Dual Fuel ME-GI Engine Performance and the economy

Mr Diesel vs Mr Otto Diesel to Dual Fuel Combustion

Mr Diesel's Process

- Fuel in cylinder before gas
- Diesel process maintained
- Power remain the same
- Load response unchanged
- No pre-ignition / no knocking
- Insensitive to gas mixture
- Negligible methane slip
- High-pressure gas injection
- NO_x reduction to Tier III level by EGR and / or SCR
- ME-GI retrofitable on ME-C.

Mr Otto's Process

- Gas in cylinder before fuel
- Otto process gas-air pre-mix
- Power reduction needed
- Load ramp needed
- Pre-ignition / knocking risk
- Gas mixture important
- Methane slip significant
- Low-pressure gas injection
- Lower NO_x expected.

ME-GI is a Two-stroke Diesel Engine

45 LNG Carriers Equipped with Two-stroke GI Retrofit is Possible

< 3 >

MAN Diesel & Turbo 2012.03.05 (RSL/LSP) © MAN Diesel & Turbo

EEDI – Reduction MeasuresGas fuelled engine

23% reduction of CO² without increasing methane slip

23% reduction of EEDI using LNG (including pilot oil), due to low carbon content and low SFC

© MAN Diesel & Turbo

ME-GI Gas Combustion Control

MAN Diesel & Turbo 2012.03.05 (RSL/LSP) © MAN Diesel & Turbo

New Innovations from Waller Marine

VISION, INNOVATIVE THINKING & TECHNOLOGY PUSHING BEYOND THE LIMITS

ARTICULATED TUG AND BARGE ARANGEMENT FOR LNG STORAGE, TRANSPORTATION AND REGASIFICATION

MAN Diesel & Turbo 2012.03.05 (RSL/LSP) © MAN Diesel & Turbo < 6 >

Design Proposal from DSME Type B Tanks

 MAN Diesel & Turbo
 2012.03.05
 (RSL/LSP)
 © MAN Diesel & Turbo
 < 7 >

All ME Engines Available as Dual Fuel Marine Engine List 2012 - Tier II

MAN B&W ME-GI/ME-LGI Engines Powered by NG, HFO, MDO, LPG, MeOH or DME

Simple modifications enable two-stroke gas injection

Proven engine design

- High fuel efficiency 50%
- High fuel flexibility
- High reliability

MAN Diesel & Turbo 2012.03.05 (RSL/LSP) © MAN Diesel & Turbo 9

ME-GI Design updates Overview

More compact design introduced

MAN Diesel & Turbo 2012.03.05 (RSL/LSP) © MAN Diesel & Turbo < 10 >

ME-GI Design updates **Easy maintenance**

All connections through adapter block

- Gas inlet
- Gas outlet
- Hydraulic oil
- Sealing oil
- Hydraulic oil drain
- Oil drain window/gas-valve
- Low pressure oil
- Connector block with pipes, remains on the engine during cylinder cover dismantling

2012.03.05 (RSL/LSP) **MAN Diesel & Turbo**

ME-GI Gas Fuel Mode Port to port in gas mode

ME-GI Results Performance

Engine stability: Cycle-to-cycle

ME-GI Development Results: SFOC/NO_x Tuning

Improving efficiency in gas mode:

SFOC/NO_x tuning

- NO_x margin in gas mode
- SFOC reduction potential
- Design limits maintained

Results

- SFOC reduced 1-3%
- NO_x margin is still available

Released in engine program and CEAS

MAN Diesel & Turbo 2012.03.05 (RSL/LSP)

© MAN Diesel & Turbo

ME-GI From Gas Tank to Engine

 MAN Diesel & Turbo
 2012.03.05
 (RSL/LSP)
 © MAN Diesel & Turbo
 < 15 >

ME-GI 7 FGS System Suppliers

Cryostar
LNG Pump System

DSME
LNG Tank & Pump System

Hamworthy
LNG Tank & Pump System

TGE
LNG Tank & Pump System

MHI
LNG Tank & Pump System

HHI
LNG Tank & Pump System

Burckhardt Compression

Laby-GI Compressor

MAN Diesel & Turbo 2012.03.05 (RSL/LSP) © MAN Diesel & Turbo < 16 >

FGS System

Example:

8S90ME-C8.2-GI - Output: 45,760 kW

HP Cryogenic pump: 5,600 kg/hr. & 200 kW

Less than 0.5% efficiency reduction

MAN Diesel & Turbo 2012.03.05 (RSL/LSP) © MAN Diesel & Turbo < 17 >

HP Pump and Vaporizer from Cryostar

MAN Diesel & Turbo 2012.03.05 (RSL/LSP) © MAN Diesel & Turbo < 18 >

HP Pump and Vaporizer from Cryostar

Technical Data GenSets Marine L+V35/44DF Available 2014

Bore: 350 mm, Stroke: 440 mm		
Speed (r/min)	750	720
MEP (bar)	20.0	20.1
	kW	kW
6L35/44DF	3,180	3,060
7L35/44DF	3,710	3,570
8L35/44DF	4,240	4,080
9L35/44DF	4,770	4,590
10L35/44DF	5,300	5,100
12V35/44DF	6,360	6,120
14V35/44DF	7,420	7,140
16V35/44DF	8,480	8,160
18V35/44DF	9,540	9,180
20V35/44DF	10,600	10,200
Consumption		
MCR	100%	85%
Specific fuel oil consumption (HFO)*	187 g/kWh	186 g/kWh
Heat rate **	7,700 kJ/kWh	
Specific lube oil consumption 0.5 g/kWh		
* Diesel or HFO fuel operation, with attached pumps (LO, LT and HT) with +5% tolerance ** Gas operation (including pilot fuel)		
LHV _{min} = 32,800 kJ/m ³ (STP)		

& Turbo 2012.03.05 (RSL/LSP)

© MAN Diesel & Turbo

Fuel Gas Supply System from TGE for Two-stroke Main Engine and DF GenSets

MAN Diesel & Turbo 2012.03.05 (RSL/LSP) © MAN Diesel & Turbo < 21 >

Comparison between ME-GI Solution

DF AUX 3,360kW

DF AUX 3,360kW

DF AUX 3,360kW

DF AUX 3,360kW

- 7S80ME-C8-GI with 28067kW
- 4x DF aux engines with 3360kW each
- Total 41,507kW installed

MAN

< 24

Propulsion Power Demand

...and DFDE Solution

- 2 x Wartsila12V50DF + 2 x 6L50DF for provision of electrical power requirement shown in slide 14
- Total 35,100kW installed

Shipowner Considerations

Annual Operating Costs

- 1. DFDE gas mode
- 2. DFDE fuel mode
- 3. ME-GI gas mode
- 4. ME-GI fuel mode

Layout Diagrams

Potential Annual Cost Savings Relative to the Load Profile

LPG as Fuel: Gas Injection Valve & Valve Block with Accumulator

MAN Diesel & Turbo 2012.03.05 (RSL/LSP) © MAN Diesel & Turbo < 28 >

Gas Supply System from HGS Using LPG as Fuel

MAN Diesel & Turbo 2012.03.05 (RSL/LSP) © MAN Diesel & Turbo < 29 >

Comparison of Altenative Fuels For ECA operation - 6 MW

Payback time relative to MGO operation

MAN Diesel & Turbo 2012.03.05 (RSL/LSP) © MAN Diesel & Turbo < 30 >

ME-GI & ME-LGI

707

Thank you for your kind attention

The presentation material will be available on the following link: www.mandieselturbo.com/me-gi from 8 March 2012

René Sejer Laursen Promotion Manager, ME-GI E-mail: ReneS.Laursen@man.eu