yup(f )

Xup(f )X(f ) Yup( f ) = X′(f )
L

Fig. 12.2.6 Ideal interpolator in frequency domain.

We follow the design steps of Section 10.2, but use fs′ in place of fs, because the
interpolation filter is operating at the fast rate fs′. For any length-N window w(n′), the
interpolator’s impulse response is computed by

h(n′)= w(n′)d(n′ − LM), n′ = 0,1, . . . ,N − 1 = 2LM (12.2.27)

The L length-(2M) polyphase subfilters are defined in terms of h(n′) as follows. For
i = 0,1, . . . , L− 1:

hi(n)= h(nL+ i), n = 0,1, . . . ,2M − 1 (12.2.28)

For a Kaiser window design, we start by specifying the desired stopband attenuation
A in dB, and desired transition width Δf about the ideal cutoff frequency:

fc = fs′

2L
= fs

2

so that the passband and stopband frequencies are:

fpass = fc − 1

2
Δf, fstop = fc + 1

2
Δf

The Kaiser window parameters are calculated by:

δ = 10−A/20

D = A− 7.95

14.36

α = 0.1102(A− 8.7) (because, typically, A > 50 dB)

N − 1 ≥ Dfs′

Δf
= DLfs

Δf
= DL
ΔF

(12.2.29)

where we used fs′ in the formula for N and set ΔF = Δf/fs. Then, N must be rounded
up to the smallest odd integer of the formN = 2LM+1 satisfying the above inequality.

The design specifications are shown in Fig. 12.2.7. The designed length-N impulse
response is given by Eq. (12.2.27), with w(n′) given for n′ = 0,1, . . . ,N − 1:
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w(n′)= I0
(
α
√

1 − (n′ − LM)2/(LM)2
)

I0(α)
= I0

(
α
√
n′(2LM − n′)/LM)

I0(α)

The frequency response of the designed filter may be computed by:

H(f)=
N−1∑
n′=0

h(n′)e−2πjfn′/fs′ =
N−1∑
n′=0

h(n′)e−2πjfn′/(Lfs)

The designed filter h(n′) can be implemented in its direct or polyphase forms.

0 f ′/2Ls fs′/2 fs′
f

A
Δf

1±δ

δ

|H( f)| /L

Fig. 12.2.7 Kaiser design specifications for L-fold interpolation filter.

12.2.5 Multistage Designs

Interpolation filters can also be implemented in a multistage form, whereby the sampling
rate is gradually increased in stages until the final rate is reached. This is shown in
Fig. 12.2.8. The first filter increases the sampling rate by a factor of L0, the second by a
factor of L1, and the third by L2, so that the overall interpolation factor is L = L0L1L2.
Such multistage realizations allow additional savings in the overall computational rate
of the interpolator.

L0 fs

fs

L0 L1 fs

L0 L1L2 f s
H0L0 H1L1 H2L2

Fig. 12.2.8 Three-stage interpolation filter.

The first filter H0(f) must have the most stringent specifications in the sense that
it has the desired transition width Δf , which is typically very narrow. The remaining
stages have much wider transition widths and therefore smaller filter lengths.

To see this, consider the design of a 4-fold interpolator realized as the cascade of
two 2-fold interpolators, L = L0L1, with L0 = L1 = 2. The desired ideal frequency
characteristics of the two interpolation filters are depicted in Fig. 12.2.9.

The first interpolator H0 is operating at the intermediate rate fs′ = L0fs = 2fs and
is designed to act as an ideal lowpass filter with cutoff fc = fs/2 = fs′/4. It removes all



650 12. INTERPOLATION, DECIMATION, AND OVERSAMPLING

fs 2fs 3fs 4fs 5fs 6fs 7fs 8fs
0 f 

Δf1

H0 H0 H0H0H1

Fig. 12.2.9 Two-stage 2×2 interpolation filter.

the replicas at multiples of its input rate fs, except those that are multiples of its output
rate 2fs.

It can be designed using a Kaiser window. For example, assuming a narrow transition
width Δf about fc, and a stopband attenuation A, we obtain from Eqs. (12.2.29):

N0 − 1 = Dfs′

Δf
= D(2fs)

Δf
= 2D
ΔF

where again ΔF = Δf/fs. The second interpolatorH1 is operating at the rate 2fs′ = 4fs,
and must remove all replicas at multiples of its input rate 2fs, except those that are
multiples of its output rate 4fs. Therefore, it has a wide transition width given by

Δf1 = fs′ − fs = 2fs − fs = fs
Its Kaiser length will be:

N1 − 1 = D(4fs)
Δf1

= D(4fs)
fs

= 4D

The combined effect of the two interpolation filters is to remove every three inter-
vening replicas leaving only the replicas at multiples of 4fs. Because H0 is operating at
rate 2fs and H1 at rate 4fs, the corresponding frequency responses will be:

H0(f)=
N0−1∑
n′=0

h0(n′)e−2πjfn′/(2fs), H1(f)=
N1−1∑
n′=0

h1(n′)e−2πjfn′/(4fs)

Assuming that both filters h0(n′) and h1(n′) are realized in their polyphase forms,
the total computational rate of the multistage case will be, in MACs per second:

Rmulti = N0fs +N1(2fs)�
(

2D
ΔF

+ 8D
)
fs = 2D

ΔF
(1 + 4ΔF)fs

By contrast, a single stage design would have filter length:

N − 1 = D(Lfs)
Δf

= 4D
ΔF
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and polyphase computational rate:

Rsingle = Nfs � 4D
ΔF

fs

The relative performance of the multistage versus the single stage designs will be

Rmulti

Rsingle
= 1 + 4ΔF

2
= 1

2
+ 2ΔF (12.2.30)

We note that this ratio is independent of the filter lengths and stopband attenuations;
it depends only on the transition width. Computational savings will take place whenever:

1

2
+ 2ΔF < 1 � ΔF <

1

4

which is usually satisfied because typical values of ΔF are of the order of 0.1. As an-
other example, consider an 8-fold interpolator which can be realized in three different
multistage ways:

8 = 2 × 2 × 2 = 2 × 4 = 4 × 2

The frequency characteristics of the different stages are shown in Fig. 12.2.10. The
interpolator at each stage removes all replicas at multiples of its input rate, except those
that are multiples of its output rate. In all three cases, the combined effect is to remove
every seven intervening replicas leaving only the replicas at the multiples of 8fs. For the
2×2×2 case, the transition widths of the three stages are taken to be:

Δf0 = Δf, Δf1 = 2fs − fs = fs, Δf2 = 4fs − fs = 3fs

resulting in Kaiser filter lengths:

N0 − 1 = D(2fs)
Δf0

= 2D
ΔF

, N1 − 1 = D(4fs)
Δf1

= 4D, N2 − 1 = D(8fs)
Δf2

= 8D
3

and total polyphase computational rate:

Rmulti = N0fs +N1(2fs)+N2(4fs)�
(

2D
ΔF

+ 8D+ 32D
3

)
fs

By contrast, the single stage design would have filter length:

N − 1 = D(8fs)
Δf

= 8D
ΔF

and polyphase computational cost:

Rsingle = Nfs = 8D
ΔF

fs

The relative performance of the multistage versus the single stage design is then

Rmulti

Rsingle
= 1

4
+ 7

3
ΔF
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fs 2fs 3fs 4fs 5fs 6fs 7fs 8fs
0

H0 H1 H2

f

Δf2

Δf1

H0 H1

fs 2fs 3fs 4fs 5fs 6fs 7fs 8fs
0

f

Δf1

H0 H1

fs 2fs 3fs 4fs 5fs 6fs 7fs 8fs
0

f

Δf1

2x2x2 realization

2x4 realization

4x2 realization

Fig. 12.2.10 Frequency characteristics of multistage 8-fold interpolators.

with savings whenever ΔF < 9/28 = 0.321. In a similar fashion, we find the multistage
versus single stage polyphase computational costs of the 2×4 and 4×2 cases:

Rmulti

Rsingle
= 1

4
+ 2ΔF (2×4 case)

Rmulti

Rsingle
= 1

2
+ 4

3
ΔF (4×2 case)

Comparing the three multistage cases, it appears that the 2×4 case is more efficient
than the 2×2×2 case, which is more efficient than the 4×2 case. Indeed,

1

4
+ 2ΔF <

1

4
+ 7

3
ΔF <

1

2
+ 4

3
ΔF

the second inequality being valid for ΔF < 1/4. Some specific design examples will be
presented later on.

The general multistage design procedure is as follows [273]. Assume there are K
interpolation stagesH0,H1, . . . ,HK−1 that increase the sampling rate successively by the
factors L0, L1, . . . , LK−1. The sampling rate at the input of the ith interpolation filter Hi
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will be Fi−1fs and at its output it will be increased by a factor Li, that is, Fifs = LiFi−1fs,
where:

Fi = LiFi−1 = L0L1 · · ·Li , i = 0,1, . . . , K − 1

We set F−1 = 1, so that F0 = L0. The total interpolation factor will be:

L = FK−1 = L0L1 · · ·LK−1

For a Kaiser design, we assume a given transition width Δf about the ideal cutoff
frequency of the L-fold interpolator fc = fs/2 and given stopband attenuations in dB
for each stage A0,A1, . . . ,AK−1. Typically, these attenuations will be the same.† Next,
compute the Kaiser D factors, α parameters, and passband/stopband ripples δ. For
i = 0,1, . . . , K − 1

δi = 10−Ai/20

Di = Ai − 7.95

14.36

αi = 0.1102(Ai − 8.7) (assuming Ai > 50 dB)

Then, compute the effective transition widths for the interpolation filters:

Δf0 = Δf
Δfi = Fi−1fs − fs = (Fi−1 − 1)fs, i = 1,2, . . . , K − 1

(12.2.31)

The theoretical cutoff frequencies of these filters will be:

fci = Fifs
2Li

= 1

2
Fi−1fs ⇒ ω′

ci =
2πfci
Fifs

= π
Li

for i = 0,1, . . . , K − 1. In particular, fc0 = fs/2. For Kaiser designs, the above choices
of widths imply the following passband and stopband frequencies for the filters. For
i = 0, we have

fpass,0 = fc0 − 1

2
Δf0 = fs

2
− 1

2
Δf, fstop,0 = fc0 + 1

2
Δf0 = fs

2
+ 1

2
Δf

and for i = 1,2, . . . , K − 1

fpass,i = fci − 1

2
Δfi = fs

2
, fstop,i = fci + 1

2
Δfi = Fi−1fs − fs

2

Alternatively, we can demand that all filters have exactly the same passband fre-
quency, namely, fs/2 − Δf/2. This changes all the stopband frequencies by shifting
them down by Δf/2, that is, we can define for i = 1,2, . . . , K − 1

†If the overall multistage output is reconstructed by a DAC and analog postfilter, then the second and
later stages can have less attenuation than A0 because their suppression of the replicas will be aided by
the postfilter. See Section 12.4.5.
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fpass,i = fs
2

− 1

2
Δf, fstop,i = Fi−1fs − fs

2
− 1

2
Δf

Note that the transition widths remain the same, but the ideal cutoff frequencies
also shift down by Δf/2, that is, for i = 1,2, . . . , K − 1

fci = 1

2
(fpass,i + fstop,i)= 1

2
Fi−1fs − 1

2
Δf ⇒ ω′

ci =
2πfci
Fifs

= π
Li

−πΔF
Fi

where ΔF = Δf/fs. The frequency characteristics of the first filter H0 are as shown in
Fig. 12.2.7, with L = L0. The specifications of the ith stage are shown in Fig. 12.2.11.

Fi-1 fs

fpass,i fstop,i

fci

2Fi-1 fs Li Fi-1 fs = Fi fs(Li-1)Fi-1 fs...

...

0

Δfi

f

Ai

Fi-1 fs Fi fs

HiLi

ith stage interpolator

Fig. 12.2.11 Hi removes replicas at multiples of Fi−1fs, but not at Fifs.

The filter Hi removes all replicas at multiples of its input rate Fi−1fs except those
that are multiples of its output rate Fifs. The replicas between the first replica and that
at Fi−1fs have already been removed by the previous stages; hence, the wide transition
width Δfi. The corresponding Kaiser filter lengths are:

N0 − 1 = D0(F0fs)
Δf0

= D0L0

ΔF

Ni − 1 = Di(Fifs)
Δfi

= DiFi
Fi−1 − 1

, i = 1,2, . . . , K − 1

(12.2.32)

where Ni must be rounded to the next smallest integer of the form:

Ni = 2LiMi + 1, i = 0,1, . . . , K − 1

The windowed impulse responses of the filters will be, for i = 0,1, . . . , K − 1

hi(n′)= d(Li, n′ − LiMi)w(αi,Ni, n′), n′ = 0,1, . . . ,Ni − 1

where d(Li, k′) is the ideal interpolation filter with cutoff frequency† ω′
ci = π/Li

†For the alternative case, replace ω′
ci by its shifted version ω′

ci = π/Li −πΔF/Fi.
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d(Li, k′)= sin(ω′
cik′)

ω′
cik′

= sin(πk′/Li)
πk′/Li

and w(αi,Ni, n′) is the corresponding Kaiser window:

w(αi,Ni, n′)= I0
(
αi
√

1 − (n′ − LiMi)2/(LiMi)2
)

I0(αi)

The polyphase subfilters of each Hi are defined by

hij(n)= h(nLi + j), j = 0,1, . . . , Li − 1, n = 0,1, . . . , Pi

where Pi = 2Mi − 1. Finally, compute the frequency responses of the individual stages:

Hi(f)=
Ni−1∑
n′=0

hi(n′)e−2πjfn′/(Fifs), i = 0,1, . . . , K − 1

and the total frequency response:

Htot(f)= H0(f)H1(f)· · ·HK−1(f)

Note that the effective passband ripple of the combined filter Htot(f) is worse than
the ripples of the individual factors. This can be seen as follows. In the passband
frequency range, the individual filters satisfy

1 − δi ≤
∣∣∣∣Hi(f)Li

∣∣∣∣ ≤ 1 + δi

where the DC gain Li has been factored out. Multiplying these inequalities together, we
obtain the bounds:

K−1∏
i=0

(1 − δi)≤
∣∣∣∣H0(f)H1(f)· · ·HK−1(f)

L0L1 · · ·LK−1

∣∣∣∣ ≤
K−1∏
i=0

(1 + δi)

For small δi we may use the approximation

K−1∏
i=0

(1 ± δi)� 1 ±
K−1∑
i=0

δi

to get the total passband ripple of the cascaded filter

1 − δtot ≤
∣∣∣∣Htot(f)

L

∣∣∣∣ ≤ 1 + δtot, where δtot =
K−1∑
i=0

δi

For equal ripples δi = δ and K stages, we have δtot = Kδ. If so desired, this effect
can be compensated by starting the design of the Hi(f) using δi’s that are smaller
by a factor of K. It should be noted, however, that this may not always be necessary
because the individual filters may not reach their extremum values simultaneously over
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the passband, and therefore the bounds (1 ± δtot) may be too conservative. This is
illustrated in the design examples later.

Also, in Kaiser window designs, it is the stopband attenuation A that essentially
determines the passband ripples. In order to achieve reasonably high stopband attenu-
ations, for example, in the range 70-100 dB, the corresponding passband ripples will be
so small that even if they are multiplied by any K of the order of 10, they will still give
rise to excellent passbands.

The total polyphase computational rate in MACs per second is obtained by adding
up the computational rates of all the stages, that is,

Rmulti =
K−1∑
i=0

Ri , where Ri = NiFi−1fs, i = 0,1, . . . , K − 1

These follow from the observation that the ith filter operates at rate Fifs and would
have computational rate NiFifs in its direct form. But in its polyphase form we save a
factor of Li, resulting in the rate NiFifs/Li = NiFi−1fs. By comparison, the single-stage
design will have Kaiser length and polyphase computational rate:

N − 1 = D(Lfs)
Δf

= DL
ΔF

, Rsingle = Nfs

where we may take A = A0 for the stopband attenuation and D = D0. It follows that
the relative performance of multistage versus single stage designs will be:

Rmulti

Rsingle
= N0 +

∑K−1
i=1 NiFi−1

N
(12.2.33)

Assuming that all the attenuations are the same, Ai = A, and therefore all the Di
are the same, we may use the approximations:

N0 � DL0

ΔF
, Ni � DFi

Fi−1 − 1
, N � DL

ΔF

to obtain the simplified expression:

Rmulti

Rsingle
= L0

L
+ΔF

K−1∑
i=1

FiFi−1

(Fi−1 − 1)L
(12.2.34)

For a two-stage design with L = L0L1, F1 = L, and F0 = L0, we have

Rmulti

Rsingle
= L0

L
+ F1F0

(F0 − 1)L
ΔF = 1

L1
+ L0

L0 − 1
ΔF

Setting L0 = L1 = 2, or L0 = 2, L1 = 4, or L0 = 4, L1 = 2, we recover the results
obtained previously for the 2×2, 2×4, and 4×2 cases. The condition that the multistage
form be more efficient than the single-stage one is:

1

L1
+ L0

L0 − 1
ΔF < 1 � ΔF <

(
1 − 1

L0

)(
1 − 1

L1

)
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Given this condition, then the most efficient ordering of the two filters is to place
first the filter with the smaller oversampling ratio. For example, assuming L0 < L1 then
the ordering H0H1 is more efficient than H1H0 because

1

L1
+ L0

L0 − 1
ΔF <

1

L0
+ L1

L1 − 1
ΔF < 1

For a three-stage design with F0 = L0, F1 = L0L1, and F2 = L0L1L2 = L, we find

Rmulti

Rsingle
= L0

L
+ΔF

[
F1F0

(F0 − 1)L
+ F2F1

(F1 − 1)L

]
= 1

L1L2
+ΔF

[
L0

L2(L0 − 1)
+ L0L1

L0L1 − 1

]
Setting L0 = L1 = L2 = 2, we recover the results of the 2×2×2 case. Because the

designed filter lengths Ni are slightly larger than those given by the Kaiser formulas,
the correct relative computational rate should be computed using Eq. (12.2.33), whereas
Eq. (12.2.34) gives only an approximation.

12.3 Linear and Hold Interpolators∗

We saw in Section 12.2.3 that the ideal interpolator may be thought of as the sampled
version of the ideal analog reconstructor, sampled at the high rate fs′, that is,

d(k′)= h(k′T′) (12.3.1)

This relationship can be applied to other analog reconstructors, resulting in simpler
interpolators. For any analog reconstructor h(t) that reconstructs the low-rate samples
by

ya(t)=
∑
m
h(t −mT)x(m)

we can obtain the interpolated samples by resampling ya(t) at the high rate fs′:

ya(n′T′)=
∑
m
h(n′T′ −mT)x(m)

which can be written in the form

yup(n′)=
∑
m
d(n′ −mL)x(m) (12.3.2)

where d(k′) is obtained from h(t) via Eq. (12.3.1). The interpolation equation can be
written also in terms of the upsampled version of x(n)

yup(n′)=
∑
m′
d(n′ −m′)xup(m′)=

∑
k′
d(k′)xup(n′ − k′) (12.3.3)

Two of the most common interpolators are the hold and linear interpolators result-
ing from the sample/hold and linear analog reconstructors having impulse responses:

h(t)=
{

1, if 0 ≤ t < T
0, otherwise

and h(t)=
⎧⎨⎩ 1 − |t|

T
, if |t| ≤ T

0, otherwise
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They are shown in Fig. 12.3.1. Setting t = k′T′ in these definitions, and using the
relationship T = LT′, we find the following discrete-time versions:

(hold) d(k′)=
{

1, if 0 ≤ k′ ≤ L− 1
0, otherwise

= u(k′)−u(k′ − L)

(linear) d(k′)=
⎧⎨⎩ 1 − |k′|

L
, if |k′| ≤ L− 1

0, otherwise

Note that in the linear case, the endpoints k′ = ±L are not considered because d(k′)
vanishes there. Figure 12.3.1 shows the sampled impulse responses for L = 8.

0 T -T
t t

T′=T/8
0 T

T′=T/8

h(t) h(t)
1 1

Fig. 12.3.1 Hold and linear interpolator impulse responses for L = 8.

The filtering operations of these interpolators are very simple. The hold interpolator
holds each low-rate sample constant forL high-rate sampling times. In other words, each
low-rate sample is repeated L times at the high rate. The linear interpolator interpolates
linearly between a given low-rate sample and the next one.

To see this, we rewrite the filtering equation (12.3.3) in its polyphase form. As we
argued for Eq. (12.2.12), we set n′ = nL + i and k′ = kL + j and use the fact that
xup(nL+ i− kL− j)= 0, if i �= j, to get

yup(nL+ i)=
∑
k
di(k)x(n− k) (12.3.4)

where di(k) are the corresponding polyphase subfilters:

di(k)= d(kL+ i), i = 0,1, . . . , L− 1

The summation over k must be determined for each case. In the hold case, we have
the restriction on k:

0 ≤ k′ ≤ L− 1 ⇒ 0 ≤ kL+ i ≤ L− 1 ⇒ 0 ≤ k ≤ 1 − 1 + i
L

Because 0 ≤ i ≤ L− 1, the only allowed value of k in that range is k = 0. Similarly,
in the linear case, we have:

|k′| ≤ L− 1 ⇒ |kL+ i| ≤ L− 1 ⇒ −1 + 1 − i
L

≤ k ≤ 1 − 1 + i
L

The only possible integer value in the left-hand side is k = −1, which is realized
when i = 1, and the only integer value of the right-hand side is k = 0. Therefore, the
polyphase subfilters are in the two cases:
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(hold) di(k)= di(0)δ(k)
(linear) di(k)= di(0)δ(k)+di(−1)δ(k+ 1)

where for the hold case, we have:

di(0)= d(i)= u(i)−u(i− L)= 1 − 0 = 1

and for the linear case:

di(0) = d(i)= 1 − |i|
L

= 1 − i
L

di(−1) = d(−L+ i)= 1 − |i− L|
L

= 1 − L− i
L

= i
L

Thus, the polyphase subfilters are:

(hold) di(k)= δ(k)

(linear) di(k)=
(
1 − i

L
)
δ(k)+ i

L
δ(k+ 1)

(12.3.5)

for i = 0,1, . . . , L − 1. Inserting these impulse responses in Eq. (12.3.4), we find the
interpolation equations in the two cases. For the hold case:

yup(nL+ i)= x(n) , i = 0,1, . . . , L− 1 (12.3.6)

Thus, each low-rate sample is repeated L times. For the linear case we have:

yup(nL+ i)= (
1 − i

L
)
x(n)+ i

L
x(n+ 1) , i = 0,1, . . . , L− 1 (12.3.7)

They correspond to linearly weighting the two successive low-rate samples x(n) and
x(n + 1). For example, when L = 8 the eight interpolated samples between x(n) and
x(n+ 1) are calculated by:

yup(8n) = x(n)
yup(8n+ 1) = 0.875x(n)+0.125x(n+ 1)

yup(8n+ 2) = 0.750x(n)+0.250x(n+ 1)

yup(8n+ 3) = 0.625x(n)+0.375x(n+ 1)

yup(8n+ 4) = 0.500x(n)+0.500x(n+ 1)

yup(8n+ 5) = 0.375x(n)+0.625x(n+ 1)

yup(8n+ 6) = 0.250x(n)+0.750x(n+ 1)

yup(8n+ 7) = 0.125x(n)+0.875x(n+ 1)
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Figure 12.3.2 shows the interpolated signal using 8-fold hold and linear interpolators.
To understand the frequency domain properties of the hold and linear interpolators and
the extent to which they differ from the ideal interpolator, we compute their high-rate
ζ-transforms using Eq. (12.2.15). For the hold case, taking the low-rate z-transform of
di(k) given in Eq. (12.3.5), we find

xup(8n-8)

xup(8n+8)

8n+8

xup(8n)

8n
n′

8n-8

xup(8n-8)

xup(8n+8)

8n+8

xup(8n)

8n
n′

8n-8

hold

linear

Fig. 12.3.2 8-fold hold and linear interpolators.

Di(z)= 1 ⇒ Di(ζL)= 1

Then, it follows from Eq. (12.2.15)

D(ζ)=
L−1∑
i=0

ζ−iDi(ζL)=
L−1∑
i=0

ζ−i = 1 − ζ−L

1 − ζ−1
(12.3.8)

Setting ζ = ejω′ = e2πjf/fs′ = e2πjf/Lfs we obtain the frequency response of the hold
interpolator:

D(f) = 1 − e−jLω′

1 − e−jω′ = sin(Lω′/2)
sin(ω′/2)

e−j(L−1)ω′/2

= sin(πf/fs)
sin(πf/Lfs)

e−jπ(L−1)f/Lfs

(12.3.9)

Similarly, the low-rate z-transform of di(k) for the linear case is:

Di(z)= 1 − i
L
+ i
L
z ⇒ Di(ζL)= 1 + i

L
(ζL − 1)

From Eq. (12.2.15) we find:

D(ζ)=
L−1∑
i=0

ζ−iDi(ζL)=
L−1∑
i=0

ζ−i + ζL − 1

L

L−1∑
i=0

iζ−i
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and using the identity:

L−1∑
i=0

iζ−i = (1 − ζ−L)ζ−1

(1 − ζ−1)2
− Lζ−L

1 − ζ−1

we obtain (see also Problem 5.11):

D(ζ)= 1

L
(1 − ζ−L)(1 − ζL)
(1 − ζ−1)(1 − ζ) = 1

L

(
1 − ζ−L

1 − ζ−1

)2

ζL−1

which leads to the frequency response:

D(f)= 1

L

∣∣∣∣sin(Lω′/2)
sin(ω′/2)

∣∣∣∣2

= 1

L

∣∣∣∣∣ sin(πf/fs)
sin(πf/Lfs)

∣∣∣∣∣
2

(12.3.10)

Both responses (12.3.9) and (12.3.10) are periodic in f with period fs′ = Lfs and van-
ish at all multiples of fs which are not multiples of Lfs. Therefore, they partially remove
the spectral replicas that are between multiples of fs′. They are shown in Fig. 12.3.3 for
the case L = 8, together with the ideal response.

Because of their simple structure, linear and hold interpolators are used in multi-
stage implementations of interpolators, especially in the latter stages that have higher
sampling rates. Some example designs are discussed in Section 12.4.5.

fs 2fs 3fs 4fs 5fs 6fs 7fs 8fs
0

f

hold interpolator

ideal interpolator

linear interpolator

|D
( f

)|

8

Fig. 12.3.3 Hold and linear interpolator frequency responses for L = 8.

12.4 Design Examples∗

12.4.1 4-fold Interpolators

Consider the case of a 4-fold interpolator having L = 4 and polyphase filter length
2M = 4 or M = 2. This corresponds to a filter length N = 2LM + 1 = 17. The ideal
impulse response will be:

d(k′)= sin(πk′/4)
πk′/4

, −8 ≤ k′ ≤ 8
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or, numerically,

h = d = [0,−0.13,−0.21,−0.18,0,0.30,0.64,0.90,1,0.90,0.64,

0.30,0,−0.18,−0.21,−0.13,0]
(12.4.1)

where h is the causal version, with time origin shifted to the left of the vector, and d
is the symmetric one with time origin at the middle of the vector. This truncated ideal
impulse response is shown in Fig. 12.4.1. The four polyphase subfilters are defined by
Eq. (12.2.10), that is, for i = 0,1,2,3,

0

5-5

4-4 2-2 1-1

6-6 7-7 8-8

3-3

d(k′)

k′

1
0.900.90

0.640.64

0.30

-0.18 -0.21
-0.13-0.13

-0.21 -0.18

0.30

L=4, M=2, N=17

Fig. 12.4.1 Length-17 symmetric impulse response of 4-fold FIR interpolator.

di(k)= d(4k+ i), −2 ≤ k ≤ 1

They are extracted from h by taking every fourth entry, starting with the ith entry:

h0 = d0 = [0, 0, 1, 0]

h1 = d1 = [−0.13, 0.30, 0.90, −0.18]

h2 = d2 = [−0.21, 0.64, 0.64, −0.21]

h3 = d3 = [−0.18, 0.90, 0.30, −0.13]

(12.4.2)

The interpolated samples between x(n)= xup(4n) and x(n + 1)= xup(4n + 4) are
calculated from Eqs. (12.2.18). All four subfilters act on the time-advanced low-rate
input samples {x(n + 2), x(n + 1), x(n), x(n − 1)}, or, {xup(4n + 8), xup(4n + 4),
xup(4n), xup(4n− 4)}. Equations (12.2.12) can be cast in a compact matrix form:

⎡⎢⎢⎢⎣
yup(4n)
yup(4n+ 1)
yup(4n+ 2)
yup(4n+ 3)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0 0 1 0

−0.13 0.30 0.90 −0.18
−0.21 0.64 0.64 −0.21
−0.18 0.90 0.30 −0.13

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
xup(4n+ 8)
xup(4n+ 4)
xup(4n)
xup(4n− 4)

⎤⎥⎥⎥⎦ (12.4.3)

These results can be understood more intuitively using the LTI form of convolution,
that is, superimposing the full length-17 symmetric impulse response d at the four
contributing low-rate samples and summing up their contributions at the four desired
time instants, that is, at n′ = 4n+ i, i = 0,1,2,3. This is illustrated in Fig. 12.4.2.
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xup(4n-4)

4n-4

xup(4n+4)

yup(4n+1)

4n+4

xup(4n+8)

4n+8

xup(4n)

4n

n′

Fig. 12.4.2 LTI form of convolution by superposition of FIR impulse responses.

For example, referring to the impulse response values indicated on Fig. 12.4.1, we
find that at time instant 4n+1, the input sample xup(4n+8) will contribute an amount
−0.13xup(4n+ 8), the sample xup(4n+ 4) will contribute an amount 0.30xup(4n+ 4),
the sample xup(4n) will contribute 0.90xup(4n), and the sample xup(4n−4) an amount
−0.18xup(4n− 4). The interpolated value is built up from these four contributions:

yup(4n+ 1)= −0.13xup(4n+ 8)+0.30xup(4n+ 4)+0.90xup(4n)−0.18xup(4n− 4)

Similarly, it should be evident from Fig. 12.4.2 that yup(4n)= xup(4n), with the
contributions of the other low-rate inputs vanishing at time instant 4n. We may also use
the flip-and-slide form of convolution, in which the impulse response d(k′) is flipped,
delayed, and positioned at the sampling instant n′ to be computed. For example, at
n′ = 4n+ 1, we have:

yup(4n+ 1)=
∑
k′
d(4n+ 1 − k′)xup(k′)

Figure 12.4.3 shows this operation. Because of symmetry, the flipped impulse re-
sponse is the same as that in Fig. 12.4.1. It is then translated to n′ = 4n + 1 and the
above linear combination is performed.

xup(4n-4)
xup(4n+4)

d(4n+1−k′) =

4n+4
4n+1

xup(4n+8)

xup(4n)

4n
k′

flipped/shifted
impulse response

-0.18

0.90

0.30

-0.13

Fig. 12.4.3 Flip-and-slide form of convolution.

The only contributions come from the low-rate samples that fall within the finite
extent of the impulse response. Thus, only the terms k′ = 4n − 4,4n,4n + 4,4n + 8
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contribute, and each is weighted by the appropriate impulse response values that are
read off from the figure, that is, {−0.18,0.90,0.30,−0.13}, so that again:

yup(4n+ 1)= −0.18xup(4n− 4)+0.90xup(4n)+0.30xup(4n+ 4)−0.13xup(4n+ 8)

The Hamming windowed version of the filter is obtained by multiplying the full
length-17 filter response h by a length-17 Hamming window. The resulting impulse
response becomes:

h = [0,−0.02,−0.05,−0.07,0,0.22,0.55,0.87,1,0.87,0.55,0.22,0,

− 0.07,−0.05,−0.02,0]

The polyphase interpolation equations become in this case:⎡⎢⎢⎢⎣
yup(4n)
yup(4n+ 1)
yup(4n+ 2)
yup(4n+ 3)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0 0 1 0

−0.02 0.22 0.87 −0.07
−0.05 0.55 0.55 −0.05
−0.07 0.87 0.22 −0.02

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
xup(4n+ 8)
xup(4n+ 4)
xup(4n)
xup(4n− 4)

⎤⎥⎥⎥⎦
The graphs in Fig. 12.4.4 compare the magnitude responses of the rectangularly and

Hamming windowed interpolation filters. A block diagram realization of the polyphase
form for this example is shown in Fig. 12.4.5. It is based on Eqs. (12.2.14) and (12.2.15),
that is,

Fig. 12.4.4 Magnitude response |H(ω′)| versus ω′ = 2πf/fs′.

H(ζ) = H0(ζ4)+ζ−1H1(ζ4)+ζ−2H2(ζ4)+ζ−3H3(ζ4)

= H0(z)+z−1/4H1(z)+z−2/4H2(z)+z−3/4H3(z)

with all the subfilters using the same tapped delay line holding the incoming low-rate
samples. The block diagram is equivalent to the commutator model of Fig. 12.2.5. The
polyphase subfilters are defined by:

hi = [hi0, hi1, hi2, hi3], Hi(z)= hi0 + hi1z−1 + hi2z−2 + hi3z−3
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Fig. 12.4.5 Polyphase realization of 4-fold interpolator.

for i = 0,1,2,3, where hi are given by Eq. (12.4.2).
The possibility of a parallel multiprocessor implementation is evident from this di-

agram. The four outputs of the filters Hi(z) are produced simultaneously in a parallel
implementation, but they are not sent to the overall output simultaneously. During each
low-rate sampling period T, the sample y0(n) is sent out first, then T/4 seconds later
(represented by the delay z−1/4) the second computed interpolated sample y1(n) is sent
out, anotherT/4 seconds later the third sample y2(n) is sent out, andT/4 seconds after
that, the fourth interpolated sample y3(n) is sent out.

As a concrete filtering example, consider the following low-rate input signal x(n)
consisting of 25 DC samples, and depicted in Fig. 12.4.6 with respect to the fast time
scale:

x(n)= {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}

The interpolated values between these low-rate samples are shown in Fig. 12.4.7 for
the cases of the rectangularly and Hamming windowed interpolating filters. They were
computed by the polyphase sample processing algorithm of Eq. (12.2.20). The input-on
and input-off transients are evident.

As another example, consider the case of L = 4 and M = 12, that is, interpolation
filter length N = 2LM + 1 = 97. This is a more realistic length for typical 4-fold
oversampling digital filters used in CD players. The corresponding rectangularly and
Hamming windowed magnitude responses are shown in Fig. 12.4.8. The interpolated
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Fig. 12.4.6 Low-rate input samples xup(n′).

Fig. 12.4.7 High-rate interpolated output samples yup(n′).

output signals from these two filters are shown in Fig. 12.4.9 for the same low-rate
input signal x(n). Note the longer input-on and input-off transients.

Fig. 12.4.8 Magnitude responses of length-97 interpolation filters.
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Fig. 12.4.9 High-rate interpolated outputs yup(n′).

12.4.2 Multistage 4-fold Interpolators

Here, we follow the discussion of Section 12.2.5 and design multistage and single stage
digital interpolation filters using the Kaiser window method. Such filters may be used
as oversampling digital filters in CD players.†

We take L = 4 for the oversampling ratio, and assume a nominal digital audio sam-
pling rate of fs = 40 kHz, so that the fast rate will be fs′ = Lfs = 4 × 40 = 160
kHz. We take the transition width to be Δf = 5 kHz about the ideal cutoff frequency
fc = fs′/(2L)= fs/2 = 20 kHz. Therefore, the passband and stopband frequencies of
the filter will be

fpass = 20 − 5

2
= 17.5 kHz, fstop = 20 + 5

2
= 22.5 kHz

and the normalized transition width

ΔF = Δf
fs

= 5

40
= 0.125

The stopband attenuation is taken to be A = 80 dB, which gives rise to a pass-
band/stopband ripple δ = 10−4, passband attenuation Apass = 0.0017 dB, and the
following values for the Kaiser window parameters D and α:

D = A− 7.95

14.36
= 5.017, α = 0.1102(A− 8.7)= 7.857

For a 2×2 multistage design, shown in Fig. 12.4.10, we may use the general design
equations (12.2.31) and (12.2.32) to find the Kaiser lengths of the two filtersH0 andH1:

N0 − 1 = DL0

ΔF
= 2D
ΔF

= 80.27, N1 − 1 = DF1

F0 − 1
= 4D = 20.07

which get rounded up to the values:

†See Ref. [282] for actual DSP chips with comparable design characteristics.
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H0 H1

2fs 4fsfs

2 2
x(n) yup(n′)

Fig. 12.4.10 2×2 = 4-fold oversampling filter.

N0 = 85 = 2L0M0 + 1 = 4M0 + 1 ⇒ M0 = 21

N1 = 25 = 2L1M1 + 1 = 4M1 + 1 ⇒ M1 = 6

The magnitude response of the filter H0(f) in dB and a typical low-rate sinusoidal
input to be interpolated are shown in Fig. 12.4.11. The 2-fold interpolated output of
H0(f) is shown in Fig. 12.4.12. It serves as the input to the next filter H1(f) whose
magnitude response is also shown in Fig. 12.4.12.

Fig. 12.4.11 Filter H0(f) and its low-rate input signal.

Fig. 12.4.12 Filter H1(f) and its input which is the output of H0(f).
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The 2-fold interpolated output of H1(f) will be the final 4-fold interpolated output.
It is shown in Fig. 12.4.13 together with the superimposed plots of the filters H0(f)
andH1(f). In these figures, the frequency responses have been normalized by their DC
values, that is, H0(f)/L0, H1(f)/L1.

Finally, we compare the multistage design to an equivalent single stage Kaiser design.
In this case the Kaiser filter length will be

N − 1 = 4D
ΔF

= 160.56

which is rounded up to the value

N = 169 = 2LM + 1 = 8M + 1 ⇒ M = 21

Its magnitude response H(f) is shown in Fig. 12.4.14 together with the magnitude
response of the combined multistage filter Htot(f)= H0(f)H1(f). Again, we have nor-
malized them to their DC values, namely, H(f)/L, and Htot(f)/L.

Fig. 12.4.13 Filters H0(f), H1(f) and the overall interpolated output.

Fig. 12.4.14 Multistage filter H0(f)H1(f) and single-stage filter H(f).
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The multistage realization requires only 80 percent of the computational rate of the
single-stage design. Indeed, the relative computational rate of the multistage versus the
single stage designs is given according to Eq. (12.2.33) by:

Rmulti

Rsingle
= N0 +N1F0

N
= 85 + 25 · 2

169
= 0.80

which compares well with the approximate result of Eq. (12.2.30).

Rmulti

Rsingle
= 1

2
+ 2ΔF = 0.5 + 2 · 0.125 = 0.75

Finally, as we saw earlier, the passband of the total filter Htot(f)= H0(f)H1(f)
tends to be worse than the passbands of the individual factors. Let δ be the common
passband ripple, as calculated from Eq. (12.2.29). Then, the two individual filters will
satisfy within their passbands:

1 − δ ≤
∣∣∣∣H0(f)

L0

∣∣∣∣ ≤ 1 + δ , 1 − δ ≤
∣∣∣∣H1(f)

L1

∣∣∣∣ ≤ 1 + δ

Multiplying the two inequalities, we find for the total filter

(1 − δ)2≤
∣∣∣∣H0(f)H1(f)

L0L1

∣∣∣∣ ≤ (1 + δ)2

or, approximately if δ is small,

1 − 2δ ≤
∣∣∣∣Htot(f)

L

∣∣∣∣ ≤ 1 + 2δ

Thus, the passband ripple is effectively doubled, δtot = 2δ. Taking logs of both
sides, we obtain the following bounds for the passband attenuations in dB:

−8.7δ ≤ 20 log10

∣∣∣∣H0(f)
L0

∣∣∣∣ ≤ 8.7δ, − 8.7δ ≤ 20 log10

∣∣∣∣H1(f)
L1

∣∣∣∣ ≤ 8.7δ

−8.7(2δ)≤ 20 log10

∣∣∣∣Htot(f)
L

∣∣∣∣ ≤ 8.7(2δ)

where we used the small-δ approximation:

20 log10(1 + δ)� 8.7δ

Figure 12.4.15 shows a magnified plot of the passband region of the individual and
total filters for the above designs, with the passband bounds placed on the figure. It
is evident that the actual passband ripple of Htot(f) is less than the worst-case ripple
δtot = 2δ.
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Fig. 12.4.15 Magnified passband of 2×2 interpolator.

12.4.3 DAC Equalization

In an oversampling DSP system, the interpolator output samples are reconstructed by
a staircase D/A converter operating at the high rate fs′ = Lfs. Its frequency response
(normalized to unity gain at DC) is

Hdac(f)= sin(πf/fs′)
πf/fs′

e−jπf/fs
′

It causes some attenuation within the Nyquist interval, with maximum of about 4
dB at the Nyquist frequency fs′/2. For an L-fold interpolation filter which has cutoff at
fc = fs/2 = fs′/2L, the maximum attenuation within the filter’s passband will be:

|Hdac(fc)| =
∣∣∣∣∣sin(πfc/fs′)

πfc/fs′

∣∣∣∣∣ = sin(π/2L)
π/2L

(12.4.4)

For large values of the oversampling ratio L, this attenuation is insignificant, ap-
proaching 0 dB. Thus, one of the benefits of oversampling is that the aperture effect of
the DAC can be neglected.

However, for smaller values of L (for example, L ≤ 8) it may be desirable to com-
pensate this attenuation by designing the interpolation filter to have an inverse shape to
the sinx/x DAC response over the relevant passband range. The desired equalized ideal
interpolation filter can then be defined by the following equation, replacing Eq. (12.2.24):

D(f)=

⎧⎪⎪⎨⎪⎪⎩
LDeq(f), if |f| ≤ fs

2

0, if
fs
2
< |f| ≤ fs′

2

(12.4.5)

where Deq(f) is essentially the inverse response 1/Hdac(f) with the phase removed in
order to keep D(f) real and even in f :

Deq(f)= πf/fs′

sin(πf/fs′)
, |f| ≤ fs

2
(12.4.6)
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In units of the high-rate digital frequency ω′ = 2πf/fs′, Eq. (12.4.5) becomes:

D(ω′)=

⎧⎪⎪⎨⎪⎪⎩
L

ω′/2
sin(ω′/2)

, if |ω′| ≤ π
L

0, if
π
L
< |ω′| ≤ π

(12.4.7)

Such a filter can be designed by the frequency sampling design method of Section
10.3. If the filter order is known, say N = 2LM + 1, then we can compute the desired
filter weights by the inverse N-point DFT:

d̃(k′)= 1

N

LM∑
i=−LM

D(ω′
i)e

jω′
ik′ , −LM ≤ k′ ≤ LM (12.4.8)

whereω′
i are theN DFT frequencies spanning the symmetric Nyquist interval [−π,π]:

ω′
i =

2πi
N

, −LM ≤ i ≤ LM

The designed causal windowed filter will be

h(n′)= d̃(n′ − LM)w(n′), 0 ≤ n′ ≤ N − 1 (12.4.9)

In the Hamming window case, we must assume a desired value for N. In the Kaiser
case, we may start with a desired stopband attenuation A and transition width Δf , and
then determine the filter length N and the window parameter α. Because the filter is
sloping upwards in the passband, to achieve a true attenuation A in the stopband, we
may have to carry out the design with a slightly larger value of A. This is illustrated in
the examples below.

Note also that because d̃(k′) and D(ω′) are real-valued, we may replace the right-
hand side of Eq. (12.4.8) by its real part and write it in the cosine form:

d̃(k′)= 1

N

LM∑
i=−LM

D(ω′
i)cos(ω′

ik
′), −LM ≤ k′ ≤ LM

and because D(ω′) is even in ω′

d̃(k′)= 1

N

⎡⎣D(ω′
0)+2

LM∑
i=1

D(ω′
i)cos(ω′

ik
′)

⎤⎦ , −LM ≤ k′ ≤ LM

whereD(ω′
0)= D(0)= L. This expression can be simplified even further by noting that

D(ω′
i) is non-zero only for

0 < ω′
i <

π
L

⇒ 0 <
2πi
N

<
π
L

⇒ 0 < i <
N
2L

= 2LM + 1

2L
=M + 1

2L

Thus, the summation can be restricted over 1 ≤ i ≤M, giving

d̃(k′)= L
N

⎡⎣1 + 2
M∑
i=1

ω′
i/2

sin(ω′
i/2)

cos(ω′
ik

′)

⎤⎦ , −LM ≤ k′ ≤ LM
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As a first example, consider a 2-times oversampling filter for a CD player. Assume
a nominal audio rate of fs = 40 kHz, transition width Δf = 5 kHz, and stopband
attenuation A = 80 dB. The normalized width is ΔF = Δf/fs = 0.125. The Kaiser D
parameter and filter length N will be

D = A− 7.95

14.36
= 5.017, N − 1 ≥= DL

ΔF
= 80.3

which rounds up to N = 85. Fig. 12.4.16 shows the designed filter together with the
inverse DAC response 1/|Hdac(f)| over the high-rate Nyquist interval. It also shows the
passband in a magnified scale. Notice how the inverse DAC response reaches 4 dB at
the Nyquist frequency of fs′/2 = 40 kHz.

Fig. 12.4.16 2-fold interpolator/equalizer designed with A = 80 dB.

The actual stopband attenuation is somewhat less than the prescribed 80 dB, namely,
about 72 dB at f = fs/2 + Δf/2 = 22.5 kHz. Thus, we may wish to redesign the filter
starting out with a somewhat larger attenuation. For example, assuming A = 90 dB,
we obtain filter length N = 93. See [282] for a similar design. The redesigned filter is
shown in Fig. 12.4.17. It achieves 80 dB attenuation at 22.5 kHz.

Fig. 12.4.17 2-fold interpolator/equalizer redesigned with A = 90 dB.

As another example, we design an equalized 4-times oversampling filter for digital
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audio, assuming 40 kHz audio rate, 5 kHz transition width, and a stopband attenuation
of 60 dB. The Kaiser parameters are:

D = A− 7.95

14.36
= 3.625, N − 1 ≥= DL

ΔF
= 115.98 ⇒ N = 121

The designed filter and its passband are shown in Fig. 12.4.18.

Fig. 12.4.18 4-fold interpolator/equalizer filter and its magnified passband.

12.4.4 Postfilter Design and Equalization

In addition to compensating for the attenuation of the DAC, one may wish to compen-
sate for other effects. For example, the staircase output of the DAC will be fed into
an analog anti-image postfilter which introduces its own slight attenuation within the
desired passband. This attenuation can be equalized digitally by the interpolation filter.
Figure 12.4.19 shows this arrangement.

Hinterp Hdac Hpost
digital
input

fs

rate

L-fold interpolator

L fs

rate
analog
outputL

Fig. 12.4.19 Interpolation filter equalizes DAC and postfilter responses.

As we saw in Section 12.1, because of oversampling, the postfilter will have a wide
transition region resulting in low filter order, such as 2 or 3. The postfilter must provide
enough attenuation in its stopband to remove the spectral images of the interpolated
signal at multiples of fs′, as shown in Fig. 12.4.20. Its passband extends up to the low-
rate Nyquist frequency† and its stopband begins at the left edge of the first spectral
image, that is,

†If the interpolator is not ideal but has transition width Δf about fs/2, we may use the more accurate
expressions fpass = fs/2 −Δf/2 and fstop = Lfs − fs/2 −Δf/2.
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fs/2 Lfs 2Lfs
0 f 

fstopfpass

Astop

postfilter
spectral images
removed by postfilter

passband

stopband

Fig. 12.4.20 Analog anti-image postfilter specifications.

fpass = fs
2
, fstop = fs′ − fpass = Lfs − fs

2

At fstop, the DAC already provides a certain amount of attenuation given by:

|Hdac(fstop)| =
∣∣∣∣∣sin(πfstop/fs′)

πfstop/fs′

∣∣∣∣∣ = sin(π−π/2L)
π−π/2L = sin(π/2L)

π−π/2L
which, for large L, becomes approximately:

|Hdac(fstop)| = sin(π/2L)
π−π/2L � 1

2L

or, in dB

Adac � 20 log10(2L) (12.4.10)

The analog postfilter must supply an additional amount of attenuationAstop, raising
the total attenuation at fstop to a desired level, say Atot dB:

Atot = Adac +Astop

For example, suppose fs = 40 kHz and L = 4, and we require the total suppression
of the replicas to be more than Atot = 60 dB. The stopband frequency will be fstop =
Lfs−fs/2 = 160−20 = 140 kHz. At that frequency the DAC will provide an attenuation
Adac = 20 log10(8)= 18 dB, and therefore the postfilter must provide the rest:

Astop = Atot −Adac = 60 − 18 = 42 dB

Suppose we use a third-order Butterworth filter with magnitude response [269–271]:

|Hpost(f)|2 = 1

1 +
(
f
f0

)6

and attenuation in dB:
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Apost(f)= −10 log10 |Hpost(f)|2 = 10 log10

⎡⎣1 +
(
f
f0

)6
⎤⎦ (12.4.11)

where f0 is the 3-dB normalization frequency to be determined. Then, the requirement
that at fstop the attenuation be equal to Astop gives:

Astop = 10 log10

⎡⎣1 +
(
fstop

f0

)6
⎤⎦

which can be solved for f0:

f0 = fstop
[
10Astop/10 − 1

]−1/6 = 140 · [1042/10 − 1
]−1/6 = 28 kHz

The third-order Butterworth analog transfer function of the postfilter will be:

Hpost(s)= 1

1 + 2
(
s
Ω0

)
+ 2

(
s
Ω0

)2

+
(
s
Ω0

)3 (12.4.12)

where Ω0 = 2πf0. This postfilter will adequately remove the spectral images at mul-
tiples of fs′, but it will also cause a small amount of attenuation within the desired
passband. The maximum passband attenuations caused by the postfilter and the DAC
at fpass = fs/2 can be computed from Eqs. (12.4.11) and (12.4.4):

Apost(fpass) = 10 log10

[
1 +

(
fpass

f0

)6] = 10 log10

[
1 + (20

28

)6
]
= 0.54 dB

Adac(fpass) = −20 log10

[
sin(π/2L)
π/2L

]
= 0.22 dB

resulting in a total passband attenuation of 0.54 + 0.22 = 0.76 dB. This combined at-
tenuation of the DAC and postfilter can be equalized by the interpolator filter. Using
the frequency sampling design, we replace the interpolator’s defining equation (12.4.7)
by the equalized version:

D(ω′)=

⎧⎪⎪⎨⎪⎪⎩
L
[

ω′/2
sin(ω′/2)

][
1 + (ω′

ω0

)6
]1/2

, if |ω′| ≤ π
L

0, if
π
L
< |ω′| ≤ π

(12.4.13)

where ω0 = 2πf0/fs′. The impulse response coefficients will be calculated by:

d̃(k′)= L
N

⎡⎣1 + 2
M∑
i=1

[
ω′
i/2

sin(ω′
i/2)

][
1 + (ω′

i
ω0

)6

]1/2

cos(ω′
ik

′)

⎤⎦
for −LM ≤ k′ ≤ LM. These coefficients must be weighted by an appropriate window,
as in Eq. (12.4.9).
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Figure 12.4.21 shows a Kaiser design corresponding to interpolator stopband atten-
uation ofA = 60 dB and a transition width of Δf = 5 kHz. As before, the resulting filter
length is N = 121.

For reference, the DAC response Hdac(f), postfilter response Hpost(f), and total re-
sponse Hdac(f)Hpost(f) are superimposed on the figure. Notice how they meet their
respective specifications at fstop = 140 kHz. The DAC response vanishes (i.e., it has infi-
nite attenuation) at fs′ = 160 kHz and all its multiples. The figure also shows the filter’s
passband in a magnified scale, together with the plots of the total filterHdac(f)Hpost(f)
and total inverse filter 1/

(
Hdac(f)Hpost(f)

)
.

The effective overall analog reconstructor Hinterp(f)Hdac(f)Hpost(f), consisting of
the equalized interpolator, DAC, and postfilter, is shown in Fig. 12.4.22. The spectral
images at multiples of fs′ = 160 kHz are suppressed by more than 60 dB and the 20 kHz
passband is essentially flat. The figure also shows the passband in a magnified scale.

Fig. 12.4.21 4-fold interpolator with equalization of DAC and Butterworth postfilter.

Fig. 12.4.22 Effective reconstructor has flat passband.

In digital audio applications, Bessel postfilters may also be used instead of Butter-
worth filters; see [279] for an example. Bessel filters provide the additional benefit that
they have approximately linear phase over their passband. In particular, the transfer
function and magnitude response of a third-order Bessel filter are given by [269–272]:
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Hpost(s)= 15

15 + 15
(
s
Ω0

)
+ 6

(
s
Ω0

)2

+
(
s
Ω0

)3 (12.4.14)

|Hpost(f)|2 = 225

225 + 45

(
f
f0

)2

+ 6

(
f
f0

)4

+
(
f
f0

)6 (12.4.15)

where Ω0 = 2πf0 and f0 is related to the 3-dB frequency of the filter by

f3dB = 1.75f0

The passband attenuation of this filter can be equalized digitally in a similar fashion.
For equal 3-dB frequencies, Bessel filters fall off somewhat less sharply than Butterworth
ones, thus, suppressing the spectral images by a lesser amount.

For example, for the previous 3-dB frequency f3dB = 28 kHz, we find the normaliza-
tion frequency f0 = f3dB/1.75 = 16 kHz. The corresponding postfilter attenuations at
the passband and stopband frequencies, fpass = 20 kHz and fstop = 140 kHz, calculated
from Eq. (12.4.15) are:

Apost(fpass)= 1.44 dB, Apost(fstop)= 33 dB

Thus, the DAC/postfilter combination will only achieve a total stopband attenuation
of 33+ 18 = 51 dB for the removal of the spectral images. Similarly, the total passband
attenuation to be compensated by the interpolator will be 0.22 + 1.44 = 1.66 dB.

If 51 dB suppression of the spectral images is acceptable† then we may redesign the
interpolator so that it suppresses its stopband also by 51 dB. With A = 51 and L = 4,
the redesigned interpolator will have Kaiser parameters:

D = A− 7.95

14.36
= 2.998

N − 1 ≥= DL
ΔF

= 95.93 ⇒ N = 97

The redesigned equalized interpolation filter and the effective overall reconstruc-
tion filter are shown in Fig. 12.4.23. The overall reconstructor has a flat passband and
suppresses all spectral images by at least 51 dB.

12.4.5 Multistage Equalization

Another application where equalization may be desirable is in multistage implementa-
tions of interpolators. The first stage is usually a high-quality lowpass digital filter,
whereas the subsequent stages may be interpolators with simplified structure, such as
linear or hold interpolators which do not have a flat passband. In such cases, the filter in
the first stage can be designed to equalize the attenuation of all the subsequent stages
within the passband. In addition, the analog reconstructing DAC and postfilter may also
be equalized by the first stage. The overall system is shown in Fig. 12.4.24.

†The first Philips CD player had a similar 4-times oversampling interpolator of order N = 97 and stop-
band attenuation of A = 50 dB; see [279] for details.
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Fig. 12.4.23 4-fold interpolator with equalization of DAC and Bessel postfilter.

H0 H1
L0 fsfs L0 L1 fs

digital
output

digital
input

analog
output

2-stage interpolator

Hdac HpostL0 L1

Fig. 12.4.24 First stage equalizes the passband responses of all remaining stages.

As an example, consider a 2-stage interpolator with oversampling factors L = L0L1.
The first interpolation filter is a lowpass digital filter with sharp cutoff at fs/2, and the
second is a linear interpolator. The first filter H0 increases the sampling rate from fs
to L0fs. The second filter H1 increases it by a factor L1, from L0fs to L1L0fs. It has
magnitude response (normalized to unity at DC):

|H1(f)| =
∣∣∣∣∣ sin(πf/L0fs)
L1 sin(πf/L1L0fs)

∣∣∣∣∣
2

=
∣∣∣∣ sin(ω′/2)
L1 sin(ω′/2L1)

∣∣∣∣2

≡ Dlin(ω′)

whereω′ = 2πf/(L0fs) is the digital frequency with respect to the rate L0fs of the filter
H0.

The job of the filter H0 is to remove the (L0 − 1) spectral replicas that lie between
replicas at multiples of L0fs. Because it is periodic with period L0fs, the filterH0 cannot
remove the replicas at multiples of L0fs. Those are partially removed by the second filter
H1, which vanishes at multiples of L0fs that are not multiples of L1L0fs. Even though
these replicas vanish at their centers, their edges are only suppressed by about 33 dB.
Further suppression requires the aid of a postfilter. The combined effect of the H0 and
H1 filters is to leave only the replicas at multiples of the final sampling rate L1L0fs.
Those are also removed by the postfilter. Figures (12.4.25) and (12.4.27) illustrate these
remarks for L0 = L1 = 4.

The output ofH1 is applied to a staircase DAC operating at the high rate L1L0fs. Its
frequency response (normalized to unity at DC) is:

|Hdac(f)| =
∣∣∣∣∣sin(πf/L1L0fs)

πf/L1L0fs

∣∣∣∣∣ =
∣∣∣∣sin(ω′/2L1)

ω′/2L1

∣∣∣∣ ≡ Ddac(ω′)
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The DAC’s sinx/x response vanishes at multiples of the final rate L1L0fs. Finally, the
staircase output of the DAC will be smoothed by an analog postfilter, say, a third-order
Butterworth filter with 3-dB cutoff frequency f0, having magnitude response:

|Hpost(f)| = 1⎡⎣1 +
(
f
f0

)6
⎤⎦1/2 = 1[

1 +
(
ω′

ω0

)6
]1/2 ≡ Dpost(ω′)

whereω0 = 2πf0/L0fs. The three responsesDlin(ω′),Ddac(ω′), andDpost(ω′) can be
equalized simultaneously by the interpolation filter H0 by defining its passband speci-
fications as:

D(ω′)=

⎧⎪⎪⎨⎪⎪⎩
L0

Dlin(ω′)Ddac(ω′)Dpost(ω′)
if |ω′| ≤ π

L0

0, if
π
L0
< |ω′| ≤ π

(12.4.16)

Assuming a filter length N0 = 2L0M0 + 1, we obtain the coefficients of the filter H0

by the following frequency sampling design expression:

d̃(k′)= L0

N0

⎡⎣1 + 2
M0∑
i=1

1

Dlin(ω′
i)Ddac(ω′

i)Dpost(ω′
i)

cos(ω′
ik

′)

⎤⎦
for −L0M0 ≤ k′ ≤ L0M0. Note that if L0 and L1 are large, two simplifications may be
introduced in the definition (12.4.16). First, we may omit the DAC equalization factor
Ddac(ω′) because within the passband 0 ≤ω′ ≤ π/L0 it reaches a maximum attenua-
tion of:

sin(π/2L1L0)
π/2L1L0

which will be extremely small. Second, again within the passband 0 ≤ ω′ ≤ π/L0,
we can approximate the linear interpolator response by its analog equivalent (sinx/x)2

response, which is independent of L1:

Dlin(ω′)=
∣∣∣∣ sin(ω′/2)
L1 sin(ω′/2L1)

∣∣∣∣2

�
∣∣∣∣sin(ω′/2)

ω′/2

∣∣∣∣2

In deciding the specifications of the postfilter, we must consider the total attenuation
of the replica at L0fs, which will have the worst attenuation. Because of the downward
sloping of the postfilter, the remaining replicas will be attenuated more. At the left edge
of that replica, that is, at frequency

fstop = L0fs − fs
2

⇒ ω′
stop = 2πfstop

L0fs
= π(2L0 − 1)

L0

the attenuations of the linear interpolator, DAC, and postfilter can be calculated by
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Alin(fstop)= −20 log10

∣∣∣∣∣ sin(ω′
stop/2)

L1 sin(ω′
stop/2L1)

∣∣∣∣∣
2

Adac(fstop)= −20 log10

∣∣∣∣∣sin(ω′
stop/2L1)

ω′
stop/2L1

∣∣∣∣∣
Apost(fstop)= 10 log10

⎡⎣1 +
(
fstop

f0

)6
⎤⎦

(12.4.17)

From these equations, one may determine the 3-dB frequency f0 of the postfilter in
order that the total attenuation at fstop be equal to a desired level, say Atot

Atot = Alin(fstop)+Adac(fstop)+Apost(fstop)

Similarly, one can calculate the attenuations of the linear interpolator, DAC, and
postfilter at the edge of the passband, that is, at fpass = fs/2 or ω′

pass = π/L0

Alin(fpass)= −20 log10

∣∣∣∣∣ sin(ω′
pass/2)

L1 sin(ω′
pass/2L1)

∣∣∣∣∣
2

Adac(fpass)= −20 log10

∣∣∣∣∣sin(ω′
pass/2L1)

ω′
pass/2L1

∣∣∣∣∣
Apost(fpass)= 10 log10

⎡⎣1 +
(
fpass

f0

)6
⎤⎦

(12.4.18)

Their sum is the total passband attenuation that must be equalized by the interpola-
tor H0. Finally, one must verify that the last replica at L1L0fs, which survives the com-
bined interpolation filters H0 and H1, is attenuated sufficiently by the DAC/postfilter
combination. At the left edge of that replica, that is, at frequency

flast = L1L0fs − fs
2

⇒ ω′
last =

2πflast

L0fs
= π(2L1L0 − 1)

L0

the attenuations of the linear interpolator, DAC, and postfilter are

Alin(flast)= −20 log10

∣∣∣∣∣ sin(ω′
last/2)

L1 sin(ω′
last/2L1)

∣∣∣∣∣
2

Adac(flast)= −20 log10

∣∣∣∣∣sin(ω′
last/2L1)

ω′
last/2L1

∣∣∣∣∣
Apost(flast)= 10 log10

⎡⎣1 +
(
flast

f0

)6
⎤⎦

(12.4.19)

As a concrete design example,† suppose fs = 40 kHz and L0 = L1 = 4, so that the
total interpolation factor will be L = 16. For the first stage H0, we use a Kaiser design

†See [281] for a similar example having three stages L0 = 4, L1 = 32 linear, and L2 = 2 hold interpolator,
with overall L = 256.
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with stopband attenuation A = 60 dB and transition width Δf = 5 kHz. The Kaiser
parameters are:

D = A− 7.95

14.36
= 3.625

N0 − 1 ≥ DL0

ΔF
= 115.98 ⇒ N0 = 121

The linear interpolator and DAC will have frequency responses:

|H1(f)| =
∣∣∣∣∣ sin(πf/4fs)

4 sin(πf/16fs)

∣∣∣∣∣
2

, |Hdac(f)| =
∣∣∣∣∣sin(πf/16fs)

πf/16fs

∣∣∣∣∣
It is evident that |H1(f)| vanishes at all multiples of 4fs which are not multiples of

16fs, whereas |Hdac(f)| vanishes at all non-zero multiples of 16fs.
Using Eqs. (12.4.17), we find that the requirement that at fstop = L0fs − fs/2 = 140

kHz the total attenuation be more than 60 dB gives the value f0 = 50 kHz for the 3-dB
frequency of the postfilter.

Table 12.4.1 shows the attenuations calculated by Eqs. (12.4.17–12.4.19) at the three
frequencies fpass = 20 kHz, fstop = 140 kHz, and flast = 620 kHz, or equivalently, the
normalized ones ω′

pass = π/4, ω′
stop = 7π/4, and ω′

last = 31π/4.

fpass fstop flast

Alin 0.421 32.863 0.421
Adac 0.014 0.695 29.841
Apost 0.018 26.838 65.605

Atot 0.453 60.396 95.867

Table 12.4.1 Attenuations in dB.

It is evident from this table that most of the attenuation in the passband arises from
the linear interpolator—one could have equalized only the linear interpolator, ignoring
the DAC and postfilter, without much degradation.

At 140 kHz, the linear interpolator and postfilter contribute almost equally towards
the suppression of the 160 kHz replica—the linear interpolator providing an attenuation
of about 33 dB and the postfilter supplementing it with another 27 dB for a total of 60
dB. The DAC’s contribution is minimal there.

At 620 kHz, the main contributors towards the suppression of the 640 kHz replica
are the postfilter and the DAC providing a total of 95 dB suppression. The linear inter-
polator’s contribution is minimal (by symmetry, its attenuation is the same at 20 kHz
and 620 kHz).

Figure 12.4.25 shows the magnitude responses H0(f), H1(f), Hdac(f), Hpost(f). It
also shows the total interpolator response H0(f)H1(f), which removes the replicas at
multiples of L0fs only at the 33 dB level.

Figure 12.4.26 shows the magnified passband of the filter H0(f), together with the
inverse filter

[
H1(f)Hdac(f)Hpost(f)

]−1
. It also shows the magnified passband of the
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total interpolator filter H0(f)H1(f), which is essentially flat since most of the equal-
izing action of H0(f) goes to equalize H1(f). Figure 12.4.27 shows the effective total
reconstruction filter

Hrec(f)= H0(f)H1(f)Hdac(f)Hpost(f)

which has a flat passband and suppresses all spectral images by at least 60 dB.
In summary, the spectral images of the original sampled signal at multiples mfs =

m40 kHz, are removed in several stages: First, the interpolatorH0 removes the replicas
at m = (1,2,3), (5,6,7), (9,10,11), (13,14,15), and so on. Then, the second inter-
polator H1, with the help of the postfilter, removes the replicas at m = 4,8,12, and so
on. Finally, the postfilter removes the replica m = 16 (and all others at multiples of 16
beyond that).

Fig. 12.4.25 16-times interpolator with DAC, postfilter, and multistage equalization.

Fig. 12.4.26 Magnified passbands of H0(f) and H0(f)H1(f).

This design example raises some additional questions: Could we have used a second-
order Butterworth postfilter? A first-order one? Given a desired level, say A dB, of
suppression of the images in the overall equalized reconstructor, can we predict what
the lowest order of the postfilter would be? To answer these questions and to give a
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Fig. 12.4.27 Effective reconstructor has flat passband and 60 dB stopband.

more accurate design technique, let us define the total filter being equalized by H0(f),
namely,

Heq(f)= H1(f)Hdac(f)Hpost(f)

so that the overall reconstructor is:

Hrec(f)= H0(f)Heq(f)

Assuming that H0 and Hrec are normalized to unity at DC by dividing out a factor
L0, we write the corresponding attenuations in dB:

Arec(f) = −20 log10 |Hrec(f)|
A0(f) = −20 log10 |H0(f)|
Aeq(f) = −20 log10 |Heq(f)|

and therefore, we have:

Arec(f)= A0(f)+Aeq(f)

The attenuation achieved by Hrec(f) at frequency fstop should be at least A dB, that
is, Arec(fstop)≥ A, and therefore

A0(fstop)+Aeq(fstop)≥ A (12.4.20)

Because the filterH0(f) is periodic with period L0fs and the passband and stopband
frequencies satisfy fstop = L0fs − fpass, it follows that

|H0(fstop)| = |H0(L0fs − fpass)| = |H0(−fpass)| = |H0(fpass)|

or, in dB:

A0(fstop)= A0(fpass)
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But at frequency fpass, the filterH0(f) is designed to equalize the total filterHeq(f),
that is,

|H0(fpass)| = 1

|Heq(fpass)| ⇒ A0(fstop)= A0(fpass)= −Aeq(fpass)

Therefore, we rewrite the design condition (12.4.20) as:

Aeq(fstop)−Aeq(fpass)≥ A (12.4.21)

For the designed example above, we can subtract the two entries in the last row of
Table 12.4.1 to get the value 60.396 − 0.453 = 59.943, which is almost the desired
60 dB—it would exceed 60 dB had we chosen a slightly smaller 3-dB normalization
frequency for the postfilter, for example, f0 = 49.8 kHz.

Writing Aeq as the sum of the individual attenuations of the linear interpolator, the
DAC, and the postfilter, and solving Eq. (12.4.21) for the difference of attenuations of
the postfilter, we find

Apost(fstop)−Apost(fpass)≥ A−Ad (12.4.22)

where

Ad = Alin(fstop)−Alin(fpass)+Adac(fstop)−Adac(fpass)

Given the value of A, the right-hand side of Eq. (12.4.22) can be calculated using
Eqs. (12.4.17) and (12.4.18). Then, Eq. (12.4.22) imposes a certain restriction on the
order of the postfilter. For a Butterworth filter of order Nb, we have

Apost(f)= 10 log10

⎡⎣1 +
(
f
f0

)2Nb
⎤⎦

and therefore, the design condition (12.4.22) becomes

10 log10

[
1 + (fstop/f0)2Nb

1 + (fpass/f0)2Nb

]
≥ A−Ad (12.4.23)

GivenNb, Eq. (12.4.23) can be solved for the 3-dB frequency f0. For large values ofNb,
the passband term Apost(fpass) can be ignored because it is much smaller than the stop-
band term Apost(fstop), as was the case in Table 12.4.1. For small values of Nb, f0 must
also get smaller in order to provide sufficient attenuation at fstop, but this also causes
more attenuation within the passband, so that the difference Apost(fstop)−Apost(fpass)
may never become large enough to satisfy Eq. (12.4.22).

In fact, thinking of the left-hand side of Eq. (12.4.23) as a function of f0, one can
easily verify that it is a decreasing function of f0 and its maximum value, reached at
f0 = 0, is 20Nb log10(fstop/fpass). Therefore, Eq. (12.4.23) will have a solution for f0
only if Nb is large enough to satisfy

20Nb log10

(
fstop

fpass

)
≥ A−Ad ⇒ Nb ≥ A−Ad

20 log10

(
fstop

fpass

)
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Because fstop/fpass = 2L0 − 1, we can rewrite this condition as

Nb ≥ A−Ad
20 log10(2L0 − 1)

(12.4.24)

If Eq. (12.4.24) is satisfied, then the solution of Eq. (12.4.23) for f0 is

f0 = fpass

[
(2L0 − 1)2Nb−1

10(A−Ad)/10 − 1
− 1

]1/2Nb

(12.4.25)

Figure 12.4.28 shows the minimum Butterworth order given in Eq. (12.4.24) as a
function of the desired attenuation A, for various values of the interpolation factor
L0. One should pick, of course, the next integer above each curve. As L0 increases,
separating the L0fs replicas more, the allowed filter order becomes less. In the figure,
L1 = 4. For a given value of L0, the dependence of the curves on L1 is very minimal.
Only the intercept Ad, not the slope, of the straight lines is slightly changed if L1 is
changed.

Inspecting this figure, we find for the above example that any filter order Nb ≥ 2
can be used, but Nb = 1 cannot. Alternatively, we can calculate Eq. (12.4.24) directly.
Using Table 12.4.1, we find Ad = 33.123 dB and therefore Eq. (12.4.24) yields Nb ≥
(60 − 33.123)/20 log10(8 − 1)= 1.59.

Fig. 12.4.28 Minimum Butterworth postfilter order for given stopband attenuation.

12.5 Decimation and Oversampling∗

Decimation by an integer factor L is the reverse of interpolation, that is, decreasing the
sampling rate from the high rate fs′ to the lower rate fs = fs′/L.

An ideal interpolator replaces a low-rate signal x(n) by the high-rate interpolated
signal x′(n′), which would ideally correspond to the resampling of the analog signal at
the higher rate. As shown in Fig. 12.2.6, the spectrum X′(f) of x′(n′) is the spectrum
of x(n) with L−1 spectral images removed between multiples of fs′. This ideal interpo-
lation process can be reversed by keeping from x′(n′) every Lth sample and discarding
the L− 1 samples that were interpolated between the low-rate ones.
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This process of downsampling and its effect in the time and frequency domains is
depicted in Fig. 12.5.1. Formally, the downsampled signal is defined in terms of the slow
time scale as follows:

xdown(n)= x′(n′)
∣∣
n′=nL = x′(nL) (12.5.1)

For the ideal situation depicted in Fig. 12.5.1, the downsampled signal xdown(n)
coincides with the low-rate signal x(n) that would have been obtained had the analog
signal been resampled at the lower rate fs, that is,

x(n)= xdown(n)= x′(nL) (12.5.2)

The gaps in the input spectrumX′(f) are necessary to guarantee this equality. Drop-
ping the sampling rate by a factor of L, shrinks the Nyquist interval [−fs′/2, fs′/2] by
a factor of L to the new interval [−fs/2, fs/2]. Thus, if the signal had frequency com-
ponents outside the new Nyquist interval, aliasing would occur and xdown(n) �= x(n).

downsampler

fs ...2fs Lfs0
f 

output Xdown(f)=X(f)

fs ...2fs Lfs0
f 

input X′(f )

fs′ fs=fs′/LL

n

T=LT′

x′(n′) x(n)=xdown(n)=x′(nL)

n′

T′

Fig. 12.5.1 Downsampler keeps one out of every L high-rate samples.

In Fig. 12.5.1, the input spectrum was already restricted to the fs Nyquist interval,
and therefore, aliasing did not occur. The rate decrease causes the spectral images of
X′(f) at multiples of fs′ to be down shifted and become images of X(f) at multiples of
fs without overlapping. The mathematical justification of this down-shifting property is
derived by expressing Eq. (12.5.2) in the frequency domain. It can be shown (see Problem
12.12) that:

X(f)= Xdown(f)= 1

L

L−1∑
m=0

X′(f −mfs) (12.5.3)

Therefore, the downsampling process causes the periodic replication of the original
spectrum X′(f) at multiples of the low rate fs. This operation is depicted in Fig. 12.5.2
for L = 4.

In general, if the high-rate signal x′(n′) has frequency components outside the low-
rate Nyquist interval [−fs/2, fs/2], then downsampling alone is not sufficient to perform
decimation. For example, noise in the signal, such as quantization noise arising from
the A/D conversion process, will have such frequency components.
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fs 2fs 3fs 4fs0
f 

X′(f )

fs 2fs 3fs 4fs0
f 

X′(f -fs )

fs 2fs 3fs 4fs0
f 

X′(f -2fs )

fs 2fs 3fs 4fs0
f 

X′(f -3fs )

fs 2fs 3fs 4fs0
f 

Xdown(f )

Fig. 12.5.2 Downsampled spectrum is sum of shifted high-rate spectra.

To avoid the aliasing that will arise by the spectrum replication property (12.5.3),
the high-rate input x′(n′) must be prefiltered by a digital lowpass filter, called the dec-
imation filter. The combined filter/downsampler system is called a decimator and is
depicted in Fig. 12.5.3.

downsampler
digital filter

ideal decimator

fs ...2fs Lfs0
f 

Y′(f )

fs ...2fs Lfs0

X′(f )

fs′fs′ fs

L
H

x′(n′) y′(n′) ydown(n)

fs ...2fs Lfs0
f 

Ydown(f )

f 

filter filter

Fig. 12.5.3 Ideal digital decimator in frequency domain.

The filter operates at the high rate fs′ and has cutoff frequency fc = fs/2 = fs′/2L.
It is similar to the ideal interpolation filter, except its DC gain is unity instead of L. The
high-rate output of the filter is downsampled to obtain the desired low-rate decimated
signal, with non-overlapping down-shifted replicas:

ydown(n)= y′(nL), Ydown(f)= 1

L

L−1∑
m=0

Y′(f −mfs) (12.5.4)

The design of the decimation filter is identical to that of the interpolation filter.
For example, a length-N FIR decimator can be obtained by windowing the (causal) ideal
impulse response:

h(n′)= w(n′)d(n′ − LM), where d(k′)= sin(πk′/L)
πk′
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where n′ = 0,1, . . . ,N − 1, and N = 2LM + 1. A Kaiser window w(n′) may be used.
The downsampled output is obtained by:

ydown(n)= y′(nL)=
N−1∑
m′=0

h(m′)x′(nL−m′) (12.5.5)

Because only every Lth output of the filter is needed, the overall computational rate
is reduced by a factor of L, that is,

R = 1

L
Nfs′ = Nfs (12.5.6)

This is similar to the savings of the polyphase form of interpolation. A simple imple-
mentation uses a length-N tapped delay line into which the high-rate input samples are
shifted at the high rate fs′. Every L inputs, its contents are used to perform the filter’s
dot product output computation. A circular buffer implementation of the delay-line
would, of course, avoid the time it takes to perform the shifting. Denoting by w = [w0,
w1, . . . ,wN−1] the N-dimensional internal state vector of the filter, we may state this
filtering/downsampling algorithm as follows:

for each high-rate input sample x′ do:
w0 = x′
for every Lth input compute:

ydown = dot(N − 1,h,w)
delay(N − 1,w)

(12.5.7)

Multistage implementations of decimators are also possible [273–276]. The proper
ordering of the decimation stages is the reverse of the interpolation case, that is, the
decimator with the most stringent specifications is placed last.

Often, the earlier decimators, which also have the highest rates, are chosen to have
simplified structures, such as simple averaging filters [277]. For example, the decimation
version of the hold interpolator of Section 12.3 is obtained by dividing Eq. (12.3.8) by L
to restore its DC gain to unity:

H(ζ)= 1

L
1 − ζ−L

1 − ζ−1
= 1

L
[
1 + ζ−1 + ζ−2 + · · · + ζ−(L−1)] (12.5.8)

where ζ−1 is one high-rate delay. Thus, the decimator is a simple FIR averaging filter
that averages L successive high-rate samples:

ydown(n)= x′(nL)+x′(nL− 1)+x′(nL− 2)+· · · + x′(nL− L+ 1)
L

(12.5.9)

If so desired, the cruder passbands of the earlier decimators can be equalized by the
last decimator, which can also equalize any imperfect passband of the analog antialias-
ing prefilter used prior to sampling.

Indeed, one of the main uses of decimators is to alleviate the need for high-quality
analog prefilters, much as the interpolators ease the specifications of the anti-image
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postfilters. This idea is used in many current applications, such as the sampling systems
of DAT machines, PC sound cards, speech CODECs, and various types of delta-sigma A/D
converter chips.

Sampling an analog signal, such as audio, at its nominal Nyquist rate fs would require
a high-quality analog prefilter to bandlimit the input to the Nyquist frequency fmax =
fs/2. In a sampling system that uses oversampling and decimation, the analog input
is first prefiltered by a simple prefilter and then sampled at the higher rate fs′ = Lfs.
The decimation filter then reduces the bandwidth of the sampled signal to fs/2. The
sharp cutoffs at the Nyquist frequency fs/2 are provided by the digital decimation filter
instead of the prefilter.

The specifications of the prefilter are shown in Fig. 12.5.4. The decimator removes
all frequencies from the range [fs/2, Lfs − fs/2]. But because of periodicity, it cannot
remove any frequencies in the range Lfs±fs/2. Such frequencies, if present in the analog
input, must be removed by the prefilter prior to sampling; otherwise they will be aliased
back into the desired Nyquist interval [−fs/2, fs/2]. Therefore, the prefilter’s passband
and stopband frequencies are:

fpass = fs
2
, fstop = Lfs − fs

2
(12.5.10)

The transition width of the prefilter is Δf = fstop − fpass = (L− 1)fs and gets wider
with the oversampling ratio L. Hence, the filter’s complexity reduces with increasing L.
(See Problem 12.16 for a quantitative relationship between L and filter order N.)

fs/2 Lfs 2Lfs
0 f 

fstopfpass

Astop

prefilter
spectral images
introduced by sampling

passband

stopband

Fig. 12.5.4 Analog prefilter specifications for L-fold decimation.

In summary, oversampling in conjunction with decimation and interpolation allevi-
ates the need for high-quality analog prefilters and postfilters by assigning the burden
of achieving sharp transition characteristics to the digital filters. Figure 12.5.5 shows an
oversampling DSP system in which sampling and reconstruction are carried out at the
fast rate fs′, and any intermediate digital processing at the low rate fs.

A second major benefit of oversampling is that it also simplifies the structure of
the A/D and D/A converters shown in the figure, so that they require fewer bits without
sacrificing quality. This is accomplished by the principle of feedback quantization, which
we discuss in Section 12.7. The changes in Fig. 12.5.5 are to replace the conventional
ADC block by a delta-sigma ADC operating at fewer bits (even 1 bit), and insert between
the output interpolator and the DAC a noise shaping quantizer that requantizes the
output to fewer bits.
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Hdecim

low-rate
digital signal
to DSP, CD, etc.

L-fold decimator

analog
input

analog
prefilter ADC L

fast clock fs′

fs′ fs

low-rate
digital signal

from DSP, CD, etc.

analog
outputHinterp

L-fold interpolator

analog
postfilterDACL

fs′fs

fast clock fs′

Fig. 12.5.5 Oversampling DSP system.

12.6 Sampling Rate Converters∗

Interpolators and decimators are examples of sampling rate converters that change the
rate by integer factors. A more general sampling rate converter [273–276] can change
the rate by an arbitrary rational factor, say L/M, so that the output rate will be related
to the input rate by:

fs′ = L
M
fs (12.6.1)

Such rate changes are necessary in practice for interfacing DSP systems operating
at different rates. For example, to convert digital audio for broadcasting, sampled at 32
kHz, to digital audio for a DAT machine, sampled at 48 kHz, one must use a conversion
factor of 48/32 = 3/2. Similarly, to convert DAT audio to CD audio at 44.1 kHz, one
must use the factor 44.1/48 = 147/160.

The rate conversion can be accomplished by first increasing the rate by a factor of
L to the high rate fs′′ = Lfs using an L-fold interpolator, and then decreasing the rate
by a factor of M down to fs′ = fs′′/M = Lfs/M using an M-fold decimator.

Note that fs′′ is an integer multiple of both the input and output rates, and the
corresponding sampling time interval T′′ = 1/fs′′ is an integer fraction of both the
input and output sampling times T and T′:

fs′′ = Lfs =Mfs′ , T′′ = T
L

= T′

M
(12.6.2)

Because both the interpolation and decimation filters are operating at the same high
rate fs′′ and both are lowpass filters, they may be combined into a single lowpass filter
preceded by an upsampler and followed by a downsampler, as shown in Fig. 12.6.1.

The interpolation filter must have cutoff frequency fs′′/2L = fs/2 and the decima-
tion filter fs′′/2M = fs′/2. Thus, the cutoff frequency of the common filter must be
chosen to be the minimum of the two:

fc = 1

2
min(fs, fs′) (12.6.3)
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Fig. 12.6.1 Sampling rate conversion by a factor of L/M.

which can be written also in the alternative forms:

fc = min
(
1,
L
M
) fs

2
= min

(M
L
,1
) fs′

2
= min

(1

L
,

1

M
) fs′′

2

In units of the high-rate digital frequency ω′′ = 2πf/fs′′, we have:

ω′′
c = 2πfc

fs′′
= min

(π
L
,
π
M
) = π

max(L,M)
(12.6.4)

When fs′ > fs, the common filter acts as an anti-image postfilter for the upsampler,
removing the spectral replicas at multiples of fs but not at multiples of Lfs. When
fs′ < fs, it acts as an antialiasing prefilter for the downsampler, making sure that the
down-shifted replicas at multiples of fs′ do not overlap.

The design of the filter is straightforward. Assuming a filter length N of the form†

N = 2LK + 1 and passband gain of L, we define the windowed impulse response, with
respect to the high-rate time index n′′ = 0,1, . . . ,N − 1:

h(n′′)= w(n′′)d(n′′ − LK), where d(k′′)= L sin(ω′′
c k′′)

πk′′
(12.6.5)

where w(n′′) is any desired length-N window. Its L polyphase subfilters of length 2K
are defined for i = 0,1, . . . , L− 1:

hi(n)= h(Ln+ i), n = 0,1, . . . ,2K − 1 (12.6.6)

Next, we discuss the time-domain operation and implementation of the converter.
The input signal x(n) is upsampled to the high rate fs′′. Then, the upsampled input
xup(n′′) is filtered, generating the interpolated output yup(n′′), which is then down-
sampled by keeping one out of everyM samples, that is, setting n′′ =Mn′ to obtain the
desired signal y(n′) resampled at rate fs′. Thus, we have:

yup(n′′)=
N−1∑
m′′=0

h(m′′)xup(n′′ −m′′) and y(n′)= yup(Mn′)

The interpolation operation can be implemented efficiently in its polyphase realiza-
tion. Setting n′′ = Ln+ i, with i = 0,1, . . . , L− 1, we obtain the ith sample interpolated
between the input samples x(n) and x(n+ 1), from Eq. (12.2.18):

†Here, we use K instead of M to avoid confusion with the downsampling factor M.
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yi(n)= yup(Ln+ i)=
P∑

m=0

hi(m)x(n−m)= dot
(
P,hi,w(n)

)
(12.6.7)

where we set P = 2K − 1 for the order of the polyphase subfilters (the time-advance
required for causal operation is not shown here). As we saw in Eq. (12.2.20), its imple-
mentation requires a low-rate tapped delay line w = [w0,w1, . . . ,wP], which is used by
all polyphase subfilters before it is updated.

Because the downsampler keeps only every Mth filter output, it is not necessary to
compute all L interpolated outputs between input samples. Only those interpolated
values that correspond to the output time grid need be computed. Given an output
sample time n′′ = Mn′, we can write it uniquely in the form Mn′ = Ln + i, where
0 ≤ i ≤ L− 1. It follows that the downsampled output will be the ith interpolated value
arising from the current input x(n) and computed as the output of the ith polyphase
subfilter hi :

y(n′)= yup(Mn′)= yup(Ln+ i)= yi(n)

The pattern of polyphase indices i that correspond to successive output times n′

repeats with period L, and depends only on the relative values of L and M. Therefore,
for the purpose of deriving a sample processing implementation of the converter, it
proves convenient to think in terms of blocks of output samples of length-L. The total
time duration of such an output block is LT′. Using Eq. (12.6.2), we have:

Tblock = LT′ = LMT′′ =MT (12.6.8)

Thus, within each output time block there are M input samples, LM high-rate inter-
polated samples, and L output samples. The M input samples get interpolated into the
LM high-rate ones, from which the L output samples are selected.

The computational rate isM times smaller than the polyphase rateNfs required for
full interpolation. Indeed, we have 2KMACs per polyphase filter output and L polyphase
outputs in each period Tblock, that is, R = 2KL/Tblock = N/Tblock = N/MT = Nfs/M.
Equivalently, we have one polyphase output in each output period T′, R = 2K/T′ =
2Kfs′. Thus,

R = Nfs
M

= Nfs′

L
= 2Kfs′ (12.6.9)

Figure 12.6.2 shows an example with L = 5 and M = 3, so that fs′ = 5fs/3. The
interpolating high rate is fs′′ = 5fs = 3fs′. The top and bottom figures show the in-
put and output signals and their spectra. The two middle figures show the high-rate
interpolated signal, viewed both with respect to the input and output time scales.

Because fs′ > fs, the interpolation filter has cutoff fs/2, and acts as an antialiasing
prefilter removing the four input replicas up to fs′′ = 5fs. The downsampling operation
then downshifts the replicas at multiples of fs′.

In the time domain, each block period Tblock = 15T′′ = 3T = 5T′ contains three
input samples, say {x0, x1, x2}, five output samples, say {y0, y1, y2, y3, y4}, and 15 in-
terpolated high-rate samples.
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Fig. 12.6.2 Sampling rate conversion by a factor of 5/3.

As can be seen in the figure, the first input period from x0 to x1 contains two outputs:
y0, y1. We have time-aligned the samples so that y0 = x0. The output y1 is the third
(i = 3) interpolated value, and therefore, it is obtained as the output of the polyphase
filter h3 with current input x0. After this operation, the input sample x0 is no longer
needed and the delay-line w holding the input samples may be shifted and the next
input x1 read into it.

During the next input period from x1 to x2, there are two more outputs: y2, y3. The
output y2 is the first (i = 1) interpolated value, and therefore, it is the output of the
filter h1, whereas the output y3 is the fourth (i = 4) interpolated value, or the output of
h4. After this operation, the delay-line w may be updated and x2 read into it.

Finally, the third input period starting at x2 contains only one output, namely, y4,
which is the second (i = 2) interpolated value, or the output of h2 with input x2. After
this operation, the delay-line may be shifted and the same computational cycle involving
the next three inputs repeated. The above steps may be summarized in the following
sample processing algorithm:

for each input block {x0, x1, x2} do:
w0 = x0

y0 = dot(P,h0,w)= x0

y1 = dot(P,h3,w)
delay(P,w)
w0 = x1

y2 = dot(P,h1,w)
y3 = dot(P,h4,w)

delay(P,w)
w0 = x2

y4 = dot(P,h2,w)
delay(P,w)

(12.6.10)

The outputs {y0, y1, y2, y3, y4} were computed by the five polyphase filters {h0,h3,
h1,h4,h2} corresponding to the sequence of polyphase indices i = {0,3,1,4,2}. The
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input samples that were used in the computations were {x0, x0, x1, x1, x2}, so that the
corresponding index of xn was n = {0,0,1,1,2}. When the index was repeated, the
delay line was not updated.

It is easily seen from Fig. 12.6.2 that the patterns of i’s and n’s get repeated for
every group of five outputs. These patterns can be predetermined as the solutions of
the equations 5n+ i = 3m for m = 0,1, . . . ,4. In general, we can calculate the patterns
by solving the L equations:

Lnm + im =Mm, m = 0,1, . . . , L− 1 (12.6.11)

with solution (where % denotes the modulo operation):

for m = 0,1, . . . , L− 1 compute:
im = (Mm)%L
nm = (Mm− im)/L

(polyphase selectors) (12.6.12)

Assuming that the sequences {im, nm},m = 0,1, . . . , L−1, have been precomputed,
the general sample rate conversion algorithm that transforms each length-M input block
{x0, x1, . . . , xM−1} into a length-L output block {y0, y1, . . . , yL−1}, can be stated as fol-
lows:

for each input block {x0, x1, . . . , xM−1} do:
for n = 0,1, . . . ,M − 1 do:

w0 = xn
for Ln/M ≤m < L(n+ 1)/M do:

ym = dot(P,him ,w)
delay(P,w)

(12.6.13)

The inner loop ensures that the output time indexm lies between the two input times
Ln ≤ Mm < L(n + 1), with respect to the T′′ time scale. Because Mm = Lnm + im,
it follows that such m’s will have nm = n. The index im serves as a polyphase filter
selector.

In the special cases of interpolation (M = 1), or decimation (L = 1), the algo-
rithm reduces to the corresponding sample processing algorithms given in Eqs. (12.2.20)
and (12.5.7). For causal processing, the initialization of the algorithm must be as in
Eq. (12.2.19) (with K replacing M).

Another example is shown in Fig. 12.6.3 that has L = 3, M = 5 and decreases the
sampling rate by a factor of 3/5 so that fs′ = 3fs/5. The interpolating high rate is now
fs′′ = 3fs = 5fs′. Because fs′ < fs, the filter’s cutoff frequency must be fc = fs′/2,
and therefore, the filter acts as an antialiasing filter for the downsampler. The filter
necessarily chops off those high frequencies from the input that would otherwise be
aliased by the downsampling operation, that is, the frequencies in the range fs′/2 ≤ f ≤
fs/2.

In the time domain, each block of five input samples {x0, x1, x2, x3, x4} generates
a block of three output samples {y0, y1, y2}. The solution of Eq. (12.6.12) gives the
polyphase selector sequences, for m = 0,1,2:

nm = {0,1,3}, im = {0,2,1}
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which means that only the inputs {x0, x1, x3} will generate interpolated outputs, with
the polyphase subfilters {h0,h2,h1}. The inputs {x2, x4} will not generate outputs, but
still must be shifted into the delay-line buffer. The same conclusions can also be derived
by inspecting Fig. 12.6.3. The corresponding sample processing algorithm, which is a
special case of Eq. (12.6.13), is:

for each input block {x0, x1, x2, x3, x4} do:
w0 = x0

y0 = dot(P,h0,w)= x0

delay(P,w)
w0 = x1

y1 = dot(P,h2,w)
delay(P,w)
w0 = x2

delay(P,w)
w0 = x3

y2 = dot(P,h1,w)
delay(P,w)
w0 = x4

delay(P,w)

(12.6.14)
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Fig. 12.6.3 Sampling rate conversion by a factor of 3/5.

The type of converter discussed above is useful when the sampling rates remain
fixed and synchronous. In some applications, it may be desirable to have asynchronous
rate changes that can accommodate slowly changing input and output sampling clocks.
Such converters must be able to change the rate by arbitrary factors, not just rational
ones.

Theoretically, the sampling rate can be changed by an arbitrary factor by recon-
structing the sampled signal to analog form and then resampling it at the output rate.
Digitally, one can use an extremely large interpolation factor L to effectively obtain an
analog signal and then resample it at the new rate.
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The large value of L creates a very dense time grid for the interpolated signal. Every
output time instant falls between two such time grid points and the output sample can
be chosen to be the nearest of the two interpolated samples, or, it can be formed by linear
or higher-order interpolations. References [283–288] discuss practical implementations
of this idea.

For example, a recent sample rate conversion chip, designed by Analog Devices for
use with digital audio [286–288], uses an interpolation ratio of L = 216 = 65536. It can
convert sampling rates from 8 to 56 kHz.

The built-in interpolation filter has length N = 64×216 = 222 � 4×106 and is real-
ized in its polyphase form. Thus, there are L = 216 polyphase filters of length 2K = 64.
The input delay-line buffer also has length 64. The computational rate of the chip is
only R = (2K)fs′ = 64fs′ MAC/sec, where fs′ is the output rate.

The chip has a polyphase filter selector (like the quantity im) that selects the appro-
priate polyphase filter to use for each output sampling time. To minimize coefficient
storage for the 222 filter coefficients, only 1 out of every 128 impulse response coeffi-
cients are saved in ROM; the intermediate values are computed when needed by linear
interpolation. Thus, the ROM storage is 222/128 = 32768 words.

The interpolation filter has a variable cutoff frequency fc = min(fs/2, fs′/2). To
avoid having to redesign the filter every time the cutoff changes, the filter is designed
once based on a nominal input frequency fs, such as 44.1 kHz, and then it is “time-
stretched” to accommodate the variable cutoff [285,286]. To understand this, we define
the scale factor ρ = min(1, fs′/fs), such that ρ < 1 whenever the output rate is less
than the input rate. Then, we may write fc in the form:

fc = ρ fs
2

⇒ ω′′
c = 2πfc

fs′′
= ρ π

L
If ρ < 1, the corresponding ideal impulse response is:

dρ(k′′)= L sin(ω′′
c k′′)

πk′′
= ρ sin(πρk′′/L)

πρk′′/L
The fixed filter has response corresponding to ρ = 1:

d(k′′)= sin(πk′′/L)
πk′′/L

, −LK ≤ k′′ ≤ LK
It follows that dρ(k′′) will be the “stretched” version of d(k′′):

dρ(k′′)= ρd(ρk′′) (12.6.15)

The effective length of this filter must also stretch commensurately. Indeed, because
the argument ρk′′ must lie in the designed index range of the original filter, that is,
−LK ≤ ρk′′ ≤ LK, we must have in Eq. (12.6.15):

− 1

ρ
LK ≤ k′′ ≤ 1

ρ
LK

Thus, K increases to Kρ = K/ρ, and the effective length of the filter becomes Nρ =
2LKρ = 2LK/ρ = N/ρ. The length of the tapped delay line also becomes longer,
2Kρ = 2K/ρ. Because the coefficients d(k′′) are stored in ROM only for integer values
of k′′, the argument of d(ρk′′) must be rounded to the nearest integer. Because of the
highly oversampled nature of d(k′′), this rounding causes only a small distortion [286].
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12.7 Noise Shaping Quantizers∗

The main purpose of noise shaping is to reshape the spectrum of quantization noise so
that most of the noise is filtered out of the relevant frequency band, such as the audio
band. Noise shaping is used in four major applications:

• Oversampled delta-sigma A/D converters.
• Oversampled requantizers for D/A conversion.
• Non-oversampled dithered noise shaping for requantization.
• Non-oversampled roundoff noise shaping in digital filters.

In the oversampled cases, the main objective is to trade off bits for samples, that is,
increasing the sampling rate but reducing the number of bits per sample. The resulting
increase in quantization noise is compensated by a noise shaping quantizer that pushes
the added noise out of the relevant frequency band in such a way as to preserve a desired
level of signal quality. The reduction in the number of bits simplifies the structure of
the A/D and D/A converters. See [276,277] for a review and earlier references.

In the non-oversampled cases, one objective is to minimize the accumulation of
roundoff noise in digital filter structures [70–76]. Another objective is to reduce the
number of bits without reducing quality. For example, in a digital audio recording and
mixing system where all the digital processing is done with 20 bits, the resulting audio
signal must be rounded eventually to 16 bits in order to place it on a CD. The rounding
operation can cause unwanted granulation distortions. Adding a dither signal helps re-
move such distortions and makes the quantization noise sound like steady background
white noise. However, further noise shaping can make this white noise even more in-
audible by concentrating it onto spectral bands where the ear is least sensitive [59–67].

A related application in digital audio is to actually keep the bits saved from noise
shaping and use them to carry extra data on a conventional CD, such as compressed
images, speech, or text, and other information [68,69]. This “buried” data channel is
encoded to look like pseudorandom dither which is then added (subtractively) to the
CD data and subjected to noise shaping. As many as 4 bits from each 16-bit CD word
may be dedicated to such hidden data without sacrificing the quality of the CD material.
The resulting data rates are 4×44.1 = 176.4 kbits/sec or double that for two stereo
channels.

In Section 2.2, we introduced noise shaping quantizers and discussed some of their
implications, such as the tradeoff between oversampling ratio and number of bits, but
did not discuss how they are constructed.

Figure 12.7.1 shows a typical oversampled first-order delta-sigma A/D converter
system.† The analog input is assumed to have been prefiltered by an antialiasing pre-
filter whose structure is simplified because of oversampling. The relevant frequency
range of the input is the low-rate Nyquist interval fs/2. Such converters are commonly
used in oversampling DSP systems, shown in Figs. 2.2.5 and 12.5.5.

The analog part of the converter contains an ordinary A/D converter operating at
the fast rate fs′ = Lfs and having a small number of bits, say B′ bits. The most useful

†Also called a sigma-delta converter or a feedback quantizer.
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Fig. 12.7.1 Oversampled first-order delta-sigma A/D converter.

practical choice is B′ = 1, that is, a two-level ADC. The output of the ADC is recon-
structed back into analog form by the DAC (i.e., a two-level analog signal, if B′ = 1) and
subtracted from the input.

The difference signal (the “delta” part) is accumulated into the integrator (the “sigma”
part) and provides a local average of the input. The feedback loop causes the quantiza-
tion noise generated by the ADC to be highpass filtered, pushing its energy towards the
higher frequencies (i.e., fs′/2) and away from the signal band.

The digital part of the converter contains an L-fold decimator that reduces the sam-
pling rate down to fs and increases the number of bits up to a desired resolution, say B
bits, where B > B′. In practice, the analog and digital parts reside usually on board the
same chip.

The lowpass decimation filter does three jobs: (1) It removes the high-frequency
quantization noise that was introduced by the feedback loop, (2) it removes any unde-
sired frequency components beyond fs/2 that were not removed by the simple analog
prefilter, and (3) through its filtering operation, it increases the number of bits by lin-
early combining the coarsely quantized input samples with its coefficients, which are
taken to have enough bits.

To see the filtering action of the feedback loop on the input and quantization noise,
we consider a sampled-data equivalent model of the delta-sigma quantizer, shown in
Fig. 12.7.2. The time samples, at rate fs′, are denoted by x′(n′) in accordance with our
notation in this chapter.

+

−
ζ -1

x′(n′) y′(n′)

e′(n′), E′(ζ)

to decimator

= quantization noise

quantizer
model

accumulator H(ζ)

X′(ζ) Y′(ζ)

Fig. 12.7.2 Discrete-time model of first-order delta-sigma quantizer.
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The ADC is replaced by its equivalent additive-noise model of Fig. 2.1.3 and the
integrator by a discrete-time accumulator H(ζ) with transfer function:

H(ζ)= ζ−1

1 − ζ−1
(12.7.1)

where ζ−1 denotes a high-rate unit delay. The numerator delay ζ−1 is necessary to make
the feedback loop computable.

Working with ζ-transforms, we note that the input to H(ζ) is the difference signal
X′(ζ)−Y′(ζ). Its output is added to E′(ζ) to generate Y′(ζ). Thus,

H(ζ)
(
X′(ζ)−Y′(ζ)

)+ E′(ζ)= Y′(ζ)

which may be solved for Y′(ζ) in terms of the two inputs X′(ζ) and E′(ζ):

Y′(ζ)= H(ζ)
1 +H(ζ) X

′(ζ)+ 1

1 +H(ζ) E
′(ζ) (12.7.2)

It can be written in the form:

Y′(ζ)= Hx(ζ)X′(ζ)+HNS(ζ)E′(ζ) (12.7.3)

where the noise shaping transfer function HNS(ζ) and the transfer function for the
input Hx(ζ) are defined as:

Hx(ζ)= H(ζ)
1 +H(ζ) , HNS(ζ)= 1

1 +H(ζ) (12.7.4)

Inserting H(ζ) from Eq. (12.7.1), we find for the first-order case:

Hx(ζ)= ζ−1, HNS(ζ)= 1 − ζ−1 (12.7.5)

Thus, HNS(ζ) is a simple highpass filter, and Hx(ζ) an allpass plain delay. The I/O
equation (12.7.3) becomes:

Y′(ζ)= ζ−1X′(ζ)+(1 − ζ−1)E′(ζ) (12.7.6)

or, in the time domain:

y′(n′)= x′(n′ − 1)+ε(n′) (12.7.7)

where we defined the filtered quantization noise:

ε(n′)= e′(n′)−e′(n′ − 1) � E(ζ)= (1 − ζ−1)E′(ζ) (12.7.8)

Thus, the quantized output y′(n′) is the (delayed) input plus the filtered quantiza-
tion noise. Because the noise is highpass filtered, further processing of y′(n′) by the
lowpass decimation filter will tend to average out the noise to zero and also replace the
input by its locally averaged, decimated, value. A typical example of a decimator is the
hold decimator of Eq. (12.5.9), which averages L successive high-rate samples.

By comparison, had we used a conventional B-bit ADC and sampled the input at the
low rate fs, the corresponding quantized output would be:
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y(n)= x(n)+e(n) (12.7.9)

where e(n) is modeled as white noise over [−fs/2, fs/2].
The “design” condition that renders the quality of the two quantizing systems equiv-

alent and determines the tradeoff between oversampling ratio L and savings in bits, is
to require that the rms quantization errors of Eqs. (12.7.7) and (12.7.9) be the same over
the desired frequency band [−fs/2, fs/2]. As we saw in Section 2.2, the mean-square
errors are obtained by integrating the power spectral densities of the noise signals over
that frequency interval, yielding the condition:

σ2
e = σ2

e′
1

fs′
∫ fs/2
−fs/2

|HNS(f)|2 df (12.7.10)

Setting fs′ = Lfs and σe/σe′ = 2−B/2−B′ = 2−ΔB, where ΔB = B− B′, we obtain the
desired relationship between L and ΔB given by Eq. (2.2.10).

Higher-order delta-sigma quantizers have highpass noise shaping transfer functions
of the form:

HNS(ζ)= (1 − ζ−1)p (12.7.11)

wherep is the order. The input/output equations for such quantizers are still of the form
of Eq. (12.7.3), whereHx(ζ) is typically a multiple delay. The frequency and magnitude
responses of HNS(ζ) are obtained by setting ζ = e2πjf/fs′ :

HNS(f)=
(

1 − e−2πjf/fs′
)p
, |HNS(f)|2 =

∣∣∣∣∣2 sin

(
πf
fs′

)∣∣∣∣∣
2p

(12.7.12)

resulting in the expressions used in Eq. (2.2.8).
There exist many architectures for higher-order delta-sigma quantizers that address

various circuit limitations and limit-cycle instability problems [277,290–294]. Some ex-
amples of such architectures are given in the problems.

Example 12.7.1: To illustrate the time-domain operation of a delta-sigma quantizer, consider
the common 1-bit case that has a two-level ADC. LetQ(x) denote the two-level quantization
function defined by:

Q(x)= sign(x)=
{

+1, if x ≥ 0
−1, if x < 0

(12.7.13)

The corresponding block diagram of the quantizer is shown below, together with the com-
putational sample processing algorithm. The quantity w1 is the content of the accumula-
tor’s delay:

+

−
ζ -1

x v w1
Q

w0 y

quantizer

for each input x do:
y = Q(w1)
v = x− y
w0 = w1 + v
w1 = w0
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The following table shows the computed outputs for the two constant inputs, x = 0.4 and
x = −0.2, with the algorithm iterated ten times:

x w1 y v w0

0.4 0.0 1.0 −0.6 −0.6
0.4 −0.6 −1.0 1.4 0.8
0.4 0.8 1.0 −0.6 0.2
0.4 0.2 1.0 −0.6 −0.4
0.4 −0.4 −1.0 1.4 1.0
0.4 1.0 1.0 −0.6 0.4
0.4 0.4 1.0 −0.6 −0.2
0.4 −0.2 −1.0 1.4 1.2
0.4 1.2 1.0 −0.6 0.6
0.4 0.6 1.0 −0.6 0.0

x w1 y v w0

−0.2 0.0 1.0 −1.2 −1.2
−0.2 −1.2 −1.0 0.8 −0.4
−0.2 −0.4 −1.0 0.8 0.4
−0.2 0.4 1.0 −1.2 −0.8
−0.2 −0.8 −1.0 0.8 0.0
−0.2 0.0 1.0 −1.2 −1.2
−0.2 −1.2 −1.0 0.8 −0.4
−0.2 −0.4 −1.0 0.8 0.4
−0.2 0.4 1.0 −1.2 −0.8
−0.2 −0.8 −1.0 0.8 0.0

The average of the ten successive values of y are in the two cases, ȳ = 0.4 and ȳ =
−0.2. Such averaging would take place in the decimator, for example, using a 10-fold hold
decimator of the form of Eq. (12.5.9). 	


Example 12.7.2: To illustrate the capability of a delta-sigma quantizer/decimator system to
accurately sample an analog signal, consider the first-order quantizer of the previous ex-
ample, but with a time-varying input defined with respect to the fast time scale as:

x′(n′)= 0.5 sin(2πf0n′/fs′), n′ = 0,1, . . . ,Ntot − 1

We choose the values f0 = 8.82 kHz, fs = 44.1 kHz, L = 10, and Ntot = 200 samples. The
fast rate is fs′ = 10 × 44.1 = 441 kHz, and the normalized frequency f0/fs′ = 0.02.

We want to see how the two-level quantized output y′(n′) of the delta-sigma quantizer
is filtered by the decimation filter to effectively recover the input (and resample it at the
lower rate). We compare three different decimation filters, whose frequency responses are
shown in Fig. 12.7.3, with magnified passbands on the right.

Fig. 12.7.3 Magnitude responses of decimation filters.

The first one is an L-fold averaging decimator with transfer function given by Eq. (12.5.8).
The other two are designed by the window method, and have impulse responses:
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h(n′)= w(n′)
sin
(
π(n′ − LM)/L)
π(n′ − LM) , n′ = 0,1, . . . ,N − 1

where N = 2LM + 1. One has the minimum possible length, that is, N = 2LM + 1, with
M = 1, giving N = 21, and uses a rectangular window, w(n′)= 1. The other one is
designed by the Kaiser method using a stopband attenuation of A = 35 dB and transition
width Δf = 4.41 kHz, or Δf/fs = 0.1 (about the cutoff frequency fc = fs/2 = 22.05 kHz).
It has length N = 201, M = 10, and Kaiser parameters D = 1.88 and α = 2.78.

The output of the quantizer y′(n′), which is the input to the three decimators, is shown
on the left of Fig. 12.7.4; the output of the averaging decimator is on the right. The outputs
of the rectangular and Kaiser decimators are shown in Fig. 12.7.5.

Fig. 12.7.4 Delta-sigma quantizer output and averaging decimator’s output.

Fig. 12.7.5 Decimator filter output for rectangular and Kaiser designs.

The averager recovers the input sinusoid only approximately and with a delay of (L −
1)/2 = 4.5. Some of the high frequencies in y′(n′) get through, because they cannot
be completely removed by the filter. This can be seen from the decimator’s frequency
response, shown in Fig. 12.7.3,

|H(f)| =
∣∣∣∣∣ sin(πf/fs)
L sin(πf/10fs)

∣∣∣∣∣
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which does not vanish everywhere between [fs/2,10fs − fs/2], although it does vanish at
the multiples mfs, m = 1,2, . . . ,9.

The outputs of the window designs are faithful representations of the input sinusoid, up
to the filter delay of LM samples, that is, LM = 10 and LM = 100, respectively. The Kaiser
decimator gives the best output because it acts as a better lowpass filter.

What is being plotted in these graphs is the output of the decimation filter before it is
downsampled by a factor of L = 10. The downsampled signal is extracted by taking
every tenth output. The nine intermediate samples which are to be discarded need not be
computed. However, we did compute them here for plotting purposes.

We chose simple specifications for our designs in order to get small values for the filter
delays LM. In practice, stricter specifications can result in long filter lengths, for example,
for a third-order noise shaper to give CD quality audio, we need L = 64 (see Table 2.2.1)
which would require N = DLfs/Δf � 4100 for A = 100 dB and Δf = 0.1fs. In such cases,
a practical approach is to use multistage decimators. 	


Next, we discuss oversampled noise shaping requantizers for D/A conversion. A
typical requantizer system is shown in Fig. 12.7.6. The digital input is incoming at rate
fs and B-bits per sample. It is upsampled and interpolated by an L-fold interpolator,
which increases the rate to fs′. The noise shaping requantizer reduces the number of
bits to B′ < B. This output is, then, fed into an ordinary B′-bit DAC, followed by an
anti-image postfilter (whose structure is greatly simplified because of oversampling).

digital
input

noise shaping requantizer

quantizer

loop filter

to B′-bit
DAC and 
postfilter

+

−

B′-bits
fs′-rate

B-bits
fs′-rate

interpolation
filter

interpolator

L
B-bits

fs-rate

H(ζ)

Q
w wMSB

wLSB

Fig. 12.7.6 Oversampled noise shaping requantizer for D/A conversion.

The quantizer Q rounds the incoming B-bit word w by keeping the B′ most signifi-
cant bits, say wMSB, which become the output, y = wMSB. The requantization error, that
is, the B− B′ least significant bits of w, wLSB = w −wMSB, are fed back through a loop
filter and subtracted from the input.

The feedback loop causes the quantization noise to be highpass filtered, reducing its
power within the input’s baseband by just the right amount to counteract the increase
in noise caused by the reduction in bits.

Figure 12.7.7 shows a model of the requantizer in which the quantizerQ is replaced
by its equivalent noise model and the difference of the signals around the quantizer
generates the LSB signal and feeds it back.

The quantized output is y′(n′)= w′(n′)+e′(n′), so that y′(n′)−w′(n′)= e′(n′).
Therefore, the input to the loop filter is e′(n′) itself. In the ζ-domain, we have:

Y′(ζ)=W′(ζ)+E′(ζ) and W′(ζ)= X′(ζ)−H(ζ)E′(ζ)
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loop filter

+

+

−

−

H(ζ)

Q
x′(n′) w′(n′)

e′(n′)

e′(n′)

y′(n′)

B′-bits
fs′-rate

B-bits
fs′-rate

Fig. 12.7.7 Noise shaping requantizer model.

which gives the I/O equation:

Y′(ζ)= X′(ζ)+(1 −H(ζ))E′(ζ)= X′(ζ)+HNS(ζ)E′(ζ) (12.7.14)

Thus, the effective noise shaping filter is

HNS(ζ)= 1 −H(ζ) (12.7.15)

First-, second-, or higher-order filtersHNS(ζ) can be constructed easily by choosing
the loop filter as H(ζ)= 1 −HNS(ζ), for example:

H(ζ) = ζ−1

H(ζ) = 2ζ−1 − ζ−2
⇒

HNS(ζ) = (1 − ζ−1)

HNS(ζ) = (1 − ζ−1)2

Noise shaping requantizers are based on the same principle of feedback quantiza-
tion as delta-sigma A/D converters. Therefore, the tradeoff between L and ΔB remains
the same. They are used routinely in the playback systems of CD players, DATs, and
speech CODECs. For example, the first CD player built by Philips employed a first-order
requantizer with H(ζ)= ζ−1 and a 4-times oversampling interpolator [279].

12.8 Problems

12.1 Consider the 4-fold, length-17 interpolator defined in Eq. (12.4.1). Write down the low-rate
transfer functionsDi(z), i = 0,1,2,3 and their causal versionsHi(z), corresponding to the
polyphase subfilters of Eq. (12.4.2).

Then, replace z = ζ4 and verify explicitly that the high-rate overall transfer function of the
sequence d of Eq. (12.4.1) is given by the polyphase decomposition Eq. (12.2.15):

D(ζ)= D0(ζ4)+ζ−1D1(ζ4)+ζ−2D2(ζ4)+ζ−3D3(ζ4)

12.2 Design a 2-fold interpolator of length N = 9, using a rectangular window. Show that the
polyphase form of the interpolator is:

[
yup(2n)
yup(2n+ 1)

]
=
[

0 0 1 0
−0.21 0.64 0.64 −0.21

]⎡⎢⎢⎢⎣
xup(2n+ 4)
xup(2n+ 2)
xup(2n)
xup(2n− 2)

⎤⎥⎥⎥⎦
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By superimposing impulse responses, give a graphical interpretation of the above result
using the LTI form of convolution, as was done in Fig. 12.4.2.

12.3 Design a 3-fold interpolator of length N = 13, using a rectangular and a Hamming window.
Show that the polyphase form of the interpolator in the rectangular case is:

⎡⎢⎣ yup(3n)
yup(3n+ 1)
yup(3n+ 2)

⎤⎥⎦ =
⎡⎢⎣ 0 0 1 0

−0.17 0.41 0.83 −0.21
−0.21 0.83 0.41 −0.17

⎤⎥⎦
⎡⎢⎢⎢⎣
xup(3n+ 6)
xup(3n+ 3)
xup(3n)
xup(3n− 3)

⎤⎥⎥⎥⎦
Determine a similar expression for the Hamming case. For the rectangular case, give a graph-
ical interpretation of the above result using the LTI form of convolution, as in Fig. 12.4.2.

12.4 Using the LTI form of convolution, that is, superimposing impulse responses, justify the
interpolation equations (12.1.3) of a length-25 rectangularly windowed ideal interpolator.
Then, rewrite them in the form of Eq. (12.4.3) using the appropriate 4×6 coefficient matrix
on the right.

12.5 Design a 3-fold FIR interpolation filter that uses at most four low-rate samples to compute
the interpolated values between x(n) and x(n+ 1), that is,

yup(3n+ i)= aix(n+ 2)+bix(n+ 1)+cix(n)+dix(n− 1)

for i = 0,1,2. Determine the values of the coefficients {ai, bi, ci, di}, i = 0,1,2,3, for the
two cases:

a. When the filter is an ideal interpolator.

b. When the filter is a linear interpolator.

12.6 Computer Experiment: Interpolation Filter Design. Consider the following triangular and
sinusoidal low-rate signals:

x(n) = {0,1,2,3,4,5,6,7,8,9,10,11,12,11,10,9,8,7,6,5,4,3,2,1,0}
x(n) = sin(2πF0n), n = 0,1, . . . ,24

where F0 = 0.04 cycles per sample. Design a length-17 4-fold interpolation filter using a rect-
angular window, as in Section 12.4.1. Using the polyphase form implemented by the circular
buffer version of the sample processing algorithm (12.2.20) and initialized by Eq. (12.2.19),
process the above signals to get the interpolated signals yup(n′), n′ = 0,1, . . . ,99, and plot
them versus the fast time n′.
Repeat by designing the corresponding Hamming windowed interpolation filter and filtering
the two signals x(n) through it.

12.7 Computer Experiment: Multistage 8× Interpolation Filter Design. Design a multistage 8-times
oversampling interpolation filter for digital audio applications (see [282] for a comparable
design). The sampling rate, transition width, and stopband attenuation for all stages are
taken to be fs = 40 kHz, Δf = 5 kHz, A = 80 dB. There are three possible multistage
designs, as shown in Fig. 12.2.10:

2 × 4 = 4 × 2 = 2 × 2 × 2 = 8

a. For each possibility, use the Kaiser method to determine the filter lengthsN0,N1, (and
N2 for the 3-stage case). Determine also the lengthN of a single-stage design with the
same specifications.
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b. Compute the frequency responses of each stage H0(f), H1(f), (and H2(f) in the 3-
stage case) and plot their magnitudes in dB and on the same graph over the range
0 ≤ f ≤ 320 kHz. Normalize them to 0 dB at DC. Plot also the total response of the
stages, that is,Htot(f)= H0(f)H1(f), (or,H0(f)H1(f)H2(f) in the 3-stage case), and
compare it with the response H(f) of the single-stage design.

Note that in order to keep the overall stopband attenuation in Htot(f) below 80 dB,
you may have to increase slightly the value ofA that you put into the design equations
for some of the stages, for example, A = 84 dB.

c. Assuming all filters are realized in their polyphase form, calculate the relative com-
putational cost Rmulti/Rsingle and its approximation using Eq. (12.2.34). Which of the
three possibilities is the most efficient?

12.8 It is desired to design a 4× oversampling digital FIR interpolation filter for a CD player. As-
sume the following specifications: audio sampling rate of 44.1 kHz, passband range [0,20]
kHz, stopband range [24.1,88.2] kHz, and stopband attenuation of 80 dB.

Using the Kaiser window design method, determine the filter length and the total computa-
tional rate in MAC/sec for the following cases:

a. Single-stage design implemented in its polyphase form.

b. Two-stage (2×2) design implemented in its polyphase form. What are the design spec-
ifications of the two stages?

Draw a sketch of the magnitude responses of the designed filters versus frequency in the
range 0 ≤ f ≤ 176.4 kHz, and of the two individual filter responses in the two-stage design
case. What are the computational savings of design (b) versus design (a)? Can a 20 MIPS DSP
chip handle the computational rates?

12.9 Computer Experiment: Bessel Postfilters. Bessel analog filters have almost linear phase re-
sponse within their passband. Consider the Butterworth and Bessel filters designed in Sec-
tion 12.4.4, and given by Eqs. (12.4.12) and (12.4.14). Compute and on the same graph plot
their phase response over the passband interval 0 ≤ f ≤ 20 kHz. On a separate graph,
plot their phase response over the range 0 ≤ f ≤ 160 kHz. Moreover, plot their magnitude
response in dB over the same range.

12.10 Consider a three-stage interpolatorH0, H1, H2 with oversampling factors L0, L1, L2 respec-
tively, so that the total interpolation factor is L = L0L1L2. The filter H0 is a very sharp
lowpass filter designed by some method, such as Kaiser’s. The filterH1 is a linear interpola-
tor, and H2 a hold interpolator. The output of H2 is fed into a noise shaping requantizer to
reduce the number of bits and then fed at rate Lfs into a staircase DAC, Hdac, and then into
a final analog postfilter Hpost. Such a system is used, for example, in the Philips Bitstream
1-bit DAC system for CD players [281], with L0 = 4, L1 = 32, L2 = 2.

a. Write expressions for the magnitude responses |H1(f)|, |H2(f)|, |Hdac(f)|, in terms
of f and L0, L1, L2.

b. Using part (a), show that the combined effect of the hold interpolator H2 followed
by the DAC is equivalent to a staircase DAC operating at the reduced sampling rate
L0L1fs.
Why, then, do we need the hold interpolator at all? Why not use only a two-stage
interpolator and an oversampling factor of L0L1?

c. Consider the special case L0 = 4, L1 = 2, L2 = 2. On the same graph, sketch roughly
over the frequency range 0 ≤ f ≤ 16fs, the spectra at the input and output of H0, at
the output ofH1, at the output ofH2, at the outputHdac, at the output ofHpost. What
transition width did you choose for Hpost?
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d. Sketch the time-domain signals at the input and output of H2 and the output of Hdac.
Does that explain part (b) in the time domain?

12.11 Show that the ideal L-fold interpolation filterD(f), defined in Eq. (12.2.24) over the high-rate
Nyquist interval [−fs′/2, fs′/2] and shown in Fig. 12.2.3, satisfies the replication property:

1

L

L−1∑
m=0

D(f −mfs)= 1

for all f , where fs is the low rate fs = fs′/L.

12.12 Consider the sampling of an analog signal xa(t) at the two sampling rates fs and fs′ =
Lfs. The corresponding signal samples are x(n)= xa(nT) and x′(n′)= xa(n′T′). Because
T = LT′, it follows that x(n) will be the downsampled version of x′(n′) in the sense of
Eq. (12.5.1), that is, x(n)= xa(nT)= xa(nLT′)= x′(nL). The spectra of x(n) and x′(n′)
are given by the Poisson summation formulas:

X(f)= 1

T

∞∑
k=−∞

Xa(f − kfs), X′(f)= 1

T′

∞∑
k′=−∞

Xa(f − k′fs′)

Using the change of variables k = k′L+m, wherem = 0,1, . . . , L−1, show that the spectrum
of the downsampled signal is given by the discrete-time version of the Poisson summation
formula:

X(f)= 1

L

L−1∑
m=0

X′(f −mfs) (12.8.1)

Why is the factor L needed? Show that the same equation can be expressed in terms of the
normalized digital frequencies ω = 2πf/fs and ω′ = 2πf/fs′ as

X(ω)= 1

L

L−1∑
m=0

X′(ω′ − 2πm
L

)
(12.8.2)

12.13 The downsampled signal x(n), defined in Eq. (12.5.1), can be thought of as re-sampling of
x′(n′). More precisely, the upsampled version of the downsampled signal x(n), that is, the
samples x(n)with L−1 zeros inserted between them, can be thought of as the multiplication
of x′(n′) by a discrete-time sampling function:

xup(n′)=
∞∑

n=−∞
x′(nL)δ(n′ − nL)= s′(n′)x′(n′), where s′(n′)=

∞∑
n=−∞

δ(n′ − nL)

First, show that s′(n′), being periodic in n′ with period L, can be written in terms of the
following discrete Fourier series, which is essentially an L-point inverse DFT:

s′(n′)=
∞∑

n=−∞
δ(n′ − nL)= 1

L

L−1∑
m=0

e2πjmn′/L (12.8.3)

Then, prove the downsampling property Eq. (12.8.2) using the representation Eq. (12.8.3).

12.14 Prove the downsampling equation (12.8.1) by using the property X′(f)= D(f)X(f) where
D(f) is the ideal interpolator defined by Eq. (12.2.24), and using the results of Problem 12.11.
Why can’t we write X(f)= X′(f)/D(f)?
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12.15 Consider a third-order analog Butterworth antialiasing prefilter that precedes an L-fold dec-
imator. The passband attenuation is required to be less than 0.1 dB. Show that the minimum
oversampling ratio L that must be used in order for the prefilter to suppress the spectral
images by at least Astop dB is given approximately by:

L = 0.94 · 10Astop/60 + 0.5

Make a plot of the above formula versus Astop in the range 20 < Astop < 100 dB.

12.16 Show that the order N of an analog Butterworth antialiasing prefilter to be used in conjunc-
tion with an L-fold decimator and designed with specifications {Apass,Astop, fpass, fstop}, as
shown in Fig. 12.5.4, is given by:

N =
ln

(
10Astop/10 − 1

10Apass/10 − 1

)
2 ln(2L− 1)

Determine N for the values Apass = 0.1 dB, Astop = 60 dB, L = 16. Round N up to the next
integer, say N0. For what range of Ls does the filter order remain fixed at N0?

12.17 Using the Kaiser window method, design a sample rate converter for up-converting CD audio
at 44.1 kHz to DAT audio at 48 kHz. The required ratio is L/M = 160/147. Assume a
transition region of [20,24.41] kHz and stopband attenuation of 95 dB.

What is the filter lengthN? What is the computational cost in MAC/sec assuming a polyphase
realization? Can a modern DSP chip handle this cost? What are the memory requirements
for such a converter?

12.18 A DAT-recorded digital audio signal is to be broadcast digitally. Using the Kaiser method,
design a sampling rate converter filter for down-converting the 48 kHz DAT rate to a 32 kHz
broadcast rate.

What is the filter’s cutoff frequency? Assume reasonable values for the filter’s transition
width and stopband attenuation. What is the filter length N? What is the computational
cost in MAC/sec assuming a polyphase realization? Write explicitly (i.e., in the form of
Eq. (12.6.10)) the sample processing algorithm implementing the conversion algorithm.

12.19 Consider two sample rate converters for converting by the ratios 7/4 and 4/7. For each case,
sketch figures similar to Figs. 12.6.2 and 12.6.3 showing the conversion stages in the time and
frequency domains. For both cases, determine the polyphase filter selection indices im, nm,
and write explicitly (i.e., in the form of Eq. (12.6.10)) the corresponding sample processing
algorithms implementing the conversion process.

12.20 Show that the time-stretching property given in Eq. (12.6.15) is preserved if the impulse
response is windowed by a Hamming or Kaiser window (or, any other window).

12.21 Computer Experiment: Sample Rate Conversion. Write a general C or MATLAB program that
implements sample rate conversion (SRC) by a factor L/M.

The SRC filter may be designed by the Kaiser method. The program must have as inputs the
parameters L, M, stopband attenuation A, and normalized transition width ΔF = Δf/fs,
where fs is the input rate. Then, it must process an arbitrary file or array of input-rate data
and output a file or array of output-rate data.

The program must initialize the (P + 1)-dimensional state vector w correctly by reading
in the first K input samples, as in Eq. (12.2.19). Then, it must continue processing input
samples via the sample processing algorithm of Eq. (12.6.13), until the last input sample.
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Finally, it must calculate an additional K input-off transients to compensate for the initial
delay. [Hint: You need to call Eq. (12.6.13) approximately K/M more times with zero input.]

As a filtering example, consider a 10 msec portion of a 100 Hz sinusoid, that is, x(t)=
sin(2πt/10), where 0 ≤ t ≤ 10 msec. Show that if this signal is sampled at 3 kHz, at 5 kHz,
or at 15 kHz, its samples will be given respectively by:

x(n) = sin(2πn/30),

x′(n′) = sin(2πn′/50),

x′′(n′′) = sin(2πn′′/150),

n = 0,1, . . . ,29

n′ = 0,1, . . . ,49

n′′ = 0,1, . . . ,149

Design a 5/3 converter that has A = 30 dB and ΔF = 0.1. Filter the signal x(n) through the
SRC filter to generate the output y(n′). Compare the digitally resampled signal y(n′) with
the analog resampled signal x′(n′).
To compare x(n) with y(n′), you must work with respect to the same time scale. That is,
upsample the input x(n) by a factor of L = 5 and the output y(n′) by a factor of M = 3.
Then, plot the upsampled signals versus the fast time n′′ and compare them.

A typical output is shown in Fig. 12.8.1. Within each 15-sample period, there are 3 input-rate
samples and 5 output-rate samples. Had we not downsampled the output of the SRC filter
by a factor of 3, it would be equal (for a perfect filter) to the signal x′′(n′′).

Fig. 12.8.1 Sample rate conversion by 5/3.

Next, design a reverse sample rate converter to convert back by a factor of 3/5. The SRC filter
has the sameA and ΔF. Then, process y(n′) through it to see how well you may recover the
original signal x(n). Finally, plot the magnitude responses of the 5/3 and 3/5 filters versus
frequency in the range 0 ≤ f ≤ 15 kHz, both in absolute and decibel scales.

12.22 An alternative discrete-time model for a first-order delta-sigma quantizer is shown in Fig. 12.8.2.
It uses a conventional accumulator, but puts a delay in the feedback loop to make it com-
putable. Replace the quantizer Q by its equivalent noise model and work out the I/O rela-
tionship in the form of Eq. (12.7.3). What are the transfer functions Hx(ζ) and HNS(ζ)?
Write Eq. (12.7.3) in the n′ time domain.

12.23 For the delta-sigma quantizer model shown in Fig. 12.8.2, define the action of the quantizer
Q by the two-level functionQ(x) of Eq. (12.7.13). Using the indicated intermediate variables
on the figure, write the corresponding sample processing algorithm. For the two constant
inputs, x = 0.4 and x = −0.2, iterate the algorithm ten times and make a table of the values
of all the variables, as in Example 12.7.1. Compute the average of the quantized outputs y.
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quantizer

Fig. 12.8.2 Alternative model of first-order delta-sigma quantizer.

12.24 A discrete-time model for a second-order delta-sigma quantizer is shown in Fig. 12.8.3. Write
the I/O equation in the form of Eq. (12.7.3) and determine the signal and noise transfer
functionsHx(ζ) andHNS(ζ) in terms of the loop filtersH1(ζ) andH2(ζ). Then, determine
H1(ζ) and H2(ζ) such that

Hx(ζ)= 1, HNS(ζ)= (1 − ζ−1)2

Redraw the full block diagram by replacing each Hi(ζ) by its realization, and write the
sample processing algorithm assuming a quantizer function of the form Q(x).

+ +

− −
H2(ζ)H1(ζ)

ζ -1

x′(n′) y′(n′)

e′(n′), E′(ζ)

X′(ζ) Y′(ζ)
quantizer

Fig. 12.8.3 Discrete-time model of second-order delta-sigma quantizer.

12.25 An alternative discrete-time model for the second-order ΔΣ quantizer is obtained by remov-
ing the delay ζ−1 from the feedback loop in Fig. 12.8.3. Determine H1(ζ) and H2(ζ) in
order that the signal and noise transfer functions be:

Hx(ζ)= ζ−1, HNS(ζ)= (1 − ζ−1)2

12.26 Computer Experiment: First-Order Delta-Sigma ADC. Write C or MATLAB programs to repro-
duce all the results and graphs of Example 12.7.2. Implement the decimator filtering opera-
tions in their sample-by-sample processing form using the routines fir or cfir of Chapter
4. In computing the outputs of the filters, you must also compute the input-off transients.
In particular, for the window designs, you need to compute an extra LM input-off transients
to compensate for the filter’s delay.

Better decimators are obtained by raising the simple averaging decimator to some power.
For example, a second-order L-fold “comb” decimator is defined by:

H(ζ)=
[

1

L
1 − ζ−L

1 − ζ−1

]2

It is similar to a linear interpolator normalized by L. For L = 10, determine its impulse
response h. Then, compute its output for the same quantized input as above, and compare
it with the outputs of the averaging and length-21 decimators. Also, plot the magnitude
response of this decimator on the same graph with the other three.
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12.27 Computer Experiment: Second-Order Delta-Sigma ADC. Using the second-order delta-sigma
quantizer and its sample processing algorithm defined in Problem 12.24 and using the same
quantizer function Q(x) of Eq. (12.7.13), repeat all the questions and graphs of the above
computer experiment.

12.28 A second-order multistage delta-sigma quantizer architecture (known as MASH [277,289–
291]) is shown in Fig. 12.8.4. It employs two identical first-order quantizers of the type of
Fig. 12.8.2, with H(ζ)= 1/(1 − ζ−1), and D(ζ)= 1 − ζ−1.

D(ζ)

x +

−

ζ -1

H(ζ)
y1

y2

y

e1

−e1

+
+ −

−

ζ -1

H(ζ)

e2

1st stage

2nd stage

Fig. 12.8.4 MASH architecture of second-order delta-sigma quantizer.

The negative of the quantization error e1, obtained by subtracting the two signals around
the first quantizer, becomes the input to the second stage and its output is postfiltered by
the differencing filter D(ζ) and added to the output of the first stage.

Using the I/O equation derived in Problem 12.22, show that the overall I/O equation of
Fig. 12.8.4 involves only the second quantization error e2, and is given by

Y′(ζ)= X′(ζ)+(1 − ζ−1)2E′
2(ζ)

12.29 A third-order delta-sigma MASH quantizer, can be obtained by adding a third first-order
quantizer to the diagram of Fig. 12.8.4 [277,289–291]. The signal −e2 can be generated from
the second stage just like −e1 is generated by the first stage. Then, the signal −e2 is fed into
the third stage, which has its own quantization noise e3.

Draw the 3-stage block diagram and add an additional differentiatorD(ζ) so that when you
sum the outputs of the three stages, you get a third-order noise shaping I/O relationship,
that is, combine the I/O equations of the three stages so that:

Y′
1 = X′ +DE′

1

Y′
2 = −E′

1 +DE′
2

Y′
3 = −E′

2 +DE′
3

⇒ Y′ = X′ +D3E′
3

12.30 A third-order delta-sigma MASH quantizer, can also be obtained by using a cascade combina-
tion of first- and second-order quantizers [277,289–291]. In the block diagram of Fig. 12.8.4,
replace the first-order quantizer of the second stage by the second-order quantizer of Fig. 12.8.3.
The differencer D(ζ) remains unchanged. Show that the overall I/O equation is now:

Y′(ζ)= X′(ζ)+(1 − ζ−1)3E′
2(ζ)

12.31 Delta-sigma A/D converters are not always appropriate and must be used with caution,
especially in multiplexing the sampling of several input channels or in feedback control
systems. Why would you say this is so?
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Appendices

A Random Signals∗

A.1 Autocorrelation Functions and Power Spectra

One of the most important applications of DSP is removing noise from noisy signals.
The design of noise reduction and signal enhancement filters is discussed in Section
8.3. Here, we review briefly some basic facts regarding random signals, autocorrelation
functions, and power spectra; see [2,25,26] for more details.

The autocorrelation function of a zero-mean† random signal is defined as the corre-
lation between two samples x(n) and x(n+k) separated by a time lag k. It is a measure
of the dependence of successive samples on the previous ones:

Rxx(k)= E[x(n+ k)x(n)] (autocorrelation function) (A.1)

For stationary signals, Rxx(k) depends only on the relative time lag k, and not on
the absolute time n. Note that Rxx(k) is a double-sided sequence and, as a consequence
of stationarity, it is symmetric in k, that is, Rxx(−k)= Rxx(k).

The power spectrum of the random signal x(n) is defined as the discrete-time Fourier
transform of its autocorrelation function Rxx(k). It represents the frequency content
of the random signal x(n) in an average sense:

Sxx(ω)=
∞∑

k=−∞
Rxx(k)e−jωk (power spectrum) (A.2)

where ω = 2πf/fs is the digital frequency in radians per sample. The inverse DTFT
relationship expresses Rxx(k) in terms of Sxx(ω):

Rxx(k)= E[x(n+ k)x(n)]=
∫ π
−π
Sxx(ω)ejωk

dω
2π

(A.3)

In particular, setting k = 0, we obtain the average power, or variance, of the signal
x(n):

†If the mean m is not zero, we replace x(n) by its zero-mean version x(n)−m.

713
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σ2
x = Rxx(0)= E[x(n)2]=

∫ π
−π
Sxx(ω)

dω
2π

=
∫ fs/2
−fs/2

Sxx(f)
df
fs

(A.4)

where

Sxx(f)=
∞∑

k=−∞
Rxx(k)e−2πjfk/fs (A.5)

The quantity Sxx(f)/fs represents the power per unit frequency interval. Hence, the
name “power spectrum” or “power spectral density” (psd). It describes how the signal’s
power is distributed among different frequencies. Its integral over the Nyquist interval,
Eq. (A.4), gives the total power in the signal.

Often it is more convenient to work with the z-transform of the autocorrelation and
replace z = ejω = e2πjf/fs to obtain the power spectrum Sxx(ω) or Sxx(f):

Sxx(z)=
∞∑

k=−∞
Rxx(k)z−k (A.6)

The above results can be applied to the important special case of a zero-mean white
noise signal x(n). White noise has a delta-function autocorrelation and a flat spectrum,
as shown in Fig. A.1.

fk
fs/2-fs/2 0

S(f) = σ 2
xσ 2

x δ(k)R(k) = 

0 2-2 1-1 3-3

Fig. A.1 Autocorrelation and power spectrum of white noise.

Because (by definition) successive signal samples are independent of each other, the
autocorrelation function (A.1) will factor for k �= 0 into the product of the means which
are zero:

Rxx(k)= E[x(n+ k)x(n)]= E[x(n+ k)]·E[x(n)]= 0

whereas for k = 0, we get the variance

Rxx(0)= E[x(n)2]= σ2
x

Combining them into a single equation, we have:

Rxx(k)= σ2
xδ(k) (white noise autocorrelation) (A.7)

Inserting Eq. (A.7) into Eq. (A.5), only the k = 0 term will survive the sum giving the
flat spectral density (over the Nyquist interval):
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Sxx(f)= σ2
x , for − fs

2
≤ f ≤ fs

2
(white noise spectrum) (A.8)

Given a length-N block of signal samples x(n), n = 0,1, . . . ,N−1, one can compute
an estimate of the statistical quantity Rxx(k) by the so-called sample autocorrelation
obtained by replacing the statistical average in Eq. (A.1) by the time average:

R̂xx(k)= 1

N

N−1−k∑
n=0

x(n+ k)x(n) (sample autocorrelation) (A.9)

for k = 0,1, . . . ,N − 1. The negative tail can be defined using the symmetry property
R̂xx(−k)= R̂xx(k).

The rule of thumb is that only about the first 5–10% of the lags are statistically
reliable, that is, 0 ≤ k ≤ 0.1N. The following routine corr.c computes Eq. (A.9) for
0 ≤ k ≤M, with any M ≤ N − 1.

/* corr.c - sample cross correlation of two length-N signals */

void corr(N, x, y, M, R) computes R[k], k = 0, 1, . . . , M
double *x, *y, *R; x, y are N-dimensional

int N, M; R is (M + 1)-dimensional

{
int k, n;

for (k=0; k<=M; k++)
for (R[k]=0, n=0; n<N-k; n++)

R[k] += x[n+k] * y[n] / N;
}

Actually, the routine computes the more general sample cross correlation between
two length-N signal blocks x(n), y(n), n = 0,1, . . . ,N − 1, defined as:

R̂xy(k)= 1

N

N−1−k∑
n=0

x(n+ k)y(n), k = 0,1, . . . ,M (A.10)

It can be shown that for wide-sense stationary signals, R̂xx(k) is a good estimate of
Rxx(k), converging to the latter for large N (in the mean-square sense):

R̂xx(k)→ Rxx(k) as N → ∞
The DTFT of R̂xx(k) is called the periodogram spectrum and can be thought of as an

estimate of the power spectrum Sxx(ω):

Ŝxx(ω)=
N−1∑

k=−(N−1)
R̂xx(k)e−jωk (A.11)

Using the definition (A.9) in (A.11) and rearranging summations, we can express the
periodogram in the alternative way:

Ŝxx(ω)= 1

N
|XN(ω)|2 (periodogram spectrum) (A.12)
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where XN(ω) is the DTFT of the length-N data block x(n), which can be computed
efficiently using FFTs:

XN(ω)=
N−1∑
n=0

x(n)e−jωn

It can be shown [3,25,26], that for wide-sense stationary random signals the mean
of the periodogram (A.12) converges to the true power spectrum Sxx(ω) in the limit of
large N, that is,

Sxx(ω)= lim
N→∞

E[Ŝxx(ω)]= lim
N→∞

E
[ 1

N
|XN(ω)|2

]
(A.13)

Unfortunately, the periodogram is not a good estimator of the power spectrum. It
does not approximate Sxx(ω) well, even in the limit of largeN. That is, even though the
mean of the periodogram tends to Sxx(ω), the periodogram itself Ŝxx(ω) does not. The
subject of classical spectral analysis is essentially the subject of fixing the periodogram
to provide a good estimate of the power spectrum.

There are two basic techniques that improve the periodogram: periodogram averag-
ing and periodogram smoothing. The averaging method tries to emulate the ensemble
averaging operation E[] of Eq. (A.13). In its simplest form, it consists of dividing the
signal into contiguous blocks, computing the ordinary periodogram of each block using
Eq. (A.12), and then averaging the computed periodograms.

The method is depicted in Fig. A.2, where there are K blocks, each of length N, so
that the total length of the data record is L = KN. The signal is required to remain
stationary at least over the length L. The block size N must be chosen to provide
sufficient frequency resolution. This point is discussed further in Chapter 9. Denoting
the ith block by xi(n), n = 0,1, . . . ,N − 1, we compute its ordinary periodogram:

Ŝi(ω)= 1

N
|Xi(ω)|2 , i = 1,2, . . . , K

block x1 block x2 block xK

N

S1(ω) S2(ω) SK(ω)

N N

. . .

. . .

Fig. A.2 Periodogram averaging improves power spectrum estimate.

where Xi(ω) is its DTFT:

Xi(ω)=
N−1∑
n=0

xi(n)e−jωn

and then average the K periodograms:
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Ŝ(ω) = 1

K

[
Ŝ1(ω)+Ŝ2(ω)+· · · + ŜK(ω)

]
= 1

KN

[
|X1(ω)|2 + |X2(ω)|2 + · · · + |XK(ω)|2

] (A.14)

It can be shown that Ŝ(ω) is a good estimator of Sxx(ω), with the (mean-square)
error between the two decreasing like 1/K, for large K. The periodogram smoothing
method has similar performance.

There are two basic shortcomings with such classical spectral analysis methods:
One is that to achieve high statistical reliability, a large value of K must be used, which
implies a long total signal length L = KN. Such long blocks may not be possible to
obtain in certain applications. The second is that even if a long data record could be
measured, it may not be usable because the signal may not remain stationary over such
long periods of time, as for example, in speech.

These shortcomings have led to the development of modern spectral analysis meth-
ods, which are based on parametric models of the signal [25,26].

A.2 Filtering of Random Signals

In designing filters to remove noise, it is necessary to know the effect of filtering on the
autocorrelation function and on the power spectrum of a random signal.

Suppose the input to a strictly stable filter H(z) with impulse response h(n) is a
wide-sense stationary signal x(n). Then, the corresponding output y(n) will also be a
wide-sense stationary random signal:

y(n)=
∑
m
h(m)x(n−m) H(z)

x(n) y(n)

It can be shown [2,28] that the power spectrum of the output is related to that of the
input by:

Syy(ω)= |H(ω)|2Sxx(ω) (A.15)

Thus, the input spectrum is reshaped by the filter spectrum. A simple way to justify
this result is in terms of periodograms. The filtering equation in the z-domain is Y(z)=
H(z)X(z), and in the frequency domainY(ω)= H(ω)X(ω). It follows that the output
periodogram will be related to the input periodogram by a similar equation as (A.15):

1

N
|Y(ω)|2 = |H(ω)|2 · 1

N
|X(ω)|2

Applying this result to the special case of a white noise input with a flat spectral
density Sxx(ω)= σ2

x gives

Syy(ω)= |H(ω)|2σ2
x (A.16)

Similarly, in the z-transform notation of Eq. (A.6):

Syy(z)= H(z)H(z−1)σ2
x (A.17)
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where we replaced H(ω)= H(z) and H(ω)∗= H(z−1), the latter following from the
fact that h(n) is real-valued. Indeed, with z = ejω and z−1 = z∗ = e−jω, we have:

H(ω)∗= (∑
n
h(n)e−jωn

)∗ =
∑
n
h(n)ejωn = H(z−1)

Equation (A.16) implies that the filtered noise y(n) is no longer white. Its power
spectrum acquires the shape of the filter’s spectrum. Its autocorrelation function is no
longer a delta function. It can be computed by taking the (stable) inverse z-transform
of Eq. (A.17).

A measure of whether the filter attenuates or magnifies the input noise is given by
the variance of the output σ2

y . Using Eq. (A.4) applied to y(n), we have:

σ2
y =

∫ π
−π
Syy(ω)

dω
2π

= σ2
x

∫ π
−π

|H(ω)|2 dω
2π

which can be written in the form:

NRR = σ2
y

σ2
x
=
∫ π
−π

|H(ω)|2 dω
2π

=
∑
n
h(n)2 (NRR) (A.18)

where we used Parseval’s equation discussed in Chapter 5.
This ratio will be referred to as the noise reduction ratio (NRR). If it is less than one,

the input noise will be attenuated by the filter. It can be used as a useful criterion for
designing noise-reducing filters—the objective being to design H(z) such that (A.18) is
minimized as much as possible.

A necessary assumption for the derivation of the results (A.15) or (A.18) is that
the filter h(n) be strictly stable. The stability of h(n) is required to ensure that the
stationary input signal x(n) will generate, after the filter transients die out, a stationary
output signal y(n).

Thus, even marginally stable filters with poles on the unit circle are not allowed.
To illustrate the problems that may arise, consider the simplest marginally stable filter,
namely, an accumulator/integrator:

H(z)= 1

1 − z−1
, h(n)= u(n)

It has I/O difference equation:

y(n)= y(n− 1)+x(n)

Assuming zero initial conditions, we can write it in the convolutional form:

y(n)= x(n)+x(n− 1)+· · · + x(1)+x(0) (A.19)

If x(n) is a zero-mean, white noise signal with varianceσ2
x , the resulting accumulated

output signal y(n) is a version of the random walk process [321].
The signal y(n) is not stationary and becomes unstable as n increases, in the sense

that its mean-square value (i.e., its variance) σ2
y(n)= E[y(n)2] diverges. Indeed, using
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the property that the variance of a sum of independent random variables is equal to the
sum of the individual variances, we obtain from Eq. (A.19):

σ2
y(n)= E[y(n)2]= E[x(n)2]+E[x(n− 1)2]+· · · + E[x(0)2]= σ2

x +σ2
x + · · · +σ2

x

where all the terms have a common variance σ2
x , by assumption. It follows that:

σ2
y(n)= E[y(n)2]= (n+ 1)σ2

x (A.20)

Thus, the mean-square value of y(n) grows linearly inn. In a digital implementation,
the growing amplitude of y(n) will quickly saturate the hardware registers.

Analog integrators also behave in a similar fashion, growing unstable when their
input is random noise. Therefore, one should never accumulate or integrate white noise.
A standard remedy is to use a so-called leaky integrator, which effectively stabilizes
the filter by pushing its pole slightly into the unit circle. This is accomplished by the
replacement, with 0 < ρ � 1

H(z)= 1

1 − z−1
−→ H(z)= 1

1 − ρz−1

More generally, a marginally stable filter can be stabilized by the substitution z →
ρ−1z, which pushes all the marginal poles into the inside of the unit circle. The substi-
tution amounts to replacing the transfer function and impulse response by

H(z) −→ H(ρ−1z), h(n) −→ ρnh(n) (A.21)

B Random Number Generators

B.1 Uniform and Gaussian Generators

Random number generators are useful in DSP for performing simulations of various
algorithms, for example, in simulating noisy data. They are also useful in real-time
applications, such as adding dither noise to eliminate quantization distortions as we
saw in Chapter 2, or in computer music synthesis and in the implementation of digital
audio effects, such as chorusing.

Most computer systems and languages have built-in routines for the generation of
random numbers. Typically, these routines generate random numbers that are dis-
tributed uniformly over the standardized interval [0,1), although Gaussian-distributed
random numbers can be generated just as easily. Figure B.1 shows the probability den-
sity functions in the uniform and Gaussian cases.

There is a large literature on random number generators; see [301–319] and refer-
ences therein. As reviewed by Park and Miller [304], it is hard to find good random
number generators, that is, generators that pass all or most criteria of randomness.

By far the most common generators are the so-called linear congruential generators
(LCG). They can generate fairly long sequences of independent random numbers, typi-
cally, of the order of two billion numbers before repeating. For longer sequences, one
may use shift-register and lagged-Fibonacci generators [308–312], which can generate
astronomically long sequences of order of 2250 or 2931.

In C, a typical call to a random number generator routine takes the form:
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u

p(u)

1/2 1

1

0
x

p(x)

m m+σm-σ

Fig. B.1 Uniform and Gaussian probability distributions.

u = ran(&iseed);

where the output is a real number in the interval 0 ≤ u < 1.
The input is an integer seed, iseed, which is passed by address because it is modified

by the routine internally and its new value serves as the next seed.† Thus, the routine
has one input, namely iseed, and two outputs, u and the new value of iseed. Figure
B.2 shows the effect of a single call to such a routine, as well as successive calls which
generate a sequence of independent random numbers, starting from an arbitrary initial
seed.

ran

u

iseedin iseedout

ran
iseed0 iseed1 iseed2 iseed3ran

u1 u2 u3

ran

Fig. B.2 Single and successive calls to routine ran.

The LCG algorithm for generating u and updating the seed is defined by three integer
parameters, {a, c,m}, called the multiplier, the displacement, and the modulus. Given
an initial integer seed I0 in the interval‡ 0 ≤ I0 ≤ m − 1, the LCG algorithm is the
recursion:

In = (aIn−1 + c)mod(m)

un = In
m

(LCG algorithm) (B.1)

Because of the modulo-m operation, all the seeds In are restricted to the interval:

0 ≤ In ≤m− 1

†In some implementations, the seed is hidden from the user.
‡If c = 0, one must pick I0 �= 0.
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This implies that un will be in the interval 0 ≤ un < 1, and that the length of such
a sequence can be at most m − 1. The parameters {a, c,m} must be chosen carefully,
such that every initial seed must result in a maximal-length sequence [301]. We will use
the following generator which has maximal length m− 1. It was originally proposed in
[313] and has withstood the test of time [304]. It has c = 0 and:

a = 75 = 16807, m = 231 − 1 = 2147483647 (B.2)

With these parameters, Eq. (B.1) cannot be implemented in a straightforward fashion
because the product aI can take on extremely large values that exceed the integer range
of many computers. For example, if I =m−1 = 2147483646, thenaI � 3.6×1013 � 245,
which exceeds the typical signed “long” (4-byte) integer range of most micros:

− 231 ≤ I ≤ 231 − 1 (B.3)

A portable implementation suggested by Schrage [302,314] rearranges the compu-
tation of (aI)mod(m) in such a way that all intermediate results remain bounded by
the range (B.3). The technique is based on using the quotient q and remainder r of the
division of m by a, that is,

m = aq+ r (B.4)

where r is in the range 0 ≤ r ≤ a − 1. The key requirement for the method to work is
that r satisfy the additional constraint:

r < q (B.5)

For the choice (B.2), we have the values for q and r satisfying (B.4) and (B.5):

q = 127773, r = 2836 (B.6)

Given an integer seed I in the range 0 ≤ I ≤ m− 1, the quantity J = (aI)mod(m)
is the remainder of the division of aI by m, that is,

aI =mK + J, where 0 ≤ J ≤m− 1 (B.7)

Schrage’s method calculates J without directly performing the multiplication aI. As
a preliminary step, the seed I is divided by q, giving the quotient and remainder:

I = qk+ j, where 0 ≤ j ≤ q− 1 (B.8)

Then, the quantity aI can be expressed as follows:

aI = a(qk+ j)= aqk+ aj = (m− r)k+ aj =mk+ (aj − rk) (B.9)

where we used aq =m− r from Eq. (B.4).
Comparing Eqs. (B.9) and (B.7), it appears that K = k and J = aj − rk. This would

be true by the uniqueness of Eq. (B.7) if aj− rk were in the range 0 ≤ aj− rk ≤m− 1.
Note that both quantities aj and rk lie in this range:
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0 ≤ aj ≤m− 1, 0 ≤ rk ≤m− 1 (B.10)

Indeed, the first follows from the fact that j < q from Eq. (B.8), so that

0 ≤ aj < aq =m− r < m

The second one follows from Eqs. (B.5) and (B.8):

0 ≤ rk < qk = I − j ≤ I ≤m− 1

Combining the inequalities (B.10) we find the range of the quantity aj − rk:

−(m− 1)≤ aj − rk ≤m− 1

If aj − rk lies in the positive half, 0 ≤ aj − rk ≤ m − 1, then we must necessarily
have J = aj− rk and K = k. But, if it lies in the negative half, −m+ 1 ≤ aj− rk ≤ −1,
we must shift it by m so that 1 ≤ aj − rk +m ≤ m − 1. In this case, we have aI =
mk+ aj − rk =m(k− 1)+(m+ aj − rk); therefore, J =m+ aj − rk and K = k− 1.

Denoting k = �I/q� and j = I%q, we can summarize the computation of the new
seed J = (aI)mod(m) as follows:

given a seed I in the range 0 ≤ I ≤m− 1 do:
compute J = a(I%q)−r�I/q�
if J < 0, then shift

J = J +m

The following routine ran.c is a C implementation based on Schrage’s Fortran ver-
sion [302]. Note that iseed is declared long and passed by reference:

/* ran.c - uniform random number generator in [0, 1) */

#define a 16807 that is, a = 75

#define m 2147483647 that is, m = 231 − 1

#define q 127773 note, q = m/a = quotient

#define r 2836 note, r = m%a = remainder

double ran(iseed) usage: u = ran(&iseed);

long *iseed; iseed passed by address

{
*iseed = a * (*iseed % q) - r * (*iseed / q); update seed

if (*iseed < 0) wrap to positive values

*iseed += m;

return (double) *iseed / (double) m;
}

The following program segment illustrates the usage of the routine. It generates an
array of N uniform random numbers. The initial value of the seed is arbitrary:
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long iseed; seed must be long int

iseed = 123456; initial seed is arbitrary

for (n=0; n<N; n++)
u[n] = ran(&iseed);

There exist methods that improve the quality of random number generators by mak-
ing them “more random” than they already are [301–319].

The generated random numbers u are uniformly distributed over the interval 0 ≤
u < 1, as shown in Fig. B.1. Over this interval, the probability density is flat, p(u)= 1.
Therefore, the mean and variance of u will be:

E[u] =
∫ 1

0
up(u)du =

∫ 1

0
udu = 1

2

σ2
u = E[u2]−E[u]2=

∫ 1

0
u2 du− 1

4
= 1

3
− 1

4
= 1

12

(B.11)

To generate a random number which is uniformly distributed over a different inter-
val, say a ≤ v < b, we generate a uniform u over [0,1) and then shift and scale it to
obtain:

v = a+ (b− a)u (B.12)

The mean and variance of v will be:

E[v]= a+ (b− a)1

2
= a+ b

2
, σ2

v =
(b− a)2

12

In particular, the transformation v = u− 0.5 will generate zero-mean random num-
bers over the unit interval [−0.5,0.5), and the transformation v = 2u− 1 will generate
zero-mean random numbers over the length-2 interval [−1,1).

More complicated transformations and combinations of uniform random numbers
can be used to generate random numbers that are distributed according to other prob-
ability distributions, such as Gaussian, exponential, Poisson, binomial, etc. [301–319].

A method of generating Gaussian-distributed random numbers is based on the cen-
tral limit theorem, which states that the sum of a large number of independent random
variables is Gaussian. In particular, summing only 12 independent uniform random
numbers gives a very good approximation to a Gaussian:

v = u1 + u2 + · · · + u12 (B.13)

The mean of v is the sum of the individual means, and because ui are independent,
the variance of v will be the sum of the variances:

E[v] = E[u1]+· · · + E[u12]= 1

2
+ · · · + 1

2
= 12 × 1

2
= 6

σ2
v = σ2

u1
+ · · · +σ2

u12
= 1

12
+ · · · + 1

12
= 12 × 1

12
= 1

Because each ui has finite range 0 ≤ ui < 1, the range of v will also be finite:
0 ≤ v < 12, with mean at 6. Even though v has finite range, it represents an adequate
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approximation to a Gaussian because there are ±6σv on either side of the mean, and we
know that for a Gaussian distribution more than 99.99% of the values fall within ±4σv.

To generate a Gaussian random number x with a given mean E[x]=m and variance
σ2
x = s2, we may shift and scale v:

x =m+ s(v− 6)

The following routine gran.c implements this method using the uniform routine
ran. Its inputs are {m,s} and a seed. Its outputs are the random number x and the
updated seed:

/* gran.c - gaussian random number generator */

double ran(); uniform generator

double gran(m, s, iseed) usage: x = gran(m, s, &iseed);

double m, s; m = mean, s2 = variance

long *iseed; iseed passed by address

{
double v = 0;
int i;

for (i = 0; i < 12; i++) sum 12 uniform random numbers

v += ran(iseed);

return s * (v - 6) + m; adjust mean and variance

}

Its usage is demonstrated by the following program segment. As in the case of ran,
the seed must be declared to be long:

iseed = 123456; initial seed is arbitrary

for (n=0; n<N; n++)
x[n] = gran(m, s, &iseed);

B.2 Low-Frequency Noise Generators∗

A sequence of zero-mean uniform random numbers generated by successive calls to
ran, such as,

un = ran(&iseed)−0.5, n = 0,1,2, . . .

corresponds to a white noise signal because the generated numbers are mutually inde-
pendent. The autocorrelation function and power spectral density of such signal are
given by Eqs. (A.7) and (A.8) of Section A.1 and shown in Fig. A.1:

Ruu(k)= σ2
uδ(k), Suu(f)= σ2

u (B.14)

with variance σ2
u = 1/12.

Such a sequence is purely random in the sense that each sample has no memory or
dependence on the previous samples. Because Suu(f) is flat, the sequence will contain
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all frequencies in equal proportions and will exhibit equally slow and rapid variations
in time.

The rate at which this sequence is produced is equal to the sampling rate fs, that
is, one random number per sampling instant. In some applications, such as computer
music [94–98,100], or for generating 1/f noise, it is desired to generate random numbers
at a slower rate, for example, one random number every D sampling instants. This
corresponds to a generation frequency of fs/D random numbers per second.

If a new random number is generated every D sampling instants, that is, at times
n = 0,D,2D,3D, . . . , then the signal values filling the gaps between these random
numbers must be calculated by interpolation. Two simple ways of interpolating are
to use hold or linear interpolators [94]. They are shown in Fig. B.3 for D = 5.

u0

n

u1

u2

u3

u0

n

0 0D D3D 3D2D 2D

u1

u2

u3 y(n)y(n)

Fig. B.3 Low-frequency noise generation using hold and linear interpolators.

In the hold interpolator, each random number is held constant for D sampling in-
stants. In the linear interpolator, two successive random numbers, separated by D time
units, are connected by a straight line and the intermediate samples lie on that line.

The following routine ranh.c implements the hold generator. Its inputs are the de-
sired periodD and a seed. Its outputs are a zero-mean random number and an updated
seed.

/* ranh.c - hold random number generator of period D */

double ran(); uniform generator

void cdelay2(); circular delay

double ranh(D, u, q, iseed) usage: y = ranh(D, u, &q, &iseed);

int D, *q; q is cycled modulo-D
double *u; u = 1-dimensional array

long *iseed; q, iseed are passed by address

{
double y;

y = u[0]; hold sample for D calls

cdelay2(D-1, q); decrement q and wrap mod-D

if (*q == 0) every D calls,

u[0] = ran(iseed) - 0.5; get new u[0] (zero mean)

return y;
}

The temporary variable u is a 1-dimensional array that holds the current value of the
random number forD calls. The index q is cycled modulo-Dwith the help of the circular



726 13. APPENDICES

delay routine cdelay2, which decrements it circularly during each call. Every D calls,
the index q cycles through zero, and a new zero-mean random number is obtained by
a call to ran, which overwrites the value of u[0] and also updates the seed. Before the
first call, the array u[0] must be filled with an initial (zero-mean) random number. The
initialization and usage of the routine are illustrated by the following program segment:

double *u; u is a 1-dimensional array

int D, q;
long iseed = 654321; initial seed is arbitrary

u[0] = ran(&iseed) - 0.5; initialize u (zero mean)

q = 0; initialize q

for (n=0; n<N; n++)
y[n] = ranh(D, u, &q, &iseed); q, iseed are passed by address

For the linear interpolation case, we need to keep track of two successive random
valuesu, sayu[0] andu[1], and connect them linearly. Because the slope of the straight
line between u[0] and u[1] is (u[1]−u[0])/D, the linearly interpolated samples will
be

y = u[0]+(u[1]−u[0]) i
D
, i = 0,1, . . . ,D− 1

Because we use the routine cdelay2, the circular index q takes periodically the suc-
cessive values: q = 0,D − 1,D − 2, . . . ,1. These may be mapped to the interpolation
index i by:

i = (D− q)%D = 0,1, . . . ,D− 1

where the modulo-D operation is effective only when q = 0 giving in that case i =
D%D = 0. The following routine ranl.c implements the linearly interpolated periodic
generator, where now the temporary variable u is a two-dimensional array:

/* ranl.c - linearly interpolated random generator of period D */

double ran(); uniform generator

void cdelay2(); circular delay

double ranl(D, u, q, iseed) usage: y = ranl(D, u, &q, &iseed);

int D, *q; q is cycled modulo-D
double *u; u = 2-dimensional array

long *iseed; q, iseed are passed by address

{
double y;
int i;

i = (D - *q) % D; interpolation index

y = u[0] + (u[1] - u[0]) * i / D; linear interpolation

cdelay2(D-1, q); decrement q and wrap mod-D

if (*q == 0) { every D calls,
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u[0] = u[1]; set new u[0] and

u[1] = ran(iseed) - 0.5; get new u[1] (zero mean)

}

return y;
}

Every D calls, as q cycles through zero, the value of u[1] is shifted into u[0] and
u[1] is replaced by a new zero-mean random number by a call to ran. The initialization
and usage of the routine are illustrated by the program segment:

double u[2]; u is a 2-dimensional array

int D, q;
long iseed = 654321; initial seed is arbitrary

u[0] = ran(&iseed) - 0.5; initialize u[0] and u[1]
u[1] = ran(&iseed) - 0.5; zero-mean initial values

q = 0; initialize q

for (n=0; n<N; n++)
y[n] = ranl(D, u, &q, &iseed); q, iseed are passed by address

Figure B.4 shows typical sequences y[n] both for the hold and linear interpolator
generators, for the cases D = 5 and D = 10. The sequence length was N = 100.

Fig. B.4 Hold and linearly interpolated low-frequency random sequences.

The routines ranh and ranl generate random numbers y in the range −0.5 ≤ y <
0.5, with mean E[y]= 0. In the hold case, the variance is σ2

y = σ2
u = 1/12, and in the

linear case σ2
y = (2D2 + 1)σ2

u/3D2.
The hold and linear interpolator generators can be given a convenient filtering inter-

pretation, as shown in Fig. B.5. The interpolated random sequence y(n) can be thought
of as the output of an interpolation filter whose input is the low-rate sequence of random
numbers um occurring at rate fs/D and being separated from each other byD−1 zeros.
Each input random number causes the filter to produce its impulse response filling the
gap till the next random number D samples later. The impulse responses for the hold
and linear cases are shown in Fig. 12.3.1.

To turn the input and output sequences x(n) and y(n) into stationary random
sequences, we must make a slight modification to the generation model [320]. Instead of
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u0

n
0

u1

D 2D 3D

u2

u3

u0

n
0

u1

D 2D 3D

u2

u3

H(z)

hold
interpolator

x(n) y(n)

Fig. B.5 Filtering interpretation of hold interpolator.

assuming that the random numbers um,m = 0,1, . . . are generated exactly at multiples
ofD, that is, at times n =mD, we introduce a random delay shift in the entire sequence
and assume that the um’s are generated at times:

n =mD+ d
where the delay d is a discrete-valued random variable taking on the possible values
{0,1, . . . ,D−1}with uniform probability, that is, p(d)= 1/D. In this case, the sequences
x(n) and y(n) defining the generation model are obtained by:

x(n) =
∞∑

m=−∞
δ(n−mD− d)um

y(n) =
∞∑

m=−∞
h(n−mD− d)um

(B.15)

Each realization of x(n) and y(n) is defined by a random value of d from the set
{0,1, . . . ,D− 1} and the random numbers um. The particular case D = 5 and d = 3 is
shown in Fig. B.6 for the hold interpolator.

u0

n

0

u1

u-1 u-1

d

2D+d 2D+dD+d D+dd 3D+d 3D+d

u2

u3

x(n)

u0

n

0

u1
d

d

u2

u3

y(n)

Fig. B.6 Randomly delayed input and output sequences.

If we assume that the random numbers um are zero-mean, mutually independent,
and uniformly distributed over the interval [−0.5,0.5), then the sequence x(n) becomes
a zero-mean white noise sequence with variance σ2

x = σ2
u/D, and therefore, its filtered

version y(n) will be stationary (in the steady state) and have power spectrum as given
by Eq. (A.16):

Syy(f)= |H(f)|2σ
2
u
D

(B.16)
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where for the hold and linear interpolators, we have from Section 12.3:

H(f)= sin(πfD/fs)
sin(πf/fs)

e−jπf(D−1)/fs , H(f)= 1

D

[
sin(πfD/fs)
sin(πf/fs)

]2

(B.17)

The above technique of introducing a random delay to guarantee the stationarity of
the output process is standard in digital communication applications [321]. For the pur-
pose of generating low-frequency random sequences, such a delay is a welcome feature
that improves the flexibility of the model.

The implementation of an overall random delay shift in the generated sequence can
be accomplished by initializing the routines ranh or ranl not at q = 0, but at q = d,
where the random integer d = 0,1, . . . ,D− 1 can be generated by an initial call to ran:

d = �D · ran(&iseed)�

The interpolation between the low-rate random numbers um can also be accom-
plished using more sophisticated interpolation filters, whose frequency response H(f)
closely approximates an ideal lowpass filter with cutoff fs/2D. The subject of interpola-
tion filter design was discussed in Chapter 12. Any of those designs and their efficient,
so-called polyphase, realizations can be used in place of the hold and linear interpola-
tors. For example, using the polyphase sample processing algorithm of Eq. (12.2.20), we
may write the low-frequency random number generation algorithm:

repeat forever:
if (q = 0)

w[0]= ran(&iseed)−0.5
i = (D− q)%D
y = dot(P,hi,w)= output
cdelay2(D−1,&q)
if (q = 0)

delay(P,w)

(B.18)

where hi is the ith polyphase subfilter of order P, w is the low-rate delay line holding
the random numbers um. The length of the interpolation filter isN = 2DM+1, and P =
2M−1. As in the routines ranh and ranl, q is passed by address and gets decremented
circularly with the help of cdelay2. As q cycles through zero every D calls, the low-
rate delay line is shifted and a new (zero-mean) random number is entered into w. See
Problem B.5 for a simulation.

B.3 1/f Noise Generators∗

1/f -noise is also known as flicker or pink noise, depending on the context. It is charac-
terized by a power spectrum that falls in frequency like 1/f :

S(f)= A
f

(B.19)
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To avoid the infinity at f = 0, this behavior is assumed valid for f ≥ fmin, where
fmin is a desired minimum frequency. The spectrum (B.19) is characterized by a 3-dB
per octave drop, that is, whenever f doubles, S(f) drops by a factor of 1/2. Indeed, we
have:

S(2f)= A
2f

= 1

2
S(f) ⇒ 10 log10

[
S(f)
S(2f)

]
= 10 log10(2)= 3 dB

The amount of power contained within a frequency interval [f1, f2] is∫ f2
f1
S(f)df = A ln

( f2
f1

)
This implies that the amount of power contained in any octave interval is the same.

That is, if f2 = 2f1, then A ln(f2/f1)= A ln(2f1/f1)= A ln(2), which is independent of
the octave interval [f1,2f1].

1/f noise is ubiquitous in nature. It is observed in solid-state circuits, astrophysics,
oceanography, geophysics, fractals, and music; see [322–331] and references therein. In
audio engineering, it is known as pink noise and is used to test the frequency response
of audio equipment such as loudspeakers. It represents the psychoacoustic equivalent
of white noise because our auditory system is better matched to the logarithmic octave
frequency scale than the linear scale.

In this section, we present a 1/f noise generator that uses the low-frequency gener-
ator ranh. It is based on an algorithm by Voss, mentioned in [323]. The algorithm is a
variant of the so-called “spreading of time constants” models that have been proposed
to explain the physics of 1/f noise [322,327,331].

Such models assume that the noise consists of the sum of several white noise pro-
cesses that are filtered through first-order lowpass filters having time constants that are
successively larger and larger, forming a geometric progression. In Voss’s algorithm,
the role of the lowpass filters is played by the hold interpolation filters.

In our notation, Voss’s 1/f -noise generator is defined by taking the average of several
periodically held random numbers with periods that form a geometric progression,Db =
2b, with b = 0,1,2, . . . , B− 1. That is, we define the random number sequence:

y(n)= 1

B

B−1∑
b=0

yb(n)= 1

B
[
y0(n)+y1(n)+· · · + yB−1(n)

]
(B.20)

where the term yb(n) is a periodically held random number with period Db = 2b,
produced by calling the routine ranh:

yb(n)= ranh(Db, &u[b], &q[b], &iseed) (B.21)

Each term yb(n) must have its own 1-dimensional array u[b] and circular index
q[b]. The same seed variable iseed is used by all terms, but because it is updated at
different periods, the terms yb(n) will be mutually independent.

The following routine ran1f.c implements this algorithm. Its inputs are the number
of “bits” B, the B-dimensional arrays u and q, and a seed. Its outputs are a 1/f -noise
random number and an updated seed:
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/* ran1f.c - 1/f random number generator */

double ranh(); random hold periodic generator

double ran1f(B, u, q, iseed) usage: y = ran1f(B, u, q, &iseed);

int B, *q; q, u are B-dimensional

double *u;
long *iseed; passed by address

{
double y;
int b;

for(y=0, b=0; b<B; b++)
y += ranh(1<<b, u+b, q+b, iseed); period = (1<<b) = 2b

return y / B;
}

Because the component signals yb(n) are mutually independent with mean E[yb]=
0 and variance σ2

yb = σ2
u = 1/12, it follows that the mean and variance of the 1/f -noise

sequence y(n) will be:

E[y]= 0, σ2
y =

σ2
u
B

= 1

12B
(B.22)

The initialization and usage of the routine are illustrated by the following program
segment, which generates N random numbers y(n):

double *u;
int *q;
long iseed=123456; initial seed is arbitrary

u = (double *) calloc(B, sizeof(double)); B-dimensional

q = (int *) calloc(B, sizeof(int)); B-dimensional

for (b=0; b<B; b++) {
u[b] = ran(&iseed) - 0.5; initialize u’s

q[b] = (1<<b) * ran(&iseed); random initial q’s

}

for (n=0; n<N; n++) N is arbitrary

y[n] = ran1f(B, u, q, &iseed);

As discussed in the previous section, to guarantee stationarity the initial values of q
must be selected randomly from the set {0,1, . . . ,D−1}. To see how the various terms
yb(n) combine to generate y(n), consider the case B = 4

y(n)= 1

4

[
y0(n)+y1(n)+y2(n)+y3(n)

]
Figures B.7 and B.8 show the generated signal y(n) and its four component signals

yb(n), for n = 0,1, . . . ,199. The periods of the four component signals are 1, 2, 22, 23.
For convenience, all initial random delays were set to zero, that is, q[b]= 0, b = 0,1,2,3.

The power spectrum of the model (B.20) does not have an exact 1/f shape, but is
close to it. Therefore, it can be used in practice to simulate 1/f noise. The 1/f shape is
approximated for frequencies f ≥ fmin, where:
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Fig. B.7 1/f -noise with B = 4.

Fig. B.8 Components of 1/f noise.

fmin = fs
2B

(B.23)

This expression can be used to pick the proper value of B for a particular simulation.
That is, given a desired minimum frequency we calculate B = log2(fs/fmin).

Because the yb(n) components are mutually independent, the power spectrum of
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y(n) will be equal to the sum of the power spectra of the individual parts. Using Eqs.
(B.16) and (B.17), we have:

Syy(f)= 1

B2

B−1∑
b=0

Sybyb(f)=
1

B2

B−1∑
b=0

1

2b
sin2(πf2b/fs)
sin2(πf/fs)

σ2
u (B.24)

The DC value of the spectrum at f = 0 is not infinite as suggested by Eq. (B.19); it
is finite, but large. Taking the limit f → 0, we find: Syy(0)= (2B − 1)σ2

u/B2. Figure
B.9 shows the theoretical spectrum computed via Eq. (B.24) for B = 8, together with
the exact 1/f curve, and the estimated spectra obtained by the periodogram averaging
method, for the two cases of averaging K = 2 and K = 200 zero-mean blocks of length
N = 256, generated by calls to ran1f.

Fig. B.9 Theoretical and estimated 1/f power spectra, for B = 8.

All spectra have been normalized to unity at f = fmin = fs2−B = fs/256, and are
plotted in dB, that is, 10 log10

(
S(f)/S(fmin)

)
. Basically, they attenuate by 3 dB per oc-

tave. The calculation of the averaged periodograms was done by the following program
segment, which implements the periodogram averaging method mentioned in Section
A.1:

for (k=0; k<K; k++) { average K periodograms

for (b=0; b<B; b++) { initialize kth block

u[b] = ran(&iseed) - 0.5;
q[b] = (1<<b) * ran(&iseed); randomized initial q’s

}

for (n=0; n<N; n++) generate kth block

Y[n] = cmplx(ran1f(B,u,q,&iseed), 0.0); complexify for FFT

fft(N, Y); FFT of kth block

for(i=0; i<N; i++)
S[i] += cabs(Y[i]) * cabs(Y[i]); accumulate kth periodogram

}

B.4 Problems
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B.1 Consider the random signal model of Eq. (B.15). Show that x(n) is a zero-mean white noise
sequence with variance σ2

x = σ2
u/D. Show that the output signal y(n) has zero mean and

variance is in the two cases:

σ2
y = σ2

u (hold), σ2
y =

2D2 + 1

3D2
σ2
u (linear)

B.2 For the hold interpolator case of Eq. (B.15), show that the autocorrelation function of the
output signal is:

Ryy(k)= E[y(n+ k)y(n)]=
(

1 − |k|
D

)
σ2
u, −D ≤ k ≤ D

B.3 Computer Experiment: Autocorrelation Function of Held Noise. Generate a length-100 block
of randomly held zero-mean random numbers with period D = 5. Using the routine corr,
compute the sample autocorrelation R̂yy(k) of the block for k = 0,1, . . . ,99, and plot it
together with the theoretical autocorrelation of Problem B.2.

B.4 Computer Experiment: Power Spectrum of Held Noise. For the cases D = 2, 5, and 10, plot
the theoretical power spectrum of the hold interpolation noise given by Eq. (B.16), over the
interval 0 ≤ f ≤ fs. Then, for the case D = 5, generate K = 200 blocks of held numbers
y(n) of lengthN = 256, compute the periodogram of each block using a 256-point FFT, and
average the K periodograms to get an estimate of the power spectrum. Plot that estimate
together with the theoretical power spectrum. Use absolute scales (not dB) and normalize
all spectra to unity at DC. (The steps for such a computation were illustrated at the end of
Section B.3.)

B.5 Computer Experiment: Interpolated Random Number Generators. The algorithm of Eq. (B.18)
generates low-frequency random numbers using a general interpolation filter. The input
random numbers are generated at a rate fs/L and are interpolated by an L-fold interpolator
resulting in a random sequence at rate fs. Write a general routine, say rani.c, that imple-
ments this algorithm. Its inputs should be the L×(P + 1) polyphase filter matrix h[i][n]
(designed independently), the low-rate delay line vector w, an input/output seed variable
declared as in ranh or ranl, and the circular index q that cycles modulo-L.

Using this routine, write a test program that generates Ntot = 150 random numbers of
frequency fs/10, i.e., L = 10. The delay line w must be initialized as in Eq. (12.2.19). Use
three interpolator designs—all implemented by your routine rani: a hold, a linear, and a
Kaiser interpolator with given stopband attenuation A and transition width Δf (you may
choose values such that P = 5). Plot and compare the three length-150 random number
sequences.

B.6 Using the result of Problem B.2, show that the autocorrelation of the 1/f noise model of
Eq. (B.20) is:

Ryy(k)=
[

1 − b(k)
B

− 2|k|
B
(2−b(k) − 2−B)

] σ2
u
B

(B.25)

where b(k) is the ceiling quantity b(k)=  log2(|k|+1)!. Draw a sketch ofRyy(k) for B = 4.
Show that the maximum correlation length is kmax = 2B−1 − 1.

B.7 Computer Experiment: Autocorrelation Function of 1/f Noise. Generate a block of 1/f noise
samples y(n), n = 0,1, . . . ,N − 1, where N = 2000 assuming B = 8. Using the correla-
tion routine corr.c of Appendix A.1, compute and plot the sample autocorrelation of the
sequence for lags 0 ≤ k ≤ 150. Compare it Eq. (B.25).
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B.8 Computer Experiment: Alternative 1/f Noise Generator. An alternative 1/f noise generator is
based on the “spreading of time constants” model [322,327,331] in which white noise signals
are filtered through first-order lowpass filters with time constants in geometric progression,
τb = τ0cb, b = 0,1, . . . , where c > 1. Discrete-time versions of such filters are of the form
H(z)= G/(1 − az−1), where a is related to the sampling interval and time constant by
a = e−T/τ and the gain is chosen to be G = √

1 − a2 in order for the NRR of the filter to be
unity. For small T/τ, we may use the first-order approximation a = 1−T/τ. The generation
model is based on summing the outputs of B such filters:

y(n) = 1√
B

B−1∑
b=0

yb(n)

yb(n) = abyb(n− 1)+Gbxb(n), b = 0,1, . . . , B− 1

(B.26)

where Gb =
√

1 − a2
b and xb(n) are mutually independent, zero-mean, unit-variance, white

Gaussian signals that can be generated by calls to gran. The 1/
√
B factor normalizes y(n)

to unit variance. The power spectrum of the signal y(n) will be:

S(ω)= 1

B

B−1∑
b=0

|Hb(ω)|2 = 1

B

B−1∑
b=0

1 − a2
b

1 − 2ab cosω+ a2
b

(B.27)

The filter parameters can be expressed as ab = e−T/τb � 1 − T/τb = 1 − c−bT/τ0. As a
practical matter, we would like the model to approximate 1/f noise over a given interval
ωmin ≤ ω ≤ ωmax. These limits are inversely proportional to the longest and shortest
time constants τb [331]. Thus, we may set cB−1 = ωmax/ωmin. Using the approximation
a = 1 −ωc of Example 8.3.1, we obtain the “design” equations for the filter parameters:

c =
(
ωmax

ωmin

)1/(B−1)
, ab = 1 −ωmincB−1−b = 1 −ωmaxc−b, (B.28)

for b = 0,1, . . . , B − 1. The model works well over a wide range of frequencies, especially
when ωmin is very small [327,332]. The positivity of ab requires ωmax < 1 in rads/sample.
However, the model also works if we allow negative ab’s as long as they have |ab| < 1. This
requires that ωmax < 2 or in terms of the sampling frequency fmax < fs/π. To get a feeling
for the range of applicability of this model consider the values:

ωmin = 0.01π, 0.001π

ωmax = 0.1π, 0.2π, 0.3π, 0.4π,0.5π, 0.6π

For each pair {ωmin,ωmax}, compute the model spectrum (B.27) over the interval ωmin ≤
ω ≤ωmax and plot it together with the desired 1/ω spectrum. Use dB scales and normalize
each spectrum to 0 dB at ωmin. In each case, you need to experiment to find the best value
for B, but typically, B = 2–6.

Next, for each frequency pair, generateK sequences y(n) each of length L by the Eqs. (B.26).
For each sequence compute its L-point FFT periodogram and average the K periodograms;
(such a computation was outlined at the end of Section B.3). Use K = 200 and L = 256. Plot
the averaged periodogram together with the model spectrum. Use dB scales and normalize
all spectra to the same DFT frequency (for this problem, it is better to normalize them at the
second DFT frequency; that is, ω = 2π/L.)
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B.9 Computer Experiment: Yet Another 1/f Noise Generator. A simple and effective 1/f noise
generator that covers almost the entire Nyquist interval is obtained by sending a zero-mean
white noise sequence x(n) of variance σ2

x through the following third-order filter [333]:

H(z)= G(1 − 0.98444z−1)(1 − 0.83392z−1)(1 − 0.07568z−1)
(1 − 0.99574z−1)(1 − 0.94791z−1)(1 − 0.53568z−1)

(B.29)

The resulting output sequence y(n) has power spectrum Syy(ω)= |H(ω)|2σ2
x , according

to Eq. (A.15). The filter is lowpass with finite gain at DC; its 3-dB frequency is approximately
ωc = 0.0015π (e.g., 30 Hz at the audio rate fs = 40 kHz). Beyond ωc the filter’s magnitude
response squared behaves approximately like 1/ω over the rest of the Nyquist interval, that
is,

|H(ω)|2 � const.

ω
, for ωc �ω ≤ π

Thus, the output sequence y(n) will imitate 1/f noise. To generate y(n), one needs to filter
a white noise input x(n) throughH(z). To avoid the transients introduced by the filter, the
first neff outputs must be discarded, where neff = log ε/ loga is the ε-level time constant of
the filter (for example, with ε = 0.05, a = maxi |pi| = 0.99574, we have neff = 702).

This model is similar to the spreading of time constants model discussed in Problem B.8,
except it is the cascade instead of the sum of factors with time constants increasing in
geometric progression. Indeed, a more general such model would be of the form:

H(z)= G(1 − bz−1)(1 − bcz−1)(1 − bc2z−1)
(1 − az−1)(1 − acz−1)(1 − ac2z−1)

(B.30)

The time constants neff of the three poles are in geometric proportions 1 : c : c2.

a. Determine the parameters {a,b, c} of the model (B.30) by matching them to those of
the model (B.29), that is, set a = 0.99574, ac = 0.94791, and b = 0.98444. Then solve
for c and determine the remaining pole and zeros: ac2

, bc, bc2
.

b. Evaluate |H(ω)|2 of the filters (B.29) and (B.30) at 500 equally spaced frequencies over
the interval 0.002π ≤ω ≤ π and plot them on the same graph together with the curve
1/ω evaluated over the same frequencies. For plotting convenience, use dB scales for
all responses and normalize them to 0 dB at ω = 0.01π. Note the characteristic 3
dB/octave drop.

c. Define the overall gain factor G such that the NRR of the filter (B.29) is unity and
therefore the generated 1/f noise sequence y(n) has variance σ2

y = σ2
x . Verify that

G = 0.57534. Then, write the sample processing algorithm for generating the output
samples y(n) using the cascade realization of the three sections.

C Complex Arithmetic in C

The following set of C functions implements complex arithmetic in C. These routines
are used by the DFT/FFT routines. They are based on the routines given in Ref. [28].

We use the definition of a complex number defined in Microsoft C, Turbo C, and
Borland C as a structure containing the real and imaginary part of the number. This
definition as well as the function cabs to compute the absolute value of a complex
number are declared in math.h in the above C compilers.
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The C functions are named after their Fortran counterparts and are included in the
following file complex.c. This file must be compiled and linked with any other routine
that invokes these functions, such as fft.

/* complex.c - complex arithmetic functions */

#include <math.h> for MSC and TC/BC, it declares:

struct complex and cabs(z)

/* struct complex {double x, y;}; */ uncomment if not MSC or TC/BC

uncomment if not MS or TC/BC

/* double cabs(z)
* complex z;
* {
* return sqrt(z.x * z.x + z.y * z.y);
* }
*/

typedef struct complex complex;

complex cmplx(x, y) z = cmplx(x,y) = x+jy

double x, y;
{

complex z;

z.x = x; z.y = y;

return z;
}

complex conjg(z) complex conjugate of z=x+jy

complex z;
{

return cmplx(z.x, -z.y); returns z* = x-jy

}

complex cadd(a, b) complex addition

complex a, b;
{

return cmplx(a.x + b.x, a.y + b.y);
}

complex csub(a, b) complex subtraction

complex a, b;
{

return cmplx(a.x - b.x, a.y - b.y);
}

complex cmul(a, b) complex multiplication

complex a, b;
{

return cmplx(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);
}

complex rmul(a, z) multiplication by real

double a;
complex z;
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{
return cmplx(a * z.x, a * z.y);

}

complex cdiv(a, b) complex division

complex a, b;
{

double D = b.x * b.x + b.y * b.y;

return cmplx((a.x * b.x + a.y * b.y) / D, (a.y * b.x - a.x * b.y) / D);
}

complex rdiv(z, a) division by real

complex z;
double a;
{

return cmplx(z.x / a, z.y / a);
}

double real(z) real part Re(z)

complex z;
{

return z.x;
}

double aimag(z) imaginary part Im(z)

complex z;
{

return z.y;
}

complex cexp(z) complex exponential

complex z;
{

double R = exp(z.x);

return cmplx(R * cos(z.y), R * sin(z.y));
}

All the necessary declarations are contained in the following header file cmplx.h
that must be included in every routine that uses complex arithmetic. This header file
must not be confused with the file complex.h that is part of the above compilers and is
used in the C++ implementation of complex numbers.

/* cmplx.h - complex arithmetic declarations */

#include <math.h> in MSC and TC/BC, it declarares:

struct complex and cabs(z)

/* struct complex{double x, y;}; */ uncomment if neccessary

/* double cabs(struct complex); */ uncomment if neccesary

typedef struct complex complex;

complex cmplx(double, double); define complex number

complex conjg(complex); complex conjugate
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complex cadd(complex, complex); complex addition

complex csub(complex, complex); complex subtraction

complex cmul(complex, complex); complex multiplication

complex cdiv(complex, complex); complex division

complex rmul(double, complex); multiplication by real

complex rdiv(complex, double); division by real

double real(complex); real part

double aimag(complex); imaginary part

complex cexp(complex); complex exponential

D MATLAB Functions

The emphasis of the included functions is on FIR and IIR filter design. The inputs to the
functions follow closely the discussion and notation of the text. The FIR and IIR filtering
functions fir.m and cas.m are not as fast as MATLAB’s filtering function filter, but
they are included here to illustrate sample-by-sample processing. The routines, listed
by function, are as follows:

Routine Function

fir, delay, cas, sos, cas2can FIR and IIR filtering

cfir2, cdelay2, wrap2 circular FIR filtering

dtft DTFT computation

sigav, sg, sgfilt, ecg Signal averaging, SG smoothing

kwind, I0, kparm, kparm2 Kaiser window

klh, dlh, kbp, dbp, kdiff, ddiff, khilb, dhilb FIR filter design

parmeq, combeq Parametric equalizer design

lhbutt, bpsbutt, lhcheb1, lhcheb2, bpcheb2, bscheb2 IIR filter design

1. FIR Sample Processing Algorithm.

% fir.m - sample processing algorithm for FIR filter.
%

% [y, w] = fir(M, h, w, x)

%

% h = order-M filter (row vector)

% w = filter state (row vector)

% x = scalar input

% y = scalar output

% based on fir2.c

function [y, w] = fir(M, h, w, x)

w(1) = x; % read input

y = h * w’; % compute output

w = delay(M, w); % update delay

where the delay is implemented by the function:
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% delay.m - M-fold delay
%

% w = delay(M, w)

%

% w is the (M + 1)-dimensional linear delay-line buffer

% based on delay.c

function w = delay(M, w)

w(M+1:-1:2) = w((M+1:-1:2)-1);

The state vector w must be initialized to zero before using fir; for example, w =
zeros(1, M+1). The function firfilt of Problem 4.10 may be used to filter a
long input vector. Alternatively, one may use MATLAB’s built-in filtering function
filter. The filter vector h may be obtained from the output of the Kaiser window
FIR filter design functions, such as klh.m, given below.

2. FIR Filtering Using Circular Delays

% cfir2.m - FIR filter using circular delay-line buffer
%

% [y, w, q] = cfir2(M, h, w, q, x)

%

% h = order-M filter (row vector)

% w = circular filter state (row vector)

% q = circular index into w
% x = scalar input

% y = scalar output

% based on cfir2.c

function [y, w, q] = cfir2(M, h, w, q, x)

w(q+1) = x; % read input

y = h * w(rem(q+(0:M), M+1)+1)’; % compute output

q = cdelay2(M, q); % update delay

where the circular delay-line buffer index q is updated by the function:

% cdelay2.m - circular delay
%

% q = cdelay2(D, q)

%

% q = 0, 1, . . . , D = circular index pointing to w(q+ 1)
% based on cdelay2.c

function q = cdelay2(D, q)

q = q - 1; % decrement index and wrap mod-(D+ 1)
q = wrap2(D, q); % when q = −1, it wraps around to q = D

where the modulo wrapping of the index is done by:

% wrap2.m - circular wrapping of delay line buffer
%
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% q = wrap2(D, q)

%

% q = 0, 1, . . . , D = circular index pointing to w(q+ 1)
% based on wrap2.c

function q = wrap2(D, q)

if q > D,
q = q - (D+1); % if q = D+ 1, it wraps to q = 0

end

if q < 0,
q = q + (D+1); % if q = −1, it wraps to q = D

end

As discussed in Chapter 4, w is (M+1)-dimensional and must be initialized to
zero. The index q must also be initialized to q = 0. A MATLAB version of the cir-
cular tap routine tap2 can easily be written to return the i-th content of a circular
tapped delay line, e.g., with a MATLAB statement of the form: si = w(rem(q+i,
D+1)+1).

3. IIR Cascade Sample Processing Algorithm.

% cas.m - filtering by cascade of 2nd order sections
%

% [y, W] = cas(K, B, A, W, x)

%

% B = K×3 numerator matrix

% A = K×3 denominator matrix

% W = K×3 state matrix

% x = scalar input

% y = scalar output

% based on cas.c

function [y, W] = cas(K, B, A, W, x)

y = x;

for i = 1:K,
[y, W(i,:)] = sos(B(i,:), A(i,:), W(i,:), y);

end

where the basic second-order section is implemented by the function:

% sos.m - second order section
%

% [y, w] = sos(b, a, w, x)

%

% b = [b0, b1, b2] = 3-dim numerator

% a = [1, a1, a2] = 3-dim denominator

% w = 3-dim filter state (row vector)

% x = scalar input

% y = scalar output

% based on sos.c



742 13. APPENDICES

function [y, w] = sos(b, a, w, x)

w(1) = x - a(2) * w(2) - a(3) * w(3);
y = b(1) * w(1) + b(2) * w(2) + b(3) * w(3);
w(3) = w(2);
w(2) = w(1);

The state matrix must be initialized to zero; for example, W=zeros(K,3). The
function casfilt of Problem 7.15 may be used to filter a long input vector. Al-
ternatively, one may use cas2can to get the direct form coefficient vectors and
apply MATLAB’s built-in filtering function filter. The cascade matrices A and B
are obtained from the outputs of the IIR filter design functions, such as lhbutt.m,
given below. (For the bandpass/bandstop designs, one must rewrite cas.m and
sos.m so that they are cascades of fourth-order sections.)

4. Cascade to Canonical.

% cas2can.m - cascade to canonical
%

% a = cas2can(A)

%

% convolves the rows of A
% A is K×3 coefficient matrix (or, K×5 for bandpass filters)

% based on cas2can.c

function a = cas2can(A)

[K, L] = size(A);

a = [1];
for i=1:K,

a = conv(a, A(i,:));
end

The input matrices A or B of cas2can are obtained from the outputs of the IIR
design functions, such as lhbutt.m.

5. DTFT Computation.

% dtft.m - DTFT of a signal at a frequency vector w
%

% X = dtft(x, w);

%

% x = row vector of time samples

% w = row vector of frequencies in rads/sample

% X = row vector of DTFT values

%

% based on and replaces both dtft.c and dtftr.c

function X = dtft(x, w)

[L1, L] = size(x);

z = exp(-j*w);
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X = 0;
for n = L-1:-1:0,

X = x(n+1) + z .* X;
end

It uses Hörner’s rule to evaluate the DTFT of a finite-length signal at any desired
frequency or frequencies, not just DFT frequencies. It is convenient for evalu-
ating the frequency response of FIR filters, for example, by H=dtft(h,w), and
of IIR filters, by H = dtft(b,w)./dtft(a,w), where b, a are the numerator and
denominator coefficient vectors.

6. Signal Averaging.

% sigav.m - signal averaging
%

% y = sigav(D, N, x)

%

% D = length of each period

% N = number of periods

% x = row vector of length at least ND (doesn’t check it)

% y = length-D row vector containing the averaged period

% It averages the first N blocks in x

function y = sigav(D, N, x)

y = 0;

for i=0:N-1,
y = y + x((i*D+1) : (i+1)*D); % accumulate ith period

end

y = y / N;

7. Savitzky-Golay Smoother Design.

% sg.m - Savitzky-Golay length-N order-d smoother design.
%

% [B, S] = sg(d, N);

%

% N = 2M + 1 = filter length, d = polynomial order

% S = [s0, s1, . . . , sd], F = STS
% G = SF−1 = derivative filters

% B = SF−1ST = smoothing filters

% indexing: B(M + 1 +m, M + 1 + k) = Bmk , m,k = −M : M
% m-th SG filter = B(:, M + 1 +m) = bm , m = −M : M
% NRRs = diagonal entries of B.

function [B, S] = sg(d, N)

M = (N-1)/2;

for m=-M:M,
for i=0:d,

S(m+M+1, i+1) = m^i;
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end
end

F = S’ * S;
B = S * F^(-1) * S’;
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8. Filtering with Savitzky-Golay Smoother.

% sgfilt.m - filtering with length-N order-d SG smoother.
%

% y = sgfilt(d, N, x);

%

% x and y are L×1 column vectors; and N = 2M + 1. Must have L > N + 1.

% B(:, i) = bi−M−1 = input-on transient filters, i = 1 : M + 1

% B(:, M + 1) = b0 = steady-state filter

% B(:, M + 1 + i) = bi = input-off transient filters, i = 0 : M

function y = sgfilt(d, N, x)

M = (N-1)/2;
[L, L1] = size(x);

B = sg(d, N); % design filter

for i = 1:M+1, % input-on transients

y(i,1) = B(:,i)’ * x(1:N);
end

for n = M+2:L-M-1, % steady-state

y(n,1) = B(:,M+1)’ * x(n-M:n+M);
end

for i = 0:M, % input-off transients

y(L-M+i,1) = B(:,M+1+i)’ * x(L-N+1:L);
end

9. Simulated ECG.

% ecg.m - ECG generator.
%

% x = ecg(L) = column vector

%

% generates piecewise linear ECG signal of length L
% must post-smooth it with an N-point smoother:

% y = sgfilt(d, N, x), usually with d = 0, and N = 3,5,9, etc.

function x = ecg(L)

a0 = [0,1,40,1,0,-34,118,-99,0,2,21,2,0,0,0]; % template

d0 = [0,27,59,91,131,141,163,185,195,275,307,339,357,390,440];
a = a0 / max(a0);
d = round(d0 * L / d0(15)); % scale them to fit in length L
d(15)=L;

for i=1:14,
m = d(i) : d(i+1) - 1;
slope = (a(i+1) - a(i)) / (d(i+1) - d(i));
x(m+1) = a(i) + slope * (m - d(i));

end

The output of ecg must be post-smoothed with a Savitzky-Golay smoother, for
example, of order 0, using the function sgfilt.m and then renormalized to unity
maximum.
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10. Kaiser Window.

% kwind.m - Kaiser window.
%

% w = kwind(alpha, N) = row vector

%

% alpha = Kaiser window shape parameter

% N = 2M + 1 = window length (must be odd)

function w = kwind(alpha, N)

M = (N-1) / 2;
den = I0(alpha);

for n = 0:N-1,
w(n+1) = I0(alpha * sqrt(n * (N - 1 - n)) / M) / den;

end

The modified Bessel function is given by:

% I0.m - modified Bessel function of 1st kind and 0th order.
%

% S = I0(x)

%

% defined only for scalar x ≥ 0

% based on I0.c

function S = I0(x)

eps = 10^(-9);
n = 1; S = 1; D = 1;

while D > (eps * S),
T = x / (2*n);
n = n+1;
D = D * T^2;
S = S + D;

end

For FIR filter design, the Kaiser window shape parameter α and window length N
can be calculated from the filter specifications by:

% kparm.m - Kaiser window parameters for filter design.
%

% [alpha, N] = kparm(DF, A)

%

% alpha = window shape parameter α
% N = window length (odd)

% DF = Δ f/fs = transition width in units of fs
% A = ripple attenuation in dB; ripple δ = 10−A/20

function [alpha, N] = kparm(DF, A)

if A > 21, % compute D factor

D = (A - 7.95) / 14.36;
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else
D = 0.922;

end

if A <= 21, % compute shape parameter α
alpha = 0;

elseif A < 50
alpha = 0.5842 * (A - 21)^0.4 + 0.07886 * (A - 21);

else
alpha = 0.1102 * (A - 8.7);

end

N = 1 + ceil(D / DF); % compute window length

N = N + 1 - rem(N, 2); % next odd integer

For spectral analysis, the window parameters can be calculated from a given main-
lobe width Δfw (recall our definition is half the mainlobe base width), and relative
sidelobe level R in dB:

% kparm2.m - Kaiser window parameters for spectral analysis.
%

% [alpha, L] = kparm2(DF, R)

%

% alpha = window shape parameter

% L = window length (odd)

% DF = Δ f/fs = mainlobe width in units of fs
% R = relative sidelobe level in dB

% R must be less than 120 dB.

function [alpha, L] = kparm2(DF, R)

c = 6 * (R + 12) / 155;

if R < 13.26
alpha = 0;

elseif R < 60
alpha = 0.76609 * (R - 13.26)^0.4 + 0.09834 * (R - 13.26);

else
alpha = 0.12438 * (R + 6.3);

end

L = 1 + ceil(c / DF);
L = L + 1 - rem(L, 2); % next odd integer

11. Lowpass/Highpass FIR Filter Design Using Kaiser Window.

% klh.m - lowpass/highpass FIR filter design using Kaiser window.
%

% h = klh(s, fs, fpass, fstop, Apass, Astop)

%

% s = 1, −1 = lowpass, highpass

% dlh(s, wc, N) = ideal lowpass/highpass FIR filter

function h = klh(s, fs, fpass, fstop, Apass, Astop)

fc = (fpass + fstop) / 2; wc = 2 * pi * fc / fs;
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Df = s * (fstop - fpass); DF = Df / fs;

dpass = (10^(Apass/20) - 1) / (10^(Apass/20) + 1);
dstop = 10^(-Astop/20);
d = min(dpass, dstop);
A = -20 * log10(d);

[alpha, N] = kparm(DF, A);
h = dlh(s, wc, N) .* kwind(alpha, N);

where the ideal lowpass/highpass filter impulse response is calculated by:

% dlh.m - ideal lowpass/highpass FIR filter
%

% h = dlh(s, wc, N) = row vector

%

% s = 1, −1 = lowpass, highpass

% N = 2M + 1 = filter length (odd)

% wc = cutoff frequency in [rads/sample]

function h = dlh(s, wc, N)

M = (N-1)/2;

for k = -M:M,
if k == 0,

h(k+M+1) = (1-s) / 2 + s * wc / pi;
else

h(k+M+1) = s * sin(wc * k) / (pi * k);
end

end

The output filter vector h of this and the following FIR filter design functions can
be passed to the function firfilt of Problem 4.10 for filtering a long input vector,
or to MATLAB’s filter function.

12. Bandpass FIR Filter Design Using Kaiser Window.

% kbp.m - bandpass FIR filter design using Kaiser window.
%

% h = kbp(fs, fpa, fpb, fsa, fsb, Apass, Astop, s)

%

% s = 1, −1 = standard, alternative design

% dbp(wa, wb, N) = ideal bandpass FIR filter

function h = kbp(fs, fpa, fpb, fsa, fsb, Apass, Astop, s)

Df = min(fpa-fsa, fsb-fpb); DF = Df / fs;
fa = ((1+s) * fpa + (1-s) * fsa - s * Df) / 2; wa = 2 * pi * fa / fs;
fb = ((1+s) * fpb + (1-s) * fsb + s * Df) / 2; wb = 2 * pi * fb / fs;

dpass = (10^(Apass/20) - 1) / (10^(Apass/20) + 1);
dstop = 10^(-Astop/20);
d = min(dpass, dstop);
A = -20 * log10(d);
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[alpha, N] = kparm(DF, A);
h = dbp(wa, wb, N) .* kwind(alpha, N);

where the ideal bandpass filter impulse response is calculated by:

% dbp.m - ideal bandpass FIR filter
%

% h = dbp(wa, wb, N) = row vector

%

% N = 2M + 1 = filter length (odd)

% wa, wb = cutoff frequencies in [rads/sample]

function h = dbp(wa, wb, N)

M = (N-1)/2;

for k = -M:M,
if k == 0,

h(k+M+1) = (wb - wa) / pi;
else

h(k+M+1) = sin(wb * k) / (pi * k) - sin(wa * k) / (pi * k);
end

end

13. Lowpass FIR Differentiator Filter Design Using Kaiser Window.

% kdiff.m - lowpass FIR differentiator design using Kaiser window.
%

% h = kdiff(fs, fc, Df, A)

%

% fc = cutoff frequency in [Hz]

% Df = transition width in [Hz]

% A = stopband ripple attenuation in [dB]

% ddiff(wc, N) = ideal FIR differentiator

function h = kdiff(fs, fc, Df, A)

wc = 2 * pi * fc / fs;
DF = Df / fs;

[alpha, N] = kparm(DF, A);
h = ddiff(wc, N) .* kwind(alpha, N);

where the ideal differentiator impulse response is calculated by:

% ddiff.m - ideal lowpass differentiator FIR filter
%

% h = ddiff(wc, N) = row vector

%

% N = 2M + 1 = filter length (odd)

% wc in rads/sample

function h = ddiff(wc, N)
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M = (N-1)/2;

for k = -M:M,
if k == 0,

h(k+M+1) = 0;
else

h(k+M+1) = wc * cos(wc * k) / (pi * k) - sin(wc * k) / (pi * k^2);
end

end

See Problem 10.3 for details. A full-band differentiator is obtained by setting
fc = fs/2 or, ωc = π.

14. Lowpass FIR Hilbert Transformer Filter Design Using Kaiser Window.

% khilb.m - lowpass FIR Hilbert trasformer design using Kaiser window.
%

% h = khilb(fs, fc, Df, A)

%

% fc = cutoff frequency in [Hz]

% Df = transition width in [Hz]

% A = stopband ripple attenuation in [dB]

% dhilb(wc, N) = ideal FIR Hilbert transformer

function h = khilb(fs, fc, Df, A)

wc = 2 * pi * fc / fs;
DF = Df / fs;

[alpha, N] = kparm(DF, A);
h = dhilb(wc, N) .* kwind(alpha, N);

where the ideal Hilbert transformer impulse response is calculated by:

% dhilb.m - ideal lowpass Hilbert transformer FIR filter
%

% h = dhilb(wc, N) = row vector

%

% N = 2M + 1 = filter length (odd)

% wc = cutoff frequency in [rads/sample]

function h = dhilb(wc, N)

M = (N-1)/2;

for k = -M:M,
if k == 0,

h(k+M+1) = 0;
else

h(k+M+1) = (1 - cos(wc * k)) / (pi * k);
end

end
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15. Parametric Equalizer Filter Design.

% parmeq.m - second-order parametric EQ filter design
%

% [b, a, beta] = parmeq(G0, G, GB, w0, Dw)

%

% b = [b0, b1, b2] = numerator coefficients

% a = [1, a1, a2] = denominator coefficients

% G0, G, GB = reference, boost/cut, and bandwidth gains

% w0, Dw = center frequency and bandwidth in [rads/sample]

% beta = design parameter β
%

% for plain PEAK use: G0 = 0, G = 1, GB = 1/
√

2

% for plain NOTCH use: G0 = 1, G = 0, GB = 1/
√

2

function [b, a, beta] = parmeq(G0, G, GB, w0, Dw)

beta = tan(Dw/2) * sqrt(abs(GB^2 - G0^2)) / sqrt(abs(G^2 - GB^2));
b = [(G0 + G*beta), -2*G0*cos(w0), (G0 - G*beta)] / (1+beta);
a = [1, -2*cos(w0)/(1+beta), (1-beta)/(1+beta)];

16. Periodic Comb/Notch Equalizer Filter Design.

% combeq.m - periodic comb/notch EQ filter design
%

% [a, b, c, beta] = combeq(G0, G, GB, D, Dw, s)

%

% s = 1, −1 for peaks at 2kπ/D, or, (2k+ 1)π/D
% G0, G, GB = reference, boost/cut, and bandwidth gains

% D = period, Dw = width in [rads/sample]

% note Dw < π/D, beta = design parameter β
%

% for plain COMB use: G0 = 0, G = 1, GB = 1/
√

2

% for plain NOTCH use: G0 = 1, G = 0, GB = 1/
√

2

%

% H(z) = b − c z−D
1 − az−D (caution: note minus signs)

function [a, b, c, beta] = combeq(G0, G, GB, D, Dw, s)

beta = tan(D * Dw / 4) * sqrt(abs((GB^2 - G0^2) / (G^2 - GB^2)));
a = s * (1 - beta) / (1 + beta);
b = (G0 + G * beta) / (1 + beta);
c = s * (G0 - G * beta) / (1 + beta);

17. Lowpass/Highpass Butterworth Filter Design.

% lhbutt.m - lowpass/highpass Butterworth digital filter design
%

% [A, B, P] = lhbutt(s, fs, fpass, fstop, Apass, Astop)

%

% s = 1, −1 = lowpass, highpass

% design parameters:

% P = [Wpass, Wstop, epass, estop, Nex, N, Astop, W0, f0];

% A, B are K×3 matrices of cascade second-order sections
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function [A, B, P] = lhbutt(s, fs, fpass, fstop, Apass, Astop)

Wpass = tan(pi * fpass / fs); Wpass = Wpass^s; % cot() for HP

Wstop = tan(pi * fstop / fs); Wstop = Wstop^s;

epass = sqrt(10^(Apass/10) - 1);
estop = sqrt(10^(Astop/10) - 1);

Nex = log(estop/epass) / log(Wstop/Wpass);
N = ceil(Nex); r = rem(N,2); K = (N - r) / 2; % K = no. sections

W0 = Wpass * (epass^(-1/N));
Astop = 10 * log10(1 + (Wstop/W0)^(2*N)); % actual Astop

f0 = (fs/pi) * atan(W0^s); % 3-dB freq. in Hz

P = [Wpass, Wstop, epass, estop, Nex, N, Astop, W0, f0];

if r==1, % N = odd

G = W0 / (1 + W0); % 1st order section

B(1,:) = G * [1, s, 0];
A(1,:) = [1, s*(2*G-1), 0];

else % N = even

B(1,:) = [1, 0, 0];
A(1,:) = [1, 0, 0];

end

for i=1:K,
th = pi * (N - 1 + 2 * i) / (2 * N);
D = 1 - 2 * W0 * cos(th) + W0^2;
G = W0^2 / D;
a1 = 2 * (W0^2 - 1) / D;
a2 = (1 + 2 * W0 * cos(th) + W0^2) / D;
B(i+1,:) = G * [1, 2*s, 1];
A(i+1,:) = [1, s*a1, a2];

end

The output matrices A and B of this and the following IIR filter design functions
can be passed to the filtering function cas.m, or casfilt of Problem 7.15 to filter
a long input vector. (For the bandpass/bandstop cases, you need to write versions
of cas.m for cascading fourth-order sections.)

18. Bandpass/Bandstop Butterworth Filter Design.

% bpsbutt.m - bandpass/bandstop Butterworth digital filter design
%

% [A, B, P] = bpsbutt(s, fs, fpa, fpb, fsa, fsb, Apass, Astop)

%

% s = 1, −1 = bandpass, bandstop

% design parameters:

% P = [Wpass,Wstop,Wsa,Wsb,c,fc,epass,estop,Nex,N,Astop,W0,f0a,f0b];

% A,B are K×5 matrices of cascade of fourth-order sections

function [A, B, P] = bpsbutt(s, fs, fpa, fpb, fsa, fsb, Apass, Astop)

c = sin(2*pi*(fpa + fpb)/fs) / (sin(2*pi*fpa/fs) + sin(2*pi*fpb/fs));
fc = 0.5 * (fs/pi) * acos(c);
Wpass = (abs((c - cos(2*pi*fpb/fs)) / sin(2*pi*fpb/fs)))^s;
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Wsa = (c - cos(2*pi*fsa/fs)) / sin(2*pi*fsa/fs); Wsa = Wsa^s;
Wsb = (c - cos(2*pi*fsb/fs)) / sin(2*pi*fsb/fs); Wsb = Wsb^s;
Wstop = min(abs(Wsa), abs(Wsb));

epass = sqrt(10^(Apass/10) - 1);
estop = sqrt(10^(Astop/10) - 1);

Nex = log(estop/epass) / log(Wstop/Wpass);
N = ceil(Nex); r = rem(N,2); K = (N - r) / 2;

W0 = Wpass * (epass^(-1/N)); W0s = W0^s;
Astop = 10 * log10(1 + (Wstop/W0)^(2*N));
f0a = (fs/pi) * atan((sqrt(W0s^2 - c^2 + 1) - W0s)/(c+1));
f0b = (fs/pi) * atan((sqrt(W0s^2 - c^2 + 1) + W0s)/(c+1));
P = [Wpass,Wstop,Wsa,Wsb,c,fc,epass,estop,Nex,N,Astop,W0,f0a,f0b];

if r==1,
G = W0 / (1 + W0);
a1 = -2 * c / (1 + W0s);
a2 = (1 - W0s) / (1 + W0s);
A(1,:) = [1, a1, a2, 0, 0];
B(1,:) = G * [1, (s-1)*c, -s, 0, 0];

else
A(1,:) = [1, 0, 0, 0, 0];
B(1,:) = [1, 0, 0, 0, 0];

end

for i=1:K,
th = pi * (N - 1 + 2 * i) / (2 * N);
D = 1 - 2 * W0s * cos(th) + W0s^2;
G = W0^2 / (1 - 2 * W0 * cos(th) + W0^2);
a1 = 4 * c * (W0s * cos(th) - 1) / D;
a2 = 2 * (2*c^2 + 1 - W0s^2) / D;
a3 = - 4 * c * (W0s * cos(th) + 1) / D;
a4 = (1 + 2 * W0s * cos(th) + W0s^2) / D;
A(i+1,:) = [1, a1, a2, a3, a4];
B(i+1,:) = G * conv([1, (s-1)*c, -s], [1, (s-1)*c, -s]);

end

19. Lowpass/Highpass Chebyshev Type 1 Filter Design.

% lhcheb1.m - lowpass/highpass Chebyshev type 1 filter design
%

% [A, B, P] = lhcheb1(s, fs, fpass, fstop, Apass, Astop)

%

% s = 1, −1 = lowpass, highpass

% design parameters:

% P = [Wpass, Wstop, epass, estop, Nex, N, f3, a];

% A, B are K×3 matrices of cascaded second-order sections

function [A, B, P] = lhcheb1(s, fs, fpass, fstop, Apass, Astop)

Wpass = tan(pi * fpass / fs); Wpass = Wpass^s;
Wstop = tan(pi * fstop / fs); Wstop = Wstop^s;

epass = sqrt(10^(Apass/10) - 1);
estop = sqrt(10^(Astop/10) - 1);
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Nex = acosh(estop/epass) / acosh(Wstop/Wpass);
N = ceil(Nex); r = rem(N,2); K = (N - r) / 2;

a = asinh(1/epass) / N;
W3 = Wpass * cosh(acosh(1/epass)/N);
f3 = (fs/pi) * atan(W3^s); % 3dB frequency

P = [Wpass, Wstop, epass, estop, Nex, N, f3, a];
W0 = sinh(a) * Wpass;

if r==1,
G = W0 / (1 + W0);
A(1,:) = [1, s*(2*G-1), 0];
B(1,:) = G * [1, s, 0];

else
G = 1 / sqrt(1 + epass^2);
A(1,:) = [1, 0, 0];
B(1,:) = G * [1, 0, 0];

end

for i=1:K,
th = pi * (N - 1 + 2 * i) / (2 * N);
Wi = Wpass * sin(th);
D = 1 - 2 * W0 * cos(th) + W0^2 + Wi^2;
G = (W0^2 + Wi^2) / D;
a1 = 2 * (W0^2 + Wi^2 - 1) / D;
a2 = (1 + 2 * W0 * cos(th) + W0^2 + Wi^2) / D;
A(i+1,:) = [1, s*a1, a2];
B(i+1,:) = G * [1, s*2, 1];

end

20. Lowpass/Highpass Chebyshev Type 2 Filter Design.

% lhcheb2.m - lowpass/highpass Chebyshev type 2 filter design
%

% [A, B, P] = lhcheb2(s, fs, fpass, fstop, Apass, Astop)

%

% s = 1, −1 = lowpass, highpass

% design parameters:

% P = [Wpass, Wstop, epass, estop, Nex, N, f3dB, a];

% A, B are K×3 matrices of cascaded second-order sections

function [A, B, P] = lhcheb2(s, fs, fpass, fstop, Apass, Astop)

Wpass = tan(pi * fpass / fs); Wpass = Wpass^s;
Wstop = tan(pi * fstop / fs); Wstop = Wstop^s;

epass = sqrt(10^(Apass/10) - 1);
estop = sqrt(10^(Astop/10) - 1);

Nex = acosh(estop/epass) / acosh(Wstop/Wpass);
N = ceil(Nex); r = rem(N,2); K = (N - r) / 2;

a = asinh(estop) / N;
W3 = Wstop / cosh(acosh(estop)/N);
f3 = (fs/pi) * atan(W3^s);
P = [Wpass, Wstop, epass, estop, Nex, N, f3, a];
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W0 = sinh(a) / Wstop; % reciprocal of text

if r==1,
G = 1 / (1 + W0);
A(1,:) = [1, s*(2*G-1), 0];
B(1,:) = G * [1, s, 0];

else
A(1,:) = [1, 0, 0];
B(1,:) = [1, 0, 0];

end

for i=1:K,
th = pi * (N - 1 + 2 * i) / (2 * N);
Wi = sin(th) / Wstop; % reciprocal of text

D = 1 - 2 * W0 * cos(th) + W0^2 + Wi^2;
G = (1 + Wi^2) / D;
b1 = 2 * (1 - Wi^2) / (1 + Wi^2);
a1 = 2 * (1 - W0^2 - Wi^2) / D;
a2 = (1 + 2 * W0 * cos(th) + W0^2 + Wi^2) / D;
A(i+1,:) = [1, s*a1, a2];
B(i+1,:) = G * [1, s*b1, 1];

end

21. Bandpass Chebyshev Type 2 Filter Design.

% bpcheb2.m - bandpass Chebyshev type 2 digital filter design
%

% [A, B, P] = bpcheb2(fs, fpa, fpb, fsa, fsb, Apass, Astop)

%

% design parameters:

% P = [Wpass, Wstop, Wsa, Wsb, c, epass, estop, Nex, N, f3a, f3b, a];

% A, B are K×5 matrices of cascaded fourth-order sections

function [A, B, P] = bpcheb2(fs, fpa, fpb, fsa, fsb, Apass, Astop)

c = sin(2*pi*(fpa + fpb)/fs)/(sin(2*pi*fpa/fs) + sin(2*pi*fpb/fs));
Wpass = abs((c - cos(2*pi*fpb/fs)) / sin(2*pi*fpb/fs));
Wsa = (c - cos(2*pi*fsa/fs)) / sin(2*pi*fsa/fs);
Wsb = (c - cos(2*pi*fsb/fs)) / sin(2*pi*fsb/fs);
Wstop = min(abs(Wsa), abs(Wsb));

epass = sqrt(10^(Apass/10) - 1);
estop = sqrt(10^(Astop/10) - 1);

Nex = acosh(estop/epass) / acosh(Wstop/Wpass);
N = ceil(Nex); r = rem(N,2); K = (N - r) / 2;

a = asinh(estop) / N;
W3 = Wstop / cosh(acosh(estop)/N);
f3a = (fs/pi) * atan((sqrt(W3^2 - c^2 + 1) - W3)/(c+1));
f3b = (fs/pi) * atan((sqrt(W3^2 - c^2 + 1) + W3)/(c+1));
P = [Wpass,Wstop,Wsa,Wsb,c,epass,estop,Nex,N,f3a,f3b,a];
W0 = sinh(a) / Wstop; % reciprocal of text

if r==1,
G = 1 / (1 + W0);
a1 = -2 * c * W0 / (1 + W0);
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a2 = -(1 - W0) / (1 + W0);
A(1,:) = [1, a1, a2, 0, 0];
B(1,:) = G * [1, 0, -1, 0, 0];

else
A(1,:) = [1, 0, 0, 0, 0];
B(1,:) = [1, 0, 0, 0, 0];

end

for i=1:K,
th = pi * (N - 1 + 2 * i) / (2 * N);
Wi = sin(th) / Wstop; % reciprocal of text

D = 1 - 2 * W0 * cos(th) + W0^2 + Wi^2;
G = (1 + Wi^2) / D;
b1 = - 4 * c * Wi^2 / (1 + Wi^2);
b2 = 2 * (Wi^2 * (2*c*c+1) - 1) / (1 + Wi^2);
a1 = 4 * c * (W0 * cos(th) - W0^2 - Wi^2) / D;
a2 = 2 * ((2*c*c + 1)*(W0^2 + Wi^2) - 1) / D;
a3 = - 4 * c * (W0 * cos(th) + W0^2 + Wi^2) / D;
a4 = (1 + 2 * W0 * cos(th) + W0^2 + Wi^2) / D;
A(i+1,:) = [1, a1, a2, a3, a4];
B(i+1,:) = G * [1, b1, b2, b1, 1];

end

22. Bandstop Chebyshev Type 2 Filter Design.

% bscheb2.m - bandstop Chebyshev type 2 digital filter design
%

% [A, B, P] = bscheb2(fs, fpa, fpb, fsa, fsb, Apass, Astop)

%

% design parameters:

% P = [Wpass, Wstop, Wsa, Wsb, c, epass, estop, Nex, N, f3a, f3b, a];

% A, B are K×5 matrices of cascaded fourth-order sections

function [A, B, P] = bscheb2(fs, fpa, fpb, fsa, fsb, Apass, Astop)

c = sin(2*pi*(fpa + fpb)/fs)/(sin(2*pi*fpa/fs) + sin(2*pi*fpb/fs));
Wpass = abs(sin(2*pi*fpb/fs) / (cos(2*pi*fpb/fs) - c));
Wsa = sin(2*pi*fsa/fs) / (cos(2*pi*fsa/fs) - c);
Wsb = sin(2*pi*fsb/fs) / (cos(2*pi*fsb/fs) - c);
Wstop = min(abs(Wsa), abs(Wsb));

epass = sqrt(10^(Apass/10) - 1);
estop = sqrt(10^(Astop/10) - 1);

Nex = acosh(estop/epass) / acosh(Wstop/Wpass);
N = ceil(Nex); r = rem(N,2); K = (N - r) / 2;

a = asinh(estop) / N;
W3 = Wstop / cosh(acosh(estop)/N);
f3a = (fs/pi) * atan((sqrt(1 + W3^2 *(1 - c^2)) - 1)/(W3*(c+1)));
f3b = (fs/pi) * atan((sqrt(1 + W3^2 *(1 - c^2)) + 1)/(W3*(c+1)));
P = [Wpass, Wstop, Wsa, Wsb, c, epass, estop, Nex, N, f3a, f3b, a];
W0 = sinh(a) / Wstop; % reciprocal of text

if r==1,
G = 1 / (1 + W0);
a1 = -2 * c / (1 + W0);
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a2 = (1 - W0) / (1 + W0);
A(1,:) = [1, a1, a2, 0, 0];
B(1,:) = G * [1, -2*c, 1, 0, 0];

else
A(1,:) = [1, 0, 0, 0, 0];
B(1,:) = [1, 0, 0, 0, 0];

end

for i=1:K,
th = pi * (N - 1 + 2 * i) / (2 * N);
Wi = sin(th) / Wstop; % reciprocal of text

D = 1 - 2 * W0 * cos(th) + W0^2 + Wi^2;
G = (1 + Wi^2) / D;
b1 = -4 * c / (1 + Wi^2);
b2 = 2 * ((2*c^2 + 1) - Wi^2) / (1 + Wi^2);
a1 = -4 * c * (1 - W0 * cos(th)) / D;
a2 = 2 * (2*c^2 + 1 - W0^2 - Wi^2) / D;
a3 = -4 * c * (1 + W0 * cos(th)) / D;
a4 = (1 + 2 * W0 * cos(th) + W0^2 + Wi^2) / D;
A(i+1,:) = [1, a1, a2, a3, a4];
B(i+1,:) = G * [1, b1, b2, b1, 1];

end



References

Texts

[1] B. Gold and C. M. Rader, Digital Processing of Signals, McGraw-Hill, New York, 1969.

[2] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice Hall, Engle-
wood Cliffs, NJ, 1989.

[3] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice Hall, Englewood
Cliffs, NJ, 1975.

[4] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Prentice Hall,
Englewood Cliffs, NJ, 1975.

[5] S. K. Mitra and J. F. Kaiser, eds., Handbook of Digital Signal Processing, Wiley, New York,
1993.

[6] T. W. Parks and C. S. Burrus, Digital Filter Design, Wiley, New York, 1987.

[7] A. Antoniou, Digital Filters: Analysis and Design, 2nd ed., McGraw-Hill, New York, 1993.

[8] D. F. Elliott, ed., Handbook of Digital Signal Processing, Academic Press, New York, 1987.

[9] L. R. Rabiner and C. M. Rader, eds., Digital Signal Processing, IEEE Press, New York, 1972.

[10] Selected Papers in Digital Signal Processing, II, edited by the Digital Signal Processing Com-
mittee and IEEE ASSP, IEEE Press, New York, 1976.

[11] Programs for Digital Signal Processing, edited by the Digital Signal Processing Committee,
IEEE ASSP Society, IEEE Press, New York, 1979.

[12] A. V. Oppenheim, ed., Applications of Digital Signal Processing, Prentice Hall, Englewood
Cliffs, NJ, 1978.

[13] J. S. Lim and A. V. Oppenheim, eds., Advanced Topics in Signal Processing, Prentice Hall,
Englewood Cliffs, NJ, 1988.

[14] R. A. Roberts and C. T. Mullis, Digital Signal Processing, Addison-Wesley, Reading, MA,
1987.

[15] P. A. Lynn and W. Fuerst, Introductory Digital Signal Processing with Computer Applications,
Wiley, New York, 1989.

[16] J. G. Proakis and D. G. Manolakis, Introduction to Digital Signal Processing, 2nd ed., Macmil-
lan, New York, 1988.

[17] E. C. Ifeachor and B. W. Jervis, Digital Signal Processing: A Practical Approach, Addison-
Wesley, Reading, MA, 1993.

[18] R. A. Haddad and T. W. Parsons, Digital Signal Processing: Theory, Applications, and Hard-
ware, Computer Science Press, W. H. Freeman, New York, 1991.

758



REFERENCES 759

[19] L. B. Jackson, Digital Filters and Signal Processing, Kluwer Academic Publishers, , Norwell,
MA 1989.

[20] A. Bateman and W. Yates, Digital Signal Processing Design, Computer Science Press, W. H.
Freeman, New York, 1991.

[21] S. D. Stearns and D. R. Hush, Digital Signal Analysis, 2nd ed., Prentice Hall, Englewood
Cliffs, NJ, 1990.

[22] S. D. Stearns and R. A. David, Signal Processing Algorithms, Prentice Hall, Englewood Cliffs,
NJ, 1988.

[23] D. J. DeFatta, J. G. Lucas, and W. S. Hodgkiss, Digital Signal Processing: A System Design
Approach, Wiley, New York, 1988.

[24] E. Robinson and S. Treitel, Geophysical Signal Analysis, Prentice Hall, Englewood Cliffs, NJ,
1980.

[25] S. M. Kay, Modern Spectral Estimation: Theory and Application, Prentice Hall, Englewood
Cliffs, NJ, 1988.

[26] S. L. Marple, Digital Spectral Analysis with Applications, Prentice Hall, Englewood Cliffs, NJ,
1987.

[27] B. Widrow and S. D. Stearns, Adaptive Signal Processing, Prentice Hall, Englewood Cliffs,
NJ, 1985.

[28] S. J. Orfanidis, Optimum Signal Processing, 2nd ed., McGraw-Hill, New York, 1988.

[29] S. J. Orfanidis, Digital Signal Processing Laboratory Manual, ECE Department, Rutgers Uni-
versity, Piscataway, NJ, 1989–94.

[30] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press,
New York, 1980.

[31] H. R. Chillingworth, Complex Variables, Pergamon, Oxford, 1973.

[32] P. H. Scholfield, The Theory of Proportion in Architecture, Cambridge Univ. Press, London,
1958.

[33] J. Kappraff, Connections: The Geometric Bridge Between Art and Science, McGraw-Hill, New
York, 1990.

[34] Internet Resources:
(1) Signal processing information base at spib.rice.edu, (2) comp.dsp newsgroup, (3)
comp.dsp.faq frequently asked questions from evans.ee.adfa.oz.au in /pub/dsp.

Sampling

[35] D. A. Linden, “A Discussion of Sampling Theorems,” Proc. IRE, 47, 1219 (1959).

[36] A. J. Jerri, “The Shannon Sampling Theorem—Its Various Extensions and Applications: A
Tutorial Review,” Proc. IEEE, 65, 1565 (1977).

[37] P. L. Butzer and R. L. Strauss, “Sampling Theory for not Necessarily Band-Limited Functions:
A Historical Overview,” SIAM Review, 34, 40 (1992).

[38] R. J. Marks II, Introduction to Shannon Sampling and Interpolation Theory, Springer-Verlag,
New York, 1991.

[39] R. J. Marks II, ed., Advanced Topics in Shannon Sampling and Interpolation Theory,
Springer-Verlag, New York, 1993.



760 REFERENCES

A/D & D/A Conversion, Quantization, Dithering, and Noise Shaping

[40] G. B. Clayton, Data Converters, Halsted Press, Wiley, New York, 1982.

[41] M. J. Demler, High-Speed Analog-to-Digital Conversion, Academic Press, New York, 1991.

[42] G. F. Miner and D. J. Comer, Physical Data Acquisition for Digital Processing, Prentice Hall,
Englewood Cliffs, NJ, 1992.

[43] D. Seitzer, G. Pretzl, and N. A. Hamdy, Electronic Analog-to-Digital Converters, Wiley, New
York, 1983.

[44] D. H. Sheingold, ed., Analog-Digital Conversion Handbook, 3d ed., Prentice Hall, Englewood
Cliffs, NJ, 1986.

[45] A. VanDoren, Data Acquisition Systems, Reston Publishing, Reston, VA, 1982.

[46] W. R. Bennett, “Spectra of Quantized Signals,” Bell Syst. Tech. J., 27, 446 (1948).

[47] B. Widrow, “Statistical Analysis of Amplitude-Quantized Sampled-Data Systems,” AIEE
Trans. Appl. Ind., pt.2, 79, 555 (1961).

[48] P. F. Swaszek, ed., Quantization, Van Nostrand Reinhold, New York, 1985.

[49] A. B. Sripad and D. L. Snyder, “A Necessary and Sufficient Condition for Quantization Errors
to Be Uniform and White,” IEEE Trans. Acoust., Speech, Signal Process., ASSP-25, 442 (1977).

[50] C. W. Barnes, et al., “On the Statistics of Fixed-Point Roundoff Error,” IEEE Trans. Acoust.,
Speech, Signal Process., ASSP-33, 595 (1985).

[51] R. M. Gray, “Quantization Noise Spectra,” IEEE Trans. Inform. Theory, IT-36, 1220 (1990),
and earlier references therein. Reprinted in Ref. [276], p. 81.

[52] L. G. Roberts, “Picture Coding Using Pseudo-Random Noise,” IRE Trans. Inform. Th., IT-8,
145 (1962).

[53] L. Schuchman, “Dither Signals and Their Effect on Quantization Noise,” IEEE Trans. Com-
mun., COM-12, 162 (1964).

[54] N. S. Jayant and P. Noll, Digital Coding of Waveforms, Prentice Hall, Englewood Cliffs, NJ
1984.

[55] J. F. Blinn, “Quantization Error and Dithering,” IEEE Comput. Graphics & Appl. Mag., (July
1994), p. 78.

[56] S. P. Lipshitz, R. A. Wannamaker, and J. Vanderkooy, “Quantization and Dither: A Theo-
retical Survey,” J. Audio Eng. Soc., 40, 355 (1992).

[57] J. Vanderkooy and S. P. Lipshitz, “Resolution Below the Least Significant Bit in Digital
Systems with Dither,” J. Audio Eng. Soc., 32, 106 (1984).

[58] J. Vanderkooy and S. P. Lipshitz, “Dither in Digital Audio,” J. Audio Eng. Soc., 35, 966 (1987).

[59] J. Vanderkooy and S. P. Lipshitz, “Digital Dither: Signal Processing with Resolution Far
Below the Least Significant Bit,” Proc. 7th Int. Conf.: Audio in Digital Times, Toronto, May
1989, p. 87.

[60] M. A. Gerzon and P. G. Graven, “Optimal Noise Shaping and Dither of Digital Signals,”
presented at 87th Convention of the AES, New York, October 1989, AES Preprint 2822, J.
Audio Eng. Soc., (Abstracts) 37, 1072 (1989).

[61] S. P. Lipshitz, J. Vanderkooy, and R. A. Wannamaker, “Minimally Audible Noise Shaping,”
J. Audio Eng. Soc., 39, 836 (1991).



REFERENCES 761

[62] R. A. Wannamaker, “Psychoacoustically Optimal Noise Shaping,” J. Audio Eng. Soc., 40, 611
(1992).

[63] M. A. Gerzon, P. G. Graven, J. R. Stuart, and R. J. Wilson, “Psychoacoustic Noise Shaped
Improvements in CD and Other Linear Digital Media,” presented at 94th Convention of the
AES, Berlin, May 1993, AES Preprint no. 3501.

[64] R. van der Waal, A. Oomen, and F. Griffiths, “Performance Comparison of CD, Noise-Shaped
CD and DCC,” presented at 96th Convention of the AES, Amsterdam, February 1994, AES
Preprint no. 3845.

[65] J. A. Moorer and J. C. Wen, “Whither Dither: Experience with High-Order Dithering Algo-
rithms in the Studio,” presented at 95th Convention of the AES, New York, October 1993,
AES Preprint no. 3747.

[66] R. A. Wannamaker, “Subtractive and Nonsubtractive Dithering: A Comparative Analysis,”
presented at 97th Convention of the AES, San Francisco, November 1994, AES Preprint no.
3920.

[67] D. Ranada, “Super CD’s: Do They Deliver The Goods?,” Stereo Review, July 1994, p. 61.

[68] M. A. Gerzon and P. G. Craven, “A High-Rate Buried-Data Channel for Audio CD,” J. Audio
Eng. Soc., 43, 3 (1995).

[69] A. Oomen, M. Groenewegen, R. van der Waal, and R. Veldhuis, “A Variable-Bit-Rate Buried-
Data Channel for Compact Disc,” J. Audio Eng. Soc., 43, 25 (1995).
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Index

1% time constant, 235, 283
3-dB cutoff frequency, 387, 389, 391, 566
3-dB width, 245, 261, 360, 397, 400, 401, 403,

406, 574, 592
6 dB per bit rule, 63
60 Hz noise, 251, 383, 399
60 dB time constant, 235, 355, 362, 369

A/D converter, 53, 61
delta-sigma, 67, 698
flash or parallel, 83
subranging, 83, 93
successive approximation, 75, 83

adaptive signal processing, 95, 100, 361, 379
ADC, see A/D converter
aliased frequency, 11
aliasing, 5, 8, 10, 34, 500

examples of, 12–26
in rotational motion, 27

alternating-step response, 239
amplitude modulation, 345
analog

Bessel filters, 677
Butterworth filters, 58, 594, 675, 685
Chebyshev filters, 615
dither, 83
frequency response, 3
impulse response, 2
linear filtering, 3
linear system, 2
postfilter, 46
prefilter, 38
reconstructor, 11, 42, 633

anti-image postfilter, see postfilter
antialiasing prefilter, see prefilter
attenuation, 22, 39, 47

dB per decade, 39
dB per octave, 22, 39
of window sidelobes, 467

audio effects processor, 256, 349, 377
autocorrelation, 713, 715

of white noise, 714
sample, 715

bandpass filters, 606
bandstop filters, 611
biasing, 484

bilinear transformation, 563
for comb filters, 401, 590

biomedical signal processing, 399
bit reversal, 510
block convolution, 143, 515
block diagram, 111

for canonical form, 274
for cascade form, 278
for direct form, 267
for FIR filter, 154, 155
for second-order section, 272
for transposed form, 181, 313

block processing, 95, 121, 122
overlap-add method, 143, 520
overlap-save method, 520

C routines:
I0, modified Bessel function, 554
adc, A/D conversion, 79
allpass, allpass reverb, 365
bitrev, bit reversal, 512
blockcon, overlap-add, 145
can2, canonical form, 276
can3, canonical form, 294
can, canonical form, 275
cas2can, cascade to canonical, 291
cas, cascade form, 280
ccan2, circular canonical, 303
ccan, circular canonical, 297
ccas2, circular cascade, 304
ccas, circular cascade, 302
cdelay2, circular delay line, 176
cdelay, circular delay line, 173
cfir1, circular FIR filtering, 171
cfir2, circular FIR filtering, 175
cfir, circular FIR filtering, 169
cmplx, header file, 738
complex, complex arithmetic in C, 737
conv, convolution, 139
corr, correlation, 715
csos2, circular SOS, 304
csos, circular SOS, 301
dac, D/A conversion, 74
delay, delay operation, 151
delta, delta function, 142
dftmerge, DFT merge, 513
dft, DFT, 480

775
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dir2, direct form, 270
dir, direct form, 268
dot, dot product, 161
dtftr, DTFT range, 478
dtft, DTFT, 477
fft, FFT, 511
fir2, FIR filtering, 161
fir3, FIR filtering, 164
fir, FIR filtering, 160
gdelay2, generalized delay, 334
gran, Gaussian random generator, 724
ifft, inverse FFT, 514
lowpass, lowpass reverb, 368
modwrap, modulo-N reduction, 494
plain, plain reverb, 364
ran1f, 1/f noise generator, 730
ranh, hold random generator, 725
ranl, linearly interpolated, 726
ran, uniform random generator, 722
shuffle, shuffling in FFT, 511
sine, sinusoidal wavetable, 342
sos, second-order section, 277
square, square wavetable, 342
swap, swapping in FFT, 512
tap2, circular tap outputs, 176
tapi2, interpolated delay, 356
tapi, interpolated delay, 356
tap, circular tap outputs, 174
trapez, trapezoidal wavetable, 343
u, unit-step function, 80
wavgeni, wavetable generator, 341
wavgenr, wavetable generator, 341
wavgen, wavetable generator, 340
wrap2, circular index wrapping, 175
wrap, circular pointer wrapping, 169

canonical form, 220, 271
difference equations of, 274
sample processing algorithm, 274, 326

cascade form, 277
coefficient matrices, 279
internal states, 279
pipelining of, 296
processing time, 295
sample processing algorithm, 280

cascade to canonical, 284, 290
causality, 112, 718

and finitely anticausal filters, 113
and interpolation filters, 113
and inverse filters, 113, 116
and off-line processing, 114
and real-time processing, 114
and smoothing filters, 113
and stability, 116, 257
in z-domain, 186, 193, 223

central limit theorem, 723
chorusing, 357
chrominance signals, 412
circular

addressing, 122, 162, 165, 297
buffer, 165
buffer in signal averaging, 425
canonical form, 298
cascade form, 302
convolution, 515
delay, 165, 173, 176
direct form, 169
pointer, 166
pointer index, 166
state vector, 167, 168, 174, 176
wrapping, 169, 170, 173, 175

coefficient quantization, 305, 311
comb filters, 249, 253, 310, 406, 590

3-dB width, 406
complementarity property, 398
design, 406, 590
for digital reverb, 353
for noise reduction, 254
for signal averaging, 421
for signal enhancement, 254
in digital audio effects, 350
in digital TV, 409
sample processing algorithm of, 351

complementarity, 398, 406, 416, 534, 545, 550,
572

complex arithmetic in C, 737
complex poles, 2, 284, 318
compressors, see dynamics processors
computational resolution, see resolution
computer music

amplitude modulation, 345
frequency modulation, 332
musical instrument models, 332, 373
physical modeling, 332, 373
wavetable generators, 332

convolution, 111, 121, 122
circular, 515
direct form of, 104, 122, 123
fast via FFT, 515
flip-and-slide form of, 131
for discrete-time systems, 104
in z-domain, 184
in continuous-time, 3, 43
in frequency domain, 201
LTI form of, 104, 122, 127
matrix form of, 129
of finite sequences, 123
of infinite sequences, 134
overlap-add method, 143, 520
overlap-save method, 520
table form of, 122, 126

coupled form generator, 320
cutoff frequency, 566

D/A converter, 46, 53, 71
and reconstruction, 46
delta-sigma requantizer, 698, 704
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natural binary, 71
offset binary, 72
two’s complement, 72

DAC, see D/A converter
data smoothing, see smoothing filters
DC gain, 139, 239
DCC compact cassette, 553
decibels, dB, see attenuation
decimation, 632, 686

and delta-sigma quantizer, 699
and oversampling, 24, 686
averaging decimators, 689, 702
downsampled spectrum, 687
filter design, 688
filter specifications, 688
hold decimators, 689, 702
ideal, 688
Kaiser designs, 688, 702
multistage, 689
prefilter specifications, 690
sample processing algorithm, 689

deconvolution, 254, 520
of noisy data, 256

delay, 101, 146, 174
circular, 165, 173, 176
linear, wrapped, 165
linearly interpolated, 356
tapped, 153
update, 150, 165, 170

delta-sigma quantizer, 67, 698
decimator filter, 699
first-order model of, 698, 710
MASH architectures, 712
requantizer, 698, 704
second-order model of, 306, 710

DFS, see discrete Fourier series
DFT, 464, 479

N-point DFT of length-L signal, 479
and DTFT, 479
and periodic signals, 499
biasing in computation of, 484
frequencies, 479
matrix, 486
matrix form of, 486
merging, 504, 513
modulo-N reduction, 489
negative frequencies, 474, 476, 483, 501
time wrapping, 489
twiddle factor, 487
zero padding, 481

DFT frequencies, 479, 481
difference equation, 111, 224, 267
differentiator filter, 532, 559
digital audio effects, 175, 256, 349

chorusing, 357
comb filters, 350
delays, 350
dynamics processors, 378

echoes, 350
flanging, 355
linearly interpolated delay, 356
multitap delays, 374
phasing, 359
reverberation, 362
stereo imaging, 355, 458

digital reverberation, see reverberation
digital signal processor, 1, 53
digital TV, 409
direct form

difference equations of, 224, 267
for FIR filter, 153–155
for IIR filter, 217, 265
internal states, 266
sample processing algorithm, 267, 323

direct form I, see direct form
direct form II, see canonical form
discrete cosine transform, 464, 529
discrete Fourier series, 19, 499
discrete Fourier transform, see DFT
discrete time

convolution, 104
filter, 53
Fourier transform, see DTFT
linear filtering, 55
linear system, 96
system, 95
system I/O rules, 96

dither, 65, 83
and noise shaping, 698
example of, 87
Gaussian, 85
non-subtractive, 84
rectangular, 85
subtractive, 89
triangular, 85, 86

Dolph-Chebyshev window, 543
downsampler, 687
DSP chips, 55, 162, 293, 306

examples of, 171
instruction time, 162
MACs, 162, 293, 296, 306
MFLOPS, 163, 296
MIPS, 164, 295, 296
processing time, 164, 171
quantization effects in, 306
wordlengths, 306

DSP system
building blocks of, 146
components of, 53
with oversampling, 70, 690

DTFT, 31, 196, 466
computation by Hörner’s rule, 477
and DFT, 479
and unit circle, 477, 481
and windowing, 466
at single frequency, 475
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computation, 475
geometric interpretation of, 198, 199
magnitude and phase, 201
negative frequencies, 474, 476, 483, 501
of length-L signal, 475
of rectangular window, 466
of windowed sinusoids, 469
over frequency range, 478
periodicity of, 31

DTMF, 317, 479
dual-tone multi-frequency, see DTMF
dynamics processors, 378

attack/release times, 379
compression/expansion ratio, 378
compressor/expander model, 379
compressors, 378
envelope detector, 379
expanders, 381
gain processor, 379
limiters, 381
noise gates, 382
peak detector, 379

ECG processing, 399, 401–403
equalizer

channel, 255
comb, 590
for multistage interpolation, 678
for staircase DAC, 671
graphic, 548, 581
parametric, 244, 581
postfilter, 47, 674
prefilter, 38
room acoustics, 255
shelving, 589

error spectrum shaping, 306, 698
expanders, see dynamics processors
exponential smoother, 389

fast convolution, 464, 515
fast Fourier transform, see FFT
feedback system, 314
FFT, 464, 504

bit reversal, 510
computational cost, 505
decimation in time, 506
fast convolution, 464
merging, 504, 509, 513
of real-valued signals, 528
shuffling, 509, 511

Fibonacci sequence, 260
filter

as state machine, 95
equivalent descriptions of, 111, 214
group delay, 231
internal state of a, 95
magnitude response, 230
phase delay, 231

phase response, 230
Q-factor, 360, 400

filter banks, 553
filter design

analog filters, 594
by pole/zero placement, 201
comb filters, 249, 406, 590
first-order, 242
for noise reduction, 383
for sampling rate conversion, 691
for signal enhancement, 383
frequency sampling, 558, 672, 676
notch filters, 248, 249, 360, 403
of FIR filters, 532
of IIR filters, 563
of Savitzky-Golay smoothers, 427
parametric equalizers, 581
parametric resonators, 244
peaking filters, 577
second-order, 244, 248
window method, 532

filter scaling, 306
filter sharpening, 453
filtering, 3, 35, 55

adaptive, 95
by block processing, 95, 121
by sample processing, 95, 121
in direct form, 105, 106
in LTI form, 104
of random signals, 717

FIR averager, 391, 702
FIR filter, 95, 105, 121

block diagram, 154, 155
circular buffer, 169, 171, 175, 177
coefficients, 105
difference equations for, 224
direct form of, 152
in steady-state form, 133
length, 105
linear phase property of, 232
order, 105
sample processing algorithm for, 152, 154,

155, 160
taps, 105
weights, 105
window method, 532

FIR filter design, 532
approximation properties, 538
examples, 546–553
frequency sampling, 558, 672, 676
Gibbs phenomenon, 538
Hamming window, 540
ideal filters, 532
Kaiser window, 541
linear phase property, 537
Meteor design program, 558
Parks-McClellan method, 558
rectangular window, 535
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window method, 532
first-order IIR smoother, 386
flanging, 355
Fourier transform, 1

discrete-time, DTFT, 31
of sampled signal, 31

frequency
aliased or perceived, 11, 27
and unit circle, 200
biasing, 484
DFT, 479
digital, 27, 197
leakage, 32, 466, 471
modulation, 332, 347
negative, 29, 474, 476, 483, 501
Nyquist, 6
resolution, 464, 469, 716
response, 3, 111, 197
spectrum, 1, 196
units used in DSP, 29

frequency sampling design, 558, 672, 676

generator, see waveform generators
geometric series

finite, 37, 71, 135, 190, 237, 352, 394
infinite, 17, 36, 115, 186, 187, 190, 192,

322, 353, 364, 367, 387, 493
Gibbs phenomenon, 538
graphic equalizers, 548, 581
group delay, 231
guard band, 34

Hamming window, 51, 470, 540, 640, 664
hardware realizations, 162, 293
hermitian property, 201
highpass filters, 603
Hilbert transformer, 532
hold interpolators, 657
Hörner’s rule, 91, 477

I/O rules, 96
IIR filter, 95, 105, 106

circular buffer, 298, 302
difference equations for, 106, 111, 224
transfer function of, 223

IIR filter design, 563
analog filters, 594
bandpass filters, 606
bandstop filters, 611
bilinear transformation, 563
Butterworth, 594
Chebyshev filters, 615–627
comb filters, 590
first-order filters, 566
higher-order filters, 592
highpass filters, 603
lowpass filters, 599
notch filters, 573

parametric equalizers, 581
peaking filters, 577
second-order filters, 573
specifications, 593

impulse response, 2, 103, 111, 214, 215, 223,
246, 254, 256, 258

input-off transients, 132, 154, 372
input-on transients, 132, 154, 372
instruction time, 162, 164, 171, 294
interference

60 Hz noise, 251, 254
periodic, 254

internal state, see state
interpolation, 632

4-fold, 636, 661
computational rate, 641
cutoff frequency, 639
DAC equalization, 671
filter design, 638
filter specifications, 635, 645
ideal, 646
in direct form, 638
in polyphase form, 632, 640, 642, 665
Kaiser designs, 647
linear and hold, 657
multistage designs, 649, 667
multistage equalization, 678
postfilter equalization, 674
postfilter specifications, 634, 674
sample processing algorithm, 644

inverse z-transforms, 202
inverse DFT, 496, 498, 514
inverse DTFT, 31, 197, 231, 232, 468, 496

and Fourier series, 31, 197
for power spectrum, 713

inverse FFT, 514
inverse filters, 254

stable and causal, 257
inverse Fourier transform, 2, 498

Kaiser window, 470
for filter design, 541
for interpolator designs, 647
for spectral analysis, 470, 555
in data smoothing, 453
parameters, 544, 555
resolution, 555

Karplus-Strong string algorithm, 373

Laplace transform, 2
lattice form, 305
leakage, 466, 471
limiters, see dynamics processors
linear filtering, 3, 35, 55, 230
linear interpolators, 657
linear phase property, 232, 386, 537
linear superposition, 3, 230
linear system, 2
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in matrix form, 96
state space realization, 98

Linear time-invariant, see LTI system
linearity, 100, 230
linearly interpolated delay, 356
loudspeaker crossover filters, 548
lowpass differentiator, 559
lowpass filters, 599
lowpass Hilbert transformer, 559
LTI system, 95

anticausal, 112
causal, 112
double-sided, 112
equivalent descriptions of, 111, 214
FIR, 95
frequency response, 2
IIR, 95
impulse response, 2, 103

luminance signal, 411

MAC, 162, 164, 293, 296, 306
magnitude response, 201, 230
marginal stability, 196, 199, 240, 718
MATLAB functions:

I0, modified Bessel function, 746
bpcheb2, bandpass Chebyshev-2, 755
bpsbutt, bandpass/stop Butterworth, 752
bscheb2, bandstop Chebyshev-2, 756
cas2can, cascade to canonical, 742
cas, cascade form, 741
cdelay2, circular delay, 740
cfir2, circular FIR filtering, 740
combeq, comb equalizer, 751
dbp, ideal bandpass, 749
ddiff, ideal differentiator, 749
delay, delay operation, 739
dhilb, ideal Hilbert transformer, 750
dlh, ideal lowpass/highpass, 748
dtft, DTFT computation, 742
ecg, simulated ECG, 745
fir, FIR filtering, 739
kbp, bandpass Kaiser design, 748
kdiff, Kaiser differentiator design, 749
khilb, Kaiser Hilbert transformer, 750
klh, lowpass/highpass Kaiser design, 747
kparm2, Kaiser window parameters, 747
kparm, Kaiser window parameters, 746
kwind, Kaiser window, 746
lhbutt, low/highpass Butterworth, 751
lhcheb1, low/highpass Chebyshev-1, 753
lhcheb2, low/highpass Chebyshev-2, 754
parmeq, parametric equalizer, 751
sgfilt, Savitzky-Golay filtering, 745
sg, Savitzky-Golay smoother design, 743
sigav, signal averaging, 743
sos, second-order section, 741
wrap2, circular wrapping, 740

MFLOPS, 163, 296

MIPS, 164, 295, 296
modified Bessel function, 543, 554
modulo addressing, see circular
modulo-N reduction, 489
moments in smoothing filters, 445
moving average filter, see FIR filter
multi-delay audio effects, 374
multiplier/accumulator, see MAC
multirate filter banks, 553
multirate signal processing, 100, 632
multistage equalization, 678
multistage interpolators, 649
multitap delay audio effects, 374
musical instrument models, 332, 373

negative frequencies, 29, 474, 476, 483, 501
noise gates, see dynamics processors
noise reduction, 254, 382, 713

comb filters for, 398
filter design for, 383
FIR averager, 390
first-order IIR smoother, 386
noise reduction ratio, 385
notch filters for, 398
SNR in, 385
transient response, 386

noise reduction ratio, 385, 718
noise shaping, 65, 698

dithered, 698
error spectrum shaping, 306, 320, 698
quantizer, 68, 698
quantizer comparisons, 69
requantizer, 698, 704

non-rectangular windows, 470
nonlinear signal processing, 100
notch filters, 248, 249, 360, 573

3-dB width, 360
for ECG processing, 399, 401, 403
phasing audio effects, 359
Q-factor, 360

notch polynomial, 250
NRR, see noise reduction ratio
Nyquist

frequency, 6
interval, 6, 197
rate, 6

oscillator, see waveform generator
overlap-add method, 143, 520
overlap-save method, 520
oversampling, 24, 65, 632, 635

and decimation, 24, 686
and interpolation, 632
and noise shaping, 65
and quantization, 67
digital filter, 635
DSP system, 70, 690
in CD and DAT players, 70, 633
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in postfiltering, 53, 634, 674
in prefiltering, 25, 39
ratio, 67

parallel form, 212, 219, 553
processing time, 296

parametric equalizers, 244, 581–590
design, 581

parametric resonators, 244, 577
parametric spectral analysis, 472, 717
Parks-McClellan method, 558
Parseval’s equation, 198
partial fraction expansion, 202, 233

of z-transforms, 202
remove/restore method, 204

peaking filters, 577
Pell’s sequence, 261
perceptual coding, 553, 698
periodic interference, 254, 383
periodogram

averaging and smoothing, 471, 716
resolution, 716
spectrum, 715

PF, PFE, see partial fraction expansion
phase delay, 231
phase response, 201, 230
phasing, 359
physical modeling of instruments, 332, 373
physical resolution, see resolution
pipelining of cascade form, 296
Poisson summation formula, 34
pole/zero designs

comb filters, 249
first-order filters, 242
notch filters, 248, 249
parametric resonators, 244
second-order filters, 244, 248

pole/zero pattern, 111, 199
polyphase filters, 632, 637, 640, 642
postfilter, 46, 53, 634

and oversampling, 49, 634
Bessel, 677
Butterworth, 675, 685
equalized digitally, 47, 51, 674
specifications of, 46, 674

power spectral density, 714
power spectrum, 713

of white noise, 714
periodogram, 715

prefilter, 35, 38, 53, 633
and oversampling, 25, 39, 690
attenuation, 39
Butterworth, 58
equalized digitally, 38
ideal, 7, 38
practical, 19, 38
specifications of, 38, 690

processing time, 8, 164, 171, 294

Q-factor, 360, 400, 403, 408, 574
quantization, 61

and dithering, 65
and oversampling, 67
by rounding, 62, 77
by truncation, 62, 76
error, 62
granulation noise in, 65
noise, 64
noise shaping, 65
process, 61
signal-to-noise ratio, 63
width, 61

quantization effects
coefficient quantization, 305, 311
coupled form, 320
error spectrum shaping, 306, 320
poles near unit circle, 320
roundoff error, 285, 305

quantizer
6 dB per bit rule, 63
delta-sigma, 67
dynamic range of a, 63
error spectrum shaping, 698
error, average, 63
error, maximum, 63
error, root-mean-square, 63
full-scale range of, 61
noise model of a, 64, 81
noise shaping, 68, 698
noise shaping comparisons, 69
number of levels of a, 61
probabilistic interpretation of a, 63
resolution, 61
uniform, 61

random number generators, 358, 719
1/f noise, 729, 730, 734, 735
Gaussian, 719, 723, 724
general interpolator, 729, 734
hold interpolator, 725
linear congruential, LCG, 720
linearly interpolated, 358, 726
low-frequency, 358, 724
portable, 721
uniform, 719, 722

random signals, 713
autocorrelation, 713
filtering of, 717
power spectrum, 713

random walk, 718
rate compressor, see downsampler
rate expander, see upsampler
reconstructor, 11, 42, 633

and D/A conversion, 46
ideal, 11, 43, 634
ideal impulse response of, 44
in interpolation, 44
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staircase, 42, 45, 633
truncated impulse response of, 44, 639

rectangular window, 51, 465
in FIR filter design, 535
in spectral analysis, 466
sidelobes, 467
width, 467

region of convergence, 186, 188, 192
and causality, 193
and stability, 194

resolution, 464, 469, 716
and leakage, 466, 471
and mainlobe width, 467, 469, 471
and windowing, 464
computational, 482
of Kaiser window, 555
of non-rectangular windows, 471
physical, 466, 467, 471, 482
uncertainty principle, 466

resonators, see parametric resonators
reverberation, 175, 254, 362

60 dB time constant, 355, 362
allpass, 365
and comb filters, 353
early reflections, predelay, 362
gated and reversed, 363
late reflections, 362
lowpass, 367, 368
lowpass, time constants, 369, 372
plain, 353, 363, 364
plain, time constants, 369, 372
sample processing algorithm, 364
Schroeder’s reverberator, 365

ROC, see region of convergence
roots of unity, 212, 329, 353, 369, 399, 481

and DFT, 481
roundoff error, 285, 305, 306

sample autocorrelation, 715
sample processing algorithm, 111, 121, 146

for allpass reverb, 364
for canonical form, 221, 274
for cascade form, 280
for circular canonical form, 298
for circular cascade form, 302
for circular FIR filter, 169, 177
for compressor, 380
for decimation, 689
for direct form, 217, 267
for FIR filtering, 152, 154, 155, 160
for interpolation, 644
for lowpass reverb, 368
for multi-delay, 375
for multitap delay, 376
for parallel form, 220
for ringing delay, 374
for sample rate conversion, 695
for Schroeder’s reverb processor, 366

for signal averaging, 425
for transposed form, 222
for variable notch filters, 361

sampled signal, 30
flat-top sampled, 30, 59
ideally sampled, 30

sampling
aliasing due to, 5
and Poisson summation formula, 34
as modulation, 33
frequencies introduced by, 4
function, 33, 708
guard band, 34
hardware limits in, 8
ideal and practical, 30
Nyquist frequency, 6
Nyquist rate, 6
of periodic signals and DFT, 499
of sinusoids, 9, 35, 49
process, 4
rate, 5, 6
spectrum replication due to, 4
theorem, 5, 6, 10, 44
time interval, 4

sampling rate conversion, 632, 691, 709
filter design for, 691
sample processing algorithm, 695

Saramäki windows, 543
Savitzky-Golay smoothing filters, 427–453
scaling, 306
Schroeder’s reverberator, 365
second-order section, 265, 272, 277, 301, 304

circular buffer form of, 301, 304
SG, see Savitzky-Golay
shelving filters, 589
sigma-delta, see delta-sigma
signal averaging, 421

and comb filtering, 421
using circular buffers, 425

signal enhancement, 254, 382, 713
comb filters, 398, 408
comb filters for TV, 409
filter design for, 383
noise reduction ratio, 385
notch filters, 398
of periodic signals, 408
SNR in, 385
transient response, 386

signal generators, see waveform generators
signal-to-noise ratio, 385
sinusoidal generators, 316
sinusoidal response, 3, 229, 233

of FIR filters, 242
smoothing filters, 390, 391, 427

exponential, 389
in spectroscopy, 427, 446
least-squares, 427
moment constraints, 445
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polynomial data smoothing, 427
Savitzky-Golay, 427

SNR, see signal-to-noise ratio
SOS, see second-order section
spectrum, 1, 196

analysis, 464, 471, 717
and z-transform, 32, 196
and pole/zero pattern, 199
and time windowing, 32
and unit circle, 196
computation, 32, 464
DTFT, DFT, 464
hermitian property of, 201
numerical approximation of, 32
of analog signal, 1, 4
of oversampled signal, 634
of periodic signal, 328
of sampled signal, 31, 196, 633
of video signal, 410
of windowed sinusoids, 469
parametric methods, 472
periodicity of, 31, 35, 197
periodogram, 715
power, 713
replicating transformation, 405
replication, 4, 7, 10, 33, 687, 708
statistical reliability of, 471, 717

SRC, see sampling rate conversion
stability, 112, 114, 718

and causality, 116, 257
and inverse filters, 116, 254
condition, 114
in z-domain, 186, 194, 223, 234
marginal, 196, 199, 240
of multitap delays, 377

state
circular, 165–168, 174, 176
initialization, 151
internal, 98, 131, 147, 150, 165, 217, 266
machine, 95

state space realization, 98, 121, 305
steady state, 3

frequency response, 3
sinusoidal response, 3

steady state response, 132, 134, 141, 229, 233
alternating-step response, 239
DC gain, 139, 239
for FIR filters, 132
for IIR filters, 229
unit-step response, 239

tapped delay line, see delay
time constant, 234, 283, 355, 369, 372, 393
time delay, 101
time invariance, 100, 101
time window, see windowing
transfer function, 111, 215, 223, 266
transient response, 132, 134, 141, 232

in noise reduction filters, 386
in reverberation, 363, 372
input-off transients, 132, 154, 161
input-on transients, 132, 154
of FIR filters, 132, 242
of IIR filters, 232
time constant, 234

transposed form, 181, 305, 313
for FIR filter, 181
for IIR filter, 221

transversal filter, see FIR filter
twiddle factor, 487

unit circle
and DTFT, 477, 481

unit-step response, 239
upsampler, 638

vertical detail enhancement, 416, 420
video signal, 383, 411
video spectrum, 410

waveform generators, 111, 316, 321
periodic, 111, 254, 321
sinusoidal, 316

wavelets, 553
wavetable

amplitude modulation, 345
circular, 316, 330
frequency modulation, 347
fundamental frequency of, 333
generator, 175, 316, 330, 336, 342
in computer music, 331, 332
linearly interpolated, 336
offset index, 334
oscillator, 342
synthesis, 175, 316, 331, 332, 342
waveshaping, 332, 373

white noise, 714
windowing, 32, 464, 465, 471

Hamming window, 51, 470, 471, 540
in frequency domain, 466
Kaiser window, 470, 541
leakage, 32, 470, 471
rectangular, 465
sidelobes, 467, 470
width, 470

wrapping in DFT, 489

z-transforms, 32, 183
and causality, 193
and power spectra, 714
and stability, 194
basic properties of, 183
modulation property of, 213
pole/zero pattern of, 199
region of convergence, 186, 188, 192

zero padding in DFT, 481, 518


