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Summary

This thesis brings together the fields of fluid mechanics, as the study of fluids
and flows, isogeometric analysis, as a numerical method to solve engineering
problems using computers, and shape optimization, as the art of finding “best”
shapes of objects based on some notion of goodness. The flow problems consid-
ered in the thesis are governed by the 2-dimensional, steady-state, incompress-
ible Navier-Stokes equations at low to moderate Reynolds numbers. We use
isogeometric analysis both to solve the governing equations, and as framework
for the shape optimization procedure. Isogeometric analysis unites the power
to solve complex engineering problems from finite element analysis (FEA) with
the ability to effectively represent complex shapes from computer aided design
(CAD). The methodology is appealing for flow modeling purposes also due to
the inherent high regularity of velocity and pressure approximations, and for
shape optimization purposes also due to its tight connection between the analy-
sis and geometry models. The thesis is initiated by short introductions to fluid
mechanics, and to the building blocks of isogeometric analysis. As the first
contribution of the thesis, a detailed description is given of how isogeometric
analysis is applied to flow problems. We present several new discretizations
of the velocity and pressure spaces, we investigate these in terms of stability
and error convergence properties, and a benchmark flow problem is analyzed.
As the second contribution, we show how isogeometric analysis may serve as a
natural framework for shape optimization within fluid mechanics. We construct
an efficient regularization measure for avoiding inappropriate parametrizations
during optimization, and various numerical examples of shape optimization for
fluids are considered, serving to demonstrate the robustness of the method. As
the third contribution, the methodology is extended to acoustics. We estab-
lish a coupled flow-acoustic model of sound propagation through flow in ducts
based on isogeometric analysis. Validations using known acoustic duct modes
demonstrate the powers of the methodology. Based on the model, we identify
distinct geometric effects that enhance the sensitivity of the acoustic signal to
the background flow. The thesis is concluded by suggestions for future studies
within the field.
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Resumé (in Danish)

Denne afhandling omhandler fluidmekanik, som er studiet af fluider og væske-
strømninger, isogeometrisk analyse, som er en numerisk metode til vha. com-
putere at løse problemer indenfor ingeniørvidenskaben, og formoptimering, som
er kunsten at finde den “bedste” form af et objekt ud fra et givent m̊al for
kvalitet. Strømningsproblemerne, som behandles i denne afhandling, er styret af
den 2-dimensionale, stationære, inkompressible Navier-Stokes-ligning ved lave
til moderate Reynoldstal. Vi anvender isogeometrisk analyse b̊ade til at løse
de styrende ligninger og som fundament for formoptimeringen. Isogeometrisk
analyse kombinerer evnen til at analysere komplekse ingeniørmæssige proble-
mer fra finite element-metoden (FEM) med evnen til p̊a en effektiv m̊ade at
repræsentere komplekse former fra computer aided design (CAD). Metoden er
attraktiv indenfor modellering af væskestrømninger ogs̊a pga. den indbyggede
regularitet af approksimationen af hastigheds- og trykfelterne, og ligeledes in-
denfor formoptimering ogs̊a pga. den tætte forbindelse mellem analysemod-
ellen og den geometriske model. Afhandlingen indledes med en kort introduk-
tion til fluidmekanik og til den isogeometriske analyses grundelementer. Som
det første bidrag gives en detaljeret beskrivelse af anvendelsen af isogeometrisk
analyse p̊a strømningsproblemer. Vi præsentere en række nye diskretiseringer
af approksimationsrummene for hastighed- og trykfelterne, vi undersøger disse
mht. stabilitet og fejl-konvergens, og vi analyserer et standard-problem inden-
for væskestrømninger. Som det andet bidrag vises det, hvorledes isogeometrisk
analyse kan anvendes som fundament for formoptimering indenfor fluidmekanik.
Vi konstruere et effektivt m̊al for regularisering, hvilket tjener til at undg̊a
uhensigtsmæssige parametriseringer under optimeringen, og for at demonstrere
metodens robusthed løser vi en række numeriske eksempler p̊a formoptimerings-
problemer for fluider. Som det tredje bidrag udvides metoden til akustik. Vi
fremsætter en koblet model for lydudbredelsen i væskestrømninger gennem rør
baseret p̊a isogeometrisk analyse. Validering af metoden ud fra kendte akustiske
modes demonstrerer dens potentiale, og med udgangspunkt i modellen identifi-
ceres en tydelig geometrisk forstærkning af sensitiviteten af det akustiske signal
overfor baggrunds-strømningen. Afhandlingen afsluttes med forslag til frem-
tidige studier indenfor emnet.
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Chapter 1

Introduction

The subject of this thesis is isogeometric analysis and shape optimization in
fluid mechanics. This chapter gives an account of its motivation, goals, and
outline.

1.1 Motivation

Fluid mechanics is the study of fluids and flows, i.e., how gases and liquids
behave under the influence of forces. The water running through the plumbing
pipes, and the air moving in the atmosphere, are just two out of numerous
examples we are all very familiar with. These phenomena are governed by
a set of coupled partial differential equations, and the solution of these often
rely on computer methods, see e.g. [Durran, 1999; Donea and Huerta, 2003;
Mohammadi and Pironneau, 2010]

Shape optimization is the art of determining the best shape of an object
in a given situation based on some notion of goodness. Examples of shape
optimization problems in fluid mechanics are numerous, see e.g. [Mohammadi
and Pironneau, 2004]. They range from the design of microfluidic protein-folding
devices [Ivorra et al., 2006], to the design of airplane wings [Painchaud-Oullet
et al., 2006], just to mention a few. Again, computer methods are most often
employed [Mohammadi and Pironneau, 2010]

Isogeometric analysis is a recently proposed computational method for solv-
ing engineering problems [Hughes et al., 2005; Cottrell et al., 2009]. The method
unites the powers of finite element analysis (FEA) to solve partial differential
equations with the powers of computer aided design (CAD) to represent com-
plex shapes. As such, it provides a natural framework for both analysis and
shape optimization in fluid mechanics.

In isogeometric analysis, the geometry representation builds on the method-
ologies from CAD, where B-splines and NURBS (Non-Uniform Rational B-
splines) are standard mathematical tools [Piegl and Tiller, 1995]. Complex
domains can be represented exactly, and this is particularly interesting for prob-
lems in fluid mechanics, since curvature and cusps are critically important. In
isogeometric analysis, the analysis model used to solve the governing equations
is tightly connected to the geometric model, using the same type of basis func-
tions. This means that high degrees of continuity for the state variables may

1



2 CHAPTER 1. INTRODUCTION

be achieved as well. This is again of extreme importance in flow modeling.
Several studies have demonstrated the applicability of isogeometric analysis to
problems in fluid mechanics, see e.g. [Bazilevs et al., 2006b; 2007a; Akkerman
et al., 2010; Bazilevs and Hughes, 2008; Bazilevs and Akkerman, 2010; Bazilevs
et al., 2010b; Akkerman et al., 2011; Hsu et al., 2011].

The mathematical structure of the geometry representation is fixed in isoge-
ometric analysis, and typically only a few design variables are needed to control
even quite complex shapes. This means that the geometry can be changed quite
easily, and usually without need for heavy re-meshing procedures. In addition,
the tight connection between geometry and analysis models alleviates the need
for communication between FEA models for the analysis and CAD models for
the geometry. All this make isogeometric analysis an ideal tool for shape opti-
mization. The applicability of isogeometric analysis to shape optimization has
been demonstrated in several studies, see e.g. [Wall et al., 2008; Cho and Ha,
2009; Qian, 2010; Nagy et al., 2011; Nguyen et al., 2011; Li and Qian, 2011;
Qian and Sigmund, 2011].

1.2 Goals

The aim of this thesis is to bring together the fields of fluid mechanics, shape
optimization, and isogeometric analysis: fluid mechanics as the nature of the
problems considered, shape optimization as an extension, or add-on, to the flow
problems considered, and isogeometric analysis as the computational method.

We will firstly study isogeometric analysis of flows. Here, we will investigate
various discretizations for the pressure and velocity fields in the mixed formu-
lation of the Navier-Stokes equations that govern flow problems, and we will
compare these in terms of error convergence for a problem with a known solu-
tion, and apply them to a standard flow problem for benchmarking. Secondly,
we will study isogeometric shape optimization of flows. Here, we will inves-
tigate a new regularization technique to ensure good parametrizations during
the optimization, and we will demonstrate the power of the methodology by
applying it to various design problems. Thirdly, applications of isogeometric
analysis within flow acoustics will be studied. Here, we will set up a model
of sound propagation through flows in ducts with non-trivial geometry. The
model will be validated against known acoustic modes in ducts, and based on
the model, we will investigate the effects of the duct geometry and flow speed on
the sound signal. Finally, we will present some initial investigations of methods
for construction of domain parametrizations in isogeometric analysis, and pre-
liminary results for design of idealized airfoils using isogeometric analysis will
be presented.

The flow problems considered in the thesis are governed by the steady-state,
incompressible Navier-Stokes equations in the laminar regime, i.e., at low to
moderate Reynolds numbers. The sound signal in the coupled flow-acoustics
problems considered is governed by a linear, time-harmonic, background flow-
dependent acoustic equation in the low Mach number regime. As the aim of the
thesis is a proof-of-concept, rather than a construction of a full-blown modelling
and optimization framework, all studies are for simplicity conducted in two
spatial dimensions. For most cases, generalizations to three dimensions are
trivial in theory, but cumbersome to implement. We have developed a numerical
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framework for doing isogeometric analysis and shape optimization on problems
in fluid mechanics. All routines are implemented in MATLAB R© [http://www.
mathworks.com]. The optimization is based on SNOPT [Gill et al., 2008]. All
numerical results presented in the thesis are based on this framework.

1.3 Outline

The thesis is organized as follows: In Chapter 2, we introduce the fundamentals
of fluid mechanics and the building blocks of isogeometric analysis. In Chapter
3, isogeometric analysis of flows are studied. In Chapter 4, we study isogeomet-
ric shape optimization of flows. In Chapter 5, isogeometric analysis of sound
propagation through flows are studied. In Chapter 6, we present brief studies
on parametrizations and on design of idealized airfoils, along with an outlook
on the subject. Finally, conclusions are summarized in Chapter 7.

http://www.mathworks.com
http://www.mathworks.com
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Chapter 2

Preliminaries

This chapter gives brief introductions to fluid mechanics, and to B-splines and
NURBS (Non-Uniform Rational B-Splines) as the building blocks of isogeo-
metric analysis. The introductions are in no way exhaustive, and are merely
included to set the scene for the subsequent chapters.

2.1 Fluid Mechanics

Fluid mechanics is the study of fluids and flows, i.e., how gases and liquids
behaves under the influence of forces, be it the blood in our veins, the water in
our plumbing pipes, or the air in the atmosphere around us. These phenomena
are all governed by the same partial differential equations. In the following,
we give a short introduction to these, and refer the reader to, e.g., [Donea and
Huerta, 2003; Durran, 1999; Reddy and Gartling, 2001; Frisch, 1995; White,
1974] for further reading.

ΓN

ΓD

Ω

u velocity
p pressure
ρ density
µ viscosity
f force

Figure 2.1: A fluid contained in a flow domain.

To set the scene, we consider a fluid in a 2-dimensional domain Ω as depicted
in Figure 2.1. Assuming the fluid is isothermal, i.e., at constant temperature,
the state of the fluid is given by the velocity u = (u, v), the pressure p, and
the density ρ. These so-called primitive state variables are governed by the

5



6 CHAPTER 2. PRELIMINARIES

Navier-Stokes and mass continuity equations:

ρ
∂u

∂t
+ ρu · ∇u−∇ · σ − ρf = 0 in Ω, (2.1a)

∂ρ

∂t
+∇ · (ρu) = 0 in Ω, (2.1b)

expressing conservation of momentum and mass for the fluid, respectively. Here,
t denotes time, σ the shear stress tensor, and f additional body forces (such as
gravity) acting on the fluid.

The fluids considered in this thesis are assumed to be incompressible, i.e.,
the density ρ is constant, and Newtonian, i.e., the stress and the strain rate are
linearly related. This gives the following constitutive relation between the stress
σ and the pressure p and velocity u:

σ = −p I + µ
(∇u+ (∇u)T

)
, (2.2)

where I is the identity matrix, and µ is the viscosity, which is assumed to
be constant. Furthermore, we assume that the flow is stationary, i.e., time-
independent, and we employ the convective formulation for the non-linear iner-
tial term, i.e., u · ∇u = (u · ∇)u.

With the above assumptions, Equations (2.1) may then be rewritten as the
following steady-state, incompressible Navier-Stokes equations:

ρ (u · ∇)u+∇p− µ∇ · (∇u+ (∇u)T
)− ρf = 0 in Ω, (2.3a)
∇ · u = 0 in Ω. (2.3b)

By use of the incompressibility condition (2.3b) in (2.3a), this system may be
further reduced to:

ρ (u · ∇)u+∇p− µ∇2u− ρf = 0 in Ω, (2.4a)
∇ · u = 0 in Ω. (2.4b)

The equations above govern the flow in the interior of the domain Ω, and they
must be augmented by suitable boundary conditions on the boundary Γ ≡ ∂Ω.
Here, we assume that the velocity is given as u∗ along the Dirichlet part ΓD,
and that a condition on the pressure and the normal derivative of the velocity
applies along the Neumann part ΓN :

ui = u∗i on ΓD, (2.5a)
(µ∇ui − p ei ) · n = 0 on ΓN , (2.5b)

where i = 1, 2, ei is the ith unit basis vector, Γ = ΓD ∪ ΓN , and ΓN ∩ ΓN = ∅.
Typically, Dirichlet boundary conditions (2.5a) are used at inlets and fixed
boundaries, while Neumann boundary conditions (2.5b) are used at outlets
[Rannacher, 1995].1 At symmetry boundaries, the two conditions are com-
bined. When full Dirichlet boundary conditions are employed, i.e., ΓN = ∅ and
Γ = ΓD, a condition on the pressure, such as

s
Ω
p dA = 0, must be included,

as the pressure is otherwise only determined up to an additive constant.
1The expression (µ∇ui − p ei ) · n = 0 is the “natural” open boundary conditions for

Equations (2.4). For Equations (2.3), the “natural” open boundary condition is σ · n = 0.
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Flows may crudely be separated into two very different regimes: laminar
flows are characterized by smooth and ordered fluid motion, whereas turbu-
lent flows exhibit random and fluctuating fluid motion. The Reynolds number
provides a useful measure of how laminar or turbulent a given flow is:

Re =
ρUL

µ
, (2.6)

where U is a characteristic flow speed and L is a characteristic length scale of
the problem. The Reynolds number measures the importance of (non-linear)
inertial forces to viscous forces in the Navier-Stokes equation (2.4a). The higher
the Re, the more non-linear the equation, and the more turbulent the flow. For
turbulent flows, spatial and temporal (stationarity) symmetries are broken.

Equations (2.4)–(2.5) constitute a boundary value problem based on a non-
linear second order partial differential equation system. Only few formulations
of this problem are known to have an analytical solution, and numerical methods
are most often the only strategy to solve it. From a theoretical point of view,
there are no guarantees for neither existence nor uniqueness of a solution. From
a practical point of view, solutions may often be found numerically, provided the
problem is sufficiently well behaved. The flow problems considered in this thesis
are all at low to moderate Reynolds numbers. Such conditions may be found for
sufficiently high (kinematic) viscosities ν = µ/ρ, low flow speeds U , and small
scales L. Moreover, stability of solutions are for simplicity not considered.

2.2 B-splines and NURBS

The building blocks of the isogeometric method are B-splines and NURBS (Non-
Uniform Rational B-splines), which are widely used in Computer Aided Design
(CAD) systems. In isogeometric analysis, they are used both as basis for de-
scribing the geometry, and as basis for approximating the state variables in the
governing equations. In the following, we briefly revise the basic concepts of
these functions, in their “original” geometric setting, and some often used al-
gorithms are outlined. The concepts are introduced in the plane, but they may
be generalized to higher dimensions in a straightforward way. The reader is
referred to, e.g., [Piegl and Tiller, 1995; Cottrell et al., 2009; Gravesen, 2002]
for more thorough introductions to the subject.

Univariate B-splines: Curves

Referring to Figure 2.2a, we consider a parametrization of a curve γ : R → R2

of the following form:

γ(ξ) =
(
x(ξ) , y(ξ)

)
=

n∑
i=1

xiNi(ξ), (2.7)

where the basis functions Ni : R → R are univariate B-splines, xi ∈ R2 are
control points2, and n is the number of basis functions and control points. We
refer to the curve itself as a spline curve, or simply just a spline.

2 Although similar letters are used to denote control points xi = (xi, yi) and spatial
coordinates X = (x, y), we emphasize that these should not be confused.
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a b

R

γ

6

ξ

-
6

x

y

Figure 2.2: a: A parametrization of a curve in R2. b: A spline curve (black line)
and the corresponding control points (red markers) for the polynomial degree q = 2 and
the knot vector Ξ = {0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1}.

To define the univariate B-splines entering the parametrization above, we
firstly define a knot vector :

Definition 1. A knot vector, or knot sequence, is a non-decreasing sequence
Ξ = {ξ1, . . . , ξn+q+1}, where ξi ∈ R is the ith knot, and n+ q+ 1 is the number
of knots, where n is the number of basis functions of polynomial degree q on
the knot vector.

The knots partition the parameter domain into knot spans. A knot vector
is called uniform if the knots are equidistant, i.e., all non-vanishing knot spans
have the same size, and non-uniform, otherwise. If ξ` < ξ`+1 = . . . = ξ`+ν <
ξ`+ν+1, we say that the knot ξ`+1 = . . . = ξ`+ν has multiplicity ν. Knots with
ν = 1 are called simple, while knots with ν = q are said to have full multiplicity.
Finally, a knot vector is said to be open if the boundary knots have multiplicity
ν = q + 1.

With the knot vector defined, univariate B-splines are piecewise polonymials
over the spans of the knot vector, as expressed in the following definition:

Definition 2 (Cox–de Boor recursion formula). Univariate B-splines N q
Ξ : R→

R are defined recursively from a polynomial degree q ∈ N and a knot vector Ξ:

N j
Ξ,i(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise (2.8a)

for j = 0 and i = n+ q, and

N j
Ξ,i(ξ) =

ξ − ξi
ξi+j − ξiN

j−1
Ξ,i (ξ) +

ξi+j+1 − ξ
ξi+j+1 − ξi+1

N j−1
Ξ,i+1(ξ) (2.8b)

for j = 1, 2, . . . , q and i = 1, . . . , n+ q − j, and where we define 1/(ξk − ξ`) ≡ 0
if ξk = ξ`.

Univariate B-splines are thus determined by the polynomial degree and the
knot vector. Examples of B-splines from different polynomial degrees and knot
vectors are shown in Figure 2.3.

Some important properties of B-splines are contained in the following:

Theorem 1. B-splines with knot vector Ξ and polynomial degree q fulfill:
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N0
1 N0
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N1
1 N1

2 N1
3

N2
1

N2
2 N2

3

N2
4

q = 0, Ξ = {0, 1/2, 1}

q = 1, Ξ = {0, 0, 1/2, 1, 1}

q = 2, Ξ = {0, 0, 0, 1/2, 1, 1, 1}

q = 3, Ξ = {0, 0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1, 1}

q = 3, Ξ = {0, 0, 0, 0, 5/10, 6/10, 7/10, 1, 1, 1, 1}

q = 3, Ξ = {0, 0, 0, 0, 2/5, 2/5, 2/5, 1, 1, 1, 1}

Figure 2.3: a: B-splines for polynomial degrees q ∈ {0, 1, 2} and corresponding open
knot vectors with a simple interior knot. b: B-splines for polynomial degree q = 3 and
open knot vectors with different simple and full interior knots.

1. B-splines are non-negative, i.e., Ni(ξ) ≥ 0 for all ξ.

2. The support of Ni is [ξi, ξi+q+1], i.e., B-splines have compact support.

3. The restriction of the B-spline Ni(ξ) to the open knot interval ]ξi, ξi+1[ is
a polynomial of degree q.

4. B-splines form a partition of unity, i.e.,
∑n
i=1N (ξ) = 1 for all ξ ∈

[ξq+1, ξn+1].

5. The continuity of Ni across a knot with multiplicity ν is q − ν.

The derivative of a B-spline of polynomial degree q is itself a B-spline of
polynomial degree q− 1. The derivative may be computed recursively from the
following theorem, from which also formulae for higher order derivative may be
derived:

Theorem 2. The derivative of the ith B-spline with polynomial degree q and
knot vector Ξ is given by:

dN q
Ξ,i

dξ
(ξ) =

q

ξi+q − ξiN
q−1
Ξ,i (ξ)− q

ξi+q+1 − ξi+1
N q−1

Ξ,i+1(ξ). (2.9)

With the B-splines in place, we see that a spline curve, as given in Equation
(2.7), is defined from a polynomial degree, a knot vector, and a set of control
points. Figure 2.2b shows an example of a spline curve in the plane.

A spline curve inherits many of the properties of its generating B-splines, as
stated in Theorem 1. In particular, we mention the property of locality, meaning
that moving the ith control point of a curve of degree q only affects the image of
the parameter values ξ ∈ [ξi, ξi+q+1]. Additional properties worth mentioning
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include the affine covariance property, meaning that any affine transformation
of the spline, i.e. a translation and a linear mapping, may be obtained by
applying it directly to the control points, and the convex hull property, meaning
that a spline of degree q is contained in the polygon obtained by connecting each
control point of the spline to the q consecutive control points.

A spline curve may be refined, without changing the parametrization, by
inserting more knots in the knot vector, by elevating the polynomial degree,
or by a combination of the two. These methods are referred to as h, p, and k
refinement, respectively [Cottrell et al., 2009]. The often used knot insertion
process is described in the following:

Theorem 3 (Knot insertion). Let γ(ξ) be a spline curve with polynomial degree
q, knot vector Ξ = {ξ, . . . , ξn+q+1} and control points X = {x1, . . . ,xn}T . By
inserting m knots, γ may be represented identically by the same polynomial
degree q, the extended knot vector Ξ̃ = {ξ̃ = ξ1, . . . , ξ̃n+q+1+m = ξn+q+1} ⊃ Ξ,
and the extended control points X̃ = {x̃1, . . . , x̃n+m}T , where:

X̃ = T qX , (2.10a)

T 0
i,j =

{
1 if ξ̃i ∈ [ξj , ξj+1)
0 otherwise

, (2.10b)

T r+1
i,j =

ξ̃i+r − ξj
ξj+r − ξj T

r
i,j +

ξj+r+1 − ξ̃i+r
ξj+r+1 − ξj+1

T ri,j+1, (2.10c)

for r = 1, . . . , q − 1 in Equation (2.10c).

Bivariate Tensor Product B-splines: Surfaces

X

bΩ
y

x

η

ξ

Ω

Figure 2.4: A parametrization of a domain in R2.

Referring to Figure 2.4, surfaces may be parametrized analogously to Equa-
tion (2.7) through tensor product structures:

X(ξ, η) =
(
x(ξ, η), y(ξ, η)

)
=

n∑
i

m∑
j

xi,j N q
Ξ,i(ξ)Mr

Ψ,j(η), (2.11)

where N q
Ξ,i are the n univariate B-splines with polynomial degree q and knot

vector Ξ in the parametric ξ-dimension, Mr
Ψ,j are the m univariate B-splines

with polynomial degree r and knot vector Ψ in the parametric η-dimension, and
xi,j ∈ R2 is the control net. We refer to the domain itself as a spline surface, or
again simply just a spline.
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a b

Figure 2.5: A spline domain in R2 (a) and its corresponding control net (b) for
polynomial degrees q = r = 3 and knot vectors Ξ = {0, 0, 0, 0, 1, 1, 1, 1} and Ψ =
{0, 0, 0, 0, 1/2, 1, 1, 1, 1}.

We see that a spline surface is determined by two polynomial degrees, two
knot vectors, and a control net. An example is depicted in Figure 2.5.

By a simple reordering, and a slight change of notation in Equation (2.11),
we may write the parametrization as:

X(ξ, η) =
N∑
k=1

xk Pgk (ξ, η), (2.12)

where xk are still the control points, and Pgk : Ω̂→ R2 are the N = nm bivariate
tensor product B-splines:

Pgk (ξ, η) = N q
Ξ,i(ξ)Mr

Ψ,j(η), (2.13)

where k = (j−1)n+ i for i = 1, . . . , n and j = 1, . . . ,m. The superscript g indi-
cates that the functions refer to specific knot vectors, Ξ and Ψ, and polynomial
degrees, q and r, for the geometry.

The construction of a bivariate tensor product B-spline from two univariate
B-splines, associated to each their polynomial degree and knots vector, is illus-
trated in Figure 2.6a. The basis functions Pi are functions on parameter space
Ω̂. We may consider them as functions on physical space Ω as well through the
composition Pi ◦X−1, as shown in Figure 2.6b.

NURBS Parametrizations

The class of geometries that can be parametrized may be enlarged by the use of
NURBS, which are rational B-splines on non-uniform knot vectors. We mention,
in particular, that geometric objects such as circles and spheres may be described
exactly by the use of NURBS. Although most of the subsequent studies are based
on B-splines, we briefly touch upon NURBS below.

A NURBS curve is parametrized as in Equation (2.7), but with the ba-
sis functions N replaced by univariate NURBS B. We may define univariate
NURBS BqΞ,W,i : R→ R from the univariate B-splines in Definition 2 and a set
of weights W = {w1, . . . , wn}, where wi ∈ R:

BqΞ,W,i(ξ) =
wiN q

Ξ,i(ξ)
n∑
j=1

wjN q
j (ξ)

. (2.14)
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Ξ
2 = {0, 0, 0, 0, 1/2, 1, 1, 1, 1}

r
=

3

Ξ1
= {0

, 0,
0, 0

, 1,
1, 1

, 1}
q = 3

ξ1

ξ2

N ,M,P

P ◦X−1

x

y

a b

Figure 2.6: a: Construction in parameter space of a bivariate tensor product B-spline
(surface) from two univariate B-splines (lines in bold) of given polynomial degrees and
knot vectors (crosses and circles). b: The bivariate tensor product B-spline over the
physical space, using the geometry from Figure 2.5.

A NURBS surface is parametrized as in Equation (2.12), but with the basis
functions P replaced by bivariate tensor product NURBS R. We may define
bivariate NURBS Rgk : Ω̂ → R from the bivariate B-splines in Equation (2.13)
and the weights W = {w1, . . . , wN} with wk ∈ R for k = 1, . . . , N = nm:

Rgk(ξ, η) =
wk Pgk (ξ, η)
N∑
k=1

wk Pgk (ξ, η)
. (2.15)

Many of the properties of B-splines naturally carry over to NURBS, e.g.
partition of unity, continuity, support, and affine covariance. Owing to the
partition of unity property of B-splines in Theorem 2, NURBS reduce to B-
splines when all weights are 1. Formulae for the derivatives of NURBS may be
found in e.g. [Piegl and Tiller, 1995].

Multiple Patches

The parametrization in Equation (2.12) covers a single patch. Often, a geom-
etry cannot be parametrized by a single patch. Multiple patches must then be
employed, cf. Figure 2.7.

C0 continuity of the geometry across patches with identical polynomial de-
grees and knot vectors is trivially achieved be equating the outer row/column of
control points of the joining patches. C1 and higher continuities across patches
put requirements on two or more rows/columns of the control net.

Patches with different refinement levels, i.e., different knot vectors, may be
stitched together by use of the knot insertion relation in Equation (2.10). This
applies both to the control net, and to the basis functions.
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Figure 2.7: Stitching of two patches.
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Chapter 3

Isogeometric Analysis of
Flows

In this chapter, we study how B-splines and NURBS may be used to solve en-
gineering problems within fluid mechanics. More specifically, we apply isogeo-
metric analysis to the 2-dimensional, steady state, incompressible Navier-Stokes
equation with Dirichlet boundary conditions, and we investigate such things as
stability, error convergence and benchmark comparisons of the method. The
chapter summarizes the findings in [Nielsen et al., 2011a] included in Appendix
B.

3.1 Introduction

Since the introduction of isogeometric analysis in [Hughes et al., 2005], the
methodology has been applied to various flow problems and proved its value
within the field of fluid mechanics. Some of the first studies were on steady-
state incompressible Stokes flow in the benchmarking lid-driven square cavity
[Bazilevs et al., 2006b]. Subsequent analysis of the full time dependent Navier-
Stokes equations using the isogeometric method has shown its advantages both
in terms of continuity of state variables [Akkerman et al., 2010] and the ability to
accurately represent complicated dynamic flow domains [Bazilevs and Hughes,
2008]. Benchmarking of the method for turbulent flows has shown very nice per-
formance of the method [Bazilevs and Akkerman, 2010; Bazilevs et al., 2010b].
Applications to free-surface flows [Akkerman et al., 2011], and to modelling of
wind-turbine aerodynamics [Hsu et al., 2011] have also been made.

An important issue in the analysis of the mixed formulation of the govern-
ing equations for fluids is the stability of the element, or discretization, used
to approximate the state variables. The first stable B-spline discretization for
the Stokes problem was proposed in [Bazilevs et al., 2006b]. Recently, two
more families of stable B-spline discretizations were identified in [Buffa et al.,
2011], thereby further emphasizing how easily high degrees of continuity may
be achieved in isogeometric analysis. Mathematical proofs of the stability of
a range of discretizations have very recently been made [Bressan, 2010; Per-
sonal communication].

Below, we firstly outline how flow problems may be solved using isogeometric

15
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analysis. Secondly, we extend the list of stable B-spline discretizations for the
2D steady state, incompressible Stokes problem. Thirdly, we apply the method
to the non-linear 2D steady state, incompressible Navier-Stokes problem and
examine how these discretizations perform in terms of error convergence based
on a flow problem with an analytical solution. Finally, the benchmarking lid-
driven square cavity is analyzed and the results of the discretizations compared
to data from the literature.

To set the scene, we consider a viscous, incompressible, isothermal, Newto-
nian fluid in a steady-state flow through a domain Ω. We assume full Dirichlet
boundary conditions along the boundary Γ, and vanishing mean pressure over
the domain. The governing equations read, cf. Chapter 2.1:

ρ (u · ∇)u+∇p− µ∇2u− ρf = 0 in Ω, (3.1a)
∇ · u = 0 in Ω. (3.1b)

u = uD on Γ, (3.1c)x
Ω

p dA = 0, (3.1d)

where p, u, ρ, µ, and f denote pressure, velocity, density, viscosity, and body
forces, respectively.

3.2 Isogeometric Method

In the following, we outline how B-splines- and NURBS-based isogeometric anal-
ysis may be used to solve the flow problem (3.1) numerically. The method builds
on Galerkin’s method, known from traditional finite element methods, in which
the weak form of the governing partial differential equations is discretized to
form a simpler system of algebraic equations. In addition, we parametrize the
physical domain, where the equations are formulated, and pull these back to
solve them on the parameter domain, equivalent to the isoparametric concept
in finite element methods. B-splines and NURBS are used as basis functions
both for the geometry and the flow variables. More details may be found in
[Cottrell et al., 2009; Reddy and Gartling, 2001; Donea and Huerta, 2003].

Flow Domain Parametrization

We firstly parametrize the physical flow domain by a single patch, see Figure
3.1. We take the parameter domain Ω̂ as the unit square, i.e. Ω̂ = [0, 1]2,
and use the bivariate NURBS defined in Equation (2.15). The parametrization
X : [0, 1]2 → R2 reads:

X(ξ, η) =
Ngvar∑
i=1

xiRgi (ξ, η), (3.2)

where xi are the control points, Rgi are the NURBS, Ng
var is the number of

NURBS and control points, and the superscript g indicates that the NURBS
functions refer to polynomial degrees, open knots vectors and weights that are
specific for the geometry representation, cf. Equation (2.12).



3.2. ISOGEOMETRIC METHOD 17

X

[0, 1]2

y

x

η

ξ

Ω

Figure 3.1: A parametrization of the flow domain Ω.

For any scalar variable, we will consider it both as a function h on physical
space Ω, and as a function h on parameter space [0, 1]2. For later reference,
the gradient ∇ and the Hessian matrix H in physical space Ω of h are related
to their counterparts ∇, H, and h in parameter space [0, 1]2 by the following
relations:

∇h = JT ∇h, (3.3a)

H(h) = JT H(h)J +
2∑

m=1

H(xm) eTm∇h, (3.3b)

where

J ≡
[

∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]
(3.4)

is the Jacobian matrix of the parametrization, and e1 = (1 0)T and e2 = (0 1)T

are the standard unit vectors.

Field Approximations

In a similar fashion as for the geometry representation in Equation (3.2) above,
we seek approximations of the velocity u : [0, 1]2 → R2 and pressure p : [0, 1]2 →
R as linear combinations of the basis functions defined above. Since NURBS
are only needed to represent the geometry, and not the velocity and pressure,
we will for simplicity use B-splines to approximate the state variables:

uk(ξ, η) =
N
uk
var∑
i=1

uk,iPuki (ξ, η), (3.5a)

p(ξ, η) =
Npvar∑
i=1

p
i
Ppi (ξ, η), (3.5b)

where k = 1, 2 in (3.5a) refers to the two components of the velocity field, Puki
denote the B-spline basis functions for the kth component of the velocity field,
while Ppi similarly denote the B-spline basis functions for the pressure field, as
defined in Equation (2.13). They refer to separate sets of polynomial degrees
and knot vectors that are in general not the same. Nuk

var and Np
var are the number

of velocity and pressure basis functions, while uk and p are the unknown control
variables for the velocity and pressure that are to be determined.
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The velocity and pressure fields in Equations (3.5) are defined in parameter
space, while the governing equations (3.1) are formulated in physical space. To
evaluate the fields in physical space, the inverse of the geometry parametrization
X is used; the pressure p : Ω → R over the physical domain is computed as
p ◦X−1, and the velocity u : Ω → R2 over the physical domain as u ◦X−1,
mapping each velocity component as a scalar field. With abuse of notation, we
here use the same symbol for the state variables both in parameter space and
in physical space. To evaluate gradients and Hessians of the fields in physical
space, the relations in Equation (3.3) may be used.

Boundary Conditions

For simplicity we impose the Dirichlet boundary conditions in (3.1c) strongly
as opposed to the weak enforcement suggested in [Bazilevs and Hughes, 2007;
Bazilevs et al., 2007b]. Hereby, we avoid the need for definition of penalization
parameters.

B-splines have compact support, as stressed in Theorem 1. This means that
only a few of the velocity basis functions Puk in Equation (3.5a) have support
on Γ. We can simply arrange the functions Puk so that the first Nuk

dof of these
do not have support on the boundary, and the corresponding control variables
of these are thus “degrees of freedom”, while the last Nuk

fix = Nuk
var −Nuk

dof have
support on Γ, and the corresponding control variables are thus “fixed”:

uk =
N
uk
dof∑
i=1

uk,iPuki +
N
uk
var∑

i=N
uk
dof+1

uk,iPuki . (3.6)

The strong imposition is done by directly specifying suitable values for these
last Nuk

fix velocity control variables uk,i, so that the sum in Equation (3.5a)
approximates the specified value uD in (3.1c). If uD lies within the function
space spanned by Puki , the conditions are satisfied exactly; otherwise they are
only satisfied in a least square sense.

For the pressure, we note that only the pressure gradient appears in the
governing equations (3.1). The pressure is thus only determined up to an arbi-
trary constant, which is dealt with by the specification of the mean pressure in
Equation (3.1d). By inserting the image in physical space of the pressure ap-
proximation in Equation (3.5b) into Equation (3.1d), interchanging the order of
summation and integration, and finally pulling the integrals back to parameter
space, we arrive at the following equation:

P p = 0, (3.7)

where p is the column vector of pressure control variables, and P is the row
vector of pressure basis function integrals:

Pi =
x

[0,1]2

Ppi det
(
J
)

dξ dη. (3.8)

Since no pressure control variables needs to be fixed, we have Np
dof = Np

var and
Np

fix = 0.
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Weak Form of the Governing Equations

The governing equations (3.1) are cast into their weak, or variational, form. For
this we use the image in physical space of the B-spline introduced above as weight
functions for the governing equations. We will use only the first Nuk

dof velocity
basis functions, since these have no support on the fixed boundary. We multiply
the kth component of the Navier-Stokes equation (3.1a) by an arbitrary weight
function Puki among these velocity basis functions, and the incompressibility
equation (3.1b) by an arbitrary weight function Ppj among the pressure basis
functions, integrate the resulting equations over Ω, and then simplify using
integration by parts. After some manipulations, we find the following weak
form of the governing equations:

0 =
x
Ω

(
(µ∇Puki + ρPuki u) · ∇uk − (p∇Puki + ρPuki f) · ek

)
dxdy (3.9a)

0 =
x
Ω

Ppj (∇ · u) dx dy (3.9b)

for k = 1, 2, i = 1, . . . , Nuk
dof and j = 1, . . . , Np

dof .

Matrix Equation

Finally, we insert the image in physical space of the approximations of the veloc-
ity and pressure fields (3.5) into the weak form (3.9) of the governing equations,
split the superpositions of u into parts with support on the fixed boundary and
parts without as in Equation (3.6), interchange the order of summation and in-
tegration, rearrange to get the unknown terms on the LHS and the known terms
on the RHS, and pull the integration back to parameter space, using Equation
(3.3). This gives:

K(U)︷ ︸︸ ︷ µK1 + ρC1(ū) 0 −GT
1

0 µK2 + ρC2(ū) −GT
2

G1 G2 0


U︷ ︸︸ ︷ ū1

ū2

p̄


= ρ

 f1

f2

0

−
 µK?

1 + ρC?
1 (ū) 0

0 µK?
2 + ρC?

2 (ū)
G?

1 G?
2

[ ū?1
ū?2

]
︸ ︷︷ ︸

F

, (3.10)

or simply K(U)U = F , with

Kki,j
=

x
[0,1]2

∇TPuki J−1 J−T ∇Pukj det
(
J
)

dξ dη, (3.11a)

Cki,j
=

x
[0,1]2

Puki uT (u)J−T ∇Pukj det
(
J
)

dξ dη, (3.11b)

Gki,j
=

x
[0,1]2

Ppi eTk J−T ∇Pukj det
(
J
)

dξ dη, (3.11c)

fki =
x

[0,1]2

Puki eTk f det
(
J
)

dξ dη, (3.11d)
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Kk =
[
Kk K?

k

] (
N
uk
dof × (N

uk
dof+N

uk
fix )
)
, (3.11e)

Ck =
[
Ck C?

k

] (
N
uk
dof × (N

uk
dof+N

uk
fix )
)
, (3.11f)

Gk =
[
Gk G?

k

] (
Npdof ×(N

uk
dof+N

uk
fix )
)
, (3.11g)

u
T

k =
[
ū
T

k ū?
T

k

] (
1×(N

uk
dof+N

uk
fix )
)
, (3.11h)

where u(u) is given by Equation (3.5a), and all starred quantities are given
by the Dirichlet boundary conditions. Kk is often called viscosity matrix, Ck
convective matrix, Gk gradient matrix, and fk force vector.

Implementation Details

We need to solve Nu1
dof + Nu2

dof + Np
dof equations from (3.10) supplemented by

the equation from the condition on the mean pressure from (3.7) in Nu1
dof +

Nu2
dof + Np

dof unknowns, and we do this in the least square sense. The problem
is non-linear, and an iterative, incremental Newton-Raphson method is used,
gradually increasing the Reynolds number, see e.g. [Reddy and Gartling, 2001].

The integrals in Equation (3.11) are evaluated using Gaussian quadrature.
The necessary number of quadrature points NG in each knot span is estimated
from the relation q̃ = 2NG−1, where q̃ is an estimate of the highest polynomial
degree of the integrands. Since the integrands are in general rational functions,
we simply estimate q̃ as the sum of polynomial degrees of the numerator and the
denominator. Using polynomial degree 2 for the geometry and 4 for the velocity
and pressure, we estimate a polynomial degree of q̃ = 12 for the integrand of C,
and this dictates that we should use at least NG = 7 quadrature points in each
knot span. All results in the following are based on 7 quadrature points per
knot span, which is a conservative choice compared to recent studies on more
efficient quadrature rules [Hughes et al., 2010].

3.3 Stability for Stokes Problem: Wall-Driven
Anullar Cavity

In the following section, we deal with the stability of the isogeometric method
when applied to Stokes flow, which is the problem that arises when we neglect
the non-linear inertial term in Navier-Stokes equation (3.1a). Some discretiza-
tions of the mixed formulation of Stokes problem are stable while others are
unstable. Unstable discretizations can leave the system matrix K in Equation
(3.10) singular or badly scaled, which in turn leads to spurious, unphysical
oscillations for the pressure field, while the velocity field may still look quite
reasonable. Figure 3.3 below shows an example of this. Furthermore, it dete-
riorates the convergence properties of the method and thus prohibits iterative
solutions for the full Navier-Stokes problem. In order for a given discretization
to be stable, it needs to satisfy the so-called inf-sup condition, also known as
the BB or LBB condition:

inf
p

sup
u

s
Ω

p∇ · udA

‖p‖ ‖u‖ ≥ β > 0, (3.12)



3.3. STABILITY FOR STOKES PROBLEM: WALL-DRIVEN ANULLAR CAVITY21

Name Knot Vector 1 Knot Vector 2 inf-
sup

a u41
1p41

0

√

b u42
0p41

0

√

c u41
1p31

0

√

d u42
0p31

0

√

e u41
1p21

0

√

f u42
0p21

0

√

g u41
0p21

0 ÷

h Nédélec
√

i Raviart-Thomas
√

Table 3.1: Discretization names, knot vectors and inf-sup-stability. Velocity knot
vectors are shown in red and green, the pressure knot vector is shown in blue.

where the norm of the pressure p is the L2-norm, while the norm of the velocity
u is the H1-norm. The positive constant β is independent of the mesh.

In the following, we study how stable discretizations may be constructed
by using different basis functions for the velocity and pressure fields. More
specifically, we will establish suitable choices of polynomial degrees and knot
vectors for the velocity and pressure such that the discretizations are stable.
This idea follows the approach in a recent work [Buffa et al., 2011], in which three
families of stable discretizations were presented, but contrasts to the stabilized
method in which identical basis functions for the velocity and pressure may be
used on the cost that stabilizing terms must be added to the Stokes equation,
see e.g. [Bazilevs et al., 2006b].

We report the stability of the isogeometric discretizations listed in table 3.1.
The discretizations differ in polynomial degrees, knot refinements and inner
knot multiplicities between the velocity and pressure representations. We have
adopted a heuristic nomenclature for naming of the individual discretizations.
For the u42

0p31
0 discretization (d), e.g., both velocity components are approxi-

mated using quartic B-splines (u4), and the pressure using cubic B-splines (p3).
Superscript indicates the multiplicity of inner knots, and thus also the degree
of continuity across the knots, see Theorem 2. Subscript indicates the number
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of h-refinements by halving all knot spans. For the strategies a-g, each of the
velocity components u1 and u2 are represented identically, which reduces the
computational expenses since equality of the basis functions Pu1

i = Pu2
i implies

equality of the matrices K1 = K2, and in addition all fields are represented
identically in both parametric directions. This is not the case for the strategies
h and i, which are modified versions of the Nédélec and Raviart-Thomas ele-
ments presented in [Buffa et al., 2011]. Compared to the original formulation
in [Buffa et al., 2011], the velocity fields have been h-refined once. It should be
stressed that with this enlargement of the velocity space, the exact fulfillment
of the divergence-free constraint for the Raviart-Thomas discretization is lost.
The u42

0p31
0 discretization (d) was originally proposed in [Bazilevs et al., 2006b]

and subsequently introduced in [Buffa et al., 2011] as the Taylor-Hood element.
To examine the numerical stability, we consider the wall-driven annular cav-

ity problem outlined in Figure 3.2a. This is a slight modification of the standard
benchmark lid -driven square cavity problem (treated in Section 3.5), utilizing
the capability of isogeometric analysis to exactly represent circular arcs. The
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Figure 3.2: Driven annular cavity. a: Domain and boundary conditions. b: Control
net (black dots and blue lines) and image of the computational mesh for velocity and
pressure (red and green lines).

fluid is contained in an annular cavity. The inner circular wall moves with con-
stant tangential speed, while the remaining three walls are at rest. The velocity
field is specified along the boundary of the domain, assuming no-slip conditions.
No body forces act upon the fluid, and the fluid motion is thus caused—or
driven—by the moving wall. We adopt the so-called leaky-lid boundary condi-
tion, meaning that the corners (x, y) = (0, 1) and (x, y) = (1, 0) belong to the
moving wall boundary. We parametrize the domain using quadratic NURBS.
The control net is shown in Figure 3.2b. For the velocity and pressure repre-
sentation, we h-refine the parameter mesh for the geometry by halving the knot
spans, leading to a family of parameter meshes ranging from 2 × 2 to 64 × 64
knot spans, one of which is also depicted in Figure 3.2b.

Figure 3.3 shows the computed velocity and pressure fields for two differ-
ent discretizations, namely the u41

0p41
0 discretization (top row) and the u41

1p41
0

discretization (bottom row). Both of these produce a reasonable, rotational
flow field. Clear pressure oscillations, however, are seen for first discretization,
whereas the latter nicely approximates the pressure singularities in the inner
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corners.
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Figure 3.3: Computed fields for u41
0p41

0 (top) and u41
1p41

0 (bottom) discretizations.
Left: stream function contour lines and velocity arrows. Right: pressure (note the
different vertical scalings).

To test the stability of the discretization strategies, we use the approach
described in [Chapelle and Bathe, 1993; Bathe, 2001]. For each discretization,
we vary the grid size for the velocity and pressure representations, and for each
of these meshes we determine a numerical estimate of the inf-sup “constant”
β in Equation (3.12). If this value does not change appreciably with varying
grid size, it indicates that the discretization is stable. On the other hand, if the
value tends to zero as the grid size changes, it indicates that the discretization
is unstable.

The results of these computations are shown in Figure 3.4. From this we
are led to conclude, that the discretization with identical polynomial degree for
velocity and pressure is stable if either the velocity knot vector is refined (a) or
the inner knot multiplicity for the velocity is increased (b). The same conclusion
applies to the discretizations for which the polynomial degree of the velocity is
larger than the polynomial degree of the pressure by one (c and d) and two
(e and f). The stability of u42

0p31
0 (d) was already known from [Buffa et al.,

2011]. Both the modified Nédélec (h) and Raviart-Thomas (i) discretizations are
seen to be stable, whereas the simple discretization u41

0p21
0 (g) with a difference

in polynomial degree of two but with identical inner knots does not pass the
stability test. The stability of each of the discretizations is summarized in the
right-most column of Table 3.1.

Several discretizations have been tested in addition to those listed in Table
3.1. It was found that increasing the difference between the polynomial degree
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Figure 3.4: Numerically computed inf-sup “constants” for varying grid size using
different discretizations. The bottom plot shows an enlargement of the top plot as
marked by the dashed lines.

of the velocity approximation and the degree of the pressure approximation
does influence the inf-sup stability, even without inserting or repeating knots.
More specifically, the value of grid size h where the inf-sup “constant” β starts
decreasing seemed to decrease with increasing polynomial degrees.

Assuming that the examined discretizations are representative, two simple
strategies for choosing stable discretizations for the velocity and pressure ap-
proximations can be established by means of induction. Given a simple dis-
cretization for the pressure, i.e. open knot vectors, choose the velocity degrees
at least equal to the pressure degree and then either take the velocity knot
vectors as the refinement of the pressure knot vectors, or use the pressure knot
vectors with all inner knots repeated. Or conversely, given simple discretizations
for the velocity, i.e. with open knot vectors and single or double inner knots,
choose the pressure degree less than or equal to the velocity degree, and take
the pressure knot vectors as the velocity knot vectors with every 2nd inner knot
removed. The knot refinement strategy is used for the cases a, c and e, and the
knot repetition strategy for cases b, d and f. The modified Raviart-Thomas (i)
also uses the refinement strategy, while the modified Nédélec (h) combines both
strategies.

We conclude by emphasizing firstly that the presented inf-sup method only
serves as a numerical test of the stability of the examined discretizations, and
secondly that the inductive step, going from the stability of the examined dis-
cretizations to the stability of a general discretization strategy, is only motivated
by a limited number of tests. None of these should in no way be mistaken for a
rigorous mathematical proof.
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3.4 Error Convergence: Forced Elliptic Cavity

To asses the validity of the isogeometric method for the full Navier-Stokes prob-
lem, we consider a test case for which an analytical solution exists, and examine
how well the discretizations listed in table 3.1 are able to reproduce the exact
solution.

The problem is outlined in Figure 3.5a. We take the physical domain Ω as
the elliptic disk {(x, y) ∈ R2 | (x/a)2 + (y/b)2 ≤ 1} with a = 2 and b = 1.
Assuming appropriate units are assigned to all quantities and focussing only on
their numerical values, we set ρ = µ = 1, take the body force f = (f1, f2) to be

f1 = −1
4
U2 sin2

(
π r̃2

)
x− 1

4
π

r̃
sin (π r̃) x+

13
2
π U cos

(
π r̃2

)
y

− 4π2 U sin
(
π r̃2

)
y3 − 1

4
π2 U sin

(
π r̃2

)
x2 y

f2 = −1
4
U2 sin2

(
π r̃2

)
y − π

r̃
sin (π r̃) y − 7

8
π U cos

(
π r̃2

)
x

+
1
16
π2 U sin

(
π r̃2

)
x3 + π2 U sin

(
π r̃2

)
y2 x,

where r̃ = r̃(x, y) =
√

(x/2)2 + y2, and assume homogeneous no-slip boundary
conditions: u = 0 on Γ. The following velocity and pressure fields solve the
governing equations and satisfy the boundary conditions:

u?1 = −U sin(πr̃2) y,

u?2 =
1
4
U sin(πr̃2)x,

p? =
4
π2

+ cos(πr̃),

where U is a velocity scale which in the following is assumed to be U = 200/
√

5.
These fields are depicted in Figure 3.5b–c. Using L =

√
a2 + b2 =

√
5 as

length scale, the Reynolds number for the problem is Re = 200 which makes
the problem weakly nonlinear. We parametrize the domain using quadratic
NURBS. The control net and the coarsest computational mesh for the velocity
and pressure fields are shown in Figure 3.5d.

We examine how well the exact velocity and pressure fields are reproduced
by a given discretization as the computational parameter mesh is h-refined by
knot insertion. For each discretization, we uniformly vary the computational
mesh for velocity and pressure in the range from 4 × 4 to 64 × 64 knot spans,
and for each of these meshes we compute the L2-norm and the H1-seminorm of
the velocity residual and the pressure residual as measures of the error:

ε2u =
x
Ω

‖u− u?‖2 dxdy, ε2p =
x
Ω

(p− p?)2 dxdy,

ε2∇u =
x
Ω

2∑
k=1

‖∇uk −∇u?k‖2 dxdy, ε2∇p =
x
Ω

‖∇p−∇p?‖2 dxdy.

The results are shown in Figure 3.6. The figure depicts the velocity error
(top) and pressure error (bottom) as function of the total number of variables
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Figure 3.6: Convergence of error: L2-norm (left) and H1-seminorm (right) of veloc-
ity residual (top) and pressure residual (bottom) as a function of the total number of
variables of the analysis using different discretizations.

of the analysis, using both the L2-norm (left) and the H1-seminorm (right). We
note that the discretizations a-f which pairwise have identical polynomial de-
grees, the knot refinement strategies (a, c, e) have a significantly lower velocity
error than the knot repetition strategies (b, d, f). In addition, the difference be-
tween the two strategies grows as the number of degrees of freedom increases, as
is most evident for the H1-seminorm. The difference in pressure error between
the two strategies varies more, but the error of the knot refinement strategy is
never larger than the error of the corresponding knot repetition strategy. This
make the knot refinement strategy favorable in a per-degree-of-freedom sense.
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The knot refinement strategy, unlike the knot repetition strategy, conserves the
degree of continuity for the velocity field. This therefore seems to confirm the
high importance of continuity alluded to in [Akkerman et al., 2010]. However,
although the increase in number of degrees of freedom for a given refinement
is nearly identical for the two strategies, the knot refinement strategy is com-
putationally more expensive than the knot repetition strategy, since it doubles
the number of knot spans, and thus quadruples the number of function eval-
uations needed for the Gaussian quadrature, unless more efficient quadrature
rules are employed [Hughes et al., 2010]. It is also worth noting that although
the pressure error of the unstable discretization u41

0p21
0 (g) flattens out quit

quickly as the number of degrees of freedom increases, the velocity error falls off
impressively. Lastly, the modified Raviart-Thomas discretization (h) seem to
perform somewhat better than the modified Nédélec discretization (i) for both
the velocity and the pressure.

3.5 Benchmark: Lid-Driven Square Cavity

As a final validation of the isogeometric method, we compare our results for a
standard benchmark flow problem, namely the lid-driven square cavity [Donea
and Huerta, 2003; Bazilevs et al., 2006b], against results from other numerical
simulations [Ghia et al., 1982; Erturk et al., 2005; Lee, 2010]. We consider
a fluid contained in a square cavity with the top wall moving with constant
speed, and the other walls kept still as outlined in Figure 3.7a. This prescribes
the velocity field along the boundary of the domain, assuming no-slip conditions
at the walls and closed-lid conditions (u = 0) at the upper corners. No body
forces act upon the fluid; the fluid is set in motion from the movement of the
lid. We parametrize the domain using linear NURBS, and construct a stretched
computational mesh with increased resolution around the corner singularities
and boundary regions, see Figure 3.7b. For the analysis, a computational grid
of 64× 64 regularly spaced knot spans is employed.
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Figure 3.7: Lid-driven square cavity. a: Domain and boundary conditions. b: Con-
trol net (black dots and blue lines) and image of regularly spaced isoparametric lines
(red and green lines).

Using the isogeometric discretizations listed in Table 3.1 we firstly solve the
problem for Reynolds number Re = 5,000. We gradually increase Re, and the
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number of intermediate steps in Re necessary to achieve convergence for Re =
5,000 is around five, but is in general different for the various discretizations.
The total number of basis functions for the analysis ranges from 13,604 for
the discretization u41

0p21
0 (g) to 72,865 for the Nédélec discretization (h), while

the remaining discretizations all have between 38,678 and 39,472 analysis basis
functions. Figure 3.8 compares the computed horizontal/vertical velocity pro-
files through the vertical/horizontal center line of the cavity to the data from
[Ghia et al., 1982]. On the left, the velocity profiles for all nine discretizations
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Figure 3.8: Comparison of velocity profile curves and residual curves (velocity minus
fit) for the lid-driven square cavity for Re = 5,000 using different discretizations,
plotted with data from [Ghia et al., 1982] and a fit to the data using a cubic spline.
Top: horizontal velocity profiles (left) and residuals (right) through the vertical center
line. Bottom: vertical velocity profiles (left) and residuals (right) through the horizontal
center line.

are seen to match very well with the data in [Ghia et al., 1982]. On the right, the
velocity residuals reveal that all discretizations yield slightly larger fluid speeds
away from the center and towards the boundaries compared to the data. The
agreement between the discretizations, however, is very good.

We have in general good experiences with the Taylor-Hood discretization
u42

0p31
0 (d), since it discretizes both velocity components identically, and the

knot spans for the velocity and pressure fields are also the same. In the following,
we therefore focus on the discretization u42

0p31
0 (d). Figure 3.9 shows velocity

vectors and stream function contour lines for Re = 5,000. The general pattern
of the stream function matches very well with previous results [Ghia et al., 1982;
Erturk et al., 2005; Lee, 2010]. The locations and the extremal values of both
the central main eddy as well as the minor eddies in the bottom right, bottom
left and top left corners are in overall good agreement. Small discrepancies are
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Figure 3.9: Four views of velocity vectors and stream function contour lines in the
lid-driven square cavity for Re = 5,000 using the u42

0p31
0 discretization (d).

still seen, e.g. close to the boundary in the top left corner.
Finally, the problem is solved for different values of Re in the range from

100 to 10,000: {100 ; 400 ; 1,000 ; 2,000; 3,200 ; 5,000 ; 7,500 ; 10,000}. Figure
3.10a/b shows the computed horizontal/vertical velocity profiles through the
vertical/horizontal center line of the cavity along with the data from [Ghia et al.,
1982] for the values of Re printed in italic. In general, the velocity profiles from
the present study match very well with the data in [Ghia et al., 1982]. Once
again, however, a closer examination reveals a small difference: for higher Re,
we compute slightly larger fluid speeds close to the boundaries than is done in
[Ghia et al., 1982], and this difference increases with Re. There is, however, a
very nice agreement in the location of the velocity extrema.

Regarding the differences in flow speeds close to the boundaries, several
points deserve mentioning. Firstly, the results depend critically on the choice
of boundary conditions specified for the upper corners. We emphasize that
closed-lid conditions are assumed in the present study. Secondly, the results
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Figure 3.10: Velocity profile curves for the lid-driven square cavity for seven values
of Re (solid lines) using the u42

0p31
0 discretization (d) plotted along with data from

[Ghia et al., 1982] (points). a: vertical velocity profile through the horizontal center
line. b: horizontal velocity profile through the vertical center line. c: vertical velocity
residual. d: horizontal velocity residual. The profile curves have been translated to
avoid clustering of data. We speculate that three obvious outliers, marked with rings,
stem from misprints in the tabulated data in [Ghia et al., 1982]. Cubic splines have
been used to fit to the remaining data.

depend slightly on the formulation of the Navier-Stokes equation for Re & 5,000,
depending on whether the convective [(u·∇)u ] or the skew-symmetric [(u·∇)u+
1/2∇ · u ] formulation of the non-linear term is used, see [Nielsen et al., 2011a]
in Appendix B for details. Thirdly, the data in [Ghia et al., 1982] are relatively



3.6. CONCLUSIONS 31

sparse at the boundaries where the variation in velocity is high. Finally, it should
be stressed that the data in [Ghia et al., 1982] stem from another numerical
study, and an exact correspondence between that and the present study should
not be expected.

3.6 Conclusions

In this chapter, we have applied isogeometric analysis to the 2-dimensional,
steady state, incompressible Navier-Stokes equation subjected to Dirichlet bound-
ary conditions, and examined various discretizations of the velocity and pressure
spaces. Firstly, a detailed description of the implementation has been given.
Secondly, numerical inf-sup stability tests have been presented that confirm the
existence of many stable discretizations of the velocity and pressure spaces. In
particular it was found that stability may be achieved by means of knot refine-
ment of the velocity space. Thirdly, error convergence studies compared the
performance of the various discretizations and indicated optimal convergence,
in a per-degree-of-freedom sense, of the discretization with identical polynomial
degrees of the velocity and pressure spaces but with the velocity space enriched
by knot refinement. Finally, the method has been applied to the lid-driven
square cavity for benchmarking purposes, showing that the stable discretiza-
tions produce consistent results that match well with existing data and thus
confirm the robustness of the method.

Appendix: Data for Geometry Parametrizations

Table 3.2 lists the polynomial degrees, knot vectors and control points for the
geometry of the problems analyzed in this chapter.
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Wall-Driven Annular Cavity

Degree q = r = 2
Knots Ξ = Φ = {0, 0, 0, 1, 1, 1}
Point 1 2 3 4 5 6 7 8 9

x̄1 0 1 1 0 3/2 3/2 0 2 2
x̄2 1 1 0 3/2 3/2 0 2 2 0

w 1 1/
√

2 1 1 1/
√

2 1 1 1/
√

2 1

Forced Elliptic Cavity

Degree q = r = 2
Knots Ξ = Φ = {0, 0, 0, 1, 1, 1}
Point 1 2 3 4 5 6 7 8 9

x̄1 −2/
√

2 0 2/
√

2 −4/
√

2 0 4/
√

2 −2/
√

2 0 2/
√

2

x̄2 −1/
√

2 −2/
√

2 −1/
√

2 0 0 0 1/
√

2 2/
√

2 1/
√

2

w 1 1/
√

2 1 1 1/
√

2 1 1 1/
√

2 1

Lid-Driven Square Cavity

Degree q = r = 1
Knots Ξ = Φ = {0, 0, 1/2, 1, 1}
Point 1 2 3 4 5 6 7 8 9

x̄1 0 1/2 1 0 1/2 1 0 1/2 1
x̄2 0 0 0 1/2 1/2 1/2 1 1 1
w 1 1/2 1 1/2 1/4 1/2 1 1/2 1

Table 3.2: Polynomial degrees, knot vectors, control points and weights for the
geometry of the analyzed problems.



Chapter 4

Isogeometric Shape
Optimization of Flows

In this chapter, we extend the use of isogeometric analysis to shape optimiza-
tion of flows. We consider various shape optimization problems for fluids in
two dimensions, and use isogeometric analysis both for solving the governing
equations, and as tool for designing optimal shapes. The chapter summarizes
the findings in [Nielsen and Gravesen, 2012] included in Appendix C.

4.1 Introduction

Numerical shape optimization for fluids is the art of using computers to find
“best” shapes in engineering problems involving fluids, based on some notion
of goodness [Mohammadi and Pironneau, 2010]. Applications of shape opti-
mization for fluids ranges from, e.g., microfluidic protein-folding devices [Ivorra
et al., 2006] to airplane wings [Painchaud-Oullet et al., 2006].

Some of the appealing features of isogeometric analysis from a fluid me-
chanics point–of–view were presented in Chapter 3. From a shape optimization
point–of–view, isogeometric analysis may serve as a natural framework, due to
its ability to represent complex shapes in few design variables, and its tight con-
nection between analysis and geometry models. This means that an accurate
representation of the geometry can be maintained throughout the optimization,
and there is no need of communication between FEA and CAD models.

In recent years, isogeometric analysis has successfully been applied to various
shape optimization problems in mechanical engineering. Many studies within
structural mechanics have been made, using either NURBS control points [Wall
et al., 2008; Cho and Ha, 2009], NURBS control points and weights [Nagy et al.,
2010a;b; Qian, 2010; Nagy et al., 2011], or T-splines control points [Ha et al.,
2010; Seo et al., 2010a] as design variables. NURBS-based isogeometric shape
optimization using a boundary integral method has also been studied [Li and
Qian, 2011]. Applications of isogeometric shape optimization also include stud-
ies of vibrating membranes [Nguyen et al., 2011], and photonic crystals [Qian
and Sigmund, 2011]. Worth mentioning are also recent applications of isogeo-
metric topology optimization within structural mechanics [Seo et al., 2010a;b;
Hassani et al., 2012].

33
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An inherent challenge in numerical shape optimization is to maintain a high
quality of the computational mesh as the shape of the domain changes during
optimization [Mohammadi and Pironneau, 2004; Bletzinger et al., 2010]. In
isogeometric analysis, the shape is given by control points. Here, care has to be
taken to avoid clustering and folding over of control points during optimization,
which in turn may lead to singular parametrizations [Wall et al., 2008; Nagy
et al., 2011; Seo et al., 2010a].

The aim of this chapter is twofold. Firstly, we establish isogeometric analysis
as a framework for numerical shape optimization in fluid mechanics, using the
method both as analysis tool to solve the governing Navier-Stokes equations,
and as design tool to guide an optimization procedure through analytically
computed gradients of objective and constraint functions. Secondly, to ensure
appropriate parametrizations during the optimization, we construct a measure
for regularization of the shape optimization problem. Based on a benchmark
optimization problem, in which we design a pipe bend to minimize the pressure
drop of the flow through it, we examine how this regularization measure influ-
ences the optimization process and the optimal design. Finally, to display the
robustness of the isogeometric shape optimization methodology, we apply it to
two other optimization problems for fluids. First, we design a body at rest in a
circular fluid container with rotating boundary to obtain a uniform pressure dis-
tribution along its boundary, a design problem which happens to have a known
solution, and second, we design a body traveling at constant speed through a
fluid to minimize the drag.

4.2 Shape Optimization Problem

In the following, we introduce the generic shape optimization problem for fluids
to be studied.

ΓN

ΓD

Γ′Ω

u velocity
p pressure
ρ density
µ viscosity

Figure 4.1: Setup of generic shape optimization problem for fluids.

As in Chapter 3, we consider a viscous, incompressible, isothermal, steady
flow at low to moderate Reynolds numbers in a 2-dimensional domain Ω as
depicted in Figure 4.1. The fluid is assumed to be Newtonian with constant
density ρ and constant viscosity µ, and the state of the fluid is characterized by
its velocity u = (u v )T and its pressure p. We assume that no external body
forces act on the system. For the boundary Γ, we assume that the domain is
open along the Neumann part ΓN , and that the flow field u is given along the
Dirichlet part ΓD, independently of the shape.

The aim in shape optimization is to design the shape of some specified part
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Γ′ of the boundary of the domain to minimize some prescribed objective, with
some prescribed constraints on the problem. The specific form of the objective
function will be explained further below. The constraint functions are typically
dictated by the geometry and the physics of the problem. Here, we will consider
in particular the area of the domain as a constraint. Additional constraints could
of course be considered as well.

We formulate the following generic shape optimization problem for fluids:

minimize
Γ′(x) C (4.1a)

such that Amin ≤ Area ≤ Amax (4.1b)
Lmin ≤ L(x) ≤ Lmax (4.1c)

0 = ρ(u · ∇)u+∇p− µ∇2u (4.1d)
0 = ∇ · u (4.1e)
u∗ = u |ΓD (4.1f)

0 = (µ∇ui − p ei ) · n |ΓN (4.1g)

Here, the shape of the design boundary Γ′ is parametrized through the design
variables x. Equations (4.1a) and (4.1b) are the objective and the area con-
straint functions, respectively. Equation (4.1c) establishes bounds on the design
variables, as well as linear relations between them. Equations (4.1d) and (4.1e)
are the Navier-Stokes equation and the incompressibility condition, respectively,
governing the flow in the domain interior Ω. Equations (4.1f) and (4.1g) are the
Dirichlet and the Neumann boundary conditions, respectively, where u∗ is the
given velocity field, i = 1, 2 is the component index, and n is the outward unit
normal.

We will consider three different quantities as the cost function C in Equation
(4.1a): The difference in mean pressure between two boundary segments γ+ and
γ−, the pressure variation along a boundary segment γ, and the aerodynamic
drag on a boundary segment γ. These are given by:

C∆p =

∫
γ+
p ds

Lγ+

−
∫
γ−
p ds

Lγ−
, (4.2a)

C∇p =
∫
γ

(∇p · t )2 ds, (4.2b)

Cd =
∫
γ

(
− pI + µ

(∇u+ (∇u)T
))
n ds · eu, (4.2c)

respectively, where Lγ =
∫
γ

ds denotes the length of the segment γ, t is the unit
tangent vector, eu the constant unit vector along a specified direction, n the
outward unit normal, and I the identity matrix. The context in which these
three different cost functions may appear will be exemplified in Sections 4.4,
4.5, and 4.5, respectively.

4.3 Isogeometric Method

In this section, we outline how NURBS/B-spline based isogeometric analysis
may be applied to the shape optimization problem (4.1). Many aspects were
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already covered in Section 3.2, and we therefore primarily focus on the shape
optimization, see also, e.g., [Wall et al., 2008].

Geometry Parametrization

Referring to Figure 4.2, we construct a parametrization of the model domain
of the form X =

∑
i xiRgi for i = 1, . . . , Ng

var, where Rgi are tensor prod-
uct NURBS, xi are control points, and Ng

var is the number of terms. This
parametrization serves as foundation for both the flow model and the shape
optimization procedure.

X

[0, 1]2

y

x

η

ξ

Ω

Figure 4.2: Parametrization of the flow domain.

Flow Analysis

As in Chapter 3, we construct approximations of the velocity u and pressure
p in the form f =

∑
i f iP

f
i for i = 1, . . . , Nf

var, where, for each of the three
state variables f ∈ {u, v, p}, Pfi are tensor product B-splines, f

i
are control

coefficients, and Nf
var is the number of terms. Based on these approximations,

we may obtain, from a weak formulation of the governing equations (4.1d)–(4.1e)
and the boundary conditions (4.1f)–(4.1g), a system of non-linear equations of
the form K(U)U = F , where U is the vector of unknown control coefficients
for the velocity and pressure, and the system matrix K and the right hand side
vector F are given by Equations (3.10)–(3.11) with f = 0. This equation may
be solved by, e.g., an iterative Newton-Raphson method.

Optimization

To find a minimum in the cost function while fulfilling the constraints, the ge-
ometry parametrization is tweaked little by little, and over and over again the
governing flow equations are solved, and the objective and constraints evalu-
ated. To guide the optimization process, gradients of the cost function and the
constraints are computed analytically.

Design Variables

The control points xi entering the parametrization of the geometry are the
natural geometric “handles” on the flow domain, and these are therefore used
as design variables for the shape optimization routine. For simplicity, we neglect
weights as design variables. A parametrization and its control net are sketched
in Figure 4.3. The design variables of the optimization are the coordinates of
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the green control points in Figure 4.3a that determine the shape of the dashed
design boundary Γ′ in Figure 4.3b. As also shown in Figure 4.3a, control points
fall into three categories: The design control points (green) are “actively” moved
around in the search for the optimal shape, the linked control points (yellow) are
“passively” following the movement of the design control points, as described
below, while the fixed control points (red) remain unaltered.

a

b

Figure 4.3: a: Three types of control points: design (green), linked (yellow), and
fixed (red). b: Image of isoparametric lines.

Interior Parametrization

As the shape of flow domain is changed in the optimization process, the para-
metrization of its interior must be adequately updated. Referring to Figure 4.3,
in the isogeometric framework this amounts to specifying the location of the
yellow interior control points as the location of the green design control points
are changed through the optimization. This can be seen as the isogeometric
equivalent of finite element re-meshing [Mohammadi and Pironneau, 2010], al-
though significantly less work is required, since there are much fewer control
points in isogeometric analysis than there are nodes in finite element methods.
Parametrization of interiors is a fundamental challenge in isogeometric analysis
[Cohen et al., 2010; Xu et al., 2010]. We choose to base the procedure on the
Winslow functional, see e.g. [Gravesen et al., 2010; Nguyen et al., 2011]. We
defer a description of the methodology to Section 6.1. For now, the following
description suffices: The Winslow functional is a measure of conformality. Ini-
tially, the interior control points are determined as the ones that minimize the
Winslow functional, and thereby make the parametrization as conformal as pos-
sible, while keeping the boundary constant and ensuring a valid parametrization
det(J) > 0. The latter constraint may be evaluated using B-splines (NURBS),
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since the determinant of the Jacobian of a spline (NURBS) surface is itself a
spline (NURBS). In each design iteration, the interior control points are then
found as those that minimizes the 2nd order Taylor expansion of the Winslow
functional based on the initial control net. This procedure leads to a linear
problem to be solved in each design iteration. On top of this, the validity of the
parametrization is checked in each iteration by checking if det(J) > 0. If this
condition is not fulfilled, the interior control points are found as the solution to
the initial minimization problem as described above. This solution is then sub-
sequently used as linearization point for the Taylor expansion of the Winslow
functional, and the optimization is restarted from this configuration.

Function Evaluation

To asses the quality and admissibility of a given design, the objective and con-
straint functions in Equations (4.2) and (4.1b) are evaluated in each iteration.
Using the parametrization of the geometry, and the discretizations of the flow
and pressure fields, we collect the control points in two (Ng

var × 1 ) vectors x
and y, and the control coefficients in one

(
(Nu

var + Nv
var + Np

var) × 1
)

vector
U . The mean pressure difference between two boundary segments γ+ and γ−,
the pressure variation along a boundary segment γ, the aerodynamic drag on
a boundary segment γ, and the area of the domain Ω, as defined in Equation
(4.2) and (4.1b), may then be computed as:

C∆p = PT U , (4.3a)

C∇p = UTDU (4.3b)

Cd = FT U , (4.3c)

A = xTAy, (4.3d)

respectively. Here, the following vectors and matrices have been defined:

P = Pγ+ −Pγ− (4.4a)

Pγk =
1
Lγ

1∫
0

Ppk ‖γ̇‖ dξ, (4.4b)

Dk,` =

1∫
0

(
tT J−T ∇Ppk

)(
tT J−T ∇Pp`

) ‖γ̇‖ dξ, (4.4c)

F =

 F11 F12

F21 F22

F31 F32

 eTu , (4.4d)

F11k = µ

1∫
0

(
2eT1 ne

T
1 + eT2 ne

T
2

)
J−T∇Pu1

k ‖γ̇‖ dξ, (4.4e)

F21k = µ

1∫
0

eT2 ne
T
1 J
−T∇Pu2

k ‖γ̇‖ dξ, (4.4f)
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F31k = −
1∫

0

eT1 nPpk ‖γ̇‖ dξ, (4.4g)

F12k = µ

1∫
0

eT1 ne
T
2 J
−T∇Pu1

k ‖γ̇‖ dξ, (4.4h)

F22k = µ

1∫
0

(
2eT2 ne

T
2 + eT1 ne

T
1

)
J−T∇Pu2

k ‖γ̇‖ dξ, (4.4i)

F32k = −
1∫

0

eT2 nPpk ‖γ̇‖ dξ, (4.4j)

Ak,` =
x

[0,1]2

( ∂Rgk
∂u

∂Rg`
∂v
− ∂Rgk

∂v

∂Rg`
∂u

)
dξ, (4.4k)

where the length is given by Lγ =
∫ ‖γ̇‖ dξ. The parametric speed ‖γ̇‖ ≡√

ẋ2 + ẏ2, the unit tangent vector t ≡ γ̇/‖γ̇‖, and the outward unit normal
vector n ≡ ±t̂ are found by differentiating the restriction of the parametrization
to the boundary with respect to the parameter ξ. These vectors and matrices
are in general sparse, P , D, and F in particular, since only few of the basis
functions have support on the design boundary.

Gradient Evaluation

The optimization is driven by gradients of the objective and constraint functions
defining the optimization problem. These sensitivities measure how the design
variables affect the objective and constraint functions. We compute these ana-
lytically by direct differentiation of the discretized versions of the functions in
Equation (4.3) with respect to the coordinates of the control points, that act as
our design variables.

We collect the design variables in one vector χ, such that χ = (x1, . . . , xN ,
y1, . . . , yN ), where (xk, yk) are the coordinates of the kth control point, and we
let •′ ≡ ∂ • /∂χk denote the partial derivative with respect to the kth design
variable. For the objectives and the constraint in Equation (4.3) we have:

C ′∆p = P ′TU + PTU ′, (4.5a)

C ′∆p = UTD′U + 2UTDU ′, (4.5b)

C ′d = F ′TU + FTU ′, (4.5c)

A′ = yTAx′ + xTAy′. (4.5d)

The derivatives of x and y in Equation (4.5d) are trivial. The derivatives of
the objective matrices/vectors P , D, and F in Equations (4.5a)—(4.5c) may
be found by differentiation of the integrands in Equation (4.4):

P ′γi =
( 〈 Ppi ‖γ̇‖ 〉
〈 ‖γ̇‖ 〉

)′
=
〈 Ppi ‖γ̇‖′ 〉 〈 ‖γ̇‖ 〉+ 〈 Ppi ‖γ̇‖ 〉 〈 ‖γ̇‖′ 〉

〈 ‖γ̇‖ 〉2 , (4.6)
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where we have defined •̇ ≡ ∂ • /∂ξ and 〈•〉 ≡ ∫ • dξ, and used that all basis
functions P are independent of the design variables. Here, the derivative of the
parametric speed ‖γ̇‖ may be found from the parametrization:

‖γ̇‖′ =
(√

ẋ2 + ẏ2
)′

=
ẋ ẋ′ + ẏ ẏ′

‖γ̇‖

=

{
ẋ
‖γ̇‖ Ṙgk for k = 1, . . . , N
ẏ
‖γ̇‖ Ṙgk for k = N + 1, . . . , 2N

. (4.7)

Equivalent approaches may be taken for the matrices D and F in Equation
(4.4).

The derivative of the solution U in Equations (4.5a)—(4.5c) may be found
by solving the linear equation system obtained by differentiation of Equation
(3.10):

(M +D)U ′ = F ′ −M ′U , (4.8)

where

D = ρ

 D1,1 D1,2 0
D2,1 D2,2 0

0 0 0

 , (4.9a)

Di,jk,` =
x

[0,1]2

Puik
(
eTj J

−T ∇ui(u)
)Puj` det

(
J
)

dξ . (4.9b)

We mention that the matrix J = M +D also appears in the iterative Newton-
Raphson method employed for solving the governing equations. The derivative
of the system matrix M and vector F in Equation (4.8) may be found by
differentiation of the integrands in Equation (3.11):

K ′ki,j =
x

[0,1]2

∇TPuki J−1′J−T∇Pukj det
(
J
)

dξ

+
x

[0,1]2

∇TPuki J−1J−T
′∇Pukj det

(
J
)

dξ.

+
x

[0,1]2

∇TPuki J−1J−T∇Pukj det
(
J
)′ dξ. (4.10)

Here, the derivative of the determinant and of the inverse of the Jacobian ma-
trix may be found by simply writing them out explicitly in terms of x and y
and subsequently differentiating this as in Equation (4.7), or alternatively from
the relations J−1′ = J−1 J ′ J−1 and det(J)′ = det(J) tr(J−1J ′), along with
differentiation of the parametrization:

J ′ =



[ Rgk,ξ Rgk,η
0 0

]
for k = 1, . . . , N

[
0 0
Rgk,ξ Rgk,η

]
for k = N + 1, . . . , 2N

, (4.11)
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where we have defined •,s ≡ ∂ • /∂s. Equivalent approaches may be taken for
the matrices C and G in Equation (3.11).

Finally, to account for the induced movement of the linked control points,
as a result of the update of the interior parametrization when the design control
points are moved, the full sensitivity is computed as •̃′ = •′ +∑

i

χli
′ ∂
∂χli

, where

the summation is over linked design variables, or

∇̃d = ∇d +W∇l, (4.12)

where the subscripts d and l refer to design variables and linked variables, re-
spectively. The matrix Wi,j = ∂χli/∂χ

d
j relates the linked control points to the

design control points.

Implementation Details

Start

Initialization
read input file

setup basic quantities

evaluate basis functions

initialize design + parametrization

Parametrization
update interior control points

evaluate parametrization

if invalid parametrization:

minimize Winslow functional

linearize Winslow functional

restart optimization

Optimization
loop: over Reynolds number

loop: until design convergence

evaluate parametrization

solve governing equations

evaluate objective + constraints

evaluate gradients

end

end

Flow Analysis
build linear matrices

initialize/reuse solution

loop: over Reynolds number

loop: until solution convergence

build non-linear matrices

solve system

update solution

end

end

Finish

Figure 4.4: Flow chart for the optimization process (left) with details of the
parametrization and analysis procedures (right).

The flow chart in Figure 4.4 sketches the most significant steps in solving the
shape optimization problem in Equation (4.1) based on isogeometric analysis.

In the initialization phase, we perform as many calculations as possible that
are independent of the parametrization. In particular, all basis functions and
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their derivatives are evaluated in the Gauss quadrature points once and for all.
Although more memory demanding, this approach greatly reduces the com-
putational expenses, compared to evaluating the functions on the fly in each
optimization iteration. The construction of a good initial parametrization is
also vital for the optimization.

The optimization process includes an outer loop over increasing Reynolds
number. This is only necessary when designing shapes in higher Reynolds num-
ber flows. The entire process outlined in the flow chart may be embedded into a
loop over increasing refinement of geometry and/or analysis. The optimization
is performed using the SNOPT optimization package, which is based on a se-
quential quadratic programming algorithm [Gill et al., 2008]. Standard settings
for SNOPT are used, except for the step size limit which, when set relatively
low, e.g., 5% of the characteristic length scale of the problem, has been found to
significantly improve the convergence by avoiding too large jumps in the design
space. For validation purposes, the analytically computed gradients are checked
initially against finite difference estimates.

On the analysis side, we use an iterative Newton-Raphson method to solve
the governing non-linear equation, gradually increasing the Reynolds number
when this is high. In the field approximations, bi-quartic tensor product B-
splines are used for the velocities and bi-cubic tensor product B-splines for the
pressure, both C2 across knots, corresponding to the Taylor-Hood discretization
u42

0p31
0 (d) in Table 3.1). Dirichlet boundary conditions are enforced strongly,

while homogeneous Neumann boundary conditions are enforced weakly. All
integrals are evaluated numerically using Gaussian quadrature.

4.4 Regularization

To strengthen the result of the shape optimization, the design space in which
we look for solutions should be as large as possible. A natural way to ensure a
large design space is to use many control points as design variables, although
the inclusion of weights as design variables could also be considered [Qian, 2010;
Nagy et al., 2011]. As the number of design control points go up, more complex
shapes can be designed. This comes, however, on the cost of numerical chal-
lenges. These challenges, and solution strategies to remedy them, are discussed
in this section.

For the purpose of illustration, we consider a concrete example of the shape
optimization problem (4.1)-(4.2a), and use this as benchmark for the following
tests of the regularization technique. The problem is outlined in Figure 4.5a.
The aim is to design the shape Γ′ of a pipe bend (dashed) to minimize the
pressure drop from the inlet boundary (red) to the outlet boundary (blue),
keeping the shape of the inlet and the outlet (solid) fixed, and with an upper
bound on the area of the pipe.

We assume a parabolic horizontal velocity profile on the inlet boundary, that
the velocity it is zero along the side walls, assuming no-slip conditions, and that
its horizontal component is zero along the open outlet boundary. We take the
length scale as r = 1, the velocity scale as U = max(‖uinlet‖) = 1, the density
as ρ = 1, and the viscosity as µ = 1, assuming appropriate units are used, which
yields a Reynolds number of Re = 1 for the initial problem.

We parametrize the pipe bend as a bi-cubic tensor product B-spline surface,
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Ξ1 = { 0 0 0 0 1
15
. . . 14

15
1 1 1 1 }

Ξ2 = { 0 0 0 0 1
2

1 1 1 1 }

a b

c d

r

Γ′A0

r
4
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Figure 4.5: Pipe bend with minimal pressure drop: design problem setup (a), initial
control net (b), initial parametrization (c), and initial pressure contours and flow
stream lines (d).

and let the initial design connect the inlet and outlet by an approximate quar-
ter annulus. The initial control net, the corresponding parametrization, and
the resulting pressure distribution and stream lines of the flow through it are
depicted in Figure 4.5b–d. We use 20 control points as design variables, 10 on
each of the two boundaries segments to be designed, and we allow these to move
freely in both spatial dimensions, except for the four end control points, which
are only allowed to move along the direction of the inlet/outlet, in order to keep
a handle on these. As upper bound on the area, we use the initial value, i.e.,
Amax = A0, and we relax the lower bound, i.e., Amin = −∞. Since the lengths
of the inlet and outlet boundaries are constant, the sensitivities in Equation
(4.6) are greatly simplified.

The Challenge: Clustering of Control Points

Applying the isogeometric machinery from Section 3.2 to the shape optimization
problem outlined above results in the optimization history depicted in Figure
4.6. From iteration 0 to 15 (actually function call in SNOPT terminology), the
design control points firstly align, connecting the inlet and the outlet by a more
or less straight segment, thereby decreasing the pressure drop by ∼ 74%. This
design reduces the length of the pipe in intuitive accordance with the Poiseuille
law. At iteration 44, sharper corners at the inlet and outlet are formed, but from
iteration 44 and onwards, the shape changes only slightly, and the decrease in
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the pressure drop is accordingly small. The location of the control points, how-
ever, and the resulting parametrization change appreciably, though. The control
points cluster and eventually fold over, resulting in an invalid parametrization
after 67 iterations from which the method cannot proceed.

0 10 20 30 40 50 60 70
0.7

0.8

0.9

1

Iteration 15 Iteration 44 Iteration 67

Iteration

C
∆
p

C
∆
p

0

Figure 4.6: Pipe bend with minimal pressure drop: objective function as a function
of optimization iteration (bottom), and three snap shots of the control net and the
associated parametrization (top).

The problem seems to arise in the second of two qualitatively different stages
of the optimization: the optimizer finds an “optimal” shape in the first stage,
and then tries to find an “optimal” parametrization of it in the second stage.
The latter “optimality”, however, is a numerical artefact. The optimizer finds
the flaws in the numerical procedure, so to say, and tries to align the errors in
such a way, that the numerical estimate is minimized, although the “actual”
value is not. This is the challenge in a nut-shell: when optimizing the location
of many control points in sufficiently unconstrained problems, they may cluster,
spuriously yielding slightly lower values of the objective function on the cost
of significantly worse parametrizations and less accurate analysis, which may
eventually lead to a collapse of the method. The clustering of control points is
a well-known issue in isogeometric shape optimization [Wall et al., 2008; Nagy
et al., 2011; Seo et al., 2010a]. Related numerical problems in finite element
based shape optimization, and regularization techniques to address them, are
also well-described [Bletzinger et al., 2010]. Below, we firstly give a brief re-
view of some alternative ways out of the current problem, before proposing the
regularization approach, in an isogeometric framework.

Some Alternative Solution Strategies

The first natural point of focus, when looking for remedies for the current prob-
lem, is on the optimization routine. A quick fix is simply to stop the optimization
immediately after the first “shape” stage, and before the onset of the second
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“parametrization” stage. This could be achieved by relaxing the existing con-
vergence criterion, or by defining some other relevant measure. However, since
this approach only cures the symptoms of the problem, and not the cause of it,
and due to the risk of prematurely stopping the optimization, this approach is,
in our view, not only quick, but also dirty.

Turning away from the optimization routine, we may focus on the problem
formulation instead. An obvious solution to the problem is to reconsider the
design degrees of freedom. As the control points align, an ambiguity is intro-
duced, since movements of the control points along the line does not change
the shape, but does change the parametrization and thus also the numerical
estimates of the integrals, and hence the objective function value, making the
problem inherently ill-posed. One could then simply argue that for this partic-
ular design problem, say, four design control points on each boundary suffice.
However, this is an a posteriori type of reasoning that we would like to avoid.
More interesting is the idea of making this estimation of the necessary number
of design variables dynamic, i.e., inserting and removing design control points
on the fly during the optimization [Seo et al., 2010a]. The implementation of
a flexible number of design variables in an optimization procedure, however, is
less than trivial.

Preserving the number of control points, but putting constraints on their
movement in the design space, poses yet another alternative. We could, for
instance, constrain the design control points to move only along specified direc-
tions. In this approach, it is our duty as designers to specify “good” directions
along which the control points can move, ensuring both sufficient flexibility in
the design while avoiding bad parametrizations. Along the same line of thinking
is the concept of putting bounds on the design variables, see e.g. [Cho and Ha,
2009], thus limiting the optimizer to search for a minimum in the vicinity of the
initial guess only. In any case, the design space shrinks in these approaches, and
the success of the optimization heavily depends on the designers choice in initial
condition and constraints on the movement of the control points. A somewhat
related, but much more flexible approach, is to introduce a more general con-
straint on the design variables. A popular choice is to put a lower bound on
the distance between control points [Wall et al., 2008]. Although this approach
does take care of the tendency of control points to cluster, it still closes the door
to parts of the design space. Another choice is to prescribe an upper bound
on a single, global measure of the shape change [Nagy et al., 2011] during the
optimization, thereby significantly reducing the number of constraints.

Boundary Regularization

To avoid the problem of clustering control points and the associated fatal
parametrization, we suggest to regularize the optimization problem [Moham-
madi and Pironneau, 2004; 2010]. More specifically, we suggest to add a term
to the objective function that, by measuring the quality of the parametrization,
prevents the unwanted phenomenon. In this approach, the regularized objective
function C̃ is written as:

C̃ = C + ε̃R, (4.13)

where C is the “actual” physical objective, here expressing the pressure drop in
the pipe bend, R is the “artificial” regularization objective, and ε̃ > 0 specifies
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the weight of the regularization term. The aim of the optimization, when using
the regularized objective, is twofold: we are not only searching for the design
that minimizes the pressure drop, but also for the shape whose parametrization
makes the numerical approximation of it more reliable. Thereby, we embed the
construction of a good parametrization into the design optimization, and we are
thus targeting the very cause of the problem.

The method poses two challenges: Firstly, it necessitates the construction
of a quality measure R of the parametrization, and secondly, it requires the
specification of its relative importance ε̃ in the optimization.

γ

Figure 4.7: Illustration of the focus of boundary regularization.

The focus of this study is on boundary regularization, as sketched in Fig-
ure 4.7. This addresses the quality of parametrization of the design boundary,
which is clearly compromised early on in the fatal optimization history in Figure
4.6. One measure we have found useful is the norm squared of the parametric
acceleration along the design boundaries, integrated in parameter domain:

R =
∫ 1

0

‖γ̈‖2 dξ, (4.14)

where we have defined •̈ ≡ ∂2 • /∂ξ2. In discretized form, it reads:

R = xTRx+ yTRy, (4.15a)

Ri,j =
∫ 1

0

R̈gi R̈gj dξ. (4.15b)

By minimizing this measure, we bring the boundary parametrization closer to
a constant-speed parametrization, and boundary regularization thus leads the
optimizer towards a better boundary parametrization. The measure is com-
putationally cheap to implement, since the matrix R only involves integrals
of the second order derivatives of the (univariate) basis functions, and since it
is quadratic in the design variables, the sensitivities may be straightforwardly
computed.

An important challenge in the methodology is the specification of a suitable
weight ε̃ of the regularization. This challenge is similar in nature to the one
associated with specifying a suitable minimal distance between control points
[Wall et al., 2008], or a maximal shape change norm [Nagy et al., 2011]. The
specification may be partly facilitated by estimating the initial ratio between
the physical objective C0 and the regularization objective R0:

ε̃ =
|C0|
|R0|ε, (4.16)
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where we assume that R0 6= 0, and that this ratio does not change too much with
the design. Taking ε = 1 yields identical initial numerical values for the physical
and the regularization terms in Equation (4.13). Usually, a value ε� 1 is there-
fore anticipated. The smaller the ε, the closer we get to the original optimization
problem, but, on the other hand, the more we weaken the regularization and its
stabilizing influence on the parametrization and the convergence.
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Figure 4.8: Pipe bend with minimal pressure drop: regularized optimization history
(bottom), and snap shots of the control net and the associated parametrization (top).

We apply the regularized isogeometric shape optimization method to the
current design problem, thus minimizing the regularized pressure drop (4.13)–
(4.14) through the pipe bend using the weight ε = 10−2. The optimal design
is reached after 64 iterations, at which point the pressure drop is decreased to
74.5%, and the area constraint is active (but fulfilled). The optimization history
is shown in Figure 4.8. Here, it is worth noticing that the optimal design is quite
close to the design from which the original formulation drifts off, cf. Figure
4.6, that the difference in the minimal pressure drop between the designs is
small, and, most importantly, that the parametrization is much better in this
regularized formulation, thereby making the analysis more reliable. The effect
of the regularization is clearly seen from the intermediate design in iteration 19,
to the converged design in iteration 64. The control points spread out along the
line, and the concentration of control points is shifted away from the straight
central part, towards the curved parts at the inlet and the outlet. This is also
where the geometry, and hence the flow analysis, is most challenging, due to the
presence of sharp corners that form as a result of coalescing control points. The
resulting pressure field is shown in Figure 4.9. The optimized design is similar
to the topology optimized design with minimal energy dissipation [Gersborg-
Hansen et al., 2005].

To examine the effect of the regularization in greater detail, we solve the
problem for a range of regularization weights ε ∈ [10−3, 10−1]. Figure 4.10
shows how the optimized pressure drop, the required number of iterations, and
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Figure 4.9: Pipe bend with minimal pressure drop: optimized pressure contours and
flow stream lines.

the optimal design vary with the regularization weight. When the regularization
is strong, the optimization converges quickly to a smoother design with a higher
pressure drop. As the regularization is decreased, more iterations are required
to reach designs with locally higher curvature and smaller pressure drops. A
stagnation point in the pressure drop curve is observed, associated with the for-
mation of the sharp corners at the inlet and the outlet, such that the optimized
pressure drop only falls off slightly for ε ≤ 3 · 10−2. In addition, the number of
iterations is likewise relatively constant for 3 ·10−3 ≤ ε ≤ 3 ·10−2. A regulariza-
tion weight in this range thus seems appropriate in this example. The results,
however, are not critically sensitive to the value used.
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Figure 4.10: Pipe bend with minimal pressure drop: optimized pressure drop and
required number of iterations as a function of regularization weight ε (bottom), and
optimal design for three values of ε (top).



4.5. APPLICATIONS 49

We conclude this section by mentioning that a range of other regularization
measures could be considered. Among these, we have found that similar effects
as those presented above may be obtained by minimizing the scalar product of
the tangent γ̇ and the acceleration γ̈, the variance of the Jacobian determinant,
or the variance of the parametric speed, all evaluated along the design boundary.
Minimization of the Winslow functional, however, is found to be more problem-
atic to implement. Furthermore, the regularization measures could alternatively
be implemented as constraints, but such investigations have been outside the
scope of this study.

4.5 Applications

In this section, we apply the isogeometric shape optimization methodology for
fluid design problems to two additional numerical examples.

Body with Uniform Pressure Distribution

We consider the shape optimization problem (4.1)-(4.2b) outlined in Figure
4.11a. The aim is to design the boundary Γ′ of a body of given area A0, placed
in a circular fluid container of radius r whose outer boundary rotates, to make
the pressure distribution along Γ′ as uniform as possible, i.e., to minimize the
pressure variation C∇p along Γ′. From symmetry considerations, the pressure is
constant along the boundary when a disk is placed in the center. Furthermore,
analytical solutions to the governing Navier-Stokes equations for this so-called
Taylor-Couette flow problem is well-known from the literature. A circle enclos-
ing the specified area and with center in the center of the container is therefore
a solution to the shape optimization problem. In the following, we investigate
how well the isogeometric shape optimization methodology is able to reproduce
this.

To represent the outer perimeter as an exact circle, which is of paramount
importance when specifying boundary conditions, we parametrize the geometry
using quadratic NURBS. As initial design, we use a square placed in the middle,
which is an intentionally bad initial guess. The control net, knot vectors and
weights are shown in Figure 4.11b, and the corresponding parametrization is
visualized in Figure 4.11c. The patch is attached to itself along the dashed
line, resulting in an additional C0-continuity here. The velocity field is specified
as purely tangential along the outer moving perimeter, and as vanishing on
the inner steady boundary, assuming no-slip conditions. Since full Dirichlet
boundary conditions are prescribed for the velocity field, we set the pressure to
zero in an arbitrary point. We take the initial area as A0 = 2, the radius of the
outer perimeter as r = 2, the velocity scale as U = 1, the density as ρ = 1, and
the viscosity as µ = 1, assuming again appropriate units are used, which again
yields a Reynolds number of Re = 1. The initial pressure field is depicted in
Figure 4.11d. In this, the C0-continuities are invisible to the naked eye. We take
the constraint on the area as the initial value, i.e., Amax = Amin = πr2 − A0,
and a one-step approach is employed for the Reynolds number. To resolve
the rotational symmetry, the left-most control point is allowed only to move
horizontally. It turns out that this problem is sufficiently constrained to prevent
control points from clustering, and we therefore solve it without regularization.
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Figure 4.11: Body with uniform pressure distribution: design problem setup (a),
initial control net, knot vectors, and non-unitary weights (b), initial parametrization
(c), and initial pressure field (d).
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Figure 4.12: Body with uniform pressure distribution: optimized control net (a),
parametrization (b), and pressure field (c) for 36 design control points.

We consider three consecutive refinements of the coarse geometry described
above, obtained by uniform knot refinement along the tangential direction,
thereby representing the design boundary Γ′ by 8, 12, 20, and 36 control points,
respectively. We solve the design problem for each of these four geometric
models, using in turn the optimized coarser design as initial guess for the finer
optimization. The results for the finest geometric approximation are shown in
Figure 4.12. The optimal design is reached in a total of 1032 iterations, and
the pressure variation is decreased by a factor of ∼ 10−17. The optimal control
net is shown in (a), and the corresponding optimized parametrization is shown
in (b). The inner boundary is seen to approximate a circle very accurately.
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Ndesign C∇p/C∇p0 εcircle Niter

8 8.1 · 10−4 6.3 · 10−2 131
12 5.1 · 10−5 3.7 · 10−3 127
20 3.3 · 10−6 2.5 · 10−4 344
36 1.4 · 10−17 2.1 · 10−5 430

Table 4.1: Body with uniform pressure distribution: comparison of objective function,
discrepancy from the exact circle, and number of iterations for different numbers of
design variables.

The optimized pressure field shown in (c) is significantly more uniform than the
initial one shown in Figure 4.11d.
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Figure 4.13: Body with uniform pressure distribution: comparison of pressure distri-
butions along the optimized boundaries (a), and comparison of the optimized bound-
aries to the exact circle in three zooms (b).

To examine more closely the effect of enlarging the design space by the use of
more design control points, Figure 4.13a shows the pressure distribution along
the optimized boundary when using 8, 16, 20, and 36 design control points.
Also shown, in Figure 4.13b, is a comparison of the lower part of the optimized
design boundaries to the exact circle. As is evident from the figure, the more
control points we use, the more uniform the pressure distribution we obtain, and
the better the approximation to the exact circle we find. This is quantitatively
supported by the numerical values listed in Table 4.1, showing that both the
pressure variation, and the discrepancy of the design boundary from the circle
of radius r0 =

√
A0/π converge towards zero, as more design control points are

used. Here, we have estimated the discrepancy of the design boundary from the
circle of radius r0 by the measure:

ε2circle =
∫
γ

(
x2 + y2

r2
0

− 1
)2

ds.
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With 36 design control points, this error is ∼ 2.1 · 10−5.

Body with Minimal Drag

We consider the classical shape optimization problem (4.1)-(4.2c) outlined in
Figure 4.14a, see e.g. [Pironneau, 1973; 1974]. The boundary Γ′ of a body
with given area A0 traveling at constant speed U through a fluid is designed to
minimize the drag Cd it experiences as the fluid flows past it.
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Figure 4.14: Body with minimal drag: design problem setup (a), initial control net,
initial parametrization, domain dimensions, boundary conditions, and knot vectors (b
and c), and initial pressure contours and flow stream lines for U = 1 (d).

Symmetry is assumed around the line along which the body travels, and
only the upper half of the problem is considered. To facilitate the implementa-
tion of boundary conditions, and to achieve local refinement close to the body,
this half space is truncated using two patches, as shown by the black lines in
Figure 4.14b (top). The design boundary Γ′ is initialized as an approximate
half circle of radius r = 1, as depicted in Figure 4.14c (top), and the compu-
tational domain extends 20r upstream, 20r sidewards, and 40r downstream,
as depicted in Figure 4.14b (bottom). Cubic B-splines are employed for the
geometric parametrization. The initial control net is shown in Figures 4.14b-c
(bottom). The governing equations are solved in the co-moving inertial system
in which the body is at rest. For the boundary conditions, we assume no-slip
along the design boundary Γ′, that the flow is undisturbed along the upstream
truncation boundary, that the downstream truncation boundary is open, and
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that the fields are symmetric around the lower truncation boundary, as sketched
in Figures 4.14b-c (top). The density and viscosity are set to ρ = 1 and µ = 1,
respectively, assuming appropriate units.

We use 11 design control points, and take A0 = π as lower bound on the
area of the body, i.e., Amax = Area0 − A0/2, and relax the upper bound. The
end control points are allowed only to move horizontally and symmetrically, to
ensure that the domain is appropriately defined, and to resolve the translational
symmetry of the problem. To prevent the control net from folding over at the
leading and trailing edges in particular, boundary regularization with weight
ε = 0.01 is employed.
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Figure 4.15: Body with minimal drag: initial and optimized shapes for U ∈
{1, 10, 40, 100} (a), and optimized pressure contours and flow stream lines for U = 100
(b).

We solve the shape optimization problem for four consecutive speeds U ∈
{1, 10, 40, 100}, using again the lower speed solution as initial guess for the
higher speed. These speeds correspond to Reynolds numbers 1, 10, 40, and 100,
respectively, based on the initial setup. After 57 + 40 + 67 + 58 = 222 design
iterations, the optimization converges. To illustrate how the design varies with
flow speed, the initial and the optimized shapes for each of the four speeds are
compared in Figure 4.15a, and the characteristics of the shapes are summarized
in Table 4.2. A considerable change in the design is seen as the speed is in-
creased. For low speeds, a football-like shape is optimal. For higher speeds, a
more slender shape is optimal, eventually becoming slightly thicker upstream
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Design L/2 H/2 xw C∗d r

Initial 1.00 1.00 0.00 4.13 -
U = 1 1.80 0.62 0.02 6.12 7.7%
U = 10 2.29 0.48 -0.03 1.81 2.4%
U = 40 2.80 0.41 -0.32 0.97 1.2%
U = 100 3.12 0.38 -0.51 0.64 0.4%

Table 4.2: Body with minimal drag: length (L), height (H), widest location (xw),
drag coefficient (C∗d = Cd/(

1
2
ρU2H)), and relative decrease in drag r = (Cinitial

d −
Coptimal
d )/Cinitial

d for the initial and optimized shapes.

than downstream. The long slender design relates well to the increase in the
significance of the form drag, and the decrease in the significance of the skin
friction drag, as the speed increases. The pressure and flow fields around the
optimized shape for the terminal speed U = 100 are depicted in Figure 4.15b.

In the present context, minimizing the drag on the body is equivalent to
minimizing the energy dissipation in the flow past it [Mohammadi and Piron-
neau, 2010], and we may compare the results for these two types of problems.
Firstly, for Reynolds number Re = 1, the angle of the wedge-shaped upstream
part compares well to the theoretically predicted value of 90◦, while for higher
Reynolds numbers, the shapes are more cusped [Pironneau, 1973; 1974]. For
Reynolds number Re = 1, the present optimal shape compare well qualitatively
to the numerical results obtained in [Katamine et al., 2005], while for Reynolds
numbers Re > 1, the present optimal shapes differ significantly from their ovoid
with the upstream part slimmer than the downstream part. Consistently bet-
ter qualitative correspondence is found with the numerical results in [Kim and
Kim, 1995], although the present optimal shapes are slightly longer, thinner,
and more ovoid than their elliptic shapes.

4.6 Conclusions

In this chapter, we have applied isogeometric analysis to shape optimization
problems for fluids, using NURBS and B-splines from computer aided design
both as analysis tool in a finite-element-like manner to solve the governing
steady-state, incompressible Navier-Stokes equations, and as design tool to find
optimal shapes by moving the control points using a gradient-based numeri-
cal optimization package. By adding to the objective function a measure of the
quality of the parametrization, we have established a regularization technique to
avoid inappropriate parametrizations during optimization, a commonly known
problem in isogeometric shape optimization. Based on a benchmark design
problem, in which a pipe bend is designed to minimize the pressure drop of the
flow through it, the integral of the norm squared parametric acceleration along
the design boundary was found to be a cheap, flexible and efficient regulariza-
tion measure. The method embeds the construction of a good parametrization
into the design optimization, allowing the designer to search for shapes in a
large design space, with little a priori knowledge on the optimal design. The
greatest challenge of the method lies in the choice of the regularization weight.
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To emphasize the robustness of the proposed isogeometric shape optimization
methodology for fluids, we have used it firstly to design a body at rest in a
circular fluid container with rotating boundary to obtain a uniform pressure
distribution along its boundary, and secondly to design a body traveling at con-
stant speed through a fluid to minimize the drag from the flow past it. For
the former problem, it was found that progressively better approximations of
a known solution is achieved when more design control points are used, while
the latter problem demonstrated that significantly different shapes of the min-
imal drag body may be obtained when the speed is varied. In summary, the
isogeometric shape optimization methodology facilitates the accurate design of
complex shapes in engineering problems within fluid mechanics.
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Chapter 5

Isogeometric Analysis of
Flow Acoustics

In this chapter, we extend the use of isogeometric analysis to the propagation
of sound through moving fluids. We construct and validate a coupled flow-
acoustic model based on the methodology, and use it to investigate geometric
effects on ultrasound propagation through flows in 2-dimensional ducts. The
chapter summarizes the findings in [Nielsen et al., 2011b] included in Appendix
D.

5.1 Introduction

It is well known in physics and engineering applications that wave propagation in
ducts is sensitive to the duct geometry. In particular, spatial resonances exist at
certain frequencies, and it is anticipated that even small disturbances may cause
large variations in signal transmission at such frequencies. Motivated by this,
we investigate the influence of a background flow on acoustic wave propagation
in 2-dimensional ducts of varying width.

Finite element methods within the field of sound propagation through flow
in ducts are extensively used, based on, e.g., the convected Helmholtz equation
[Becache et al., 2004; Redon et al., 2011], the linearized Euler equations [Astley
and Eversman, 1981], or the so-called Galbrun’s equation [Peyret and Élias,
2001; Dhia et al., 2007; 2010], and often discretized using Lagrange elements
with C0-continuity of the state variable approximations. Our work contributes
to this field in two ways.

Firstly, we analyze the coupled flow-acoustic system by explicitly connecting
a flow model to an acoustic model. The procedure we follow is first to compute
the background flow based on the steady-state, incompressible Navier-Stokes
equations in the laminar regime, i.e., at low Reynolds numbers, and then we
adopt a linear, time-harmonic flow-acoustic approach for the sound wave prop-
agation in the low Mach number regime, using the calculated background flow
as input. This results in a single equation in the acoustic pressure, linear in
both the flow field itself and its gradient.

Secondly, we base our calculations on isogeometric analysis. For the problem
at hand, isogeometric analysis is particularly appealing because it allows for

57
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simple descriptions of complex duct geometries, and provides high degrees of
smoothness for both flow and acoustic fields. The applicability of the method
is well documented within fluid mechanics, as demonstrated in Chapter 3, as
well as for wave phenomena and the closely related structural vibrations, see
e.g. [Cottrell et al., 2006; Hughes et al., 2008].

The first aim of this chapter is to establish and validate the coupled flow-
acoustic model for time-harmonic sound propagation at low Mach numbers
through a stationary, incompressible background flow at low Reynolds num-
bers in 2-dimensional ducts based on isogeometric analysis. The second aim is
to use the model to numerically examine how the geometry of the duct influ-
ences the sound propagation, and in particular its effect on how the acoustic
signal depends on flow speed. We consider a transmitting ultrasonic transducer
mounted on the duct wall, as sketched in Figure 5.1, and we examine the dif-
ference between the downstream and the upstream acoustic signals for different
frequencies and flow speeds. Geometric effects are investigated by considering
three different duct geometries.

5.2 Governing Equations and Approximations

Figure 5.1: Sound propagates (black arrows) from acoustic sources (black rings)
through a moving fluid (gray arrows) in a symmetric (dashed lines) 2-dimensional
duct (solid lines).

In the following, we introduce the governing equations and approximations
of the coupled flow-acoustic model.

Referring to Figure 5.1, we consider the propagation of sound through an
isothermal moving fluid in a symmetric 2-dimensional duct in the absence of
body forces. The fluid is governed by the Navier-Stokes and mass continuity
equations (2.1), which we restate here:

ρ
∂u

∂t
+ ρ(u · ∇)u+∇p−∇ · T = 0, (5.1a)

∂ρ

∂t
+∇ · (ρu) = 0, (5.1b)

where p, u, ρ, T, and t, denote pressure, velocity, density, deviatoric stress
tensor, and time, respectively.

The problem involves two distinct physical phenomena: the flow of the fluid
and the propagation of sound in it. We express this separation through the
state variables:

u = u0 + u′, p = p0 + p′, ρ = ρ0 + ρ′, (5.2)
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where u0, p0, ρ0 relate to the large scale mean flow, and u′, p′, ρ′ relate to
the small scale acoustic disturbances. For simplicity, we will assume a one-
way coupling of these phenomena, such that flow phenomena (u0, p0, and ρ0)
influence acoustic phenomena (u′, p′, and ρ′), but not the other way around.
Hence, we may treat the flow model as independent of the acoustic model, and
use the output of the flow model as input to the acoustic model.

γ− γ+

Γw

Γs

Ω

x

y

Figure 5.2: Model domain (gray) and boundaries (black lines).

In the following, we consider the flow and acoustic equations over a sym-
metric, finite segment of one half of the symmetric, infinite 2-dimensional duct
as depicted in Figure 5.2. The four boundaries of the model domain Ω are:
the hard wall boundary Γw, the symmetry boundary Γs, and the two artificial
truncation boundaries γ− and γ+.

Flow Equations

For the flow model, we follow closely the approach outlined in the previous
chapters. We assume that the fluid is Newtonian and incompressible, and that
the flow is stationary. The governing equations (5.1) then simplify to:

ρ0(u0 · ∇)u0 +∇p0 − µ∇2u0 = 0, (5.3a)
∇ · u0 = 0, (5.3b)

where µ is the dynamic viscosity of the fluid, and ρ0 its density, which are both
constants.

The following boundary conditions are prescribed:

u0 = u∗0 on γ− ∪ Γw, (5.4a)
v0 = 0 ∧ (µ∇u0 − p e1 ) · n = 0 on γ+ ∪ Γs, (5.4b)

where n is the outward unit normal, and u∗0 prescribes a purely horizontal flow
velocity on the flow inlet γ−, and a vanishing flow velocity along the hard wall
Γw. On the symmetry edge Γs, we note that e1 · n = 0. On the flow outlet
γ−, the enforcement of v0 = 0 has implications on the validity of the acoustic
model, as explained below.

We solve the weak, or variational, form of the system (5.3)-(5.4) which reads:
given ρ0 and µ, find u0 and p0 such that

x
Ω

(
Uρ0(u0 · ∇)u0 − p0

∂U
∂x

+ µ∇U · ∇u0

)
dA = 0, (5.5a)

x
Ω

(
Vρ0(u0 · ∇)v0 − p0

∂V
∂y

+ µ∇V · ∇v0

)
dA = 0, (5.5b)

x
Ω

P
(
∇ · u0

)
dA = 0, (5.5c)
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for all test functions U ,V,P without support on boundaries where the fields are
explicitly prescribed.

Acoustic Equation

Our goal in the following is to derive a single equation that governs the acoustic
signal in a known background flow u0. To shorten the notation in the following
derivations, we let ∂t ≡ ∂/∂t denote differentiation with respect to time, and
∂x ≡ ∂/∂x and ∂y ≡ ∂/∂y differentiation with respect to spatial dimensions.

We start by assuming that we may neglect viscous effects for the acoustic
signal. The governing equations (5.1) then read:

ρ ∂tu+ ρ (u · ∇)u+∇p = 0, (5.6a)
∂tρ+∇ · (ρu) = 0. (5.6b)

Next, we assume that the background flow (u0, p0, ρ0) fulfills the governing
equations (5.6), that it is incompressible, i.e., ∂tρ0 = ∂xρ0 = ∂yρ0 = 0, and
hence ∇ · u0 = 0 by Equation (5.6b), and that it is stationary, i.e. ∂tu0 = 0,
as in the flow model above. Inserting the conventions (5.2) into the governing
equations (5.6), while using the above, and neglecting second orders terms in
the acoustic disturbances (u′, p′, ρ′), we find:

ρ0∂tu
′ + ρ0(u0 · ∇)u′ + ρ0(u′ · ∇)u0 +∇p′ + ρ′(u0 · ∇)u0 = 0, (5.7a)

∂tρ
′ + u0 · ∇ρ′ + ρ0∇ · u′ = 0. (5.7b)

Dividing Equation (5.7a) by ρ0, multiplying Equation (5.7b) by c2, and utilizing
the isentropic condition p′ = c2ρ′, where c is the speed of sound in the fluid, we
obtain:

∂tu
′ + (u0 · ∇)u′ + (u′ · ∇)u0 +

1
ρ0
∇p′ + ρ′

ρ0
(u0 · ∇)u0 = 0, (5.8a)

∂tp
′ + u0 · ∇p′ + ρ0c

2∇ · u′ = 0. (5.8b)

Assuming small acoustic disturbances, i.e., ρ′ � ρ0, we may neglect the second
order term in the background flow u0 in Equation (5.8a).

Next, we apply separation-of-variables and assume time-harmonic condi-
tions. We seek acoustic solutions u′ and p′ to Equations (5.8) of the following
form:

u′(t, x, y) = e−iωtũ(x, y), p′(t, x, y) = e−iωtp̃(x, y). (5.9)

where ω denotes the acoustic angular frequency. Inserting these relations into
Equations (5.8), ignoring the second order term in the background flow u0 in
Equation (5.8a), and dividing by the common temporal part e−iωt, we obtain
the following equations in the spatial parts of the acoustic fields:

−iωũ + (u0 · ∇)ũ + (ũ · ∇)u0 +
1
ρ0
∇p̃ = 0, (5.10a)

−iωp̃+ u0 · ∇p̃+ ρ0c
2∇ · ũ = 0. (5.10b)

To reduce this system, Equation (5.10a) gives us:

ũ = − i
ω

(
1
ρ0
∇p̃+ (ũ · ∇)u0 + (u0 · ∇)ũ

)
= − i

ωρ0
∇p̃+O(u0), (5.11)
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and by inserting this into Equation (5.10b), we find:

− iωp̃+ u0 · ∇p̃− iρ0c
2

ω
∇ ·
(

1
ρ0
∇p̃+ (ũ · ∇)u0 + (u0 · ∇)ũ

)
= 0. (5.12)

Next, we will neglect all second order terms in the background flow u0, assuming
low Mach numbers, i.e. ‖u0‖ � c. Exploiting again Equation (5.11) in the
above, we then obtain the following equation in the spatial part of acoustic
pressure only:

− iωp̃+ u0 · ∇p̃− ic2

ω
∇2p̃− c2

ω2
∇ ·
(

(∇p̃ · ∇)u0 + (u0 · ∇)∇p̃
)

= 0. (5.13)

To simplify Equation (5.13), we use the following identity for two arbitrary
vector functions a = (a1, a2) and b = (b1, b2):

∇ ·
(

(b · ∇)a+ (a · ∇)b
)

=

2
(
∂xa · ∇b1 + ∂ya · ∇b2

)
+ (a · ∇)(∇ · b) + (b · ∇)(∇ · a), (5.14)

which may be verified by straightforward calculations. Taking a = u0 and
b = ∇p̃ in the above yields:

∇ ·
(

(∇p̃ · ∇)u0 + (u0 · ∇)∇p̃
)

=

2
(
∂xu0 · ∇∂xp̃+ ∂yu0 · ∇∂yp̃

)
+ (u0 · ∇)(∇2p̃) + (∇p̃ · ∇)(∇ · u0). (5.15)

Now, taking the divergence of (5.11), and inserting this into (5.10b), we find:

∇2p̃ = −w
2

c2
p+O(u0). (5.16)

Next, we may insert Equation (5.15) into Equation (5.13), using the above
relation, neglecting again higher order terms in the background flow u0, and
exploiting the incompressibility of the background flow ∇ · u0 = 0. After some
manipulations we find:

∇2p̃+
ω2

c2
p̃+

2i
ω

( ω2

c2
u0 · ∇p̃− ∂xu0 · ∇∂xp̃− ∂yu0 · ∇∂yp̃

)
= 0. (5.17)

Finally, we may define the wave number k ≡ ω/c, and introduce an acoustic
source f on the right hand side. This gives us:

∇2p̃+ k2p̃+
2i
ω

(
k2u0 · ∇p̃− ∂u0

∂x
· ∇∂p̃

∂x
− ∂u0

∂y
· ∇∂p̃

∂y

)
= f. (5.18)

Equation (5.18) is a second order partial differential equation for the spatial
part p̃ of the acoustic pressure disturbance, with given angular frequency ω and
speed of sound c, and based on a given background flow u0. We note that the
terms in the parenthesis relate to the background flow u0 and its gradient ∇u0.
When the background flow vanishes, the equation reduces to the usual inhomo-
geneous Helmholtz equation. We emphasize in particular, that its derivation
relies on a linearization of the governing equations, that time-harmonic condi-
tions are assumed, and that second order effects in the background flow have
been neglected, i.e., low Mach numbers M ≡ ‖u‖/c are assumed.
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The associated boundary conditions on the hard wall and the symmetry edge
are:

∇p̃ · n = 0 on Γw ∪ Γs. (5.19)

The treatment of the artificial truncation boundaries γ±, however, is less trivial
[Givoli, 2008; Becache et al., 2004; Redon et al., 2011]. Here, waves must be
allowed to propagate out of the domain, and, at the same time, reflections back
into the domain must be avoided. We treat the truncation boundaries using the
mode matching formulation [Astley, 1996], based on a modal decomposition, a
method closely related to the so-called Dirichlet-to-Neumann map [Redon et al.,
2011].

The crux of the mode matching method is to assume that the acoustic pres-
sure on the truncation boundaries γ± may be expressed as linear combinations
of so-called acoustic duct modes, giving the following relations for the acoustic
pressure and its normal derivative:

p̃(x, y) =
N±m∑
n=1

b±n φ
±
n (y) ≡ p̃± on γ±, (5.20a)

∇p̃(x, y) · n = ±∂p̃
∂x

(x, y) = ±
N±m∑
n=1

b±n λnφ
±
n (y) on γ±, (5.20b)

where φn are the acoustic duct modes, λn are the associated (complex and
signed) wave numbers, bn are the expansion coefficients, and Nm is the finite
(and small) number of modes. The subscript indicates direction of propaga-
tion, such that forward propagating modes are specified on the boundary γ+,
and backward propagating modes on the boundary γ−. This will be explained
further in Section 5.5 below.

The mode matching method involves two steps: In the first step, the acoustic
duct modes, i.e., the functions φn and the wave numbers λn, are determined.
In the second step, the weights bn of the modes on γ±, as well as the acoustic
pressure p̃ over the entire domain Ω are determined.

For the first step, we assume that the truncation boundaries γ± are placed
far away from acoustic sources and geometric undulations, such that the back-
ground flow u0 is independent of x and normal to γ±. With these assumptions,
Equation (5.18) evaluated on the truncation boundaries simplifies to:

∂2p̃

∂x2
+
∂2p̃

∂y2
+ k2p̃+

2i
ω

(
k2u0

∂p̃

∂x
− u′0

∂2p̃

∂x∂y

)
= 0, (5.21)

where u0 = u0(y) is the horizontal background flow velocity, and u′0 = du0/dy
its derivative. From Equation (5.19), the boundary conditions are:

u′0 = 0 for y = 0, R, (5.22)

where R is the height of the duct. We are interested in the weak form of
Equation (5.21) which reads: given ω, k, and u0, find p̃ such that∫

γ±

P̃
[∂2p̃

∂x2
+
∂2p̃

∂y2
+ k2p̃+

2i
ω

(
k2u0

∂p̃

∂x
− u′0

∂2p̃

∂x∂y

)]
dy = 0, (5.23)
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for all test functions P̃. The modes are then determined by solving an eigen-
value problem based on Equation (5.23) while using the homogeneous Neumann
boundary conditions in Equation (5.22).

For the second step, we consider the weak forms of the system (5.18)-(5.19)
for the acoustic pressure over the domain Ω, and of the modal relation (5.20a)
on the truncation boundaries γ±. These read: given ω, k, f , and u0, find p̃ and
p̃± such that∫

γ±

P̃(∇p̃ · n) ds−
x
Ω

∇P̃ · ∇p̃ dA+
x
Ω

P̃
[
k2p̃− f

+
2i
ω

(
k2u0 · ∇p̃− ∂u0

∂x
· ∇∂p̃

∂x
− ∂u0

∂y
· ∇∂p̃

∂y

)]
dA = 0, (5.24a)∫

γ±
F̃±(p̃− p̃±) ds = 0, (5.24b)

for all test functions P̃, F̃±. These equations are then solved using the Neumann
boundary conditions (5.20b) on the truncation boundaries.

5.3 Isogeometric Method

We solve the coupled flow-acoustic problem numerically using B-spline based
isogeometric analysis. We follow closely the approach in Chapter 3, from where
only the central parts are repeated in the following, and we primarily focus on
the acoustic model.

Geometry Model

Referring to Figure 5.3, we construct a parametrization of the model domain
of the form X =

∑
i xiPgi for i = 1, . . . , Ng

var, where Pgi are tensor product B-
splines, xi are control points, and Ng

var is the number of terms. The geometry
parametrization serves as foundation for both the flow model and the acoustic
model.

X
[0, 1]2

Ω
y

x

η

ξ

Figure 5.3: Parametrization of the model domain.
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Flow Model

As for the geometry, approximations of the background flow velocity u0 and
pressure p0 are constructed in the form f =

∑
i f iP

f
i for i = 1, . . . , Nf

var, where,
for each of the three state variables f ∈ {u0, v0, p0}, Pfi are tensor product B-
splines, f

i
are control coefficients, and Nf

var is the number of terms. From these
approximations, we may obtain a system of non-linear equations of the form

K(U)U = F , (5.25)

where U is the vector of unknown control coefficients for the background flow
velocity and pressure, and the system matrix K and the right hand side vector
F are given by Equations (3.10)–(3.11) with f = 0.

Acoustic Model

The acoustic model involves two steps: The first step determines the acoustic
duct modes on the truncation boundaries γ±, i.e., the functions φn and the wave
numbers λn. The second step determines the weights bn of the modes on γ± as
well as the acoustic pressure p̃ over the entire domain Ω.

Acoustic Duct Modes

To determine the acoustic duct modes, we approximate the pressure in the
regions far upstream and far downstream by the following expression:

p̃(x, y) =
n∑
`=1

a`(x)M`(y) , (5.26)

whereM` are univariate B-splines defined over the parameter domain ξ ∈ [0, 1],
M` are their image in physical space, and thus functions of y, c` are expansion
coefficients that are functions of x, and n is the number of terms in the expan-
sion.

Due to the properties of B-splines, the boundary condition (5.22) for the
acoustic pressure on the straight parts of the hard wall Γw and the symmetry
edge Γs may be fulfilled a priori by choosing a1 = a2 and an = an−1, or,
equivalently, by replacing the approximation (5.26) by

p̃(x, y) =
n−2∑
`=1

b`(x)N `(y) , (5.27)

where

N1 =M1 +M2, b1 = a1 + a2,

N2 =M3, b2 = a3,

...
...

Nn−3 =Mn−2, bn−3 = an−2,

Nn−2 =Mn−1 +Mn, bn−2 = an−1 + an.
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By inserting the approximation (5.27) into the Equation (5.23) on the trun-
cation boundaries, using N k(y) as test functions, and pulling the integrals back
to parameter domain [0, 1], the following system of ordinary differential equa-
tions is obtained:

R b̈ +
2i
ω

S ḃ + T b = 0 , (5.28)

where dot denotes differentiation with respect to x, and

Rk,` =
∫ 1

0

NkN` y′ dξ , (5.29a)

Sk,` =
∫ 1

0

Nk
(
k2 u0N` − u′0 y′−1N ′`

)
y′ dξ , (5.29b)

Tk,` =
∫ 1

0

Nk
(
y′−2N ′′` − y′′ y′−3N ′` + k2N`

)
y′ dξ , (5.29c)

b =
(
b1(x) . . . bn−2(x)

)T
, (5.29d)

for k, ` = 1, . . . , n − 2, where prime denotes differentiation with respect to ξ.
The second order system (5.28) can be rewritten as the first order system[

I 0
0 R

] [
ḃ
ċ

]
=
[

0 I
−T − 2i

ω S

] [
b
c

]
. (5.30)

By solving the generalized eigenvalue problem[
0 I
−T − 2i

ω S

] [
b
c

]
= λ

[
I 0
0 R

] [
b
c

]
, (5.31)

we obtain 2n − 4 pairs of eigenvalues, λk, and eigenvectors, (bk ck)T . Each
eigenvalue represents a (complex and signed) wave number, and each eigenvector
corresponds to a (complex) acoustic duct mode

φk(y) =
n−2∑
`=1

b`,kN `(y) . (5.32)

As demonstrated in section 5.5 below, a finite and small number of modes
Nm with purely imaginary propagation constant λ are found in practice, while
the number of modes with propagation constant with non-vanishing real part
is bounded only by the numerical discretization. We base the mode matching
formulation on the former propagative modes, while the latter evanescent modes
are neglected.

Acoustic Pressure

To compute the acoustic pressure p̃ over the entire domain, and the weights bn
of the modes on the truncation boundaries, we will, as for the geometry and the
background flow variables, seek solutions of the following form:

p̃ =
N p̃var∑
i=1

p̃iR
p̃
i , (5.33)
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where the basis functions P p̃ are tensor product B-splines, p̃i are the unknown
control variables to be determined, and N p̃

var is the number of terms.
As test functions in the weak formulation of the governing equations (5.24),

we use the basis functions P p̃ and the (B-spline approximations from above
of the) propagative acoustic duct modes φ±. By inserting the acoustic field
approximation (5.33) and the acoustic duct mode approximation (5.32) into
these equations, exploiting the Neumann boundary condition (5.20b), rearrang-
ing terms and interchanging order of integration and summation, we arrive at
the following system of linear equations:[

−D + k2M + 2i
ω

(
k2L−Q

)
HBΛ

BTH −BTHB

] [
p̃
b

]
=
[
f
0

]
(5.34)

where

Di,j =
x

[0,1]2

∇P p̃i · ∇P
p̃

j det
(
J
)

dΞ, (5.35a)

Mi,j =
x

[0,1]2

P p̃i P p̃j det(J) dΞ, (5.35b)

Li,j =
x

[0,1]2

P p̃i
(
u0 · ∇P p̃j

)
det(J) dΞ, (5.35c)

Qi,j =
x

[0,1]2

P p̃i
2∑

m=1

(eTm∇)u0 · (HP p̃jem) det(J) dΞ, (5.35d)

Hi,j =
∫

[0,1]

P p̃i P p̃j ‖γ′‖ dξ, (5.35e)

Bi,k =
{
b`,k if supp(P p̃i ) ∩ γ± 6= ∅
0 otherwise

, (5.35f)

Λk,` = δk,lλk, (5.35g)

fi =
x

[0,1]2

P p̃i f det
(
J
)

dΞ, (5.35h)

for i, j = 1, . . . , N p̃
var and k, ` = 1, . . . , Nm, where δk,l is the Kronecker delta.

Gradients and Hessians may be found from Equation (3.3). Here, the “stiffness”
matrix D and the “mass” matrix M appear independently of the background
flow, whereas L is due to the flow field u0, and Q is due to the gradient of the
flow field ∇u0.

Implementation

For the geometry parametrization, we take Pgi as bi-quadratic tensor product
B-splines. For the flow approximations, we take Pui and Pvi as bi-quartic and Ppi
as bi-cubic, respectively, all C2 across knots, which corresponds to the Taylor-
Hood discretization u42

0p31
0 (d) in Table 3.1. For the acoustic approximation,

P p̃i are taken as bi-quartic, unless otherwise stated.
Dirichlet boundary conditions, for which state variables are explicitly pre-

scribed, are enforced strongly by choosing the corresponding control variables
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appropriately. Neumann boundary conditions, for which normal derivatives of
state variables must vanish, are enforced weakly by equating the corresponding
boundary integrals to zero in the derivation of the weak form of the governing
equations.

5.4 Validation: Acoustic Duct Modes

In the following, we consider the propagation of sound waves in a straight duct
with uniform background flow, for which analytical solutions are readily avail-
able. We validate the coupled flow-acoustic model numerically by examining
how well the method is able to reproduce these analytical solutions.

γ− γ+

Γw

Γs

Ω

O
•

Figure 5.4: The modal problem.

The problem is outlined in Figure 5.4. It differs from the one described in
Figure 5.2 by the fact that a uniform background flow u0 = (U0, 0) is explicitly
prescribed, the interior acoustic source f has been removed, and the mode
matching boundary condition on the left boundary γ− has been replaced by an
explicit prescription of the acoustic pressure:

p̃ = p̃∗n on γ−. (5.36)

Here, p̃∗n is an analytical solution of Equation (5.18) for the acoustic pressure
field in a straight duct of height R with uniform background flow u0 = (U0, 0):

p̃∗n = exp
(
iβnx

)
cos
(
αny

)
, (5.37)

where

αn = nπ/R, (5.38a)

βn = −kM ±
√
k2(1 +M2)− (nπ/R)2 , (5.38b)

where M ≡ U0/c is the Mach number. This corresponds to the nth propagative
acoustic duct mode

φn(y) = cos
(
nπ

y

R

)
, (5.39)

such that n ≤ √1 +M2 k R /π, travelling towards ±∞.
To assess the quality of the method, we will use the normalized L2-norm of

the modulus of the pressure residual as error measure:

ε2 =

s
Ω
|p̃− p̃∗|2 dAs
Ω
|p̃∗|2 dA

. (5.40)

We investigate how this varies as the analysis mesh is refined by knot insertion,
and the number of degrees-of-freedom thereby increased. We use the parameter
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values for the duct size, sound frequency and flow speed as described in Table
5.1 in the following section, leading to two propagative modes n ∈ {0, 1}.

We firstly examine how different approximations of the acoustic pressure
influence the error convergence. Here, we consider the background flow U0 = 1
m s−1, the sound frequency f = 25 kHz, and the highest propagative mode
n = 1. For polynomial degrees q ∈ {2, . . . , 6}, we solve the problem for a
range of meshes, and evaluate the error using (5.40). The results are shown in

10
2

10
3

10
4

10
5

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 
q = 2
q = 3
q = 4
q = 5
q = 6
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Figure 5.5: Relative error ε as a function of number of basis function Nvar for
different polynomial degrees q.

Figure 5.5. By inspection of the slope of the curves, we note that the higher the
polynomial degree is, the higher the convergence rate also is. For polynomial
degrees q ≥ 5, this holds only for sufficiently few degrees of freedom, presumably
because of rounding errors for more degrees of freedom. All following results
are based on a polynomial degree of q = 4.

Secondly, to illustrate the effect of the background flow on the acoustic wave
propagation, Figure 5.6 depicts the real part of the acoustic pressure in the
duct without flow (a), with flow U0 = 1 m s−1 (b), and the difference between
these (c), for the mode n = 1 and frequency f = 25 kHz. As expected, the
effect of background flow is to stretch the wavelength of the sound waves in the
downstream region.

Finally, we investigate the error convergence for different background flows,
sound frequencies, and modes. For each combination of background flow U0 ∈
{0, 1} m s−1, frequency f ∈ {20, 30} kHz, and mode n ∈ {0, 1}, we solve the
problem for a range of meshes, and compute the error using (5.40). The results
are shown in Figure 5.7. We note that practically identical rates of convergence
are found independently of background flow, frequency, and mode.
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a
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U0 = 0

U0 = 1 m s−1

b - a

a & b

c

[Pa]

[Pa]

Figure 5.6: Real part of the acoustic pressure p̃ using the background flow U0 = 0
(a), U0 = 1 m s−1 (b), and the difference between these (c), for the mode n = 1 and
frequency f = 25 kHz.
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Figure 5.7: Relative error ε as a function of number of basis functions Nvar for
different background flows U0, frequencies f and modes n.

5.5 Results

In the following, we use the coupled flow-acoustic model to examine how the
duct geometry affects how the acoustic signal depends on sound frequency and
flow speed.
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Figure 5.8: Design of the numerical experiment: We investigate 3 geometries (a, b,
and c), and prescribe the flow at the inlet (blue arrows) and the sound excitation in
the middle (red circles).

Setup of Numerical Experiment

The numerical experiment is sketched in Figure 5.8. To assess the geometric
effects, three different geometries are investigated: a straight duct (a), a duct
with a single bulge (b), and a corrugated duct (c). The flow is varied by pre-
scribing, for different mean flow speeds U0, a parabolic velocity profile at the
inlet boundary:

u0 =
3
2
U0

(
1−

( y
R

)2 )
, v0 = 0, on γ− . (5.41)

The sound excitation is varied by assuming, for different angular frequencies ω,
a smooth, compactly supported acoustic source, centered at (0, r0), where r0 is
the height of the duct in x = 0, with the following form:

f(x, y) = f0 Ψ(x; 0, Lx) Ψ(y; r0, Ly), (5.42)

where f0 denotes the strength of the source, L its spatial extent, and the foot-
print function Ψ is given by:

Ψ(x; a, b) =

{
e
− 1

1−χ2 for |χ| ≡ |x−ab | < 1
0 otherwise

. (5.43)

The parameter values used in the numerical experiment for the geometry, the
fluid, and the sound excitation are summarized in Table 5.1. With R as charac-
teristic length scale, and U0 as flow speed, this corresponds to Reynolds numbers
up to Re ' 1 · 103 and Mach numbers up to M ' 3 · 10−3.

Flow Field and Acoustic Modes

We firstly investigate the background flow. Figure 5.9 depicts the flow fields in
the three different duct geometries using the flow speed U0 = 1 m s−1. In the
straight duct (a), the parabolic velocity profile is naturally conserved down the
duct. In the bulged duct (b) and the corrugated duct (c), we notice that the
flow profile is only slightly perturbed in the vicinity of undulations. In addition,
a weak recirculation flow is seen in the bulges.
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Parameter Description Value Unit

µ Dynamic viscosity 1 · 10−5 kg m−1s−1

ρ Background density 1 kg m−3

c Speed of sound 340 m s−1

R Duct height 1 cm
L Duct length 20 cm
f Source strength 1 · 106

L = (Lx, Ly) Source size (2, 2) mm
f = ω/2π Sound frequency 20–30 kHz
U0 Flow speed 0–1 m s−1

Table 5.1: Parameter values corresponding to propagation of ultrasound in air-filled
narrow ducts are used.

a

b

c

[m s−1]

Figure 5.9: Flow speeds (colors) and stream lines (solid lines) using the mean speed
U0 = 1 m s−1 in the straight duct (a), the bulged duct (b), and the corrugated duct
(c).

Next, we investigate how the acoustic duct modes vary with flow speed and
sound frequency. This is depicted in Figure 5.10. In a, a typical configuration of
computed propagation constants λ (scaled by k) is shown in the complex plane,
here with vanishing background flow U0 = 0, and frequency f = 25 kHz. The
propagation constants can be categorized as propagative/evanescent (on/off the
imaginary axis), and as positive/negative (positive/negative imaginary part, or
vanishing imaginary part and strictly positive/negative real part). Four prop-
agative modes are found, two in each direction, in agreement with the analytical
values in Equation (5.38) with M = 0. The number of evanescent modes is
bounded only by the number of degrees of freedom of the discretization, and
only the first eight are shown here. We note that in the presence of a back-
ground flow, the symmetry of the propagative modes with respect to the real
axis vanishes, whereas the symmetry of the evanescent modes with respect to
the imaginary axis is maintained. In b, the modal functions φ corresponding
to the propagation constants in a are shown, with propagative modes drawn in
solid, and evanescent modes in dashed. These agree with the analytical modes in
Equation (5.39). In c, the imaginary parts of the propagation constants (scaled
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Figure 5.10: Acoustic duct modes for different frequencies f and flow speeds U0.
a: propagation constants λ for f = 25 kHz and U0 = 0. b: mode functions φ for
f = 25 kHz and U0 = 0. c: imaginary part of propagation constants λ for U0 = 1 m s−1

and f ∈ [20, 30] kHz. d: mode function φ residuals for U0 = 1 m s−1 compared to
U0 = 0 for f = 25 kHz.

by k) corresponding to the four propagative modes for mean speed U0 = 1 m s−1

are shown as a function of frequency in the range f ∈ [20, 30] kHz, plotted as
the residual compared to the case without flow as given by Equation (5.38)
with M = 0. The perturbations in the propagation constants due to the flow
are largest for the second mode n = 1, but are in general small and . 0.1h.
Finally in d, the four propagative modal functions for mean speed U0 = 1 m s−1

and frequency f = 25 kHz are depicted. The plot shows the modal function
residuals compared to the corresponding modal functions without flow, as shown
in a and given in Equation (5.39). Perturbations are of opposite sign for positive
and negative modes, and the perturbations are again in general small, with the
largest perturbations ∼ 2% found for the first mode n = 0.

Acoustic Field Sensitivity

To quantify the acoustic response by a single entity when examining how it
changes with sound frequency and flow speed, we consider the relative modulus
of the symmetry deviation of the acoustic pressure:

〈δp̃〉 =

s
Ω
|p̃(x)− p̃(−x)|dAs

Ω
|p̃(x)|dA . (5.44)
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Since the geometries and the acoustic excitation are all symmetric around x = 0,
any asymmetry in the acoustic pressure field arises due to the background flow.
As such, this quantity is a measure of how strongly the sound signal is coupled to
the flow field. For reference, we also examine the mean modulus of the acoustic
pressure:

〈p̃〉 =

s
Ω
|p̃(x)|dAs

Ω
dA

. (5.45)

To investigate the sensitivity of the sound signal to the frequency for a
given flow speed, we compute the mean acoustic pressure 〈p̃〉 and the relative
symmetry deviation in the acoustic pressure 〈δp̃〉 for frequencies in the range
f ∈ [20, 30] kHz with fixed flow speed U0 = 1 m s−1. The results are shown in
Figure 5.11 for each of the three duct geometries. On the top plot, no significant
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Figure 5.11: Mean acoustic pressure 〈p̃〉 using the flow speed U0 = 0 m s−1 (bottom),
and relative symmetry deviation 〈δp̃〉 using the flow speed U0 = 1 m s−1 (top) as a
function of frequency f for the three duct geometries.

changes in the degree of asymmetry are found for the straight duct (a), while
the bulged duct (b) shows minor changes with frequency. For the corrugated
duct (c), however, strong peaks are seen in the 〈δp̃〉 response. The strongest
peak occurs for frequencies close to f = 24.7 kHz, where the signal experiences
an increase by a factor of up to ∼ 10. From the bottom plot, the peaks in
〈δp̃〉 for the corrugated duct (c) are seen to occur close to local minima in the
mean acoustic pressure 〈p̃〉 that fall between strong peaks in the 〈p̃〉 response
associated with resonances in the duct.

To further illustrate the phenomenon observed in the frequency sweeps above,
Figure 5.12 depicts the modulus of the acoustic pressure field using the frequency
f = 24.7 kHz and the flow speed U0 = 1 m s−1 in each of the three duct geome-
tries. Both the straight duct (a) and the bulged duct (b) exhibit a high degree
of symmetry in the acoustic pressure field. In the corrugated duct (c), however,
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a
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c

[Pa]

[Pa]

[Pa]

Figure 5.12: Modulus of the acoustic pressure field p̃ using the frequency f = 24.7 kHz
and flow speed U0 = 1 m s−1 in the straight duct (a), the bulged duct (b), and the
corrugated duct (c).

there is a clear difference between the upstream and the downstream acoustic
fields.

To investigate the sensitivity of the sound signal to the flow speed for a
given frequency, we compute the relative symmetry deviation in the acoustic
pressure 〈δp̃〉 for flow speeds in the range U0 ∈ [0, 1] m s−1 with fixed frequency
f = 24.7 kHz. The results are shown in Figure 5.13 for each of the three duct
geometries. For all three ducts, a close-to-linear dependency upon flow speed is
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Figure 5.13: Relative symmetry deviation in the acoustic pressure 〈δp̃〉 as a function
of flow speed U0 using the frequency f = 24.7 kHz for the three duct geometries.

observed. We note in particular that the slope of the curve for the corrugated
duct (c) is significantly larger than the slope of the curve for the straight duct
(a) as well as for the duct with a single bulge (b).

The results clearly show that we have identified a combination of duct geom-
etry and sound frequency where the acoustic signal is particularly sensitive to
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the background flow. The coupling seems to be related to the parabolic velocity
profile in the duct interior. Similar results are found when explicitly prescribing
a parabolic velocity profile in the entire domain, whereas the effect is diminished
when prescribing a constant velocity profile.

We conclude by noting that if more (evanescent) modes are used in the
mode matching formulation for the acoustic truncation boundary conditions,
by increasing Nm, practically identical results are found. If the mode matching
formulation is replaced by a suitably scaled perfectly matched layer (PML)
formulation [Becache et al., 2004; 2006; Givoli, 2008; Bermúdez et al., 2008],
using, e.g., a linear absorbing function in a PML of width 10%, equivalent
results to within ∼ 2% are found, although the improved error convergence rates
for higher order polynomial approximations of the acoustic pressure have been
found to be somewhat compromised in this formulation. If different footprints
of the acoustic source are used, by changing L, qualitatively similar results
are found. Still, the phenomenon so far only exists in a numerical model and
lacks experimental validation. Nevertheless, it points towards the potential
importance of the geometry on flow sensitivity for acoustic wave propagation,
and shape optimization could likely enhance the effect.

5.6 Conclusions

In this chapter, we have presented a coupled flow-acoustic model of the prop-
agation of sound through a moving fluid in a 2-dimensional duct based on iso-
geometric analysis. The model explicitly couples the non-linear, steady state,
incompressible Navier-Stokes equation in the laminar regime to a linear, time-
harmonic acoustic equation in the low Mach number regime, using both the
background flow and its gradient as input. Acoustic boundary conditions along
artificial truncation boundaries were dealt with using a mode matching for-
mulation. The model has been validated against known acoustic modes in 2-
dimensional ducts. These tests clearly supported the robustness of the method.
In particular, desirable error convergence properties were observed for higher or-
der polynomial approximations of the acoustic pressure, and these are naturally
embedded in isogeometric analysis. Using the model, acoustic signal changes vs.
duct geometry have been examined as a function of frequency and background
flow values. A combination of duct geometry and sound frequency was identified
for which the acoustic signal is particularly sensitive to the background flow.
This enhanced sensitivity deserves closer examination in future studies.
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Chapter 6

Extensions and Outlook

This chapter presents, in a somewhat fragmented manner, a short collection
of additional investigations made within isogeometric analysis and shape opti-
mization in fluid mechanics. Strategies for construction of parametrizations of
domains interiors, and applications of isogeometric shape optimization to design
of idealized airfoils are discussed. The chapter is concluded by a summary of
future research directions within the field.

6.1 Parametrizations of Domain Interiors

One challenge in isogeometric analysis is to construct a parametrization of the
interior of a domain from a parametrization of its boundary, assuming the latter
is given, or equivalently, to specify the interior control points from the boundary
control points [Xu et al., 2010; Cohen et al., 2010; Gravesen et al., 2010]. This
is sketched in Figure 6.1. The challenge is greatly enhanced in isogeometric
shape optimization: as described in Section 4.3, when the parametrization of
the boundary is changed in each optimization step by moving the boundary
control points, the parametrization of the interior must be updated as well by
moving the interior control points. Below, we describe two strategies for tackling
this challenge.

?

Figure 6.1: Challenge: How do we go from a parametrization of the boundary of a
domain to a parametrization that includes the interior of the domain?

77
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Conformality: the Winslow functional

In this methodology, the goal is to construct as conformal a parametrization as
possible [Gravesen et al., 2010; Nguyen et al., 2011]. For a conformal parametriza-
tion, isoparametric lines intersect at right angles, and the mesh therefore consists
of “nice” quadrilaterals.

To construct a measure of conformality, we consider a parametrization X,
its Jacobian J , and its first fundamental form g:

X(ξ, η) =
(
x(ξ, η) y(ξ, η)

)
, (6.1a)

J(ξ, η) =

(
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

)
, (6.1b)

g(ξ, η) = JTT . (6.1c)

Conformality of the parametrization X implies that the Jacobian J is the prod-
uct of a scaling and a rotation, or equivalently that the first fundamental form
g is diagonal with identical diagonal elements. If we let λ1 and λ2 denote the
eigenvalues of g, we want λ1 = λ2 to have conformality. We easily find that:(√

λ1 −
√
λ2

)2
√
λ1λ2

=
λ1 + λ2 − 2

√
λ1λ2√

λ1λ2

=
λ1 + λ2√
λ1λ2

− 2

From this, we may define the function W :

W =
λ1 + λ2√
λ1λ2

=
tr(g)√
det(g)

=
(∂x∂ξ )2 + (∂x∂η )2 + (∂y∂ξ )2 + (∂y∂η )2

∂x
∂ξ

∂y
∂η − ∂y

∂ξ
∂x
∂η

, (6.2)

where
√

det(g) = det(J). As such, W is a pointwise measure of conformality.
From the function W , we may define the Winslow functional W as the integral
of W . This is thus a global measure of conformality.

Now, we may seek a parametrization of the domain that minimizes the
Winslow functionalW, and has γ as its boundary. To ensure a valid parametriza-
tion, we must have det(J) > 0 in the interior. We therefore seek a parametriza-
tion X as the argument of the following constrained optimization problem:

minimize
X

W =
x

[0,1]2

W dξ dη , (6.3a)

such that X|∂Ω = γ , (6.3b)
det(J) > 0 . (6.3c)

In the framework of B-spline based isogeometric analysis, the optimization
problem (6.3) is discretized using the B-spline parametrization in Equation
(2.12). The design variables are then the coordinates of the interior control
points. The Winslow functional (6.3a) may be evaluated directly from the
parametrization. The boundary constraint (6.3b) is easily fulfilled by fixing
the boundary control points. The constraint on the determinant of the Ja-
cobian (6.3c) may be evaluated by writing it as a new spline (with increased
polynomial degrees and knot multiplicities), and then using the control variables
of this spline as constraints, using the convex hull property of splines.
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Analysis Consistency: Multimesh Residual

In this methodology, the goal is to construct a parametrization that makes the
analysis as consistent as possible. By a consistent analysis, we mean a numeri-
cal solution of the governing equations that does not depend (strongly) on the
numerical discretization used. We may term this an analysis-aware parametriza-
tion [Xu et al., 2010; Cohen et al., 2010].

Kh1Uh1 = Fh1 Kh2Uh2 = Fh2

Figure 6.2: Illustration of the focus of an analysis-aware parametrization based on
the multimesh residual.

To construct a measure of analysis consistency, we consider the discrete form
of the governing equations at two different discretizations, or mesh resolutions:

KhiUhi = Fhi , (6.4)

for i = 1, 2. Here, h1 corresponds to a coarse mesh, and h2 < h1 corresponds
to a fine mesh. An obvious choice is to take h1 = 2h2, i.e., to construct the h2-
mesh by uniform knot insertion in the h1-mesh, as sketched in Figure 6.2. We
may consider the norm squared difference between the two solutions of Equation
(6.4) as a measure of analysis consistency:

R =
∥∥Uh2 − Th1→h2Uh1

∥∥2
, (6.5)

where Uh1 and Uh2 are the solution vectors on the coarse and the fine mesh,
respectively, and Th1→h2 is the matrix that puts the coarse mesh solution Uh1

in the basis of the fine mesh solution Uh2 , cf. Theorem 3. To ensure a proper
balancing between velocity and pressure control variables contained in Uhi , both
the fine solution vector and the mapped coarse solution vector are normalized
with respect to the fine solution vector:

Uhi =

(
uhi

‖(uh2
,vh2

)‖ ,
vhi

‖(uh2
,vh2

)‖ ,
p
hi

‖p
h2
‖

)T
. (6.6)

The measure (6.5) was originally suggested by [Hogan, 2010, Personal commu-
nication], and we refer to it here as a multimesh residual.

Based on this measure, we may seek a parametrization X of the computa-
tional domain as the argument of the following optimization problem:

minimize
X

R =
∥∥Uh2 − Th1→h2Uh1

∥∥2
, (6.7a)

such that X|∂Ω = γ , (6.7b)
KhiUhi = Fhi for i = 1, 2, (6.7c)
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By minimizing the multimesh residual (6.5), we bring the solutions of the gov-
erning equations at two different meshes as close to each other as possible, and
we expect, all other things being equal, to have a more reliable analysis.

We mention that the multimesh residual approach in principle may serve
as error estimator based on any quantity c(hi), by minimizing, e.g., ( c(h2) −
c(h1) )2.

A Numerical Example

To illustrate the above procedures at work, we consider the initial parametriza-
tion in Figure 6.3a. From this, we may find alternative parametrizations by
solving the optimization problems (6.3) and (6.7) using the isogeometric opti-
mization approach outlined in Chapter 4.

Both procedures require the specification of an initial parametrization, i.e.,
an initial control net, from which the optimizations may proceed. This may be
done manually, or by, e.g., a simple linear spring model [Nguyen et al., 2011].
For simplicity, we base the multimesh residual on the linear Stokes problem,
using a parabolic horizontal velocity profile specified along the upper left (in-
let) boundary, no-slip along the side (wall) boundaries, and outflow boundary
conditions on the lower right (outlet) boundary.

a b c

Figure 6.3: Parametrization of a pipe bend: initial (a), Winslow functional (b), and
multimesh residual (c).

The results for the Winslow functional and the multimesh residual based
methods are shown in Figures 6.3a and 6.3b, respectively. The methods agree
on the fine resolution of the sharp inner corner. Some differences are seen in the
curved outer corner and along the straight parts. We speculate that the multi-
mesh residual method may be too influenced by parts of the domain where the
fields taken on high values. A more appropriate normalization of the field vari-
ables could possibly resolve the issue. In terms of implementation, the Winslow
functional approach is cheaper to calculate, compared to the multimesh resid-
ual, where the governing equations must solved in each step. In addition, the
Winslow optimization converged in fewer iterations, compared to the multimesh
residual optimization.
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Linearization

In a shape optimization framework, solving the interior optimization problem
(6.3) or (6.7) in each boundary optimization iteration is not only expensive, it
also deteriorates the differentiability of the objective and constraint functions,
and hence prohibits the use of gradient-based optimization. This problem may
be circumvented by the following approach: first we find a good parametrization
by minimizing the given measure M using (6.3) or (6.7). Using these control
points x0, we subsequently approximate the measure by its 2nd order Taylor
expansion:

M(x0 + ∆x) ≈M0 + (∇0M)T∆x+
1
2

(∆x)TH0(M)∆x, (6.8)

where M0, ∇0M, and H0(M) denote the measure, its gradient and its Hes-
sian evaluated in x0, respectively. Now we may minimize the 2nd order Taylor
expansion of the measure, which then leads to a linear problem. To increase
the reliability of the method, the linearization must be updated now and then.
Using the Winslow functional, the linearization may be used, e.g., until the
parametrization becomes (close to) singular, at which point the procedure is
repeated. The optimization results presented in Chapter 4 all rests on this pro-
cedure for parametrizing the interior, and it has been found to be quite robust
and efficient. More details may be found in [Gravesen et al., 2010; Nguyen et al.,
2011].

Conclusions

The construction of an interior parametrization is important, since it affects the
analysis results, and hence also the shape optimization results. Two optimiza-
tion methodologies for parametrizing a given domain from parametrization of its
boundaries have been examined. The Winslow functional based method focuses
on conformality, whereas the multimesh residual based method focuses on anal-
ysis consistency. In a shape optimization framework, we have good experience
with the linearization of the former. Further investigations are recommended
for the latter.

6.2 Design of Idealized Airfoils

Design of airfoils is a classical engineering task within aerodynamics [Moham-
madi and Pironneau, 2010; Painchaud-Oullet et al., 2006]. Within the last
decades, the concept of micro air vehicles (MAVs) has emerged, see e.g. [Mueller,
2009; Tanaka and Wood, 2010]. MAVs are interesting in the present context, be-
cause the assumptions of incompressibility, steady state, and moderate Reynolds
numbers, may be partly justified. The aim in the following is to set up an iso-
geometric framework for optimal designs of airfoils under such highly idealized
flow conditions. We aim at designing a fixed-wing airfoil to minimize the drag
of the flow past it, subjected to a constraint on its lift, as well as constraints
on its area and thickness, and we present some preliminary results. This is a
natural extension of the minimal drag body optimization problem considered in
Section 4.5.
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Optimization Problem

As above, we consider the exterior flow in 2 dimensions around the airfoil de-
picted in Figure 6.4. We assume the fluid to be Newtonian, isothermal and
incompressible, and the flow is assumed to be stationary. With the dynamic
viscosity µ and the density ρ of the fluid given, the velocity u and pressure p
of the flow past the airfoil are then governed by the steady-state Navier-Stokes
equation and the incompressibility condition, supplemented by suitable bound-
ary conditions, cf. Equations (2.4)–(2.5).

FAL

D

l

x

y

O
T

e∞
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α
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6

Figure 6.4: Physical and geometrical quantities for the airfoil.

The aerodynamic quantities of interest are the drag (D) and the lift (L)
of the airfoil. These are the flow-wise parallel and perpendicular components,
respectively, of the aerodynamic force FA on the airfoil, see Figure 6.4. We
write the aerodynamic force as:

FA =
∫
γ

σn ds =
∫
γ

(
− pI + µ

(∇u+ (∇u)T
))
nds, (6.9)

where σ is the shear stress tensor, I the identity matrix, and n is the airfoil-wise
outward unit normal. We design the airfoil to minimize the drag coefficient CD
and prescribe a minimal lift coefficient CL

CD =
D

1
2ρu

2∞l
=
F · e∞
1
2ρu

2∞l
, (6.10a)

CL =
L

1
2ρu

2∞l
=
F · ê∞
1
2ρu

2∞l
, (6.10b)

where u∞ is the undisturbed far field flow speed, l is the chord length, e∞ is
the unit vector along the undisturbed far field flow direction and ê∞ its normal
vector.

The geometric quantities of interest are the airfoil cross-sectional area A, and
the thickness T , e.g. at points close the leading and trailing edges, see Figure
6.4. The area may be determined by the line integral along the closed airfoil
curve:

A =
1
2

(∫
γ

x dy −
∫
γ

y dx
)
, (6.11)

The thickness at a given point x∗ along the chord is given by:

T (x) = y(ξu)− y(ξl) s.t. x(ξu) = x(ξl) = x∗, (6.12)
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where γ(ξ) = (x(ξ), y(ξ)), and the superscripts u and l refer to the upper and
lower part of the closed airfoil curve, respectively. We constrain the area and
the thicknesses by prescribing minimal allowed values.

The optimization problem reads:

minimize
γ(x) C̃D = CD + ε R (6.13a)

such that CL ≥ CLmin (6.13b)
A ≥ Amin (6.13c)

Ti ≥ Tmin
i (6.13d)

0 = ρ(u · ∇)u+∇p− µ∇2u in Ω (6.13e)
0 = ∇ · u in Ω (6.13f)
u = u∞ on ΓD (6.13g)
0 = (µ∇ui − eip) · n on ΓN (6.13h)
xl ≤ x ≤ xu (6.13i)
Ax = b. (6.13j)

Here, Equations (6.13a)–(6.13d) express the objective and constraint functions,
(6.13e)–(6.13h) are the governing equations and boundary conditions, and (6.13i)–
(6.13j) establish bounds on and linear relations between the design variables x
that parametrize the airfoil γ. The last term in the objective function C̃D in
Equation (6.13a) is included for regularization purposes.

Isogeometric Implementation

To solve the optimization problem (6.13), we follow the approach outlined in
Chapters 3–4.

To construct the geometry, we consider Figure 6.5. The airfoil is embedded in
a computational flow domain whose exterior boundary extends 15 chord lengths
upstream and sidewards, and 30 chord lengths downstream. A parametrization
of the flow domain is constructed from bi-quadratic tensor product B-splines,
and we choose to parametrize the flow domain using 6 patches. The airfoil
curve is represented as one of the patch boundary segments. This configuration
of patches facilitates implementation of different boundary conditions, as well as
local refinement around the airfoil and downstream of it (by fixing the airfoil and
rotating the surrounding geometry by a prescribed angle of attack), although
more efficient local refinement techniques could be used with advantage (see
below).

The design variables xi are the coordinates of the control points correspond-
ing to the patch boundary in Figure 6.5 that define the shape of the airfoil.
These control points are shown in Figure 6.6. For simplicity we keep the chord
length l and orientation constant throughout the optimization. This is done
by fixing the rightmost control point in both directions x0 = (l, 0), fixing the
leftmost control points in the horizontal direction such that x6 = x7 = 0, while
demanding that y6 = −y7, and finally choosing xi ≥ xl = 0, xi ≤ xu = l
for i = 1, . . . , 12. Additionally, we prescribe yi ≤ yu = 0 for i = 1, . . . , 6 and
yi ≥ yl = 0 for i = 7, . . . , 12 to avoid self-intersection of the curve.

For the analysis, we take the density and viscosity as ρ = 1 kg m−3 and
µ = 1 · 10−5 kg m−1 s−1, approximately corresponding to normal room condi-
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a

b

c

Figure 6.5: a: An approximate ellipse serves as first approximation of the airfoil.
b: A parametrization is constructed of the flow domain around the airfoil. Green and
red lines are isoparametric lines. c: The flow domain (solid) is split into six patches
(dashed).
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Figure 6.6: 14 control points define the shape of the airfoil.

tions, and we use a chord length of l = 1 · 10−2 m, corresponding roughly to an
insect wing. Along the upstream exterior boundary ΓU we prescribe the veloc-
ity as u = u∞Rz(α)e1 m s−1, where Rz(α) denotes the matrix that rotates the
Cartesian basis vector e1 by the prescribed angle of attack α, and use a (very
low) speed of u∞ = 10 cm s−1, and along the airfoil γ we assume no-slip condi-
tions u = (0, 0). The angle of attack is taken as α = 5◦, and with this choice of
parameters, the Reynolds number is Re ∼ 100. The velocity and pressure fields



6.2. DESIGN OF IDEALIZED AIRFOILS 85

are approximated using the Taylor-Hood discretization u42
0p31

0 (d) in Table 3.1.
For the optimization, we simply use the properties of the initial shape,

namely an approximate ellipse with major axis l/2 and minor axis l/20 as de-
picted in Figure 6.5 (a), as lower bounds on both the lift, area, and thicknesses
at the leading edge x = 0.15 l and trailing edge x = 0.85 l. The regularization
scaling parameter is taken as ε = 10−2.

By applying the isogeometric shape optimization machinery to the problem,
we find an optimal shape in 29 iterations. Figure 6.7 compares the optimal
airfoil shape to the initial shape (a), as well as the location of the control points
before and after the optimization (b). The optimized shape is remarkably close
to the initial ellipse. A small change, however, is seen near the trailing edge.
The decrease in drag is accordingly small, namely only 1h (and some of the
change in the parametrization may very well be due to the regularization). All
constraints are active, except the trailing edge thickness. Larger shape changes
may of course be found by slacking the constraints, or equivalently by using a
worse initial guess.

 

 

Initial Optimized

a

b

••

Figure 6.7: Comparison of initial (dashed blue) and optimized (full black) airfoil
shape (a) and control net (b).

Conclusions

We have presented a framework for isogeometric shape optimization for design
of airfoils in highly idealized flow conditions. Such studies may find their rele-
vance for micro air vehicles (MAVs). The airfoils can be designed to minimize
the drag with both constraints on the lift, area, and thickness at specified loca-
tions. We have presented some first numerical results, and we emphasize that
these are preliminary. On the analysis side, inspection of pressure and skin fric-
tion coefficients along the airfoil should be made to validate the results. More
reliable results may be obtained, e.g., by the use of more efficient local refine-
ment schemes. This would also facilitate studies at higher Reynolds numbers,
where most MAVs operate [Mueller, 2009], as higher Reynolds numbers in the
current setup requires too much computer memory. On the optimization side,
it could be considered to reformulate the problem slightly and maximize the
lift-over-drag ratio instead, and a multipoint optimization with several angles
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of attack could also be considered to make the design more robust. Studies of
the importance of shape regularization should also be addressed.

6.3 Outlook

This thesis represents but a small step within the field of isogeometric analysis
and shape optimization in fluid mechanics. In many aspects, we have merely
scratched the surface, and the thesis leaves the field wide open with several
challenges for the future.

Firstly, the type of flow problems considered in this thesis are rather simple,
compared to most of the real-world flow phenomena we see around us. From
the stirring in a coffee cup, to the flow past the wing on an airplane, most flows
are inherently turbulent. When turbulent flows are considered, the flow fields
become non-stationary, small scale phenomena appear, and in addition, spatial
symmetries are broken [Frisch, 1995]. The full time-dependent Navier-Stokes
equations in three spatial dimensions must therefore be considered.

In the isogeometric framework, a substantial amount of research has been
made within modeling of turbulent flows using the so-called residual-based vari-
ational multiscale (RBVM) method, see e.g. [Bazilevs et al., 2007a; Akkerman
et al., 2010; Bazilevs and Akkerman, 2010; Bazilevs et al., 2010b; Akkerman
et al., 2011; Hsu et al., 2011]. This method has proven very applicable to, e.g.,
turbulent Taylor-Couette flow, to modelling of wind-turbine aerodynamics, and
to free-surface flows. Once again, the high continuity of the method seems to
play an important role. In the framework of shape optimization, objective and
constraints will dependent on time, which complicates matters [Mohammadi
and Pironneau, 2010]. We consider the application of, e.g., the RBVM method
to turbulent flow, as an important step towards optimization of shapes in more
realistic flow problems.

From a numerical modeling perspective, turbulent flows are much more chal-
lenging. Not only does the governing equation involve more terms, the number
of degrees of freedom required to do the analysis increases significantly with the
Reynolds number [Frisch, 1995]. This put strict requirements on the amount
of computer memory. To speed up computations, high-performance parallel
computing may be used large scale problems are solved [Hsu et al., 2011]. Im-
plementation of the isogeometric shape optimization methodology in a more
efficient computational framework would facilitate the consideration of more
advanced problems. This is another interesting challenge.

An important aspect in isogeometric analysis is the concept of local refine-
ment, i.e., the ability to have some parts of the parametrization finely resolved
in the analysis, and other parts coarsely resolved. In modelling the flow past an
airfoil, e.g., we want to have a very fine analysis mesh close to and downstream
of it, and a coarse mesh farther away from it. While local refinement may be
achieved through the use of multiple patches based on tensor product B-splines,
significantly more efficient local refinements may be achieved by other means.
We mention here T-splines [Bazilevs et al., 2010a; Dörfel et al., 2010], hierar-
chical splines [Vuong et al., 2011], and locally refined (LR) B-splines [Dokken,
2011, Personal Communication], that all represent viable ways of achieving lo-
cal refinement. In the framework of isogeometric shape optimization for fluids,
we consider this as a very important next step to achieve higher efficiency and
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reliability.
Most real-world problems are coupled problems of different nature. For the

airfoil, e.g., the structure itself is actually deformed under the aerodynamic loads
from the flow past it, which in turn changes the flow, and so on. Studies of iso-
geometric analysis to various fluid-structure interaction problems have demon-
strated the applicability of the method [Bazilevs et al., 2006a; 2008]. Shape
optimization of fluid-structure interaction problems would be a very interesting
challenge to take up.

The propagation of sound through flows represents another coupled problem,
here between flow and acoustics. The geometric enhancement of the acoustic
flow sensitivity for sound propagation through flow in ducts mentioned in Chap-
ter 5 deserves further investigations. Studies in 3 dimensions should be made.
Applications of the isogeometric shape optimization methodology to find duct
shapes that enhance the effect further are an obvious extension. Here, the for-
mulations of robust objective and constraint functions are the first challenges.
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Chapter 7

Conclusions

The aim of this thesis has been to bring together the fields of fluid mechanics,
isogeometric analysis, and shape optimization. The flow problems that have
been considered are governed by the 2-dimensional, steady-state, incompressible
Navier-Stokes equations at low to moderate Reynolds numbers. Studies within
flow acoustics have been made as well, where the sound signal is governed by a
linear, time-harmonic, background flow-dependent acoustic equation in the low
Mach number regime. Isogeometric analysis has been used as numerical method
both to solve the governing equations, and as framework for a gradient-based
optimization procedure.

Firstly, applications of isogeometric analysis to flows were studied. Splines
were used to approximate flow velocity and pressure, and numerical inf-sup
stability tests confirmed the existence of many stable discretizations of the ve-
locity and pressure spaces. In particular it was found that stability may be
achieved by means of knot refinement of the velocity space. Error convergence
studies compared the performance of the various discretizations and indicated
optimal convergence, in a per-degree-of-freedom sense, of the discretization with
identical polynomial degrees of the velocity and pressure spaces, but with the
velocity space enriched by knot refinement. Finally, the method was applied to
the lid-driven square cavity for benchmarking purposes, showing that the stable
discretizations produce consistent results that match well with previous results
and thus confirm the robustness of the method.

Secondly, applications of the isogeometric method to shape optimization
problems for fluids were studied. In this formalism, objects in flows were de-
signed by optimizing the location of the control points that define the shape
of the body using a gradient-based numerical optimization package. To avoid
inappropriate parametrizations during optimization, a regularization technique
was established by adding to the objective function a measure of the quality of
the parametrization. Based on a benchmark design problem, in which a pipe
bend was designed to minimize the pressure drop of the flow through it, the inte-
gral of the norm squared parametric acceleration along the design boundary was
found to be a cheap, flexible and efficient regularization measure. To emphasize
the robustness of the proposed isogeometric shape optimization methodology
for fluids, two additional problems were considered. Based on Taylor-Couette
flow, we firstly solved a shape optimization problem with a known solution, and
we found that the more design variables we use, the better the approximation
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to the exact solution we obtain. Secondly, we designed a body to minimize
the drag from the flow past it, and we found that the methodology allows for
significantly different optimal shapes as the flow speed is increased.

Thirdly, applications of isogeometric analysis to the propagation of sound
through flows in ducts were presented. A coupled flow-acoustic model of the
phenomenon was described. Acoustic boundary conditions along artificial trun-
cation boundaries were treated based on a mode matching formulation. The
model was validated against known acoustic modes in 2-dimensional ducts, and
desirable error convergence properties were observed for higher order polyno-
mial approximations of the acoustic pressure. Using the model, acoustic signal
changes vs. duct geometry were examined as a function of frequency and back-
ground flow values. We identified a combination of duct geometry and sound
frequency for which the acoustic signal was particularly sensitive to the back-
ground flow, a phenomenon deserving closer examination in future studies.

Finally, miscellaneous studies within the field were presented. Two methods
for automated domain parametrizations in isogeometric analysis were studied,
supporting the Winslow functional as a robust mesh quality measure, and a
preliminary application of isogeometric shape optimization to design of idealized
airfoils was presented, demonstrating the potential of the methodology.

The thesis represents but a small step within the field of isogeometric analy-
sis and shape optimization in fluid mechanics. Suggestions for future research
directions include, among others, applications within less restrictive flow prob-
lems (3-dimensional, time-dependent, and turbulent flows), applications within
fluid-structure interactions, implementation in a high-performance computing
framework, and implementation of local refinement methods.
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Appendix A

Nomenclature

Symbol/Abbreviation Description

NURBS Non-uniform Rational B-spline
B-spline Basis-spline
q, r Polynomial degree
Ξ,Ψ Knot vector
N ,M Univariate B-spline
B Univariate NURBS
P Bivariate B-spline
R Bivariate NURBS
e Unit basis vector
X = (x, y) Geometry/Parametrization
x = (x1, . . . , xN ) Control points
Re Reynolds number
ρ Fluid density
µ Fluid viscosity
σ Fluid shear stress tensor
u = (u1, u2) = (u, v) Fluid velocity
p Fluid pressure
f Fluid body force
c Speed of sound
f Acoustic source
λ Acoustic propagation constant
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Appendix B

Paper I: Discretizations in
Isogeometric Analysis of
Navier-Stokes Flow

This chapter contains a preprint of: P. N. Nielsen, A. R. Gersborg, J. Gravesen,
and N. L. Pedersen. Discretizations in isogeometric analysis of Navier-Stokes
flow. Computer Methods in Applied Mechanics and Engineering, 200:3242–3253,
2011a.
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Discretizations in Isogeometric Analysis of Navier-Stokes Flow

Peter Nørtoft Nielsena,b,∗, Allan Roulund Gersborgb,1, Jens Gravesena, Niels Leergaard Pedersenb

aDTU Mathematics, Technical University of Denmark, Matematiktorvet 303S, DK-2800 Kgs. Lyngby, Denmark
bDTU Mechanical Engineering, Technical University of Denmark, Nils Koppels All 404, DK-2800 Kgs. Lyngby, Denmark

Abstract

This paper deals with isogeometric analysis of the 2-dimensional, steady state, incompressible Navier-Stokes equa-
tion subjected to Dirichlet boundary conditions. We present a detailed description of the numerical method used to
solve the boundary value problem. Numerical inf-sup stability tests for the simplified Stokes problem confirm the
existence of many stable discretizations of the velocity and pressure spaces, and in particular show that stability may
be achieved by means of knot refinement of the velocity space.Error convergence studies for the full Navier-Stokes
problem show optimal convergence rates for this type of discretizations. Finally, a comparison of the results of the
method to data from the literature for the the lid-driven square cavity for Reynolds numbers up to 10,000 serves as
benchmarking of the discretizations and confirms the robustness of the method.

Keywords:
isogeometric analysis, fluid mechanics, Navier-Stokes flow, inf-sup stability, lid-driven square cavity

1. Introduction

Isogeometric analysis unites the power to solve com-
plex engineering problems from finite element analysis
(FEA) with the ability to smoothly represent compli-
cated shapes in very few degrees of freedom from com-
puter aided design (CAD) [1, 2]. Within recent years,
isogeometric analysis has been applied to various flow
problems and proved its value within the field of fluid
mechanics. Some of the first studies were on steady-
state incompressible Stokes flow in the benchmarking
lid-driven square cavity [3]. Subsequent analysis of the
full time dependent Navier-Stokes equations using the
isogeometric method has shown its advantages both in
terms of continuity of state variables [4] and the ability
to accurately represent complicated dynamic flow do-
mains [5]. Benchmarking of the method for the turbu-
lent Taylor-Couette flow shows very nice performance
of the method [6].

An important issue in the analysis of the mixed for-
mulation of the governing equations for fluids is the

∗Corresponding author.
Email addresses: p.n.nielsen@mat.dtu.dk (Peter Nørtoft

Nielsen),agersborg.hansen@gmail.com (Allan Roulund
Gersborg),j.gravesen@mat.dtu.dk (Jens Gravesen),
nlp@mek.dtu.dk (Niels Leergaard Pedersen)

1Present address:Burmeister & Wain Energy A/S,
Lundtoftegårdsvej 93A, DK-2800 Kgs. Lyngby, Denmark

stability of the element, or discretization, used to ap-
proximate the state variables. The first stable B-spline
discretization for the Stokes problem was proposed in
[3]. Recently, two more families of stable B-spline dis-
cretizations were identified in [7], thereby further em-
phasizing how easily high degrees of continuity may be
achieved in isogeometric analysis. Mathematical proofs
of the stability of a range of discretizations have very
recently been made [8, 9].

The aim of this paper is threefold. Firstly, we wish to
extend the list of stable B-spline discretizations for the
2D steady state, incompressible Stokes problem. Sec-
ondly, we wish apply the method to the non-linear 2D
steady state, incompressible Navier-Stokes problem and
examine how these discretizations perform in terms of
error convergence based on a flow problem with an an-
alytical solution. Finally, the benchmarking lid-driven
square cavity will be analysed and the results of the dis-
cretizations compared to data from the literature.

The outline of the paper is as follows. Section 2
presents the equations that govern problems in fluid
mechanics, and section 3 outlines how the problem is
solved using isogeometric analysis. In section 4 we per-
form a numerically test of different isogeometric dis-
cretizations in terms of stability, and an error conver-
gence study for these discretizations is presented in sec-
tion 5. Finally in section 6, a comparison of the dis-
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cretizations against results from the literature is pre-
sented for the benchmarking lid-driven square cavity.

2. Boundary Value Problem

We consider a fluid contained in the domainΩ with
boundaryΓ ≡ ∂Ω, see figure 1. We assume the fluid
to be a viscous, incompressible, isothermal, Newtonian
fluid, and we furthermore assume it to be stationary. The
fluid is then governed by:

−µ∆u + ρu · ∇u + ∇p − ρ f = 0 inΩ (1a)

∇ · u = 0 inΩ (1b)

Equation (1a) is the the steady-state Navier-Stokes
equation, expressing conservation of momentum for the
fluid and written in the primitive variablesp and u,
wherep is pressure andu = (u1, u2) is the fluid velocity.
The quantitiesρ, µ and f denote the density, dynamic
viscosity and additional body forces acting on the fluid,
respectively. Equation (1b) is the incompressibility con-
dition, and it expresses conservation of mass.

We assume the velocityu to be prescribed along the
bondaryΓ, and we take the mean pressure to be zero:

u = uD onΓ (1c)∫∫
Ω

p dA = 0 (1d)

whereD in equation (1c) stands for Dirichlet. Other
boundary conditions, such as Neumann boundary con-
ditions, could also be considered but have been left out
for simplicity.

Numerical methods for solving Navier-Stokes equa-
tion (1a) can employ different formulations of the equa-
tion. The main results of the present study are based on
the convective formulation. Comparisons to theskew-
symmetric formulation are also made, while therota-
tional formulation is left out to avoid the introduction of
stabilization [10]. The two formulations differ in their
treatment of the non-linear inertial termu · ∇u:

(u · ∇)u or (u · ∇)u +
1
2
∇ · u. (2)

Compared to the convective formulation, the skew-
symmetric formulation additionally involves the diver-
gence of the velocity field. Even though these formula-
tions on a continous level are exactly equivalent, due to
the incompressibility condition (1b), this is not the case
on a discrete level, and therefore the numerical solutions
might differ.

3. Isogeometric Method

Equations (1) together comprise thestrong form of
the boundary value problem that governs the state of the
fluid. We use NURBS-based isogeometric analysis built
on Galerkin’s method to solve the problem numerically.
This section outlines the procedure. See also [2, 11, 12].

3.1. Geometry Parametrisation

The physical domainΩ is parametrised using
NURBS, Non-Uniform Rational B-splines. To make the
text self-contained, we very briefly revise the basic con-
cepts of B-splines and NURBS in the following. For
a more in-depth treatment of this subject, we refer the
reader to e.g. [13].

To define univariate B-splines we choose a polyno-
mial degreeq ∈ N and a knot vectorΞ = {ξ1, . . . , ξm}
with ξi ∈ R for i = 1, . . . ,m. For simplicity, we as-
sume the parametric domainξ ∈ [0, 1], and that the
knot vector is open such that the boundary knots have
multiplicity q + 1 with ξ1 = ξ2 = . . . = ξq+1 = 0 and
ξm = ξm−1 = . . . = ξm−q = 1. The univarite B-splines
Nq

i : [0; 1]→ R are defined recursively as

N0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise
(3a)

for q = 0, and

Nq
i (ξ) =

ξ − ξi
ξi+q − ξiN

q−1
i (ξ)+

ξi+q+1 − ξ
ξi+q+1 − ξi+1

Nq−1
i+1 (ξ) (3b)

for q = 1, 2, . . ..
The bivariate tensor product B-splinesPq,r

i, j :

[0, 1]2 → R are defined from two polynomial degrees
q and r and two knot vectorsΞ = {ξ1, . . . , ξm} and
Φ = {φ1, . . . , φn}:

Pq,r
i, j (ξ1, ξ2) = Nq

i (ξ1)Mr
j(ξ2), (4)

whereNq
i is the ith univariate B-spline with degreeq

and knot vectorΞ in the first parametric dimensionξ1
as defined in equation (3), andMr

j is the jth univariate
B-spline with degreer and knot vectorΦ in the second
parametric dimensionξ2.

The bivariate NURBSRq,r
i, j : [0, 1]2 → R are defined

from theNM bivariate B-splines in equation (4) and the
weightsW = {w1,1, . . . ,wN,M} with wi, j ∈ R for i =
1, . . . ,N and j = 1, . . . ,M:

Rq,r
i, j (ξ1, ξ2) =

wi, jPq,r
i, j∑N

k=1
∑M

l=1 wk,lPq,r
k,l

(5)

2
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Figure 1: A single patch parametrisation of the fluid domain.Colors
indicate how the boundarŷΓ of the parameter domain̂Ω is mapped
into the boundaryΓ of the physical domainΩ.

With the basic concepts of B-splines and NURBS de-
fined, we now make a single patch parametrisation of
the fluid domainΩ, see figure 1. We take the parame-
ter domainΩ̂ as the unit square (ξ1, ξ2) ∈ [0, 1]2, and
use the bivariate NURBS defined in equation (5). The
parametrisationF : [0, 1]2→ R2 reads:

F(ξ1, ξ2) =
(

x1(ξ1, ξ2), x2(ξ1, ξ2)
)

=

N∑
i=1

M∑
j=1

di, jRq,r
i, j (ξ1, ξ2), (6)

wheredk ∈ R2 are the control points. By a simple re-
ordering, we can write the above as

F(ξ1, ξ2) =
Ng

var∑
i=1

x̄iRg
i (ξ1, ξ2), (7)

where Ng
var = NM is the number of NURBS,̄xi are

the reordered control points, andRg
i are the reordered

NURBS. The superscriptg indicates that the NURBS
functions refer to polynomial degrees, knots vectors and
weights that are specific for the geometry representa-
tion.

3.2. Field Approximations

In a similar fashion as for the geometry representation
in equation (7) above, we seek approximations of the
velocity u : [0; 1]2 → R2 and pressurep : [0; 1]2 → R
as linear combinations of the basis functions defined
above. Since NURBS are only needed to represent the
geometry, and not the velocity and pressure, we will for
simplicity use B-splines to approximate the state vari-

ables:

uk(ξ1, ξ2) =
N

uk
var∑

i=1

ukiPuk
i (ξ1, ξ2), (8a)

p(ξ1, ξ2) =
N p

var∑
i=1

p
i
Pp

i (ξ1, ξ2), (8b)

wherek = 1, 2 in (8a) refers to the two components of
the velocity field,Puk

i denote the B-spline basis func-
tions for thekth component of the velocity field, while
Pp

i similarly denote the B-spline basis functions for the
pressure field, all suitably reordered compared to the
definition in equation (4). They refer to separate sets of
polynomial degrees and knot vectors that are in general
not the same.Nuk

var and Np
var are the number of veloc-

ity and pressure basis functions, whileuk andp are the
unknown control variables for the velocity and pressure
that are to be determined.

The velocity and pressure fields in equations (8) are
defined in parameter space, while the governing equa-
tions (1) are formulated in physical space. To evaluate
the fields in physical space, the inverse of the geometry
parametrisationF is used; the pressurep : Ω→ R over
the physical domain is computed asp ◦ F−1, and the ve-
locity u : Ω→ R2 over the physical domain asu◦F−1.
The Piola mapping could also be used to map the veloc-
ity [7], but since none of the examined discretizations
are exactly divergent free, we take the simpler approach
and map each velocity component as a scalar field. With
abuse of notation, we use the same symbol for the state
variables both in parameter space and in physical space.

Gradients in parameter space,∇̂p =
[
∂p
∂ξ1

∂p
∂ξ2

]T
, are eas-

ily evaluated using the field approximations in equation
(8) and the definition of B-splines in equation (4). Gra-

dients in physical space,∇p =
[
∂p
∂x1

∂p
∂x2

]T
, are related to

the gradients in parameter space by the formula:

∇̂p = JT∇p ⇐⇒ ∇p = J−T ∇̂p, (9)

where J is the Jacobian matrix of the geometry
parametrisation:

J =

 ∂x1
∂ξ1

∂x1
∂ξ2

∂x2
∂ξ1

∂x2
∂ξ2

 , (10)

which again is easily evaluated using the mapping in
equation (7) and the definitions of NURBS in equation
(5).

3.3. Boundary Conditions
For simplicity we impose the Dirichlet boundary con-

ditions in (1c)strongly as opposed to the weak enforce-
ment suggested in [14, 15]. Hereby we avoid the need

3
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for definition of penalization parameters which is favor-
able if a sequence of analysis with different geometries
is to performed as in shape optimization problems [16].

In general B-splines have compact support. This
means that only a few of the velocity basis functions
Puk

i in equation (8a) have support onΓ. We can sim-
ply arrange the functionsPuk so that the firstNuk

dof of
these donot have support on the boundary, and the cor-
responding control variables of these are thus “degrees
of freedom”, while the lastNuk

fix = Nuk
var − Nuk

dof have sup-
port onΓ, and the corresponding control variables are
thus “fixed”:

uk(ξ1, ξ2) =

N
uk
dof∑

i=1

ukiPuk
i (ξ1, ξ2) +

N
uk
var∑

i=N
uk
dof+1

ukiPuk
i (ξ1, ξ2). (11)

The strong imposition is done by directly specifying
suitable values for these lastNuk

fix velocity control vari-
ablesuki, so that the sum in equation (8a) approximates
the specified valueuD in (1c). If uD lies within the
function space spanned byPuk

i , the conditions are satis-
fied exactly; otherwise they are only satisified in a least
square sense.

For the pressure, we note that only the pressuregra-
dient appears in the Navier-Stokes equation (1a). The
pressure is thus only determined up to an arbitrary con-
stant, which is dealt with by the specification of the
mean pressure in equation (1d). Using the approxima-
tion in equation (8b), this gives rise to the following
equation:

0 =
∫∫
Ω

p dA =
∫∫
Ω

N p
var∑

i=1

p
i
Pp

i (x1, x2) dx1 dx2

=

N p
var∑

i=1

p
i

1 1∫∫
0 0

Pp
i (ξ1, ξ2) det

(
J
)
dξ1 dξ2 = pMT , (12)

wherep is the vector of pressure control variables,M
the vector of integrals of pressure basis functions, and
J is given by (10). Since no pressure control variables
needs to be fixed, we haveNp

dof = Np
var andNp

fix = 0.

3.4. Weak Form of the Governing Equations

The governing equations (1) are cast into theirweak,
or variational, form. For this we use the (image in phys-
ical space of the) B-spline introduced above asweight
functions for the governing equations. We will use only
the firstNuk

dof velocity basis functions, since these have
no support on the fixed boundary. We multiply thekth
component of the Navier-Stokes equation (1a) by an ar-
bitrary weight functionPuk

i among these velocity basis

functions, and the incompressibility equation (1b) by an
arbitrary weight functionPp

j among the pressure basis
functions, integrate the resulting equations overΩ, and
then simplify using integration by parts. After some ma-
nipulations we find the following weak form of the gov-
erning equations:

0 =
∫∫
Ω

(
( µ∇Puk

i + ρPuk
i u) · ∇uk

− ( p∇Puk
i + ρPuk

i f ) · ek

)
dx1 dx2 (13a)

0 =
∫∫
Ω

Pp
j (∇ · u) dx1 dx2 (13b)

for k = 1, 2, i = 1, . . . ,Nuk

dof and j = 1, . . . ,Np
dof, and

whereek is thekth unit vector.

3.5. Matrix Equation

Finally, we insert the (image in physical space of the)
approximations of the velocity and pressure fields (8)
into the weak form (13) of the governing equations, split
the superpositions ofu into parts with support on the
fixed boundary and parts without as in equation (11),
exchange the order of summation and integration, re-
arrange to get the unknown terms on the LHS and the
known terms on the RHS, and pull the integration back
to parameter space using standard transformation rules
for multiple integrals along with equation (9). This
gives:

M(U)︷                                          ︸︸                                          ︷ K1 + C1(ū) 0 −GT
1

0 K2 + C2(ū) −GT
2

G1 G2 0


U︷ ︸︸ ︷ ū1

ū2

p̄


=

 f1

f2

0

 −
 K⋆1 + C⋆1 (ū) 0

0 K⋆2 + C⋆2 (ū)
G⋆1 G⋆2


[

ū⋆1
ū⋆2

]
︸                                                         ︷︷                                                         ︸

F

,

(14)

4
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or simply M(U) U = F, with

K i jk = µ

1 1∫∫
0 0

(
J−T∇Puk

i

)
·
(
J−T∇Puk

j

)
det
(
J
)
dξ1 dξ2,

(15a)

C i jk(u) = ρ

1 1∫∫
0 0

Puk
i

(
u(ul) ·

(
J−T∇Puk

j

))
det
(
J
)
dξ1 dξ2,

(15b)

Gi jk =

1 1∫∫
0 0

Pp
i

(
J−T∇Puk

j

)
· ek det

(
J
)
dξ1 dξ2, (15c)

fik = ρ

1 1∫∫
0 0

Puk
i

(
f · ek

)
det
(
J
)
dξ1 dξ2, (15d)

Kk =
[

Kk K⋆k
] (

N
uk
dof × (N

uk
dof+N

uk
fix )
)
, (15e)

Ck(u) =
[

Ck(u) C⋆k (u)
] (

N
uk
dof × (N

uk
dof+N

uk
fix )
)
, (15f)

Gk =
[

Gk G⋆k
] (

N p
dof ×(N

uk
dof+N

uk
fix )
)
, (15g)

wherek = 1, 2, J is the Jacobian matrix in equation
(10),u(u) is given by the approximation in equation (8),
ek is thekth unit vector,u

T

k = [ū
T

k ū⋆
T

k ], and all starred
quantities are given by the boundary conditions.Kk is
often called viscosity matrix,Ck convective matrix,Gk

gradient matrix, andfk force vector.

The integrals in equation (15) are evaluated using
Gaussian quadrature. The necessary number of quadra-
ture pointsNG in each knot span is estimated from the
relation q̃ = 2NG − 1, where ˜q is an estimate of the
highest polynomial degree of the integrands. Since the
integrands are in general rational functions, we simply
estimate ˜q as the sum of polynomial degrees of the nu-
merator and the denominator. Using polynomial degree
2 for the geometry and 4 for the velocity and pressure,
we estimate a polynomial degree of ˜q = 12 for the inte-
grand ofC, and this dictates that we should use at least
NG = 7 quadrature points in each knot span. All results
in the following are based on 7 quadrature points per
knot span, which is a conservative choice compared to
recent studies on more efficient quadrature rules [17].

We need to solveNu1

dof + Nu2

dof + Np
dof equations from

(14) supplemented by the equation from the condition
on the mean pressure from (12) inNu1

dof + Nu2

dof + Np
dof

unknowns, and we do this in the least square sense.
The problem is non-linear, and an incremental Newton-
Raphson method is used by gradually increasingRe, see
e.g. [11].

4. Stability for Stokes Problem:Wall-Driven An-
ullar Cavity

In the following section, we deal with the stability of
the isogeometric method when applied to Stokes flow,
which is the problem that arises when we neglect the
non-linear inertial term in Navier-Stokes equation (1a).
Some discretizations of the mixed formulation of Stokes
problem are stable while others are unstable. Unstable
discretizations can leave the system matrixM in equa-
tion (14) singular or badly scaled, which in turn leads to
spurious, unphysical oscillations for the pressure field,
while the velocity field may still look quite reasonable.
Figure 3 below shows an example of this. Furthermore,
it deteriorates the convergence properties of the method
and thus prohibits iterative solutions for the full Navier-
Stokes problem. In order for a given discretization to be
stable, it needs to satisfy the socalled inf-sup condition,
also known as the BB or LBB condition:

inf
p

sup
u

∫∫
Ω

p∇ · u dA

‖p‖ ‖u‖ ≥ β > 0, (16)

where the positive constantβ is independent of the
mesh. In equation (16), the norm ofp is theL2-norm,
while the norm ofu is theH1-norm.

In this section we study how stable discretizations
may be constructed by using different basis functions
for the velocity and pressure fields. More specifically,
we will establish suitable choices of polynomial degrees
and knot vectors for the velocity and pressure such that
the discretizations are stable. This idea follows the ap-
proach in a recent work [7], in which three families of
stable discretizations were presented, but contrasts to
the stabilized method in which identical basis functions
for the velocity and pressure may be used on the cost
that stabilizing terms must be added to the Stokes equa-
tion, see e.g. [3].

We report the stability of the isogeometric discretiza-
tions listed in table 1. The discretizations differ in poly-
nomial degrees, knot refinements and inner knot mul-
tiplicities between the velocity and pressure represen-
tations. We have adobted a heuristic nomenclature for
naming of the individual discretizations. For theu42

0p31
0

discretization (d), e.g., both velocity components are ap-
proximated using quartic B-splines (u4), and the pres-
sure using cubic B-splines (p3). Superscript indicates
the multiplicity of inner knots, and thus also the degree
of continuity across knots, since this is just the degree
minus the multiplicity. Subscript indicates the num-
ber of h-refinements by halfing all knot spans. For the
strategies a-g, each of the velocity componenentsu1 and

5
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Name Knot Vec-
tor 1

Knot Vec-
tor 2

inf-
sup

a u41
1p41

0
-ppp ξ0 1p p p pp p p pp p p pp pp pp pp pp pp pp pp pp pp pp pp pp pp p -ppp ξ0 1p p p pp p p pp p p pp pp pp pp pp pp pp pp pp pp pp pp pp pp p √

b u42
0p41

0
-ppp ξ0 1p p p pp p p pp p p pp pp pp pp pp pp pp pp pp pp pp pp pp pp p -ppp ξ0 1p p p pp p p pp p p pp pp pp pp pp pp pp pp pp pp pp pp pp pp p √

c u41
1p31

0
-ppp ξ0 1p p p pp p p pp p p pp pp pp pp pp pp pp pp pp pp pp pp pp p -ppp ξ0 1p p p pp p p pp p p pp pp pp pp pp pp pp pp pp pp pp pp pp p √

d u42
0p31

0
-ppp ξ0 1p p p pp p p pp p p pp pp pp pp pp pp pp pp pp pp pp pp pp p -ppp ξ0 1p p p pp p p pp p p pp pp pp pp pp pp pp pp pp pp pp pp pp p √

e u41
1p21

0
-ppp ξ0 1p p p pp p p pp p p pp pp pp pp pp pp pp pp pp pp pp pp p -ppp ξ0 1p p p pp p p pp p p pp pp pp pp pp pp pp pp pp pp pp pp p √

f u42
0p21

0
-ppp ξ0 1p p p pp p p pp p p pp pp pp pp pp pp pp pp pp pp pp pp p -ppp ξ0 1p p p pp p p pp p p pp pp pp pp pp pp pp pp pp pp pp pp p √

g u41
0p21

0
-ppp ξ0 1p p p pp p p pp p p pp pp pp pp pp pp pp pp pp pp p -ppp ξ0 1p p p pp p p pp p p pp pp pp pp pp pp pp pp pp pp p ÷

h Nédélec -ppp ξ0 1p p p pp p p pp p p pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp p -ppp ξ0 1p p p pp p p pp p p pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp p √
i Raviart-Thomas -ppp ξ0 1p p p pp p p pp p p pp pp pp pp pp pp pp pp pp pp pp pp p -ppp ξ0 1p p p pp p p pp p p pp pp pp pp pp pp pp pp pp pp pp pp p √

Table 1: Discretization names, knot vectors and inf-sup-stability. Ve-
locity knot vectors are shown in red and green, while the pressure knot
vector is shown in blue.

u2 are represented identically, which reduces the com-
putational expenses since equality of the basis functions
Ru1

i = Ru2
i implies equality of the matricesKi j1 = Ki j2,

and in addition all fields are represented identically in
both parametric directions. This is not the case for the
strategies h and i, which are modified versions of the
Nédélec and Raviart-Thomas elements presented in [7].
Compared to the original formulation in [7], the veloc-
ity fields have beenh-refined once. It should be stressed
that with this enlargement of the velocity space, the ex-
act fulfillment of the divergence-free constraint for the
Raviart-Thomas discretization is lost. Theu42

0p31
0 dis-

cretization (d) was originally proposed in [3] and subse-
quently introduced in [7] as the Taylor-Hood element.

To examine the numerical stability, we consider the
wall-driven annular cavity problem outlined in figure
2a. This is a slight modification of the standard bench-
mark lid-driven square cavity problem, see the treat-
ment of the problem in Section 6, utilizing the capa-
bility of isogeometric analysis to exactly represent cir-
cular arcs. The fluid is contained in an annular cavity.
The inner circular wall moves with constant tangential
speed, while the remaining three walls are at rest. The
velocity field is specified along the boundary of the do-
main, assuming no-slip conditions. No body forces act
upon the fluid, and the fluid motion is thus caused—or
driven—by the moving wall. We adopt the so-called
leaky-lid boundary condition, meaning that the corners
(x, y) = (0, 1) and (x, y) = (1, 0) belong to the mov-
ing wall boundary. We parametrise the domain using
quadratic NURBS. The control net is shown in figure
2b, and the data for the geometry parametrisation are

a b
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Figure 2: Driven annular cavity.a: Domain and boundary conditions.
b: Control net (black dots and blue lines) and image of the computa-
tional mesh for velocity and pressure (red and green lines).

listed in table A.2 in Appendix Appendix A. For the
velocity and pressure representation, weh-refine the
parameter mesh for the geometry by halfing the knot
spans, leading to a familiy of parameter meshes ranging
from 2× 2 to 64× 64 knot spans, one of which is also
depicted in figure 2b.

Figure 3 shows the computed velocity and pres-
sure fields for two different discretizations, namely the
u41

0p41
0 discretization (top row) and theu41

1p41
0 dis-

cretization (bottom row). Both of these produce a rea-
sonable, rotational flow field. Clear pressure oscilla-
tions, however, are seen for first discretization, whereas
the latter nicely approximates the pressure singularitites
in the inner corners.
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Figure 3: Computed fields foru41
0p41

0 (top) andu41
1p41

0 (bottom) dis-
cretizations. Left: stream function contour lines and velocity arrows.
Right: pressure (note the different vertical scalings).

To test the stability of the discretization strategies, we
use the approach described in [18, 19]. For each dis-
cretization, we vary the grid size for the velocity and
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pressure representations, and for each of these meshes
we determine a numerical estimate of the inf-sup “con-
stant”β in equation (16). If this value does not change
appreciably with varying grid size, it indicates that the
discretization is stable. On the other hand, if the value
tends to zero as the grid size changes, it indicates that
the discretization isunstable.
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Figure 4: Numerically computed inf-sup “constants” for varying grid
size using different discretizations. The bottom plot shows an enlarge-
ment of the top plot as marked by the dashed lines.

The results of these computations are shown in figure
4. From this we are led to conclude, that the discretiza-
tion with identical polynomial degree for velocity and
pressure is stable if either the velocity knot vector is re-
fined (a) or the inner knot multiplicity for the velocity is
increased (b). The same conclusion applies to the dis-
cretizations for which the polynomial degree of the ve-
locity is larger than the polynomial degree of the pres-
sure by one (c and d) and two (e and f). The stability of
u42

0p31
0 (d) was already known from [7]. Both the mod-

ified Nédélec (h) and Raviart-Thomas (i) discretizations
are seen to be stable, whereas the simple discretization
u41

0p21
0 (g) with a difference in polynomial degree of

two but with identical inner knots doesnot pass the sta-
bility test. The stability of each of the discretizations is
summarized in the right-most column of table 1.

Several discretizations have been tested in addition
to those listed in table 1. It was found that increas-
ing the difference between the polynomial degree of the
velocity approximation and the degree of the pressure
approximation does influence the inf-sup stability, even
without inserting or repeating knots. More specifically,
the value of grid sizeh where the inf-sup “constant”
β starts decreasing seemed to decrease with increasing
polynomial degrees.

Assuming that the examined discretizations are rep-
resentative, two simple strategies for choosing stable
discretizations for the velocity and pressure approxima-

tions can be established by means of induction. Given
a simple discretization for the pressure, i.e. open knot
vectors, choose the velocity degrees at least equal to the
pressure degree and then either take the velocity knot
vectors as the refinement of the pressure knot vectors,
or use the pressure knot vectors with all inner knots re-
peated. Or conversely, given simple discretizations for
the velocity, i.e. with open knot vectors and single or
double inner knots, choose the pressure degree less than
or equal to the velocity degree, and take the pressure
knot vectors as the velocity knot vectors with every 2nd
inner knot removed. The knot refinement strategy is
used for the cases a, c and e, and the knot repetition
strategy for cases b, d and f. The modified Raviart-
Thomas (i) also uses the refinement strategy, while the
modified Nédélec (h) combines both strategies.

We should emphasize firstly that the presented inf-
sup method only serves as a numerical test of the sta-
bility of the examined discretizations, and secondly that
the inductive step, going from the stability of the ex-
amined discretizations to the stability of a general dis-
cretization strategy, is only motivated by a limited num-
ber of tests. None of these should in no way be mistaken
for a rigorous mathematical proof.

5. Error Convergence: Forced Elliptic Cavity

To asses the validity of the isogeometric method for
the full Navier-Stokes problem, we consider a test case
for which an analytical solution exists, and examine
how well the discretizations listed in table 1 are able
to reproduce the exact solution.

The problem is outlined in figure 5a. We take
the physical domainΩ as the elliptic disk{(x1, x2) ∈
R2 | (x1/a)2 + (x2/b)2 ≤ 1} with a = 2 andb = 1.
Assuming appropriate units are assigned to all quanti-
ties and focussing only on their numerical values, we
setρ = µ = 1, take the body forcef = ( f1, f2) to be

f1 = −1
4

U2 sin2
(
π r̃2
)

x − 1
4
π

r̃
sin(π r̃) x +

13
2
πU cos

(
π r̃2
)

y

− 4π2 U sin
(
π r̃2
)

y3 − 1
4
π2 U sin

(
π r̃2
)

x2 y

f2 = −1
4

U2 sin2
(
π r̃2
)

y − π
r̃

sin(π r̃) y − 7
8
πU cos

(
π r̃2
)

x

+
1
16
π2 U sin

(
π r̃2
)

x3 + π2 U sin
(
π r̃2
)

y2 x,

where ˜r = r̃(x, y) =
√

(x/2)2 + y2, and assume no-slip
boundary conditions:u = 0 on Γ. The following ve-
locity and pressure fields solve the governing equations
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and satisfy the boundary conditions:

u⋆1 = −U sin(πr̃2) y,

u⋆2 =
1
4

U sin(πr̃2) x,

p⋆ =
4
π2
+ cos(πr̃),

whereU is a velocity scale which in the following is as-
sumed to beU = 200/

√
5. These fields are depicted in

figure 5b-c. UsingL =
√

a2 + b2 =
√

5 as length scale,
the Reynolds number for the problem isRe = 200 which
makes the problem weakly nonlinear. We parametrise
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Figure 5: Forced elliptic cavity.a: Domain and boundary conditions.
b: Analytical stream function contour lines and velocity arrows. c:
Analytical pressure contour lines.d: Control net (black dots and blue
lines) and image of the coarsest computational mesh for velocity and
pressure (red and green lines).

the domain using quadratic NURBS. The control net
and the coarsest computational mesh for the velocity
and pressure fields are shown in figure 5d.

We examine how well the exact velocity and pres-
sure fields are reproduced by a given discretization as
the computational parameter mesh ish-refined by knot
insertion. For each discretization we uniformly vary
the computational mesh for velocity and pressure in
the range from 4× 4 to 64× 64 knot spans, and for
each of these meshes we compute theL2-norm and the
H1-seminorm of the velocity residual and the pressure

residual as measures of the error:

ǫ2u =

∫∫
Ω

‖u(x1, x2) − u⋆(x1, x2)‖2dx1dx2,

ǫ2p =

∫∫
Ω

|p(x1, x2) − p⋆(x1, x2)|2dx1dx2,

ǫ2∇u =

∫∫
Ω

2∑
k=1

‖∇uk(x1, x2) − ∇u⋆k (x1, x2)‖2dx1dx2,

ǫ2∇p =

∫∫
Ω

‖∇p(x1, x2) − ∇p⋆(x1, x2)‖2dx1dx2.
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Figure 6: Convergence of error:L2-norm (left) andH1-seminorm
(right) of velocity residual (top) and pressure residual (bottom) as
function of the total number of variables of the analysis using different
discretizations.

The results are shown in figure 6. The figure depicts
the velocity error (top) and pressure error (bottom) as
function of the total number of variables of the analy-
sis, using both theL2-norm (left) and theH1-seminorm
(right). We note that the discretizations a-f which pair-
wise have identical polynomial degrees, the knot refine-
ment strategies (a, c, e) have a significantly lower veloc-
ity error than the knot repetion strategies (b, d, f). In ad-
dition, the difference between the two strategies grows
as the number of degrees of fredoom increases, as is
most evident for theH1-seminorm. The difference in
pressure error between the two strategies varies more,
but the error of the knot refinement strategy is never
larger than the error of the corresponding knot repetion
strategy. This make the knot refinement strategy favor-
able in a per-degree-of-freedom sense. The knot refine-
ment strategy, unlike the knot repetition strategy, con-
serves the degree of continuity for the velocity field.
This therefore confirms the high importance of conti-
nuity alluded to in [4]. However, although the increase
in number of degrees of freedom for a given refinement
is nearly identical for the two strategies, the knot refine-
ment strategy is computationally more expensive than
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the knot repetition strategy, since it doubles the number
of knot spans and thus quadruples the number of func-
tion evaluations needed for the Gaussian quadrature, un-
less more efficient quadrature rules are employed [17].
It is also worth noting that although the pressure error
of the unstable discretizationu41

0p21
0 (g) flattens out quit

quickly as the number of degrees of freedom increases,
the velocity error falls off impressively. Lastly, the mod-
ified Raviart-Thomas discretization (h) seem to perform
somewhat better than the modified Nédélec discretiza-
tion (i) for both the velocity and the pressure.

We have in general good experiences with the Taylor-
Hood discretizationu42

0p31
0 (d), since it discretizes both

velocity components identically, and the knot spans for
the velocity and pressure fields are also the same. We
therefore base the following examination of the influ-
ence of the formulations of the Navier-Stokes equation
on this discretization. We solve the problem outlined
above using both the convective formulation as above
and the skew-symmetric formulation, and we do this for
two different values of the Reynolds number, namely
200 and 2,000, using{400; 800; 1,000; 1,500} as inter-
mediate values to ensure convergence. Figure 7 com-
pares the convergence of errors for the two formula-
tions. For the low Reynolds number, both the velocity
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Figure 7: Convergence of error:L2-norm (left) andH1-seminorm
(right) of velocity residual (top) and pressure residual (bottom) as
function of the total number of variables of the analysis fordifferent
formulations and Reynolds numbers using the discretization u42

0p31
0

(d).

and the pressure errors of the two formulations are prac-
tically identical. For the higher Reynolds number, some
differences are seen for the pressure error, while the ve-
locity errors remain similar. It should also be mentioned
that in our experience, more non-linear solver iterations
are needed for the skew-symmetric formulation to con-
verge compared to the convective formulation.

6. Benchmark: Lid-Driven Square Cavity

As a final validation of the isogeometric method,
we compare our results for a standard benchmark flow
problem, namely the lid-driven square cavity [12, 3],
against results from other numerical simulations [20,
21, 22]. We consider a fluid contained in a square cav-
ity with the top wall moving with constant speed, and
the other walls kept still as outlined in figure 8a. This
prescribes the velocity field along the boundary of the
domain, assuming no-slip conditions at the walls and
closed-lid conditions (u = 0) at the upper corners. No
body forces act upon the fluid; the fluid is set in mo-
tion from the movement of the lid. We parametrise the
domain using linear NURBS, and construct a stretched
computational mesh with increased resolution around
the corner singularities and boundary regions, see fig-
ure 8b. For the analysis, a computational grid of 64×64
regularly spaced knot spans is employed.
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Figure 8: Lid-driven square cavity.a: Domain and boundary condi-
tions.b: Control net (black dots and blue lines) and image of regularly
spaced isoparametric lines (red and green lines).

Using the isogeometric discretizations listed in ta-
ble 1 we firstly solve the problem for Reynolds number
Re = 5,000. We gradually increaseRe, and the number
of intermediate steps inRe necessary to achieve con-
vergence forRe = 5,000 is around five, but is in gen-
eral different for the various discretizations. The total
number of basis functions for the analysis ranges from
13,604 for the discretizationu41

0p21
0 (g) to 72,865 for

the Nédélec discretization (h), while the remaining dis-
cretizations all have between 38,678 and 39,472 anal-
ysis basis functions. Figure 9 compares the computed
horizontal/vertical velocity profiles through the verti-
cal/horizontal center line of the cavity to the data from
[20]. On the left, the velocity profiles for all nine dis-
cretizations are seen to match very well with the data
in [20]. On the right, the velocity residuals reveal that
all discretizations yield slightly larger fluid speeds away
from the center and towards the boundaries compared
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Figure 9: Comparison of velocity profile curves and residualcurves
(velocity minus fit) for the lid-driven square cavity forRe = 5,000
using different discretizations, plotted with data from [20] and a fit to
the data using a cubic spline. Top: horizontal velocity profiles (left)
and residuals (right) through the vertical center line. Bottom: verti-
cal velocity profiles (left) and residuals (right) through the horizontal
center line.

to the data. The agreement between the discretizations,
however, is very good.

In the following, we once again focus on the dis-
cretizationu42

0p31
0 (d). Figure 10 shows velocity vectors

and stream function contour lines forRe = 5,000. The
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Figure 10: Four views of velocity vectors and stream function contour
lines in the lid-driven square cavity forRe = 5,000 using theu42

0p31
0

discretization (d).

general pattern of the stream function matches very well

with the results of [20], [21] and [22]. The locations
and the extremal values of both the central main eddy
as well as the minor eddies in the bottom right, bottom
left and top left corners are in overall agreement. Small
discrepencies are still seen, e.g. close to the boundary
in the top left corner.

Finally, the problem is solved for different values of
Re in the range from 100 to 10,000:{100; 400; 1,000;
2,000; 3,200; 5,000; 7,500; 10,000}. Figure 11a/b
shows the computed horizontal/vertical velocity profiles
through the vertical/horizontal center line of the cav-
ity along with the data from [20] for the values ofRe
printed in italic. In general, the velocity profiles from
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Figure 11: Velocity profile curves for the lid-driven squarecavity for
seven values ofRe (solid lines) using theu42

0p31
0 discretization (d)

plotted along with data from [20] (points).a: vertical velocity pro-
file through the horizontal center line.b: horizontal velocity profile
through the vertical center line.c: vertical velocity residual.d: hor-
izontal velocity residual. The profile curves have been translated to
avoid clustering of data. We speculate that three obvious outliers,
marked with rings, stem from misprints in the tabulated datain [20].
Cubic splines have been fitted to the remaining data.

the present study match very well with the data in [20].
Once again, however, a closer examination reveals a
small difference: for higherRe, we compute slightly
larger fluid speeds close to the boundaries than is done
in [20], and this difference increases withRe. There is,
however, a very nice agreement in the location of the
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velocity extrema.
Regarding the differences in flow speeds close to the

boundaries, several points deserve mentioning. Firstly,
the results depend critically on the choice of bound-
ary conditions specified for the upper corners. We em-
phasize that closed-lid conditions are assumed in the
present study. Secondly, the results depend slightly on
the formulation of the Navier-Stokes equation (1a) for
Re & 5,000, depending on whether the convective or
the skew-symmetric formulation is used. This is shown
in figure 12, where the computed velocity profiles using
each of the two different formulations are compared for
Re = 10,000. The convective and the skew-symmetric
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Figure 12: Comparison of velocity profile curves and residual curves
(velocity minus fit) for the lid-driven square cavity forRe = 10,000
with different formulations of the inertial term using theu42

0p31
0 dis-

cretization (d), plotted with data from [20] and a fit to the data using
a cubic spline. Top: horizontal velocity profiles (left) andresiduals
(right) through the vertical center line. Bottom: verticalvelocity pro-
files (left) and residuals (right) through the horizontal center line.

formulations are found to nearly match each other in the
interior, whereas some differences are observed close
to the boundaries, in particular at the moving lid. We
emphasize that the present study is based on the sim-
pler convective formulation of the Navier-Stokes equa-
tion. Thirdly, the data in [20] are relatively sparse at
the boundaries where the variation in velocity is high.
Finally, it should be stressed that the data in [20] stem
from another numerical study, and an exact correspon-
dence between that and the present study should not be
expected.

7. Conclusions

This paper has examined various discretizations in
isogeometric analysis of 2-dimensional, steady state,
incompressible Navier-Stokes equation subjected to

Dirichlet boundary conditions. Firstly, a detailed de-
scription of the implementation has been given. Sec-
ondly, numerical inf-sup stability tests have been pre-
sented that confirm the existence of many stable dis-
cretizations of the velocity and pressure spaces. In par-
ticular it was found that stability may be achieved by
means of knot refinement of the velocity space. Thirdly,
error convergence studies compared the performance of
the various discretizations and indicated optimal con-
vergence, in a per-degree-of-freedom sense, of the dis-
cretization with identical polynomial degrees of the ve-
locity and pressure spaces but with the velocity space
enriched by knot refinement. Finally, the method has
been applied to the lid-driven square cavity for bench-
marking purposes, showing that the stable discretiza-
tions produce consistent results that match well with
existing data and thus confirm the robustness of the
method.

Appendix A. Data for Geometry Parametrisations

Table A.2 lists the polynomial degrees, knot vectors
and control points for the geometry of the analysed
problems.
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Wall-Driven Annular Cavity

Degree q = r = 2
Knots Ξ = Φ = {0,0, 0,1, 1,1}
Point 1 2 3 4 5 6 7 8 9
x̄1 0 1 1 0 3/2 3/2 0 2 2
x̄2 1 1 0 3/2 3/2 0 2 2 0
w 1 1/

√
2 1 1 1/

√
2 1 1 1/

√
2 1

Forced Elliptic Cavity

Degree q = r = 2
Knots Ξ = Φ = {0,0, 0,1, 1,1}
Point 1 2 3 4 5 6 7 8 9
x̄1 −2/

√
2 0 2/

√
2 −4/

√
2 0 4/

√
2 −2/

√
2 0 2/

√
2

x̄2 −1/
√

2 −2/
√

2 −1/
√

2 0 0 0 1/
√

2 2/
√

2 1/
√

2
w 1 1/

√
2 1 1 1/

√
2 1 1 1/

√
2 1

Lid-Driven Square Cavity

Degree q = r = 1
Knots Ξ = Φ = {0,0, 1/2, 1,1}
Point 1 2 3 4 5 6 7 8 9
x̄1 0 1/2 1 0 1/2 1 0 1/2 1
x̄2 0 0 0 1/2 1/2 1/2 1 1 1
w 1 1/2 1 1/2 1/4 1/2 1 1/2 1

Table A.2: Polynomial degrees, knot vectors, control points and
weights for the geometry of the analysed problems.
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Appendix C

Paper II: Isogeometric
Shape Optimization for
Fluids

This chapter contains a preprint of: P. N. Nielsen and J. Gravesen. Isogeo-
metric shape optimization for fluids, 2012. To be submitted to Structural and
Multidisciplinary Optimization.
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Isogeometric Shape Optimization for Fluids

Peter N. Nielsen · Jens Gravesen

Abstract We consider various shape optimization prob-
lems for fluids in two dimensions. The governing steady-
state, incompressible Navier-Stokes equations are solved
using isogeometric analysis, and the methodology also
serves as framework for the shape optimization pro-
cedure. For benchmarking purposes, we design a pipe
bend to minimize the pressure drop of the flow through
it. To avoid inappropriate parametrizations during op-
timization, we regularize the problem by adding to the
objective function a measure of the quality of the para-
metrization. We find that minimizing the parametric
acceleration along the design boundary is a cheap, flex-
ible and efficient regularization technique. To further
test the isogeometric shape optimization methodology,
we apply it to two additional design problems for flu-
ids. Based on Taylor-Couette flow, we firstly solve a
shape optimization problem with a known solution. We
find that the more design variables we use, the better
the approximation to the exact solution we obtain. Sec-
ondly, we design a body to minimize the drag from the
flow past it. We find that the methodology allows for
significantly different optimal shapes as the flow speed
increases. Both examples emphasize the robustness of
the methodology.

Keywords shape optimization · isogeometric analy-
sis · fluid mechanics · regularization · Navier-Stokes
equation · Taylor-Couette flow · drag

P. N. Nielsen · J. Gravesen
DTU Mechanical Engineering & DTU Mathematics, Techni-
cal University of Denmark, Matematiktorvet 303S, DK-2800
Kgs. Lyngby
Tel.: +45-4525-3031
Fax: +45-4588-1399
E-mail: p.n.nielsen@mat.dtu.dk
E-mail: j.gravesen@mat.dtu.dk

1 Introduction

Numerical shape optimization for fluids is the art of
using computers to find “best” shapes in engineering
problems involving fluids, based on some notion of “good-
ness” (Mohammadi and Pironneau 2010). Applications
of shape optimization for fluids ranges from, e.g., mi-
crofluidic protein-folding devices (Ivorra et al 2006) to
airplane wings (Painchaud-Oullet et al 2006).

Isogeometric analysis is a recently proposed compu-
tational methodology for solving engineering problems,
uniting the analysis powers from finite element analysis
(FEA) in terms of solving partial differential equations
with the powers from computer aided design (CAD) in
terms of geometric modeling (Hughes et al 2005; Cot-
trell et al 2009). From a fluid mechanics point–of–view,
isogeometric analysis is appealing in particular due its
ability to represent boundaries exactly (Bazilevs and
Hughes 2008), and because of the inherent high regu-
larity of the flow fields (Akkerman et al 2010). From
a shape optimization point–of–view, isogeometric anal-
ysis serves as a natural framework, due to its ability
to represent complex shapes in few design variables,
and its tight connection between analysis and geome-
try models. This means that an acurate representation
of the geometry can be maintained throughout the op-
timization, and there is no need of communcation be-
tween FEA and CAD models.

In recent years, isogeometric analysis has succesfully
been applied to various shape optimization problems in
mechanical engineering. Many studies within structural
mechanics have been made, using either NURBS con-
trol points (Wall et al 2008; Cho and Ha 2009), NURBS
control points and weights (Nagy et al 2010a,b; Qian
2010; Nagy et al 2011), or T-splines control points (Ha
et al 2010; Seo et al 2010b) as design variables. NURBS-
based isogeometric shape optimization using a bound-
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ary integral method has also been studied (Li and Qian
2011). Applications of isogeometric shape optimization
also include studies of vibrating membranes (Nguyen
et al 2011), and of photonic crystals (Qian and Sigmund
2011). Worth mentioning are also recent applications
of isogeometric topology optimization within structural
mechanics (Seo et al 2010b,a; Hassani et al 2012).

An inherent challenge in numerical shape optimiza-
tion is to maintain a high quality of the computational
mesh as the shape of the domain changes during opti-
mization (Mohammadi and Pironneau 2004; Bletzinger
et al 2010). When using isogeometric analysis, the shape
is given by control points. In this setting, care has to
be taken to avoid clustering and folding over of control
points during optimization, which in turn may lead to
singular parametrizations (Wall et al 2008; Nagy et al
2011).

The aim of this work is twofold. Firstly, we estab-
lish isogeometric analysis as a framework for numerical
shape optimization in fluid mechanics, presenting how
the method may be used both as analysis tool to solve
the Navier-Stokes equations, and as design tool to guide
an optimization procedure through analytically com-
puted gradients of objective and constraint functions.
Secondly, to ensure appropriate parametrizations dur-
ing the optimization, we construct a measure for regu-
larization of the shape optimization problem. Based on
a benchmark optimization problem, in which we design
a pipe bend to minimize the pressure drop of the flow
through it, we examine how this regularization measure
influences the optimization process and the optimal de-
sign. Finally, to display the robustness of the isogeomet-
ric shape optimization methodology, we apply it to two
other optimization problems for fluids. First, we design
a body at rest in a circular fluid container with rotat-
ing boundary to obtain a uniform pressure distribution
along its boundary, a design problem which happens to
have a known solution, and second, we design a body
traveling at constant speed through a fluid to minimize
the drag.

The outline of the paper is as follows: Section 2 in-
troduces the generic shape optimization for fluids to
be studied, and its isogeometric implementation is ac-
counted for in Section 3. The regularization technique is
investigated in Section 4, after which two applications
of the methodology are presented in Section 5. Finally,
conclusions are drawn in Section 6.

2 Shape Optimization Problem

In this section we introduce the generic shape optimiza-
tion problem for fluids to be studied.

We consider a viscous, incompressible, isothermal,
steady flow at low to moderate Reynolds numbers in a
2-dimensional domain Ω as depicted in Figure 1. The

ΓN

ΓD

Γ ′Ω

u velocity
p pressure
ρ density
µ viscosity

Fig. 1 Setup of generic shape optimization problem for fluids

fluid is assumed to be Newtonian with constant density
ρ and constant viscosity µ, and the state of the fluid is
characterized by its velocity u = (u v )T and its pres-
sure p. We assume that no external body forces act on
the system (such as gravity). For the boundary Γ , we
assume that the domain is open along the Neumann
part ΓN , and that the flow field u is given along the
Dirichlet part ΓD, independently of the shape.

The aim of the optimization is to design the shape
of some specified part Γ ′ of the boundary of the do-
main to minimize some prescribed objective function,
with constraints on the area of the domain. The specific
form of the objective function will be explained further
below.

All of the above is contained in the following generic
shape optimization problem:

minimize
Γ ′(x) C (1a)

such that Amin ≤ Area ≤ Amax (1b)

Lmin ≤ L(x) ≤ Lmax (1c)

0 = ρ(u · ∇)u−∇p+ µ∇2u (1d)

0 = ∇ · u (1e)

u∗ = u |ΓD (1f)

0 = (µ∇ui − p ei ) · n |ΓN (1g)

Here, the shape of the design boundary Γ ′ is parametrized
through the design variables x. Equations (1a) and (1b)
are the objective and the area constraint functions, re-
spectively. Equation (1c) establishes bounds on the de-
sign variables, as well as linear relations between them,
as dictated by the geometry and the physics of the spe-
cific problem. Equations (1d) and (1e) are the Navier-
Stokes equation and the incompressibility condition, re-
spectively, governing the flow in the domain interior Ω.
Equations (1f) and (1g) are the Dirichlet and the Neu-
mann boundary conditions, respectively, where u∗ is
the given velocity field, i = 1, 2 is the component in-
dex, and n is the outward unit normal.
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We will consider three different quantities as the
cost function C in Equation (1a): The difference in
mean pressure between two boundary segments γ+ and
γ−, the pressure variation along a boundary segment γ,
and the aerodynamic drag on a boundary segment γ.
These are given by:

C∆p =

∫
γ+
p ds

Lγ+
−
∫
γ−
p ds

Lγ−
, (2a)

C∇p =
∫
γ

(∇p · t )2 ds, (2b)

Cd =
∫
γ

(
− pI + µ

(∇u+ (∇u)T
))
n ds · eu, (2c)

respectively, where Lγ =
∫
γ

ds denotes the length of the
segment γ, t is the unit tangent vector, eu the constant
unit vector along a specified direction, n the outward
unit normal, and I the identity matrix. The context in
which these three different cost functions may appear
will be examplified in Sections 4, 5.1, and 5.2, respec-
tively.

3 Isogeometric Method

In this section, we explain how B-spline based isogeo-
metric analysis may be applied to the shape optimiza-
tion problem (1). The reader is referred to, e.g., (Piegl
and Tiller 1995) for a thorough treatment of B-splines
and NURBS (Non-Uniform Rational B-splines), (Cot-
trell et al 2009) for a thorough treatment of isogeomet-
ric analysis, (Nielsen et al 2011) for an introduction to
its application to Navier-Stokes flow, and (Wall et al
2008) for an introduction to its application to shape
optimization.

3.1 B-splines and NURBS

The building blocks of the method are B-splines and
NURBS. To set the scene and for later reference, we
briefly revise the basic concepts of these functions.

Univariate B-splines N q
i : [0, 1] → R are piecewise

polynomials defined recursively from a polynomial de-
gree q ∈ N and a knot vector Ξ = {ξ1, . . . , ξm} ∈ Rm:

N 0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise
(3a)

for q = 0, and

N q
i (ξ) =

ξ − ξi
ξi+q − ξiN

q−1
i (ξ) +

ξi+q+1 − ξ
ξi+q+1 − ξi+1

N q−1
i+1 (ξ)

(3b)

for q = 1, 2, . . . with i = 1, . . . ,m − q − 1. We use the
unit parametric domain ξ ∈ [0, 1], and we assume open
knot vectors, i.e., the boundary knots have multiplicity
q + 1 with ξ1 = ξ2 = . . . = ξq+1 = 0 and ξm = ξm−1 =
. . . = ξm−q = 1.

Bivariate tensor product B-splines Pq,ri,j : [0, 1]2 → R
are defined from the univariate B-splines above:

Pq,ri,j (ξ, η) = N q
i (ξ)Mr

j(η), (4)

where N q
i is the ith univariate B-spline with degree q

and knot vector Ξ1 = {ξ1, . . . , ξm} in the parametric di-
mension ξ, and Mr

j is the jth univariate B-spline with
degree r and knot vector Ξ2 = {η1, . . . , ηn} in the para-
metric dimension η.

Bivariate NURBS Rq,ri,j : [0, 1]2 → R are defined
from the bivariate B-splines above, and the weights
W = {w1,1, . . . , wN,M} with wi,j ∈ R for i = 1, . . . ,m−
q − 1 and j = 1, . . . , n− r − 1:

Rq,ri,j (ξ, η) =
wi,j Pq,ri,j (ξ, η)

m−q−1∑
k=1

n−r−1∑
l=1

wk,l Pq,rk,l (ξ, η)
. (5)

The construction of bivariate B-splines from a set
of polynomial degrees and knots vectors is illustrated
in Figure 2. This type of function will serve as basis for
the subsequent analysis and optimization.

Ξ
2 = {0, 0, 0, 0, 1/2, 1, 1, 1, 1}

r
=

3

Ξ1
= {0

, 0,
0, 0

, 1,
1, 1

, 1}
q = 3

ξ1

ξ2

R or N

Fig. 2 Construction of a bivariate tensor product B-spline
(surface) from two univariate B-splines (lines in bold) of given
polynomial degrees and knot vectors (crosses and circles)

3.2 Geometry Parametrization

Using bivariate tensor product NURBS Ri as defined
above, we construct a parametrization of the physical
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domain Ω, defined over the parameter domain [0, 1]2,
cf. figure 3:

X = (x, y ) =
Ngvar∑
i

xiRgi , (6)

where xi = (xi , yi ) are control points, and Ng
var is the

number of terms in the expansion. The superscript g
indicates that the functions refer to given knot vectors,
polynomial degrees and control weights specific for the
geometry.

X

[0, 1]2

y

x

η

ξ

Ω

Fig. 3 Parametrization of the flow domain

For any scalar variable, e.g., the pressure p, or one
of the velocity components u1 and u2, we will consider
it both as a function f on physical space Ω, and as
a function f on parameter space [0, 1]2. The gradient
∇ ≡ ( ∂/∂x ∂/∂y )T in physical space Ω is related to
its counterpart ∇ ≡ ( ∂/∂ξ ∂/∂η )T in parameter space
[0, 1]2 by the following relation:

∇f = JT∇f ⇐⇒ ∇f = J−T∇f, (7)

where J ≡ ∂xi/∂ξj is the Jacobian matrix of the parametriza-
tion.

3.3 Flow Analysis

The governing equations (1d)–(1e) are solved numer-
ically by a standard Galerkin approach based on B-
splines as test and weight functions.

Approximations of the velocity and pressure fields
are constructed using bivariate tensor product B-splines
Ri as defined above:

u =
Nu

var∑
i=1

uiRui =
Nu

dof∑
i=1

uiRui +
Nu

var∑
i=Nu

dof+1

uiRui , (8a)

p =
Npvar∑
i=1

piRpi =
Npdof∑
i=1

p
i
Rpi , (8b)

where, pi are control coefficients, and Np
var is the num-

ber of terms in the expansions for the pressure. The
superscript p now indicates that the functions refer to
given knot vectors and polynomial degrees that are spe-
cific for the pressure, and quantities for the velocities

u are defined similarly. The velocity expansions have
been split into terms with and terms without support
on the Dirichlet boundary ΓD.

The numerical solution of the incompressible Navier-
Stokes equations (1d)–(1e) rests on a discretized form of
their weak or variational formulation. This is obtained
by multiplying the two equations by the image of each
of the velocity basis functions Ru without support on
the Dirichlet boundary ΓD, and the image of each of
the pressure basis functions Rp, respectively, and then
simplifying the resulting expressions using integration
by parts and insertion of the Neumann boundary con-
dition from Equation (1g). By subsequently inserting
the image of the discretizations of the state variables
in Equation (8) into this, interchanging the order of
summation and integration, rearranging terms, and fi-
nally pulling all integrals back to parameter space, the
following system of non-linear equations in the control
coefficients is obtained:

µK1 + ρC1(u) 0 −GT
1

0 µK2 + ρC2(u) −GT
2

G1 G2 0

 ū1

ū2

p̄


= −

µK?
1 + ρC?

1 (u) 0
0 µK?

2 + ρC?
2 (u)

G?
1 G?

2

[ ū?1
ū?2

]
, (9)

or simply M(U) U = F , with

Kki,j =
∫∫

[0,1]2

∇TRuki J−1 J−T ∇Rukj det
(
J
)

dξ, (10a)

Cki,j =
∫∫

[0,1]2

Ruki uT (u)J−T ∇Rukj det
(
J
)

dξ, (10b)

Gki,j =
∫∫

[0,1]2

Rpi eTk J−T ∇Rukj det
(
J
)

dξ, (10c)

Kk =
[
Kk K

?
k

] (
N
uk
dof × (N

uk
dof+N

uk
fix )
)
, (10d)

Ck =
[
Ck C

?
k

] (
N
uk
dof × (N

uk
dof+N

uk
fix )
)
, (10e)

Gk =
[
Gk G

?
k

] (
Npdof ×(N

uk
dof+N

uk
fix )
)
, (10f)

u
T

k =
[
ū
T

k ū
?T

k

] (
1×(N

uk
dof+N

uk
fix )
)
, (10g)

where u(u) is given by equation (8a), e1 = (1 0)T

and e2 = (0 1)T are the standard unit vectors, and
all starred quantities are given by the Dirichlet bound-
ary conditions. Equation (9) may be solved by, e.g., an
iterative Newton-Raphson method.
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3.4 Optimization

To find a minimum in the cost function while fulfill-
ing the constraints, the geometry parametrization is
tweaked little by little, and over and over again the gov-
erning flow equations are solved, and the objective and
constraints evaluated. To guide the optimization pro-
cess, gradients of the cost function and the constraints
are computed analytically.

3.4.1 Design Variables

The control points xi entering the geometry parametriza-
tion in Equation (6) are the natural geometric “han-
dles” on the flow domain, and these are therefore used
as design variables for the shape optimization routine.
A parametrization and its control net are sketched in
Figure 4. The design variables of the optimization are
the coordinates of the green control points in Figure 4a
that determine the shape of the dashed design bound-
ary Γ ′ in figure 4b. As also shown in figure 4a, con-
trol points fall into three categories: The design con-
trol points (green) are “actively” moved around in the
search for the optimal shape, the linked control points
(yellow) are “passively” following the movement of the
design control points, as described below, while the fixed
control points (red) remain unaltered.

a

b

Fig. 4 a: Three types of control points: design (green), linked
(yellow), and fixed (red). b: Image of isoparametric lines

3.4.2 Interior Parametrization

As the shape of flow domain is changed in the optimiza-
tion process, the parametrization of its interior must
be adequately updated. Referring to Figure 4, in the
isogeometric framework this amounts to specifying the

location of the yellow interior control points as the lo-
cation of the green design control points are changed
through the optimization. This is a fundamental chal-
lenge in isogeometric analysis (Cohen et al 2010; Xu
et al 2010). We choose to base the parametrization of
the interior on the Winslow functional, which is a useful
measure when constructing conformal maps (Gravesen
et al 2010; Nguyen et al 2011). Initially, the interior con-
trol points are determined as the ones that minimize the
Winslow functional while keeping the boundary con-
stant and ensuring a valid parametrization det(J) > 0.
The latter constraint may be evaluated using B-splines
(NURBS), since the determinant of the Jacobian of a
spline (NURBS) surface is itself a spline (NURBS). In
each design iteration, the interior control points are
then found as those that minimizes the 2nd order Tay-
lor expansion of the Winslow functional based on the
initial control net. This procedure leads to a linear prob-
lem to be solved in each design iteration. On top of this,
the validity of the parametrization is checked in each it-
eration by checking if det(J) > 0. If this condition is
not fulfilled, the interior control points are found as
the solution to the initial minimization problem as de-
scribed above. This solution is then subsequently used
as linearization point for the Taylor expansion of the
Winslow functional, and the optimization is restarted
from this configuration.

3.4.3 Function Evaluation

To asses the quality and admissibility of a given de-
sign, the objective and constraint functions in equa-
tions (2) and (1b) are evaluated in each iteration. Us-
ing the parametrization of the geometry in Equation (6)
and the discretizations of the flow and pressure fields
in Equation (8), we collect the control points in two
(Ng

var×1 ) vectors x and y, and the control coefficients
in one

(
(Nu

var +Nv
var +Np

var)× 1
)

vector U . The mean
pressure difference between two boundary segments γ2

and γ1, the pressure variation along a boundary seg-
ment γ, the aerodynamic drag on a boundary segment
γ, and the area of the domain Ω, as defined in Equation
(2) and (1b), may then be computed as:

C∆p = PT U , (11a)

C∇p = UTDU (11b)

Cd = FT U , (11c)

A = xTAy, (11d)
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respectively. Here, the following vectors and matrices
have been defined:

P = Pγ+ −Pγ− (12a)

Pγk =
1
Lγ

1∫
0

Rpk ‖γ̇‖ dξ, (12b)

Dk,` =

1∫
0

(
tT J−T ∇Rpk

)(
tT J−T ∇Rp`

) ‖γ̇‖ dξ,

(12c)

F =

F11 F12

F21 F22

F31 F32

 eu, (12d)

F11k = µ

1∫
0

(
2eT1 ne

T
1 + eT2 ne

T
2

)
J−T∇Ruk ‖γ̇‖ dξ,

(12e)

F21k = µ

1∫
0

eT2 ne
T
1 J
−T∇Rvk ‖γ̇‖ dξ, (12f)

F31k = −
1∫

0

eT1 nRpk ‖γ̇‖ dξ, (12g)

F12k = µ

1∫
0

eT1 ne
T
2 J
−T∇Ruk ‖γ̇‖ dξ, (12h)

F22k = µ

1∫
0

(
2eT2 ne

T
2 + eT1 ne

T
1

)
J−T∇Rvk ‖γ̇‖ dξ,

(12i)

F32k = −
1∫

0

eT2 nRpk ‖γ̇‖ dξ, (12j)

Ak,` =
∫∫

[0,1]2

( ∂Rgk
∂u

∂Rg`
∂v
− ∂Rgk

∂v

∂Rg`
∂u

)
dξ, (12k)

where the length is given by Lγ =
∫ ‖γ̇‖ dξ. The para-

metric speed ‖γ̇‖ ≡
√
ẋ2 + ẏ2, the unit tangent vector

t ≡ γ̇/‖γ̇‖, and the outward unit normal vector n ≡ ±t̂
are found by differentiating the restriction of the geom-
etry parametrization in Equation (6) to the boundary
with respect to the parameter ξ. These vectors and ma-
trices are in general sparse, P , D, and F in particular,
since only few of the basis functions have support on
the design boundary.

3.4.4 Gradient Evaluation

The optimization is driven by gradients of the objec-
tive and constraint functions defining the optimization

problem. These sensitivities measure how the design
variables affect the objective and constriaint functions.
We compute these analytically by direct differentiation
of the discretized versions of the functions in Equa-
tion (11) with respect to the coordinates of the control
points, that act as our design variables.

We collect the design variables in one vector χ,
such that χ = (x1 . . . xN y1 . . . yN ), where (xk yk )
are the coordinates of the kth control point, and we let
•′ ≡ ∂ •/∂χk denote the partial derivative with respect
to the kth design variable. For the objectives and the
constraint in Equation (11) we have:

C ′∆p = P ′TU +PTU ′, (13a)

C ′∆p = UTD′U + 2UTDU ′, (13b)

C ′d = F ′TU +FTU ′, (13c)

A′ = yTAx′ + xTAy′. (13d)

The derivatives of x and y in Equation (13d) are
trivial. The derivatives of the objective matrices/vectors
P , D, and F in Equations (13a)—(13c) may be found
by differentiation of the integrands in Equation (12):

P ′γi =
( 〈Rpi ‖γ̇‖ 〉
〈 ‖γ̇‖ 〉

)′
=
〈Rpi ‖γ̇‖′ 〉 〈 ‖γ̇‖ 〉+ 〈Rpi ‖γ̇‖ 〉 〈 ‖γ̇‖′ 〉

〈 ‖γ̇‖ 〉2 , (14)

where we have defined •̇ ≡ ∂•/∂ξ and 〈•〉 ≡ ∫ • dξ, and
used that all basis functions R are independent of the
design variables. Here, the derivative of the parametric
speed ‖γ̇‖ may be found from Equation (6):

‖γ̇‖′ =
(√

ẋ2 + ẏ2
)′

=
ẋ ẋ′ + ẏ ẏ′

‖γ̇‖

=

{
ẋ
‖γ̇‖ Ṙgk for k = 1, . . . , N
ẏ
‖γ̇‖ Ṙgk for k = N + 1, . . . , 2N

. (15)

Equivalent approaches may be taken for the matrices
D and F in Equation (12).

The derivative of the solutionU in Equations (13a)—
(13c) may be found by solving the linear equation sys-
tem obtained by differentiation of Equation (9):

(M +D)U ′ = F ′ −M ′U , (16)

where

D = ρ

D1,1 D1,2 0
D2,1 D2,2 0

0 0 0

 , (17a)

Di,jk,` =
∫∫

[0,1]2

Ruik
(
eTj J

−T ∇ui(u)
)Ruj` det

(
J
)

dξ .

(17b)
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We mention that the matrix J = M +D also appears
in the iterative Newton-Raphson method employed for
solving the governing equations. The derivative of the
system matrix M and vector F in Equation (16) may
be found by differentiation of the integrands in equation
(10):

K ′ki,j =
∫∫

[0,1]2

∇TRuki J−1′J−T∇Rukj det
(
J
)

dξ

+
∫∫

[0,1]2

∇TRuki J−1J−T
′∇Rukj det

(
J
)

dξ.

+
∫∫

[0,1]2

∇TRuki J−1J−T∇Rukj det
(
J
)′ dξ. (18)

Here, the derivative of the determinant and of the in-
verse of the Jacobian matrix may be found by simply
writing them out explicitly in terms of x and y and
subsequently differentiating this as in Equation (15),
or alternatively from the relations J−1′ = J−1 J ′ J−1

and det(J)′ = det(J) tr(J−1J ′), along with differenti-
ation of Equation (6):

J ′ =



[Rgk,ξ Rgk,η
0 0

]
for k = 1, . . . , N

[
0 0
Rgk,ξ Rgk,η

]
for k = N + 1, . . . , 2N

, (19)

where we have defined •,s ≡ ∂ • /∂s. Equivalent ap-
proaches may be taken for the matrices C and G in
equation (10).

Finally, to account for the induced movement of the
linked control points, as a result of the update of the
interior parametrization when the design control points
are moved, the full sensitivity is computed as •̃′ = •′ +∑
i

χli
′ ∂
∂χli

, where the summation is over linked design

variables, or

∇̃d = ∇d +W∇l, (20)

where the subscripts d and l refer to design variables
and linked variables, respectively. The matrix Wi,j =
∂χli/∂χ

d
j relates the linked control points to the design

control points.

3.5 Implementation Details

The flow chart in Figure 5 sketches the most signifi-
cant steps in solving the shape optimization problem in
Equation (1) based on isogeometric analysis.

Start

Initialization

read input file
setup basic quantities
evaluate basis functions
initialize design + param.

Parametrization

update interior control points
evaluate parametrization
if invalid parametrization:

minimize Winslow fun.
linearize Winslow fun.
restart optimization

Optimization

loop: over Reynolds number
loop: until design converges

evaluate parametrization
solve governing equations
evaluate obj. + con.
evaluate gradients

end

end

Flow Analysis

build linear matrices
initialize/reuse solution
loop: over Reynolds number
loop: until sol. converges

build non-linear matrices
solve system
update solution

end

end

Finish

Fig. 5 Flow chart for the optimization process (left) with
details of the parametrization and analysis procedures (right)

In the initialization phase, we perform as many cal-
culations as possible that are independent of the parametriza-
tion. In particular, all basis functions and their deriva-
tives are evaluated in the Gauss quadrature points once
and for all. Although more memory demanding, this
approach greatly reduces the computational expenses,
compared to evaluating the functions on the fly in each
optimization iteration. The construction of a good ini-
tial parametrization is also vital for the optimization.

The optimization process includes an outer loop over
increasing Reynolds number. This is only neccesary when
designing shapes in higher Reynolds number flows. The
entire process outlined in the flow chart may be em-
bedded into a loop over increasing refinement of geom-
etry and/or analysis. The optimization is performed us-
ing the SNOPT optimization package (Gill et al 2008).
Standard settings for SNOPT are used, except for the
step size limit which, when set relatively low, e.g., 5%
of the characteristic length scale of the problem, has
been found to significantly improve the convergence by
avoiding too large jumps in the design space. For val-
idation purposes, the analytically computed gradients
are checked initially against finite difference estimates.

On the analysis side, we use an iterative Newton-
Raphson method to solve the governing non-linear equa-
tion (9), gradually increasing the Reynolds number when
this is high. In the field approximations, bi-quartic ten-
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sor product B-splines are used for the velocities and
bi-cubic tensor product B-splines for the pressure, both
C2 across knots. Dirichlet boundary conditions are en-
forced strongly, while homogenous Neumann boundary
conditions are enforced weakly. All integrals are evalu-
ated numerically using Gaussian quadrature.

4 Regularization

To strengthen the result of the shape optimization, the
design space in which we look for solutions should be as
large as possible. A natural way to ensure a large design
space is to use many control points as design variables,
although the inclusion of weights as design variables
could also be considered (Qian 2010; Nagy et al 2011).
As the number of design control points go up, more
complex shapes can be designed. This comes, however,
on the cost of numerical challenges. These challenges,
and solution strategies to remedy them, are discussed
in this section.

Ξ1 = { 0 0 0 0 1
15 . . .

14
15 1 1 1 1 }

Ξ2 = { 0 0 0 0 1
2 1 1 1 1 }

a b

c d

r

Γ ′A0

r
4

inlet

outlet

Fig. 6 Pipe bend with minimal pressure drop: design prob-
lem setup (a), initial control net (b), initial parametrization
(c), and initial pressure contours and flow stream lines (d)

For the purpose of illustration, we consider a con-
crete example of the shape optimization problem (1)-
(2a), and use this as benchmark for the following tests
of the regularization technique. The problem is out-
lined in figure 6a. The aim is to design the shape Γ ′

of a pipe bend (dashed) to minimize the pressure drop
from the inlet boundary (red) to the outlet boundary
(blue), keeping the shape of the inlet and the outlet
(solid) fixed, and with an upper bound on the area of
the pipe.

We assume a parabolic horizontal velocity profile
on the inlet boundary, that the velocity it is zero along

the side walls, assuming no-slip conditions, and that
its horizontal component is zero along the open outlet
boundary. We take the length scale as r = 1, the ve-
locity scale as U = max(‖uinlet‖) = 1, the density as
ρ = 1, and the viscosity as µ = 1, assuming appropri-
ate units are used, which yields a Reynolds number of
Re = 1 for the initial problem.

We parametrize the pipe bend as a bi-cubic ten-
sor product B-spline surface, and let the initial design
connect the inlet and outlet by an approximate quar-
ter annulus. The initial control net, the corresponding
parametrization, and the resulting pressure distribution
and stream lines of the flow through it are depicted
in Figure 6b–d. We use 20 control points as design
variables, 10 on each of the two boundaries segments
to be designed, and we allow these to move freely in
both spatial dimensions, except for the four end con-
trol points, which are only allowed to move along the
direction of the inlet/outlet, to keep a handle on these.
As upper bound on the area, we use the initial value,
i.e., Amax = A0, and we relax the lower bound, i.e.,
Amin = −∞. Since the lengths of the inlet and outlet
boundaries are constant, the sensitivities in Equation
(14) are greatly simplified.

4.1 The Challenge: Clustering of Control Points

Applying the isogeometric machinery from Section 3
to the shape optimization problem outlined above re-
sults in the optimization history depicted in Figure
7. From iteration 0 to 15 (actually function call in
SNOPT terminology), the design control points firstly
align, connecting the inlet and the outlet by a more or
less straight segment, thereby decreasing the pressure
drop by ∼ 74%. This design reduces the length of the
pipe in intuitive accordance with the Poiseuille law. At
iteration 44, sharper corners at the inlet and outlet are
formed, but from iteration 44 and onwards, the shape
changes only slightly, and the decrease in the pres-
sure drop is accordingly small. The location of the con-
trol points, however, and the resulting parametrization
change appreciably, though. The control points clus-
ter and eventually fold over, resulting in an invalid
parametrization after 67 iterations from which the method
cannot proceed.

The problem seems to arise in the second of two
qualitatively different stages of the optimization: the
optimizer finds an “optimal” shape in the first stage,
and then tries to find an “optimal” parametrization of
it in the second stage. The latter “optimality”, how-
ever, is a numerical artefact. The optimizer finds the
flaws in the numerical procedure, so to say, and tries
to align the errors in such a way, that the numerical
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Fig. 7 Pipe bend with minimal pressure drop: objective
function as a function of optimization iteration (bottom),
and three snap shots of the control net and the associated
parametrization (top)

estimate is minimized, although the “actual” value is
not. This is the challenge in a nut-shell: when opti-
mizing the location of many control points, they may
cluster when the problem is sufficiently unconstrained,
spuriously yielding slightly lower values of the objective
function on the cost of significantly worse parametriza-
tions and less accurate analysis, which may eventually
lead to a collapse of the method. The clustering of con-
trol points is a well-known issue in isogeometric shape
optimization (Wall et al 2008; Nagy et al 2011). Related
numerical problems in finite element based shape opti-
mization, and regulariation techniques to adress them,
are also well-described (Bletzinger et al 2010). Below,
we firstly give a brief review of some alternative ways
out of the current problem, before proposing the regu-
larization approach, in an isogeometric framework.

4.2 Some Alternative Solution Strategies

The first natural point of focus, when looking for reme-
dies for the current problem, is on the optimization
routine. A quick fix is simply to stop the optimization
immediately after the first “shape” stage, and before
the onset of the second “parametrization” stage. This
could be achieved by relaxing the existing convergence
criterion, or by defining some other relevant measure.
However, since this approach only cures the symptoms
of the problem, and not the cause of it, and due to
the risk of prematurely stopping the optimization, this
approach is, in our view, not only quick, but also dirty.

Turning away from the optimization routine, we may
focus on the problem formulation instead. An obvious
solution to the problem is to reconsider the design de-
grees of freedom. As the control points align, an am-
biguity is introduced, since movements of the control
points along the line does not change the shape, but

does change the parametrization and thus also the nu-
merical estimates of the integrals, and hence the ob-
jective function value, making the problem inherently
ill-posed. One could then simply argue that for this par-
ticular design problem, say, four design control points
on each boundary suffice. However, this is an aposteri-
ori type of reasoning that we would like to avoid. More
interesting is the idea of making this estimation of the
neccesary number of design variables dynamic, i.e., in-
serting and removing design control points on the fly
during the optimization (Seo et al 2010b). The imple-
mentation of a flexible number of design variables in an
optimization procedure, however, is less than trivial.

Preserving the number of control points, but putting
constraints on their movement in the design space, poses
yet another alternative. We could, for instance, con-
strain the design control points to move only along
specified directions. In this approach, it is our duty as
designers to specify “good” directions along which the
control points can move, ensuring both sufficient flex-
ibility in the design while avoiding bad parametriza-
tions. Along the same line of thinking is the concept of
putting bounds on the design variables, see e.g. (Cho
and Ha 2009), thus limiting the optimizer to search for
a minimum in the vicinity of the initial guess only. In
any case, the design space shrinks in these approaches,
and the success of the optimization heavily depends on
the designers choice in initial condition and constraints
on the movement of the control points. A somewhat
related, but much more flexible approach, is to intro-
duce a more general constraint on the design variables.
A popular choice is to put a lower bound on the dis-
tance between control points (Wall et al 2008). Al-
though this approach does take care of the tendency
of control points to cluster, it still closes the door to
parts of the design space. Another choice is to pre-
scribe an upper bound on a single, global measure of
the shape change (Nagy et al 2011) during the opti-
mization, thereby significantly reducing the number of
constraints, but still relying partly on a qualified initial
guess.

4.3 Boundary Regularization

To avoid the problem of clustering control points and
the associated fatal parametrization, we suggest to reg-
ularize the optimization problem (Mohammadi and Piron-
neau 2004, 2010). More specifically, we suggest to add
a term to the objective function that, by measuring the
quality of the parametrization, prevents the unwanted
phenomenon. In this approach, the regularized objec-
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tive function C̃ is written as:

C̃ = C + ε̃R, (21)

where C is the “actual” physical objective, here ex-
pressing the pressure drop in the pipe bend, R is the
“artificial” regularization objective, and ε̃ > 0 specifies
the weight of the regularization term. The aim of the
optimization, when using the regularized objective, is
twofold: we are not only searching for the design that
minimizes the pressure drop, but also for the shape
whose parametrization makes the numerical approxi-
mation of it more reliable. Thereby, we embed the con-
struction of a good parametrization into the design op-
timization, and we are thus targeting the very cause of
the problem.

The method poses two challenges: Firstly, it necces-
sitates the construction of a quality measure R of the
parametrization, and secondly, it requires the specifica-
tion of its relative importance ε̃ in the optimization.

γ

Fig. 8 Illustration of the focus of boundary regularization

The focus of this study is on boundary regulariza-
tion, as sketched in Figure 8. This adresses the qual-
ity of parametrization of the design boundary, which is
clearly compromised early on in the fatal optimization
history in Figure 7. We define the measure as the norm
squared of the parametric acceleration along the design
boundaries, integrated in parameter domain:

R =
∫ 1

0

‖γ̈‖2 dξ, (22)

where we have defined •̈ ≡ ∂2 • /∂ξ2. In discretized
form, it reads:

R = xTRx+ yTRy, (23a)

Ri,j =
∫ 1

0

R̈iR̈j dξ. (23b)

By minimizing this measure, we bring the boundary
parametrization closer to a constant-speed parametriza-
tion, and boundary regularization thus leads the opti-
mizer towards a better boundary parametrization. The
measure is computationally cheap to implement, since

the matrix R only involves integrals of the second order
derivatives of the (univariate) basis functions, and since
it is quadratic in the design variables, the sensitivities
may be straightforwardly computed.

An important challenge in the methodology is the
specification of a suitable weight ε̃ of the regularization.
This challenge is similar in nature to the one associated
with specifying a suitable minimal distance between
control points (Wall et al 2008), or a maximal shape
change norm (Nagy et al 2011). The specification may
be partly facilitated by estimating the initial ratio be-
tween the physical objective C0 and the regularization
objective R0:

ε̃ =
|C0|
|R0|ε, (24)

assuming R0 6= 0, and that this ratio does not change
too much with the design. Taking ε = 1 yields iden-
tical initial numerical values for the physical and the
regularization terms in Equation (21). Usually, a value
ε � 1 is therefore anticipated. The smaller the ε, the
closer we get to the original optimization problem, but,
on the other hand, the more we weaken the regulariza-
tion and its stabilizing influence on the parametrization
and the convergence.
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Fig. 9 Pipe bend with minimal pressure drop: regularized
optimization history (bottom), and snap shots of the control
net and the associated parametrization (top)

We apply the regularized isogeometric shape opti-
mization method to the current design problem, thus
minimizing the regularized pressure drop (21)–(22) through
the pipe bend using the weight ε = 10−2. The optimal
design is reached after 64 iterations, at which point the
pressure drop is decreased to 74.5%. The optimization
history is shown in Figure 9. Here, it is worth notic-
ing that the optimal design is quite close to the design
from which the original formulation drifts off, cf. Figure
7, that the difference in the minimal pressure drop be-
tween the designs is small, and, most importantly, that
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the parametrization is much better in this regularized
formulation, thereby making the analysis more reliable.
The effect of the regularization is clearly seen from the
intermediate design in iteration 19, to the converged
design in iteration 64. The control points spread out
along the line, and the concentration of control points
is shifted away from the straight central part, towards
the curved parts at the inlet and the outlet. This is
also where the geometry, and hence the flow analysis,
is most challenging, due to the presence of sharp corners
that form as a result of coallescing control points. The
resulting pressure field is shown in figure 10. The op-
timized design is similar to the topology optimized de-
sign with minimal energy dissipation (Gersborg-Hansen
et al 2005).

Fig. 10 Pipe bend with minimal pressure drop: optimized
pressure contours and flow stream lines

To examine the effect of the regularization in greater
detail, we solve the problem for a range of regulariza-
tion weights ε ∈ [10−3, 10−1]. Figure 11 shows how the
optimized pressure drop, the required number of itera-
tions, and the optimal design vary with the regulariza-
tion weight. When the regularization is strong, the opti-
mization converges quickly to a smoother design with a
higher pressure drop. As the regularization is decreased,
more iterations are required to reach designs with lo-
cally higher curvature and smaller pressure drops. A
stagnation point in the pressure drop curve is observed,
associated with the formation of the sharp corners at
the inlet and the outlet, such that the optimized pres-
sure drop only falls off slightly for ε ≤ 3 · 10−2. In ad-
dition, the number of iterations is likewise relatively
constant for 3 · 10−3 ≤ ε ≤ 3 · 10−2. A regularization
weight in this range thus seems appropriate in this ex-
ample. The results, however, are not critically sensitive
to the value used.
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Fig. 11 Pipe bend with minimal pressure drop: optimized
pressure drop and required number of iterations as a function
of regularization weight ε (bottom), and optimal design for
three values of ε (top)

We conclude this section by mentioning that a range
of other regularization measures could be considered.
Among these, we have found that similar effects as
those presented above may be obtained by minimizing
the scalar product of the tangent and the acceleration,
the variance of the Jacobian determinant, or the vari-
ance of the parametric speed, all evaluated along the
design boundary. Minimization of the Winslow func-
tional, however, is found to be more problematic to
implement. Furthermore, the regularization measures
could alternatively be implemented as contraints, but
such investigations have been outside the scope of this
study.

5 Applications

In this section, we apply the isogeometric shape opti-
mization methodology for fluid design problems to two
additional numerical examples.

5.1 Body with Uniform Pressure Distribution

We consider the shape optimization problem (1)-(2b)
outlined in figure 12a. The aim is to design the bound-
ary Γ ′ of a body of given area A0, placed in a circu-
lar fluid container of radius r whose outer boundary
rotates, to make the pressure distribution along Γ ′ as
uniform as possible, i.e., to minimize the pressure varia-
tion C∇p along Γ ′. From symmetry considerations, the
pressure is constant along the boundary when a disk is
placed in the centre. Furthermore, analytical solutions
to the governing Navier-Stokes equations for this so-
called Taylor-Couette flow problem is well-known from
the literature. A circle enclosing the specified area and
with centre in the centre of the container is therefore a
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solution to the shape optimization problem. In the fol-
lowing, we investigate how well the isogeometric shape
optimization methodology is able to reproduce this.

r

A0

Γ ′

a b

c d

u = 0

u = U t

p = 0
•
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1√
2

1√
2

Fig. 12 Body with uniform pressure distribution: design
problem setup (a), initial control net, knot vectors, and non-
unitary weights (b), initial parametrization (c), and initial
pressure field (d)

To represent the outer perimeter as an exact cir-
cle, which is of paramount importance when specify-
ing boundary conditions, we parametrize the geome-
try using quadratic NURBS. As initial design, we use
a square placed in the middle, which is an intention-
ally bad initial guess. The control net, knot vectors
and weights are shown in Figure 12b, and the corre-
sponding parametrization is visualized in Figure 12c.
The patch is attached to itself along the dashed line,
resulting in an additional C0-continuity here. The ve-
locity field is specified as purely tangential along the
outer moving perimeter, and as vanishing on the inner
steady boundary, assuming no-slip conditions. Since full
Dirichlet boundary conditions are prescribed for the
velocity field, we set the pressure to zero in an arbi-
trary point. We take the initial area as A0 = 2, the
radius of the outer perimeter as r = 2, the velocity
scale as U = 1, the density as ρ = 1, and the viscosity
as µ = 1, assuming again appropriate units are used,
which again yields a Reynolds number of Re = 1. The
initial pressure field is depicted in Figure 12d. In this,
the C0-continuities are invisible to the naked eye. We
take the constraint on the area as the initial value, i.e.,
Amax = Amin = πr2 − A0, and a one-step approach is
employed for the Reynolds number. To resolve the rota-
tional symmetry, the left-most control point is allowed
only to move horizontally. It turns out that this prob-
lem is sufficiently constrained to prevent control points

from clustering, and we may solve it without regular-
ization.

a b c

Fig. 13 Body with uniform pressure distribution: optimized
control net (a), parametrization (b), and pressure field (c)
for 36 design control points

We consider three consecutive refinements of the
coarse geometry described above, obtained by uniform
knot refinement along the tangential direction, thereby
representing the design boundary Γ ′ by 8, 12, 20, and 36
control points, respectively. We solve the design prob-
lem for each of these four geometric models, using in
turn the optimized coarser design as initial guess for the
finer optimization. The results for the finest geometric
approximation are shown in figure 13. The optimal de-
sign is reached in a total of 1032 iterations, and the
pressure variation is decreased by a factor of ∼ 10−17.
The optimal control net is shown in (a), and the cor-
responding optimized parametrization is shown in (b).
The inner boundary is seen to approximate a circle very
accurately. The optimized pressure field shown in (c) is
significantly more uniform than the initial one shown
in Figure 12d.

0 0.2 0.4 0.6 0.8 1

−0.1

0

0.1

N = 8

N = 12

N = 20

N = 36

circle

a

b

s/Lγ

p

Fig. 14 Body with uniform pressure distribution: compari-
son of pressure distributions along the optimized boundaries
(a), and comparison of the optimized boundaries to the exact
circle in three zooms (b)
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Table 1 Body with uniform pressure distribution: compari-
son of objective function, discrepancy from the exact circle,
and number of iterations for different numbers of design vari-
ables

Ndesign C∇p/C∇p0 εcircle Niter

8 8.1 · 10−4 6.3 · 10−2 131
12 5.1 · 10−5 3.7 · 10−3 127
20 3.3 · 10−6 2.5 · 10−4 344
36 1.4 · 10−17 2.1 · 10−5 430

To examine more closely the effect of enlarging the
design space by the use of more design control points,
Figure 14a shows the pressure distribution along the op-
timized boundary when using 8, 16, 20, and 36 design
control points. Also shown, in figure 14b, is a compar-
ison of the lower part of the optimized design bound-
aries to the exact circle. As is evident from the figure,
the more control points we use, the more uniform the
pressure distribution we obtain, and the better the ap-
proximation to the exact circle we find. This is quan-
titatively supported by the numerical values listed in
Table 1, showing that both the pressure variation, and
the discrepancy of the design boundary from the circle
of radius r0 =

√
A0/π converge towards zero, as more

design control points are used. Here, we have estimated
the discrepancy of the design boundary from the circle
of radius r0 by the measure:

ε2circle =
∫
γ

(
x2 + y2

r20
− 1
)2

ds.

With 36 design control points, this error is ∼ 2.1 ·10−5.

5.2 Body with Minimal Drag

We consider the shape optimization problem (1)-(2c)
outlined in figure 15a. The boundary Γ ′ of a body with
given minimal area A0 traveling at constant speed U

through a fluid is designed to minimize the drag Cd it
experiences as the fluid flows past it.

Symmetry is assumed around the line along which
the body travels, and only the upper half of the prob-
lem is considered. To facilitate the implementation of
boundary conditions, and to achieve local refinement
close to the body, this half space is truncated using
two patches, as shown by the black lines in figure 15b
(top). The design boundary Γ ′ is initialized as an ap-
proximate half circle of radius r = 1, as depicted in Fig-
ure 15c (top), and the computational domain extends
20r upstream, 20r sidewards, and 40r downstream, as
depicted in Figure 15b (bottom). Cubic B-splines are
employed for the geometric parametrization. The ini-
tial control net is shown in Figures 15b-c (bottom). The

a b

c d

u = Ue1

v = ∂u/∂n = 0

ΓN

2
0
r

20r 40r

6

?-�-�

Γ ′
u = 0-�

r

Ξ1 = { 0 0 0 0 1
8 . . . 7

8 1 1 1 1 }
Ξ2 = { 0 0 0 0 1

4
1
2

3
4 1 1 1 1 }

Cd

Γ ′

A0U

Fig. 15 Body with minimal drag: design problem setup (a),
initial control net, initial parametrization, domain dimen-
sions, boundary conditions, and knot vectors (b and c), and
initial pressure contours and flow stream lines for U = 1 (d)

governing equations are solved in the co-moving inertial
system in which the body is at rest. For the boundary
conditions, we assume no-slip along the design bound-
ary Γ ′, that the flow is undisturbed along the upstream
truncation boundary, that the downstream truncation
boundary is open, and that the fields are symmetric
around the lower truncation boundary, as sketched in
Figures 15b-c (top). The density and viscosity are set
to ρ = 1 and µ = 1, respectively, assuming appropriate
units.

We use 11 design control points, and take A0 = π

as lower bound on the area of the body, i.e., Amax =
Area0 −A0/2. The end control points are allowed only
to move horizontally and symmetrically, to ensure that
the domain is appropriately defined, and to resolve the
translational symmetry of the problem. To prevent the
control net from folding over at the leading and trail-
ing edges in particular, boundary regularization with
weight ε = 0.01 is employed.

Table 2 Body with minimal drag: length (L), height (H),
widest location (xw), drag coefficient (C∗d = Cd/(

1
2ρU

2H)),

and relative decrease in drag r = (Cinitial
d −Coptimal

d )/Cinitial
d

for the initial and optimized shapes

Design L/2 H/2 xw C∗d r

Initial 1.00 1.00 0.00 4.13 -
U = 1 1.80 0.62 0.02 6.12 7.7%
U = 10 2.29 0.48 -0.03 1.81 2.4%
U = 40 2.80 0.41 -0.32 0.97 1.2%
U = 100 3.12 0.38 -0.51 0.64 0.4%
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a

b

Initial

U = 1

U = 10

U = 40

U = 100

Fig. 16 Body with minimal drag: initial and optimized
shapes for U ∈ {1, 10, 40, 100} (a), and optimized pressure
contours and flow stream lines for U = 100 (b)

We solve the shape optimization problem for four
consecutive speeds U ∈ {1, 10, 40, 100}, using again the
lower speed solution as initial guess for the higher speed.
These speeds correspond to Reynolds numbers 1, 10, 40,
and 100, respectively, based on the initial setup. After
57 + 40 + 67 + 58 = 222 design iterations, the opti-
mization converges. To illustrate how the design varies
with flow speed, the initial and the optimized shapes
for each of the four speeds are compared in Figure 16a,
and the characteristics of the shapes are summarized
in Table 2. A considerable change in the design is seen
as the speed is increased. For low speeds, a rugby ball-
like shape is optimal. For higher speeds, a more slen-
der shape is optimal, with a slightly thicker upstream
part than downstream. The long slender design relates
well to the increase in the significance of the form drag,
and the decrease in the significance of the skin fric-
tion drag, as the speed increases. The pressure and flow
fields around the optimized shape for the terminal speed
U = 100 are depicted in figure 16b.

In the present context, minimizing the drag on the
body is equivalent to minimizing the energy dissipation
in the flow past it (Mohammadi and Pironneau 2010),
and we may compare the results for these two types of
problems. Firstly, for Reynolds number Re = 1, the an-
gle of the wedge-shaped upstream part compares well
to the theoretically predicted value of 90◦, while for
higher Reynolds numbers, the shapes are more cusped

(Pironneau 1973, 1974). For Reynolds number Re = 1,
the present optimal shape compare well qualitatively
to the numerical results obtained in (Katamine et al
2005), while for Reynolds numbers Re > 1, the present
optimal shapes differ significantly from their ovoid with
the upstream part slimmer than the downstream part.
Consistently better qualitative correspondance is found
with the numerical results in (Kim and Kim 1995), al-
though the present optimal shapes are slightly longer,
thinner, and more ovoid than their elliptic shapes.

6 Conclusions

In this work, we have applied isogeometric analysis to
shape optimization problems for fluids. The method-
ology uses NURBS and B-splines from computer aided
design both as analysis tool in a finite-element-like maner
to solve the governing steady-state, incompressible Navier-
Stokes equations, and as design tool to find optimal
shapes by moving the control points using a gradient-
based numerical optimization package.

By adding to the objective function a measure of
the quality of the parametrization, we have established
a regularization technique to avoid inappropriate para-
metrizations during optimization, a commonly known
problem in isogeometric shape optimization. Based on
a bechmark design problem, in which a pipe bend is de-
signed to minimize the pressure drop of the flow through
it, the integral of the norm squared parametric accel-
eration along the design boundary was found to be a
cheap, flexible and efficient regularization measure. The
method embeds the construction of a good parametriza-
tion into the design optimization, allowing the designer
to search for shapes in a large design space, with little
apriori knowledge on the optimal design. The greatest
challenge of the method lies in the choice of the regu-
larization weight.

To emphasize the robustness of the proposed iso-
geometric shape optimization methodology for fluids,
we have used it firstly to design a body at rest in a
circular fluid container with rotating boundary to ob-
tain a uniform pressure distribution along its boundary,
and secondly to design a body traveling at constant
speed through a fluid to minimize the drag from the
flow past it. For the former problem, it was found that
progressively better approximations of a known solu-
tion is achieved when more design control points are
used, while the latter problem demonstrated that sig-
nificantly different shapes of the minimal drag body
may be obtained when the speed is varied.

In summary, the isogometric shape optimization method-
ology facilitates the accurate design of complex shapes
in engineering problems within fluid mechanics.

129



Isogeometric Shape Optimization for Fluids 15

Aknowledgment

The authors would like to thank Allan Roulund Gers-
borg, Burmeister & Wain Energy A/S, Denmark, and
Thomas A. Grandine and Thomas A. Hogan, The Boe-
ing Company, USA, for their conceptual support to this
study.

References

Akkerman I, Bazilevs Y, Calo VM, Hughes TJR, Hulshoff S
(2010) The role of continuity in residual-based variational
multiscale modeling of turbulence. Comput Mech 41:371–
378

Bazilevs Y, Hughes T (2008) NURBS-based isogeometric
analysis for the computation of flows about rotating com-
ponents. Comput Mech 43:143–150

Bletzinger KU, Firl M, Linhard J, Wüchner R (2010) Opti-
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Paper III: Isogeometric
Analysis of Sound
Propagation through Flow
in 2-Dimensional Ducts

This chapter contains a preprint of: P. N. Nielsen, J. Gravesen, and M. Willatzen.
Isogeometric analysis of sound propagation through flow in 2-dimensional ducts,
2011b. Submitted to Journal of Sound and Vibration.
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Abstract

We consider the propagation of sound through a moving fluid in a 2-dimensional duct. A detailed description of
a coupled flow-acoustic model of the problem based on isogeometric analysis is given. The model couples the non-
linear, steady-state, incompressible Navier-Stokes equation in the laminar regime for the flow field to a linear, time-
harmonic acoustic equation in the low Mach number regime for the sound signal. Acoustic boundary conditions on
artificial truncation boundaries are treated using a mode matching formulation. We validate the model against known
acoustic modes in 2-dimensional ducts. Improved error convergence rates are found when the acoustic pressure is
approximated by higher order polynomials. Based on the model, we examine effects of the duct geometry on how the
acoustic signal depends on sound frequency and flow speed. A combination of duct geometry and sound frequency is
identified for which the acoustic signal is particularly sensitive to the background flow.

Keywords:
flow acoustics, isogeometric analysis, duct, ultrasound, mode matching

1. Introduction

It is well known in physics and engineering applica-
tions that wave propagation in ducts is sensitive to the
duct geometry [1, 2, 3]. In particular, spatial resonances
exist at certain frequencies [4, 5, 6], and it is anticipated
that disturbances may cause large variations in signal
transmission at such frequencies. While these effects
have been explored in quantum mechanics, solid state
physics, and optics, in particular for quasi-periodic and
periodic structures [7, 8, 9, 10, 11], we here investigate
the influence of a background flow on acoustic wave
propagation in 2-dimensional ducts of varying height.

Finite element methods within the field of sound
propagation through flow in ducts are extensively used,
based on, e.g., the convected Helmholtz equation [12,
13], the linearized Euler equations [14], or the so-called
Galbrun’s equation [15, 16, 17], and often discretized
using Lagrange elements with C0-continuity of the state

∗Corresponding author.
Email addresses: p.n.nielsen@mat.dtu.dk (Peter Nørtoft

Nielsen), j.gravesen@mat.dtu.dk (Jens Gravesen),
willatzen@mci.sdu.dk (Morten Willatzen)

variable approximations. Our work contributes to this
field in two ways.

Firstly, we analyse the coupled flow-acoustic system
by explicitly connecting a flow model to an acoustic
model. The procedure we follow is first to compute the
background flow based on the steady-state, incompress-
ible Navier-Stokes equations in the laminar regime, i.e.,
at low Reynolds numbers, and then we adobt a linear,
time-harmonic flow-acoustic approach for the sound
wave propagation in the low Mach number regime, us-
ing the calculated background flow as input. This re-
sults in a single equation in the acoustic pressure, linear
in both the flow field itself and its gradient.

Secondly, we base our calculations on isogeomet-
ric analysis, a recently proposed numerical method that
unites the powers of finite element methods to solve par-
tial differential equations with the powers of computer
aided design to represent complex shapes [18, 19]. For
the problem at hand, isogeometric analysis is particu-
larly appealing because it allows for simple descriptions
of complex duct geometries, and provides high degrees
of smoothness for both flow and acoustic fields. The
applicability of the method is well documented within
fluid mechanics, see, e.g., [20, 21, 22, 23], as well as

Preprint submitted to Journal of Sound and Vibration
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for wave phenomena and the closely related structural
vibrations [24, 25].

The first aim of the paper is to establish and vali-
date the coupled flow-acoustic model for time-harmonic
sound propagation at low Mach numbers through a
stationary, incompressible background flow at low
Reynolds numbers in 2-dimensional ducts based on iso-
geometric analysis.

The second aim of the paper is to use the model to nu-
merically examine how the geometry of the duct influ-
ences the sound propagation, and in particular its effect
on how the acoustic signal depends on flow speed. We
consider a transmitting ultrasonic transducer mounted
on the duct wall, as sketched in Figure 1, and we ex-
amine the difference between the downstream and the
upstream acoustic signals for different frequencies and
flow speeds. Geometric effects are investigated by con-
sidering three different duct geometries: a straight duct,
a duct with a single bulge, and a corrugated duct with
two bulges.

The outline of the paper is as follows: section 2 in-
troduces the governing equations and approximations
leading to the coupled flow-acoustic model. The iso-
geometric method is presented in section 3, after which
the method is validated in section 4. Numerical results
are presented in section 5, and finally conclusions are
summarized in section 6.

2. Governing Equations and Approximations

Figure 1: Sound propagates (black arrows) from acoustic sources
(black rings) through a moving fluid (gray arrows) in a symmetric
(dashed lines) 2-dimensional duct (solid lines).

We consider the propagation of sound through a mov-
ing fluid in a symmetric 2-dimensional duct as depicted
in Figure 1. The state of the fluid is characterised by
the velocity u = (u, v), the pressure p, and the density ρ,
assuming the fluid is isothermal, i.e., at constant temper-
ature. These state variables are governed by the Navier-
Stokes and mass continuity equations:

ρ
∂u
∂t

+ ρ(u · ∇)u + ∇p − ∇ · T = 0, (1a)

∂ρ

∂t
+ ∇ · (ρu) = 0, (1b)

where t denotes time, and T is the deviatoric stress ten-
sor.

The problem involves two distinct physical phenom-
ena: the flow of the fluid and the propagation of sound
in it. We express this separation through the state vari-
ables:

u = u0 + u′, p = p0 + p′, ρ = ρ0 + ρ′, (2)

where u0, p0, and ρ0 relates to the large scale mean flow,
and u′, p′, and ρ′ relates to the small scale acoustic dis-
turbances. For simplicity, we will assume a one-way
coupling of these phenomena, such that flow phenom-
ena (u0, p0, and ρ0) influence acoustic phenomena (u′,
p′, and ρ′), but not the other way around. Hence, we
may treat the flow model as independent of the acoustic
model, and use the output of the flow model as input to
the acoustic model.

γ− γ+

Γw

Γs

Ω

Figure 2: Model domain (light gray) and boundaries (black lines).

In the following, we consider the flow and acous-
tic equations over a symmetric, finite segment of one
half of the symmetric, infinite 2-dimensional duct as de-
picted in Figure 2. The four boundaries of the model
domain Ω are: the hard wall boundary Γw, the symme-
try boundary Γs, and the two artificial truncation bound-
aries γ− and γ+.

2.1. Flow Equations
For the flow model, we assume that the fluid is New-

tonian and incompressible, and that the flow is station-
ary. The governing equations (1) over Ω then simplify
to:

ρ0(u0 · ∇)u0 +
∂p0

∂x
− µ∇2u0 = 0, (3a)

ρ0(u0 · ∇)v0 +
∂p0

∂y
− µ∇2v0 = 0, (3b)

∇ · u0 = 0, (3c)

where µ is the dynamic viscosity of the fluid, and ρ0 its
constant density.

The boundary conditions are:

u0 = u∗0 on γ− ∪ Γw,
(4a)

v0 = 0 ∧ ( µ∇u0 − p e1 ) · n = 0 on γ+ ∪ Γs,
(4b)

2
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where n is the outward unit normal, and u∗0 prescribes a
purely horizontal flow velocity on the flow inlet γ−, and
a vanishing flow velocity along the hard wall Γw. On the
symmetry edge Γs, we note that e1 · n = 0. On the flow
outlet γ−, the enforcement of v0 = 0 has implications on
the validity of the acoustic model, as explained.

We solve the weak, or variational, form of the system
(3)-(4) which reads: given ρ0 and µ, find u0 and p0 such
thatx

Ω

(
Uρ0(u0 · ∇)u0 − p0

∂U
∂x

+ µ∇U · ∇u0

)
dA = 0,

(5a)x
Ω

(
Vρ0(u0 · ∇)v0 − p0

∂V
∂y

+ µ∇V · ∇v0

)
dA = 0,

(5b)x
Ω

P
(
∇ · u0

)
dA = 0,

(5c)

for all test functionsU,V,Pwithout support on bound-
aries where the fields are explicitly prescribed.

2.2. Acoustic Equations
The acoustic model sets out from the Navier-Stokes

and mass conservation equations (1). Inserting the con-
ventions (2) in this, neglecting all higher orders terms
in the acoustic variables, neglecting viscous effects, and
using the isentropic relation p′ = c2ρ′, where c is the
speed of sound in the fluid, we arrive at the following
linearized acoustic equations:

∂u′

∂t
+ (u′ · ∇)u0 + (u0 · ∇)u′ +

1
ρ0

∂p′

∂x
= 0, (6a)

∂v′

∂t
+ (u′ · ∇)v0 + (u0 · ∇)v′ +

1
ρ0

∂p′

∂y
= 0, (6b)

∂p′

∂t
+ ∇p′ · u0 + c2ρ0∇ · u′ = 0. (6c)

Applying separation-of-variables and assuming time-
harmonic conditions, we seek acoustic solutions u′ and
p′ to equations (6) of the following form:

u′(t, x) = e−iωtũ(x), p′(t, x) = e−iωt p̃(x). (7)

where ω denotes the acoustic angular frequency. Using
the above assumptions, neglecting higher order terms
in the background flow u0, and introducing an acoustic
source f , the following single equation in the spatial
part of the acoustic pressure p̃ can be derived:

∇2 p̃+k2 p̃+
2i
ω

(
k2u0 ·∇ p̃− ∂u0

∂x
·∇∂p̃
∂x
− ∂u0

∂y
·∇∂p̃
∂y

)
= f ,

(8)

where k ≡ ω/c is the wave number. This equation is
valid for low background flow speeds only. We note that
the terms in the paranthesis all relate to the background
flow u0. When this vanishes, the equation reduces to the
usual inhomogenous Helmholtz equation.

The boundary conditions on the hard wall and the
symmetry edge are:

∇ p̃ · n = 0 on Γw ∪ Γs. (9)

The treatment of the artificial truncation boundaries γ±,
however, is less trivial [26, 12, 13]. Here, waves must
be allowed to propagate out of the domain, and, at the
same time, reflections back into the domain must be
avoided. We treat the truncation boundaries using the
mode matching formulation [27], based on a modal de-
composition, a method closely related to the so-called
Dirichlet-to-Neumann map [13].

The crux of the mode matching method is to assume
that the acoustic pressure on the truncation boundaries
γ± may be expressed as linear combinations of so-called
acoustic duct modes, giving the following relations for
the acoustic pressure and its normal derivative:

p̃(x, y) =

N±m∑
n=1

b±nφ
±
n (y) ≡ p̃± on γ±,

(10a)

∇ p̃(x, y) · n = ±∂p̃
∂x

(x, y) = ±
N±m∑
n=1

b±nλnφ
±
n (y) on γ±,

(10b)

where φn are the acoustic duct modes, λn are the asso-
ciated (complex and signed) wave numbers, bn are the
expansion coefficients, and Nm is the finite (and small)
number of modes.

The mode matching method involves two steps: In
the first step, the acoustic duct modes, i.e., the functions
φn and the wave numbers λn, are determined. In the
second step, the weights bn of the modes on γ±, as well
as the acoustic pressure p̃ over the entire domain Ω are
determined.

For the first step, we assume that the truncation
boundaries γ± are placed far away from acoustic sources
and geometric ondulations, such that the background
flow u0 is independent of x and normal to γ±. With
these assumptions, equation (8) evaluated on the trun-
cation boundaries simplifies to:

∂2 p̃
∂x2 +

∂2 p̃
∂y2 + k2 p̃ +

2i
ω

(
k2u0

∂p̃
∂x
− u′0

∂2 p̃
∂x∂y

)
= 0, (11)

where u0 = u0(y) is the horizontal background flow
velocity, and u′0 = du0/dy its derivative. From equation
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(9), the boundary conditions are:

u′0 = 0 for y = 0,R, (12)

where R is the height of the duct. We are interested in
the weak form of equation (11) which reads: given ω, k,
and u0, find p̃ such that∫
γ±

P̃
[∂2 p̃
∂x2 +

∂2 p̃
∂y2 + k2 p̃ +

2i
ω

(
k2u0

∂p̃
∂x
−u′0

∂2 p̃
∂x∂y

)]
dy = 0,

(13)
for all test functions P̃. The modes are then determined
by solving an eigenvalue problem based on equation
(13) while using the homogenous Neumann boundary
conditions in equation (12).

For the second step, we consider the weak forms of
the system (8)-(9) for the acoustic pressure over the do-
main Ω, and of the modal relation (10a) on the trunca-
tion boundaries γ±. These read: given ω, k, f , and u0,
find p̃ and p̃± such that∫
γ±

P̃(∇p̃ · n) ds −
x
Ω

∇P̃ · ∇ p̃ dA +
x
Ω

P̃
[
k2 p̃ − f

+
2i
ω

(
k2u0 · ∇ p̃ − ∂u0

∂x
· ∇∂p̃

∂x
− ∂u0

∂y
· ∇∂p̃

∂y

)]
dA = 0

(14a)∫
γ±
F̃ ±(p̃ − p̃±

)
ds = 0,

(14b)

for all test functions P̃, F̃ ±. These equations are then
solved using the Neumann boundary conditions (10b)
on the truncation boundaries.

3. Isogeometric Analysis

We solve the coupled flow-acoustic problem numeri-
cally using B-spline based isogeometric analysis, build-
ing on the Galerkin method. This section gives an ac-
count of the numerical procedure. The reader is referred
to, e.g., [28] for treatment of B-splines, and to, e.g., [19]
for an extensive introduction to isogeometric analysis.

3.1. Geometry Parametrization

A parametrization X : [0, 1]2 → R2 of the computa-
tional domain is constructed, see Figure 3:

X(ξ, η) =
(

x(ξ, η), y(ξ, η)
)

=

Ng
fun∑

i=1

xiRg
i (ξ, η), (15)

X[0, 1]2

Ω
y

x

η

ξ

Figure 3: Parametrization of the model domain.

where Rg
i are tensor product B-splines with given knot

vectors and polynomial degrees, xi are the associated
control points, and Ng

fun is the number of terms in the
expansion.

The geometry parametrization serves as foundation
for both the flow model and the acoustic model. Rather
than solving the equations over the physical domain Ω,
we pull them back to the parameter domain [0, 1]2 and
solve them there.

For later reference, the gradient ∇ and the Hessian
matrix H in physical space Ω of any scalar quantity h
are related to their counterparts ∇, H, and h in parameter
space [0, 1]2 by the following relations:

∇h = JT∇h (16a)

H(h) = JT H(h)J +

2∑
m=1

H(xm)eT
m∇h, (16b)

where J is the Jacobian matrix of the parametrization,
and e1 = (1 0)T and e2 = (0 1)T are the standard unit
vectors. These relations are easily solved for the quanti-
ties ∇h and H(h) in physical space whose elements ap-
pear in the governing equations, and expressed through
the quantities ∇h, H(h), J, H(x), and H(y) in parameter
space where we solve the equations.

3.2. Flow Model

Approximations of the background flow velocity and
pressure fields are constructed in a similar fashion as for
the geometry (15):

u =

Nu
fun∑

i=1

uiRu
i =

Nu
dof∑

i=1

uiRu
i +

Nu
fun∑

i=Nu
dof+1

uiRu
i , (17a)

v =

Nv
fun∑

i=1

uiRv
i =

Nv
dof∑

i=1

viRv
i +

Nv
fun∑

i=Nv
dof+1

viRv
i , (17b)

p =

N p
fun∑

i=1

piRp
i =

N p
dof∑

i=1

p
i
Rp

i , (17c)
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where, for the u-field, the basis functions Ru are tensor
product B-splines with given knot vectors and polyno-
mial degree, the expansions coefficients u are the un-
known control variables to be determined, and Nu is the
number of terms in the expansion, and similarly for the
v-field and p-field. Also, for book keeping purposes, the
velocity expansion has been split into terms with and
terms without support on the Dirichlet boundary.

Using suitable functions Ru, Rv and Rp as test func-
tions in the weak formulation of the governing equa-
tions (5), inserting the discretizations of the state vari-
ables (17) into it, interchanging order of summation and
integration, and rearranging terms, the following system
of non-linear equations can be derived:

 µK1 + ρ0C1(u) 0 −GT
1

0 µK2 + ρ0C2(u) −GT
2

G1 G2 0


 ū1

ū2
p̄


= −

 µK?
1 + ρ0C?

1 (u) 0
0 µK?

2 + ρ0C?
2 (u)

G?
1 G?

2


[

ū?1
ū?2

]
(18)

or simply M(U) U = F, with

Ki, j,k =
x

[0,1]2

∇Ruk

i · ∇R
uk

j det
(
J
)

dΞ, (19a)

Ci, j,k =
x

[0,1]2

Ruk
i
(
u(u) · ∇Ruk

j
)

det
(
J
)

dΞ, (19b)

Gi, j,k =
x

[0,1]2

Rp
i
(
ek · ∇Ruk

j
)

det
(
J
)

dΞ, (19c)

Kk =
[

Kk K?
k

] (
Nuk

dof × (Nuk
dof+Nuk

fix )
)
, (19d)

Ck =
[

Ck C?
k

] (
Nuk

dof × (Nuk
dof+Nuk

fix )
)
, (19e)

Gk =
[

Gk G?
k

] (
N p

dof ×(Nuk
dof+Nuk

fix )
)
, (19f)

u
T

k =
[

ūT

k ū?T

k

] (
1×(Nuk

dof+Nuk
fix )

)
, (19g)

where all starred quantities are given by the Dirichlet
boundary conditions.

3.3. Acoustic Model

The acoustic model involves two steps: The first step
determines the acoustic duct modes on the truncation
boundaries γ±, i.e., the functions φn and the wave num-
bers λn. The second step determines the weights bn of
the modes on γ± as well as the acoustic pressure p̃ over
the entire domain Ω.

3.3.1. Acoustic Duct Modes
To determine the acoustic duct modes, we approxi-

mate the pressure in the regions far upstream and far
downstream by the following expression:

p̃(x, y) =

n∑
`=1

a`(x)M`(y) , (20)

whereM` are univariate B-splines defined over the pa-
rameter domain ξ ∈ [0, 1],M` are their image in physi-
cal space, and thus functions of y, c` are expansion co-
efficients that are functions of x, and n is the number of
terms in the expansion.

Due to the properties of B-splines, the boundary con-
dition (12) for the acoustic pressure on the straight parts
of the hard wall Γw and the symmetry edge Γs may be
fulfilled a priori by choosing a1 = a2 and an = an−1, or,
equivalently, by replacing the approximation (20) by

p̃(x, y) =

n−2∑
`=1

b`(x)N `(y) , (21)

where

N1 =M1 +M2, b1 = a1 + a2,

N2 =M3, b2 = a3,

...
...

Nn−3 =Mn−2, bn−3 = an−2,

Nn−2 =Mn−1 +Mn, bn−2 = an−1 + an.

By inserting the approximation (21) into the equation
(13) on the truncation boundaries, using Nk(y) as test
functions, and pulling the integrals back to parameter
domain [0, 1], the following system of ordinary differ-
ential equations is obtained:

R b̈ +
2i
ω

S ḃ + T b = 0 , (22)

where dot denotes differentiation with respect to x, and

Rk,` =

∫ 1

0
NkN` y′ dξ , (23a)

Sk,` =

∫ 1

0
Nk

(
k2 u0N` − u′0 y′−1N ′`

)
y′ dξ , (23b)

Tk,` =

∫ 1

0
Nk

(
y′−2N ′′` − y′′ y′−3N ′` + k2N`

)
y′ dξ ,

(23c)

b =
(

b1(x) . . . bn−2(x)
)T
, (23d)
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for k, ` = 1, . . . , n − 2, where prime denotes differentia-
tion with respect to ξ. The second order system (22) can
be rewritten as the first order system[

I 0
0 R

] [
ḃ
ċ

]
=

[
0 I
−T − 2i

ω
S

] [
b
c

]
. (24)

By solving the generalised eigenvalue problem[
0 I
−T − 2i

ω
S

] [
b
c

]
= λ

[
I 0
0 R

] [
b
c

]
, (25)

we obtain 2n− 4 pairs of eigenvalues, λk, and eigenvec-
tors, (bk ck)T . Each eigenvalue represents a (complex
and signed) wave number, and each eigenvector corre-
sponds to a (complex) acoustic duct mode

φk(y) =

n−2∑
`=1

b`,kN `(y) . (26)

As demonstrated in section 5 below, a finite and small
number of modes Nm with purely imaginary propaga-
tion constant λ are found in practice, while the number
of modes with propagation constant with non-vanishing
real part is bounded only by the numerical discretiza-
tion. We base the mode matching formulation on the
former propagative modes, while the latter evanescent
modes are neglected.

3.3.2. Acoustic Pressure
To compute the acoustic pressure p̃ over the entire do-

main, and the weights bn of the modes on the truncation
boundaries, we will, as for the geometry and the back-
ground flow variables, seek solutions of the following
form:

p̃ =

N p̃
fun∑

i=1

p̃iR
p̃
i , (27)

where the basis functions R p̃ are tensor product B-
splines with given knot vectors and polynomial degrees,
the expansions coefficients p̃ are the unknown control
variables to be determined, and N p̃

fun is the number of
terms in the expansion.

As test functions in the weak formulation of the gov-
erning equations (14), we use the basis functions R p̃ and
the (B-spline approximations from above of the) prop-
agative acoustic duct modes φ±. By inserting the acous-
tic field approximation (27) and the acoustic duct mode
approximation (26) into these equations, exploiting the
Neumann boundary condition (10b), rearranging terms
and interchanging order of integration and summation,

we arrive at the following system of linear equations: −D + k2M + 2i
ω

(
k2L −Q

)
HBΛ

BT H −BT HB

 [ p̃
b

]
=

[
f
0

]
(28)

where

Di, j =
x

[0,1]2

∇R p̃
i · ∇R

p̃
j det

(
J
)

dΞ, (29a)

Mi, j =
x

[0,1]2

R p̃
i R p̃

j det(J) dΞ, (29b)

Li, j =
x

[0,1]2

R p̃
i
(
u0 · ∇R p̃

j
)

det(J) dΞ, (29c)

Qi, j =
x

[0,1]2

R p̃
i

2∑
m=1

(eT
m∇)u0 · (HR p̃

j em) det(J) dΞ, (29d)

Hi, j =

∫
[0,1]

R p̃
i R p̃

j ‖γ′‖ dξ, (29e)

Bi,k =

{
b`,k if supp(R p̃

i ) ∩ γ± , ∅
0 otherwise

, (29f)

Λk,` = δk,lλk, (29g)

fi =
x

[0,1]2

R p̃
i f det

(
J
)

dΞ, (29h)

for i, j = 1, . . . ,N p̃
fun and k, ` = 1, . . . ,Nm, where δk,l

is the Kronecker delta. Here, the matrices M and D
appears independently of the background flow, whereas
L is due to the flow field u0, and Q is due to the gradient
of the flow field ∇u0.

3.4. Implementation

For the geometry parametrization, we take Rg
i as bi-

quadratic tensor product B-splines. For the flow approx-
imations, we take Ru

i and Rv
i as bi-quartic and Rp

i as bi-
cubic, respectively, all C2 across knots cf. [23]. For
the acoustic approximation, R p̃

i are taken as bi-quartic,
unless otherwise stated.

The Dirichlet boundary conditions, for which the
background flow is explicitly prescribed, are enforced
strongly. This is done by specifying suitable control
variables u∗ corresponding to basis functions for which
the relevant basis functions have support on the rele-
vant boundary. The Neumann boundary conditions, for
which the normal component of the background flow
velocity gradient or the acoustic pressure gradient are
prescribed, are enforced weakly by equating the corre-
sponding parts of the boundary integrals to their respec-
tive values.
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All integrals are evaluated numerically using Gaus-
sian quadrature based on 7 points in each knot span,
which is a conservative choice compared to more effi-
cient quadrature rules [29].

4. Validation: Acoustic Duct Modes

In this section we consider the propagation of sound
waves in a straight duct with uniform background flow,
for which analytical solutions are readily available. We
validate the coupled flow-acoustic model numerically
by examining how well the method is able to reproduce
these analytical solutions.

γ− γ+

Γw

Γs

Ω
O
•

Figure 4: The modal problem.

The problem is outlined in Figure 4. It differs from
the one described in Figure 2 by the fact that a uniform
background flow u0 = (U0, 0) is explicitly prescribed,
the interior acoustic source f has been removed, and the
mode matching boundary condition on the left boundary
γ− has been replaced by an explicit prescription of the
acoustic pressure:

p̃ = p̃∗n on γ−. (30)

Here, p̃∗n is an analytical solution of equation (8) for the
acoustic pressure field in a straight duct of height R with
uniform background flow u0 = (U0, 0):

p̃∗n = exp
(
iβnx

)
cos

(
αny

)
, (31)

where

αn = nπ/R, (32a)

βn = −kM ±
√

k2(1 + M2) − (nπ/R)2 , (32b)

where M ≡ U0/c is the Mach number. This corresponds
to the nth propagative acoustic duct mode

φn(y) = cos
(
nπ

y
R

)
, (33)

such that n ≤ √1 + M2 k R /π, travelling towards ±∞.
To assess the quality of the method, we will use

the normalised L2-norm of the modulus of the pressure
residual as error measure:

ε2 =

s
Ω
| p̃ − p̃∗|2 dAs
Ω
|p̃∗|2 dA

. (34)

We investigate how this varies as the analysis mesh is
refined by knot insertion, and the number of degrees-of-
freedom thereby increased. We use the parameter values
for the duct size, sound frequency and flow speed as
described in Table 1 in the following section, leading to
two propagative modes n ∈ {0, 1}.

We firstly examine how different approximations of
the acoustic pressure influence the error convergence.
Here, we consider the background flow U0 = 1 m s−1,
the sound frequency f = 25 kHz, and the highest
propagative mode n = 1. For polynomial degrees
q ∈ {2, . . . , 6}, we solve the problem for a range of
meshes, and evaluate the error using (34). The results
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10
0

 

 
q = 2
q = 3
q = 4
q = 5
q = 6

U0 = 1m s−1 , f = 25kHz, n = 1

Nfun

ε

Figure 5: Relative error ε as function of number of basis function Nfun
for different polynomial degrees q.

are shown in Figure 5. By inspection of the slope of the
curves, we note that the higher the polynomial degree
is, the higher the convergence rate also is. For polyno-
mial degrees q ≥ 5, this holds only for sufficiently few
degrees of freedom, presumably because of rounding er-
rors for more degrees of freedom. All following results
are based on a polynomial degree of q = 4.

Secondly, to illustrate the effect of the background
flow on the acoustic wave propagation, Figure 6 depicts
the real part of the acoustic pressure in the duct without
flow (a), with flow U0 = 1 m s−1 (b), and the difference
between these (c), for the mode n = 1 and frequency
f = 25 kHz. As expected, the effect of background flow
is to strech the wavelength of the sound waves in the
downstream region.

Finally, we investigate the error convergence for dif-
ferent background flows, sound frequencies, and modes.
For each combination of background flow U0 ∈ {0, 1}
m s−1, frequency f ∈ {20, 30} kHz, and mode n ∈ {0, 1},
we solve the problem for a range of meshes, and com-
pute the error using (34). The results are shown in Fig-

7

138 APPENDIX D. PAPER III



a

b

c

U0 = 0

U0 = 1 m s−1

b - a

a & b

c

[Pa]

[Pa]

Figure 6: Real part of the acoustic pressure p̃ using the background
flow U0 = 0 (a), U0 = 1 m s−1 (b), and the difference between these
(c), for the mode n = 1 and frequency f = 25 kHz.
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Figure 7: Relative error ε as function of number of basis functions
Nfun for different background flows U0, frequencies f and modes n.

ure 7. We note that practically identical rates of con-
vergence are found independently of background flow,
frequency, and mode.

5. Results

In this section we use the coupled flow-acoustic
model to examine how the duct geometry affects how
the acoustic signal depends on sound frequency and
flow speed.

5.1. Setup of Numerical Experiment

The numerical experiment is sketched in Figure 8. To
assess the geometric effects, three different geometries
are investigated: a straight duct (a), a duct with a single
bulge (b), and a corrugated duct (c). The flow is var-
ied by prescribing, for different mean flow speeds U0, a
parabolic velocity profile at the inlet boundary:

u0 =
3
2

U0

(
1 −

( y
R

)2 )
, v0 = 0, on γ− . (35)

a

b

c-----

-----

-----

•
O

•
O

•
O

-� L

6?R

6?R

6?R

6
?
2R

6
?
2R

-� 4/16 L

-�3/16 L

-�2/16 L

Figure 8: Design of the numerical experiment: We investigate 3 ge-
ometries (a, b, and c), and prescribe the flow at the inlet (blue arrows)
and the sound excitation in the middle (red circles).

The sound excitation is varied by assuming, for differ-
ent angular frequencies ω, a smooth, compactly sup-
ported acoustic source, centered at (0, r0), where r0 is
the height of the duct in x = 0, with the following form:

f (x, y) = f0 Ψ(x; 0, Lx) Ψ(y; r0, Ly), (36)

where f0 denotes the strength of the source, L its spatial
extent, and the footprint function Ψ is given by:

Ψ(x; a, b) =

 e−
1

1−χ2 for |χ| ≡ | x−a
b | < 1

0 otherwise
. (37)

The parameter values used in the numerical experiment
for the geometry, the fluid, and the sound excitation
are summarised in Table 1. With R as characteristic

Parameter Description Value Unit
µ Dynamic viscosity 1 · 10−5 kg m−1s−1

ρ Background density 1 kg m−3

c Speed of sound 340 m s−1

R Duct height 1 cm
L Duct length 20 cm
f Source strength 1 · 106

L = (Lx, Ly) Source size (2, 2) mm
f = ω/2π Sound frequency 20–30 kHz
U0 Flow speed 0–1 m s−1

Table 1: Parameter values corresponding to propagation of ultrasound
in air-filled narrow ducts are used.

length scale, and U0 as flow speed, this corresponds to
Reynolds numbers up to Re ' 1·103 and Mach numbers
up to M ' 3 · 10−3.

5.2. Flow Field and Acoustic Modes

We firstly investigate the background flow. Figure 9
depicts the flow fields in the three different duct geome-
tries using the flow speed U0 = 1 m s−1. In the straight
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a

b

c

[m s−1]

Figure 9: Flow speeds (colours) and stream lines (solid lines) using
the mean speed U0 = 1 m s−1 in the straight duct (a), the bulged duct
(b), and the corrugated duct (c).

duct (a), the parabolic velocity profile is naturally con-
served down the duct. In the bulged duct (b) and the
corrugated duct (c), we notice that the flow profile is
only slightly perturbed in the vicinity of ondulations. In
addition, a weak recirculation flow is seen in the bulges.

Next, we investigate how the acoustic duct modes
vary with flow speed and sound frequency. This is
depicted in Figure 10. In a, a typical configuration
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Figure 10: Acoustic duct modes for different frequencies f and flow
speeds U0. a: propagation constants λ for f = 25 kHz and U0 = 0.
b: mode functions φ for f = 25 kHz and U0 = 0. c: imaginary part
of propagation constants λ for U0 = 1 m s−1 and f ∈ [20, 30] kHz. d:
mode function φ residuals for U0 = 1 m s−1 compared to U0 = 0 for
f = 25 kHz.

of computed propagation constants λ (scaled by k) is
shown in the complex plane, here with vanishing back-
ground flow U0 = 0, and frequency f = 25 kHz. The
propagation constants can be categorized as propaga-
tive/evanescent (on/off the imaginary axis), and as pos-
itive/negative (positive/negative imaginary part, or van-
ishing imaginary part and strictly positive/negative real
part). Four propagative modes are found, two in each di-
rection, in agreement with the analytical values in equa-

tion (32) with M = 0. The number of evanescent modes
is bounded only by the number of degrees of freedom
of the discretization, and only the first eight are shown
here. In b, the modal functions φ corresponding to
the propagation constants in a are shown, with prop-
agative modes drawn in solid, and evanescent modes in
dashed. These agree with the analytical modes in equa-
tion (33). In c, the imaginary parts of the propagation
constants (scaled by k) corresponding to the four prop-
agative modes for mean speed U0 = 1 m s−1 are shown
as a function of frequency in the range f ∈ [20, 30] kHz,
plotted as the residual compared to the case without flow
as given by equation (32) with M = 0. The perturba-
tions in the propagation constants due to the flow are
largest for the second mode n = 1, but are in general
small and . 0.1h. Finally in d, the four propagative
modal functions for mean speed U0 = 1 m s−1 and fre-
quency f = 25 kHz are depicted. The plot shows the
modal function residuals compared to the correspond-
ing modal functions without flow, as shown in a and
given in equation (33). Perturbations are of opposite
sign for positive and negative modes, and the perturba-
tions are again in general small, with the largest pertur-
bations ∼ 2% found for the first mode n = 0.

5.3. Acoustic Field Sensitivity

To quantify the acoustic response by a single entity
when examining how it changes with sound frequency
and flow speed, we consider the relative modulus of the
symmetry deviation of the acoustic pressure:

〈δ p̃〉 =

s
Ω
| p̃(x) − p̃(−x)| dAs

Ω
| p̃(x)| dA

. (38)

Since the geometries and the acoustic excitation are all
symmetric around x = 0, any asymmetry in the acoustic
pressure field arises due to the background flow (acous-
tic reciprocity in the absence of flow). As such, this
quantity is a measure of how strongly the sound signal
is coupled to the flow field. For reference, we also ex-
amine the mean (modulus of the) acoustic pressure:

〈 p̃〉 =

s
Ω
| p̃(x)| dAs
Ω

dA
. (39)

To investigate the sensitivity of the sound signal to
the frequency for a given flow speed, we compute the
mean acoustic pressure 〈 p̃〉 and the relative symmetry
deviation in the acoustic pressure 〈δ p̃〉 for frequencies
in the range f ∈ [20, 30] kHz with fixed flow speed
U0 = 1 m s−1. The results are shown in Figure 11
for each of the three duct geometries. On the top plot,
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Figure 11: Mean acoustic pressure 〈 p̃〉 using the flow speed U0 =

0 m s−1 (bottom), and relative symmetry deviation 〈δ p̃〉 using the flow
speed U0 = 1 m s−1 (top) as function of frequency f for the three duct
geometries.

no significant changes in the degree of asymmetry are
found for the straight duct (a), while the bulged duct
(b) shows minor changes with frequency. For the cor-
rugated duct (c), however, strong peaks are seen in the
〈δ p̃〉 response. The strongest peak occurs for frequen-
cies close to f = 24.7 kHz, where the signal experiences
an increase by a factor of up to ∼ 10. From the bottom
plot, the peaks in 〈δ p̃〉 for the corrugated duct (c) are
seen to occur close to local minima in the mean acous-
tic pressure 〈p̃〉 that fall between strong peaks in the 〈 p̃〉
response associated with resonances in the duct.

To further illustrate the phenomenon observed in the
frequency sweeps above, Figure 12 depicts the modu-
lus of the acoustic pressure field using the frequency
f = 24.7 kHz and the flow speed U0 = 1 m s−1 in each
of the three duct geometries. Both the straight duct (a)

a

b

c

[Pa]

[Pa]

[Pa]

Figure 12: Modulus of the acoustic pressure field p̃ using the fre-
quency f = 24.7 kHz and flow speed U0 = 1 m s−1 in the straight
duct (a), the bulged duct (b), and the corrugated duct (c).

and the bulged duct (b) exhibit a high degree of symme-
try in the acoustic pressure field. In the corrugated duct
(c), however, there is a clear difference between the up-

stream and the downstream acoustic fields.
To investigate the sensitivity of the sound signal to the

flow speed for a given frequency, we compute the rela-
tive symmetry deviation in the acoustic pressure 〈δ p̃〉
for flow speeds in the range U0 ∈ [0, 1] m s−1 with
fixed frequency f = 24.7 kHz. The results are shown
in Figure 13 for each of the three duct geometries. For
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Figure 13: Relative symmetry deviation in the acoustic pressure 〈δp̃〉
as function of flow speed U0 using the frequency f = 24.7 kHz for
the three duct geometries.

all three ducts, a close-to-linear dependency upon flow
speed is observed. We note in particular that the slope
of the curve for the corrugated duct (c) is significantly
larger than the slope of the curve for the straight duct (a)
as well as for the duct with a single bulge (b).

The results clearly show that we have identified a
combination of duct geometry and sound frequency
where the acoustic signal is particularly sensitive to the
background flow. The coupling seems to be related to
the parabolic velocity profile in the duct interior. Similar
results are found when explicitly prescribing a parabolic
velocity profile in the entire domain, whereas the effect
is diminished when prescribing a constant velocity pro-
file.

We conclude by noting that if more (evanescent)
modes are used in the mode matching formulation for
the acoustic truncation boundary conditions, by in-
creasing Nm, practically identical results are found. If
the mode matching formulation is replaced by a suit-
ably scaled perfectly matched layer (PML) formulation
[12, 30, 26, 31], using, e.g., a linear absorbing function
in a PML of width 10%, equivalent results to within
∼ 2% are found. If different footprints of the acous-
tic source are used, by changing L, qualitatively simi-
lar results are found. In addition, unpublished numer-
ical investigations by the authors based on the Steven-
son method [32] have also shown that strong resonance
couplings between flow speed and duct radius varia-
tions can occur. Still, the phenomenon so far only ex-
ists in numerical models and lacks experimental vali-
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dation. Nevertheless, it points towards the potential im-
portance of the geometry on flow sensitivity for acoustic
wave propagation, and shape optimization could likely
enhance the effect.

6. Conclusions

We have presented a coupled flow-acoustic model of
the propagation of sound through a moving fluid in a 2-
dimensional duct based on isogeometric analysis. The
model explicitly couples the non-linear, steady state,
incompressible Navier-Stokes equation in the laminar
regime to a linear, time-harmonic acoustic equation in
the low Mach number regime, using both the back-
ground flow and its gradient as input. Acoustic bound-
ary conditions along artificial truncation boundaries are
dealt with using a mode matching formulation. The
model has been validated against known acoustic modes
in 2-dimensional ducts. These tests clearly supported
the robustness of the method. In particular, desireable
error convergence properties were observed for higher
order polynomial approximations of the acoustic pres-
sure, and these are naturally embedded in isogeomet-
ric analysis. Using the model, acoustic signal changes
vs. duct geometry have been examined as a function of
frequency and background flow values. A combination
of duct geometry and sound frequency was identified
for which the acoustic signal is particularly sensitive to
the background flow. This enhanced sensitivity deserves
closer examination in future studies.
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[31] A. Bermúdez, L. Hervella-Nieto, A. Prieto, R. Rodrı́guez, Per-
fectly Matched Layers, in: S. Marburg, B. Nolte (Eds.), Compu-
tational Acoustics Of Noise Propagation In Fluids – Finite And
Boundary Element Methods, Springer, 2008, pp. 467–196.

[32] A. F. Stevenson, Exact and approximate equations for wave
propagation in acoustic horns, Journal of Applied Physics 22
(1951) 1461–1463.

12

143


	Summary
	Resumé (in Danish)
	Preface
	Contents
	Introduction
	Motivation
	Goals
	Outline

	Preliminaries
	Fluid Mechanics
	B-splines and NURBS

	Isogeometric Analysis of Flows
	Introduction
	Isogeometric Method
	Stability for Stokes Problem: Wall-Driven Anullar Cavity
	Error Convergence: Forced Elliptic Cavity
	Benchmark: Lid-Driven Square Cavity
	Conclusions

	Isogeometric Shape Optimization of Flows
	Introduction
	Shape Optimization Problem
	Isogeometric Method
	Regularization
	Applications
	Conclusions

	Isogeometric Analysis of Flow Acoustics
	Introduction
	Governing Equations and Approximations
	Isogeometric Method
	Validation: Acoustic Duct Modes
	Results
	Conclusions

	Extensions and Outlook
	Parametrizations of Domain Interiors
	Design of Idealized Airfoils
	Outlook

	Conclusions
	References
	Nomenclature
	Paper I
	Paper II
	Paper III

