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FRACTALS IN FLUID MECHANICS
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The basic concepts of fractal geometry are relatively simple. Although they are not
entirely new, the recognition that these simple notions form a unified language for
a. variety of disciplines in natural science is due to Mandelbrot.! Our objective is
to assess briefly the role of fractals and multifractal measures in fluid flows broadly,
including turbulence and combustion. As applications have yet to mature, the
report captures a snap-shot of the changing scene. We focus on activities that
are common to both fluid dynamics and fractals and ignore some isolated aspects;
we also omit comments on possible fractal structure obtained in chaotic mixing.
Finally, we emphasize the question of how fractals enter physical problems, not
the classical resulis. Much of the material to be covered below can be found in
refererences cited in the bibliography.?™’ Other references cited are not meant to
be exhaustive.

1. AGGREGATION IN PARTICLE-LADEN FLOWS

Fluid dynamics of particle-laden flows is replete with applications. If interparticle inter-
actions are ignored, the essential problem is one of understanding how various physical
properties of the flow (such as effective viscosity) are altered by particle loading; alterna-
tively, the effect of the flow on particle motior is also of interest. Under circumstances
oiten dictated by hydrodynamics, inter-particle interactions may become important and
lead to the formation of aggregates (that is, structures in which particles stick together
irreversibly). |

There are two basic aspects to the study of aggregation: kinetics and geometry. Kinetics
involve the quantitative description of the time evolution of aggregates and their size dis-
tribution, whereas geometry is concerned with quantitative description of the structure of
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aggregates. The first aspect has been studied for a long time, whereas the second aspect,
which used to be the backwaters of aggregation studies until recently, has taken on a life of
its own since the advent of fractals.

Aggregation can occur in a variety of ways: electrodeposition (induced by electric field),
sedimentation (induced by gravity), filtration (caused by the particle motion stopped by
small pores), and so forth, and can be either of the particle-cluster type or cluster-cluster
type. A simple kinetic model® called the diffusion-limited-aggregation (DLA) has been
studied extensively and thought of (with some minor modifications) as a paradigm for
a number of processes such as protein aggregation, colloid clusters of gold and silica, soot
formation, viscous fingering in porous media (at least when the flow rates are high), dielectric
breakdown, dendritic solidification, and so forth. The common feature among many of these
phenomena is that a suitably defined potential governed by the Laplace equation can be
defined®. It is therefore worth examining DLA briefly. |

In the two-dimensional version of DLA, one considers a lattice on a plane and first chooses
the origin for the cluster. A particle, the “seed” for the aggregate, is placed at the origin.
One then considers a large circle of radius R, centered at the origin, and chooses a point at
random on this circle. A particle is released at a site nearest to this point and is allowed to
execute a random walk on the lattice. If the random walker reaches a site nearest to the
origin, 1t stops and stays stuck to the seed. (If the particle exits the circle without getting
close to the origin, it is abandoned.) Another particle is released from a lattice point close
to another randomly chosen point on the circle, and allowed to stick to the seed or the
two-particle cluster (as the case may be). The process is continued until a cluster of the
desired size is reached. The algorithm can be extended to any higher dimension.

‘The DLA aggregates are fractal structures with a dimension of about 1.7 in two dimen-
- sions and 2.5 in three dimensions.*” The growth of the cluster is governed by the so-called
harmonic measure which is the probability that a random walker approaching the cluster
from the far-away circle hits the cluster in a certain infinitesimal interval along the bound-
ary. The harmonic measure is a solution of Laplace’s equation for the electrostatic potential
when the cluster boundary is taken to be at zero potential and the circle at a potential of
unity. It is intermittent in appearance and amenable to multifractal analysis. 1%l As re-
marked in Sec. 3, the basic evidence for the self-similarity in the DLA structure comes from
the self-similarity of the multiplicative process.!!

Most fractal and multifractal characteristics of DLA have been extracted from computer
simulations®!!; to our knowledge, there are no exact analytical resuls.

2. APPLICATIONS IN POROUS MEDIA AND VISCOUS
FINGERING -

2.1 Porous media

The Stokes equation governing the fluid motion in porous media is linear. It can be reduced
to the Darcy law (according to which the velocity is linearly proportional to the pressure

“Just as the Ising model describes the essential physics of a wide variety of materials near the critical point,
the hope has been expressed that DLA would describe a variety of growth processes. DLA and turbulence
(see Sec. 5) are often thought to be the paradigm problems for serious multifractal applications.
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drop) by using appropriate assumptions of homogeneity. Equivalently, this can be written
as the Laplace equation for the pressure. This suggests analogies with DLA, except that
the boundary conditions in the porous media are more difficult to assess.

The difficulty lies in describing the boundary between fluid-filled regions and solid-like
regions. One procedure is to model porous media as a network of capillary tubes. This
model conceives of the solid phase as being continuous with interconnected fluid-filled pores
running through it. A major simplification is achieved in this way because the Poiseuille
law valid for laminar flow through pipes holds for each capillary. Alternatively, one assumes
the fluid phase as confinuous and the solid particles as obstacles for the flow.

Fractals appear in studies of flow through porous media because of the random charac-
ter and the extreme variety of shapes encountered. The pore space, the solid phase and
the solid-pore interface could all exhibit fractal scaling®. Various estimates for the fractal
dimensions of these three aspects have been made.**

In practical applications, the one unknown is the permeability of the medium which, in
general, is a tensorial quantity. The permeability in most cases is measured by pressure drop
experiments or estimated empirically. A useful goal would be to relate the permeability of
a medium to ifs characteristic fractal dimensions. This has nof yet been accomplished.

2.2 Viscous fingering in the Hele-Shaw cell

l'rl.

When a low viscosity fluid is pushed into a high viscosity immiscible fluid, Safiman-"Taylor
fingers develop'?; these fingers occur singly, and are broad and smooth in shape. The
equation governing viscous fingering in the Hele-Shaw cell is formally the same as that for
flow through porous media, except that: |

(a) the permeability in the former is not real but related to the gap between the plates,
 while that in the latter depends on the local volume fraction;

(b) the former has a well-defined surface tension at a normal fluid-fluid interface, while
the use of surface tension in the latter 1s rather murky.

The Saffman-Taylor fingers correspond to the wavenumber with maximum instability, and
their width varies as the square root of the surface tension between the two fluids (if all
other conditions are held fixed). As the surface tension is lowered, the fingers split more
and more; but there is a practical limit to how low the surface tension can get. If the high-
viscosity fluid is a miscible colloidal solution with shear-dependent viscosity, the intertace
grows to be fractal-like in appearance’” even when the capillary number® is moderately
high: it appears that the more non-Newtonian the solution, the more the tendency to
fractal fingering. In spite of recent studies to model this behavior,'*'° the basic physics of
fingering in non-Newtonian fluids is not well-understood. '

It has been argued!® that, if interfacial tension is ignored? the viscous fingering problem
is analogous to DLA; indeed, the viscous fingering patterns in radial Hele-Shaw cells (which

b All porous media may not have fractal pore space, but the surface of the grains is very often fractal due to
long-term chemical or sintering processes.

“The capillary number is the ratio ul//o, where u, U and o are, respectively, the viscosity coeflicient for the
driven fluid, Huid velocity and interfacial tension.

“In practice, this is far from being correct. The arguments postulating similarity between viscous fingering
and DLA must be examined critically in spite of the resemblence of the observed fractal patterns.
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do not have the anisotropic constraining effects of rectangular cells) are similar to the DLA
structure and possess roughly the same fractal dimension. The growth of viscous fingers
depends on the pressure gradient, which therefore plays a role analogous to the harmonic
measure for DLA. Since the pressure field is not easily measured, related growth measures
have been defined and characterized by multifractals.® If the medium in the Hele-Shaw cell
Is porous, one obtains fractal structure even for Newtonian fluids and the capillary number
is moderately high.? For a review of viscous fingering, see Homsy.1”

2.3 Percolation and diffusion

Percolation involves the spreading of a fluid in a random medium, where the words “fAuid”
and “medium” are used in a certain general sense. The role of randomness in percolation
1s quite different from that in diffusion. In the latter, the Brownian particle executes a
random walk, whereas percolation deals with randomness that is frozen into the medium.
While any position in the medium can be reached by diffusion, the spreading in percolation
1s confined to finite regions except when the so-called “percolation threshold” is exceeded.
In model studies, one considers a square lattice whose sites are either randomly occupied
(with probability p) or empty (with probability 1 ~p). Occupied sites represent parts of the
medium through which the fluid can percala’ce\whﬂe empty sites represent those parts that
cannot be invaded by the fluid. Connected sites form clusters. On an infinite sample, all
clusters remain finite below the percolation threshold, p = p.. For p > p,, infinite clusters
appear with a finite probability, and the probability of this occurrence varies with p as
(p — pc)b. Percolation clusters are self-similar and possess,'® in the limit of large clusters, a
fractal dimension of 1.89. The “hull” of the diffusion front is also a fractal with a dimension
of 1.75, whereas its external perimeter has a dimension'® of about 1.37.

One should also mention here the “invasion percolation” (applicable for low flow rates)
where the water displacing oil in porous rocks may trap regions of 0il.2 Randomness
encountered by the invading fluid would now also depend on the trapped regions.

Branched polymers have size distributions that are self-similar 2! and are therefore candi-
dates for fractal description. Some useful analogy exists between polymers and percolation
studies.®* As in percolation, the fractal dimension of branched polymers can be related to
other indices characteristic of the polymer size above a “percolation threshold?”.

3. ONSET OF CHAOS IN NEWTONIAN FLUID FLOWS

Multifractals have played a powerful role in characterizing universality at the onset of chaos
in low-dimensional systems. The renormalization theory has been worked out for the on-
set of chaos for period-doubling®>** and quasiperiodic cases.?>26 Experiments in forced
Rayleigh-Benard convection®’*® and the near-field of oscillating cylinders at low Reynolds
30 strongly support the universality theory: the so-called f(a) curve describ-
ing the non-uniform distribution of the invariant measure on the attractor at the onset of
chaos agrees well with that calculated for one-dimensional circle maps. This is the power
of universality, and illustrates an application of multifractals where powerful theory and
imaginative experiments have come together satisfactorily. |

The multifractal spectrum or the f{a) curve provides a thermodynamic — and hence
degenerate — description of the dynamical system. Even so, it has been possible to de-

numbers




Fractals in Filuid Mechanics 257

velop®! a basis for extracting (up to a level of detail which depends on our knowledge of the
system in terms of other statistical measures, such as the similarity structure exhibited by
the power spectral density) the multiplicative process leading to the observed multifractal
state.

It should be noted that dynamical universality was indeed known before the multifractal
formalism came to the fore. For example, the Feigenbaum number in period doubling bifur-
cations®** was experimentally observed in convection experiments.3? Furthermore, it was
also known that the microscopic information about a deterministic dynamical system and
its scaling properties could be characterized in detail by the scaling function.?32¢ However,
the experimental measurement of the scaling function is quite difficult, and the advent of
multifractals (albeit statistical) made the search for universality sigﬂiﬁcahﬂy easier.

As a final note, we wish to emphasize that chaos (which involves temporal complexity)
is quite different from turbulence (which involves spatial as well as temporal complexity);
however, transition to chaos is sometimes relevant to early stages of transition to turbulence.

4. NON-REACTING AND REACTING TURBULENT FLOWS

High-Reynolds-number turbulent flows consist of a wide range of interacting scales. The
ratio of the largest to the smallest scale increases roughly as the 3/4 power of the large-
scale Reynolds number. The conventional wisdom is that statistical similarity prevails over
a range of intermediate scales; the precise form of this similarity and the scale-range over
which it holds are matters of much interest. It has been thought that fractals and multi-
tractals provide proper tools for better description, and better understanding, of aspects of
turbulence. In the following summary statements, we indicate the degree of our confidence
by FC (for fairly certain) or P (for provisional); the latter means that the results come
essentially from one laboratory. For references to original sources and further discussions,
see Sreenivasan.®

4.1 Fractal scaling of flames, iso-surfaces and interfaces

The main question here is whether these objects can be treated as thin surfaces with many
(essentially) self-similar convolutions. It is useful to quote a few results in some detail for
a paradigm problem in turbulence.

(a) For the scalar interface (i.e. outer boundary of scalar-marked regions in unbounded

free shear flows), fractal scaling occurs over much of the interval between the integral
scale and the Kolmogorov scale. The dimension in this scale range is 2.3540.05 (FC).

(b) In fully turbulent parts of shear flows, iso-scalar contours possess a fractal scaling
with a dimension of 2.67 == 0.05. The scaling range is smaller than that for (a), and
the inner cut-off occurs at some multiple of the Kolmogorov scale; the latter can be
estimated a prior® (FC).

For both (a) and (b), data exist on the Reynolds number variation of the dimension (P).

On the basis of the fractal structure, efforts have been made to model the interface as a
34,35

chaotic system.
The original heuristic explanation® for these observations relied on Reynolds number
similarity. In Constantin, by combining the “co-area formula” culled from measure theory
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with the convection-diffusion equation governing the scalar evolution, it has been possible
to obtain the fractal dimensions of iso-scalar surfaces and interfaces in turbulent flows. The
only information about the velocity field that enters the calculation is the scaling of the

first-order structure function. The dimensions so obtained are in excellent agreement with
experiment.

(¢) For the range between the Batchelor scale and the Kolmogorov scale, the fractal
dimension of iso-scalar surfaces as well as interfaces approaches 3 as the Schmidt
number approaches infinity. The finite Schmidt number correction appears fo be
logarithmic (P). Newer theories have also been developed3®37(P).

(d) The results (a) and (b) hold also for vorticity interfaces and iso-vorticity contours (P).

(e) The dimension of flame surfaces depends on the ambient turbulence level, but the
flame front in both diffusion and premixed flames has a fractal dimension of 2.35
for large turbulence levels (FC). Note that, in contrast to high-Reynolds-number
isothermal flows, the scale range of convolutions in high temperature flames is small,
except when the turbulence levels are high. Several fractal-based closure models have
been attempted in combustion (P).

4.2 Results from time series analysis

The difficulty in the determination of the fractal structure of a time series lies partly with
the definition of a suitable cover, and partly with proper recognition of the cut-ofis between
global, local and latent dimensions.®® These artifacts are now moderately well-understood,
and the fractal structure of a time series of velocity or temperature Huctuations in high-
Reynolds-number turbulent Hows has been explored.®® These time traces resemble fBm
traces with the exponent H = 0.35, and the (local) fractal dimension D = 2—H = 1.65. This
is consistent with the classical theory of Kolmogorov,* and is comparable in the quality of
scaling.*! An implication is that the dimension of iso-velocity and iso-temperature surfaces
in fully developed turbulence is about 2.65, consistent with the result (b) in Sec. 5.1. A%
moderate Reynolds numbers, the scaling is better for the spatial aspects and ambiguous for
temporal data with the exception of those taken for interfaces, for which modest scaling
occurs even at moderate Reynolds numbers.

4.3 Multifractal scaling

The evidence is strong that multifractals are useful tools for describing scaling properties
of structure functions,***3 and of turbulent energy dissipation rate and scalar dissipation
rate in turbulent flows®*%45. provisional evidence® suggests that other positive definite
quantities, such as the square of turbulent vorticity, can be described similarly. This type

of work has produced the following results.

(a) Phenomenological models for small-scale intermittency, with outcomes consistent with
experiment, have been constructed.*® These models have yielded correct intermittency
corrections in the inertial and dissipation ranges, produced a refinement of the scaling
of the power spectra in the dissipation range,*’ generated stochastic signals which do
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not differ from the real turbulent signals in most respects,*>4% and so forth. The latter

idea has been used for providing realistic initial conditions for large-scale turbulence
calculations.””

(b) The nature of the observed near-singularities appears consistent with the mathemati-
cal result® on the partial regularity of weak solutions of the Navier-Stokes equations.

(c) By assuming that the scalar as well as vector fields are fractal graphs with the mea-
sured dimension, a broad theoretical apparatus has been constructed®® to explain the
Kolmogorov scaling in the inertial range and its various modifications,?3:4

5. GEOPHYSICAL PHENOMENA

Geophysical fields (such as cloud radiance, rainfall, temperature and pollution records, sea
surface infrared reflectivity, sea surface geometry, lightning paths, and so forth) are a result
of nonlinear processes involving different fields at widely varying scales. In each case, the
statistical invariance of a wide scale range suggests that fractal concepts may be useful.
One could ask, for instance, if lightning paths and cloud boundaries are fractal and, if so,
measure their fractal dimensions. Among the first fractal measurements made in geophysics
was the dimension of cloud boundaries®®: the dimension of fair-weather clouds as well as
large clouds is about 2.35 (the same as that of scalar interfaces in turbulent flows), whereas
clouds strongly affected by the mean wind shear possess smaller dimensions.®

In geophysics, there are numerous candidates which are potentially fractals. As already
remarked in Sec. 3, it is not enough to seek information about the binary picture of whether
or not there is rainfall (for example), but one needs to know something about the different
rainfall rates. ‘T'he variability and infermittency of rainfall records suggest that multifractals
could be quite useful. Preliminary multifractal analysis has been made for rainiall rates,
cloud radiance and other geophysical fields. For a survey of articles on these topics, see
work by Schertzer and Lovejoy.’

Because accurate computations of high-order statistics require extraordinary amounts
of data, geophysical measurements have generally been restricted to low-order multifractal
measures.

It is claimed that high-order moments may diverge in geophysical situations.””® How-
ever, controlled measurements in the atmospheric surface layer®’ suggest that the apparent
divergence is an artifact of relatively small data records.

6. APPLICATIONS FOR IMAGE COMPRESSION AND DATA
INTERPOLATION

The application of fractals in the construction of natural scenery such as mountains, clouds,
lakes, and so forth is well-known.*°% %Y This technology has found application in diverse
ventures such as movie-making, art and music. Since they are far from fluid dynamics, they
will not be discussed here.

Fractals find a useful application in image compression and reconstruction. Lovejoy and
Mandelbrot®! constructed cloud images using the model that a rain field is composed of
self-similar pulses; the areas of these pulses had power-law distributions and rainfall rates
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were random. The resulting pictures looked quite realistic even though real clouds are
stratified in the vertical direction, and the governing principle for reconstruction should be
self-affinity rather than self-similarity.

Image compression by taking advantage of fractal structure is the subject of Barnsley®?;
related applications involve fractal interpolation schemes by minimizing the Hausdorff dis-
tance. However, extensive application of these ideas to turbulence data has not been made.
It is worth emphasizing that image compression on the basis of self-similarity or self-affinity
is not especially the domain of fractals alone; in fact, applications based on wavelet theory
work quite well.?

7. A QUALITATIVE ASSESSMENT OF PAST ACCOMPLISHMENTS

It is sometimes implied that fractals embody one of the basic truths about complexity: that
all known truths about Nature are expressible in the form of some generalized concepts,
and that fractals represent one such generalized concept. This is the appeal of fractals.

This philosophical appeal has occasionally produced an exaggerated response,® and the
“wheat” cannot always be separated from “chafi”. Noie, however, that other glamorous
concepts such as catastrophe theory never came close, even in their heydays, to enjoying the
degree of appeal that fractals possess. (Whether popular appeal is always correlated with
scientific significance is another matter.)

Fractals have been taken seriously in mainstream science for something like fifteen years.
We hope that the summary given above makes clear the impressive fact that fractals have
had much impact on providing descriptive and incremental understanding in many fields.

To the examples already cited, we can add a few more here. Suppose we need to model
the spread of forest fires, or the seepage of ground water or radioactive substances. While
exact formulation of these problems is in principle possible, it would be futile to take this
approach because of their extreme complexity. Instead, simulations of the type carried out
in percolation studies can be quite useful in providing an overall picture (even if incomplete).
Similarly, a host of other phenomena such as rainfall rates can be modelled by multifractals.
Fractals prowvide tools for modeling a variety of complex systems with some realism.

Even though the evidence is still not compelling, it is strong enough to think that fractals
are well-suited for handling scaling phenomena. There is a certain tangible benefit of unity
that fractals have brought to apperently unrelated areas of science.

Much of the work using fractals has so far occurred in the physics community (or those
small pockets of fluid mechanics community with relatively strong ties to physics), and the
focus has not been engineering applications. It can be said that a serious beginning has
been made. However, for fractal-based models to solve complez problems at the level of
engineering ulility, such as producing new materials or new numerical codes for computing
high-Reynolds-number turbulent flows, it is essential for the engineering community to take
sustained wnterest in these tools.

Whenever fractal (and multifractal) scaling is observed in fluid flows, it is nearly always
statistical. This means that they provide only parfial information, even if valuable and
unique. Therefore, as with all partial information, the degree to which one can make sense
of an observation depends on the ingenuity of the individual trying to extract it. This is the
wltimate constraint. |

Fractal-related work falls into three broad classes: description, explanation and predic-
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tion. To-date, description and measurements of fractal dimensions have consumed most of
the energy. This effort was not trivial because it involved an understanding of the potential
of fractals when they were still not commonplace, as well as the improvisation of theoreti-
cal, experimental and computational techniques. As for the second aspect, in percolation,
multifractal measures, scalar interfaces in turbulence, and in other areas, a variety of re-
sults exist in which phenomenology and rigor play complementary roles. More such results
are likely to emerge as fractals integrate increasiﬁgly with applications-oriented research.
As regards predictions, a few powerful ones have already been pointed out in Sec. b, even

though their engineering consequence is still unclear. On the whole, the past efforts have
been guite rewarding.

8. FUTURE PROSPECTS

The question of what constitutes future opportunities in fractals may well be thought to
belong to the domain of mathematics. That, however, is not very useful. All opportunities
in specific fields of fluid mechanics will have to be assessed in the context of those specific
fields. That would be a Herculean task for this brief report, and it therefore seems best to
restrict atiention to a few broad questions common to most applications of fractals.

(a) The situation typical of most fractal-related studies is that much of our knowledge
comes from experiment and simulations. While simulations and experiments are very
usetul, they are often limited by approximations, finite size effects, noise, and other

artifacts, and cannot supplant theoretical results. There is at present o big backlog of

observations without the backup of solid exzplanations.

(b) Much of the physics in problems that possess scale-similar phenomena is hidden in
the cut-ofl scales. It is essential in practice to pay greater attention to cut-off scales
and cross-over phenomene.

(c) It would be essential to know, at least for one hard problem like turbulence, the
relation between dynamics on the one hand and fractal geometry and multifractal
measures on the other. (Eyink® claims to have done just that recently.) What aspects
of the hydrodynamic equations yield the fractal structure .of its solutions? How may
one show, without empirical input, that the turbulence structure is fractal, obtain

dimensions of its various facets and generate a closed list of fractal dimensions to

define turbulence uniquely? Without such knowledge, it is difficult to make a case for
the inevitability of fractals as the tool of choice for studying large classes of nonlinear
problems.

(d) There are practical issues that appear to be within the realm of near-term possibility.
For example, it appears possible to construct a much better model for lame speeds in
premixed flames; model the gross spread rates of jets; generate a robust large-eddy-
simulation model based on multifractals. Tentative progress has already occurred on
these fronts. Such efforts should be driven more by expertise in the respective fields
rather than in fracfals per se.
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