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Preface

This book provides an applications-oriented introduction to digital signal processing
written primarily for electrical engineering undergraduates. Practicing engineers and
graduate students may also find it useful as a first text on the subject.

Digital signal processing is everywhere. Today’s college students hear “DSP” all the
time in their everyday life—from their CD players, to their electronic music synthesizers,
to the sound cards in their PCs. They hear all about “DSP chips”, “oversampling digital

filters”, “1-bit A/D and D/A converters”, “wavetable sound synthesis”, “audio effects

processors”, “all-digital audio studios”. By the time they reach their junior year, they
are already very eager to learn more about DSP.

Approach

The learning of DSP can be made into a rewarding, interesting, and fun experience for
the student by weaving into the material several applications, such as the above, that
serve as vehicles for teaching the basic DSP concepts, while generating and maintaining
student interest. This has been the guiding philosophy and objective in writing this text.
As a result, the book’s emphasis is more on signal processing than discrete-time system
theory, although the basic principles of the latter are adequately covered.

The book teaches by example and takes a hands-on practical approach that empha-
sizes the algorithmic, computational, and programming aspects of DSP. It contains a
large number of worked examples, computer simulations and applications, and several
C and MATLAB functions for implementing various DSP operations. The practical slant
of the book makes the concepts more concrete.

Use

The book may be used at the junior or senior level. It is based on a junior-level DSP
course that I have taught at Rutgers since 1988. The assumed background is only a first
course on linear systems. Sections marked with an asterisk (*) are more appropriate for
a second or senior elective course on DSP. The rest can be covered at the junior level.
The included computer experiments can form the basis of an accompanying DSP lab
course, as is done at Rutgers.

A solutions manual, which also contains the results of the computer experiments,
is available from the publisher. The C and MATLAB functions may be obtained via
anonymous FTP from the Internet site ece.rutgers.edu in the directory /pub/sjo or

xiii
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by pointing a Web browser to the book’s WWW home page at the URL:
http://www.ece.rutgers.edu/~orfanidi/intro2sp

Contents and Highlights

Chapters 1 and 2 contain a discussion of the two key DSP concepts of sampling and
quantization. The first part of Chapter 1 covers the basic issues of sampling, aliasing,
and analog reconstruction at a level appropriate for juniors. The second part is more
advanced and discusses the practical issues of choosing and defining specifications for
antialiasing prefilters and anti-image postfilters.

Chapter 2 discusses the quantization process and some practical implementations
of A/D and D/A converters, such as the conversion algorithm for bipolar two’s comple-
ment successive approximation converters. The standard model of quantization noise
is presented, as well as the techniques of oversampling, noise shaping, and dithering.
The tradeoff between oversampling ratio and savings in bits is derived. This material is
continued in Section 12.7 where the implementation and operation of delta-sigma noise
shaping quantizers is considered.

Chapter 3 serves as a review of basic discrete-time systems concepts, such as linear-
ity, time-invariance, impulse response, convolution, FIR and IIR filters, causality, and
stability. It can be covered quickly as most of this material is assumed known from a
prerequisite linear systems course.

Chapter 4 focuses on FIR filters and its purpose is to introduce two basic signal
processing methods: block-by-block processing and sample-by-sample processing. In
the block processing part, we discuss various approaches to convolution, transient and
steady-state behavior of filters, and real-time processing on a block-by-block basis using
the overlap-add method and its software implementation. This is further discussed in
Section 9.9 using the FFT.

In the sample processing part, we introduce the basic building blocks of filters:
adders, multipliers, and delays. We discuss block diagrams for FIR filters and their
time-domain operation on a sample-by-sample basis. We put a lot of emphasis on the
concept of sample processing algorithm, which is the repetitive series of computations
that must be carried out on each input sample.

We discuss the concept of circular buffers and their use in implementing delays
and FIR filters. We present a systematic treatment of the subject and carry it on to
the remainder of the book. The use of circular delay-line buffers is old, dating back at
least 25 years with its application to computer music. However, it has not been treated
systematically in DSP texts. It has acquired a new relevance because all modern DSP
chips use it to minimize the number of hardware instructions.

Chapter 5 covers the basics of z-transforms. We emphasize the z-domain view of
causality, stability, and frequency spectrum. Much of this material may be known from
an earlier linear system course.

Chapter 6 shows the equivalence of various ways of characterizing a linear filter
and illustrates their use by example. It also discusses topics such as sinusoidal and
steady-state responses, time constants of filters, simple pole/zero designs of first- and
second-order filters as well as comb and notch filters. The issues of inverse filtering and
causality are also considered.
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Chapter 7 develops the standard filter realizations of canonical, direct, and cascade
forms, and their implementation with linear and circular buffers. Quantization effects
are briefly discussed.

Chapter 8 presents three DSP application areas. The first is on digital waveform
generation, with particular emphasis on wavetable generators. The second is on digital
audio effects, such as flanging, chorusing, reverberation, multitap delays, and dynamics
processors, such as compressors, limiters, expanders, and gates. These areas were cho-
sen for their appeal to undergraduates and because they provide concrete illustrations
of the use of delays, circular buffers, and filtering concepts in the context of audio signal
processing.

The third area is on noise reduction/signal enhancement, which is one of the most
important applications of DSP and is of interest to practicing engineers and scientists
who remove noise from data on a routine basis. Here, we develop the basic principles for
designing noise reduction and signal enhancement filters both in the frequency and time
domains. We discuss the design and circular buffer implementation of notch and comb
filters for removing periodic interference, enhancing periodic signals, signal averaging,
and separating the luminance and chrominance components in digital color TV systems.
We also discuss Savitzky-Golay filters for data smoothing and differentiation.

Chapter 9 covers DFT/FFT algorithms. The first part emphasizes the issues of spec-
tral analysis, frequency resolution, windowing, and leakage. The second part discusses
the computational aspects of the DFT and some of its pitfalls, the difference between
physical and computational frequency resolution, the FFT, and fast convolution.

Chapter 10 covers FIR filter design using the window method, with particular em-
phasis on the Kaiser window. We also discuss the use of the Kaiser window in spectral
analysis.

Chapter 11 discusses IIR filter design using the bilinear transformation based on
Butterworth and Chebyshev filters. By way of introducing the bilinear transformation,
we show how to design practical second-order digital audio parametric equalizer filters
having prescribed widths, center frequencies, and gains. We also discuss the design of
periodic notch and comb filters with prescribed widths.

In the two filter design chapters, we have chosen to present only a few design meth-
ods that are simple enough for our intended level of presentation and effective enough
to be of practical use.

Chapter 12 discusses interpolation, decimation, oversampling DSP systems, sample
rate converters, and delta-sigma quantizers. We discuss the use of oversampling for
alleviating the need for high quality analog prefilters and postfilters. We present several
practical design examples of interpolation filters, including polyphase and multistage
designs. We consider the design of sample rate converters and study the operation of
oversampled delta-sigma quantizers by simulation. This material is too advanced for
juniors but not seniors. All undergraduates, however, have a strong interest in it because
of its use in digital audio systems such as CD and DAT players.

The Appendix has four parts: (a) a review section on random signals; (b) a discus-
sion of random number generators, including uniform, Gaussian, low frequency, and
1/f noise generators; (c) C functions for performing the complex arithmetic in the DFT
routines; (d) listings of MATLAB functions.
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Paths

Several course paths are possible through the text depending on the desired level of
presentation. For example, in the 14-week junior course at Rutgers we cover Sections
1.1-1.4, 2.1-2.4, Chapters 3-7, Sections 8.1-8.2, Chapter 9, and Sections 10.1-10.2 and
11.1-11.4. One may omit certain of these sections and/or add others depending on the
available time and student interest and background. In a second DSP course at the senior
year, one may add Sections 1.5-1.7, 2.5, 8.3, 11.5-11.6, and Chapter 12. In a graduate
course, the entire text can be covered comfortably in one semester.
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1

Sampling and Reconstruction

1.1 Introduction

Digital processing of analog signals proceeds in three stages:

1. The analog signal is digitized, that is, it is sampled and each sample gquantized to
a finite number of bits. This process is called A/D conversion.

2. The digitized samples are processed by a digital signal processor.

3. The resulting output samples may be converted back into analog form by an ana-
log reconstructor (D/A conversion).

A typical digital signal processing system is shown below.

100111011

.. 110010100
AVAVAV sampler 0110 . . . digital 1101 . . . anal AAVAY
g and > signal ™ reconstruetor
analog quantizer digital | processor digital ) analog
nput input output output

The digital signal processor can be programmed to perform a variety of signal pro-
cessing operations, such as filtering, spectrum estimation, and other DSP algorithms.
Depending on the speed and computational requirements of the application, the digital
signal processor may be realized by a general purpose computer, minicomputer, special
purpose DSP chip, or other digital hardware dedicated to performing a particular signal
processing task.

The design and implementation of DSP algorithms will be considered in the rest of
this text. In the first two chapters we discuss the two key concepts of sampling and
quantization, which are prerequisites to every DSP operation.

1.2 Review of Analog Signals

We begin by reviewing some pertinent topics from analog system theory. An analog
signal is described by a function of time, say, x(t). The Fourier transform X (Q2) of x(t)
is the frequency spectrum of the signal:
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X(Q)= Jw x(t) e 2t gt (1.2.1)

where Q is the radian frequency! in [radians/second]. The ordinary frequency [ in
[Hertz] or [cycles/sec] is related to 2 by

Q=2nf (1.2.2)

The physical meaning of X () is brought out by the inverse Fourier transform, which
expresses the arbitrary signal x(t) as a linear superposition of sinusoids of different
frequencies:

pior 402

Py (1.2.3)

x(t)= Jj;X(Q)

The relative importance of each sinusoidal component is given by the quantity X ().
The Laplace transform is defined by

)

X(s):J x(t)e stdrt

— 00

It reduces to the Fourier transform, Eq. (1.2.1), under the substitution s = jQ. The
s-plane pole/zero properties of transforms provide additional insight into the nature of
signals. For example, a typical exponentially decaying sinusoid of the form

x(t)=e Mte/ iy (1) = eMtu(t) & AN AR .t

where s; = —; + j1, has Laplace transform

X(s)=

S—81

'dl 0‘ Re s

with a pole at s = 51, which lies in the left-hand s-plane. Next, consider the response of
a linear system to an input signal x (t):

x(1) linear y(®)
—» system [————»
input h(t) output

TWe use the notation £ to denote the physical frequency in units of [radians/sec], and reserve the
notation w to denote digital frequency in [radians/sample].
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The system is characterized completely by the impulse response function h (t). The
output y(t) is obtained in the time domain by convolution:

y ()= J h(t-t)x(t)dt
or, in the frequency domain by multiplication:

Y(Q)=H((Q)X(Q) (1.2.4)

where H (Q) is the frequency response of the system, defined as the Fourier transform
of the impulse response h (t):

H(Q)= J_w h(t)e 72t gt (1.2.5)

The steady-state sinusoidal response of the filter, defined as its response to sinu-
soidal inputs, is summarized below:

iQ . Q1
) = e linear | y(n) = HQ)e'
- SyStem e
sinusoid in H(Q) sinusoid out

This figure illustrates the filtering action of linear filters, that is, a given frequency
component (2 is attenuated (or, magnified) by an amount H () by the filter. More
precisely, an input sinusoid of frequency 2 will reappear at the output modified in
magnitude by a factor |H (Q)| and shifted in phase by an amount arg H (Q):

X(O)=e s y(t)= H(@)e = |H(Q)|e/mi )

By linear superposition, if the input consists of the sum of two sinusoids of frequen-
cies 21 and Q; and relative amplitudes A; and A,,

x ()= A1/t + Ayelt
then, after filtering, the steady-state output will be
y(t)= A1H (Q1) e’ + A H (Q,) e/t

Notice how the filter changes the relative amplitudes of the sinusoids, but not their
frequencies. The filtering effect may also be seen in the frequency domain using Eq. (1.2.4),
as shown below:

X(Q) M (®)
A Ay
-t HE) S S
- — T @)

> } T, Q
Ql Q2 Ql Q2
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The input spectrum X (£2) consists of two sharp spectral lines at frequencies 7 and
(25, as can be seen by taking the Fourier transform of x (t):

X(Q2)=21mA10(2 — Q1) +21TA6 (2 — Q)
The corresponding output spectrum Y () is obtained from Eq. (1.2.4):
Y(Q)=H@Q)X(Q)=H(Q) (2mA16(Q — Q1) +2TA5(Q — 7))
=2mMAIH(21)6(Q — Q1)+2TAH (22)0(Q2 — Q2)

What makes the subject of linear filtering useful is that the designer has complete
control over the shape of the frequency response H ((2) of the filter. For example, if the
sinusoidal component 2; represents a desired signal and 2, an unwanted interference,
then a filter may be designed that lets £2; pass through, while at the same time it filters
out the Q, component. Such a filter must have H ()= 1 and H (Q,)= 0.

1.3 Sampling Theorem

Next, we study the sampling process, illustrated in Fig. 1.3.1, where the analog signal
x(t) is periodically measured every T seconds. Thus, time is discretized in units of the
sampling interval T

t =nT, n=0,1,2,...

Considering the resulting stream of samples as an analog signal, we observe that
the sampling process represents a very drastic chopping operation on the original signal
x(t), and therefore, it will introduce a lot of spurious high-frequency components into
the frequency spectrum. Thus, for system design purposes, two questions must be
answered:

1. What is the effect of sampling on the original frequency spectrum?
2. How should one choose the sampling interval T?

We will try to answer these questions intuitively, and then more formally using
Fourier transforms. We will see that although the sampling process generates high
frequency components, these components appear in a very regular fashion, that is, ev-
ery frequency component of the original signal is periodically replicated over the entire
frequency axis, with period given by the sampling rate:

fo=— (1.3.1)

This replication property will be justified first for simple sinusoidal signals and then
for arbitrary signals. Consider, for example, a single sinusoid x (t) = e2™/t of frequency
f. Before sampling, its spectrum consists of a single sharp spectral line at f. But after
sampling, the spectrum of the sampled sinusoid x(nT)= e?™f"T will be the periodic
replication of the original spectral line at intervals of fs, as shown in Fig. 1.3.2.
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ideal sampler

analog X0 f"/\ X(nT) sampled

signal AT signal
x() x(nT)
=>
T <
t 0 T2T «ee nT !

Fig. 1.3.1 Ideal sampler.

frequency

-

.I
N O R R O

3 A A o 2 3

Fig. 1.3.2 Spectrum replication caused by sampling.

Note also that starting with the replicated spectrum of the sampled signal, one can-
not tell uniquely what the original frequency was. It could be any one of the replicated
frequencies, namely, f' = f + mfs;, m = 0,+1,+2,.... That is so because any one of
them has the same periodic replication when sampled. This potential confusion of the
original frequency with another is known as aliasing and can be avoided if one satisfies
the conditions of the sampling theorem.

The sampling theorem provides a quantitative answer to the question of how to
choose the sampling time interval T. Clearly, T must be small enough so that signal
variations that occur between samples are not lost. But how small is small enough? It
would be very impractical to choose T too small because then there would be too many
samples to be processed. This is illustrated in Fig. 1.3.3, where T is small enough to
resolve the details of signal 1, but is unnecessarily small for signal 2.

signal 1

signal 2

>
Fig. 1.3.3 Signal 2 is oversampled.

Another way to say the same thing is in terms of the sampling rate f;, which is
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measured in units of [samples/sec] or [Hertz] and represents the “density” of samples
per unit time. Thus, a rapidly varying signal must be sampled at a high sampling rate
fs, whereas a slowly varying signal may be sampled at a lower rate.

1.3.1 Sampling Theorem

A more quantitative criterion is provided by the sampling theorem which states that for
accurate representation of a signal x (t) by its time samples x(nT), two conditions must
be met:

1. The signal x(t) must be bandlimited, that is, its frequency spectrum must be
limited to contain frequencies up to some maximum frequency, say fmax, and no
frequencies beyond that. A typical bandlimited spectrum is shown in Fig. 1.3.4.

2. The sampling rate f; must be chosen to be at least twice the maximum frequency
fmax, that is,

(132

or, in terms of the sampling time interval: T <

meax '

X(

\J
~

-‘flznax 0 f;'nax
Fig. 1.3.4 Typical bandlimited spectrum.

The minimum sampling rate allowed by the sampling theorem, that is, fs = 2fmax, iS
called the Nyquist rate. For arbitrary values of f§, the quantity /2 is called the Nyquist
frequency or folding frequency. It defines the endpoints of the Nyquist frequency inter-
val:

[,%, %] = Nyquist Interval

The Nyquist frequency f/2 also defines the cutoff frequencies of the lowpass analog
prefilters and postfilters that are required in DSP operations. The values of fimax and fs
depend on the application. Typical sampling rates for some common DSP applications
are shown in the following table.
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application fmax fs

geophysical | 500 Hz 1 kHz
biomedical 1 kHz 2 kHz
mechanical 2 kHz 4 kHz

speech 4 kHz 8 kHz
audio 20 kHz | 40 kHz
video 4 MHz 8 MHz

1.3.2 Antialiasing Prefilters

The practical implications of the sampling theorem are quite important. Since most
signals are not bandlimited, they must be made so by lowpass filtering before sampling.

In order to sample a signal at a desired rate f; and satisfy the conditions of the
sampling theorem, the signal must be prefiltered by a lowpass analog filter, known as
an antialiasing prefilter. The cutoff frequency of the prefilter, fimax, must be taken to
be at most equal to the Nyquist frequency fs/2, that is, fmax < fs/2. This operation is
shown in Fig. 1.3.5.

The output of the analog prefilter will then be bandlimited to maximum frequency
fmax and may be sampled properly at the desired rate fs. The spectrum replication
caused by the sampling process can also be seen in Fig. 1.3.5. It will be discussed in
detail in Section 1.5.

input spectrum prefiltered spectrum replicated
A A A
[ # o —prefilter [ spectrum
R | S ( Y Y \J
0 12 0 f2 -f, 0 f.
x,,(0) analog x(f) sampler x(n
——— > lowpass — and ————» to DSP
analog prefilter bandlimited quantizer digital
signal signal signal
cutoff f . =f./2 rate f,

Fig. 1.3.5 Antialiasing prefilter.

It should be emphasized that the rate fs must be chosen to be high enough so that,
after the prefiltering operation, the surviving signal spectrum within the Nyquist interval
[—fs/2,fs/2] contains all the significant frequency components for the application at
hand.

Example 1.3.1: In a hi-fi digital audio application, we wish to digitize a music piece using a
sampling rate of 40 kHz. Thus, the piece must be prefiltered to contain frequencies up
to 20 kHz. After the prefiltering operation, the resulting spectrum of frequencies is more
than adequate for this application because the human ear can hear frequencies only up to
20 kHz. m]
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Example 1.3.2: Similarly, the spectrum of speech prefiltered to about 4 kHz results in very
intelligible speech. Therefore, in digital speech applications it is adequate to use sampling
rates of about 8 kHz and prefilter the speech waveform to about 4 kHz. O

What happens if we do not sample in accordance with the sampling theorem? If we
undersample, we may be missing important time variations between sampling instants
and may arrive at the erroneous conclusion that the samples represent a signal which
is smoother than it actually is. In other words, we will be confusing the true frequency
content of the signal with a lower frequency content. Such confusion of signals is called
aliasing and is depicted in Fig. 1.3.6.

. aliased signal
true signal

0 T 2T 3T 4T 5T 6T 7T 8T 9T 10T

Fig. 1.3.6 Aliasing in the time domain.

1.3.3 Hardware Limits

Next, we consider the restrictions imposed on the choice of the sampling rate fs by the
hardware. The sampling theorem provides a lower bound on the allowed values of f5.
The hardware used in the application imposes an upper bound.

In real-time applications, each input sample must be acquired, quantized, and pro-
cessed by the DSP, and the output sample converted back into analog format. Many
of these operations can be pipelined to reduce the total processing time. For example,
as the DSP is processing the present sample, the D/A may be converting the previous
output sample, while the A/D may be acquiring the next input sample.

In any case, there is a total processing or computation time, say Tproc Seconds, re-
quired for each sample. The time interval T between input samples must be greater
than Tproc; otherwise, the processor would not be able to keep up with the incoming
samples. Thus,

T = Tproc
or, expressed in terms of the computation or processing rate, fproc = 1/Tproc, We obtain

the upper bound f§ < fproc, which combined with Eq. (1.3.2) restricts the choice of fs to
the range:

meax st Sfproc

In succeeding sections we will discuss the phenomenon of aliasing in more detail,
provide a quantitative proof of the sampling theorem, discuss the spectrum replication
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property, and consider the issues of practical sampling and reconstruction and their
effect on the overall quality of a digital signal processing system. Quantization will be
considered later on.

1.4 Sampling of Sinusoids

The two conditions of the sampling theorem, namely, that x(t) be bandlimited and
the requirement [y > 2fmax, can be derived intuitively by considering the sampling of
sinusoidal signals only. Figure 1.4.1 shows a sinusoid of frequency f,

x(t)= cos(21Tft)

that has been sampled at the three rates: fs = 8f, fs = 4f, and fs = 2f. These rates
correspond to taking 8, 4, and 2 samples in each cycle of the sinusoid.

NS
Vo

=8 =4 =2

Fig. 1.4.1 Sinusoid sampled at rates f; = 8f, 4f, 2f.

Simple inspection of these figures leads to the conclusion that the minimum ac-
ceptable number of samples per cycle is two. The representation of a sinusoid by two
samples per cycle is hardly adequate,t but at least it does incorporate the basic up-down
nature of the sinusoid. The number of samples per cycle is given by the quantity fs/f :

& _ samples/sec _ samples

f cycles/sec ~ cycle

Thus, to sample a single sinusoid properly, we must require

% > 2 samples/cycle = fs = 2f (1.4.1)

Next, consider the case of an arbitrary signal x(t). According to the inverse Fourier
transform of Eq. (1.2.3), x(t) can be expressed as a linear combination of sinusoids.
Proper sampling of x(t) will be achieved only if every sinusoidal component of x(t) is
properly sampled.

This requires that the signal x(t) be bandlimited. Otherwise, it would contain si-
nusoidal components of arbitrarily high frequency f, and to sample those accurately,
we would need, by Eq. (1.4.1), arbitrarily high rates fs. If the signal is bandlimited to

TIt also depends on the phase of the sinusoid. For example, sampling at the zero crossings instead of at
the peaks, would result in zero values for the samples.
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some maximum frequency fmax, then by choosing fs > 2fmax, We are accurately sam-
pling the fastest-varying component of x(t), and thus a fortiori, all the slower ones. As
an example, consider the special case:

X(t)= Ajcos(2mf1t) +As cos (2TTfot) + - - + + Amax €OS (2TTfmaxt)

where f; are listed in increasing order. Then, the conditions

2f1<2fo <+ < 2fmax < fs

imply that every component of x(t), and hence x(t) itself, is properly sampled.

1.4.1 Analog Reconstruction and Aliasing

Next, we discuss the aliasing effects that result if one violates the sampling theorem
conditions (1.3.2) or (1.4.1). Consider the complex version of a sinusoid:

x(t) = eth _ eZTrjft
and its sampled version obtained by setting t = nT,

x(nT) = ejQTn _ e2rrjan

Define also the following family of sinusoids, for m = 0, +1, £2,...,

and their sampled versions,

Xm (nT) = 2™ +mf)Tn

Using the property ;T = 1 and the trigonometric identity,

eZTrjmeTn _ eanmn =1
we find that, although the signals x;,, (t) are different from each other, their sampled

values are the same; indeed,

Xm (nT) = e2rrj(f+mfs)Tn _ eZTrjane2rrjmeTn _ lerjan = x(nT)

In terms of their sampled values, the signals x,, (t) are indistinguishable, or aliased.
Knowledge of the sample values x(nT)= X,; (nT) is not enough to determine which
among them was the original signal that was sampled. It could have been any one of the
Xm (t). In other words, the set of frequencies,

f, f=fs, fx2fs, ..., fxmfs, ... (1.4.2)

are equivalent to each other. The effect of sampling was to replace the original fre-
quency f with the replicated set (1.4.2). This is the intuitive explanation of the spectrum
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ideal ideal
sampler reconstructor
A

x(1) T x(nT) x,(5)
— > i ————
analog sampled 0 analog
signal signal | /2 Y [/ | signal

rate f, lowpass filter

cutoff =f,/2

Fig. 1.4.2 Ideal reconstructor as a lowpass filter.

replication property depicted in Fig. 1.3.2. A more mathematical explanation will be
given later using Fourier transforms.

Given that the sample values x(nT) do not uniquely determine the analog signal
they came from, the question arises: What analog signal would result if these samples
were fed into an analog reconstructor, as shown in Fig. 1.4.2?

We will see later that an ideal analog reconstructor extracts from a sampled signal all
the frequency components that lie within the Nyquist interval [—fs/2, fs/2] and removes
all frequencies outside that interval. In other words, an ideal reconstructor acts as a
lowpass filter with cutoff frequency equal to the Nyquist frequency f/2.

Among the frequencies in the replicated set (1.4.2), there is a unique one that lies
within the Nyquist interval.t It is obtained by reducing the original f modulo-f5, that is,
adding to or subtracting from f enough multiples of f until it lies within the symmetric
Nyquist interval [—f5/2,fs/2]. We denote this operation by*

fa = f mod(fs) (1.4.3)

This is the frequency, in the replicated set (1.4.2), that will be extracted by the analog
reconstructor. Therefore, the reconstructed sinusoid will be:

Xq ()= e?mlat

It is easy to see that f; = f only if f lies within the Nyquist interval, that is, only if
If| < fs/2, which is equivalent to the sampling theorem requirement. If f lies outside
the Nyquist interval, that is, |f| > fs/2, violating the sampling theorem condition, then
the “aliased” frequency f, will be different from f and the reconstructed analog signal
Xq (t) will be different from x(t), even though the two agree at the sampling times,
Xa(nT)=x(nT).

It is instructive also to plot in Fig. 1.4.3 the aliased frequency f; = f mod (fs) versus
the true frequency f. Observe how the straight line e = f is brought down in segments
by parallel translation of the Nyquist periods by multiples of f5.

In summary, potential aliasing effects that can arise at the reconstruction phase of
DSP operations can be avoided if one makes sure that all frequency components of the
signal to be sampled satisfy the sampling theorem condition, |f| < fs/2, that is, all

TThe only exception is when it falls exactly on the left or right edge of the interval, f = +f/2.
*This differs slightly from a true modulo operation; the latter would bring f into the right-sided Nyquist
interval [0, fs].
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A /
£, =fmod(f,) |
v |
W |
Nz o ;
/] L
I S72 o |r27 | of. |
! SR

Fig. 1.4.3 [ mod(f,) versus f.

frequency components lie within the Nyquist interval. This is ensured by the lowpass
antialiasing prefilter, which removes all frequencies beyond the Nyquist frequency f/2,
as shown in Fig. 1.3.5.

Example 1.4.1: Consider a sinusoid of frequency f = 10 Hz sampled at arate of fg = 12 Hz. The
sampled signal will contain all the replicated frequencies 10+ m12 Hz, m = 0, +1, +2,...,
or,

..,—26, —14, -2, 10, 22, 34, 46,...

and among these only f; = 10 mod(12)= 10—12 = —2 Hz lies within the Nyquist interval
[—6,6] Hz. This sinusoid will appear at the output of a reconstructor as a —2 Hz sinusoid
instead of a 10 Hz one.

On the other hand, had we sampled at a proper rate, that is, greater than 2f = 20 Hz, say
at fg = 22 Hz, then no aliasing would result because the given frequency of 10 Hz already
lies within the corresponding Nyquist interval of [-11,11] Hz. O

Example 1.4.2: Suppose amusic piece is sampled at rate of 40 kHz without using a prefilter with
cutoff of 20 kHz. Then, inaudible components having frequencies greater than 20 kHz can
be aliased into the Nyquist interval [—20, 20] distorting the true frequency components in
that interval. For example, all components in the inaudible frequency range 20 < f < 60
kHz will be aliased with —20 = 20—-40 < f' —fs < 60 —40 = 20 kHz, which are audible. O

Example 1.4.3: The following five signals, where t is in seconds, are sampled at a rate of 4 Hz:
—sin(1471t), -—sin(67rt), sin(27rt), sin(107rt), sin(187rt)

Show that they are all aliased with each other in the sense that their sampled values are
the same.
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Solution: The frequencies of the five sinusoids are:

They differ from each other by multiples of f¢ = 4 Hz. Their sampled spectra will be
indistinguishable from each other because each of these frequencies has the same periodic
replication in multiples of 4 Hz.

Writing the five frequencies compactly:
fm=1+4m, m=-2,-1,0,1,2
we can express the five sinusoids as:
Xm (t) = sin(21rfit) = sin(21(1 + 4m)t), m=-2,-1,0,1,2
Replacing t = nT = n/fs = n/4 sec, we obtain the sampled signals:

Xm (nT) =sin(2mr (1 +4m)nT)=sin(2w (1 + 4m)n/4)

=sin(2mTn/4 + 2tmn) = sin(21tn/4)

which are the same, independently of m. The following figure shows the five sinusoids
over the interval 0 < t < 1 sec.

They all intersect at the sampling time instants t = nT = n/4 sec. We will reconsider this
example in terms of rotating wheels in Section 1.4.2. O

Example 1.4.4: Let x(t) be the sum of sinusoidal signals

Xx(t)=4 + 3 cos(7rt) +2 cos(27rt) + cos(371Tt)

where t is in milliseconds. Determine the minimum sampling rate that will not cause any
aliasing effects, that is, the Nyquist rate. To observe such aliasing effects, suppose this
signal is sampled at half its Nyquist rate. Determine the signal x, (t) that would be aliased
with x(t).

Solution: The frequencies of the four terms are: f; =0, f>» = 0.5 kHz, f3 = 1 kHz, and f4, = 1.5
kHz (they are in kHz because t is in msec). Thus, finax = f4 = 1.5 kHz and the Nyquist rate
will be 2fmax = 3 kHz. If x(t) is now sampled at half this rate, that is, at f; = 1.5 kHz,
then aliasing will occur. The corresponding Nyquist interval is [—0.75,0.75] kHz. The
frequencies f; and [ are already in it, and hence they are not aliased, in the sense that
fia = f1 and f24 = f>. But f3 and f4 lie outside the Nyquist interval and they will be aliased
with
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f3a = fsmod(fs)= 1mod(1.5)=1—1.5 = —0.5 kHz
faa = famod(fs)=1.5mod(1.5)= 1.5 - 1.5 = 0 kHz

The aliased signal x, (t) is obtained from x (t) by replacing f1, f2, 3, f4 by f1a, f2a, f3a, fa-
Thus, the signal

Xx(t)=4cos(21rf1t) +3 cos (27rf>t) +2 cos (2Trf3t) + cos (27Tf4t)

will be aliased with

Xq (t) = 4cos(21rf14t) +3 cos (2TTf241) +2 cOS (2TTf34t) + cOS (2TTf44t)
=4 + 3 cos(1rt) +2 cos(—T1rt) + cos(0)
=5+ 5cos(1t)
The signals x(t) and x, (t) are shown below. Note that they agree only at their sampled
values, that is, X, (nT)= x(nT). The aliased signal x, (t) is smoother, that is, it has lower

frequency content than x (t) because its spectrum lies entirely within the Nyquist interval,
as shown below:

o

0 T 2T 3T 4T 5T 6T 7T 8T 9T

The form of x, (t) can also be derived in the frequency domain by replicating the spectrum
of x(t) atintervals of f; = 1.5 kHz, and then extracting whatever part of the spectrum lies
within the Nyquist interval. The following figure shows this procedure.

ideal
<4 reconstructor
Y
S ? f
51 1.5 kHz

Each spectral line of x(t) is replicated in the fashion of Fig. 1.3.2. The two spectral lines
of strength 1/2 at f4 = +1.5 kHz replicate onto f = 0 and the amplitudes add up to give a
total amplitude of (4 + 1/2 4+ 1/2)= 5. Similarly, the two spectral lines of strength 2/2 at
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f3 = £1 kHz replicate onto f = ¥0.5 kHz and the amplitudes add to give (3/2+2/2)= 2.5
at f = +0.5 kHz. Thus, the ideal reconstructor will extract f; = 0 of strength 5 and
f> = 0.5 of equal strengths 2.5, which recombine to give:

5 + 2.5e%T05t | D 5072T05t — 5 4 5 cos(TTt)

This example shows how aliasing can distort irreversibly the amplitudes of the original
frequency components within the Nyquist interval. [m}

Example 1.4.5: The signal
x(t)= sin(1rt) +4 sin(37rt) cos (271Tt)

where t is in msec, is sampled at a rate of 3 kHz. Determine the signal x, (t) aliased with
x(t). Then, determine two other signals x; (t) and x; (t) that are aliased with the same
Xq (1), that is, such that x; (nT)= x> (nT)= x4 (nT).

Solution: To determine the frequency content of x (t), we must express it as a sum of sinusoids.
Using the trigonometric identity 2 sina cosb = sin(a + b) + sin(a — b), we find:

x(t) = sin(1rt) +2[sin(37rt + 277t) + sin (377t — 277t) | = 3 sin(77t) +2 sin(577t)

Thus, the frequencies present in x(t) are f; = 0.5 kHz and f> = 2.5 kHz. The first already
lies in the Nyquist interval [—1.5,1,5] kHz so that fi, = f1. The second lies outside and
can be reduced mod f; to give >4 = f> mod(f;) = 2.5mod (3)= 2.5 — 3 = —0.5. Thus, the
given signal will “appear” as:

Xq (t) = 3sin(217f14t) +2 sin (27T 24t)
= 3sin(1rt) +2 sin(—7rt) = 3 sin(1rt) —2 sin (17t)

= sin(7Tt)

To find two other signals that are aliased with x, (t), we may shift the original frequencies
f1, f> by multiples of fs. For example,

X1 (t) = 3sin(771t) +2 sin(57tt)

Xp (t) = 3sin(137rt) +2sin(117Tt)

where we replaced {f1,f2} by {f1 +fs, 2} = {3.5,2.5} for x; (t), and by {f1 + 2fs, [+ [} =
{6.5,5.5} for x» (t). O

Example 1.4.6: Consider a periodic square wave with period Ty = 1 sec, defined within its basic
period 0 <t <1 by

A
1, for 0<t<0.5 1
x(t)= -1, for 05<t<1 14
0, for t=0,0.5,1 0 )51
-1

where t is in seconds. The square wave is sampled at rate f; and the resulting samples are
reconstructed by an ideal reconstructor as in Fig. 1.4.2. Determine the signal x, (t) that
will appear at the output of the reconstructor for the two cases f; = 4 Hz and fs = 8 Hz.
Verify that x,; (t) and x(t) agree at the sampling times t = nT.
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Solution: The Fourier series expansion of the square wave contains odd harmonics at frequen-
cies fm =m/To =mHz, m=1,3,5,7,.... Itis given by

x(t) = Z by sin(2tmt) =
m=1,3,5,... (1.4.4)
= by sin(271tt) +b3 sin(67Tt) +bs sin (10717t) + - - -
where b,, = 4/(1tm), m = 1,3,5,.... Because of the presence of an infinite number of

harmonics, the square wave is not bandlimited and, thus, cannot be sampled properly at
any rate. For the rate fs = 4 Hz, only the f; = 1 harmonic lies within the Nyquist interval
[—2,2] Hz. For the rate fs = 8 Hz, only f; = 1 and f3 = 3 Hz lie in [—4,4] Hz. The
following table shows the true frequencies and the corresponding aliased frequencies in
the two cases:

fs f 1 3 5 7 9 11 13 15

4Hz | fmod(4) 1 -1 1 -1 1 -1 1 -1
8Hz | fmod(8) 1 3 -3 -1 1 3 -3 -1

Note the repeated patterns of aliased frequencies in the two cases. If a harmonic is aliased
with =f; = %1, then the corresponding term in Eq. (1.4.4) will appear (at the output of the
reconstructor) as sin(*27rf;t) = +sin(27rt). And, if it is aliased with +f3 = +3, the term
will appear as sin(+27rf3t) = = sin(671rt). Thus, for f; = 4, the aliased signal will be
Xq (t) = by sin(21tt) —b3 sin(217t) +b5 sin(21t) —b7 sin(210t) + - - -
= (by —b3+bs—b; +bg—bi1 +---)sin(21t)

= Asin(21rt)

where

> 4 2 1
_go(b“‘*k_b“‘“‘ _E§[1+4k 3+4k] (14.5)

Similarly, for fg = 8, grouping together the 1 and 3 Hz terms, we find the aliased signal

Xq(t) = (by — b7 + bg — bys + - - - )sin(27Tt) +
+ (b3 - bg + bll — blg + .- )sin(6Trt)
= Bsin(21rt) +C sin(677t)
where

00

Fratee
1+8k 7+8k

=IES

= Z (b1+8k - b7+8k) =

=0 k=

=~
(=]

(1.4.6)

4 1
(bssk = bs 7?%[3+8k 5+8k]

(@)
I
Me

>~
I
(=]
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There are two ways to determine the aliased coefficients A, B, C. One is to demand that
the sampled signals x,;(nT) and x(nT) agree. For example, in the first case we have
T = 1/fs = 1/4, and therefore, x, (nT)= Asin(21tn/4)= Asin(mrn/2). The condition
Xa(nT)= x(nT) evaluated at n = 1 implies A = 1. The following figure shows x (t), x, (),
and their samples:

¥~

0 1/4 172 1

Similarly, in the second case we have T = 1/fy = 1/8, resulting in the sampled aliased
signal x,; (nT)= Bsin(1mrn/4)+C sin(31tn/4). Demanding the condition x, (nT)= x(nT)
atn = 1,2 gives the two equations
Bsin(1r/4) +Csin(31/4) = 1 B+C=+2
Bsin(rr/2)+Csin(31/2)=1 B-C=1

which can be solved to give B = (/2 +1)/2 and C = (/2 — 1) /2. The following figure
shows x(t), x, (t), and their samples:

A\

0 18 172 1

The second way of determining A, B, C is by evaluating the infinite sums of Eqs. (1.4.5)
and (1.4.6). All three are special cases of the more general sum:

4 & 1 1
b(m, M)= ;go[mm _M—m+Mk]

with M > m > 0. It can be computed as follows. Write

1 1
m+Mk M-m+Mk

on (e—mx _ 27(M7M)X)67ka dx
0

then, interchange summation and integration and use the geometric series sum (for x > 0)

00
S e Mk = 1
e =
1—eMx
k=0

to get
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e—mx _ e—(M—m)x

4 [or]
b, M= |

Looking this integral up in a table of integrals [30], we find:

b(m,M)= %CO’[ (%)

The desired coefficients A, B, C are then:

A= b(1,4):cot(g) -1

1 s V2+1
B—b(l,8)—§€0t(§)— 5

1 3w, V/2-1
C—b(g,g)—ECOt(?)— 5

The above results generalize to any sampling rate fy = M Hz, where M is a multiple of 4.
For example, if fs = 12, we obtain

Xqa ()= b(1,12)sin(21tt) +b (3,12)sin(6717t) +b (5,12) sin(107Tt)
and more generally

Xq (1) = Z b(m, M)sin(2Ttmt)
m=123,...,(M/2) 1

The coefficients b (m, M) tend to the original Fourier series coefficients b, in the continuous-
time limit, M — co. Indeed, using the approximation cot(x)~ 1/x, valid for small x, we
obtain the limit

4 1 4

= - % _p
M mm/M 1m m

lim b(m,M)=
M—co

The table below shows the successive improvement of the values of the aliased harmonic
coefficients as the sampling rate increases:

coefficients | 4 Hz 8 Hz 12Hz | 16 Hz 0
by 1 1.207 1.244 1.257 1.273
bs - 0.207 | 0.333 0.374 | 0.424
bs - - 0.089 | 0.167 | 0.255
b, - - - 0.050 0.182

In this example, the sampling rates of 4 and 8 Hz, and any multiple of 4, were chosen so
that all the harmonics outside the Nyquist intervals got aliased onto harmonics within the
intervals. For other values of fs, such as fy = 13 Hz, it is possible for the aliased harmonics
to fall on non-harmonic frequencies within the Nyquist interval; thus, changing not only
the relative balance of the Nyquist interval harmonics, but also the frequency values. 0O
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When we develop DFT algorithms, we will see that the aliased Fourier series coef-
ficients for the above type of problem can be obtained by performing a DFT, provided
that the periodic analog signal remains a periodic discrete-time signal after sampling.

This requires that the sampling frequency fs be an integral multiple of the fundamen-
tal harmonic of the given signal, that is, f; = Nf;. In such a case, the aliased coefficients
can be obtained by an N-point DFT of the first N time samples x(nT),n =0,1,...,N—1
of the analog signal. See Section 9.7.

Example 1.4.7: A sound wave has the form:

x(t) = 2A cos(107rt) +2B cos (307Tt)
+ 2C cos (507rt) +2D cos (607rt) +2F cos (907rt) +2F cos(1257Tt)

where t is in milliseconds. What is the frequency content of this signal? Which parts of it
are audible and why?

This signal is prefiltered by an analog prefilter H (f). Then, the output y (t) of the pre-
filter is sampled at a rate of 40 kHz and immediately reconstructed by an ideal analog
reconstructor, resulting into the final analog output y, (t), as shown below:

x(0) refilter | @) y(nT) V(D)
! H(f) - ggml;)ii o recgﬁsgl?ugctor
analog analog digital analog

Determine the output signals y (t) and y, (t) in the following cases:

(a) When there is no prefilter, that is, H (f) = 1 for all f.
(b) When H (f) is the ideal prefilter with cutoff f5/2 = 20 kHz.

(c) When H (f) is a practical prefilter with specifications as shown below:

H(f) A Analog Prefilter

(0 dB)

.(-60 dB)

1 60 dB/octave

f

oy

0 20 40 60 80 kHz

That is, it has a flat passband over the 20 kHz audio range and drops monotonically
at a rate of 60 dB per octave beyond 20 kHz. Thus, at 40 kHz, which is an octave
away, the filter’s response will be down by 60 dB.

For the purposes of this problem, the filter’s phase response may be ignored in deter-
mining the output y (t). Does this filter help in removing the aliased components?

What happens if the filter’s attenuation rate is reduced to 30 dB/octave?

Solution: The six terms of x(t) have frequencies:
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fa =5kHz fc=25kHz  fgp=45kHz
fB:ISkHz fD:30kHZ fFZGZ.SkHZ

Only f4 and fp are audible; the rest are inaudible. Our ears filter out all frequencies beyond
20 kHz, and we hear x(t) as though it were the signal:

X1 (t)= 2A cos(107rt) +2B cos (307Tt)

Each term of x(t) is represented in the frequency domain by two peaks at positive and
negative frequencies, for example, the A-term has spectrum:

2A cos(2mfat) = Ae?™iAt 4 Ao 2Mlat . AS(f —fA)+AS(f +fa)
Therefore, the spectrum of the input x(t) will be as shown below:
ideal prefilter

r  E DC B A|A BYCD E F

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, I S

-70 -60 -50 -40 -30 -20 -10 O 10 20 30 40 50 60 70 kHz

Nyquist >
interval

The sampling process will replicate each of these peaks at multiples of fs = 40 kHz. The
four terms C, D, E, F lie outside the [—20,20] kHz Nyquist interval and therefore will be
aliased with the following frequencies inside the interval:
fc=25 = fca=fcmod(fs)=fc—fs=25-40=-15
fo =30 = fpa=fpmod (fs)=fp—fs=30-40=-10
fe =45 =  fra=femod (fs)=fr—fs=45-40=5
fr=625 = frq=frmod(fs)=fr—2fs =625-2x40=-17.5
In case (a), if we do not use any prefilter at all, we will have y (t)= x(t) and the recon-
structed signal will be:
Ya(t) = 2A cos(107rt) +2B cos (307Tt)
+ 2C cos(—=2115t) +2D cos(—21r101)
+ 2E cos(21t5t) +2F cos(—271r17.5t)
=2(A+ E)cos(10mrt)+2(B + C)cos(307rt)
+ 2D cos(2071rt) +2F cos(3571tt)
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where we replaced each out-of-band frequency with its aliased self, for example,

2C cos (2mrfct) — 2C cos (2Tfc,at)

The relative amplitudes of the 5 and 15 kHz audible components have changed and, in
addition, two new audible components at 10 and 17.5 kHz have been introduced. Thus,
Va (t) will sound very different from x (t).

In case (b), if an ideal prefilter with cutoff fs/2 = 20 kHz is used, then its output will be
the same as the audible part of x(t), that is, y (t) = x; (t). The filter’s effect on the input
spectrum is to remove completely all components beyond the 20 kHz Nyquist frequency,
as shown below:

ideal prefilter

-70 -60 -50 -40 -30 -20 -10 O 10 20 30 40 50 60 70 kHz

Nyquist

interval

Because the prefilter’s output contains no frequencies beyond the Nyquist frequency, there
will be no aliasing and after reconstruction the output would sound the same as the input,
Ya(t)=y ()= x1(1).

In case (c), if the practical prefilter H (f) is used, then its output y (t) will be:

y(t) = 2A|H(fa)|cos(101rt) +2B|H (fp) | cos (307rt)
+ 2C|H (fc) | cos(501tt) +2D|H (fp) | cos (607Tt) (1.4.7)
+ 2E|H (fg)| cos(901Tt) +2F |H (fF) | cos (1257Tt)

This follows from the steady-state sinusoidal response of a filter applied to the individual
sinusoidal terms of x (t), for example, the effect of H(f) on A is:

2A cos (2Tfat) 25 2A1H (f4) | cos (2mfat + 0 (F4))

where in Eq. (1.4.7) we ignored the phase response 0 (f4)= arg H(f4). The basic conclu-
sions of this example are not affected by this simplification.

Note that Eq. (1.4.7) applies also to cases (a) and (b). In case (a), we can replace:

[H(fa)l = 1H(fp)| = [H(fc)| = [H(fp)| = [H(fp)| = |[H(fr)| = 1

and in case (b):

[H(fa) | =1H(fg)I =1, |H(fc)l=IH(fp)| =IH(fg)| =|H(fF)|=0
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In case (c), because f4 and fp are in the filter’s passband, we still have

[H(fa)| = 1H(fg)] =1

To determine |H (fc) |, |H (fp) |, |IH(fe) |, |H (fr)], we must find how many octavest away
the frequencies f¢, fp, fr, fr are from the fs/2 = 20 kHz edge of the passband. These are

given by:
log, (fsf;2> = log, (;—(5)) =0.322
log, (fsf%) = log, (?) = 0.585
log, (fjfZ) = log, (;—5) =1.170

2.
log, (52) = log, (%) = 1.644

and therefore, the corresponding filter attenuations will be:

at f¢: 60 dB/octave X 0.322 octaves = 19.3 dB
at fp: 60 dB/octave X 0.585 octaves = 35.1 dB
at fg: 60 dB/octave x 1.170 octaves = 70.1 dB

at ff: 60 dB/octave X 1.644 octaves = 98.6 dB

By definition, an amount of A dB attenuation corresponds to reducing |H (f) | by a factor
10-4/20, For example, the relative drop of |H (f) | with respect to the edge of the passband
|H (fs/2)] is A dB if:

[H{) a0
H/2)]

Assuming that the passband has 0 dB normalization, |H (fs/2)| = 1, we find the following
values for the filter responses:

|H(fC)| — 10—19.3/20 — é
< 1
H =1 —-35.1/20 _ _~
|[H(fp)| =10 ==
1
— —70.1/20 _
[H(fg)| =10 3234
1
H — 10-98:6/20 _
[H(fp)| =10 85114

It follows from Eq. (1.4.7) that the output y (t) of the prefilter will be:

TThe number of octaves is the number of powers of two, that is, if f> = 2Vf; = v = log, (f2/f1).
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y(t) = 2A cos(107rt) +2B cos (307tt)

2C 2D
+ o cos(SOTrt)-ﬁ-ﬁ cos (60T1Tt) (1.4.8)
2E 2F
+ 3234 cos(90Trl‘)+85114 cos(1257tt)
Its spectrum is shown below:
(-19 dB)
/ (-35 dB)
pC B A |lA B,,,,\CD /(-70 dB)
E k- F /(—98 dB)
A —
-70 -60 -50 -40 -30 -20 -10 O 10 20 30 40 50 60 70 kHz
Nyquist »
interval

Notice how the inaudible out-of-band components have been attenuated by the prefilter,
so that when they get aliased back into the Nyquist interval because of sampling, their
distorting effect will be much less. The wrapping of frequencies into the Nyquist interval
is the same as in case (a). Therefore, after sampling and reconstruction we will get:

E C
yal(t) =2 (A + @) cos (1071Tt) +2 (B + 5) cos (307tt)

2D
+ —— cos(207tt) + cos (357tt)

2F
57 85114

Now, all aliased components have been reduced in magnitude. The component closest
to the Nyquist frequency, namely f¢, causes the most distortion because it does not get
attenuated much by the filter.

We will see in Section 1.5.3 that the prefilter’s rate of attenuation in dB/octave is related
to the filter’s order N by & = 6N so that &« = 60 dB/octave corresponds to 60 = 6N or
N = 10. Therefore, the given filter is already a fairly complex analog filter. Decreasing the
filter’'s complexity to & = 30 dB/octave, corresponding to filter order N = 5, would reduce
all the attenuations by half, that is,

at fc: 30 dB/octave x 0.322 octaves = 9.7 dB

at fp: 30 dB/octave X 0.585 octaves = 17.6 dB

at fg: 30 dB/octave X 1.170 octaves = 35.1 dB

at fr: 30 dB/octave X 1.644 octaves = 49.3 dB

and, in absolute units:
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[H (fe)] = 1075720 =

1
H — 10717.6/20 —
[H(fp)l -c
1
H — 10735.1/20 —
[H (fe) | -
1
_ 10-493/20 _
[H(fF)] =10 592

Therefore, the resulting signal after reconstruction would be:

Va(t) =2 (A + %) cos(1071rt) +2 (B + %) cos (307tt)
D oF (1.4.9)
+ 73 cos (2071tt) +@ cos(3571Tt)

Now the C and D terms are not as small and aliasing would still be significant. The situation
can be remedied by oversampling, as discussed in the next example. m}

Example 1.4.8: Oversampling can be used to reduce the attenuation requirements of the pre-
filter, and thus its order. Oversampling increases the gap between spectral replicas reduc-
ing aliasing and allowing less sharp cutoffs for the prefilter.

For the previous example, if we oversample by a factor of 2, f; = 2 X 40 = 80 kHz, the
new Nyquist interval will be [—-40,40] kHz. Only the fg = 45 kHz and fr = 62.5 kHz
components lie outside this interval, and they will be aliased with
fra =fe—fs =45—-80=-35kHz
fra=1fr—fs=625-80=-17.5kHz
Only fF 4 lies in the audio band and will cause distortions, unless we attenuate fr using a
prefilter before it gets wrapped into the audio band. Without a prefilter, the reconstructed
signal will be:
Va(t) = 2A cos(107rt) +2B cos(307tt)
+ 2C cos (501rt) +2D cos (607Tt)
+ 2E cos(—21r35t) +2F cos(—27117.5t)
= 2A cos(107rt) +2B cos(307tt)
+ 2C cos (501tt) +2D cos (607rt) +2F cos (707rt) +2F cos(357Tt)

The audible components in y, (t) are:
y1(t)=2A cos(107rt) +2B cos(3071rt) +2F cos(357Tt)

Thus, oversampling eliminated almost all the aliasing from the desired audio band. Note
that two types of aliasing took place here, namely, the aliasing of the E component which



1.4. SAMPLING OF SINUSOIDS 25

remained outside the relevant audio band, and the aliasing of the F component which does
represent distortion in the audio band.

Of course, one would not want to feed the signal y, (t) into an amplifier/speaker system

because the high frequencies beyond the audio band might damage the system or cause

nonlinearities. (But even if they were filtered out, the F component would still be there.)
O

Example 1.4.9: Oversampling and Decimation. Example 1.4.8 assumed that sampling at 80 kHz
could be maintained throughout the digital processing stages up to reconstruction. There
are applications however, where the sampling rate must eventually be dropped down to
its original value. This is the case, for example, in digital audio, where the rate must be
reduced eventually to the standardized value of 44.1 kHz (for CDs) or 48 kHz (for DATS).

When the sampling rate is dropped, one must make sure that aliasing will not be reintro-
duced. In our example, if the rate is reduced back to 40 kHz, the C and D components,
which were inside the [—40,40] kHz Nyquist interval with respect to the 80 kHz rate,
would find themselves outside the [—20,20] kHz Nyquist interval with respect to the 40
kHz rate, and therefore would be aliased inside that interval, as in Example 1.4.7.

To prevent C and D, as well as E, from getting aliased into the audio band, one must
remove them by a lowpass digital filter before the sampling rate is dropped to 40 kHz.
Such a filter is called a digital decimation filter. The overall system is shown below.

80 80 40
X0 [ orefier | 7@ KHz [ | kHz kHz Va0
prefilter _| 80 kHz .| digital _ | down- _ | recon-
H(f) sampler filter sampler structor
analog analog

The downsampler in this diagram reduces the sampling rate from 80 down to 40 kHz by
throwing away every other sample, thus, keeping only half the samples. This is equivalent
to sampling at a 40 kHz rate.

The input to the digital filter is the sampled spectrum of y (t), which is replicated at mul-
tiples of 80 kHz as shown below.

A /digital lowpass filter \

prefilter .. —

A B! ‘!B A A B ' B A
. C C | . C C

i & 3D ,/ Dy 7% A4k &k D DLk &
| | i it
| EE i F| EE P
Aol \f f

0 10 20 30 40 50 60 70 80 90 100 120 140 160 kHz

We have also assumed that the 30 dB/octave prefilter is present. The output of the digital
filter will have spectrum as shown below.
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/digital lowpass filter \

(49 dB)
Ey 1
. CDE EDC|

0 10 20 30 40 50 60 70 80 90 100 120 140 160 kHz

The digital filter operates at the oversampled rate of 80 kHz and acts as a lowpass filter
within the [—40,40] kHz Nyquist interval, with a cutoff of 20 kHz. Thus, it will remove the
C, D, and E components, as well as any other component that lies between 20 < |f| < 60
kHz.

However, because the digital filter is periodic in f with period fs = 80 kHz, it cannot remove
any components from the interval 60 < f < 100. Any components of the analog input y (t)
that lie in that interval would be aliased into the interval 60 —80 < f — f; < 100 — 80, which
is the desired audio band —20 < f — fs < 20. This is what happened to the F component,
as can be seen in the above figure.

The frequency components of y(t) in 60 < |f| < 100 can be removed only by a pre-
filter, prior to sampling and replicating the spectrum. For example, our low-complexity
30 dB/octave prefilter would provide 47.6 dB attenuation at 60 kHz. Indeed, the number
of octaves from 20 to 60 kHz is log, (60/20)= 1.585 and the attenuation there will be
30 dB/octave x 1.584 octaves = 47.6 dB.

The prefilter, being monotonic beyond 60 kHz, would suppress all potential aliased compo-
nents beyond 60 kHz by more than 47.6 dB. At 100 kHz, it would provide 30xlog, (100/20) =
69.7 dB attenuation. At fr = 62.5 kHz, it provides 49.3 dB suppression, as was calculated
in Example 1.4.7, that is, |H (fr)| = 107493/20 = 1/292,

Therefore, assuming that the digital filter has already removed the C, D, and E compo-
nents, and that the aliased F component has been sufficiently attenuated by the prefilter,
we can now drop the sampling rate down to 40 kHz.

At the reduced 40 kHz rate, if we use an ideal reconstructor, it would extract only the
components within the [—20,20] kHz band and the resulting reconstructed output will
be:

Va (t)= 2A cos(1071rt) +2B cos (301Tt) +22sz cos(357tt)

which has a much attenuated aliased component F. This is to be compared with Eq. (1.4.9),
which used the same prefilter but no oversampling. Oversampling in conjunction with
digital decimation helped eliminate the most severe aliased components, C and D.

In summary, with oversampling, the complexity of the analog prefilter can be reduced and
traded off for the complexity of a digital filter which is much easier to design and cheaper
to implement with programmable DSPs. As we will see in Chapter 2, another benefit of
oversampling is to reduce the number of bits representing each quantized sample. The
connection between sampling rate and the savings in bits is discussed in Section 2.2. The
subject of oversampling, decimation, interpolation, and the design and implementation of
digital decimation and interpolation filters will be discussed in detail in Chapter 12. [m}



1.4. SAMPLING OF SINUSOIDS 27

1.4.2 Rotational Motion

A more intuitive way to understand the sampling properties of sinusoids is to consider a
representation of the complex sinusoid x (t) = e2™/ft as a wheel rotating with a frequency
of f revolutions per second. The wheel is seen in a dark room by means of a strobe light
flashing at a rate of fs flashes per second. The rotational frequency in [radians/sec] is
Q = 2mrf. During the time interval T between flashes, the wheel turns by an angle:

27f
fs
This quantity is called the digital frequency and is measured in units of [radians/sample].

It represents a convenient normalization of the physical frequency f. In terms of w, the
sampled sinusoid reads simply

w =0T =2nfT = (1.4.10)

X(HT)= eZTrjan — ejwn

In units of w, the Nyquist frequency f = fs/2 becomes w = 1T and the Nyquist interval
becomes [—1T, 7T]. The replicated set f + mfs becomes

ar(f +mfs) _ 2mf +27Tm = w + 21T™M

fs fs
Because the frequency f = fs corresponds to (w = 27T, the aliased frequency given in
Eq. (1.4.3) becomes in units of w:

wWg = w mod (271T)

The quantity f/fs = fT is also called the digital frequency and is measured in units
of [cycles/sample]. It represents another convenient normalization of the physical fre-
quency axis, with the Nyquist interval corresponding to [—0.5,0.5].

In terms of the rotating wheel, T represents the number of revolutions turned dur-
ing the flashing interval T. If the wheel were actually turning at the higher frequency
f + mfs, then during time T it would turn by (f + mfs)T = fT + mfsT = fT + m revo-
lutions, that is, it would cover m whole additional revolutions. An observer would miss
these extra m revolutions completely. The perceived rotational speed for an observer is
always given by f; = f mod(fs). The next two examples illustrate these remarks.

Example 1.4.10: Consider two wheels turning clockwise, one at f; = 1 Hz and the other at
f> = 5 Hz, as shown below. Both are sampled with a strobe light flashing at fs = 4 Hz.
Note that the second one is turning at > = f1 + f5.

\iz

n=0 1 n=0 f=5

N

n=3 n=1 n=3 n=1
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The first wheel covers 1T = f1/fs = 1/4 of a revolution during T = 1/4 second. Its angle
of rotation during that time interval is w; = 271tf}/fs = 211/4 = 11/2 radians. During the
sampled motion, an observer would observe the sequence of points n = 0,1,2,3,... and
would conclude that the wheel is turning at a speed of 1/4 of a revolution in 1/4 second,

or,
1/4 cycles

1/4 sec
Thus, the observer would perceive the correct speed and sense of rotation. The second
wheel, on the other hand, is actually turning by f>T = f>/fs = 5/4 revolutions in 1/4
second, with an angle of rotation w, = 577/2. Thus, it covers one whole extra revolution
compared to the first one. However, the observer would still observe the same sequence
of points n = 0,1,2,3,..., and would conclude again that the wheel is turning at 1/4
revolution in 1/4 second, or, 1 Hz. This result can be obtained quickly using Eq. (1.4.3):

=1Hz

foa = f> mod(fs)=5mod(4)=5-4=1

Thus, in this case the perceived speed is wrong, but the sense of rotation is still correct.

In the next figure, we see two more wheels, one turning clockwise at f3 = 9 Hz and the
other counterclockwise at f; = —3 Hz.

n=0 \f=9 n=0 \_f=—3

n=2 n=2

The negative sign signifies here the sense of rotation. During T = 1/4 sec, the third wheel
covers f3T = 9/4 revolutions, that is, two whole extra revolutions over the f; wheel. An
observer would again see the sequence of points n = 0,1, 2,3,..., and would conclude
that f3 is turning at 1 Hz. Again, we can quickly compute, f3, = f3 mod(fs)= 9 mod (4) =
9-2-4=1Hz.

The fourth wheel is more interesting. It covers f4T = —3/4 of a revolution in the coun-
terclockwise direction. An observer captures the motion every 3/4 of a counterclockwise
revolution. Thus, she will see the sequence of points n = 0,1,2,3,..., arriving at the
conclusion that the wheel is turning at 1 Hz in the clockwise direction. In this case, both
the perceived speed and sense of rotation are wrong. Again, the same conclusion can be
reached quickly using f4; = f3 mod(fs)= (—3) mod(4)= —3 + 4 = 1 Hz. Here, we added
one fs in order to bring f; within the Nyquist interval [—2,2]. m]

Example 1.4.11: The following figure shows four wheels rotating clockwise at f = 1.5,2,2.5,4
Hz and sampled at fs = 4 Hz by a strobe light.
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n=0246 n=012345
4 1357
JFLS =2 J=4

This example is meant to show that if a wheel is turning by less than half of a revolution
between sampling instants, that is, fT < 1/2 or w = 2mfT < T, then the motion is
perceived correctly and there is no aliasing. The conditions fT < 1/2 or w < TT are
equivalent to the sampling theorem condition fs > 2f. But if the wheel is turning by
more than half of a revolution, it will be perceived as turning in the opposite direction and
aliasing will occur.

The first wheel turns by fT = 3/8 of a revolution every T seconds. Thus, an observer
would see the sequence of points n = 0,1, 2, 3,... and perceive the right motion.

The second wheel is turning by exactly half of a revolution fT = 1/2 or angle w = 27tfT =
1T radians. An observer would perceive an up-down motion and lose sense of direction,
not being able to tell which way the wheel is turning.

The third wheel turns by more than half of a revolution, fT = 5/8. An observer would
see the sequence of points n = 0,1,2,3,..., corresponding to successive rotations by
w = 511/4 radians. An observer always perceives the motion in terms of the lesser
angle of rotation, and therefore will think that the wheel is turning the other way by
an angle w,; = wmod(21)= (51r/4)mod (21r)= 571/4 — 211 = —377/4 or frequency
fa=—(3/8cycle)/(1/4 sec)= —1.5 Hz.

The fourth wheel will appear to be stationary because f = fy = 4 and the motion is

sampled once every revolution, w = 27r. The perceived frequency will be f; = f mod (fs) =
4mod(4)=4-4=0. m]

1.4.3 DSP Frequency Units

Figure 1.4.4 compares the various frequency scales that are commonly used in DSP, and
the corresponding Nyquist intervals. A sampled sinusoid takes the form in these units:

eZTrjan — eZTrj(f/fS)n — ,JQTn _ ,jwn

being expressed more simply in terms of w. Sometimes f is normalized with respect
to the Nyquist frequency fy = fs/2, that is, in units of f/fn. In this case, the Nyquist
interval becomes [—1, 1]. In multirate applications, where successive digital processing
stages operate at different sampling rates, the most convenient set of units is simply in
terms of f. In fixed-rate applications, the units of w or f/fs are the most convenient.

1.5 Spectra of Sampled Signals*

Next, we discuss the effects of sampling using Fourier transforms. Figure 1.3.1 shows
an ideal sampler that instantaneously measures the analog signal x (t) at the sampling
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‘ ‘ ‘ > Hz] = [cycles/sec
e 5 in b [Hz] [cy ]
: : : . cycles/sample
-1/2 0 172 1 Ley ple]

; : ; » ® = 2nf/f, [radians/sample]
-TT 0 T

| : : » Q = 2nf [radians/sec]
-1t 0 f,

e Nyquist |

Interval

Fig. 1.4.4 Commonly used frequency units.

instants t = nT. The output of the sampler can be considered to be an analog signal
consisting of the linear superposition of impulses occurring at the sampling times, with
each impulse weighted by the corresponding sample value. Thus, the sampled signal is

[

R()= > x(nT)5(t —nT) (1.5.1)
n=-—oo0
In practical sampling, each sample must be held constant for a short period of time,
say T seconds, in order for the A/D converter to accurately convert the sample to digital
format. This holding operation may be achieved by a sample/hold circuit. In this case,
the sampled signal will be:

[

Xgat (D)= > x(nT)p(t—nT) (1.5.2)

n=—oo

where p (t) is a flat-top pulse of duration of T seconds such that T <« T. Ideal sampling
corresponds to the limit T — 0. Figure 1.5.1 illustrates the ideal and practical cases.

i x(nT)d(t-nT) x(nT)p(t—nT)
() > Xial(1) =
1
0
i T T,
A —>
T
» [ » [
0O T 2T - -+ nT o T 2T « -+ nT

Fig. 1.5.1 Ideal and practical sampling.

We will consider only the ideal case, Eq. (1.5.1), because it captures all the essen-
tial features of the sampling process. Our objective is to determine the spectrum of
the sampled signal X(t) and compare it with the spectrum of the original signal x(t).
Problem 1.21 explores practical sampling.
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Our main result will be to express the spectrum of X (t) in two ways. The first relates
the sampled spectrum to the discrete-time samples x(nT) and leads to the discrete-
time Fourier transform. The second relates it to the original spectrum and implies the
spectrum replication property that was mentioned earlier.

1.5.1 Discrete-Time Fourier Transform

The spectrum of the sampled signal X (t) is the Fourier transform:

(o]

X(f)= J R(t)e 2mlt gt (1.5.3)

Inserting Eq. (1.5.1) into Eq. (1.5.3) and interchanging integration and summation, we
obtain:

X(f) J"" > x(nT)8(t —nT)e 2™l gt

T n=-o

[

> x(nT)J §(t—nT)e ?™ftde  or,

Nn=—o0

[

X(f)= > x(nT)e 2mlTn (1.5.4)

Nn=—o0

This is the first way of expressing X (). Several remarks are in order:

1. DTFT. Eq. (1.5.4) is known as the Discrete-Time Fourier Transform (DTFT)! of the
sequence of samples x(nT). X (f) is computable only from the knowledge of the
sample values x (nT).

2. Periodicity. X (f) is a periodic function of f with period f, hence, X (f +fs) = X (f).
This follows from the fact that e=2™fT" jg periodic in f. Because of this periodicity,
one may restrict the frequency interval to just one period, namely, the Nyquist
interval, [—fs/2,fs/2].

The periodicity in f implies that X (f) will extend over the entire frequency axis,
in accordance with our expectation that the sampling process introduces high
frequencies into the original spectrum. Although not obvious yet, the periodicity
in f is related to the periodic replication of the original spectrum.

3. Fourier Series. Mathematically, Eq. (1.5.4) may be thought of as the Fourier series
expansion of the periodic function X (f), with the samples x(nT) being the cor-
responding Fourier series coefficients. Thus, x(nT) may be recovered from X )
by the inverse Fourier series:

fl2 . T
x(nT)= + J X(f)e?™ITn gf — j R (w)elen 4 (1.5.5)
fs J-t2 - 27

TNot to be confused with the Discrete Fourier Transform (DFT), which is a special case of the DTFT.
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where in the second equation we changed variables from f to w = 27f/fs.*
Eq. (1.5.5) is the inverse DTFT and expresses the discrete-time signal x(nT) as
a superposition of discrete-time sinusoids e/®".

. Numerical Approximation. Eq. (1.5.4) may be thought of as a numerical approxi-

mation to the frequency spectrum of the original analog signal x (t). Indeed, using
the definition of integrals, we may write approximately,

[

X(f)zJ x(e 2mltdr ~ > x(nT)e?™MT.T o,

n=—o0

X(f)=TX() (1.5.6)

This approximation becomes exact in the continuous-time limit:

X(f)=lim TX(f) (1.5.7)

It is precisely this limiting result and the approximation of Eq. (1.5.6) that justify
the use of discrete Fourier transforms to compute actual spectra of analog signals.

. Practical Approximations. In an actual spectrum computation, two additional ap-

proximations must be made before anything can be computed:

(a) We must keep only a finite number of time samples x(nT), say L samples,
n=0,1,2,...,L —1, so that Eq. (1.5.4) is computed approximately by the
truncated sum:

L-1
X(F)=X1(f)= > x(nT)e 2mlTn (1.5.8)
n=0

This approximation leads to the concept of a time window and the related
effects of smearing and leakage of the spectrum. These concepts are central
in the area of spectral analysis and will be discussed in Chapter 9.

(b) We must decide on a finite set of frequencies f at which to evaluate X ).
Proper choice of this set allows the development of various efficient com-
putational algorithms for the DFT, such as the Fast Fourier Transform (FFT),
presented also in Chapter 9.

6. z-transform. Finally, we note that Eq. (1.5.4) leads to the concept of the z-transform,

much like the ordinary Fourier transform leads to the Laplace transform. Setting
7z = e/® = 2MIfT we may write Eq. (1.5.4) as the z-transform?

[
~

X(z)= Z x(nT)z™"

n=—o0

*Abusing the notation slightly, we wrote X (w) for X (f).
T Again, abusing the notation, we wrote X (z) for X f).
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1.5.2 Spectrum Replication

Next, we show the spectrum replication property by deriving the precise relationship
between the spectrum X (f) of the sampled signal X (t) and the original spectrum X (f)
of the analog signal x(t).

The nth term x(nT)6(t — nT) in Eq. (1.5.1) may be replaced by x(t)6(t — nT)
because the term is nonzero only at t = nT. Then, x(t) can be factored out of the sum
in Eq. (1.5.1) as a common factor:

R =x() > 8(t—nT)=x(t)s(t) (1.5.9)
n=—o0
Thinking of this as the modulation of the “carrier” s(t) by the “baseband” signal
x(t), we expect to get frequency translations of the original spectrum, much like the
AM modulation of a sinusoidal carrier. The frequency translation effect may be seen by
expanding the (periodic in time) sampling function s (t) into its Fourier series represen-
tation as a linear combination of harmonics. It is easily shown that

si)= > 5(t—nT):% > ermmit (1.5.10)

n=-—oo m=—oo

which expresses the sampling function s(t) as a linear combination of sinusoidal carri-
ers, each causing its own frequency shift. Writing Eq. (1.5.9) as

X()=x(t)s(t)= x(t) e2mimfst

~| =
I [Me

m (=]

and using the modulation property of Fourier transforms, which states that if X (f) is
the transform of x (t) then X (f — f.) is the transform of x (t) e2™/<! we obtain by taking
Fourier transforms of both sides,

X(f)=

~ -

Ak

X(f — mfs) (1.5.11)

m

This represents the periodic replication of the original spectrum X (f) at intervals
of the sampling rate fs. Fig. 1.5.2 shows TX (f) as the sum of the periodic replicas of
X ().

Another way to prove Eq. (1.5.11) is as follows. Because X (t) is the product of x(t)
and s(t), its Fourier transform will be the convolution of the corresponding transforms,
that is,

X(f)= J_ X(f-fHS(") df’ (1.5.12)

On the other hand, it follows from Eq. (1.5.10) that the Fourier transform of s(t) will be
the sum of the transforms of the individual harmonics:

S(F=

~| =
\‘IMg

o(f — mfs) (1.5.13)

m
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Fig. 1.5.2 Spectrum replication caused by sampling.

Inserting this into Eq. (1.5.12) and interchanging the summation over m with the
integration over f’, we obtain

. 1 = * / / / 1 -
(=5 X | X(t-rew-mpydr =5 3 X(f-mf)
Mm=—c0 J =X m=—oo
Combining Egs. (1.5.4) and (1.5.11), we obtain the two alternative expressions for
the spectrum X (f)

X(H= > x(nT)e‘z"janz% > X(f - mfy) (1.5.14)

00 m=-—oo

This is known as the Poisson summation formula. We also see from Fig. 1.5.2 that as
we let T — 0, or equivalently, fs — oo, the replicas move out to infinity leaving behind
only the original spectrum X (f). Therefore, Eq. (1.5.7) follows.

We emphasize that Eq. (1.5.14) holds for arbitrary signals x(t), not necessarily ban-
dlimited ones. In the special case when x () is bandlimited to some maximum frequency
fmax, as suggested by Fig. 1.5.2, we immediately obtain the sampling theorem condition,
Eq. (1.3.2).

It is seen in Fig. 1.5.2 that the replicas are separated from each other by a distance
0 = fs — 2fmax, known as the guard band. It follows that the replicas will not overlap
if 6 > 0, or equivalently, fs > 2fmax. But they will overlap if fs < 2fmax Or 6 < 0 and
aliasing of frequencies will take place as the tails of the replicas enter into the Nyquist
interval and add to the original spectrum, distorting it. This case is shown in Fig. 1.5.3.

It is evident by inspecting Fig. 1.5.2 that if the signal is bandlimited and f; is large
enough so that the replicas do not overlap, then the portion of the sampled signal spec-
trum X (f) that lies within the Nyquist interval [—f/2,fs/2] will be identical to the
original spectrum X (f), that is,

TX ()= X(f), for —Esfs% (1.5.15)

This is an important result for DSP. Not only does it make possible the analog re-
construction of the sampled signal, but it also guarantees that any subsequent digital
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Fig. 1.5.3 Aliasing caused by overlapping spectral replicas.

processing of the sampled signal will be applied to the original spectrum X (f) and not
to some aliased and distorted version thereof.

For example, a subsequent digital filtering operation will transform the input sam-
ples x(nT) into a sequence of output samples y (nT). Just like analog filtering, digital
filtering is equivalent to spectral shaping in the frequency domain. If the digital filter has
frequency response Hpgp (f), the spectrum X (f) of the input sequence will be reshaped
into the output spectrum

Y (f)= Hpsp (F) X (f)

If Eq. (1.5.15) holds, then the digital filter will reshape the original spectrum X (f).
Note that because all digital filters have periodic frequency responses, the periodicity
of the sampled spectrum is preserved by the digital filtering operation. Therefore, the
output samples could be recovered from Eq. (1.5.5)

T s
y(nT)=J Y(w)ej‘“"gfw =J HDsp(w)X(w)ejw”dfw
e T T 21T

If the spectrum X (f) is not bandlimited, or, if it is bandlimited but the sampling rate
fs is so low that the replicas overlap, then Eq. (1.5.15) does not hold. Any subsequent
filtering will reshape the wrong spectrum. Therefore, it is essential to use a lowpass
antialiasing prefilter, as shown in Fig. 1.3.5, to bandlimit the input spectrum to within
the Nyquist interval, so that the resulting replicas after sampling will not overlap.

Example 1.5.1: Consider a pure sinusoid of frequency fp, X (t) = e2™fot_ [ts Fourier transform
is the spectral line X (f) = 6 (f — fo). It follows from Eq. (1.5.11) that the sampled sinusoid

RO= > x(nT)d(t-nT)= > e*™hIn§(t—nT)

Nn=-—o n=-—oo

will have Fourier spectrum

s 1
X(f):?

3
M2

6(f = fo — mfs)

Thus, the spectrum of the sampled sinusoid consists of all the frequencies in the replicated
set {fo + mfs,m = 0,+1, £2,...} in accordance with Fig. 1.3.2 and our remarks in Sections
1.4 and 1.3. ]
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Example 1.5.2: This example illustrates the effect of sampling on a non-bandlimited signal
and the degree to which the portion of the spectrum X (f) within the Nyquist interval
approximates the original spectrum X (f). Consider the exponentially decaying signal and
its spectrum:

x(t)
x(1) = e u(t)
i) = 1 x(nT)
D= ot omjf -7

nT

The frequency spectrum of the sampled signal X(t) may be obtained in two ways. Using
Eq. (1.5.4)

00

X(F)= > x(nT)e ?mlTn = " g-alng=2mjfTn
n=0

n=—o00
and summing the geometric series, we get

Xi= : - —

1 — e-aTg-2mjfT 1—eaTe-jw

Its magnitude square is

1
" 1-2e-49T cos(2mfT) +e-2aT

IX(F)[?

The periodicity in f is evident because the dependence on f comes through the periodic
cosine function. Alternatively, we may use Eq. (1.5.11) and sum the replicas of the original
spectrum to get

~

- 1 < 1 < 1
X(f)= :Z X(f_mfs)zf ; a+2mi(f—mfy)

Combining the two expression for X (), we obtain the not-so-obvious identity in the pa-
rameters a, f, T:

1 i 1 B 1
T, &.a+2mj(f —mfs) 1-—e-aTe-2mfT

The left graph in Fig. 1.5.4 compares the periodic spectrum ITX (f) |2 with the original
analog spectrum | X (f)|% = 1/(a® + (21f)?). The spectra are shown in decibels, that is,
201og; | X (f)|. The parameter a was a = 0.2 sec”!. Two values of the sampling rate fs =
1/T are shown, fs = 1 Hz and f; = 2 Hz. The two Nyquist intervals are [—0.5,0.5] Hz and
[—1,1] Hz, respectively. Outside these intervals, the sampled spectra repeat periodically.

Notice that even with the scale factor T taken into account, the two spectra X (f) and
TX(f) are very different from each other. However, within the central Nyquist interval
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Fig. 1.5.4 Spectra of analog, sampled, and windowed signals.

[—fs/2,fs/2], they agree approximately, especially at low frequencies. This approximation
gets better as f increases.

The limit as T — 0 or fs — co can be seen explicitly in this example. Using the approxima-
tion e ™™ ~ 1 — x, valid for small x, or L'Hospital’s rule, we obtain

N T 1
ImTX(f)=1 = =
20 () 1201 — e-ale-2mfT — g4 2mjf

X

In the right graph of Fig. 1.5.4, we show the effect of using a length-L time window and
approximating the spectrum by Eq. (1.5.8). The parameter values were a = 0.2, fs = 2, and
L = 10 samples.

That figure compares what we would like to compute, that is, | X (f) |2, with what we can
at best hope to compute based on our sampled signal, |TX (f)|?, and with what we can
actually compute based on a finite record of samples, |T X (f) |2.

The windowed spectrum |TX; (f) % can be improved by taking longer L and using a non-
rectangular window, such as a Hamming window. At best, however, it will approach the
sampled spectrum IT)?(f) |2 and not | X (f) |?. The approximation of X (f) by T)?(f) can
be improved only by increasing the sampling rate f5.

The quantity XL (f) can be computed by sending the L samples x(nT)= e "7 n =
0,1,...,L — 1 into a general DFT routine. In this particular example, X; (f) can also be
computed in closed form. Using the finite geometric series:

L-1

,  1—xt
> XM=
n=0 -X

we obtain:

1 — e—aTLg-2mjfTL

L-1
% _ —aTn ,-2mjfTn _
X (f)= Zoe e = | e-alg2mifT
n=

It is evident that )?L(f)—» )?(f) as L — oo, O
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1.5.3 Practical Antialiasing Prefilters

An ideal analog prefilter is shown in Fig. 1.5.5. It acts as an ideal lowpass filter remov-
ing all frequency components of the analog input signal that lie beyond the Nyquist
frequency fs/2.

input spectrum prefiltered spectrum replicated
Y .

T ¥ o —prefilter ;’"’" g 1 spectrum
WARW, HARN; ( YTY s
0 f2 0 f/2 £, 0 f.

AN
Xin() ideal X(f) T X(f)

— " » prefilter — - e
analog H(f) bandlimited  |ideal sampler| sampled
input spectrum spectrum

cutoff f .. =f/2 rate f

Fig. 1.5.5 Ideal antialiasing prefilter.

The antialiasing prefilters used in practice are not ideal and do not completely re-
move all the frequency components outside the Nyquist interval. Thus, some aliasing
will take place. However, by proper design the prefilters may be made as good as de-
sired and the amount of aliasing reduced to tolerable levels. A practical antialiasing
lowpass filter is shown in Fig. 1.5.6. Its passband [—fpass, fpass] is usually taken to be
the frequency range of interest for the application at hand and must lie entirely within
the Nyquist interval.

A IH(f)| '/ideal prefilter
BN B R
transition | — !
region | ! —f
\ : ‘ Iislop
12 2 .
_fstop _fllaass 0 fpass f;top f
-4— stopband —>{ H passband H }« stopband —m

Fig. 1.5.6 Practical antialiasing lowpass prefilter.

The prefilter must be essentially flat over this passband in order not to distort the
frequencies of interest. Even if it is not completely flat over the passband, it can be
“equalized” digitally at a subsequent processing stage by a digital filter, say Hgq (f),
whose frequency response is the inverse of the response of the prefilter over the pass-
band range:

HEQ(f): for - fpass <f= fpass

1
H(f)
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The digital filter Hgq (f), being periodic with period f§, cannot be the inverse of the
prefilter over the entire frequency axis, but it can be the inverse over the passband.

The stopband frequency fsop of the prefilter and the minimum stopband attenuation
Astop in dB must be chosen appropriately to minimize aliasing effects. It will become
evident from the examples below that fs,op must be chosen as

fstop :fs_fpass (1.5.16)

or, equivalently,

fs =fpass ""fstop

This places the Nyquist frequency f/2 exactly in the middle of the transition region
of the prefilter, as shown in Fig. 1.5.6. The attenuation of the filter in decibels is defined
in terms of its magnitude response by:

M ‘ (attenuation in dB)

A(f): _2010g10 H(fO)

where f{ is a convenient reference frequency, typically taken to be at DC for a lowpass
filter. Therefore, the stopband specification of the filter, depicted in this figure, is A (f) >
Astop: for |f| = fstop-

Transfer functions of analog filters typically drop like a power H (s) ~ 1/sV for large
s, where N is the filter order. Thus, their magnitude response drops like |[H ()| ~ 1/fN
for large f, and their attenuation will be, up to an additive constant,

A(f)= —20log;, ‘l/fN‘ = xplogf, (for large f) (1.5.17)
where ¢ is the attenuation in dB per decade defined by:
X190 = 20N (dB per decade)

It represents the increase in attenuation when f is changed by a factor of ten, that is,
A(10f)—A(f)= 9. Engineers also like to measure attenuation in dB per octave, that
is, the amount of change per doubling of f. This is obtained by using logs in base two,
that is, writing Eq. (1.5.17) in the form:

A(f)= ozlogy [ = x1plogyo f
where > is in dB/octave and is related to o by:
o = X19logp2 = 6N (dB per octave)

Figure 1.5.5 shows the effect on the input spectrum Xi, (f) of an ideal prefilter with
a sharp cutoff. For a practical prefilter, the output spectrum is given by:

X(f)=H() X (f)

or, in terms of attenuations in dB:
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Ax ()= A(f)+Ax, (f) (1.5.18)

where Ax (f)= —20log,o | X (f) /X (fo)| and similarly for Ay, (f). Thus, attenuations
are additive. The spectrum X (f) will be replicated by the subsequent sampling oper-
ation and therefore, the amount of attenuation in Ax (f) will determine the degree of
overlapping of the spectral replicas, that is, the degree of aliasing.

The specifications of the prefilter can be adjusted so that its attenuation A (f), in
combination with the attenuation Ay, (f) of the input spectrum, will result in sufficient
attenuation of X (f) to reduce the amount of aliasing within the desired frequency band.
The next few examples illustrate these remarks.

Example 1.5.3: The frequency range of interest of an analog signal extends to 4 kHz. Beyond 4
kHz, the spectrum attenuates at a rate of 15 dB per octave. Ideally, we would sample at a
rate of 8 kHz provided the sampling operation is preceded by a perfect lowpass antialiasing
prefilter with cutoff of 4 kHz. As a practical alternative to designing a perfect prefilter, we
decide to sample at the higher rate of 12 kHz.

(a) If we do not use any prefilter at all, determine the amount of aliasing that will be
introduced by the sampling process into the frequency range of interest, that is, into
the 4 kHz range.

(b) We wish to suppress the aliased components within the frequency range of inter-
est by more than 50 dB. Determine the least stringent specifications of the lowpass
antialiasing prefilter that must be used.

Solution: Both parts are answered with the help of the figure below, which shows the original
spectrum and its first replicas centered at =f; = +12 kHz.

AX(f)

-1st replica Oth replica Ist replica

-16

desired
- range -

By the even symmetry of the spectra, it follows that the left tail of the 1st replica will be
the same as the right tail of the Oth replica. Thus, the indicated attenuations x and y at
frequencies 4 and 8 kHz will be equal, x = y.

If we do not use any prefilter, the attenuation at 8 kHz will be y = 15 dB because the Oth
replica attenuates by 15 dB per octave starting at 4 kHz. The aliased components within
the desired 4 kHz range correspond to the shaded portion of the left side of the 1st replica
that has entered into the 4 kHz interval. They are suppressed by more than x dB. Thus,
x =y = 15 dB. This probably represents too much aliasing to be tolerable.

If we use a prefilter, its passband must extend over the desired 4 kHz range. Therefore,
frass = 4 kHz and fsiop = fs — fpass = 12 — 4 = 8 kHz. Because attenuations are additive
in dB, the total attenuation y at 8 kHz will now be the sum of the attenuation due to the
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signal, that is, 15 dB, and the attenuation due to the prefilter, say Ag,p dB. The equality
y = x and the requirement that x > 50 dB lead to

Y=15+Agep =X=50 =  Agop=50—15=235dB

Thus, the specifications of the prefilter are a fairly flat passband over the +4 kHz range
and a stopband starting at 8 kHz with minimum attenuation of 35 dB. [m}

Example 1.5.4: The significant frequency range of a signal extends to fyax. Beyond fiax, the
spectrum attenuates by « dB/octave. We have available an off-the-shelf antialiasing pre-
filter that has a flat passband up to fmax and attenuates by 8 dB/octave beyond that. It is
required that within the fi.x range of interest, the aliased components due to sampling be
suppressed by more than A dB. Show that the minimum sampling rate that we should use
is given by

fs = fmax + 2A/yfmax
where y = « + B.
Solution: We refer to the following figure, which shows the Oth and +1st replicas.

A
X(N) Y dB/octave

-1st replica Oth replica Ist replica

v

£, o O fo ff ! 1,
desired s ~/max
= range e

The passband edge is at fpass = fmax and the stopband edge at fsiop = fs — fmax. Beyond the
desired fiax range, the total attenuation (in dB) of the Oth replica will be the sum of the
attenuations of the signal and the prefilter. In the notation of Eq. (1.5.18), it will be given
as function of frequency by

Ax ()= «log, (L)ﬁ-ﬁlogz (L):Y10g2< f )

fmax fmax fmax

where we have normalized the attenuation to 0 dB at f = fjax. This is the mathematical
expression of the statement that the total attenuation will be y dB per octave.

By the even symmetry of the spectra, we have X = Ax (fsiop) = Ax (fs — fmax). Thus, the
requirement that x > A gives the condition

Ax (fs — fmax) = A => y10g2<f;ﬂ)2A

Solving this as an equality gives the minimum acceptable rate fs. If o« and 8 had been given
in dB/decade instead of dB/octave, the above condition would be valid with log,, instead
of log, resulting in fs = fmax + 102’Y fimax. Note that the previous example corresponds to
the case A =y giving fs = fmax + meax = 3fmax- [}
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The above examples show that to accommodate practical specifications for antialias-
ing prefilters, the sampling rates must be somewhat higher than the minimum Nyquist
rate. The higher the rate, the less complex the prefilter. This idea is carried further in
the method of oversampling, whereby the input is sampled at rates that are many times
higher than the Nyquist rate. The replicas become very far separated, allowing the use
of low quality, inexpensive analog prefilters. Oversampling methods will be discussed
in Chapter 12.

1.6 Analog Reconstructors™

We saw in Section 1.4.1 that an ideal reconstructor is an ideal lowpass filter with cut-
off the Nyquist frequency f;/2. Here, we derive this result and also consider practical
reconstructors.

Analog reconstruction represents some sort of lowpass filtering of the sampled sig-
nal. This can be seen in Fig. 1.6.1, where practical reconstruction has been accomplished
by filling the gaps between samples by holding the current sample value constant till
the next sample. This is the staircase or sample/hold reconstructor.

A
y(®) .
() D/A Ya(0)
T — staircase —
reconstructor
t
sampled signal reconstructed signal

Fig. 1.6.1 Staircase reconstructor.

It must be clear from this figure that any reasonable way of filling the gaps between
samples will result in some sort of reconstruction. Filling the gaps results in a smoother
signal than the sampled signal. In frequency-domain language, the higher frequencies
in the sampled signal are removed, that is, the sampled signal is lowpass filtered. Thus,
any reconstructor may be viewed as an analog lowpass filter, as shown in Fig. 1.6.2.

A
(1) analog v,(®)
———» reconstructor ——»
sampled h(t) reconstructed
input analog output

Fig. 1.6.2 Analog reconstructor as a lowpass filter.

We will determine the form of the impulse response h (t) of the reconstructor both
for ideal and practical reconstruction. The relationship of the reconstructed output
Vaq (t) to the input samples y(nT) can be found by inserting the sampled input signal

P()= > y(nT)5(t—nT)

n=—c



1.6. ANALOG RECONSTRUCTORS* 43
into the convolutional equation of the reconstructor
ya= [ _he-t)prar

It then follows that:

va(©)= > ynT)h(t-nT) (1.6.1)

n=-—oo

It states that the way to fill the gaps between samples is to start at the current
sample y (nT) and interpolate from it following the shape of h (t) until the next sample.
More precisely, a copy of h(t) must be attached at each sample y(nT), and all such
contributions must be summed over—the resulting curve being the reconstructed analog
signal. In the frequency domain, Eq. (1.6.1) becomes

Ya(f)=H()Y () (1.6.2)
where f/(f ) is the replicated spectrum given by Eq. (1.5.11)

_ 1
-7

[Me

Y (f) Y (f — mfs)

1.6.1 Ideal Reconstructors

For perfect or ideal reconstruction one must require that Y, (f) be identical to the orig-
inal analog spectrum Y (f). If the spectrum Y (f) is bandlimited and its replicas do not
overlap, then within the Nyquist interval, TY (f) will agree with Y (f)) in accordance with
Eqg. (1.5.15), that is,

s [s

N 1
Y(f)=fY(f), for —Esfsz

The ideal reconstruction filter H (f') is an ideal lowpass filter with cutoff f/2, defined
as follows:

(1.6.3)

A H(f)

H(f):{ T, if If] <fs/2

0, otherwise f

+/2 0 2

§

The value T for the passband gain is justified below. As shown in Fig. 1.6.3, such a
filter will extract the central replica and remove all other replicas. Using Eq. (1.6.3), we
have within the Nyquist interval:

Ya()=H(O T (=T - % Y(F)=Y(f)

where the filter’s gain factor T canceled the 1/T factor in the spectrum.
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Fig. 1.6.3 Ideal reconstructor in frequency domain.

The same relationship also holds trivially (O = 0) outside the Nyquist interval. Thus,
we have Y, (f)= Y(f), for all f, which implies that the reconstructed analog signal
yq (t) will be identical to the original signal that was sampled, y, (t) = y (t). Combining
this with Eq. (1.6.1), we obtain the Shannon sampling theorem [35-39] expressing the
bandlimited signal y (t) in terms of its samples y (nT):

Nn=—o0

y(©)= > ymT)h(t-nT)

(1.6.4)

The impulse response of the ideal reconstructor can be obtained from the inverse

Fourier transform of H (f):

oo , for2 ,
h(r)=j H(f)ezwffdf:jf T2l df, o,
—0o0 —fs/2

sin(rrt/T)  sin(7tfst)

h(0)= wt/T

TTfst

(ideal reconstructor)

(1.6.5)

It is shown in Fig. 1.6.4. Unfortunately, the ideal reconstructor is not realizable. Its
impulse response is not causal, having an infinite anticausal part. Therefore, alternative
reconstructors, such as the staircase one, are used in practice.

>t

i staircase

ideal 1 ) reconstructor
reconstructor\ T

3T 2T -T 0 T 2T 3T

Fig. 1.6.4 Impulse response of ideal reconstructor.

An approximation to the ideal reconstructor, obtained by truncating it to finite
length, is used in the design of digital FIR interpolation filters for oversampling and
sample rate conversion applications. We will discuss it in Chapter 12.
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1.6.2 Staircase Reconstructors

The staircase reconstructor shown in Fig. 1.6.1 is the simplest and most widely used
reconstructor in practice. It generates a staircase approximation to the original signal.
Note the similarity of this operation to practical sampling, where h(t) is a sampling
pulse p (t) having a very narrow width T < T. By contrast, the impulse response of the
staircase reconstructor must have duration of T seconds in order to fill the entire gap
between samples. Thus, h (t) is given by:

I W 10))

h(t)=ll(t)—u(t_]‘):{ 1, if 0<t<T

0, otherwise

»!
0 T

where u (t) is the unit step. The staircase output, although smoother than the sampled
input, still contains spurious high-frequency components arising from the sudden jumps
in the staircase levels from sample to sample. This spurious frequency content may be
seen by computing the frequency response of the reconstructor. The Laplace transform
of h(t)=u(t)-u(t—T) is

from which we obtain the Fourier transform by setting s = 277jf:

1 Corip sin(mtfT) __.
H(f)= —— (1 —e &mlTy = 72227022 o=l 1.6.6
= 5ir ( ) T (1.6.6)
It is shown in Fig. 1.6.5 in comparison to the ideal reconstructor. Notice that it
vanishes at integral multiples of f; — exactly where the replicas caused by sampling are
centered. The spurious high frequencies mentioned above are those beyond the Nyquist
frequency f/2.

ideal IH()I
reconstructor

\J

-2/, S 20 2 2f;
Fig. 1.6.5 Frequency response of staircase reconstructor.
Thus, the reconstructor does not completely eliminate the replicated spectral images

as the ideal reconstructor does. Figure 1.6.6 compares the spectra before and after the
staircase reconstructor, that is, the effect of the multiplication Y, (f)= H(f) Y (f).
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ideal reconstructor staircase reconstructor

> f
partially attenuated
central replica \
] '\ / \\
— R — > f

Fig. 1.6.6 Frequency response of staircase reconstructor.

1.6.3 Anti-Image Postfilters

The surviving spectral replicas may be removed by an additional lowpass postfilter, called
an anti-image postfilter, whose cutoff is the Nyquist frequency fs/2. This operation is
shown in Fig. 1.6.7.

L1 Eunlll ) gy s
» Staircase anti-image »
reconstructor > lowpass
digital analog postfilter analog
signal signal signal

cutoff f,/2
[« jdeal reconstructor ——

Fig. 1.6.7 Analog anti-image postfilter.

In the time domain, the postfilter has the effect of rounding off the corners of the
staircase output making it smoother. In the frequency domain, the combined effect
of the staircase reconstructor followed by the anti-image postfilter is to remove the
spectral replicas as much as possible, that is, to emulate the ideal reconstructor. The
final reconstructed spectrum at the output of the postfilter is shown in Fig. 1.6.8.

The reason for using this two-stage reconstruction procedure is the simplicity of
implementation of the staircase reconstruction part. A typical D/A converter will act
as such a reconstructor. The digital code for each sample is applied to the DAC for T
seconds generating an analog output that remains constant during T.

The specifications of the postfilter are similar to those of an antialiasing prefilter,
namely, a flat passband and cutoff frequency equal to the Nyquist frequency /2. High-
quality DSP applications, such as digital audio, require the use of postfilters (and pre-
filters) with very stringent specifications. In deciding the specifications of a postfilter,
one must take into account the effect of the staircase D/A which does part of the recon-
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Fig. 1.6.8 Spectrum after postfilter.

struction.

The main function of the postfilter is to remove the remnants of the spectral images
that survived the staircase D/A reconstructor. It can also be used to equalize the rolloff
of the staircase response within the Nyquist interval. As shown in Fig. 1.6.5, the staircase
reconstructor is not flat within the Nyquist interval, tending to attenuate more near the
Nyquist frequency fs/2. The maximum attenuation suffered at f/2 is about 4 dB. This
can be seen as follows:

H(fs/2)

—20log1q H(0)

= —20log,, =3.9dB

sin(7r/2) ‘
/2

This attenuation can be compensated by proper design of the passband of the anti-
image postfilter. But more conveniently, it can be compensated digitally before analog
reconstruction, by designing an equalizing digital filter whose response matches the
inverse of H (f) over the Nyquist interval.

Similar techniques were mentioned in Section 1.5.3 for equalizing the imperfect pass-
band of the antialiasing prefilter. The use of high-quality digital filters to perform these
equalizations improves the overall quality of the digital processing system. By contrast,
analog compensation techniques would be more cumbersome and expensive. The com-
bined equalizer, DAC, and postfilter are shown in Fig. 1.6.9. The frequency response of
the equalizer is defined as the inverse of the DAC, as given by Eq. (1.6.6):

L _ _TrfT e™IT for _fs fs
H(f) sin(nfT) 2
It is shown in Fig. 1.6.10. As a digital filter, Hgq (f) is periodic outside the Nyquist
interval with period fs. We will design such inverse filters later using the frequency
sampling design method of Section 10.3. Some designs are presented in Chapter 12.

Heo (F) = <f< (1.6.7)

y(nT) digital filter | YD) | gtaircase Ya(®) anti-image | Yeost(")
— »| equalizer » reconstructor » postfilter | —
digital Heo(f) digital H(f) analog Hpost(f) analog
signal signal signal signal

Fig. 1.6.9 Digital equalization filter for D/A conversion.

The equalizer filter transforms the sequence y (nT) into the “equalized” sequence
Yeq(nT), which is then fed into the DAC and postfilter. The frequency spectrum of
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Fig. 1.6.10 Frequency response of DAC equalizer.

Yo (nT) is }A’Eq(f) = Hyo (f) Y (f). The spectrum of the staircase output of the DAC will
be Y, (f)= H(f)Yro(f). Therefore, the final reconstructed spectrum at the output of
the postfilter will be

Yrost(f) = Hpost (f) Ya(f)
= Hyost (f) H(f) Yo (f)

= Hyost (f) H(f) Heo (f) Y ()

Within the Nyquist interval, using Egs. (1.6.7) and (1.5.15) and assuming a flat post-
filter there, Hpost (f) =~ 1, we have

~ 1
Ypost (f) = Hpost (f) H(f) Heo(f) Y(f)=1-T - ?Y(f)= Y ()
Outside the Nyquist interval, assuming Hpost (f) =~ 0, we have Ypost (f) = 0. Thus,
the combination of equalizer, DAC, and postfilter acts like an ideal reconstructor.

Example 1.6.1: The signal of Example 1.5.3 that was sampled at fs = 12 kHz is filtered by a
digital filter designed to act as an ideal lowpass filter with cutoff frequency of f. = 2 kHz.
The filtered digital signal is then fed into a staircase D/A and then into a lowpass anti-
image postfilter. The overall reconstructor is required to suppress the spectral images
caused by sampling by more than A = 80 dB. Determine the least stringent specifications
for the analog postfilter that will satisfy this requirement.

Solution: The digital lowpass filter is, by construction, periodic in f with period f;. Thus, the
spectrum of the signal after the digital filter will look as follows:

‘%(f) ideal lowpass
digital filter

et 2f,

The spectral images are separated now by a distance fs — 2f. = 12 — 2 - 2 = 8 kHz. After
passing through the staircase reconstructor, the spectrum will be as shown below:
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postfilter 4 (f)
passband

transition

/ region

The postfilter must have a flat passband over [—{¢, fc]. Its stopband must begin at fop =
fs — fc = 12 — 2 = 10 kHz because the first replica is largest there. The wide transition
region between [, and f — f. allows the use of a less stringent postfilter.

The required stopband attenuation of the postfilter can be determined as follows. The
total attenuation caused by the cascade of the DAC and postfilter is the sum of the corre-
sponding attenuations:

A(f)= Apac (f) +Apost (f)
where

H(f)

Apac (f)= —20log, m

= —20log,, fIf
S

sin(17f /) ‘

Atf = fsop = fs — ¢, the total attenuation must be greater than A

Apac + AposT 2 A => Apost = A — Apac

Numerically, we find at fsiop = 10 kHz

sin(1r10/12) |

Apac = =20l0go | = 70775

14.4

resulting in Appsr > 80 — 14.4 = 65.6 dB. m}

The key idea in this example was to use the separation between spectral replicas
as the transition region of the postfilter. The wider this separation, the less stringent
the postfilter. Oversampling and digital interpolation techniques exploit this idea to its
fullest and can be used to alleviate the need for expensive high-quality analog postfilters.
Such oversampling systems are routinely used in CD and DAT players. They will be

discussed in Chapter 12.

Example 1.6.2: A sinusoid of frequency f, is sampled at a rate f5s, such that |fy| < fs/2. The

resulting sampled sinusoid is then reconstructed by an arbitrary reconstructor H (f). De-
termine the analog signal at the output of the reconstructor when H (f) is: (a) the ideal
reconstructor, (b) the staircase reconstructor, (c) the staircase reconstructor followed by a
very good anti-image postfilter, and (d) a staircase reconstructor equalized by the digital
filter defined in Eq. (1.6.7).
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Solution: Let y(t)= e?™fof_ Its spectrumis Y (f)= 8 (f — f) and the spectrum of the sampled
sinusoid will be the replication of Y (f), as in Example 1.5.1:

Y= 2

~|

Z 6(f = fo — mfs)

The spectrum of the reconstructed signal will be:

~| -
Me

Yo(f)=H(EY(f) =

H({)6(f — fo — mfy)

m

~ =

1[Me

H(fo + mfs)6(f — fo — mfs)

m

Taking inverse Fourier transforms, we obtain:

1

Ya(t)= ?m

> H(fm)e?™mt (1.6.8)

where f, = fo + mfs. If H(f) is the ideal reconstructor, then H (f;,) will be zero if f;,
does not lie in the Nyquist interval. Because [, was assumed to lie in the interval, only the
m = 0 term will survive the sum giving:

Ya(t)= %H(fO)QZTrij[ - % . T e2mifot — o2mijfot

thus, the sinusoid is reconstructed perfectly. If fy lies outside the interval, |fo| > f5/2,
then there exists a unique integer m such that |fy + mofs| < fs/2, where my is negative
if fo > 0. In this case, only the m = m, term will survive the sum giving:

Va(t)= 2 H (finy) @2t = o2imot

where [, = fo + Mmofs = fomod(fs). The sinusoid f,, will be confused with the sinusoid
fmg» as we discussed qualitatively in Section 1.4.1.

For the staircase reconstructor of Eq. (1.6.6), the reconstructed signal will be given by
Eq. (1.6.8), which should sum up to generate the staircase approximation to the sinusoid.
This is demonstrated in Example 1.6.3.

In case (c), a good postfilter will remove all frequencies outside the Nyquist interval, that
is, only the m = 0 term will survive in Eq. (1.6.8), giving:

Ya(l)= %H(fwe”ffot

where we assumed that the postfilter has unity gain over the Nyquist interval. Using
Eq. (1.6.6) evaluated at f = fy, we get:

sin(1tfoT) 0

~mjfoT p2mjfot
TTfOT

ya(t)=
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Thus, there is amplitude attenuation and phase shift, which both become worse as f,
increases towards the Nyquist frequency fs/2. A digital filter that equalizes the staircase
response, would anticipate this attenuation and phase shift and undo them. Indeed, in
case (d), the effective reconstructor is Hgq (f) H (). Therefore, Eq. (1.6.8) becomes:

Ya(t)= !

~|

> Hyq(fm) H (fin) e2™imt

But because of the periodicity of Hgq (f), we can replace Hyq (fm) = Heq (fo) = T/H (fo),

giving:
<~ H(fm) omj
(t)= —HE o2mifmt (1.6.9)
yaO= 2 i
A good postfilter, extracting the m = 0 term, would result in the final reconstructed output
Ypost (1) = ﬂeszot = e2mifot O

H(fy)

Example 1.6.3: The cosinusoid y (t) = cos(27rfpt) is sampled at a rate f; and the samples are
reconstructed by a staircase reconstructor H (f). The reconstructed signal will be:

Ya(©)= > G(fm)cos(2Tfmt + P (fm)) (1.6.10)

m=—oo

where G (f) and ¢ (f) are defined as

sin(1rf T)

G(f)= fT

b(f)=-nfT =  H({)=TG(f)e*D

Note that TG (f) and ¢ (f) are not quite the magnitude and phase responses of H (f);
those are |H(f)| = T|G(f)| and argH(f) = ¢ (f)+1 (1 — signG(f))/2. Eq. (1.6.10)
is obtained by substituting H (f)= TG (f)e/®® into Eq. (1.6.8) and taking real parts. A
computable approximation of Eq. (1.6.10) is obtained by truncating the sum to 2M + 1
terms, that is, keeping the terms —M < m < M:

M
Ya(©)= > w(m)G(fm)cos(21tfmt + ¢ (fm)) (1.6.11)
m=-M
where we have also introduced appropriate weights w(m) to reduce the Gibbs ripples
resulting from the truncation of the sum. For example, the Hamming weights are:

w(m):0.54+0.46cos(%), -M<m=<M

whereas the rectangular weights are w(m) = 1.

For the numerical values fo = 0.125 kHz, f; = 1 kHz, M = 15, we have computed the orig-
inal analog signal y (t) and the reconstructed signal y, (t) as given by the approximation
of Eq. (1.6.11), over the time interval 0 < t < 16 msec, that is, over 16 sampling instants.

If the signal y, (t) were postfiltered by a good postfilter, only the m = 0 term would survive
the sum, and the resulting signal would be the original f, sinusoid with some attenuation
and phase shift:
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ypost(t): G(fO)COS(anOt + ¢(fo))

The following figure compares the three signals y (t), y,4 (1), and ypes () in the two cases
of using rectangular weights and Hamming weights w (m).

rectangular weights i Hamming weights

Notice how the postfilter output ypos (t) is essentially an averaged or smoothed version
of the staircase output y, (t). To see the dependence on the value of f of the attenuation
and phase shift of ypes (t), the next two graphs show the cases fy = 0.25 and fo = 0.5
kHz.

Hamming weights staircase
- postfilter

original

fo = 0.25 kHz fo = 0.5 kHz

"0 1 2 3 4 5 8 7 8 9 1011 12 13 14 15 16 01 2 8 4 5 8 7 8 9 1011 12 13 14 15 16
t (msec) t (msec)

The case fo = 0.5 kHz corresponds to the Nyquist frequency fs/2, having the maximum
amplitude and phase distortion. In all cases, however, ypos: (t) is a smoothed version of
the staircase output.

If the staircase reconstructor is preceded by an equalizer filter, as shown in Fig. 1.6.9, then
the staircase output will be given by the real part of Eq. (1.6.9). We have:

H(fm) _sin(fuT)  1HOT o)

H(fo)  7fmT  sin(mfoT)

_ sin(mrfoT + 1TM) &

~sin(mfoT)  fm o
_ (=D)"sin(mfoT) fo (L1ym= fo
sin(1tfoT) fm fm

where we used the property cos(x + tm)= (—1)"cos x. Thus,
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M
Va(t)= Z w(m) ff—o cos (21rfimt) (1.6.12)
m=—M m

This signal is shown below for the case fy = 0.125 kHz.

Hamming weights

cqualized 4—times oversampling

- --- original

fo = 0.125 kHz fo = 0.125 kHz

-1

-1

% 1 2 5 4 5 6 7 8 9 10111213 14 15 16 % 1 2 5 4 5 6 7 8 9 10111213 14 15 16
t (msec t (msec

It is superimposed on the original sinusoid, corresponding to the m = 0 term, which is

what would be extracted by a good postfilter. Notice again the smoothing effect of the

postfilter. In order to remove completely all the m # 0 terms, the postfilter must be a

high-quality lowpass filter with sharp cutoff at the Nyquist frequency.

To illustrate the beneficial effect of oversampling on such a reconstructor, we have also
plotted the digitally equalized staircase output in the case of 4-times oversampling, as
given by Eq. (1.6.12) with f; = 4 kHz. Now there are four times as many staircase levels.
They follow the original sinusoid more closely and can be smoothed more easily. Therefore,
a lower quality, less expensive lowpass postfilter would be sufficient in this case. [m}

1.7 Basic Components of DSP Systems

It follows from the discussion in Sections 1.5 and 1.6 that the minimum number of
necessary components in a typical digital signal processing system must be:

1.

A lowpass analog antialiasing prefilter that bandlimits the signal to be sampled to
within the Nyquist interval.

. An A/D converter (sampler and quantizer).
. A digital signal processor.

. AD/A converter (staircase reconstructor), possibly preceded by an equalizing dig-

ital filter.

. A lowpass analog anti-image postfilter to complete the job of the staircase re-

constructor and further remove the spectral images introduced by the sampling
process.

These are shown in Fig. 1.7.1. Here, we review briefly the function of each stage and
its impact on the quality of the overall digital processing system. With the exception
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of the sampling stage, every stage in this system may be thought of as a filtering op-
eration by an appropriate transfer function. The sampling stage, through its spectrum
replication, is a spectrum expansion operation.

The function of the antialiasing prefilter Hpgg (f) is to bandlimit the overall analog
input signal x, (t) to within the Nyquist interval [—fs/2,fs/2]. The output of the pre-
filter is now a bandlimited signal x (t) and may be sampled at a rate of f; samples per
second. By design, the spectral replicas generated by the sampling process will not over-
lap. The sampling rate must be high enough so that the surviving input spectrum after
the prefiltering operation, that is, the spectrum of x(t), contains all the frequencies of
interest for the application at hand.

The quality of the prefilter affects critically the quality of the overall system, that is,
the degree of overlap of the spectral replicas depends on the rolloff characteristics of
the prefilter.

The sampled (and quantized) signal X(t) or x(nT) is then processed by a digital
signal processor whosAe effectis to resilape the spectrum by means of a transfer function,
say Hpsp (f), so that Y (f) = Hpsp (f) X ().

The resulting output samples y (t) or y (nT) are then reconstructed by the DAC into
the staircase analog signal y(t). Finally, the signal y(t) is smoothed further by the
postfilter, resulting in the overall analog output signal y, (t). Separating in Eq. (1.5.11)
the central replica from the other replicas, we write

)A((f)=% > X(f—mfy)= %[X(f)+replicas]

and following backwards all the transfer function relationships, we find for the spectrum
of yu (0):

Ya(f) = Heost (f) Y (f) = Heost (f) Hpac (f) Y (F)

= Hpost (f) Hpac (f) Hpse (f) X (f)

= Hpost () Hpac (f) Hpsp (f) %[X(f) +replicas]

1

= Hpost () Hpac () Hpsp (f) T

[Hpre (f) Xa (f) +replicas]|

x,(t) analog | x(¢) | sampler Q(z) DSP 3\'(1) staircase | y(f) | analog v,

— | prefilter & Hoo) D/A » postfilter |—— g
analog Hire) AD bse Hp,\(f) Heos1( | an alog
in * out
f; clock
X, (N XA(/‘) X(f) () () Y,
AR (1Y S m m & CVf ﬁ T
0 0 0 f 0 f 0 f 0 f

Fig. 1.7.1 Components of typical DSP system.
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In a well-designed system, the product of the staircase DAC and the postfilter trans-
fer functions should be effectively equal to the ideal reconstructor. Therefore, for fre-
quencies outside the Nyquist interval the output spectrum will vanish, that is, the spec-
tral images will be removed. But for frequencies within the Nyquist interval, that product
should be equal to the gain T canceling the 1/T factor.

Furthermore, because the prefilter Hpgg (f) ensures that the replicas do not overlap,
the terms labeled “replicas” will vanish for all frequencies within the Nyquist interval.
Finally, because the prefilter approximates an ideal lowpass filter, its passband gain will
be approximately one. The upshot of all this is that within the Nyquist interval one has
approximately

Hpost (f) Hpac(f) =T
replicas =~ 0
Hppe(f) = 1

To the extent that these approximations are good—and this determines the quality
of the overall system—we finally find

Ya(f)= T Hysp () 2 [1 Xa(F)+0], o,

fs
2

Thus, the above arrangement works exactly as expected, that is, it is equivalent to
linear filtering of the analog input, with an effective transfer function Hpsp (f) defined by
the digital signal processor. This is, of course, the ultimate goal of the DSP system. The
primary reasons for using digital signal processing are the programmability, reliability,
accuracy, availability, and cost of the digital hardware.

| Ya(f) = Hose () Xa(f) (1.7.1)

, for |f| <

1.8 Problems

1.1 A wheel, rotating at 6 Hz, is seen in a dark room by means of a strobe light flashing at a rate
of 8 Hz. Determine the apparent rotational speed and sense of rotation of the wheel. Repeat
the question if the flashes occur at 12 Hz, 16 Hz, or 24 Hz.

1.2 The analog signal x(t)= 10sin(27rt) +10sin(87rt) +5sin(127rt), where t is in seconds, is
sampled at a rate of fs = 5 Hz. Determine the signal x, (t) aliased with x(t). Show that the
two signals have the same sample values, that is, show that x(nT)= x,(nT). Repeat the
above questions if the sampling rate is fy = 10 Hz.

1.3 The signal x(t) = cos(57rt) + 4 sin(27rt)sin(371rt), where t is in milliseconds, is sampled at
arate of 3 kHz. Determine the signal x, (t) aliased with x(t).
Determine two other signals x; (t) and x; (t) that are different from each other and from
x(t), yet they are aliased with the same x, (t) that you found.

1.4 Let x(t)= cos(871rt) + 2 cos(41rt)cos(67rt), where t is in seconds. Determine the signal
X4 (t) aliased with x (t), if the sampling rate is 5 Hz. Repeat for a sampling rate of 9 Hz.
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1.5 The analog signal x(t) = sin(67rt) [1 + 2 cos(47rt) |, where t is in milliseconds, is sampled
at a rate of 4 kHz. The resulting samples are immediately reconstructed by an ideal recon-
structor. Determine the analog signal x, (t) at the output of the reconstructor.

1.6 The analog signal x (t) = 4 cos(27rt) cos(87rt)cos(121rt), where t is in seconds, is sampled
at a rate of f; = 10 Hz. Determine the signal x, (t) aliased with x(t). Show that the two
signals have the same sample values, that is, show that x(nT)= x, (nT). Repeat the above
questions if the sampling rate is f = 12 Hz. [Hint. Express x(t) as a sum of sines and
cosines.]

1.7 Consider the periodic triangular waveform with period Ty = 1 sec shown in Fig. 1.8.1. The
waveform is sampled at rate f; = 8 Hz and the resulting samples are reconstructed by
an ideal reconstructor. Show that the signal X (t) that will appear at the output of the
reconstructor will have the form:

Xrec (t) = A sin(27rf1t) + B sin (277f>1)
and determine the numerical values of the frequencies f1, f> and amplitudes A, B.

x(7)

0 05 1 > [ (sec)

Fig. 1.8.1 Triangular waveform of Problem 1.7.

1.8 Computer Experiment: Aliasing. Consider an analog signal x (t) consisting of three sinusoids
of frequencies f; = 1 kHz, f> = 4 kHz, and f3 = 6 kHz, where t is in milliseconds:

x(t)= 2sin(27rf1t) +2 sin (217> t) + sin (277f31)

a. The signal is sampled at a rate of 5 kHz. Determine the signal x, (t) that would be
aliased with x(t). On the same graph, plot the two signals x(t) and x, (t) versus t in
the range 0 < t < 2 msec. Show both analytically and graphically that the two signals
have the same sampled values, which occur at intervals of T = 1/fs = 0.2 msec.

b. Repeat with a sampling rate of fy = 10 kHz.
c. On the same graph, plot the signals x(t) and x,(t) of Problem 1.7, over the range
0 <t < 2 sec, and verify that they intersect at the sampling instants at multiples of

T = 1/fs = 0.125 sec. In plotting, x(t), you need to define it as a triangular function
of t.

Repeat this part, but with sampling rate fs = 4 Hz. What is x, (t) now?

1.9 Consider the following sound wave, where t is in milliseconds:
x(t)= sin(107tt) + sin(207tt) + sin (6077t) + sin (9077t)

This signal is prefiltered by an analog antialiasing prefilter H (f) and then sampled at an
audio rate of 40 kHz. The resulting samples are immediately reconstructed using an ideal
reconstructor. Determine the output y, (t) of the reconstructor in the following cases and
compare it with the audible part of x(t):
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1.10

1.12

1.13

1.14
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a. When there is no prefilter, that is, H(f)= 1.
b. When H (f) is an ideal prefilter with cutoff of 20 kHz.

c. When H (f) is a practical prefilter that has a flat passband up to 20 kHz and attenuates
at a rate of 48 dB/octave beyond 20 kHz. (You may ignore the effects of the phase
response of the filter.)

Prove the Fourier series expansion of the ideal sampling function s(t) given in Eq. (1.5.10).
Then, prove its Fourier transform expression (1.5.13).

Given Eq. (1.5.4), prove the inverse DTFT property (1.5.5), that is,

o0

~ o 1 (fs’2 o

X(= 3 Ty M o xnr)= [ R(pemita
n=—o fS‘ ~fs/2

Consider a pure sinusoid of frequency fy, X (t) = cos (21fot). Show that the spectrum of the

sampled sinusoid x (nT) is:

o0

X(P)= gz 3 (8 = fo—mf)+5(F +fo+mfy)]
m=—oco

Computer Experiment: Sampling of Non-Bandlimited Signals. Consider the exponentially
decaying sinusoid x(t)= e~% cos(21rfot) sampled at a rate fy = 1/T. For convenience,
replace it by its complex-valued version: x(t)= e ae2™fot Let x(nT)= e aTne2mifoTn he
its samples, and let x; (nT)= x(nT), n = 0,1,...,L — 1 be its windowed version to length
L. Show that the magnitude spectra of the analog, sampled, and windowed signals are given
by:

1
IX(f)1° = ,
"Gy
~ - )
IX(1° = 1= 24T cos (21 (f — fo) T) + e 24T
XL ()2 = 1-2e 9L cos (211 (f — fo)LT) + e~24TL
L =

1-2e-9T cos (21t (f — fo) T) + e—2aT

Show the limits:
Jim X ()= X (), lim TX(F)= X ()

For the numerical values a = 0.2 sec™!, fo = 0.5 Hz, and the two rates fs = 1 Hz and
fs = 2 Hz, plot on the same graph the analog spectrum | X (f) |* and the sampled spectrum
|ITX(f)|?, over the frequency range 0 < f < 3 Hz.

For fs = 2, plot on another graph, the three spectra |X () 12, |TX (f) 12, |TX. (f) 2, over the
range 0 < f < 3 Hz.

What conclusions do you draw from these graphs? What are the implications of the above
limits? What are the essential differences if we work with the real-valued signal?

The frequency range of interest of a signal extends to fimax. Beyond fmax, the spectrum
attenuates by « dB per decade. We have available an off-the-shelf antialiasing prefilter that
has a flat passband up to fmax and attenuates by 8 dB per decade beyond that. It is required
that within the f,.x range of interest, the aliased components due to sampling be suppressed
by more than A dB. Show that the minimum sampling rate that we should use is given by

fs=fmax+1OA/yfmaXy Where)’=0(+3
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1.15

1.16

1.17

1.18
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An analog input signal to a DSP system has spectrum:

1
1+ (0.1f)8

where f is in kHz. The highest frequency of interest is 20 kHz. The signal is to be sampled
at a rate f. It is required that the aliased spectral components within the frequency range
of interest be suppressed by more than 60 dB relative to the signal components, that is, they
must be at least 60 dB below the value of the signal components throughout the 20 kHz
range of interest.

I Xin (F) | =

a. Determine the minimum sampling rate f5, if no antialiasing prefilter is used.

b. Suppose a simple third-order Butterworth antialiasing prefilter is used having magni-
tude response

1
I+ (f/fo)®

Itis required that the prefilter’s attenuation within the 20 kHz band of interest remain
less than 1 dB. What is the value of the normalization frequency fj in this case? What
is the minimum value of f; that may be used? Compare your exact calculation of f
with the approximate one using the method of Problem 1.14.

H(f)] =

For the above example, suppose we are constrained to use a particular sampling rate, which
is less than the minimum we determined above (and greater than 2fmax), such as fs = 70 kHz.
In order to achieve the required 60 dB suppression of the aliased replicas, we must now use
a more complex prefilter—one that has a steeper transition width, such as a higher-order
Butterworth. An Nth order Butterworth filter has magnitude response

1
Hf)|?= —— e
[H ()| 15 (F/fo) N
Given f, determine the minimum filter order N in order for the filter to attenuate less than
Apass = 1 dB in the passband and the total suppression of the spectral images to be greater
than A = 60 dB.

Computer Experiment: Butterworth Prefilter Design. Using the methods of the previous prob-
lem, derive a “design curve” for the prefilter, that is, an expression for the Butterworth filter
order N as a function of the sampling rate f; and stopband attenuation A. Assume fiax = 20
kHz and Apass = 1 dB for the passband attenuation.

For each of the attenuation values A = 40, 50, 60, 70, 80 dB, plot the filter order N versus f;
in the range 50 < fs < 120 kHz. Identify on these graphs the design points of the Problems
1.15 and 1.16.

The significant frequency range of an analog signal extends to 10 kHz. Beyond 10 kHz, the
signal spectrum attenuates at a rate of 80 dB per decade.

The signal is to be sampled at arate of 30 kHz. The aliased frequency components introduced
into the 10 kHz range of interest must be kept below 60 dB, as compared to the signal
components.

Suppose we use an antialiasing prefilter whose passband is flat over the 10 kHz interval.
Beyond 10 kHz, it attenuates at a certain rate that must be steep enough to satisfy the
above sampling requirements. What is this attenuation rate in dB per decade? Explain your
reasoning. What is the minimum filter order that we must use?

What is the prefilter’s attenuation rate if we increase the sampling rate to 50 kHz? What is
the filter order in this case?
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1.19 An analog input signal to a DSP system has spectrum:

1

| Xin ()] = ———
L+ (F1fa)™

where f,; and N, are given. The highest frequency of interest is fiax = 2f,;. The signal is to be
sampled at a rate fs. It is required that the aliased spectral components within the frequency
range of interest be suppressed by more than A dB relative to the signal components, that
is, they must be at least A dB below the value of the signal components throughout the
0 < f < fmax range of interest.

a. Assuming that no antialiasing prefilter is used, set up and solve an equation for the
minimum sampling rate f§, in terms of the quantities f,;, N, A.

b. Next, suppose that an Nth order Butterworth analog prefilter is to be used to aid the
sampling process. Let fy be the filter's 3-dB normalization frequency. It is required
that the prefilter’s attenuation within the 0 < f < fiax band of interest remain less
than B dB.

Set up an equation for fy that would guarantee this condition.

Then, set up an equation for the minimum fs that would guarantee the desired A dB
suppression of the spectral images.

c. Show that f is given approximately by

fs = fumax [1 + 10A/20(N+Na)]

When is this approximation valid? Show that this expression also covers part (a) if you
set N = 0. Discuss the meaning of the limit N — o in terms of the sampling theorem.

1.20 In Problem 1.19, we implicitly assumed that the prefilter’s order N was given, and we deter-

mined f, and f;. Here, we assume that fs is given and is equal to some value above 2fax.
Show that the minimum prefilter order that must be used to guarantee A dB suppression of
the spectral images is approximately linearly related to A via an equation of the form:

N=aA+b

Determine expressions for a and b in terms of the given quantities.

The operation of flat-top practical sampling depicted in Fig. 1.5.1 may be thought of as filter-
ing the ideally sampled signal X(t) through an analog linear filter whose impulse response
is the sampling pulse p (t), as shown in Fig. 1.8.2. Show that Eq. (1.5.2) can be written as the
I/0 convolutional equation of such a filter:

)

xﬂat(t)=J7 pt—t)&()dt' = > x(nT)p(t—nT)

n=-o0

where X(t) is given by Eq. (1.5.1). In the frequency domain, this translates to Xga (f) =
P(f))A((f), where P (f) is the spectrum of sampling pulse p(t).

Determine P (f) for a flat pulse p(t) of duration T seconds. For the case T = T/5, make a
sketch of Xga¢ (f) over the range —6f5 < f < 6f5.
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1.22

1.23

1.24

1.25

1. SAMPLING AND RECONSTRUCTION

x(nT) &(t-nT) linear system x(nT) p(t—=nT)
# 0 p() Xeae(D) ¢
ideally t flat-top
t sampled 07 sampled t
nT signal signal nT

Fig. 1.8.2 Flat-top sampling as filtering.

After having been properly prefiltered by an antialiasing filter, an analog signal is sampled
at a rate of 6 kHz. The digital signal is then filtered by a digital filter designed to act as an
ideal lowpass filter with cutoff frequency of 1 kHz. The filtered digital signal is then fed into
a staircase D/A reconstructor and then into a lowpass anti-image postfilter.

The overall reconstructor is required to suppress the spectral images caused by sampling by
more than A = 40 dB. Determine the least stringent specifications for the analog postfilter
that will satisfy this requirement.

Consider an arbitrary D/A reconstructing filter with impulse response h (t) and correspond-
ing frequency response H (f). The analog signal at the output of the reconstructor is related
to the incoming time samples x(nT) by

Xa(t)= > x(nT)h(t - nT)

Show this result in two ways:

a. Using convolution in the time domain.

b. Starting with X, (f)= H(f ))A( (f) and taking inverse Fourier transforms.

The sinusoidal signal x (t) = sin (277f(t) is sampled at a rate f; and the resulting samples are
then reconstructed by an arbitrary analog reconstructing filter H (f). Show that the analog
signal at the output of the reconstructor will have the form:

Xrec (1) = Z Am SiIl(ZTl'fmt +0m)
m=—oo
What are the frequencies f;,? How are the quantities A,, and 0,, related to the frequency
response H (f)? Determine the quantities A, and 8, for the two cases of a staircase recon-
structor and an ideal reconstructor.

The sum of sinusoids
y(t)= A e¥miht 4 A, e2milat

is sampled at a rate fs such that fy > 2|f1] and f; > 2|f2|. The resulting samples are then
filtered digitally by a staircase-equalizing digital filter and then reconstructed by a staircase
reconstructor, as shown in Fig. 1.6.9. If a final postfilter is not used, show that the resulting
analog signal at the output of the reconstructor will be

o0

Ya(©)= > [Aime*™hmt 4 Ay, e2milzmt]

m=—oo

where A1y = A1f1/fim, Aom = Aof2/fom, and fim = f1 + mfs, fom = f2 + mfs. What would
a final postfilter do to each of these terms?
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Quantization

2.1 Quantization Process

Sampling and quantization are the necessary prerequisites for any digital signal pro-
cessing operation on analog signals. A sampler and quantizer are shown in Fig. 2.1.1
[40-45]. The hold capacitor in the sampler holds each measured sample x(nT) for at
most T seconds during which time the A/D converter must convert it to a quantized
sample, Xq (nT), which is representable by a finite number of bits, say B bits. The B-bit
word is then shipped over to the digital signal processor.

i sampler & quantizer | quantized
§ sample & hold % signal xo(nT)
x(1) | x(nT) A/D >
— e > B
o % o DSP
analog | | 7 L sampled converter T ¢
signal | — | signal

% B bits/sample

Fig. 2.1.1 Analog to digital conversion.

After digital processing, the resulting B-bit word is applied to a D/A converter which
converts it back to analog format generating a staircase output. In practice, the sam-
ple/hold and ADC may be separate modules or may reside on board the same chip.

The quantized sample xq (nT), being represented by B bits, can take only one of
2B possible values. An A/D converter is characterized by a full-scale range R, which
is divided equally (for a uniform quantizer) into 28 quantization levels, as shown in
Fig. 2.1.2. The spacing between levels, called the guantization width or the quantizer
resolution, is given by:

R
Q=5 (2.1.1)

This equation can also be written in the form:
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quantization
levels

Fig. 2.1.2 Signal quantization.

R
— =28 (2.1.2)
Q

which gives the number of quantization levels. Typical values of R in practice are be-
tween 1-10 volts. Figure 2.1.2 shows the case of B = 3 or 28 = 8 levels, and assumes a
bipolar ADC for which the possible quantized values lie within the symmetric range:

—Ré <xq(nT)< }25

For a unipolar ADC, we would have instead 0 < xq (nT) < R. In practice, the input
signal x (t) must be preconditioned by analog means to lie within the full-scale range of
the quantizer, thatis, —R/2 < x(t) < R/2, before it is sent to the sampler and quantizer.
The upper end, R/2, of the full-scale range is not realized as one of the levels; rather,
the maximum level is R/2 — Q.

In Fig. 2.1.2, quantization of x (t) was done by rounding, that is, replacing each value
x(t) by the value of the nearest quantization level. Quantization can also be done by
truncation whereby each value is replaced by the value of the level below it. Rounding
is preferred in practice because it produces a less biased quantized representation of
the analog signal.

The quantization errvor is the error that results from using the quantized signal
Xq (nT) instead of the true signal x(nT), that is, T

e(nT)=xq(nT)—-x(nT) (2.1.3)

In general, the error in quantizing a number x that lies in [-R/2,R/2) is:

e =2Xxq—X

t A more natural definition would have been e (nT)= x(nT) —xq (nT). The choice (2.1.3) is more conve-
nient for making quantizer models.
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where Xxq is the quantized value. If x lies between two levels, it will be rounded up or

down depending on which is the closest level. If x lies in the upper (lower) half between

the two levels, it will be rounded up (down). Thus, the error e can only take the values'

Q Q

-5 <e=< > (2.1.4)

Therefore, the maximum error is ey, = Q/2 in magnitude. This is an overestimate

for the typical error that occurs. To obtain a more representative value for the average
error, we consider the mean and mean-square values of e defined by:

1 Q2 o ran Q>
e=— J ede =0, and e2=— '[ e’de = = (2.1.5)
Q J-qnr Q J-qnr 12

The result ¢ = 0 states that on the average half of the values are rounded up and
half down. Thus, e cannot be used as a representative error. A more typical value is the
root-mean-square (rms) error defined by:

€rms = \/e: = \/% (2.1.6)

Equations (2.1.5) can be given a probabilistic interpretation by assuming that the