IBM Initiate Master Data Service
Version 10 Release 0

Master Data Engine Installation Guide

<||I

IBM Initiate Master Data Service
Version 10 Release 0

Master Data Engine Installation Guide

..ll

Note
Before using this information and the product that it supports, read the information in [“Notices and trademarks” on page]

© Copyright IBM Corporation 1995, 2011.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

FiguresVi
Tables
Chapter 1. Introduction 1

Chapter 2. Installation worksheets . . . 3
Master Data Engine database connections worksheet 3

Data source worksheet R
Master Data Engine installation worksheet6
Master Data Engine instance worksheet6
LDAP directory server worksheet14
Stand-alone entity manager worksheet16
Event notification worksheets19

Chapter 3. Planning your Master Data

Engine installation.25
Master Data Engine elements and h1gh level
interdependencies
Master Data Engine 1nstallat10n ina

high-availability environment . . .27
Master Data Engine installation in U. S government
environments.28
IBM Initiate LDAP dlrectory server stand alone
instance
Entity manager stand alone 1nstance .. .29
Event notification - stand-alone instance. 30

Chapter 4. Preparing your environment 31

Server prerequisites. . . < X
Master Data Engine d1rect0ry structure -
MAD_ROOTDIR and MAD_HOMEDIR32

Directory structure guidelines for
MAD_ROOTDIR (software) and

MAD_HOMEDIR (instances)33
System and software users for the Master Data
Engine36
User limits on UNIX and Lmux platforms36
Master Data Engine database configuration. . . . 36
Master Data Engine and instances installed on
different drives (Microsoft Windows).39

Chapter 5. Installing the Master Data
Engine.4

Chapter 6. Configuring the Master Data
Engine environment. 43

Database user account password encryption . . . 43
Encrypting the password for the database user
account with the madpwd?2 utility.44
Encrypting the password for the database user
account with the madpwd3 utility.44

Creating a data source.45

© Copyright IBM Corp. 1995, 2011

Creating a stand-alone IBM Initiate LDAP directory

server instance46
Creating stand-alone ent1ty managers B 1)
Creating a Master Data Engine instance47
Creating an automated madconfig utility script . . 49
Running the madconfig utility by using a recorded
response file B
Merging multiple response property flles B
Installation error log50
Master Data Engine conflguratlon flles50
Configuration file changes52
Post-installation tasks55
Starting and stopping your instances56

Chapter 7. Upgrading the Master Data
Engine environment. 63

Conducting the pre-upgrade tasks.64
Creating the initial 10.0 runtime environment . . . 65
Upgrade the Master Data Engine database to 10.0 66
Database upgrade worksheet68
Running the database upgrade 69
Conducting the Master Data Engme post—upgrade
tasks.70

Chapter 8. Entity managers. 73
Entity manager queue management76
Entity manager configuration parameters76

Chapter 9. Event notification 81

Enabling event notification 83
Sample com.initiate.server.event.cfg conf1gurat1on
file8

Chapter 10. Configuring Master Data
Engine environment variables. 87
Master Data Engine environment variables. . . . 87

Chapter 11. Diagnostic logging 97

Log file location and naming97
Logging types . . L. . .98
ConversionPattern format specrfrcatron99
Suggested logging settings99

Chapter 12. Using the Master Data
Engine utilities. 101

madcode utility101
madconfig utility102
maddbx utility110
madentcreate utility113
madentdrop utility115
madentload utility.116
madentreset utility118
madentunload utility119
madhubcreate utility121

iii

madhubdrop utility 122
madhubload utility . 123
madhubreset utility . 125
madhubunload utility . 126
madload utility. . 128
madpass utility. . 128
madpwd?2 utility . 128
madpwd3 utility . 128
madsql utility . . 129
madunload utility . . 130
mpidelete utility . 130
mpidrop utility. . 130
mpiengget utility . . 131
mpimcomp utility . . 131
mpimerge utility . 131
mpimshow utility . . 132
mpinetget utility . 132
mpitxm utility . . 133
mpiunmrg utility . . 138
mpxbchk utility . 138
mpxcomp utility . 139
mpxcomp utility input and output dependencres 139
mpxcomp utility options . 140
mpxconv utility . 148
mpxdata utility. . 148
mpxdist utility . . 155
mpxdump utility . . 155
mpxfprof utility . 156
mpxfreq utility . . 156
mpxfsdvd utility . 162
mpxitob utility . . 166
mpxlink utility . . 167
mpxpair utility . . 177
mpxprep utility. . 178
mpxrebkt utility . 180
mpxredvd utility . . 181
mpxrule utility . . 184
mpxsmooth utility. . 184
mpxsort utility . . 185
mpxstd utility . . 187
mpxwgts utility . 187
mpxxeia utility . . 188
mpxxtsk utility . . 188
Chapter 13. Configuring SSL. . 191
SSL security . .. 191
Sample com.initiate.server. system cfg conﬁgured
for SSL . 193
Chapter 14. Configuring globalization
of the Master Data Engine . . 195
Database prerequisites for using Unicode in the
Master Data Engine . . 195
Default language setting for the Master Data
Engine o . 196
Appendix A. LDAP Directory Server
for the Master Data Engine . 197
Configuration flow for the Master Data Engine
LDAP directory server . 201

1V Master Data Engine Installation Guide

Upgrade considerations for Master Data Engine

LDAP directory server . 202
com.initiate.server.ldap.cfg file. . 203
Changing the port setting for a stand- alone
(internal) Master Data Engine LDAP Directory
Server . . 206
Configuring an external corporate LDAP Dlrectory
Server . . 207
Configuring SSL commumcatlons W1th a corporate
LDAP directory server . . 210
High-availability and replication conflguratlon for
the Master Data Engine LDAP directory server . . 211
Enabling replication for the Master Data Engine
LDAP directory server . 212
Appendix B. Sample
com.initiate.server.system.cfg file . 215
Appendix C. Master Data Engine
storage files (stofiles). . 217
Appendix D. Thread count settings 219
Appendix E. Data source prompt
examples . . 221
Appendix F. Uninstall the Master Data
Engine environment . . . 223
Removing Master Data Engine runtime instances = 223
Removing Master Data Engine data sources . . 224
Running the Master Data Engine uninstaller . . 224
Appendix G. Performance planning for
the Master Data Engine 227
Performance evaluation and tuning considerations 227
Performance benchmarking. . 227
Performance key concepts . . 228
Work . . 228
Latency . 229
Throughput . . 229
CPU . 229
Memory . . 230
Storage . 231
Networks. . . 232
Master Data Engine workload prof11es . . 232
Bulk processing . 232
Run time processing . . 234
Appendix H. Operational Monitoring
with JConsole . . 237
Accessing JConsole . 238
JConsole Mbeans tab . . 238
JConsole administrative actions . 240
Appendix I. AES encryption . 243
Generating AES keys and password . . 244
AES policy JAR files . .o . 246
AES password test . 246

Appendix J. Interceptor tool .
Starting the Interceptor Recorder with the
madconfig utility .
Stopping the Interceptor Recorder w1th the
madconfig utility . .
Starting the Interceptor Replayer w1th the
madconfig utility . .
The fields of the 1nteract10n data f11e
Replayer API

Interceptor mapping flles

Running your custom Replayer apphcat1on

Appendix K. FIPS compliance
Enabling FIPS compliance in the Master Data
Engine .

. 247
. 248
. 249
. 249
. 250
. 251

. 252
. 253

. 255

. 255

Enabling FIPS compliance for command-line
utilities .
Debugging SSL and FIPS conflguratlon

Legal Statement .
Notices and trademarks .
Index .

Contacting IBM

. 257
. 257

. 259

. 261

. 265

. 271

Contents V

Vi Master Data Engine Installation Guide

Figures

1. IBM Initiate Master Data Service vertical
clustering configuration

2. Sample directory structure with multlple

instances

3. IBM Initiate embedded and stand alone

directory servers
4. Embedded LDAP dlrectory server w1th
corporate (external) directory server .

© Copyright IBM Corp. 1995, 2011

. 28

. 35

. 199

. 200

N

Embedded and stand-alone LDAP directory
server with corporate (external) directory
server .

Memory buffer caches

A sample BXM timeline .

The Interceptor process .

. 201
. 230
. 234
. 248

vii

viili Master Data Engine Installation Guide

Tables

1. Database connection worksheet .3 38. madsgloptions129
2. Engine data source worksheet. .4 39. madunload options130
3. Engine installation worksheet . . 6 40. mpidelete options130
4. Engine instance worksheet . 4 41. mpidrop options130
5. LDAP directory server worksheet14 42. mpiengget options.131
6. Stand-alone entity manager worksheet . . . 16 43. mpimcomp options131
7. Embedded event manager worksheet19 44. mpimerge options132
8. Embedded event handler configuration 45. mpimshow options132
worksheet20 46. mpinetget options133
9. Stand-alone event manager worksheet .. .20 47. mpitxm options.134
10. Stand-alone event handler worksheet22 48. mpiunmrg options.138
11. Engine installation directory examples 49. mpxbchk options138
(MAD_ROOTDIR)32 50. mpxcomp options141
12. Instance directory paths33 51. mpxconv options 148
13. IBM Initiate directory structure guldelmes 34 52. mpxdata options149
14. Sample output from pinging the engine 53. mpxdist options.155
instance.58 54. mpxdump options.155
15. Database upgrade worksheet S . 68 55. mpxfprof options156
16. Entity management scenarios per given engme 56. mpxfreq options157
instance.74 57. mpxfsdvd options163
17. Entity manager queue parameters77 58. mpxitob options166
18. Supported event types for event notrﬁcatron 81 59. mpxlink options167
19. Master Data Engine environment variables 88 60. mpxpair options177
20. Logging types.98 61. mpxprep options178
21. Log ConversionPattern format codes o099 62. mpxrebkt options181
22. madcode options101 63. mpxredvd options.182
23. madconfig options.102 64. mpxrule options184
24. maddbx options.110 65. mpxsmooth options185
25. madentcreate options113 66. mpxsort options186
26. madentdrop options115 67. mpxstd options.187
27. madentload options116 68. mpxwgts options187
28. madentreset options 118 69. mpxxeia options188
29. madentunload options119 70. mpxxtsk 189
30. madhubcreate options 121 71. SSL environment Var1ables in the Engme
31. madhubdrop options122 configuration files192
32. madhubload options123 72. Storage terminology231
33. madhubreset options125 73. Settings for useSSL within
34. madhubunload options126 com.initiate.serverjmxjmxmp.cfg 237
35. madload options128 74. Interaction MBean attributes 239
36. madpwd2 options128 75. IBM resources . . o s .27
37. madpwd3 options128 76. Providing feedback to IBM oo .2

© Copyright IBM Corp. 1995, 2011 ix

X Master Data Engine Installation Guide

Chapter 1. Introduction

The Master Data Engine is the core component of the IBM® Initiate® Master Data
Service. The Master Data Engine comprises the database, business rules, and
linking logic that support the functions available in IBM Initiate Master Data
Service applications.

The Master Data Engine supports all IBM Initiate Master Data Service application
service requests. For example the functions available in IBM Initiate Workbench,
IBM Initiate Inspector, or IBM Initiate Enterprise Viewerall use the Master Data
Engine logic.

The Master Data Engine is contained within a Java process wrapper (not an
application server or servlet engine) that enables greater flexibility of feature
development.

Through TCP/IP or HTTP socket connections for the various API calls, the
MPINET server receives messages from the Message Broker Suite and clients,
performs application interactions, and stores the data in the hub database. MPINET
is a multi-threaded process and implements database connection pooling to
decrease response time. Information about MPINET interactions is written to .mlg
log files.

The Master Data Engine writes to the database through Open Database
Connectivity (ODBC), a standard database access method. The DXI layer is a
database-specific abstraction that is included to handle the variations in accessing
databases through ODBC.

The IBM Initiate Master Data Service supports secure encrypted communication
between the Master Data Engine and clients through Socket Layer Security (SSL).
Two-way SSL is the default configuration. For U.S. federal government
installations, the engine can be configured for FIPS compatibility. As well, all
authentications to the Master Data Engine are done through an internal Java-based
directory server that manages user, group, and permission information. The
internal LDAP directory server is installed during the normal Master Data Engine
installation process. The directory server can be configured to communicate with
external corporate directory servers.

Installing and configuring your Master Data Engine is the first step in
implementing the IBM Initiate Master Data Service. The installation process
involves pre-installation configuration of your operating system and database
platforms, installation of the engine, and various configuration steps.

© Copyright IBM Corp. 1995, 2011 1

2 Master Data Engine Installation Guide

Chapter 2. Installation worksheets

After the Master Data Engine is installed, you must create an instance of the
engine for each runtime environment you plan to use. Depending on your
implementation, you might also need instances for LDAP Directory Server, entity
managers, event managers, and data source. Completing the installation
worksheets before you install the Master Data Engine helps you in planning your
installation, as well as saving time and enforcing consistency during installation
and instance creation.

Reuse the worksheets for each runtime environment that you plan to implement.
For example, you might have a production environment, a test environment, and a
training environment.

You use the madconfig utility to create instances. The data source, engine, LDAP,
entity manager, and even notification worksheets are organized in the order in

which the madconfig utility create_instance prompts are displayed.

Related concept

[Chapter 3, “Planning your Master Data Engine installation,” on page 25|

[Chapter 4, “Preparing your environment,” on page 31

Related reference

[‘madconfig utility” on page 102

Master Data Engine database connections worksheet

The database connection count is the sum of the connections that are used by the
Master Data Engine and by any entity managers. Use the database connection
worksheet to estimate the number of database connections required for your
installation.

When planning the number of connections required, remember that some Master
Data Engine or IBM Initiate Workbench processes require additional database
connections. Also, remember that LDAP processes require connections
intermittently. Plan to include some additional connections for these processes.

Completing this database connection worksheet before beginning the installation
can help you when responding to installation prompts.

Table 1. Database connection worksheet

Connection
used by Guidance Your value
Engine The number of JDBC connections, as specified in the
jdbe.properties maxActive value.
Engine The number of ODBC connections as specified in the
com.initiatesystems.hub.mpinet.threads value.

© Copyright IBM Corp. 1995, 2011 3

Table 1. Database connection worksheet (continued)

connection for each entity type managed by the Entity
Manager.

Connection

used by Guidance Your value

Engine The total number of callback threads for all callback
handlers, as specified in the
com.initiatesystems.hub.handler.cbthreads value.
The database connections are used only when a callback
handler has been registered and deployed. Callback
threads for undeployed callback handlers do not create
database connections.

Engine Two ODBC connections for the internal administrative |2
processes (dictionary refresh and sequence generation).

Engine If you are using an embedded Entity Manager, have one

Stand-alone
Entity
Manager

If you are using stand-alone Entity Managers, have three
connections for each stand-alone entity manager.

Other
processes

Include additional connections as needed for IBM Initiate
Workbench, Master Data Engine, and LDAP processes.
There is no specific value that can be suggested, as
requirements vary from installation to installation.
However, you might specify a value that represents
10-25 percent of the sum of the connections from the
preceding worksheet rows.

Total number
of connections

Enter the sum of your connections here. This number is
an approximate count of the database connections your
installation requires.

Data source worksheet

Use the data source worksheet to identify parameters for the data source to which
your Master Data Engine instance is connecting.

You use the madconfig utility to create instances. This worksheet is organized in
the order in which the madconfig utility create_instance prompts are displayed.

Table 2. Engine data source worksheet

Configuration

Guidance

Your value

Data source
name

Identify a name for the data source configuration. The
engine instance uses the data source to communicate
with the database.

The name must consist of 12 or fewer alphanumeric
characters. Underscore (_) characters can be used in the
name, for example prod_100. Other characters are not
supported.

4 Master Data Engine Installation Guide

Table 2. Engine data source worksheet (continued)

Configuration

Guidance

Your value

Database type

Identify the database type. The options are: db2, mssqlu,
and oracle.

The ODBC driver applied by the Master Data Engine
installer is determined by the database type you define.
The wire driver enables the engine instance to
communicate with the database and write data to the
schema. However, the engine host requires installation of
the applicable database client to enable the engine
instance to perform bulk load operations.

The Master Data Engine software includes the ODBC
drivers listed here. Others are not supported.

* Oracle Wire (oracle option)

* Oracle Net (oracle option)
 IBM DB2® Wire (db2 option)

* SQL Server Wire (mssqlu option).

For Oracle databases, the Master Data Engine determines
whether to install the wire or net driver based on the
database host and port values. If you apply empty values
for the database host and port, the engine installs the
Oracle Net driver, which requires installation of the
Oracle client on the engine host.

IBM AIX®, Linux, or Solaris data source information is
stored in an odbc.ini file located in the
MAD_ROOTDIR/conf directory.

Database
server name

Identify the fully qualified address of the host on which
the database is installed, for example: prod.customer.com.

For IBM DB2 or Oracle, provide the database host and
database port.

Database Identify the name of the database instance created for the
name engine, for example: prod. The database name and data
source name can be the same.
For Oracle databases, provide the database system ID
(SID).
Microsoft For the credentials that the Master Data Engine uses to
Windows authenticate to the SQL Server database, choose whether
authentication |to use Microsoft Windows credentials or SQL Server

credentials.

Choose y to use Microsoft Windows authentication. The
database authentication mechanism does not prompt for
user name and password, but uses the Microsoft
Windows credentials. Choose n to use SQL Server
credentials. You are prompted for the SQL Server
credentials provided during the madconfig utility
create_instance process.

Related reference

[“madconfig utility” on page 102

Chapter 2. Installation worksheets

5

Related tasks

[Creating a data source” on page 45|

Master Data Engine installation worksheet

Use the engine installation worksheet to define the root directory (MAD_ROOTDIR)
values for the host intended for the initial Master Data Engine runtime
environment.

Use the engine installation worksheet to identify the directory in which you are
installing the Master Data Engine software. The installer provides a default
location, but you can use the directory structure of your choice.

If you install additional runtime environments later, they might not point to the
same database as that of the initial environment. If installing multiple runtime
environments, re-use the installation worksheet to define the unique directory
values for each environment.

Table 3. Engine installation worksheet

Configuration | Guidance Your value
Installation Identify the MAD_ROOTDIR, which is the path name for the

home directory in which to install the Master Data Engine. Use

directory this example:

Microsoft Windows default:
C:\Program Files\IBM\Initiate\Enginel0.0.0.x

IBM AIX, Linux, or Solaris default:

/opt/IBM/Initiate/Enginel0.0.0.x

Related concepts

“Master Data Engine directory structure - MAD_ROOTDIR and MAD_HOMEDIR"|

on page 32|

[‘Master Data Engine elements and high-level interdependencies” on page 26|

“Master Data Engine and instances installed on different drives (Microsoft]
Windows)” on page 39

Related tasks

[Chapter 5, “Installing the Master Data Engine,” on page 41|

Master Data Engine instance worksheet

Use the Master Data Engine instance worksheet to define your instance values to
save time when you respond to instance creation prompts.

Use the engine instance worksheet to identify the parameters for each engine
instance you plan to create.

6 Master Data Engine Installation Guide

You use the madconfig utility to create instances. This worksheet is organized in
the order in which the madconfig create_instance prompts are displayed.

If you install additional runtime environments later, they might not point to the
same database as that of the initial environment. If installing multiple runtime

environments, re-use the installation worksheets to define the unique values for
each environment.

Table 4. Engine instance worksheet

Configuration

Description

Your value

Instance name

Identify a name for the engine instance, for example,
prod100_1 .

The product supports creating and running multiple
engine instances within a single home directory.

Instance
home
directory

Identify the path to the directory (MAD_HOMEDIR) in which
to create the engine instance. One example is:

Microsoft Windows default: C:\group\name
IBM AIX, Linux, or Solaris default /opt/group/name

where group is the name of the directory created for the
associated runtime instances (for example, prod or qa),
and name is the instance name specified.

The product supports creating and running multiple
engine instances within a single home directory.

SSL
enablement or
FIPS
compliance

If your engine communicates over SSL, or is being
installed in a U.S. government environment
(FIPS-compliant), identify the:

¢ Full path and name of the JSSE truststore (the
madconfig utility provides a default) and password for
accessing the JSSE truststore

¢ Full path and name of JSSE keystore (the madconfig
utility provides a default) and password for accessing
the JSSE keystore

* JSSE keystore type (default PKCS12)

You are not prompted for this information unless you use
the madconfig utility command documented in the
enabling FIPS compliance task.

Restriction: You cannot have a FIPS-compliant instance
and a non-FIPS compliant instance that share the same
engine MAD_ROOTDIR.

Instance
locale

Identify the primary locale for instance data. You can also
identify a list of applicable secondary locales. If defining
more than one locale, specify the primary locale first and
then separate locale values with a comma (,). For
example, you can type, en_US or fr_FR or en_US, fr_FR.

Database data
source name

Identify the name of the data source created for this
instance. You define the name in the data source
worksheet.

Chapter 2. Installation worksheets

7

Table 4. Engine instance worksheet (continued)

Configuration

Description

Your value

Database user

Identify the user name for the database user account. The
database user account was created as a part of completing
database configuration.

This prompt is not displayed if you chose Microsoft
Windows authentication for SQL Server during the
madconfig utility create_datasource process.

Database user
password
scheme

Identify the password scheme. Options are:

¢ plain - no encryption

¢ pwd2 - for passwords encrypted from the madpwd2
utility

¢ pwd3 - for password encrypted from the madpwd3
utility

To encrypt the password, you must use the madpwd?2 or
madpwd3 utility.

This prompt is not displayed if you chose Microsoft
Windows authentication for SQL Server during the
madconfig utility create_datasource process.

Database
password

Identify the password for the database user account that
was created as a part of completing the database
configuration.

If you are applying an encrypted password from the
madpwd? utility, identify the encrypted password string.
Leave the value in the worksheet blank for now. You can
return to this section of the worksheet after completing
the remainder of the worksheet and creating the initial
runtime environment.

If you are applying an encrypted password from the
madpwd3 utility (used for AES encryption), you must
first generate the AES key and initialization vector (iv).
Use the generation output here to identify the full path
and name of the AES-CBC (128, 192, or 256 bit) key file
and iv file in hex-encoded format. Return to this section
of the worksheet to identify the encrypted string after
completing the rest of this worksheet and creating the
initial runtime environment.

This prompt is not displayed if you chose Microsoft
Windows authentication for SQL Server during the
madconfig create_datasource process.

Database host

Identify the fully qualified address of the host on which
the database is installed, for example, prod.customer.com .

The madconfig utility pre-populates the corresponding
value from the specified data source. Press Enter to apply
the default value.

Database port

Identify the database port number. The default values are:
* Oracle: 1521

* SQL Server: 1433

* IBM DB2: 50000

8 Master Data Engine Installation Guide

Table 4. Engine instance worksheet (continued)

Configuration

Description

Your value

MPINET over
TCP/IP

Identify whether the Master Data Engine instance
provides MPINET services (standard socketing).
Answering y to this prompt results in standard MPINET
TCP/IP communication behavior, meaning that the
engine listens for the standard MPINET protocol over
port 16000. If your implementation requires MPINNET
over HTTP, respond n and see the MPINET over HTTP
prompt in the next row.

Engine
instance host
name

Identify the fully qualified address of this host that is
intended for this instance of the Master Data Engine, for
example, myhub.customer.com.

Engine
instance port
number

Identify the port number intended for communication
with the Master Data Engine. The default value is: 16000

In a multi-engine environment, each Master Data Engine
(MPINET port) must listen on a different port (for
example, MPINET1 on 16000, MPINET2 on 16001, and so
on).

MPINET over
HTTP

Identify whether this engine instance provides MPINET
over HTTP services. You can configure an instance to run
over both TCP/IP and HTTP. In some government
environments, this method is required. See the IBM
Initiate Master Data Service Security Technical Implementation
Guide (STIG) for details.

Embedded Identify whether the engine instance provides embedded
application application services (IBM Initiate Enterprise Service
services Oriented Architecture (ESOA) Toolkit RESTful services).
Embedded If using the embedded application services, indicate the
application web server port number. The default value is: 7378.
services port
number
Full-text Identify whether the instance is to use a full-text index. A
index response of y enables IBM Initiate Flexible Search.
Engine Identify the number of concurrent connections (context
instance pool objects) the instance can handle. The default value
thread count |is: 1.
Embedded Identify whether the engine instance is to use the
entity embedded entity manager. The valid options are:
manager * y to use the embedded entity manager, which is typical
for most implementations.
* n to not use the embedded entity manager.
The embedded entity manager runs within the engine
instance. Another type, a stand-alone entity manager,
runs as a separate instance to manage a single entity
type.
Embedded If you plan to implement event notification, enter y to use
event the embedded event manager. Event notification allows
manager external systems to receive messages for a subset of

internal events that are generated within the IBM Initiate
Master Data Service.

Chapter 2. Installation worksheets

9

Table 4. Engine instance worksheet (continued)

Configuration

Description

Your value

Embedded
LDAP
directory
server

Identify whether to embed the required IBM Initiate
LDAP directory server. The valid values are:

* y to embed within the engine instance

* n to not embed within the engine instance

For an engine instance to start, it requires an IBM Initiate
LDAP directory server. You can use an embedded server,
use a server that is embedded in a different engine
instance, or create a stand-alone server instance.

If you are not embedding the IBM Initiate LDAP
directory server within this engine instance, you must
specify within the corresponding configuration prompts
to use a stand-alone IBM Initiate LDAP directory server
or to use the embedded IBM Initiate LDAP directory
server in another Master Data Engine runtime
environment. If the applicable stand-alone or embedded
server does not exist yet, return here to specify the
corresponding values after creating that server.

In addition, your implementation might require
integration with an external corporate LDAP directory
server.

LDAP
directory
server host

Identify the fully qualified host name for the IBM Initiate
LDAP directory server, for example,
initiateldap.customer.com.

This prompt is not displayed if you chose y at the
previous prompt in order to embed an LDAP directory
server.

LDAP Identify the port number for the IBM Initiate LDAP

directory directory server. The default value is: 1389

server port

number

LDAP server |Identify the LDAP server administration port number.

admin port The replication technology used in the embedded and

number stand-alone LDAP directories is specific to the vendor
used (OpenDS) and cannot be used with other directory
server implementations. OpenDS requires this port
number when performing administrator tasks on the
LDAP server.

LDAP Identify whether the IBM Initiate LDAP directory server

directory is intended for membership in a cluster with existing

server in a LDAP servers. The valid values are: y for yes or n for no.

cluster with

existing If you enter y, you are prompted for additional

LDAP servers

information such as the IBM Initiate LDAP Server
replication port number and the cluster peer IBM Initiate
LDAP Server host, port number, and replication port
number. Enter y only after you create at least one
embedded or stand-alone IBM Initiate LDAP instance.

This prompt is not displayed if you chose not to embed
an IBM Initiate Directory Server.

10 Master Data Engine Installation Guide

Table 4. Engine instance worksheet (continued)

Configuration

Description

Your value

Embedded
task manager

Identify whether the engine instance uses an embedded
task manager (process manager). The engine task
manager is a method by which the engine polls certain
events or processes and runs the associated logic on a
scheduled basis.

If you plan to implement dynamic frequency-based
bucketing (DFBB), you must enable the embedded task
manager. DFBB identifies frequently occurring bucket
values at runtime

Do not confuse the use of the term "task manager" with
the concept of identity, relationship, or custom tasks that
are worked by data stewards in applications like IBM
Initiate® Inspector.

Task manager
polling
interval

If you use the task manager, indicate the interval (in
seconds) that the task manager polls for events or
processes to run. The default is 60 seconds.

Task manager
poll for
expired tasks

Identify whether the task manager polls for expired tasks.
Custom tasks (tasks that are worked by data stewards)
can be configured to expire in the hub if the custom task
has not been worked or resolved within a defined
number of days.

Task
expiration
polling
interval

Indicate, in seconds, the interval in which the task
manager polls for expired tasks. The default is 60
seconds.

Task status
for expiring
tasks

Identify the task status for expired tasks. The default is a
status of 6.

Frequency Identify if the task manager polls for frequency strings. If
string poll enabled, the task manager looks for newly added
frequency strings and re-buckets those members that
might be affected. This functionality is required for DFBB.
Frequency If the task manager polls for frequency strings, indicate
string polling | the polling interval in seconds. The default is 60 seconds.
interval This functionality is used by DFBB.
Frequency Identify the maudrecno used to identify a new frequency
string string. Entering a value of 0 processes any frequency
maudrecno strings added since the startup of this engine instance.

The default is 0. This functionality is used by DFBB.

Master Data
Engine queue
poll interval

If you are implementing event notification, specify the
number of seconds in which you want the event manager
to poll the engine for event notifications. The default is 10
seconds.

Master Data
Engine queue
work unit

If you are implementing event notification, specify the
row count that is pulled from the entoque record in the
engine database. The default is 500.

Master Data
Engine queue
worker thread
count

If you are implementing event notification, specify the
number of threads used to process notifications in
parallel. The default is 1.

Chapter 2. Installation worksheets

11

Table 4. Engine instance worksheet (continued)

Configuration

Description

Your value

Enable entity

Identify whether to enable the relationship linker. If you

manager are managing relationships, like households, enter y.

relationship

linker

Entity Enter the number of seconds that the queue manager

manager waits to requery when no records are in the database, the

database poll |internal queue is full, or if a database error has reached

interval the maximum number of retry attempts. The default is 10
seconds.

Entity Enter the number of entique records the queue manager

manager retrieves from the database per database query. The

database default is 500. An entique record is created when the

work unit engine processes new members or modifications to
existing members.

Entity Enter the number of threads that process entique records

manager in parallel per entity type. The default is 1.

worker thread
count

Engine
management
port number

Identify the port number used by the JMX browser to
monitoring the Master Data Engine from a remote
system. The default value is: 1199. For more information
about the JMX browser, see the “Operational monitoring”
chapter within the IBM Initiate Workbench User’s Guide.

Callback
thread count

Identify the callback thread count. The default value is: 2

If callback handler functionality (callouts to a vendor
application) is not applicable, apply the default value. If
you are planning to use callouts, consider applying a
higher value depending on the amount of callback
activity expected.

Callback handlers. As needed, you can create custom
callback handlers by using the IBM Initiate Java or .NET
SDKs. For development details, see the IBM Initiate
Master Data Service SDK Reference for Java and Web Services.
Also, after creating a custom handler, you must:

« Set the MAD_CALLBACKLIB variable.

* Register the handler in IBM Initiate Workbench (see
IBM Initiate Workbench User’s Guide).

¢ Deploy the handler by using the madconfig utility.

12 Master Data Engine Installation Guide

Table 4. Engine instance worksheet (continued)

Configuration | Description Your value

Bootstrap the |Identify whether to have the instance creation process
database bootstrap the database. The valid values are:

* vy to load the data model into the database.

Attention: Applying y overwrites all data in the
database with no way to recover. Do not apply y unless
setting up an initial runtime environment that points to
an empty database instance.

* nif you do not want to load the data model or if you
want to delay loading it. For example, do not bootstrap
(select n) when creating an instance to point to an
existing database for upgrade or an additional instance
that points to an already-bootstrapped database. If
delaying the bootstrapping process for an empty
database, use the madconfig utility to load the data
model at a later time:

Microsoft Windows: madconfig bootstrap_instance

IBM AIX, Linux, or Solaris: madconfig.sh
bootstrap_instance

Related concepts

“Master Data Engine directory structure - MAD_ROOTDIR and MAD_HOMEDIR"]

on page 32|

[“Master Data Engine elements and high-level interdependencies” on page 26|

“Master Data Engine and instances installed on different drives (Microsoft]
Windows)” on page 39

[Appendix K, “FIPS compliance,” on page 255

[“Master Data Engine database configuration” on page 36|

[System and software users for the Master Data Engine” on page 36|

[‘Database user account password encryption” on page 43|

[“Master Data Engine installation in a high-availability environment” on page 27|

[Appendix D, “Thread count settings,” on page 219

[Chapter 8, “Entity managers,” on page 73|

[Chapter 9, “Event notification,” on page 81|

[Appendix A, “LDAP Directory Server for the Master Data Engine,” on page 197]

[‘IBM Initiate LDAP directory server stand-alone instance” on page 29|

[“Master Data Engine environment variables” on page 87|

Related reference

Chapter 2. Installation worksheets 13

[“madconfig utility” on page 102|

[‘Data source worksheet” on page 4|

["LDAP directory server worksheet”|

[‘Stand-alone entity manager worksheet” on page 16|

Related tasks

[“Enabling FIPS compliance in the Master Data Engine” on page 255|

LDAP directory server worksheet

Before creating the stand-alone instance of the LDAP directory server, use the
LDAP directory server worksheet to define the required values.

You use the madconfig utility to create instances. This worksheet is organized in
the order in which the madconfig utility create_instance prompts are displayed.

Table 5. LDAP directory server worksheet

Configuration

Description

Your value

Instance name

Identify the name for the stand-alone instance of the LDAP
directory server. For example: prod100

Instance home
directory

Identify the path to the directory in which to create the
specified server instance. One example is:

Microsoft Windows: C:\home\group
IBM AIX, Linux, or Solaris: /home/group

where group is the name of the directory created for the
associated runtime instances (for example: prod or ga).

Instance locale

Identify the primary locale for instance data. You can also
identify a list of applicable secondary locales. If defining
more than one locale, specify the primary locale first and
separate locale values with a comma (,). For example, you
can type en_US or fr_FR or en_US,fr_FR.

Database data
source name

Identify the name of the data source created for this LDAP
directory server instance. You define the name in the data
source worksheet.

Database type

Identify the type of database for the specified data source.

Database user

Identify the user name for the database account. The database
user account was created as a part of completing the database
configuration.

This prompt is not displayed if you chose Microsoft Windows
authentication for SQL Server during the madconfig utility
create_datasource process.

14 Master Data Engine Installation Guide

Table 5. LDAP directory server worksheet (continued)

If the password is encrypted and you opted to apply an
encrypted value, define the encrypted password.

This prompt is not displayed if you chose Microsoft Windows
authentication for SQL Server during the madconfig utility
create_datasource process.

Configuration | Description Your value

Encrypted Identify whether to specify the password in encrypted

format for format. The valid values are: y for yes or n for no. If y, the

database user |password must have been encrypted and you must know its

password encrypted value .
This prompt is not displayed if you chose Microsoft Windows
authentication for SQL Server during the madconfig utility
create_datasource process.

Database Identify the password for the database user account.

password

Database host

Identify the fully qualified address of the host on which the
database is installed. For example: prod.customer.com

The madconfig utility prepopulates the corresponding value
from the specified data source. To apply the default value,
press Enter.

Database port

Identify the database port number.

LDAP server
host

Identify the fully qualified host name for this server instance.
For example: initiateldap.customer.com

LDAP server
port number

Identify the port number for this server instance. The default
value is: 1389

LDAP server
in a cluster
with existing
LDAP servers

Identify whether this server instance is intended for
membership in a cluster with existing LDAP servers.

Windows Identify the account name for the Microsoft Windows service

service to use when connecting.

account
This prompt is not displayed unless you chose Microsoft
Windows authentication during the madconfig utility
create_datasource process.

Windows Identify the password for the Microsoft Windows service to

service use when connecting.

password

This prompt is not displayed unless you chose Microsoft
Windows authentication during the madconfig utility
create_datasource process.

LDAP server
management
port number

Identify the management port number for the server. The
default value is: 1198

Related concepts

[Appendix A, “LDAP Directory Server for the Master Data Engine,” on page 197]

“Master Data Engine directory structure - MAD_ROOTDIR and MAD_HOMEDIR’]

on page 32|

Chapter 2. Installation worksheets

15

[“Master Data Engine database configuration” on page 36|

[‘System and software users for the Master Data Engine” on page 36|

[‘Database user account password encryption” on page 43|

Related reference

[“Master Data Engine instance worksheet” on page 6|

[“madconfig utility” on page 102|

Related task

[‘Creating a stand-alone IBM Initiate LDAP directory server instance” on page 46|

Stand-alone entity manager worksheet

To configure a stand-alone entity manager, you create an instance that manages a
single entity type or one that uses more threads than another. Use the stand-alone
entity manager worksheet to record information for each stand-alone entity
manager that you plan to configure.

You use the madconfig utility to create instances. This worksheet is organized in
the order in which the madconfig utility create_instance prompts are displayed.
Entity configuration parameters are stored in the com.initiate.server.queue.cfg
file.

Table 6. Stand-alone entity manager worksheet

Configuration | Description Your value

Entity Identify a name for the new entity manager instance. For
manager example, you might name it prod100_id if the entity type
instance name | is identity.

The example name is based on the suggested syntax of
combining the group and version along with the entity
identifier (groupvers[_identifier])

Instance home | Identify the path to the directory in which to create the
directory specified entity manager. One example is:

Microsoft Windows: C:\ibm\initiate\home\group
IBM AIX, Linux, or Solaris: /ibm/initiate/home/group

where group is the name of the directory created for the
associated runtime instances (for example, prod or qa).

Instance Identify the locale for the entity manager. If more than
locale(s) one locale applies, specify the primary locale first, and
separate locale values with a comma (). For example,
you can type en_US, fr_FR

16 Master Data Engine Installation Guide

Table 6. Stand-alone entity manager worksheet (continued)

Configuration

Description

Your value

Entity type

Identify the entity type that this entity manager is to
manage (for example, identity). The entity type must be
configured for asynchronous processing through IBM
Initiate Workbench.

To identify the current entity types defined, query the
mpi_enttype table in the database. Also, you can view
the Entity Types tab from the Member Types tab in IBM
Initiate Workbench.

Asynchronous management is further discussed in the
entity manager topics and in the “Algorithms” and
“Configuration editor” chapters in the IBM Initiate
Workbench User’s Guide.

Database data
source name

Identify the name of the database data source this entity
manager is to use.

Database user

Identify the user name for the database account.

This prompt is not displayed if you chose Microsoft
Windows authentication during the madconfig utility
create_datasource process.

Encrypted Identify whether to specify the password in encrypted
format for format. If y, the password must be encrypted according
database user |to and you must know the encrypted value.
password
This prompt is not displayed if you chose Microsoft
Windows authentication during the madconfig utility
create_datasource process.
Database Identify the password for the database user account.
password

If password is encrypted and you opted to apply an
encrypted value, define the encrypted password.

This prompt is not displayed if you chose Microsoft
Windows authentication during the madconfig utility
create_datasource process.

Database host

Identify the fully qualified address of the host on which
the database is installed. For example: prod.customer.com

The madconfig utility pre-populates the corresponding
value from the specified data source. Press Enter to
apply the default value.

Database port

Identify the database port number.

LDAP Identify the fully qualified host name for the IBM Initiate
directory LDAP directory server. For example:

server host initiateldap.customer.com

LDAP Identify the port number for the IBM Initiate LDAP
directory directory server.

server port

number

Chapter 2. Installation worksheets

17

Table 6. Stand-alone entity manager worksheet (continued)

database work
unit

default is 500. An entique record is created when the
engine processes new members or modifications to
existing members.

Configuration | Description Your value

LDAP server |Identify the LDAP server administration port number.

admin port The replication technology used in the embedded and

number stand-alone LDAP directories is specific to the vendor
used (OpenDS) and cannot be used with other directory
server implementations. OpenDS requires this port
number when performing administrator tasks on the
LDAP server.

Enable Identify whether to enable the relationship linker for this

relationship entity manager.

linker

Entity Enter the number of seconds that the queue manager

manager waits to re-query when no records are in the database,

database poll | the internal queue is full, or if a database error has

interval reached the maximum number of retry attempts. The
default is 10 seconds.

Entity Enter the number of entique records the queue manager

manager retrieves from the database per database query. The

Entity
manager
worker thread
count

Enter the number of threads that process entique records
in parallel per entity type. The default is 1.

thread count

Entity Identify the port number for this entity manager. The
manager default value is: 1200

management

port number

Callback Identify the callback thread count for this entity manager.

The default value is: 2

If callback handler functionality (callouts to a vendor
application) is not applicable, apply the default value. If
you are planning to use callouts, consider applying a
higher value depending on the amount of callback
activity expected.

Microsoft Identify the account name for the Microsoft Windows

Windows service to use when connecting.

service

account This prompt is not displayed unless you chose Microsoft
Windows authentication for SQL Server during the
madconfig utility create_datasource process.

Microsoft Identify the password for the Microsoft Windows service

Windows to use when connecting.

service

password This prompt is not displayed unless you chose Microsoft

Windows authentication for SQL Server during the
madconfig utility create_datasource process.

Related concepts

“Master Data Engine directory structure - MAD_ROOTDIR and MAD_HOMEDIR"]

on page 32|

18 Master Data Engine Installation Guide

[Chapter 8, “Entity managers,” on page 73|

[“Master Data Engine database configuration” on page 36|

[‘Database user account password encryption” on page 43|

Related reference

[“Master Data Engine instance worksheet” on page 6|

[“Entity manager configuration parameters” on page 76|

[“madconfig utility” on page 102

Related task

[‘Creating stand-alone entity managers” on page 46|

Event notification worksheets

Use the event notification worksheet to define the values for your event manager
and event handler.

You can embed your event manager in your Master Data Engine instance or you
can configure a stand-alone manager.

* Embedded event manager - complete the embedded event manager worksheet
and the embedded event handler worksheet.

+ Stand-alone event manager - complete the stand-alone event manager worksheet
and the stand-alone event handler worksheet.

The madconfig utility is used to create event manager instances and event
handlers. These worksheets are organized in the order in which the madconfig
utility prompts are displayed.

The values defined in the embedded event manager worksheet are the same event
notification values defined in the engine instance worksheet.

Table 7. Embedded event manager worksheet

Configuration

Guidance

Your value

Embedded
event manager

If you plan to implement event notification, enter y to
use the embedded event manager. Event notification
allows external systems to receive messages for a subset
of internal events that are generated within the IBM
Initiate Master Data Service.

Master Data
Engine queue
poll interval

If you are implementing event notification, specify the
number of seconds in which you want the event
manager to poll the engine for event notifications. The
default is 10 seconds.

Master Data
Engine queue
work unit

If you are implementing event notification, specify the
row count that is pulled from the entoque record in the
engine database. The default is 500.

Master Data
Engine queue
worker thread
count

If you are implementing event notification, specify the
number of threads used to process notifications in
parallel. The default is 1.

Chapter 2. Installation worksheets

19

Use the embedded event handler configuration worksheet to define the values for
your embedded event handler configuration. Use the madconfig utility
configure_instance_event_handler command.

Table 8. Embedded event handler configuration worksheet

Configuration | Guidance Your value

Master Data Identify the name of your engine instance.

Engine

instance

Event Specify the destination queue name. This entry must be

Manager the same name specified in IBM Initiate Workbench.

publishing

destination

Event Specify the destination user name.

Manager

publishing

destination

user

Password Identify the password scheme. Options are:

scheme * plain - no encryption
e pwd2 - for passwords encrypted from the madpwd2

utility
* pwd3 - for password encrypted from the madpwd3
utility
To encrypt the password, you must use the madpwd?2 or
madpwd3 utility.

Password Identify the password for the publishing. If the password
is encrypted and you opted to apply an encrypted value,
define the encrypted password.

Add another |Indicate whether you plan to send notifications to

publishing multiple destinations. If yes, you are prompted to enter

destination the necessary information for the new destination.

Use the stand-alone event manager worksheet to define values for a stand-alone
event manager. Use the madconfig utility create_eventmgr command.

Table 9. Stand-alone event manager worksheet

instance name

Configuration | Guidance Your value
Event Identify a name for the instance.
Manager

instance locale

Event Identify the path to the directory in which to create the
Manager event manager instance.

instance home

directory

Engine Identify the locale for the engine instance associated with

this event manager. If more than one locale applies,
specify the primary locale first, and separate locale values
with a comma (,). For example, you can type en_US,
fr_FR.

20 Master Data Engine Installation Guide

Table 9. Stand-alone event manager worksheet (continued)

Configuration

Guidance

Your value

Entity type

Identify the entity type for this event manager (for
example, id for identity entity). To identify the entity
types defined for your implementation, query the
mpi_enttype table in the database. Also, you can view the
Entity Types tab from the Member Types tab in IBM
Initiate Workbench.

Database data
source name

Identify the name of the database data source this event
manager is to use.

Database
password
scheme

Identify the password scheme. Options are:

* plain - no encryption

* pwd2 - for passwords encrypted from the madpwd2
utility

* pwd3 - for password encrypted from the madpwd3
utility

To encrypt the password, you must use the madpwd?2 or
madpwd3 utility.

Database user

Identify the user name for the database user account. The
database user account was created as a part of completing
database configuration. This prompt is not displayed if
you chose Microsoft Windows authentication for SQL
Server during the madconfig utility create_datasource
process.

Database Identify the password for the database user account. If the

password password is encrypted and you opted to apply an
encrypted value, define the encrypted password.

LDAP Identify the fully qualified host name for the LDAP

directory directory server, for example, initiateldap.customer.com.

server host

LDAP Identify the port number for the LDAP directory server.

directory

server port

number

LDAP server |Identify the LDAP server administration port number. The

admin port replication technology used in the embedded and

number stand-alone LDAP directories is specific to the vendor
used (OpenDS) and cannot be used with other directory
server implementations. OpenDS requires this port
number when performing administrator tasks on the
LDAP server.

Event Specify the number of seconds in which you want the

Manager event manager to poll the engine for event notifications.

queue poll The default is 10 seconds.

interval

Event Specify the row count that is pulled from the entoque

Manager record in the Master Data Engine database. The default is

queue work
unit

500.

Event
Manager
queue worker
thread count

Specify the number of threads used to process
notifications in parallel. The default is 1.

Chapter 2. Installation worksheets

21

Table 9. Stand-alone event manager worksheet (continued)

Configuration

Guidance

Your value

Event
Manager
management
port number

Identify the port number for this event manager. The
default value is: 1201.

Use the stand-alone event handler worksheet to define the values for your event
handler. You can configure multiple event handlers to publish notifications to
multiple destinations. Re-use this worksheet for each destination required. Use the
madconfig utility configure_eventmgr_eventhandler command.

Table 10. Stand-alone event handler worksheet

Configuration

Guidance

Your value

Event

The name of event manager specified in the stand-alone

factory name

Manager event manager worksheet.

instance

name

Event The JMS connection factory name is defined in your JMS
Manager JMS | queue provider and JNDI LDAP environment. A
connection ConnectionFactory object encapsulates a set of connection

configuration parameters that are defined by an
administrator. A client uses it to create a connection with a
JMS provider. A ConnectionFactory object is a J]MS
administered object and supports concurrent use. The JMS
API establishes the convention that JMS clients find
administered objects (for example, Queues) by looking them
up in a JNDI namespace.

Event Specify the destination queue name. This entry must be the

Manager same name specified in IBM Initiate Workbench.

publishing

destination

name

Event Specify the destination user name.

Manager

publishing

destination

user

Event Specify the destination queue name. This entry must be the

Manager same name specified in IBM Initiate Workbench.

publishing

destination

Publishing Identify the password scheme. Options are:

destination * plain - no encryption

password .

scheme * pwd2 - for passwords encrypted from the madpwd?2 utility
* pwd3 - for password encrypted from the madpwd3 utility
To encrypt the password, you must use the madpwd2 or
madpwd3 utility.

Publishing Identify the password for the publishing. If the password is

destination encrypted and you opted to apply an encrypted value, define

password the encrypted password.

22 Master Data Engine Installation Guide

Table 10. Stand-alone event handler worksheet (continued)

Configuration| Guidance

Your value

Add another |Indicate whether you plan to send notifications to multiple
publishing destinations. If yes, you are prompted to enter the necessary
destination information for the new destination.

Related concept

hapter 9, “Event notification,” on page 81
p pag

Related reference

[“madconfig utility” on page 102|

“madpwd? utility” on page 12§"madpwd3 utility” on page 12§‘Master Data|

Engine instance worksheet” on page 6|

Chapter 2. Installation worksheets

23

24 Master Data Engine Installation Guide

Chapter 3. Planning your Master Data Engine installation

Before you install the Master Data Engine, review theses checklist items and
determine how to address those items in your implementation.

Use this checklist as a guide through the planning process. Links to related topics
are provided at the end.

1. Review the Master Data Engine elements and high-level interdependencies
topic.

2. Identify any high-availability needs. While there are no specific steps you need
to take during installation, it is suggested that you review the high-availability
topic.

3. If you are installing in a U.S. federal government environment, review the
"Master Data Engine installation in U.S. government environments" and "FIPS
compliance” topics. You provide information about this item in the engine
instance worksheet.

4. Plan your required instances by referring to the Master Data Engine instance
worksheet.

5. Review the LDAP directory structure topics and determine whether your
implementation will use an embedded LDAP server, a stand-alone LDAP
server, an external corporate LDAP server, or a combination of options. If you
are using an embedded server, note this in the Master Data Engine instance
worksheet. If you are using an embedded or external server, complete the
stand-alone LDAP server worksheet.

6. Review the entity management topics and determine your strategy. If you are
using an embedded entity manager, note this on the Master Data Engine
instance worksheet. If you are using a stand-alone entity manager, complete the
stand-alone entity manager worksheet.

7. Review the event notification topics and determine whether your
implementation requires this feature. If so, you can opt to use an embedded
event manager or a stand-alone event manager. If you are using an embedded
event manager instance, complete the engine instance worksheet and the
embedded event manager and embedded event handler configuration
worksheets (these two worksheets are found in the event notification
worksheets topic). If you are using a stand-alone event manager, complete the
stand-alone event manager and stand-alone event handler worksheets (also
found in the event notification worksheets topic).

8. Complete all other installation worksheets.

Important: In versions prior to version 7.5 of the software, each Master Data
Engine instance created was appended to an .ini configuration file (for example,
services.ini or madman.ini). If upgrading from version 7.5 or earlier, you must
store a backup of the existing .ini file. While this file is no longer used by the
Master Data Engine, it is required for the Message Broker Suite components (see
the IBM Initiate Master Data Service Message Broker Suite Reference).

Topics in the IBM Initiate Master Data Service Engine Installation Guide are intended
for individuals responsible for installing and configuring the core Master Data
Engine. Specific operational procedures, such as starting, stopping, and monitoring
software, and reprocessing messages, are provided in the IBM Initiate Master Data

© Copyright IBM Corp. 1995, 2011 25

Service Software Operations Guide. Information about configuring a hub is provided
in the IBM Initiate Workbench User's Guide.

Related concepts

[Appendix A, “LDAP Directory Server for the Master Data Engine,” on page 197]

[Appendix K, “FIPS compliance,” on page 255

[Chapter 8, “Entity managers,” on page 73|

hapter 9, “Event notification,” on page 81
p pag

[“SSL security” on page 191

[Chapter 4, “Preparing your environment,” on page 31|

Master Data Engine elements and high-level interdependencies

The Master Data Engine is the core component of the IBM Initiate Master Data
Service. Before beginning the installation of the Master Data Engine, it is helpful to
understand the engine elements and their interdependencies.

Engine database. The engine operating data is stored in the engine database. You
bootstrap the database by using the madconfig utility. The bootstrapping process
creates the core tables and indexes and loads a baseline dictionary for starting the
engine instances that are associated with the database.

Master Data Engine runtime environment. At a minimum, the runtime
environment includes an engine installation, data source configuration, and an
engine instance. The runtime environment communicates with the same engine
database, which can be located on a separate host (server). Depending on the
implementation, the runtime environment can also include additional engine
instances and one or more other runtime instance types. For example, you can
have stand-alone entity managers and LDAP directory servers.

* Engine installation. The Master Data Engine software is the infrastructure that
provides the core logic and functionality of the IBM Initiate Master Data Service.
The engine compares member records and scores that data based on the
algorithms and other deployment-specific logic configuration.

You use an operating system-specific installer to create the engine through a
graphical user interface (GUI) or command-line interface (CLI) process. The
installer creates the engine in the directory that you specify.

* Engine instance. On the engine host, you create one or more engine instances.
Each running instance of the Master Data Engine uses various utilities from the
engine installation directory to complete requests sent by client applications. For
example, the madconfig utility in the engine installation \scripts directory is
used to create engine instances, data source configurations, and stand-alone
instances of entity managers and LDAP directory servers.

Each instance has a home directory and an instance directory. When running the
madconfig utility, you specify a home directory for the engine instance. This
directory is where the processes of a created runtime instance are located.

* Engine data source. The engine instance and other types of runtime instances
depend on a data source configuration to communicate with and write to the
database. All supported OBDC drivers for the specified database type are

26 Master Data Engine Installation Guide

automatically installed when you create the data source. As with creating engine
instances, the madconfig utility is used to create the data source.

Each engine host requires a data source configuration. In creating subsequent
engine instances on the same host, you can use the same data source (that is,
avoid creating additional data sources) if the instances use the same database. If
connecting to different databases, you must create a corresponding data source
for each database (for example, one for the prod database and one for the qa
database).

* Entity management. The entity manager is the logic within the Master Data
Engine that controls when comparison takes place after member data is derived.
You can configure your engine to use an embedded entity manager or a
stand-alone entity manager.

* LDAP directory server. All authentication to the Master Data Engine is done
through a bundled LDAP directory server which is installed during the engine
installation. There are multiple ways to set ups a Master Data Engine
environment with the bundled LDAP directory server. You use an embedded
IBM Initiate LDAP server, a stand-alone IBM Initiate LDAP server, an external
LDAP server, or a combination of these options.

Related concepts

“Master Data Engine directory structure - MAD_ROOTDIR and MAD_HOMEDIR"]

on page 32|

[Chapter 8, “Entity managers,” on page 73|

[Appendix A, “LDAP Directory Server for the Master Data Engine,” on page 197]

[Chapter 2, “Installation worksheets,” on page 3|

Related reference

[“Master Data Engine installation worksheet” on page 6|

[“Master Data Engine instance worksheet” on page 6|

[“madconfig utility” on page 102|

Master Data Engine installation in a high-availability environment

To support installation of the IBM Initiate Master Data Service in high-availability
environments, you can configure multiple Master Data Engine instances on
multiple host severs. By doing so, if one server or instance goes down, the others
can continue to process traffic.

No special configuration is needed at the Master Data Engine level; the Master
Data Engine instances can run independently of one another.

The Master Data Engine does not provide the front-end layer that can spread
transactions across the multiple engines. Transaction can be spread across engine
by using either a hardware or software IP router that provides a virtual IP port for
client connections to connect. In order to have a high-availability database server,
IBM Initiate Master Data Service relies on the RDBMS vendors to provide a
clustered database setup that provides a virtual connection for database failover.

Chapter 3. Planning your Master Data Engine installation 27

If you are installing the IBM Initiate Master Data Service software in a vertical
clustering environment (multiple Master Data Engine instances running on the
same server), you must make sure that each MPINET (engine) instance is listening
on a different port number. For horizontal clustering (multiple Master Data Engine
instances with one instance per physical server), the ports can be the same across
all servers. This figure shows the IBM Initiate® Master Data Service® software in a
vertical clustering environment.

Master Data Engine Nodes
Clustered RDBMS

Port 11100

\ Identity Hub Modes

Virtual |P/Port
Listens on 3
port 11000 \

Figure 1. IBM Initiate Master Data Service vertical clustering configuration

Port 11200 Paort 11300

You can run multiple instances of the Master Data Engine within a single home
directory. Each instance of a Master Data Engine has its own mpinet_name directory,
where name is the engine instance name. Each mpinet_name directory has conf,
data, and deploy directories.

Related task

“Using ping requests to monitor Master Data Engine and database availability” on|
page 59

Master Data Engine installation in U.S. government environments

Many U.S. federal government environments require that certain security standards
be met before the IBM Initiate Master Data Service can be used.

The Federal Information Processing Standards (FIPS) is a security standard
developed by the U.S. federal government. To be FIPS-compliant, the Master Data
Engine and command-line utilities that communicate over SSL must be FIPS140-2
enabled. When creating your Master Data Engine instance, you use a specific
madconfig utility command that shows prompts specific to FIPS configuration. For
command-line utilities, this means setting the MAD_SSLFIPSMODE variable in
your com.initiate.server.system.cfg configuration file.

In addition, Message Broker Suite IBM Initiate Inspector, IBM Initiate Web Reports,
and IBM Initiate Workbench must be FIPS-compliant before being used in a U.S.
federal government implementation. For full details about installing the IBM
Initiate Master Data Service and applications in a U.S. federal government
environment, see IBM Initiate Master Data Service Security Technical Implementation
Guide (STIG) .

28 Master Data Engine Installation Guide

Related concept

[Appendix K, “FIPS compliance,” on page 255

Related tasks

[“Enabling FIPS compliance in the Master Data Engine” on page 255|

[“Enabling FIPS compliance for command-line utilities” on page 257

IBM Initiate LDAP directory server stand-alone instance

All engine and entity manager instances require communication with an IBM
Initiate LDAP directory server. The instances cannot start without an IBM Initiate
LDAP directory server. If applicable to your environment, you can choose to
implement a stand-alone instance of the LDAP directory server.

When creating an engine instance, your first option is to embed the IBM Initiate
LDAP directory server in the engine instance itself. The second option is to
configure the instance to use a stand-alone IBM Initiate LDAP directory server. The
third option is to use an LDAP directory server that is embedded in another
engine instance. If you are not embedding the IBM Initiate LDAP directory server
in at least one of the engine instances created for the initial Master Data Engine
environment, you must create a stand-alone instance of the server. In that case,
complete the LDAP worksheet and then use the creating an IBM Initiate LDAP
directory server instance procedure. Afterward, for any runtime instance that uses
the stand-alone server, apply the corresponding IBM Initiate LDAP directory server
configuration values.

Even if you opt to embed the IBM Initiate LDAP directory server in one or more
engine instances, you might want to create a stand-alone instance for other runtime
instances. Another option is to integrate runtime instances with an external
corporate LDAP directory server.

Before configuring your Master Data Engine environment, review all of the LDAP
directory server topics.

Related concept

[Appendix A, “LDAP Directory Server for the Master Data Engine,” on page 197

Entity manager stand-alone instance

Some implementations choose to use stand-alone entity managers in order to have
a tighter control over resource allocation. Others might choose to use separate
entity managers for multiple entity types (for example, one for identity entities and
one for household entities).

If resource allocation is a concern for your environment, you can specify more
threads for a slower entity manager, and less threads for a faster entity manager.

Before configuring your Master Data Engine, review the entity manager topics.

Related concept

[Chapter 8, “Entity managers,” on page 73|

Chapter 3. Planning your Master Data Engine installation 29

Event notification - stand-alone instance

Event notification allows external sources to receive messages for a subset of
internal events that are generated within the IBM Initiate Master Data Service.
Implementations that use event notification might choose to use stand-alone event
managers in order to have a tighter control over resource allocation.

Using a stand-alone event manager allows you to scale your implementation for
performance reasons. Adding additional stand-alone event managers can help to
increase system performance. Before configuring your Master Data Engine, review
the entity manager topics.

Related concept

[Chapter 9, “Event notification,” on page 81|

30 Master Data Engine Installation Guide

Chapter 4. Preparing your environment

Before you install the Master Data Engine, verify that you have completed the
applicable environment preparation steps.

1. Verify that the server, or servers, on which the Master Data Engine and engine
instances are being installed meet the requirements listed in IBM Initiate Master
Data Service System Requirements and in the "Server prerequisites” topic. Also
verify that all vendor software noted in the IBM Initiate Master Data Service
System Requirements is installed on servers and workstations.

2. Review the directory structure and guideline topics. You need this information
to complete the Master Data Engine installation worksheet.

3. Review the system and software users topic and identify your user and group
requirements.

4. If you use the IBM AIX, Linux, or Solaris operating system, set your user limits.

5. Review the database configuration topic and complete the database connections
and engine data source worksheets. Configure your database according to your
database platform instructions. During the configuration process, make sure
your configuration conforms to the information in the database configuration
topic.

Server prerequisites

Verify that the server, or servers, on which theMaster Data Engine and engine
instances are being installed meet the requirements listed in IBM Initiate Master
Data Service System Requirements and in this topic.

The supported ODBC and JDBC drivers require that the server on which the
software in being installed can connect to the relational database management
system (RDBMS). For performance reasons, database client software is required to
use the database vendor bulk-load tool. The use of ODBC drivers other than the
drivers included with the IBM Initiate Master Data Service is not supported.

The database client drivers included and installed with the Master Data Engine are
the only supported drivers.

If you are using Oracle, you must install the full Oracle Client rather than the
Oracle Instant Client. The full client contains the OCI (or native) drivers that are
required by the Master Data Engine.

On IBM AIX, the Master Data Engine requires the C Runtime Library for AIX,
version 8.0.0.3 or later. To identify the version you have installed, use this
command: TsTpp —L "x1C.aix*.rte".

On Red Hat Linux, you must install compat-Tibstdc++-33.

Important: In pre-7.5 versions of the software, each Master Data Engine instance
created was appended to an .ini file (for example, services.ini or madman.ini). If
upgrading from version 7.5 or earlier, you must store a backup of the existing .ini
file. While this file is no longer in use by the Master Data Engine, it is required for
the Message Broker Suite components (see the IBM Initiate Master Data Service
Message Broker Suite Reference).

© Copyright IBM Corp. 1995, 2011 31

Master Data Engine directory structure - MAD_ROOTDIR and
MAD_HOMEDIR

Your installation requires a directory for the installed software, and one or more
directories for instances of the Master Data Engine. Although the IBM Initiate
Master Data Service software does not require any specific directory location for
installation, you need to plan a directory structure up front.

From one installation of the Master Data Engine, you can configure and run
multiple engine instances (for example, a production instance, a test instance, and
a training instance). At the end of the installation and configuration process, you
have an installation directory where the software is installed and one or more
instance directories from where a Master Data Engine instance runs. Because of the
multiple directories, you want to choose a directory structure that meets your
requirements and complies with any local network standards. The Master Data
Engine uses environment variables set during installation to point to the
installation and instance locations. We refer to these locations, or directories, as
MAD ROOTDIR and MAD_HOMEDIR. There are also MAD_ROOTDIR and
MAD_HOMEDIRenvironment variables.

The MAD_ROOTDIR directory is where the Master Data Engine software is installed.
This is the directory that you specify when you run the installer. The value of the
MAD_ROOTDIR environment variable is the full directory path name to the installed
software. This table shows examples for a host that includes two engine
installations.

Table 11. Engine installation directory examples (MAD_ROQOTDIR)

Engine host MAD_ROOTDIR examples
Microsoft C:\Program Files\IBM\Initiate\Enginel0.0.x_A
Windows

C:\Program Files\IBM\Initiate\Enginel0.0.x_B

IBM AIX, Linux, |/opt/IBM/Initiate/Enginel0.0.x A
or Solaris

/opt/IBM/Initiate/Enginel0.0.x B

The MAD_HOMEDIR directory is where the engine instances are located. A MAD_HOMEDIR
is specified for every instance at the time the instance is created. For each engine
instance, the MAD_HOMEDIR has an inst directory. The inst directory further contains
additional directories for each instance of a Master Data Engine component
(Master Data Engine, entity managers, and LDAP directory servers).

The MAD_HOMEDIR directory can be a single directory. The information in this table

describes the directory paths for an instance home directory and an instance
directory.

32 Master Data Engine Installation Guide

Table 12. Instance directory paths

Directory Description
Instance home The fully qualified directory you specify for runtime instances that
directory communicate with the same database. For example:

Microsoft Windows:
C:\MAD_HOMEDIR\group\

IBM AIX, Linux, or Solaris:
/MAD_HOMEDIR/group/

where group is the name of the directory created for the associated
runtime instances (for example: prod or qa).

Instance directory | The fully qualified path to the directory in which the processes of a
created runtime instance are located. In these examples, the instance
directories are for 2 engine instances for production:

Microsoft Windows:

C:\MAD_HOMEDIR\inst\mpinet_prod100_1
C:\MAD_HOMEDIR\inst\mpinet_prod100_2

IBM AIX, Linux, or Solaris:

/MAD_HOMEDIR/inst/mpinet_prod100_1
/MAD_HOMEDIR/inst/mpinet_prod100_2

In the directory name, the prod100_identifier string is the name that
you specified for the engine instance at creation.

If you use a stand-alone entity manager or LDAP directory server,
those would show as:

/MAD_HOMEDIR/inst/mpientmgr_prod100
/MAD_HOMEDIR/inst/mpildap_prod100

The default value for the MAD_HOMEDIR is the name of the instance being created,
but you do not have to use this convention. Although each instance must have a
unique name, you can group multiple instances under a single MAD_HOMEDIR.

You can install the software and the instances on different physical drives if
necessary. One reason some system administrators prefer this structure is because
each instance has activity logs. These logs can grow quite large. The most common
reason for using different physical drives is that in many non-production
environments, you might have multiple copies of the software, and multiple
instances. For example, you might have separate software installations and
instances for developers, testers, and training. You might also have two versions of
the software that you use during an upgrade or conversion project.

Directory structure guidelines for MAD_ROOTDIR (software)
and MAD_HOMEDIR (instances)

Planning the structure for your MAD_ROOTDIR and MAD_HOMEDIR directories in
advance can simplify your installation process.

Use these guidelines when planning the MAD_ROOTDIR and MAD_HOMEDIR directory

structure on your servers. Using these guidelines can also assist you and the IBM
Software Support team if you ever require their assistance.

Chapter 4. Preparing your environment 33

Table 13. IBM Initiate directory structure guidelines

Directory

Guidance

MAD_ROOTDIR directory for
the Master Data Engine
software

The MAD_ROOTDIR, or installation directory is created when
you run the installer. Because the installer creates the
directory structure during installation, you do not have to
create this directory in advance. You can choose to accept the
Master Data Engine installer directory defaults when you
run the installer or specify a different directory.

The administrative user account (which is the operating
system user account used to install the software on the host
(for example, initiate) must have read, write, and execute
permissions for the directory in which you are installing. For
IBM AIX, Linux, or Solaris installations, the associated user
group (for example, initgrp) must also have read, write, and
execute permissions.

MAD_HOMEDIR directory for
instances

The MAD_HOMEDIR directory is the top-level directory in which
to organize instances of the software such as engine, entity
managers, and LDAP directory server instances. Instance
directories are created when you run the madconfig utility
create_instance target.

Typically this directory uses the convention
\ibm\initiate\home\instance_name \, where instance_name is
the name of your Master Data Engine instance. You are not
required to use this standard.

Remember: On IBM AIX, Linux, or Solaris operating
systems, the ibm/initiate/home directory is not the same as
or associated with the user home directory.

When you use the madconfig utility to create your instance,
these subdirectories are created under each MAD_HOMEDIR:

* \bin - Contains scripts and supporting programs

* \etc - Reserved for special configuration options that
might not be installed at all sites

* \inst - Contains runtime instance directories
* \log - Contains MPINET output logs (.mlg files)
* \sql - Contains SQL scripts

* \support - Temporary folder used by IBM Software
Support during troubleshooting

34 Master Data Engine Installation Guide

]

F

Table 13. IBM Initiate directory structure guidelines (continued)

Directory

Guidance

Instance directories (inst)

Within the MAD_HOMEDIR directory, you have one or more
directories in which to group associated instances on the
host. These directories are created for you when the
instances (Master Data Engine, entity manager, and LDAP
directory server) are created and are located in the
MAD_HOMEDIR\inst directory. For example, you might have
C:\MAD_HOMEDIR\inst\mpinet_prod100_1 and
C:\MAD_HOMEDIR\inst\mpientmgr prod100 1.

After you have created your instances, these subdirectories
are created under each inst directory:

* \conf - Contains the instance configuration files.
» \data - Working directory used for runtime processes
* \ext - Contains the instance deployment files

* \index - Contains the full text index if you are using the
IBM Initiate Flexible Search feature. If you are not using
an index, this directory remains empty.

* \ldap - Contains LDAP-specific files for the instance. This
directory is created only if an LDAP directory server is
embedded with the engine instance.

e \tmp

* \work - Working directory used for runtime processes

This sample directory structure shows multiple instances associated with the
production database. In this example, you see two MAD_HOMEDIR directories: prod
and test. Within the prod \inst directory, you see two entity manager instances
(one for household [hh] entity and one for identity [id] entity), a stand-alone LDAP
instance, and two engine instances (mpinet_prod_1 and mpin_prod_2).

J initiate

home

4 || ‘prod

hin
| Befc
W inst

I 1 mpientmgr_prod_hh

. mpientmgr_prod_id
. mpildap_prod
. mpinet_prod_1
. mpinet_prod_2
log

& =gl

| support
) test

Figure 2. Sample directory structure with multiple instances

Chapter 4. Preparing your environment 35

System and software users for the Master Data Engine

On IBM AIX, Linux, or Solaris operating systems, a new group and user are
suggested for installing the Master Data Engine.

The user is the account you use to run the Master Data Engine installer and other
engine utilities to create engine processes. In turn, the Master Data Engine sets that
user account as the "owner" of the processes on the host (this user can start and
stop the processes). The user must be a member of a group that can provide
shared permissions for all users of the IBM Initiate® Master Data Service® on the
host. The software does not require any special values for the user and group
names. For ease of installation, it is suggested that you use the same names for
users and groups on engine hosts that write to the same database. For example,
configure these names:

e User: initiate

* Group: initgrp

For all installations, and as part of configuring the database, you must create at
least one database user account. When creating your engine instance, you are

prompted to specify a database user.

Related concept

[“Master Data Engine database configuration”|

User limits on UNIX and Linux platforms

The Master Data Engine is a high performance application and uses large amounts
of RAM to provide fast response time. On larger installations, the memory and file
requirements can exceed the default ulimit (user limits) setting of the operating
system.

Set all ulimit settings related to memory (stack and heap) and the number of open
files per process to "unlimited". The supported operating systems of IBM AIX,
Linux, or Solaris have different options for setting the memory, stack, and open
files settings (for example, through user creation or within a user .profile or
.Togin file). For complete details, see the vendor-specific documentation for ulimit
settings.

Master Data Engine database configuration

Before you begin configuration of your Master Data Engine database, consider
your naming convention, user accounts, and platform-specific conventions.

For database creation instructions, see the applicable database product
documentation.

Naming: Give the associated database instance, user account, and data source
configuration the same name. You might also want to include the IBM Initiate
Master Data Service version in your name. For example, you might name each of
these elements prod_100 for the production database. Using this naming
convention can help other members of your organization and IBM Software
Support understand the mapping between instances, accounts, and databases.

36 Master Data Engine Installation Guide

Database user account: All installations require at least one database user account.
In order to bootstrap the database (which is typically done when creating the
initial Master Data Engine instance), perform an engine upgrade, define new entity
types, or create implementation-defined segments, the database user account must
have certain permissions. This user account must have permission to:

* Create table and drop table
* Create index and drop index
* Select, insert, update, and delete

After the database is bootstrapped and entity types and implementation-defined
segments are configured, you can opt to restrict the user account if your
organization requires this. A restricted user account has only select, insert, update,
and delete permissions.

It is suggested that you configure a one-to-one relationship between the database
user and the database so that users do not have access to multiple databases. This
model provides a security layer that can prevent one database user from dropping
the tables of another.

Record the database user account credentials; you need this information to
complete the Master Data Engine installation worksheets and when you create the
engine instance runtime environment.

Connections: The database connection count is the sum of connections used by the
Master Data Engine and by any entity managers. Some Master Data Engine or IBM
Initiate Workbench processes require additional database connections, which are
closed when the process is completed. In addition, LDAP processes require
connections intermittently. Allow additional connections for these processes in your
configuration.

Microsoft SQL Server database: If you are using a Microsoft SQL Server database,
you must configure the database with a specific collation name and enable TCP/IP.

* For Collation Name, select SQL Latin1_General _CP 1_CS_AS (case sensitive). If
you are implementing a language other than U.S. English, see the related
concepts listed at the end of this topic.

* Verify that TCP/IP is enabled. Use the SQL Server Configuration Manager to
access SQL Server 2005 Network Configuration > Protocols for
MSSQLSERVER. In the right pane, right-click TCP/IP, and then select
Properties.

Oracle database: If you are using an Oracle database, use this command to create
the database:

CREATE DATABASEdname...CHARACTER SET AL32UTF8

You must set the character length semantics for Unicode. Set the variable
NLS_LANG_SEMANTICS to CHAR (the default setting is BYTE). Run this command:

ALTER SYSTEM SET NLS_LENGTH_SEMANTICS=CHAR SCOPE=BOTH

IBM DB2: If you are using an IBM DB2 database, use this command to create the
database:

CREATE DATABASEdnameUSING CODESET UTF-8 TERRITORYterritory code

Chapter 4. Preparing your environment 37

When the database is created from a command line the default table space page
size is 4K. However, all of the tables in IBM Initiate Master Data Service database
do not fit into a table space with 4K page size. If performance is not an issue in
your implementation, you can use a 16K table space to hold all the tables. If
performance is a consideration, use a 8K or 16K table space for those tables that do
not fit into a 4K table space and use 4K table spaces for the rest. You should also
use separate table spaces to store tables and their indexes.

Use this command to create your database:

CREATE DATABASE dname AUTOMATIC STORAGE YES ON dbase location DBPATH ON
location_of transaction log USING CODESET UTF-8 TERRITORY territory code
COLLATE USING IDENTITY PAGESIZE 4K

Then, create table spaces and their corresponding buffer pools. For example, to
create a 4K buffer pool use this command:

CREATE BUFFERPOOL bufferpool name IMMEDIATE SIZE starting page size
AUTOMATIC PAGESIZE 4K

Next, use this command to create the 4K table space:

CREATE TABLESPACE tablespace _name PAGESIZE 4K MANANGED BY AUTOMATIC STORAGE
AUTOSIZE YES BUFFERPOOL bufferpool name NO FILE SYSTEM CACHING

You can change the page size in the above commands to create 8K or 16K buffer
pools and table spaces.

These are the tables that require an 8K or16K table space for the table or their
index.

* MPI_STRFREQ - 4K data table space, 8K index table space

* MPI_STRANON - 4K data table space, 8K index table space

* MPI_DVDXSTD - 8K data table space, 8K index table space

* MPI_APPPROP - 16K data table space, 8K index table space

* MPI_STRCONFIG - 4K data table space, 8K index table space

e MPI_STRSET - 4K data table space, 8K index table space

* MPI_USRPROP - 16K data table space, 8K index table space

* MPI_AUDNOTE - 16K data table space, 8K index table space

* MPI_WEFTYPE - 16K data table space, 8K index table space

* MPI_WEFTYPESTEP - 16K data table space, 8K index table space
* MPI_WEXCRCONFIG - 16K data table space, 8K index table space
* MPI_WFINSTANCE - 16K data table space, 8K index table space
* MPI_CLUSTERCEG - 16K data table space, 8K index table space
* MPI_IDXIQUE - 16K data table space, 8K index table space

Additional suggestions for your IBM DB2 database include:

* Activate the database after creation.

* Set the parameter DB2_INLIST_TO_NLJN to ON.

e Set database parameter STMT_CONC LITERALS to immediate.

38 Master Data Engine Installation Guide

* Set the cardinality of queue tables MPI_ MEMIQUE, MPI_MEMOQUIE,
MPI_ENTIQUE_ID, MPI_ENTOQUE_ID, MPI_ENTIQUE_ORG,
MPI_ENTOQUE_ORG, and the MPI_RELLINK table to VOLATILE.

* Re-organize all tables as needed.
* Run statistics on all tables as needed.
* Rebind data direct bind packages with RESOLVE ANY REOPT ONCE option.

Related concepts

[‘Database prerequisites for using Unicode in the Master Data Engine” on page 195

Related reference

[“Master Data Engine installation worksheet” on page 6|

[“Master Data Engine instance worksheet” on page 6|

[‘Data source worksheet” on page 4|

Master Data Engine and instances installed on different drives
(Microsoft Windows)

Engine instances can be physically located on drives other than where the Master
Data Engine is installed.

You have the option of installing the software and the instances on different
physical drives. One reason some system administrators prefer this structure is
because each instance has activity logs. These logs can grow quite large. The most
common reason for using different physical drives is that in many non-production
environments, you might have multiple copies of the software, and multiple
instances. For example, you might have separate software installations and
instances for developers, testers, and training. You might also have two versions of
the software that you use during an upgrade or conversion project.

To locate an instance that is on a different physical drive on a Microsoft Windows
operating system, both physical drives must have entries in the java.policy file.
This file is located in the MAD_ROOTDIR/conf directory.

These entries are in the form of:

grant codebase "file:/C:/-" {
permission java.security.AllPermission;
}s

grant codebase "file:/D:/-" {
permission java.security.AT1Permission;
}s

Replace the C:and D:drive letter entries in these examples with the physical drive
letters used in your MAD_ROOTDIR (Master Data Engine installation directory) and
MAD_HOMEDIR (instance installation directory) environment variables.

Chapter 4. Preparing your environment 39

40 Master Data Engine Installation Guide

Chapter 5. Installing the Master Data Engine

You can run the installer on Microsoft Windows, IBM AIX, Linux, or Solaris
operating systems.

About this task

This procedure creates the MAD_ROOTDIR for your Master Data Engine runtime
environment. Use this procedure each time you want to install a runtime
environment.

Procedure

1. To install the Master Data Engine, run the file appropriate for your operating
system: IBM_Initiate_MasterDataEngine_10.0.0.n_xxx.exe for Microsoft
Windows or IBM Initiate MasterDataEngine 10.0.0.n xxx.bin for IBM AIX,
Linux, or Solaris.

2. Follow the installer prompts to install the Master Data Engine.
What to do next
After you installing the engine, continue with configuring your environment.

Related reference

[“Master Data Engine installation worksheet” on page 6|

[“Master Data Engine instance worksheet” on page 6|

Related task

[‘Creating a Master Data Engine instance” on page 47|

© Copyright IBM Corp. 1995, 2011

42 Master Data Engine Installation Guide

Chapter 6. Configuring the Master Data Engine environment

Configuring your Master Data Engine environment includes creating runtime
environments and conducting any applicable post-installation tasks.

Use the installation worksheets as a guide when you create your instances.
Complete the applicable procedures in the order presented.

1. Configure the initial Master Data Engine runtime environment:
e If desired, encrypt the password for the database user account.
* Create an engine data source.

* If applicable, implement a stand-alone instance of the IBM Initiate LDAP
directory server.

¢ Create an engine instance. Instances are created using the madconfig utility
create_instance target. In a multi-environment setting, you also have the
option of using an automated madconfig utility script and running a
recorded response file.

* If applicable, implement a stand-alone entity manager.
2. Conduct the post installation tasks, including:

e Start the engine instance.

* Confirm that the engine instance is started.

* Configure required environment variables.

* Configure globalization or SSL security if necessary.

Related concept

[Chapter 3, “Planning your Master Data Engine installation,” on page 25|

[Appendix A, “LDAP Directory Server for the Master Data Engine,” on page 197]

[Chapter 8, “Entity managers,” on page 73|

[Chapter 2, “Installation worksheets,” on page 3|

Database user

© Copyright IBM Corp. 1995, 2011

account password encryption

To avoid the use of a clear-text password in configuration files, you can encrypt
the password by using either the madpwd2 or madpwd3 utilities.

Using either of these utilities encrypts the password string for the Master Data
Engine database user account.

If you are planning to use AES encryption (Advanced Encryption Standard (AES)
128-, 192- or 256- bit), you must use the madpwd3 utility. The madpwd3 utility

encrypts a password with the generated AES key and iv (initialization vector).

Related concept

[“Master Data Engine database configuration” on page 36|

Related reference

43

[“madpwd? utility” on page 12§|

[“madpwd3 utility” on page 128|

[Appendix I, “AES encryption,” on page 243)|

Encrypting the password for the database user account with
the madpwd2 utility

Use the mapdpwd? utility to encrypt database passwords.

Procedure

1. On the command line, go to the Master Data Engine installation directory
(MAD_ROOTDIR). Then go to the bin directory. For example:

Microsoft Windows: cd C:\Program Files\IBM\Initiate\Enginel0.0.0.x\bin
IBM AIX, Linux, or Solaris: cd /opt/IBM/Initiate/Enginel0.0.0.x/bin

2. Run this command:
madpwd2.exe -e plaintextPwd

where plaintextPwd is the original password for the database user account in
plain text format. You created the account as a part of configuring the database.

This text is displayed in the output:

PLAINTEXT = (plaintextPwd)

ENCRYPTED = (2AEBE6CA01432400F4619011D8AC5B50)

DECRYPTED = (plaintextPwd)

where 2ZAEBE6CAO1432400F4619011D8AC5B50 is the newly encrypted password
string.

3. Save the encrypted password string in a safe place; then, apply the literal string
when prompted for the corresponding value when you create you engine
instance.

Related concept

[“Master Data Engine database configuration” on page 36|
Related task

[‘Creating a Master Data Engine instance” on page 47|

Encrypting the password for the database user account with
the madpwd3 utility

If your are planning to use AES encryption (Advanced Encryption Standard (AES)
128-, 192- or 256- bit) for your implementation, you must use the madpwd3 utility.

Before you begin

Before encrypting the AES password, review the "AES encryption" topic. Verify
that these requirements have been met.

* You have set the these variables in the com.initiate.server.system.cfqg file:

— On Microsoft Windows, set MAD_SSLLIB=ss1eay32.d11 and
MAD_SSLCRYPTOLIB=1ibeay32.d11 on Microsoft Windows

— IBM AIX, Linux, or Solaris, set 1ibss1.so and Tibcrypto.so
* You have generated the AES key and initialization vector (iv).

44 Master Data Engine Installation Guide

Procedure

1.

On the command line, go to the Master Data Engine installation directory
(MAD_ROOTDIR). Then go to thebin directory. For example:

Microsoft Windows: cd C:\Program Files\IBM\Initiate\Enginel0.0.0.x\bin
IBM AIX, Linux, or Solaris: cd /opt/IBM/Initiate/Enginel0.0.0.x/bin

The madpwd3 utility allows for the key and iv to be entered either from a file
or directly on the command line. Use the -keyfile and -ivfile options to
specify as a file. Use the -key and -1iv options to directly enter them. There is
no length limit on the password input.

a. Run this command to specify as a file:
madpwd3.exe -keyfile filename -ivfile filename -in text

Provide the full path and file names for the keyfile and iv file. Text is the
plain text version of the password you created as a part of completing the
engine database configuration.

b. Run this command to specify directly:
madpwd3.exe -key key -iv iv -in text

where key and iv are the contents of the .dat files that you created during
key generation, and text is the plain text version of the password that you
created as a part of completing the engine database configuration.

The output appears as:

PLAINTEXT = (plaintextPwd)
ENCRYPTED = (99CA56BDF62638567F456941650237AB)
DECRYPTED = (plaintextPwd)

Related concepts

[“Master Data Engine database configuration” on page 36|

[Appendix I, “AES encryption,” on page 243|
Related task
[‘Generating AES keys and password” on page 244|

Creating a data source

Use this procedure to create a data source for your Master Data Engine.

Before you begin

Complete the engine data source worksheet.

Procedure

1.

On the command line, go to the Master Data Engine installation directory
(MAD_ROOTDIR). Then go to the scripts directory. For example:

Microsoft Windows: cd C:\Program Files\IBM\Initiate\Enginel0.0.x\scripts
IBM AIX, Linux, or Solaris: cd /opt/IBM/Initiate/Enginel0.0.x/scripts

Run the applicable command:

Microsoft Windows: madconfig create_datasource

IBM AIX, Linux, or Solaris: madconfig.sh create datasource

For each prompt, review the information; type the corresponding value that
you defined in the data source worksheet; and then press Enter. To apply the
default value, press Enter without typing a value.

4. In the output, confirm that BUILD SUCCESSFUL displays

Chapter 6. Configuring the Master Data Engine environment 45

What to do next

If your implementation requires a stand-alone LDAP directory server, create the
stand-alone LDAP instance. Otherwise, continue with creating engine instances by
using the madconfig utility. You can review full madconfig utility usage by
running the applicable command:

Microsoft Windows: madconfig —projecthelp

IBM AIX, Linux, or Solaris: madconfig.sh —projecthelp

Related reference

[“IBM Initiate LDAP directory server stand-alone instance” on page 29|

[‘Data source worksheet” on page 4|

[“Master Data Engine instance worksheet” on page 6|

[“madconfig utility” on page 102|

Related tasks

[‘Creating a Master Data Engine instance” on page 47|

Creating a stand-alone IBM Initiate LDAP directory server instance

Use this procedure to create a stand-alone LDAP directory server instance.
Before you begin
Complete the LDAP directory server worksheet.

Procedure

1. On the command line, go to the Master Data Engine installation directory
(MAD_ROOTDIR). Then go to the scripts directory. For example:

Microsoft Windows: cd C:\Program Files\IBM\Initiate\Enginel0.0.x\scripts
IBM AIX, Linux, or Solaris: cd /opt/IBM/Initiate/Enginel0.0.x/scripts
2. Run the applicable command:
Microsoft Windows: madconfig create_Tdap
IBM AIX, Linux, or Solaris: madconfig.sh create_ldap

3. For each prompt, review the information; type the corresponding value that
you defined in LDAP directory server worksheet; and then press Enter. To
apply the default value, press Enter without typing a value.

4. In the output, confirm that BUILD SUCCESSFUL displays.
Related reference

[“LDAP directory server worksheet” on page 14|

Creating stand-alone entity managers

If your implementation requires, use this procedure to create a stand-alone entity
manager.

46 Master Data Engine Installation Guide

Before you begin
* Review the entity managers topic.
¢ Complete the stand-alone entity manager worksheet.

* Create a Master Data Engine instance.

Procedure

1. On the command line, go to the Master Data Engine installation directory
(MAD_ROOTDIR). Then go to the scripts directory. For example:

Microsoft Windows: cd C:\Program Files\IBM\Initiate\Enginel0.0.x\scripts
IBM AIX, Linux, or Solaris: cd /opt/IBM/Initiate/Enginel0.0.x/scripts
2. Run the applicable command:
Microsoft Windows: madconfig create_entitymgr
IBM AIX, Linux, or Solaris: madconfig.sh create_entitymgr

3. For each prompt, review the information; type the corresponding value that
you defined in stand-alone entity manager worksheet. Press Enter. To apply the
default value, press Enter without typing a value.

4. In the output, confirm that BUILD SUCCESSFUL appears.

To review additional madconfig utility options, run the applicable command to
review full madconfig usage:

Microsoft Windows: madconfig —projecthelp
IBM AIX, Linux, or Solaris: madconfig.sh —projecthelp
Related concepts

[Chapter 8, “Entity managers,” on page 73|

Related reference

[‘Stand-alone entity manager worksheet” on page 16|

[“madconfig utility” on page 102|
Related tasks

[‘Creating a Master Data Engine instance”]

Creating a Master Data Engine instance

Use this procedure to create a new Master Data Engine instance. Before creating
your instance, you must have a data source created.

Before you begin

Complete the Master Data Engine installation worksheets.

You must have a data source for your engine instance to point to.

If your implementation requires that the Master Data Engine be FIPS-compliant,
review the FIPS compliance topics before creating your instance (see related topics

list at the end of this topic).

About this task

Attention: If you are upgrading an existing instance (for example, upgrading
version 9.7 to 10.0) do not bootstrap the database. Bootstrapping overwrites the
existing data without an automated method for recovery. (See the "Upgrading the
Master Data Engine environment topic listed at the end of this topic.)

Chapter 6. Configuring the Master Data Engine environment 47

Procedure

1. On the command line, go to the Master Data Engine installation directory
(MAD_ROOTDIR). Then go to the scripts directory. For example:

Microsoft Windows: cd C:\Program Files\IBM\Initiate\Enginel0.0.x\scripts
IBM AIX, Linux, or Solaris: cd /opt/IBM/Initiate/Enginel0.0.x/scripts
2. Run the applicable command:
Microsoft Windows: madconfig create_instance
IBM AIX, Linux, or Solaris: madconfig.sh create _instance

3. For each prompt, review the information; type the corresponding value that
you defined in the engine instance worksheet; and then press Enter. To apply
the default value, press Enter without typing a value.

4. In the output, confirm that BUILD SUCCESSFUL displays.

You can review full madconfig utility usage by running the applicable
command:

Microsoft Windows: madconfig —projecthelp
IBM AIX, Linux, or Solaris: madconfig.sh —projecthelp

What to do next

If your implementation requires a stand-alone LDAP directory server or entity
manager, you must create those instances.

Otherwise, continue with post-installation tasks.

Related concepts

[Appendix K, “FIPS compliance,” on page 255

[Chapter 7, “Upgrading the Master Data Engine environment,” on page 63|

Related reference

[“madconfig utility” on page 102

[‘Data source worksheet” on page 4|

[“Master Data Engine instance worksheet” on page 6|

Related tasks

[Creating a data source” on page 45|

[“Enabling FIPS compliance in the Master Data Engine” on page 255

[‘Creating a stand-alone IBM Initiate LDAP directory server instance” on page 46|

[‘Creating stand-alone entity managers” on page 46|

48 Master Data Engine Installation Guide

Creating an automated madconfig utility script

You can use the madconfig utility —recordfile option to record a set of responses
in a property file that provides input to any madconfig operation. A response
property file is useful for running madconfig options on a scheduled basis, or for
simplifying scripted installations in a test or multi-environment setting.

Procedure

* To record a response file, run the madconfig utility with the —recordfile option
and specify a target property file in the command. For example, use the
command
madconfig -recordfile myfile.properties create_datasource
where myfile.properties is the name of the property file that stores your responses.
You can define a full path to the property file.

* When you record the response file, the madconfig operation you are recording is
performed (that is, the madconfig utility both performs the operation and
records your responses). For example, if you run this command:
madconfig -recordfile myfile.properties create_datasource
a data source is created when the responses are recorded.

* You can edit the property file after its creation to modify the responses, if
needed. If you want to add comments to your property file, use number signs
(#) at the beginning of each comment line. For example:

mad.db.name=MyDatabase

mad.db.host=Tocalhost

mad.db.type=mssqlu

See the documentation on the individual madconfig utility operations for full
details about the prompts and variables for each.

Running the madconfig utility by using a recorded response file

Use this procedure to run the madconfig utility by using a recorded property file.
Procedure

Run your madconfig utility operation by using the —propertyfile option and the
name of the property file where your responses are recorded. For example:

madconfig -propertyfile myfile.properties create_datasource

where myfile.properties is the name of the property file where your responses are
stored. Be sure to include any path information with the property file, if it is stored
outside of the \scripts directory where the madconfig utility command is run.
Related reference

[“madconfig utility” on page 102|

Merging multiple response property files

You can run multiple madconfig utility operations at one execution of madconfig
using a single property file. To do this, you must manually merge property files for
multiple operations.

Chapter 6. Configuring the Master Data Engine environment 49

Procedure

1. On the command line, go to the Master Data Engine installation directory
(MAD_ROOTDIR). Then go to the scripts directory. For example:

Microsoft Windows: cd C:\Program Files\IBM\Initiate\Enginel0.0.x\scripts
IBM AIX, Linux, or Solaris: cd /opt/IBM/Initiate/Enginel0.0.x/scripts

2. To run multiple madconfig operations at one time against a merged property
file, use syntax that conforms to this example:
madconfig —propertyfile myMergedFile.properties create_datasource
create_instance
where myMergedFile.properties is the name of the merged property file where
your responses to create_datasource and create_instance are stored.

Installation error log

If you are unable to complete the engine installation successfully, see the engine
installation error log (install.log).

This file is located by default at the root of the installation directory, for example:
Microsoft Windows: C:\Program Files\IBM\Initiate\Enginel0.0.x\install.log
IBM AIX, Linux, or Solaris: /opt/IBM/Initiate/Enginel0.0.x/install.log

If you have any problems or questions while installing the Master Data Engine,
contact IBM Software Support.

Master Data Engine configuration files

The Master Data Engine employs a Java-based service platform that allows for
remote management. Master Data Engine configuration variables are set within a
set of com.initiate.server.*.cfg files maintained within the engine instance
\conf directory.

Attention: If you are upgrading from version 9.0 or earlier, review the
"Configuration file changes" topic (see "Related reference" section in this topic).

This list details the configuration files found in the \conf directory.

e com.initiate.server.appsvcs.cfg - Maintains the loginProvider and contextPool
parameters that are required if, when creating the instance, you chose for the
Engine to provide embedded Application Services. You typically do not have to
edit these settings.

* com.initiate.server.entity.cfg - Contains a single parameter that governs
whether the entity manager relationship linker is enabled for the instance.

* com.initiate.server.event.cfg - Contains the parameters that provide for
event notification from the Master Data Engine to external systems.

e com.initiate.server.queue.cfg - Contains parameters that define the entity
manager queue process.

e com.initiate.server.features.cfg - Contains a single parameter that lists
which embedded features are enabled for the instance, for example LDAP, entity
manager, or application services. You typically do not have to edit these settings.

e com.initiate.server.handler.cfg - Contains a single variable that indicates the
context pool size for callout handlers. The default is 2.

50 Master Data Engine Installation Guide

e com.initiate.server.hibernate.cfg - Maintains parameters for an internal-only
object and relational persistence and query service. You typically do not have to

edit these settings.

* com.initiate.server.jdbc.cfg - Contains parameters for enabling database
connectivity including database user name, password. database name, server
name, and port.

e com.initiate.server.jmx.jmxmp.cfg - Defines the service name and URL for the
JMX Message Protocol (JMXMP), which facilitates the managing and monitoring

of services and applications. An addition parameter in the file determines
whether to use SSL for JMXMP communications.

e com.initiate.server.jmx.rmi.cfg - Maintains values that enable remote
connection for J]MX-based managing and monitoring. (RMI stands for Remote

Method Invocation.) An additional parameter in the file determines whether to

use SSL for the J]MX RMI communications.

* com.initiate.server.ldap.cfg - Contains connectivity and security parameters

for internal and external LDAP servers.
e com.initiate.server.logic.cfg -

e com.initiate.server.net.cfg - Maintains connectivity parameters for the
Master Data Engine.

e com.initiate.server.search.cfg - Contains parameters for IBM Initiate Flexible

Search .
* com.initiate.server.smt.cfg - Contains a single parameter that defines the
language locale for the Java layer. The default is en_US.

* com.initiate.server.system.cfg - Contains most of the configuration
parameters for the instance including global settings for logging, the language
locale setting (C layer), and the detail settings for SSL communication.

e com.initiate.server.tasks.cfg - Contains parameters for the embedded engine

task (process) manager. The engine task manager polls certain events or
processes and executes the associated logic on a scheduled basis. Parameters
include polling intervals, wait time, task expiration settings, and
frequency-based bucketing settings.

* com.initiate.server.web.cfg - Contains a single port parameter for the
embedded web server.

* logj4.xml - Contains log4j appenders and parameters for configuring logging for

the instance.

* wrapper.conf - Maintains a number of internal-only parameters, including the
MAD_ROOTDIR and MAD_HOMEDIR parameters that indicate the file system paths to
the engine and instance. You typically do not have to edit these settings.

Some configuration variables exist in configuration files only if you choose to
enable non-default settings during instance creation. For example, MAD_ENCODING
(which governs the system globalization behavior) is shown only if you opt for a
setting other than the default, latinl. For any MAD_* variable not listed in this
table, you can add the variable directly within the
com.initiate.server.system.cfq file.

Related concept

[“Master Data Engine environment variables” on page 87|

Chapter 6. Configuring the Master Data Engine environment

51

Configuration file changes

If you are upgrading from IBM Initiate Master Data Service version 9.0 or earlier,
all of the variables that you previously saw in the engine.properties file have
been distributed to the various com.initiate.server.*.cfq files. All of the
configuration variables from the Tdap.properties file have been moved to
com.initiate.server.ldap.cfg.

Administrators upgrading the Master Data Engine from an earlier release must
manually move any custom configuration settings from the engine.properties and
Tdap.properties files to the new *.cfg files. This process is described in
post-upgrade task topic.

The installation process for stand-alone entity managers also no longer creates an
engine.properties configuration file. As with the Master Data Engine,
configuration parameters for a stand-alone entity manager previously set within
engine.properties are now set within .cfg files in the entity manager \conf
directory.

The Master Data Engine configuration files topic contains a listing of configuration
files. .

In some cases, the variable names have changed. This list describes the variables
and their new file locations, and names if applicable.

Variable
New location (and new name if applicable)

MAD_AUDIT
renamed to AuditlLog within Tog4j.xml

MAD_CALLBACKLIB
com.initiate.server.system.cfg

MAD_CONFNAME
com.initiate.server.system.cfg

MAD_CONNSTR
com.initiate.server.system.cfg

MAD_CTXLIB
com.initiate.server.system.cfg

MAD_DBTYPE
com.initiate.server.system.cfg

MAD_DBNAME
com.initiate.server.system.cfg

MAD_DBPASS
com.initiate.server.system.cfg

MAD_DBSERVERS
com.initiate.server.system.cfg

MAD_DBSETUP
com.initiate.server.system.cfg

MAD_DBSQL
replaced by SqllLog in Tog4j.xml

MAD_DBUSER
com.initiate.server.system.cfg

52 Master Data Engine Installation Guide

MAD_DBXTEST
com.initiate.server.system.cfg

MAD_DDLFILE
com.initiate.server.system.cfg

MAD_DEBUG
managed by Nativelog in Tog4j.xml

MAD_DICTIMEOUT
com.initiate.server.system.cfg

MAD_HOMEDIR
wrapper.conf

MAD_INSTDIR
wrapper.conf

MAD_IPVERSION
com.initiate.server.system.cfg

MAD_LOGPFX
controlled by ConversionPattern parameters within Tog4j.xmI

MAD_LOGNAME
replaced by mad.log.name within com.initiate.server.system.cfg

MAD_0BJCODE
com.initiate.server.system.cfg

MAD_PERFLOG
renamed to Performancelog in Tog4j.xm]l

MAD_ROOTDIR
wrapper.conf

MAD_SECLIB
com.initiate.server.system.cfg

MAD_SMTLIST
com.initiate.server.system.cfg

MAD_SRVNO
com.initiate.server.system.cfg

MAD_SSLFIPSMODE
com.initiate.server.system.cfg

MAD_STOFILE
com.initiate.server.system.cfg

MAD_TABPFX
com.initiate.server.system.cfg

MAD_TABSFX
com.initiate.server.system.cfg

MAD_TIMER
replaced by TimerLog in 1og4j.xml

MAD_TRACE
managed by Nativelog in Tog4j.xml

MAD_UNLDIR
com.initiate.server.system.cfg

Chapter 6. Configuring the Master Data Engine environment

53

MAD_UNLFSR
com.initiate.server.system.cfg

AlgorithmLog
new variable, set in Tog4j.xm]

com.initiatesystems.hub.jmx.objectname=com.initiatesystems:
service=MPINETPROD900_1
mad. jmx.objectname within com.initiate.server.system.cfg (This
variable is typically not changed.)

com.initiatesystems.hub. jmx.mgmtregport
serviceUr]l within com.initiate.server.jmx.jmxmp.cfg

com.initiatesystems.hub. jmx.profiles
useSSL within com.initiate.server.jmx.jmxmp.cfg

com.initiatesystems.hub.handler.cbhthreads
contextPoolSize within com.initiate.server.handler.cfg

com.initiatesystems.hub.ldap.config.cache.timeout.seconds
1dap.config.cache.timeout.seconds within com.initiate.server.ldap.cfg

com.initiatesystems.hub. job.workDir
This variable is no longer used.

javax.net.ssl.keyStore
com.initiate.server.system.cfg

javax.net.ssl.trustStore
com.initiate.server.system.cfg

javax.net.ss1.keyStorePassword
com.initiate.server.system.cfg

javax.net.ssl.trustStorePassword
com.initiate.server.system.cfg

javax.net.ss1.keyStoreType
com.initiate.server.system.cfg

javax.net.ssl.trustStoreType
com.initiate.server.system.cfg

com.initiatesystems.hub.executor.corePoolSize
This variable is no longer used.

com.initiatesystems.hub.executor.queueSize
This variable is no longer used.

com.initiatesystems.hub.mpientmgr.entlinker.enabled
This variable is no longer used.

com.initiatesystems.hub.mpientmgr.rellinker.enabled
relationshipLinkerEnabled in com.initiate.server.entity.cfg

com.initiatesystems.hub.mpinet.host
host within com.initiate.server.net.cfg

com.initiatesystems.hub.mpinet.port
port within com.initiate.server.net.cfg

com.initiatesystems.hub.mpinet.threads
contextPoolSize within com.initiate.server.net.cfg

54 Master Data Engine Installation Guide

com.initiatesystems.hub.mpinet.entmgrs
controlled by featuresBoot within com.initiate.server.features.cfg

com.initiatesystems.hub.mpinet.tagmanager
port within com.initiate.server.net.cfg

com.initiatesystems.hub.mpinet.seclib
useSSL within com.initiate.server.net.cfg

Other variable changes include:

* The MAD_NOCHG variable has been removed. This variable prevented log file
rollover. While preventing log rollover is not suggested, if you do require a
rollover, you can remove the %s from the mad.log.name variable in
com.initiate.server.system.cfg.

* MAD_LOGDIR has also been removed. The equivalent behavior can be achieved by
specifying the full path (including the file name) as the value for mad.1og.name.

Related task

[‘Conducting the Master Data Engine post-upgrade tasks” on page 70|

Post-installation tasks

After you have installed the Master Data Engine, there are some additional
configuration steps and testing that you might need to perform.

¢ Test your instances by starting and stopping each instance

* Create additional engine instances or runtime environments to fully create the
planned database architecture.

* Create additional stand-alone entity managers.

¢ Configure and deploy an event handler if you are using event notification. If
you did not embed your event manager, you also need to create a stand-alone
event manager.

¢ Implement SSL communication.
* Globalize one or more of the runtime environments.

* Configure one or more instances to communicate with an external corporate
LDAP directory server.

* Per engine host, create applicable environment variables in the corresponding
configuration files.

Related concepts

[“Master Data Engine database configuration” on page 36|

[“Master Data Engine installation in a high-availability environment” on page 27|

[Appendix A, “LDAP Directory Server for the Master Data Engine,” on page 197]

Related task

[Chapter 5, “Installing the Master Data Engine,” on page 41|

[‘Creating stand-alone entity managers” on page 46|

[“Enabling event notification” on page 83|

Chapter 6. Configuring the Master Data Engine environment 55

[Chapter 10, “Configuring Master Data Engine environment variables,” on page 87|

Chapter 13, “Configuring SSL,” on page 191Chapter 14, “Configuring globalization|
of the Master Data Engine,” on page 195|

[Chapter 10, “Configuring Master Data Engine environment variables,” on page 87|

Starting and stopping your instances

After you have created your initial runtime Master Data Engine environment and
the associated instances, you should start and stop the instances to verify that they
are running.

Each instance has a corresponding process on the host on which it is installed. Use
the procedure specified for your operating system to start or stop an instance. For
Microsoft Windows, you can use the Control Panel. For UNIX and Linux operating
systems, you can use the madconfig utility. You can also use a batch or script file
to start and stop an instance.

Starting an engine instance from the Microsoft Windows Control
Panel

For Master Data Engine instances on Microsoft Windows , you can use the Control
Panel to start and stop the associated services.

Procedure
1. From the Control Panel, open Administrative Tools, and then double-click
Services.

2. From the list of services, select IBM Initiate Master Data Engine 10.0.x name,
where name is the name of the engine instance that you want to start.

3. On left side of the list, click the Start link.

Stopping an engine instance from the Microsoft Windows
Control Panel
Use this procedure to stop a Master Data Engine instance on Windows.

Procedure
1. From the Control Panel, open Administrative Tools, and then double-click
Services.

2. From the list of services, select IBM Initiate Master Data Engine 10.0.x name,
where name is the name of the engine instance you want to stop.

3. On left side of the list, click the Stop link.

Starting an engine instance with the madconfig utility
Use this procedure to start a Master Data Engine instance with the madconfig
utility.

Procedure

1. On the command line, go to the Master Data Engine installation directory
(MAD_ROOTDIR). Then go to the scripts directory. For example:

Microsoft Windows: cd C:\Program Files\IBM\Initiate\Enginel0.0.x\scripts
IBM AIX, Linux, or Solaris: cd /opt/IBM/Initiate/Enginel0.0.x/scripts
2. Run the applicable command:
Microsoft Windows: madconfig start _instance
IBM AIX, Linux, or Solaris: madconfig.sh start_instance

56 Master Data Engine Installation Guide

3. Type the name of the instance you want to start, and then press Enter.
4. In the output, confirm that BUILD SUCCESSFUL appears.

Stopping an engine instance with the madconfig utility
Use this procedure to stop a Master Data Engine instance with the madconfig
utility.

Procedure

1. On the command line, go to the Master Data Engine installation directory
(MAD_ROOTDIR). Then go to the scripts directory. For example:

Microsoft Windows: cd C:\Program Files\IBM\Initiate\Enginel0.0.x\scripts
IBM AIX, Linux, or Solaris: cd /opt/IBM/Initiate/Enginel0.0.x/scripts
2. Run the applicable command:
Windows: madconfig stop_instance
IBM AIX, Linux, or Solaris: madconfig.sh stop_instance
3. Type the name of the instance you want to stop, and then press Enter.
4. In the output, confirm that BUILD SUCCESSFUL appears.

Starting an engine instance with its batch or script file
Use this procedure to start a Master Data Engine instance with a batch or script
file.

Procedure

1. On the command line, go to the directory that contains the batch or script file
for the instance. For example:

Microsoft Windows: cd MAD_HOMEDIR\inst\mpinet name\conf
IBM AIX, Linux, or Solaris: cd /MAD_HOMEDIR/inst/mpinet_name/conf
where MAD_HOMEDIR is the full path to the directory created for the associated
runtime instances and name is the name of the runtime instance (for example,
prod or ga).
2. Run the applicable command:
Microsoft Windows: mpinet_name.bat start
IBM AIX, Linux, or Solaris: mpinet_name.sh start
where name is the name of the instance.
3. In the output, confirm that this statement appears:

Starting the IBM Initiate Master Data Engine
10.0.x name service...

IBM Initiate Master Data Engine 10.0.x Name
started.

where name is the name of the engine instance.

Stopping an engine instance with its batch or script file

Use this procedure to stop a Master Data Engine instance with a batch or script
file.

Procedure

1. On the command line, go to the directory that contains the
mpinet_instance.bat file for the instance.

2. Run the applicable command:
Windows: mpinet_name.bat stop
IBM AIX, Linux, or Solaris: mpinet_name.sh stop

Chapter 6. Configuring the Master Data Engine environment 57

where name is the name of the instance.
3. In the output, confirm that this statement is displayed:

Stopping the IBM Initiate Master Data Engine
10.0.x Name service...

IBM Initiate Master Data Engine 10.0.x Name
stopped.

where Name is the name of the engine instance.

Using the madconfig utility to confirm that an engine instance is
running

You can manually verify whether a Master Data Engine instance is running by
using the madconfig utility ping_instance command.

Procedure

1. On the command line, go to the Master Data Engine installation directory
(MAD_ROOTDIR). Then go to the scripts directory. For example:

Microsoft Windows: cd C:\Program Files\IBM\Initiate\Enginel0.0.x\scripts
IBM AIX, Linux, or Solaris: cd /opt/IBM/Initiate/Enginel0.0.x/scripts
2. Run the applicable command:
Microsoft Windows: madconfig ping_instance
IBM AIX, Linux, or Solaris: madconfig.sh ping_instance
3. Type the name of the instance you want to ping, and then press Enter.

4. In the output, determine whether the instance is running by looking for the
statement shown in the "sample output from pinging the engine instance" table.

Results

Table 14. Sample output from pinging the engine instance

Instance state Sample output

Running madeng_mpinet ping:
0K
ping_instance:

BUILD SUCCESSFUL

Not running Aug 11, 2010 3:20:07 PM org.apache.bsf.BSFManager exec
SEVERE: Exception
java.security.PrivilegedActionException:
org.apache.bsf.BSFException: The application script
threw an exception: java.net.ConnectException: Connection
refused: connect BSF info: ANT at 1

BUILD FAILED

Using the MPINET protocol to confirm that an engine instance is
running

You can use the MPINET protocol to ping a Master Data Engine instance or verify
database connectivity. The MPINET option is useful for programmatic checks of
instance status and is often used by load balancers.

About this task

The telnet client does not have to run from the same server that is hosting the
engine instance or database.

58 Master Data Engine Installation Guide

Procedure

1. To ping the engine by using MPINET, type ping at the command line followed
by a new line or line feed character to the engine MPINET port. (The default
engine MPINET port number is 16000.)

For example, you can simulate this action with any Telnet application: telnet
[host] [port], then type PING and press Enter. If the ping is successful, an 0K
message is displayed.

2. Use the pingdb command to verify database connectivity.

For more information about restarting instances and managing the Master Data

Engine environment, see the IBM Initiate Master Data Service Software Operations
Guide.

Using ping requests to monitor Master Data Engine and
database availability

If you are using a load balancer, the load balancer might need to check that the
Master Data Engine and database are running.

About this task

Use this task to enter a socket ping request to the Master Data Engine MPINET
port.

Procedure
1. To verify that the Master Data Engine is running;:

a. On the command line, type ping followed by a new line or line feed
character to the engine MPINET port (for example, you can simulate this
action with any telnet application: telnet host port. Then type ping. The
default port is 16000. For example:
telnet Tocalhost 16000
ping

b. Press Enter.

2. To verify that the Master Data Engine has a connection to the database:

a. On the command line, type ping followed by a new line or line feed
character to the engine MPINET port (for example, you can simulate this
action with any telnet application: telnet host port. Then type pingdb. The
default port is 16000. For example:
telnet Tocalhost 16000
pingdb

b. Press Enter.

Results

If the ping is successful, an 0K message is returned. If the ping is unsuccessful, a NA
message is returned.

After the command completes, the telnet session ends.

The output of the command can vary based on the telnet client used. For example,
after typing the ping command, you might see output similar to this:

telnet host port
Trying host IP address...
Connected to hostname(IP address).

Chapter 6. Configuring the Master Data Engine environment 59

Escape character is '~]'.

ping

0K

Connection closed by foreign host.

Starting an entity manager instance through the Microsoft
Windows Control Panel

For Master Data Engine instances on Microsoft Windows, you can use the Control
Panel to start the associated entity managers.

Procedure
1. From the Control Panel, open Administrative Tools, and then double-click
Services.

2. From the list of services, select IBM Initiate Entity Manager 10.0.x Instance,
where Instance is the name of the entity manager you want to start.

3. On left of list, click Start.
A progress indicator appears and then disappears when the service is started.

Stopping an entity manager instance from Microsoft Windows
Control Panel

For Microsoft Windows engine instances, you can use the Control Panel to stop the
associated entity managers.

Procedure
1. From the Control Panel, open Administrative Tools, and then double-click
Services.

2. From the list of services, select IBM Initiate Entity Manager 10.0.x Instance,
where Instance is the name of the entity manager you want to stop.

3. On left of list, click Stop.

A progress indicator displays and then disappears when the service is stopped.

Starting an entity manager instance with the madconfig utility
You can use the madconfig utility to start a stand-alone entity manager.

Procedure

1. On the command line, go to the Master Data Engine installation directory
(MAD_ROOTDIR). Then go to the scripts directory. For example:

Microsoft Windows: cd C:\Program Files\IBM\Initiate\Enginel0.0.x\scripts
IBM AIX, Linux, or Solaris: cd /opt/IBM/Initiate/Enginel0.0.x/scripts
2. Run the applicable command:
Microsoft Windows: madconfig start _entitymgr
IBM AIX, Linux, or Solaris: madconfig.sh start_entitymgr

3. Type the name of the entity manager instance you want to start, and then press
ENTER.

4. In the output, confirm that BUILD SUCCESSFUL appears.

Stopping an entity manager instance with the madconfig utility
You can stop a stand-alone entity manager by using the madconfig utility.

Procedure

1. On the command line, go to the Master Data Engine installation directory
(MAD_ROOTDIR). Then go to the scripts directory. For example:

60 Master Data Engine Installation Guide

Microsoft Windows: cd C:\Program Files\IBM\Initiate\Enginel0.0.x\scripts
IBM AIX, Linux, or Solaris: cd /opt/IBM/Initiate/Enginel0.0.x/scripts

Run the applicable command:

Microsoft Windows: madconfig stop_entitymgr

IBM AIX, Linux, or Solaris: madconfig.sh stop_entitymgr

Type the name of the entity manager instance you want to stop, and then press
ENTER.

4. In the output, confirm that BUILD SUCCESSFUL displays.

Starting an entity manager instance with its batch or script file
You can start a stand-alone entity manager instance by using a batch or script file.

Procedure

1.

On the command line, and go to the directory that contains the entity manager
batch or script file. For example:

Microsoft Windows: cd \MAD_HOMEDIR\inst\mpientmgr_name\conf
IBM AIX, Linux, or Solaris: cd /MAD_HOMEDIR/inst/mpientmgr_name/conf

where MAD_HOMEDIR is the full path to the directory created for the associated
runtime instances (for example, prod or ga), and name is the name of the entity
manager instance.

Run the applicable command:

Microsoft Windows: mpientmgr_name.bat start

IBM AIX, Linux, or Solaris: mpientmgr_name.sh start
where name is the name of the entity manager instance.

In the output, confirm that this statement is displayed, where instance is the
name of the entity manager instance:
Starting the IBM Initiate Entity Manager 10.0.x

instance service...
IBM Initiate Entity Manager 10.0.0 instance started.

Stopping an entity manager instance with its batch or script file
You can stop a stand-alone entity manager by using a batch or script file.

Procedure
1. On the command line, go to the directory that contains the instance
mpinet_instance.bat file.
2. Run the applicable command:
Microsoft Windows: mpientmgr_name.bat stop
IBM AIX, Linux, or Solaris: mpientmgr_name.sh stop
where name is the name of the entity manager instance.
3. In the output, confirm that this statement displays, where Instance is the name

of the entity manager instance:

Starting the IBM Initiate Entity Manager 10.0.x
Instance service...
IBM Initiate Entity Manager 10.0.0 Instance started.

Chapter 6. Configuring the Master Data Engine environment 61

62 Master Data Engine Installation Guide

Chapter 7. Upgrading the Master Data Engine environment

Upgrading your Master Data Engine environment from one major version to
another major version (for example, 9.7 to 10.0) often requires assistance from both
members from your organization and IBM Services or an IBM consulting partner.

Do not upgrade your implementation without first identifying the team and
relying on guidance from that team.

If your IBM Initiate Master Data Service configuration includes multiple instances
of the Master Data Engine, consider by using the Interceptor tool to reduce
downtime during upgrade.

After carefully reviewing the getting started topics, you are almost ready to start
the upgrade. Use this checklist to familiarize yourself with the process. The
upgrade tasks must be completed in the order presented.

1. Conduct the pre-upgrade tasks, including:
¢ Review upgrade considerations.
* Shut down any current Master Data Engine runtime instances.
* Create backups of all operational data, including;:

— Instance home directories on each engine host. This includes the entire
MAD_HOMEDIR directory

— Master Data Engine database
¢ Complete the 10.0 installation worksheets.
- Engine installation worksheet
- Engine data source worksheet
- Engine instance worksheet
2. Create the initial 10.0 Master Data Engine runtime environment, including:
* Run the Master Data Engine installer.

 If you want to encrypt the database user password, use the madpwd2 or the
madpwd3 utilities. The madpwd?2 utility is a proprietary IBM Initiate
encryption algorithm that is meh quality, and does not require keys. The
madpwd3 utility offers full FIPS-compliant encryption that requires a valid
key file.

¢ Create a Master Data Engine data source.

* If applicable, create a stand-alone instance of the IBM Initiate LDAP directory
server.

* Create a Master Data Engine instance.
3. Upgrade the Master Data Engine database to version 10.0:
* Understand the database upgrade process.
* Complete the database upgrade worksheet.
* Run the database upgrade.
4. Conduct the post-upgrade tasks, including:
e Start the 10.0 engine instance.
¢ Confirm that the 10.0 engine instance is started.
* Evaluate and conduct the next post-upgrade steps as applicable:

© Copyright IBM Corp. 1995, 2011 63

— Configure the initial 10.0 runtime environment to communicate with an
external corporate LDAP directory server.

- Copy any custom environment variables and other settings created before
the upgrade into the initial 10.0 runtime environment.

— Create additional 10.0 engine instances or runtime environments to mimic
the architecture implemented before the upgrade.

* Work with IBM to verify the upgrade and to re-derive data (re-dvd),
re-generate weights, and potentially adjust threshold.

Related concept

[Appendix J, “Interceptor tool,” on page 247

[Chapter 3, “Planning your Master Data Engine installation,” on page 25|

Conducting the pre-upgrade tasks

Before you upgrade the Master Data Engine, there are a few tasks that you must
complete.

About this task

Complete these tasks in the order presented.

Procedure

1.

Review the 10.0 IBM Initiate Master Data Service Release Notes® to identify any
new system requirements and data model changes.

Consult the individuals involved with your implementation to obtain
guidelines and deployment-specific suggestions. These individuals can include
members from your organization and IBM Services, or IBM consulting partners.

If upgrading from version 7.5 or earlier, you must store a backup of the
existing services.ini file. While this file is no longer in use by the Master Data
Engine, it is required for the Message Broker Suite components

Confirm that the Master Data Engine database you are upgrading is at the
minimum supported version for upgrade. The minimum supported version to
upgrade to 10.0 is version 5.2.

Shut down your runtime instances. This includes engine, entity manager, and
any inbound or outbound Message Broker Suite instances. For information
about the Message Broker Suite components, see the IBM Initiate Master Data
Service Software Operations Guide. The Message Reader process can continue
running and queueing up messages from the source systems until the brokers
are upgraded.

Back up your operational data.

* On each engine host, create a backup image of the instance home directories
(MAD_HOMEDIR).

* Create backup images of the data on each Master Data Engine database
server.

Review the Master Data Engine installation worksheets (engine installation,

data source, and engine instance) for the new version you are upgrading to and

define your installation values.

Related tasks

64 Master Data Engine Installation Guide

“Stopping an engine instance from the Microsoft Windows Control Panel” on|
page 56|

[‘Stopping an engine instance with the madconfig utility” on page 57|

[“Stopping an engine instance with its batch or script file” on page 57|

“Stopping an entity manager instance from Microsoft Windows Control Panel”|
on page 60

[‘Stopping an entity manager instance with the madconfig utility” on page 60|

[“Stopping an entity manager instance with its batch or script file” on page 61|

Related reference

[“Master Data Engine installation worksheet” on page 6|

[‘Data source worksheet” on page 4|

[“Master Data Engine instance worksheet” on page 6|

Creating the initial 10.0 runtime environment

After completing the pre-upgrade tasks, you are ready to create the initial 10.0
runtime environment.

About this task

Use this procedure to create your initial 10.0 runtime environment.

Procedure
1. Confirm that the pre-upgrade tasks are complete.

2. Install the 10.0 engine software by running the installer specific to your
operating system.

3. If you want to encrypt the password for the database user account use the
madpwd2 or madpwd3 utility.

4. Use the 10.0 madconfig utility to complete these substeps.
a. Create the 10.0 engine data source.

Attention: In creating the engine instance, do not bootstrap the database.
Bootstrapping overwrites the existing data without an automated method
for recovery.

b. If applicable, create a stand-alone instance of the IBM Initiate LDAP
directory server.

c. Create the 10.0 engine instance.
Results

This environment is used to upgrade your existing database to 10.0. Continue with
upgrading the engine database to version 10.0.

Related concepts

[‘Database user account password encryption” on page 43|

[‘IBM Initiate LDAP directory server stand-alone instance” on page 29

[“Entity manager stand-alone instance” on page 29|

[“Upgrade the Master Data Engine database to 10.0” on page 66|

Chapter 7. Upgrading the Master Data Engine environment 65

Related tasks

[‘Conducting the pre-upgrade tasks” on page 64|

[Chapter 5, “Installing the Master Data Engine,” on page 41|

[‘Creating a data source” on page 45|

[‘Creating a Master Data Engine instance” on page 47|

Upgrade the Master Data Engine database to 10.0

After creating the initial 10.0 runtime environment, you must upgrade the existing
database. Before beginning, it is helpful to understand the upgrade process.

After reviewing this topic, use the database upgrade worksheet to define the
values needed for the upgrade. You then use the madconfig utility to perform the
upgrade.

Incremental upgrade steps. The incremental upgrade, or skip-level upgrade,
processes the upgrade incrementally by version. The madconfig utility
upgrade_instance target is used to perform this process. During the upgrade, a
confirmation prompt is used to process through each applicable stage of the
upgrade steps:

* From 5.2 to 6.0
* From 6.0 to 6.1
e From 6.1 to 7.0
e From 7.0 to 7.2
e From 72 to 7.5
e From 7.5 to 8.0
* From 8.0 to 8.1
e From 8.1 to 8.5
e From 8.5 to 8.7
* From 8.7 to 9.0
* From 9.0 to 9.2
* From 9.2 to 9.5
e From 9.5 to 9.7
e From 9.7 to 9.8
* From 9.8 to 10.0

Related to the upgrade steps, it is suggested that you confirm system version
information and verify the database upgrade.

* Before running the madconfig utility, confirm that your system version
information is set correctly to represent the version that Master Data Engine
runtime environment is running. Version information is found in the mpi_syskey
table. The keyval column for the row when keyname equals “ALIGNDEX_VERSION”
must accurately reflect the major.minor version of the product.

* After each upgrade step (for example, from 5.2 to 6.0, from 6.0 to 6.1, and so on),
verify that the database is upgraded to the applicable version. Conduct this
verification before allowing the madconfig utility to continue with the next
upgrade step.

66 Master Data Engine Installation Guide

Checks in upgrade process. The upgrade script runs three checks for these items:

* Custom libraries. If custom libraries are found, the script exits the process. You
can bypass this check by deleting the custom library from the mpi_libhead table.
One caution is that if the custom functionality has not been integrated into the
mainline Master Data Engine in a subsequent release, the upgrade appears to
run smoothly. However, the Master Data Engine might not function as expected,
or it might fail to run. If the implementation requires the use of a custom library
and that functionality is not part of the mainline product, perform the database
upgrade manually.

* Merge EID script. For upgrades at version 6.1 and later, the script can be run to
resolve enterprise IDs for merged member records. If the upgrade script
determines that the Merge EID script is applicable, you are prompted to choose
whether to discontinue the upgrade. Running the Merge EID script is not
necessary for the upgrade to complete successfully. You can apply n (to not run
the script) and continue with the upgrade process, or y to discontinue the
upgrade process. After discontinuing, you can run the MrgEID script and then
continue with the upgrade process.

* Multiple stdcodes. If multiple standardization codes (stdcodes) are detected
between 5.2 and 6.0, the upgrade process stops. In this case, you must perform
the upgrade from 5.2 to 6.0 manually.

* Duplicate bucket roles. During a 7.5 to 8.7 skip upgrade, the DVDCODE
'DVDPER' error identifies duplicate bucket role (nn) settings. This condition
arises when a single bucket role is defined more than once within the
mpi_dvdxbkt table and is accompanied with a maximum bucket frequency
(maxbktfreq) setting > 0. To resolve this issue, either remove or reassign one of
the duplicate bucket roles. You can then proceed with the upgrade. You must
re-derive your data after the upgrade is complete.

ERROR: DVDCODE 'DVDPER' contains duplicate bucket roles with max bucket
frequencies - See BktRole (1).

ERROR: DVDCODE 'DVDPER' contains duplicate bucket roles with max bucket
frequencies - See BktRole (2).

Please contact IBM Sofware Support for further assistance.

The database upgrade from 7.5 to 8.7 is aborted...

* Composite view record number definition violations. During a 6.x to 8.7 skip
upgrade, the CVW Recno/s error identifies cvwrecno (nn) definition violations
that are not supported as of the 7.5 release. If you encounter this error, you must
rebuild your composite views that contain wildcard settings for segrecno,
srcrecno, or attrrecno. (Composite views are created inIBM Initiate Workbench.)
You can then proceed with the upgrade.

ERROR: CVW Recno/s nn are no longer allowed in version 7.5.

CVW wildcards of '0' are not allowed for segrecno, srcrecno or attrecno.
Please contact IBM Software Support for further assistance.

The database upgrade from 6.X to 7.5 is aborted...

¢ Obsolete Enterprise IDs. During a 5.2 or 6.0 to 6.1 skip upgrade, you might
encounter this warning. If encountered, you can select whether to continue or
stop the upgrade process. Contact IBM Software Support for further assistance
in cleaning up obsolete EIDs as part of this upgrade process.

It appears that there are obsolete EIDs present.
Although not required, it is recommended that the database be cleaned
up (EIDs be merged) first.

Please contact IBM Software Support if you need further assistance.
Shall we continue with the upgrade?

Upgrade limitations. Before you begin a skip-level upgrade by using madconfig
upgrade_instance, become familiar with these limitations:

* Message Broker Suite components are not upgraded.

Chapter 7. Upgrading the Master Data Engine environment 67

* Accuracy of the upgraded data is not verified.

* Weights are not regenerated automatically.

* Data is not re-derived automatically.

* Backup and recoveries are not performed automatically.

Before starting the upgrade, complete the database upgrade worksheet.

Database upgrade worksheet

Before beginning your upgrade, complete the database upgrade worksheet to
define the required values.

Completing this worksheet in advance of the upgrade can help you quickly
respond to upgrade prompts.

Table 15. Database upgrade worksheet

Configuration

Description

Your value

Instance name

Identify the name for the 10.0 engine instance you just
created.

Rebuild the
database tables
in place

Identify whether to rebuild the existing database tables by
using the "in place” or "file system" method. The values
determine how to execute the upgrade process:

 y for the in place method. The in place method runs
entirely within the database. It involves copying table data
from existing tables; making the new release table changes;
and then copying the data from the copied tables back to
the updated tables.
Important: If you select y, the transaction rollback log on
the target database can grow large. As a result, make sure
that you have sufficient disk space or disable transaction
rollback during the upgrade process.

— Pros: Work is managed on the database server rather
than locally.

— Cons: Requires enough free space on database server to
accommodate the largest table that is being reloaded.

* n for file system method. This method runs by dumping
existing data to .unl files; making the new release table
changes; and then reloading the .un1 files to the existing
database. The process requires adequate disk space to store
the .un1 files.

— Pros: Offers the opportunity to use a faster method of
table loading by using the native database loader.

— Cons: Requires enough free space locally to
accommodate the largest table that is being reloaded.

68 Master Data Engine Installation Guide

Table 15. Database upgrade worksheet (continued)

Configuration

Description

Your value

Reload tables

Attention: Skip defining this value unless opting to rebuild

with ODBC the database tables by using the file system method (as
described in previous row).
Identify whether to reload the existing database tables by
using ODBC. The values are:
* y to reload the existing tables by using ODBC. This option
requires that the data source is wire protocol compatible.
— Pros: Does not require native tools.
— Cons: Tends to be slow.
* n means that the tables are reloaded by using the native
database tools.
— Pros: Fast.
— Cons: Requires database client software to be installed
and configured.
Confirmation |Identify whether to proceed with upgrading the database

from its current version to the next level.

The madconfig utility detects which version is currently
installed in the specified database. Depending on the existing
version, you might have to upgrade incrementally in several
steps by applying y on the confirmation prompts for each
upgrade level. Continue applying y until you reach the final
step to upgrade to 10.0.

Validate data

Identify whether to run the mpxdata utility to validate the

database patch

dictionary data dictionary in the newly upgraded database.
After each upgrade step (for example, from 8.5 to 9.0), the
madconfig utility prompts you about validating the data
dictionary.

Continue Identify whether to continue database upgrade process.

Install Identify whether to install a patch release on the newly

upgraded database. Depending on the existing version, you
must upgrade incrementally in several steps by applying y
on the confirmation prompts for each upgrade level until you
reach the final step to upgrade to 10.0 patch version.

Validate data
dictionary

Identify whether to validate the data dictionary after the
patch is installed.

Related task

[‘Creating the initial 10.0 runtime environment” on page 65|

Related concept

[“Upgrade the Master Data Engine database to 10.0” on page 66|

Running the database upgrade

Use the madconfig utility and your 10.0 engine instance to upgrade your database.

Chapter 7. Upgrading the Master Data Engine environment

69

Before you begin

Confirm that you have reviewed and completed any tasks from these topics:

* Conducted the pre-upgrade tasks

* Created your initial engine runtime environment

* Reviewed the "Upgrade the Master Data Engine database to 10.0" topic

¢ Complete the database upgrade worksheet

Also verify that you have unset the MAD_ODBCLIB environment variable.

Procedure

1.

On the command line, go to the Master Data Engine installation directory
(MAD_ROOTDIR). Then go to the scripts directory. For example:

Microsoft Windows: cd C:\Program Files\IBM\Initiate\Enginel0.0.x\scripts
IBM AIX, Linux, or Solaris: cd /opt/IBM/Initiate/Enginel0.0.x/scripts

Run the applicable command:

Microsoft Windows: madconfig upgrade_instance

IBM AIX, Linux, or Solaris: madconfig.sh upgrade _instance

For each prompt, review the information and type the corresponding value that
you defined in database upgrade worksheet. Press Enter. To apply the default
value, press Enter without typing a value.

In the output, confirm that BUILD SUCCESSFUL appears.
Related reference

[‘Database upgrade worksheet” on page 68|
Related tasks
[‘Conducting the pre-upgrade tasks” on page 64|

[‘Creating the initial 10.0 runtime environment” on page 65|

Conducting the Master Data Engine post-upgrade tasks

After you have completed your upgrade, there are certain tasks you must conduct.

Procedure

1.
2.
3.

Start the 10.0 engine instance.

Confirm that the 10.0 engine instance is running.

Evaluate the next post-upgrade steps by determining whether any of these
subtasks apply. Conduct each applicable task now:

a. If the upgraded solution is to include integration with an external corporate
LDAP directory server, you must configure the corresponding
com.initiate.server.ldap.cfg file. The com.initiate.server.ldap.cfq file
is located in the instance conf directory. For example:

Microsoft Windows: MAD_HOMEDIR\inst\mpinet_name\conf
IBM AIX, Linux, or Solaris: /MAD_HOMEDIR/inst/mpinet_name/conf

where MAD_HOMEDIR is the full path to the directory created for the associated
runtime instances (for example, prod or ga), and name is the engine instance
name.

Within the database, the upgrade process preserves any accounts for an
existing external corporate LDAP directory server.

70 Master Data Engine Installation Guide

b. Copy any custom environment variables and other settings created before
the upgrade in the former runtime environment into the initial 10.0 runtime
environment. In particular, transfer the customized values of variables in
engine.properties and ldap.properties files to the relevant
com.initiate.server.*.cfg configuration file.

c. Create additional 10.0 engine instances or engine runtime environments to
match the architecture implemented before the upgrade.

In addition, customize the engine instances according to the previous
sub-steps in this step (Step in this procedure) as applicable.
Start these engine instances and then confirm that they are running.

4. Work with the IBM Services team to verify the accuracy of the conversion and
perform the necessary re-derivation (redvd) of data, new weight generation,
and possibly threshold adjustment.

Important: If implementation-defined segments apply, they must be updated
before re-deriving data or generating weights.
Related tasks

“Starting an engine instance from the Microsoft Windows Control Panel” on|
page 56

[“Starting an engine instance with the madconfig utility” on page 56|

[‘Starting an engine instance with its batch or script file” on page 57|

“Using the madconfig utility to confirm that an engine instance is running” onl|

page 58|

“Using the madconfig utility to confirm that an engine instance is running” on|

page 58|

“Using the MPINET protocol to confirm that an engine instance is running” on|

page 58|

Related concepts

[Appendix A, “LDAP Directory Server for the Master Data Engine,” on page 197]
[“Starting and stopping your instances” on page 56|

Related task

[Chapter 5, “Installing the Master Data Engine,” on page 41|

Chapter 10, “Configuring Master Data Engine environment variables,” on page]

87]

Chapter 7. Upgrading the Master Data Engine environment 71

72 Master Data Engine Installation Guide

Chapter 8. Entity managers

The entity manager is the logic within the Master Data Engine that controls when
comparison takes place after member data is derived. You can configure your
engine to use an embedded entity manager or a stand-alone (external) entity
manager. Before starting your installation, you might find it helpful to understand
the entity manager process.

Entities and entity types

An entity represents the logical relationship among two or more member records.
Each unique relationship has a corresponding entity type such as identity or
household. For example, 10 records that describe the same person is an identity
entity. Three records that describe the same household is a household entity. An
entity type is the basis for any algorithm configuration. In creating an algorithm
configuration through IBM Initiate Workbench, you create its associated entity type
first. For related instructions, see the “Algorithms” and “Configuration editor”
chapters in the IBM Initiate Workbench User’s Guide.

Entity management

Entity management is the process by which record comparison, data linking, and
task creation occur. The management settings affect how entity type comparisons
are conducted after member data is derived. There are two primary methods:

¢ Synchronous management. The management for a synchronous entity type
happens immediately after a member record is updated. The update is done
through a put transaction. Before the transaction occurs, the target member
record is cross-matched against multiple candidates. As a result, synchronous
management occurs based on built-in logic and without any entity management
processes. It is unaffected by external processes, input queues, and any polling
interval and work unit settings for an entity type.

* Asynchronous management. In contrast, the management for an asynchronous
entity type happens based on member records that appear in an entity manager
input queue (that is, the mpi_entique_xx table, where xx is the applicable
entType, or entity type, code). The put transaction creates records for the queue;
an asynchronous process queries the input queue and completes the cross match
for the target member record. The data is stored in the database, and comparison
and linkage and task management are performed periodically. If you use
asynchronous entity management, you also have the option of further
controlling when entity management occurs by priority.

— Priority management: There are three ways in which you can override your
normal asynchronous entity management process. Priority entity management
manages the process in one of three ways: by source priority, by set priority,
and by specialty queue.

- With entity management by source priority, you set a default entity priority
for definitional sources that controls the order in which the sources are
processed by the entity manager. The lower the source priority, the higher
the entity management processing priority. For example, a source with a
default entity priority of 1 always has entity management run before other
sources. Source priority entity management is disabled by setting all of
your sources with the same value (the default value is 100). See the IBM
Initiate Workbench User’s Guide for more details.

© Copyright IBM Corp. 1995, 2011 73

- For entity management by set priority, you set the entity management
priority at the time of the member write (this option overrides any source
entity management priority setting). For example, you can set a lower
priority for batch-loaded members. The set priority is used with the
member put interactions. See the IBM Initiate Master Data Service SDK
Reference for Java and Web Services for details.

- The third option is by specialty queue. This option allocates stand-alone
entity managers for specific queue processing. For example, you might
want to create a stand-alone entity manager that processes only low
priority records. This option is accomplished by adding a wrkOwner
variable in the com.initiate.server.entity.cfg file. For example,
wrkOwner=special where “special” is the name of the stand-alone entity
manager. After adding the wrkOwner variable, you then run an SQL query
to start the entity management process. For example:

UPDATE mpi_entique_id SET wrkOwner = 'special’
WHERE wrkOwner = 'system'

Within the IBM Initiate Workbench Configuration editor, you set the

"o

"Asynchronous", "Uses an input queue" and "Priority" properties to determine
whether an entity type is processed synchronously or asynchronously. For related
instructions, see the “Configuration editor” chapter in the IBM Initiate Workbench
User’s Guide.

* Asynchronous
— true for asynchronous processing.
- false for synchronous processing (default).
* Uses an input queue
— true for asynchronous processing.
— false for synchronous processing.
* Priority
— by Source - an integer 1 - 32767 in the Default Entity Priority field.

— by Set - defined at the API interaction level (an integer 1 - 32767); not in IBM
Initiate Workbench.

— by Specialty Queue - defined in the com.initiate.server.entity.cfg file and
run by using an SQL query; not in IBM Initiate Workbench.

For entity management, it is possible to implement one of the scenarios described
in this table.

Table 16. Entity management scenarios per given engine instance

Entity type
Scenario configuration |Description

Built-in entity | Synchronous | Occurs automatically after a member record is updated.
management See the “Synchronous management” description.

All entity types configured for synchronous processing .

Embedded Asynchronous |Runs as a thread within the instance with one thread per
entity asynchronous entity type configured.
manager

The engine instance is configured to use the embedded
entity manager.

See the “Asynchronous management” description.

74 Master Data Engine Installation Guide

Table 16. Entity management scenarios per given engine instance (continued)

Scenario

Entity type
configuration

Description

Stand-alone
entity
managers

Asynchronous

Runs as a separate instance to manage a single entity type.

For example, if the instance identity and household entity
types are configured for asynchronous processing, you
might create corresponding stand-alone entity managers
for each. One process for the identity entity and one for
the household entity.

See the “Asynchronous management” description.

Combination

Synchronous
and
asynchronous

The entity types are managed as follows:

* Synchronous configuration uses the built-in logic.

* Asynchronous configuration without any corresponding
stand-alone entity manager running. Embedded
manager.

* Asynchronous configuration with a corresponding
stand-alone entity manager running. Both the embedded
and its stand-alone manager.

No
management

Asynchronous

All entity types configured for asynchronous processing.

Any configured stand-alone entity managers are not
running.

For example, it might be costprohibitive for large
installations with hundreds of millions of records to
manage entities. Instead, they depend on soft entities for
data matching. With soft entities, every record that scores n
or above for a given search represents the same person or
thing. The system does not assign an Enterprise ID to
represent a soft entity.

Priority entity
management

Priority by
source

Runs in the defined entity priority order. The lower the
priority number, the higher the entity management
priority.

Priority entity
management

Priority by set

Runs when the associated member put interaction is
executed for the specified member. If the source associated
with the member has a Default Entity Priority definition,
the member put interaction overrides the default.

Priority entity
management

Priority by
specialty
queue

Requires a stand-alone entity manager. Runs when the
SQL command is started.

*In this case, the entity management settings in the
com.initiate.server.system.cfg configuration file are ignored.

The entity manager is a multi-threaded process and depends upon a "queue
manager" to dictate the entity management process.

Related reference

[‘Stand-alone entity manager worksheet” on page 16|

[“Master Data Engine instance worksheet” on page 6|

Chapter 8. Using entity managers 75

Related task

[‘Creating stand-alone entity managers” on page 46|

Entity manager queue management

The entity manager is a multi-threaded process and depends upon a "queue
manager” to dictate the entity management process.

A multi-threaded process means that on a 16-CPU-core box, you can have one
entity manager with 16 threads, as opposed to 16 separate entity managers.

At the heart of entity and relationship management is what is called the entlque
record. When a new member or a change to an existing member is processed by
the Master Data Engine, an entlque record is created. The entlque record is
consumed by both the entity linker and relationship linker to trigger potential
work by the entity manager.

The entity manager retrieves entlque records from the database and sends them to
an internal queue (or input queue). From this queue, the records are dispatched to
multiple worker threads that simultaneously process each entity management
event. A worker thread executes multiple pieces of logic by passing the data from
one logic process (entity linking) to another (relationship linking). The number of
worker threads used is configurable. If you have eight threads configured, eight
entlque records are processed at one time.

Each entity type you have implemented has an entity process. For example, an
implementation that uses identity and household entity types has two entity

manager processes.

Queue management parameters are stored in the com.initiate.server.queue.cfg
file.

Related reference

[“Entity manager configuration parameters”|

Entity manager configuration parameters

Configuration files are stored in different location depending on whether you use a
stand-alone or an embedded entity manager.

Stand-alone entity manager configuration parameters are stored .cfg files located
in the entitymanager_instance_homeDir/inst/instance_name/conf directory.

If you employ an embedded entity manager, the associated .cfg files are found in
the MAD_HOMEDIR/inst/instance_name/conf directory.

The entity manager queue manager configuration file is
com.initiate.server.queue.cfg. The parameters contained in this file are listed in
this table.

76 Master Data Engine Installation Guide

Table 17. Entity manager queue parameters

Default and

Parameter Description examples
entityTypes A comma delimited list of the entity Default: *
types that this queue manager)
processes. A wildcard character of "™+ | Valid examples:
can be used to indicate all entity types. |+ id
The.c.haracter cannot be mix?d with + id,hh,provider
additional characters to configure .
subsets of entity types. :
Invalid examples:
« *id
e id*
pollSeconds The number of seconds the queue Default: 10
manager waits after it polls the)
mpi_entique_xx table and finds no Valid examples:
entries or the internal queue is full. e 5
+ 10
Invalid examples:
0
-5
workUnit The row count that is pulled from the | Default: 500
mpi_entique_xx table and inserted into .
the internal queue. This value should | Valid examples:
be less than the maxQueueDepth * 500
parameter. « 5000
Invalid examples:
0
* -500
workerThreads The number of threads per entity type |Default: 1
that are used to process work in .
parallel. This number can be based on | Valid examples:
the number of CPU cores available on |+ 1
the server. Increasing this number does |, 5
not increase performance if CPU cores
are not available and can decrease Invalid examples:
performance. .0
-5
maxQueueDepth The maximum record size of the Default: 5000

internal queue used by the worker
threads. This number must always be
larger than the workUnit and based on
the number of queue managers,
memory on the server, and database
subsystem performance.

Valid examples:
* 5000
+ 15000

Invalid examples:

0
* -5000

Chapter 8. Using entity managers

77

Table 17. Entity manager queue parameters (continued)

Parameter

Description

Default and
examples

inputWrkOwner

The name of the wrkOwner in the
mpi_entique_xx table that this queue
manager uses to pull records. This
parameter must not be the same as the
queueWrkOwner or errorWrkOwner.

Default: system

Valid examples:
system

Invalid examples:
error

queueWrkOwner

The name used for the wrkOwner in
mpi_entique_xx table for the records
this queue manager owns. This
parameter should be unique for each
queue manager that is running. This
parameter must not be the same as the
inputWrkOwner or errorWrkOwner.

Default: queue

Valid examples:
* queue
* queuel

* queue2

errorWrkOwner

The name used for the wrkOwner in
the mpi_entique_xx table if a record
that is being processed has errored out

Default: error

Valid examples:

manager waits before retrying a
database operation that exceeds the
errorRetryAttempts value. This value
only comes into play on queue manger
operations involving an
mpi_entique_xx that cannot be
de-queue or ignored. The minimum
value for this parameter is 30 seconds.

and errorDequeueEnabled is set to true. [+ error
* errorl
* error2
errorMaxRetryWaitSeconds | The number of seconds the queue Default: 60

Valid examples:
- 30
* 90

Invalid examples:
e 15

errorRetryWaitSeconds

The number of seconds the queue
manager waits between an operation
that returned an error and has not

exceeded the errorRetryAttempts value.

Default: 5

Valid examples:
*5
10
* 0

errorRetryAttempts

The number of times the queue
manager retries an operation before it
takes one of these actions:

* Sets the wrkOwner for the offending
mpi_entique_xx record to the
errorWrkOwner.

* Deletes the offending
mpi_entique_xx record.

* Waits for the
errorMaxRetryWaitSeconds value for
a critical mpi_entique_xx database
operation.

Default: 10

Valid examples:
e 5
* 10
0

78 Master Data Engine Installation Guide

Table 17. Entity manager queue parameters (continued)

Default and

whether entity linking is enabled for
this queue manager.

Parameter Description examples
errorDequeueEnabled This true or false setting determines the | Default: false
action that is taken when a recoverable
error exceeds the errorRetryAttempts | Valid examples:
parameter. If this value is set to true, e true
the mpi_entique_xx record has the . false
wrkOwner set to the errorWrkOwner. If
the parameters is false, the record is
deleted from the mpi_entique_xx table.
workPriorityEnabled This true or false setting determines the | Default: true
order in which records from .
mpi_entique_xx are processed. If this Valid examples:
value is true, the work priority is used |« true
to determined how the records are . false
processed. If the value is false, the
oldest records are processed first.
maxWorkPriority The maximum work priority record the | Default: 0
queue manager processes. The higher .
the number, the lower the work Valid examples:
priority. This setting is only valid if -0
workPriorityEnabled is set to true. . 50
Invalid examples:
* -50
entityLinkerEnabled This true or false setting determines Default: true

Valid examples:
e true

» false

relationshipLinkerEnabled

This true or false setting determines
whether relationship linking is enabled
for this queue manager.

Default: false

Valid examples:
e true

» false

Individual implementations can have their own configuration parameters that do
not apply to the queue manager.

Chapter 8. Using entity managers

79

80 Master Data Engine Installation Guide

Chapter 9. Event notification

Event notification allows external sources to receive messages for a subset of
internal events that are generated within the IBM Initiate Master Data Service.
These messages are generated in an XML format and are published to a JMS
queue.

The external source must implement a supported JMS queue provider and set up
queues to which the IBM Initiate Master Data Service publishes and to which the
consuming source subscribes. The event notification logic uses three components:
event manager, event work manager, and event handler.

* Event manager - manages the internal event queue and passes events to the
event work manager. An embedded event manager is configured during the
creation of the Master Data Engine instance. You also have the option of creating
a stand-alone instance by using the madconfig utility create_eventmgr
command.

* Event work manager - creates external event messages based on the internal
events and passes the message to the event handler. The event work manager is
configured in IBM Initiate Workbench. The event work manager configuration
consists of a list of events to be published (this list is stored in the mpi_evtlist
table) and a list of destinations to be published to (stored in the mpi_evtdest
table). The list of published events also has configuration parameters available to
identify what attributes are included in the message (based on the selected
composite view) and additional flags for message creation options.

* Event handler - publishes the event message to the consumer (JMS Queue is the
supported message service). Use the madconfig utility
configure_instance_eventhandler command to configure an event handler for an
embedded event manager. Use the madconfig utility
configure_eventmgr_eventhandler command to configure an event handler for a
stand-alone event manager. The event handler is deployed to an embedded
event manager using the madconfig utility deploy_instance_eventhandler
command. The event handler is deployed to a stand-alone event manager using
the madconfig utility deploy_eventmgr_eventhandler command.

Supported event types

The event types supported for event notification are preconfigured in your IBM
Initiate Master Data Service data model. The supported event types table lists the
preconfigured events.

Table 18. Supported event types for event notification

Event Description

Member Created The member created event occurs when either a create member
interaction is executed or as part of a member put interaction
which also includes a member update. A member created event
occurs only once during the lifetime of a member.

© Copyright IBM Corp. 1995, 2011 81

Table 18. Supported event types for event notification (continued)

Event

Description

Member Updated

The member updated event occurs when member data is initially
created. A member update then subsequently each time the
member attribute data is updated, new attributes are added,
existing attributes are deleted, or the member status is changed.
The change might or might not result in any change to the
persisted member data depending on engine configuration
options.

Member Merged

The member merged event occurs when a member merge
interaction is processed by the engine. A member might be
merged multiple times because of the unmerge capability. The
event represents a change to the member status and not the
member attributes data.

Member UnMerged

The member unmerge event occurs when a previously merged
member is the target of a member unmerge interaction. A
member might be unmerged multiple times because of the merge
capability. The event represents a change to the member status
and not the member attribute data.

Member Deleted

The member deleted event occurs when a member delete
interaction is processed. A member might be deleted multiple
times due to the member undelete interaction. The event
represents a change to the member status and not the member
attribute data.

Member UnDeleted

The member undeleted event occurs when a member undelete
interaction is processed. A member might be undeleted multiple
times due to the member delete interaction. The event represents
a change to the member status and not the member attribute
data.

Member Linked

The member linked event occurs when entity management links
a member to a new entity. A member might link multiple times
during its life span. The event represents a change in the
member entity participation but not in member status or
attribute data.

Member Unlinked

The member unlinked event occurs when entity management
unlinks a member from an existing entity. A member might
unlink multiple times during its life span. The event represents a
change in the member entity participation but not in the member
status or attribute data.

Member Dropped

The member dropped event occurs when a member drop
interaction is executed. There is a limited amount of data in a
member dropped event because the member data has been
permanently removed from the system. A member dropped does
not represent a change in status or attribute data since the data is
removed.

Entity Created

The entity created event occurs when a new entity is created.
New entity creation can occur when a new member is added to
the system or when a member unlinks from an existing entity to
form a new entity. The event represents a change in the number
of entities for a given entity type participating in the system.

82 Master Data Engine Installation Guide

Table 18. Supported event types for event notification (continued)

Event Description

Entity Updated The entity updated event occurs when a change is made to the
composition of an existing entity or when the composite view for
the entity changes. These composition changes manifest
themselves as members joining or leaving an entity. The
composite view changes are represented by changes to attribute
values that participate in the view. It is possible for a single
member update to trigger this event twice, once for the attribute
changes and once for the entity composition changes.

Entity Deleted The entity deleted event occurs when an entity ceases to exist in
the system. These changes can occur when all members of an
existing entity join another existing entity or when a member is
dropped and that member was a singleton entity. The event
represents a change in the number of entities for a given entity
type participating in the system.

Composite views

All events can have either a member-based composite view or an entity-based
composite view defined. The decision on which composite view to use is
dependent on what data the external (downstream) system requires. In most cases,
an entity-based composite view is the most appropriate. This view gives a robust
picture of an entity from multiple sources. The event type (member or entity) does
not play a factor into which composite view to use.

For example, one useful configuration is to subscribe to member update events and
use an entity composite view. This configuration allows the external system to
have visibility of all changes to attribute data within an entity and receive an event
with the entity data. Additional options can be configured, such as "Enable change
detection” (isChanged field in the mpi_evtlist table) that allows the message to be
sent only if the data in the composite view has been changed since the last
message was created.

Some events will never send composite view data in a message regardless of
whether a composite view is configured. A member drop, for example, has no data
to form a composite view and therefore cannot send a composite view. An entity
delete, like a member drop, has no reference to create a composite view because
the entity no longer exists.

Related reference

[“Event notification worksheets” on page 19|

Enabling event notification

Use this procedure to enable event notification.
Before you begin

Before beginning this task, complete the event notification worksheets.

Chapter 9. Using event notification 83

Procedure
1. Determine whether to use an embedded or stand-alone event manager.
2. Create your event manager.

a. On the command line, go to the Master Data Engine installation directory
(MAD_ROOTDIR). Then go to the scripts directory. From this directory, you
use the madconfig utility.

b. If you are implementing an embedded event manager, respond y to the
embedded event manager prompt during your Master Data Engine instance
creation.

c. For a stand-alone event manager, after you have created your engine
instance, type this command: madconfig create_eventmgr

d. Complete the prompts using the applicable event manager worksheet for
guidance.

e. In the output, confirm that BUILD SUCCESSFUL displays.

3. Configure the event work manager using IBM Initiate Workbench Hub
Configuration > Events. Instructions can be found in the IBM Initiate Workbench
User's Guide.

4. Configure the event handler.

a. On the command line, go to the Master Data Engine installation directory
(MAD_ROOTDIR). Then go to the scripts directory.

b. For an embedded event manager, type this command: madconfig
configure_instance_eventhander

c. For a stand-alone event manager, type this command: madconfig
configure_eventmgr _eventhandler

d. Complete the prompts using the applicable event notification event handler
worksheet.

e. In the output, confirm that BUILD SUCCESSFUL displays.

f. In the com.initiate.server.event.cfqg file, edit the #publish.environment
properties for your JNDI environment. Remove the hash mark (#) from each
property that you edit. These properties are required:
#publish.environment.initialcontextfactory.key=
#publish.environment.initialcontextfactory.value=
#publish.environment.jndiprovider.key=
#pubTish.environment.jndiprovider.value=

5. Also in the com.initiate.server.event.cfg file, if passwords are required, you
must modify the #publish.environment.password.3=mypassword property based
on the password scheme. Passwords are optional depending on how your MQ

Server is configured and what type of user authentication is required in order

to connect to those destinations (queues).

a. If the user password is plain text, use: publish.

environment.password.x=textpassword.

b. If the password is encrypted using the madpwd?2 utility, use: pubTish.

environment.password2.x=encryptedpassword.

c. If the pass word is encrypted using the madpwd3 utility, use: publish.
environment.password3.x=encryptedpassword. If you used a password
encrypted by the madpwd3 utility, these properties are also required:

publish.environment.aeskeyfile.x=mykeyfile.txt
publish.environment.aesivfile.x=myivfile.txt
publish.environment.aesprovider.x=

6. Deploy the event handler. For embedded, type this command: madconfig
deploy_instance_eventhandler. For stand-alone, type this command: madconfig

84 Master Data Engine Installation Guide

deploy_eventmgr_eventhandler. The client must provide the required JMS
libraries needed to connect and send messages to MQ Sever.

Results

Related reference

[‘madconfig utility” on page 102|

[“Event notification worksheets” on page 19|

[“Master Data Engine instance worksheet” on page 6|

Sample com.initiate.server.event.cfg configuration file

The com.initiate.server.event.cfg file contains the parameters that provide for
event notification from the Master Data Engine to external systems.

On an engine host, the location of the com.initiate.server.event.cfg file depends
on whether you use an embedded or stand-alone instance. This file is stored in the
engine instance conf directory for an embedded event manager. For example:

Microsoft Windows: \MAD_HOMEDIR\inst\mpinet_name\conf
IBM AIX, Linux, or Solaris: /MAD_HOMEDIR/inst/mpievtmgr_name/conf

For a stand-alone instance, the file is stored in the event manager instance conf
directory. For example:

Microsoft Windows: \event_manager HOMEDIR\inst\mpievtmgr name\conf
IBM AIX, Linux, or Solaris: /event_manager HOMEDIR/inst/mpievtmgr_name/conf

The first part of the configuration file contains the settings defined during event
manager configuration. For example:

queuelWrkOwner=76877787

pol1Seconds=10

workUnit=500

maxQueueDepth=5000

workerThreads=1

ctxPoolSize=1

The next part of the configuration file is used for creating the JNDI environment
for the InitialContext (lines that begin with #publish.environment). The properties
in this section must be manually modified for your configuration. Some of these
properties are required, while others (mainly the lines that start with
publish.environment.key) are optional and vary for each MQ Server
implementation. In this example, the required properties are identified with an (R)
and optional properties are identified with an (O). They are not identified in the
configuration file.
#publish.environment.initialcontextfactory.key=java.naming.factory.initial (R)
#publish.environment.initialcontextfactory.value=com.sun.jndi.ldap.LdapCtxFactory (R)
#publish.environment.jndiprovider.key=java.naming.provider.url (R)
#publish.environment.jndiprovider.value=1dap://localhost:389/0=1BM,c=US (R)
#publish.environment.key.l=java.naming.security.authentication (0)
#publish.environment.value.l=simple (0)
#publish.environment.key.2=java.naming.security.principal (0)
#publish.environment.value.2=cn=Manager,0=1BM,c=US (0)

Chapter 9. Using event notification 85

#publish.environment.key.3=java.naming.security.credentials (0)
#publish.environment.password.3=mypassword (0)
#publish.environment.key.4= (0)

#publish.environment.value.4= (0)

All passwords are optional (for example, publish.environment.password and
publish.destination.password) depending on how your MQ Server is configured
and what type of user authentication is required in order to connect to those
destinations (queues). If passwords are required, the
#publish.environment.password.3=mypassword property must be modified based
on the password scheme used. If the user password is plain text, use: publish.
environment.password.x=textpassword.

If the password is encrypted using the madpwd?2 utility, use: pubTish.
environment.password2.x=encryptedpassword.

If the pass word is encrypted using the madpwd3 utility, use: publish.
environment.password3.x=encryptedpassword. If you used a password encrypted
by the madpwd3 utility, these properties are also required:
publish.environment.aeskeyfile.x=mykeyfile.txt

pubTish.environment.aesivfile.x=myivfile.txt
publish.environment.aesprovider.x=

The final part of the configuration file contains the settings defined during event
handler configuration. For example:
publish.jms.connection.factory.name=cn=CF2

publish.destination.name.1=Test Queue 1 publish.destination.user.l=userql
pubTish.destination.password.l=userqlpwd

publish.destination.name.2=Test Queue 2

publish.destination.user.2=userq2
publish.destination.password.2=userqg2pwd

Related reference

[“madpwd? utility” on page 128

[“madpwd3 utility” on page 12§Appendix I, “AES encryption,” on page 243

86 Master Data Engine Installation Guide

Chapter 10. Configuring Master Data Engine environment

variables

After installation, you might find that you have additional environment variables
to configure. Some variables apply for all installations while others are for IBM
AIX, Linux, or Solaris installations only.

About this task

Use this procedure to add any additional environment variables needed for your
implementation.

Procedure

1.

From the runtime instance conf directory, open the relevant
com.initiate.server.*.cfg file in a text editor. For example:

Microsoft Windows: MAD_HOMEDIR\inst\type_name\conf
IBM AIX, Linux, or Solaris: /MAD_HOMEDIR/inst/type_name/conf
where:

e MAD_HOMEDIR is the full path to the directory created for the associated
runtime instances (for example, prod or ga).

e type_ is pre-determined prefix that is one of these options:
— mpinet_ for an engine instance.
— mpientmgr_ for an entity manager.
— mpildap_ for an IBM Initiate LDAP directory server.
* name is the instance name, which is specified at instance creation time.

In the com.initiate.server.*.cfg file, add one or more environment variables
that apply. Include each variable on its own line by using the variable=value
syntax. For example: MAD_SRVNO=10

Save the changes to the file.
Restart the instance.
Related tasks

“Starting an engine instance from the Microsoft Windows Control Panel” on|
page 56

[‘Starting an engine instance with the madconfig utility” on page 56|

[‘Starting an engine instance with its batch or script file” on page 57|

“Starting an entity manager instance through the Microsoft Windows Control|
Panel” on page 60|

[‘Starting an entity manager instance with the madconfig utility” on page 60|

[‘Starting an entity manager instance with its batch or script file” on page 61|

Master Data Engine environment variables

There are a number of environment variables and diagnostic logging options that
can be set for the Master Data Engine. Some variables are set during installation
and instance configuration. Others, however, are manually set.

© Copyright IBM Corp. 1995, 2011 87

Depending on the usage scenario, there are a few places where you might set
applicable environment variables, including within:

¢ The applicable configuration files for the engine instance and other instance
types (for example, stand-alone instances of entity managers and IBM Initiate
LDAP directory servers). When an instance is started, its environment is set

based on the properties defined in the com.initiate.server.*.cfg configuration

files stored in the instanceName\inst\mpinet_instanceName\conf directory.

You can set all Master Data Engine environment variables in an instance

configuration file except for the three variables listed here. These three variables

are set in the instance wrapper.conf file:

— MAD_ROOTDIR
— MAD_HOMEDIR
— MAD_INSTDIR

* An envar.bat file. Running this file from a command line sets the appropriate
environment in that shell. For example, a user might need to connect to ODBC
mode and run engine utilities before the Master Data Engine runtime
environment is up and running.

* The user profile. With the associated user logged in to a shell, that shell is set

with the appropriate environment. The method for setting environment variables

depends on the operating system.

Unless otherwise specified, the variable options are: 1 or 0 or Y or N. For additional

variables not covered in this topic, see the related links listed in this topic.

Attention: Many of the variables in this table are not set by default. To create and

set any of these variables, do so within the com.initiate.server.system.cfg file.

Table 19. Master Data Engine environment variables

example:

mad.1og.name=
C:\\myLogs\\mpinet_hub10081-%s.mlg

Environment Description Defaults
MAD_ROOTDIR Sets the IBM Initiate Master Data Service |installdir/product
root directory. Set within wrapper.conf. (for example,
C:\Program
Files\IBM\Initiate\
Engine)
The following variables manage log
information.
mad.Tlog.name IBM Initiate® Master Data Service® processnane-
application log name. Set within the yyyymmdd-
com.initiate.server.system.cfg file. hhmmss.mlg (for
You can add a directory as a prefix to the | example,
log name to indicate that the log is to be |mpinet_prod10-
written to a non-default directory. For 20050824-

162248.m1g)

Nativelog

Runtime log level. Activate by setting
NativelLog to DEBUG, TRACE, WARN, and so
on, within Tog4j.xml.

Default = INFO

ConversionPattern
parameters

Controls the parameters that are
presented in log files.

Default =
%d{HH:mm:ss}
[%5.5i] %-5.5p
%32.32C: %m%n

88 Master Data Engine Installation Guide

Table 19. Master Data Engine environment variables (continued)

Environment

Description

Defaults

AuditlLog

Runtime log auditing. Set within
log4j.xml.

Default = ALL

Performancelog

Enables performance logging for the
engine. Set within Tog4j.xml.

To enable performance logging, within
log4j.xml set PerformancelLog from OFF to
ALL.

Default = OFF

AlgorithmLog

Enables algorithm logging for the engine.
Set within 1og4j.xml.

To enable algorithm logging, within
log4j.xml set AlgorithmLog from OFF to
ALL.

Default = OFF

SqTLog

Runtime log dbsql statements. Set within
log4j.xml.

Default = OFF

TimerLog

Runtime log timing. Set within
log4j.xml.

Default = OFF

MAD_SMTLIST

Comma-separated list of language (SMT)
codes. Set within
com.initiate.server.system.cfg.

Optional; default =
en_US for US.
English

The following variables manage database
information.

MAD_CONNSTr

ODBC connection string. The data source
name is found in the ODBC.ini file on
UNIX and Linux systems and in the
System DSN on Microsoft Windows.

Set within
com.initiate.server.system.cfg.

(Invalid ODBC value
characters =
[1{}(),;?2%=!0G\ per
the spec) “DSN=data
source name;
UlID=user
name;PWD=user
password;”

PWD = a plain text
password

PWD2 = an
encrypted password

For encrypted
passwords, you must
use the following:
PWD2=user
password.

ODBCCINI is used
by the Data Direct
drivers.

Chapter 10. Configuring Master Data Engine environment variables 89

Table 19. Master Data Engine environment variables (continued)

Environment

Description

Defaults

MAD_CONNSTR

MPINET connection string if another
process is using this string; for example,
MBTS.

Microsoft Windows Server requires the
pipe delimiter to be escaped (by using
the symbol #) when setting the
MAD_CONNSTR environment variable
within a cmd.exe shell. Ex:

set MAD_CONNSTR=<hostname>"|<port>

UNIX and Linux system example:
export MAD_CONNSTR="hostname |port"

Set within
com.initiate.server.system.cfg.

hostname |portno
[|protocol]
(protocol =
BINARY or STRING)

MAD_DBTYPE

Native database type. Set within
com.initiate.server.system.cfg.

(oracle | db2 I mssqlu)

MAD_DBSERVER

Native database server. MAD_DBSERVER and
MAD_DBNAME are only set under the
following circumstances:

SQL Server: MAD_DBSERVER is required if
the SQL Server database is on a different
server than the Master Data Engine.

Oracle: MAD_DBNAME is required if the
Oracle database is on a different server.

If you must set MAD_DBSERVER and
MAD_DBNAME, do so within
com.initiate.server.system.cfg.

Optional.

MAD_DBNAME

Native database name. Passed to the
database bulk-load utilities by the
madhubload, madhubunload, madload,
madunload, and maddbx utilities.

MAD_DBSERVER and MAD_DBNAME are only set
under the following circumstances:

SQL Server: MAD_DBSERVER is required if
the SQL Server database is on a different
sever than the Master Data Engine.

Oracle: MAD_DBNAME is required if the
Oracle database is on a different server.

If you must set MAD_DBSERVER and
MAD_DBNAME, do so within
com.initiate.server.system.cfg.

Database name
(oracle sid).

The following MAD_DB* variables are not
set by default. These variables are
typically set for stand-alone tools. You
typically do not have to set these
variables within the Master Data Engine
configuration files.

90 Master Data Engine Installation Guide

Table 19. Master Data Engine environment variables (continued)

Environment Description Defaults
MAD_DBUSER Native database user ID. Passed to the Database user login
database bulk-load utilities by the
madhubload, madhubunload, madload,
madunload, and maddbx utilities.
MAD_DBPASS Native database password. Passed to the |Database user

database bulk-load utilities by the
madhubload, madhubunload, madload,
madunload, and maddbx utilities.

password

MAD_DBSETUP

Setup command executed on each
application server.

Optional for supported databases

MAD_DBXTEST

When turned on, this variable causes the
engine to test long-held ODBC
connections before use.

0 = False, 1 = True

Optional; default = 1
(true)

The following variables support customer
variability in IBM Initiate Master Data
Service software functionality.

MAD_HOMEDIR

Instance-specific home directory. Set
within wrapper.conf.

Default:
instancename/
installdir / prod10

MAD_INSTDIR

Sets the Master Data Engine instance
directory. Set within wrapper.conf.

MAD_SRVNO

MPINET server ID. This setting is a
unique eight-digit identifier based on the
system clock at the time of instance
creation. Set within
com.initiate.server.system.cfg.

Optional, default =
system time

Chapter 10. Configuring Master Data Engine environment variables 91

Table 19. Master Data Engine environment variables (continued)

Environment

Description

Defaults

MAD_CTXLIB

Set within
com.initiate.server.system.cfg.
Specifies one of the following connection
modes:

ODBC. Communicate with the Master
Data Engine database directly without
going through another server layer. This
mode is used for batch operations and
upgrades. Only bulk cross match and
server-based diagnostic utilities work in
ODBC mode.

MPINET. Wire protocol for
communication between client
applications and the Master Data Engine.
Essentially, a client application initiates
contact with the Master Data Engine. The
engine in turn performs the business
logic and communicates with the
database on behalf of the client. This
mode is used for programs that conduct
individual transactions rather than batch
operations. When the system was based
fully on C or C++, clients were able to
switch between the ODBC and MPINET
connection modes. However, the Java
and .Net APIs support only the MPINET
connection mode.

(ODBC versus
MPINET)

MAD_UNLFSR

unl field separator replacement. Set
within com.initiate.server.system.cfg.

Default = “!'

MAD_DICTIMEOUT

In a multi-server environment, this
setting is the maximum amount of time
(in seconds) the Master Data Engine
waits to check whether the dictionary
segments in the database are different
from the ones in its memory cache. If set
to 0 (zero), the Master Data Engine
checks every interaction. If set to -1, it
never checks for change. Set within
com.initiate.server.system.cfg.

Default = 300
seconds

MAD_OBJCODE

Default object code used by the Master
Data Engine command-line utilities
(multiple codes are supported). Options
include disc, mem, and aud. Set within
com.initiate.server.system.cfg.

NONE

92 Master Data Engine Installation Guide

Table 19. Master Data Engine environment variables (continued)

Environment

Description

Defaults

MAD_TABPFX

Table prefix used by the Master Data
Engine command-line utilities

The table creation, load, and unload
utilities apply the variable when set;
however, not all parts of the engine apply
it. For example, JDBC-based access does
not use this variable.

To access a database without ANSI
ownership prefixed to the table name,
you must use RDBMS synonyms or some
similar facility.

It is possible to use the MAD_DBPFX
environment variable to work with
database backup images for which the
object owner password is unknown.

Set within
com.initiate.server.system.cfg.

NONE

MAD_TABSFX

Default table suffix used by the Master
Data Engine command-line utilities for
the entity-specific tables. For example,

_id, _pr, _og, and so on.

Set within
com.initiate.server.system.cfg.

NONE

MAD_UNLDIR

Default directory used by the Master
Data Engine command-line utilities for
the unload files.

Set within
com.initiate.server.system.cfg.

NONE

MAD_DDLFILE

Data Definition file used by the Master
Data Engine command-line utilities.

Set within
com.initiate.server.system.cfg.

MAD_STOFILE

Storage definition file used by the Master
Data Engine command-line utilities.
These files are dependent on the database
server being used.

Set within
com.initiate.server.system.cfg.

If not set, the
madhub* and
madent* utilities
make assumptions as
to the location of the
ddlfile and stofile.

Both the
MAD_DDLFILEand
MAD_STOFILE
variables are still
valid for use with
the maddbx utility.

Chapter 10. Configuring Master Data Engine environment variables 93

Table 19. Master Data Engine environment variables (continued)

Environment

Description

Defaults

MAD_CALLBACKLIB

Enables the Master Data Engine to call
custom handlers (callback and event
notification functionality)

The Master Data Engine instance must be
restarted after modifying this variable.

Set within
com.initiate.server.system.cfg.

Microsoft Windows
environment, set:

MAD_CALLBACKLIB=
mpichjava.dll

UNIX and Linux
environment, set:
1ibMPICBJAVA.so

NET (Microsoft
Windows only), set:
mpicbdotnet.dl1

MAD_GNRCONFIG

If your hub algorithm configuration uses
GNRMETA, set this variable before
attempting to run any of the engine
utilities (for example, mpxdata). This
variable must point to the GNR
nameworks.config file contained within
the GNM INSTALL/data directory.

For example, MAD_GNRCONFIG =
C:\Program Files\IBM\GNM\data\
nameworks.config

NONE

net-listener

Presence of this value indicates that the
Master Data Engine instance is providing
MPINET TCP/IP communication
behavior. This means that the engine
listens for the standard MPINET protocol
over port 16000. This value is initially set
by answering ‘y' to the “MPINet over
TCP/IP” prompt during the madconfig
instance creation process.

Set within
com.initiate.server.features.cfg.

To unset this value, remove the entry.

NONE

net-serviet

Presence of this value indicates that the
engine instance is providing MPINET
over HTTP services. This value is initially
set by answering ‘y' to the “MPINet over
HTTP” prompt during the madconfig
instance creation process.

Set within
com.initiate.server.features.cfg.

To unset this value, remove the entry.

In some government environments, this
method is required. See the IBM Initiate
Master Data Service Security Technical
Implementation Guide (STIG) for details.

You can configure an instance to run over
both TCP/IP and HTTP.

NONE

94 Master Data Engine Installation Guide

Table 19. Master Data Engine environment variables (continued)

Environment

Description

Defaults

MAD_IPVERSION

This variable is used to control the type
of address family to use when
constructing a client connection or server
socket. This variable is honored by the
Message Broker Suiteand command-line
utilities that connect to an engine
instance through MPINET. Values are:
not set, 4, or 6.

The madconfig utility adds the default
setting of 4 to the MAD_CONFNAME file.
Changes to this setting must be done
manually to MAD_CONFNAME.

For Message Broker Suite processes that
act in both client and server mode (for
example, Query Broker),
MAD_IPVERSION is shared. This means
that both the client and server portions of
the instance are in the specified IP
version (you cannot have an instance in
IPv4 and one in IPv6). Engine utilities
can have more flexibility.

For more information about this variable
setting for Brokers, see the IBM Initiate
Master Data Service Message Broker Suite
Reference .

Engine default =
NONE. The IP
version is detected
by the engine, so no
configuration is
required by the user.

Broker default = 4
(IPv4)

The following variables are not used by
the Master Data Engine, however they
are used by the Message Broker Suite
and IBM Initiate Web Reports.

MAD_SECLIB

Security library; indicates that SSL is
implemented for client communication.

SSL, optional

MAD_CONFNAME

Host level configuration file; setup
through Microsoft Windows “My
Computer > Properties”

MAD_SSLFIPSMODE

This variable is used to enable FIPS mode
within the Message Broker Suite and
command-line utilities which can
communicate over MPINET and SSL.

The default value is
0 (not enabled).

MAD_ENCODING

Sets the internationalization behavior.

MAD_ENCODING does not appear in the
configuration files by default. To set it to
a value other than Tatinl, do so within
the com.initiate.server.system.cfg
configuration file.

Log files created by the Master Data
Engine are in ASCII encoding. Code
points not encompassed by ASCII are in
the standard Unicode form of U+XXXX.

Options are: 1atinl,
utf8, utflé
Default: Tatinl

Related concepts

Chapter 10. Configuring Master Data Engine environment variables

95

[“SSL security” on page 191

[Chapter 11, “Diagnostic logging,” on page 97

[“ConversionPattern format specification” on page 99|

[Appendix C, “Master Data Engine storage files (stofiles),” on page 217

Related reference

[“Entity manager configuration parameters” on page 76|

96 Master Data Engine Installation Guide

Chapter 11. Diagnostic logging

The Master Data Engine uses log4j to provide diagnostic information.

You can configure the contents of each diagnostic message to contain date and
time stamps, program names, and other information that can be used to more
easily identify the message. By putting this information about each line, you can
use text searching utilities such as grep (IBM AIX, Linux, or Solaris), or find
(Microsoft Windows) to help locate items in a large log.

The Master Data Engine processes use log4j exclusively, while the Message Broker
Suite components use a combination of log4j and a native logging process. See the
IBM Initiate Master Data Service Message Broker Suite Reference for details.

The contents of the logging topics are based on the assumptions that you are
familiar with setting environment variables and understand valid file naming for
the supported operating and file system in use.

Log file location and naming

By default, a program that produces log output writes the output file in the
directory from which the program was invoked.

The location and name of the log file can be configured by setting these
environment variables:

* mad.log.name
Specifies the name of the log file.
The name of the file can be any valid file name for the operating system on
which the process is running. By convention, logs commonly include the file
extension .mlg, but that is not a requirement. You can include any extension (for
example, .1og or .txt) or no extension at all.

To write the logs to a location other than the default location, add a prefix to the
relevant directory information to the setting for mad.1og.name. For example:
mad.Tog.name=C:\\myLogs\\mpinet hub10081-%s.mlg

When mad.log.name is set with a path and file name, the process writes to the
file specified instead of the location where the program was invoked. The
directory path must exist; the logging process does not create the directory.
Also, include the format specifier %s so that the process adds a date stamp suffix
to the file name in the format YYYYMMDD-HHMMSS based on date and time the file
was first created. For example, with the mad.1og.name=MyLog-%s.mlg" setting, a
process that created its first log entry November 23, 2004 at 12:01:00 P.M. yields
this log file:

MyLog 20041123-120100.mlg

Processes that run over into the next day, and daemon or service processes that
run continuously, create new log files. The files are written upon the first log
entry created on the new date.

© Copyright IBM Corp. 1995, 2011 97

Attention: To maintain pre-6.1 behavior with the date only and not the time
stamp (for example, /ibm/initiate/logs/MyLog_20041123.m1g), specify a length
setting in the %s format to include only the date portion. The length setting takes
the form of a period (.) followed by a length limit (for example, 8). For example:

mad.log.name=MyLog-%.8s.mlg
Including %.8s yields the first 8 characters of the date-time stamp; %.6s yields

only the year and month; and %.4s yields only the year. The valid values for the
length are 1 through 15.

e MAD_HOMEDIR

Related concepts

[“Master Data Engine environment variables” on page 87|

“Master Data Engine directory structure - MAD_ROOTDIR and MAD_HOMEDIR"]

on page 32|

Logging types

By setting values within Tog4j.xml, you can control the verbosity of log output.
ERROR and INFO log messages are always written to the log.

The Master Data Engineuses a caching log writer, which is a mechanism for
writing log events in to a circular memory buffer. The contents are written out to a
log file when a triggering event occurs. Administrators can enable higher log levels
for certain loggers without paying the performance and storage penalty of writing
information to a file until the information is needed. The caching log writer is
disabled by default. For details, see IBM Initiate Master Data Service Software
Operations Guide.

You can set log settings on a temporary basis to run until the Master Data Engine
is stopped from IBM Initiate Workbench. For example, you might need to increase
verbosity to assist with troubleshooting. For instructions, see the IBM Initiate
Workbench User’s Guide.

This table lists the logging types that can be set.
Table 20. Logging types

Log Setting Description
Nativelog, set to Produces low-level diagnostics used internally to identify what was
DEBUG happening in the system before an error condition occurred. This

option generates a large amount of output per activity and should be
used only for short time periods.

Nativelog, set to Produces a trace of activity as interactions flow through the system.

TRACE This option is verbose and should be used only for short time
periods.

Nativelog, set to Produces alerts that are not errors, but might need to be tracked.

WARN

AuditLog Produces activity information and non-critical warnings. This option
is often used when a new system is first implemented to monitor
activity.

98 Master Data Engine Installation Guide

Table 20. Logging types (continued)

Log Setting

Description

SqlLog

Outputs the SQL that is sent by the Master Data Engine database
layer to the RDBMS. This logging can help in diagnosing
database-related issues. This option can produce large amounts of
output depending on the activity.

TimerLog

Produces timings on certain operations to help identify where
significant processing time is elapsing.

ConversionPattern format specification

Within 1og4j.xml, the ConversionPattern parameter controls the contents of each
line of the output inside of the log file.

Some of the most common parameters are listed in this table.

Table 21. Log ConversionPattern format codes

Conversion
character

Effect

o

C

Inserts the category of the log message.

d

N

Inserts the date and time. Depends on format supplied.

N

i

Inserts the thread ID. Unlike the thread name (indicated by %t), this is the
numeric ID of the thread.

This parameter is particular to IBM Initiate® Master Data Service®, while
the other parameters listed here are standard with log4j.

N
3

Inserts the log message itself.

o
=1

Inserts the platform-dependent line separator.

o
o°

Inserts the priority of the log message.

N
7]

Inserts a full date and time stamp into the log file name. Include a period
and number within the code to truncate the length of the date and time
stamp. For example, to include only the date string in the filename, specify
mad.log.name=MyLog-%.8s.mlg. Valid values for the length are 1 - 15.

oF
o+

Inserts the associated thread name.

Related concept

For more information about the format codes, see [‘Suggested logging settings.”|

Related information

For more detail about the syntax of ConversionPattern, see: |F1ttp: // |

ogging apache.org/log4j/1.2 /apidocs/org/apache /log4j /PatternLayout.html|
ge

Suggested logging settings

The log4j log system is set up with a flexible architecture to allow for different
implementation scenarios.

This list provides some useful setting combinations for diagnosing problems.

Chapter 11. Diagnostic logging 99

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html

* Enable the caching log writer and configure it to record the detail around
triggering events. For details, see the IBM Initiate Master Data Service Software
Operations Guide.

* Use the %s stamp in the mad.Tog.name settings for longQrunning processes. Doing
so makes it easier to purge or back up old logs when a new log is created every
day. This setting is best suited for MPINET and Message Broker Suite logs.

* The ConversionPattern settings depend on how the software is implemented
and how you use the logs after archiving the system on which they are created.
For instance:

— If log files are going to be moved from the directory where they were created
for archiving, it is a good idea to make the file name something unique. This
naming can be important when moving multiple instances to the same
archive directory. Also, it is helpful to make the log name descriptive such
that the name identifies the process logged (for example, prodEngine%s.mlg).

— Both the date and time code (%d) and the thread code (%1) are important for
most logs. The time shows how long various operations take, and the thread
ID helps separate multiple interactions on different threads logged at the
same time.

* If disk space is a concern and the solution is running smoothly to date, consider
turning off AuditlLog. However, the Auditlog setting provides for a quick view
into system activity and an easy way to monitor load and usage patterns. You
can turn off TimeLog for the Master Data Engine and interfaces, but turn it on
when running bulk cross match (BXM) utilities. Log settings can generate a large
volume of data. Use them only when your are trying to pinpoint a problem.

100 Master Data Engine Installation Guide

Chapter 12. Using the Master Data Engine utilities

There are a number of command-line utilities that are included with the IBM
Initiate Master Data Service software.

Before you begin

If your implementation is FIPS-compliant, command-line utilities that communicate
over SSL must be configured to meet FIPS requirements.

About this task

These utilities are primarily used by the implementation and IBM Software
Support teams. Some of these utilities are also available as jobs in IBM Initiate
Workbench.

Procedure

1. On the command line, go to the Master Data Engine installation directory
(MAD_ROOTDIR). Then go to the bin directory. For example:

Microsoft Windows: cd C:\Program Files\IBM\Initiate\Enginel®.0.x\bin
IBM AIX, Linux, or Solaris: cd /opt/IBM/Initiate/Enginel0.0.x/bin

2. To view command-line usage for any utility, run the command applicable for
your operating system. Where utility is the utility name.

* Microsoft Windows: utility.exe (for example, mpxdata.exe
* IBM AIX, Linux, or Solaris: utility.bat (for example, mpxdata.bat)

3. Run the utility according to the usage output or the information provided in
the utility topics. While the information in the topics covers greater detail than
the usage output, it is a good idea to supplement the topic information with
the usage output.

Related concept

[Appendix K, “FIPS compliance,” on page 255|

madcode utility
The madcode utility displays strings in Soundex, METAPHONE, and
IDENTAPHONE form.

Any number of white space delimited arguments can be given on the command
line. The madcode utility is a diagnostic utility that can be used to determine if
two or more different strings can convert to the same phonetic encoded form.

Table 22. madcode options

Option Type Description Default

name Any string | Specifies the input to be NONE
converted by the various
phonetic algorithms

© Copyright IBM Corp. 1995, 2011 101

madconfig utility

The madconfig utility is one of the most used Master Data Engine utilities. One of
the more common uses of the utility is to configure instances for the Master Data
Engine, components of the Message Broker Suite, stand-alone LDAP directory
servers, and stand-alone entity managers.

This utility is run from the engine installation MAD_ROOTDIR\scripts directory. This
utility configures the registry (Microsoft Windows) and creates configuration files
for IBM AIX, Linux, or Solaris, and Microsoft Windows.

Attention:

* Although you can use the madconfig utility to generate and validates weights, it
is suggested that you do these tasks from IBM Initiate Workbench. For guidance,
see the IBM Initiate Workbench User’s Guide.

** Registering and deploying callback handlers can be done by using madconfig or
through IBM Initiate Workbench. The suggested method is to use IBM Initiate
Workbench. If you register your handlers by using madconfig, the IBM Initiate
Workbench configuration project does not know about the handler, and the
dictionary becomes out of sync when the Master Data Engine configuration is
deployed from IBM Initiate Workbench. For more information, see the IBM Initiate
Workbench User’s Guide. When using the "deploy" or "undeploy" targets, make sure
to respond No to the prompts "Unregister all existing Handlers" and "Register new
Handlers."

Restriction: *** Do not run the support target without consulting the IBM Software
Support for guidance. Running this target can require significant time, depending
upon your configuration and environment.

Table 23. madconfig options

Options and targets Description Default
-projecthelp Lists the valid options. NONE
-propertyfile Loads properties from file. NONE
-recordfile Record response properties to file. For details | NONE

on using the -recordfile option, see the
Creating an automated madconfig utility
scripts task.

bootstrap_instance Bootstraps a Master Data Engine instance NONE
database

check_entitymgr Check an entity manager instance (IBM AIX, |NONE
Linux, or Solaris operating systems only).

check_eventmgr Check an event manager instance (IBM AIX, |NONE
Linux, or Solaris operating systems only).

check_instance Check a Master Data Engine instance (IBM NONE
AIX, Linux, or Solaris operating systems
only).

check_ldap Checks for a response from an LDAP server |NONE

(IBM AIX, Linux, or Solaris operating
systems only).

102 Master Data Engine Installation Guide

Table 23. madconfig options (continued)

Options and targets

Description

Default

configure_eventmgr_eventhandler

Configures an event handler for a
stand-alone event manager instance. This
must be configured for event notification
processing.

NONE

configure_instance_eventhandler

Configures an event handler for an
embedded event manager instance. This
must be configured for event notification
processing.

NONE

create_hubconnector

Creates an IBM InfoSphere™ Master Data
Management Hub Connector instance.

NONE

create_datasource

Creates a data source.

NONE

create_entitymgr

Creates an entity manager instance.

NONE

create_eventmgr

Creates an event manager instance

NONE

create_instance

Creates an engine instance. After executing,
the utility walks you through the setup.

NONE

create_ldap

Creates a stand-alone instance of the IBM
Initiate LDAP directory server. After
executing, the utility walks you through the
creation process.

NONE

deploy_entitymgr_handlers”™

Deploys an entity manager handler.

When prompted to “Unregister all existing
Handlers” and “Register new Handlers,”
your response should always be “no.”

NONE

deploy_eventmgr_eventhandler

Deploys an event handler for a stand-alone
event manager instance.

NONE

deploy_instance_eventhandler

Deploys an event handler for an embedded
event manager instance.

NONE

deploy_instance_handlers”

Deploys a handler for a Master Data Engine
instance.

When prompted to “Unregister all existing
Handlers” and “Register new Handlers,”
your response should always be “no.”

NONE

enable_gnr

This option is used to enable and configure
the use of IBM InfoSphere Global Name
Recognition (GNR) with the Master Data
Engine. This option runs the
mpi_gnrconfig.sql file and creates new
entries in mpi_libhead, mpi_gnefunc, and
mpi_bktxgen database tables. Use this target
if you are configuring an algorithm to use
the GNRMETA bucket generation function.

You must restart your engine after running
this option.

NONE

Chapter 12. Using the Master Data Engine utilities

103

Table 23. madconfig options (continued)

Options and targets

Description

Default

disable_gnr

This option removes reference to GNR from
the mpi_libhead, mpi_gnefunc, and
mpi_bktxgen database tables. It does not
remove any references to GNRMETA in your
algorithm; you must edit your algorithm in
IBM Initiate Workbench.

You must restart your engine after running
this option.

generate_perfrpt

Takes the results from the Performance
Logging Manager process and generates a
Performance Log Report. See
start_perflogmgr and stop_perflogmgr
options in this topic. Additional detail is
provided in the IBM Initiate Master Data
Service Software Operations Guide.

NONE

104 Master Data Engine Installation Guide

Table 23. madconfig options (continued)

Options and targets

Description

Default

generate_rocinp

Generates the usamp, dsamp, and msamp
files used by the Threshold Calculator for its
calculations. This process can be run from the
Generate Threshold Calculator Input Files job
in IBM Initiate Workbench.

Performance and optional parameters found
in IBM Initiate Workbench can be modified
from the command line by using the
following ant properties listed here. The
equivalent IBM Initiate Workbench property
follows in parentheses ().

Performance tuning parameters:
mad.rocinputs.threads (Number of threads)

mad.rocinputs.num.parts.l (Number of
comparison bucket partitions)

mad.rocinputs.num.parts.2 (Number of
random pairs bucket partitions)

mad.rocinputs.num.parts.max (Maximum
number of input and output partitions)

mad.rocinputs.upair.count (Number of
random pairs to generate)

mad.rocinputs.report.records (Interval for
reporting processed records)

mad.rocinputs.max.bucket.size (Maximum
bucket set size)

mad.rocinputs.min.weight (Minimum weight
for writing item records)

mad.rocinputs.num.parts.mem (Number of
member partitions)

Optional parameters:
mad.rocinputs.cmpmode (Comparison mode)

mad.rocinputs.use.all.attrs (Skip last step
because of too few attributes - true or false)

NONE

Chapter 12. Using the Master Data Engine utilities 105

Table 23. madconfig options (continued)

Options and targets

Description

Default

generate_weights’

Runs the weight generation process (this
process can be performed through IBM
Initiate Workbench).

If you do not want weight smoothing to take
place during the generation process, make
sure that you set the mad.wgtgen.smooth
property to false. For example,
-Dmad.wgtgen.smooth=false. The default
setting for this property is true.

If mad.wgtgen.smooth is set to true, then a
\smoothed sub-directory is created. The
directory contains smoothed usamp
(unmatched pairs), msamp (matched pairs),
and final binary and text report files. This
structure maintains the original, unsmoothed,
files that you can compare against the
smoother files.

launch_etl

Launches a CloverETL graph.

NONE

list_datasources

Lists existing database data sources.

NONE

migrate_datasource

Migrates a data source from one installation
of the same version (X.X.X) to another.

On Microsoft Windows operating systems,
the data source is moved. On IBM AIX,
Linux, or Solaris operating systems the data
source is copied.

migrate_entitymgr

Migrates a stand-alone entity manager
(mpientmgr) instance from one installation of
the same version (X.X.X) to another.
Important: You must migrate your data
source (by using migrate_datasource) before
migrating your stand-alone entity manager.

migrate_eventmgr

Migrates an event manager instance from one
Master Data Engine installation to another
installation of the same version.

migrate_instance

Migrates an engine (mpinet) instance from
one installation of the same version (X.X.X)
to another.

Important: You must migrate your data
source (by using migrate_datasource) before
migrating your engine instance.

migrate_ldap

Migrates a stand-alone LDAP server
(mpildap) instance from one installation of
the same version (X.X.X) to another.
Important: You must migrate your data
source (by using migrate_datasource) before
migrating your stand-alone LDAP server.

ping_instance

Pings a Master Data Engine instance listener.

You can also use the MPINET protocol to
ping an instance; the MPINET option is
useful for programmatic checks of instance
status.

NONE

106 Master Data Engine Installation Guide

Table 23. madconfig options (continued)

Options and targets

Description

Default

pingdb_instance

Pings a Master Data Engine instance
database via listener.

You can also use the MPINET protocol to
verify database availability; the MPINET
option is useful for programmatic checks of
database status.

NONE

register_dotnet_assemblies”

Registers IBM .NET assembly files for use by
Master Data Engine instances that are using
the .NET callbacks dlIl (mpicbdotnet.d11).
This target is implicitly called during engine
installation. However, if you are using the
NET callback dll, and have a version of
.NET Framework earlier than 2.0, you must
use this target to re-register your .NET
assemblies post-engine-installation after
upgrading to .NET Framework 2.0.

NONE

register_handlers”

Registers a handler. While this option
remains, all handlers should be registered
and unregistered through IBM Initiate
Workbench.

NONE

remove_hubconnector

Removes an IBM InfoSphere Master Data
Management Hub Connector instance.

NONE

remove_datasource

Removes an existing database data source

NONE

remove_entitymgr

Removes an entity manager instance.

NONE

remove_eventmgr

Removes an event manager instance.

remove_instance

Removes a Master Data Engine instance.

NONE

remove_Tdap

Remove a stand-alone instance of the IBM
Initiate LDAP directory server.

NONE

run_jobset

Executes a job set that was initially created in
IBM Initiate Workbench. If IBM Initiate
Workbench is running on a different
computer than the hub engine, you must
copy the job set XML file from the IBM
Initiate® Workbench project to the hub server.
It is located at workbench_workspace\
project_name\jobTemplates. If the job set
includes the Deploy Hub Configuration job,
the contents of the entire project must be
copied to the server on which the Hub
engine is running.

NONE

run_mpitxm

Executes the mpitxm utility. For process
details, see the mpitxm utility
documentation.

NONE

run_relTlinker

Executes the relationship linker utility, which
creates relationship linkages in bulk fashion.

NONE

show_handlers™

Shows all registered handlers for a Master
Data Engine instance.

start_hubconnector

Starts an IBM InfoSphere Master Data
Management Hub Connector instance.

NONE

Chapter 12. Using the Master Data Engine utilities 107

Table 23. madconfig options (continued)

Options and targets

Description

Default

start_entitymgr

Command to start a stand-alone instance for
an entity manager; Microsoft Windows
alternative is starting through Microsoft
Windows Service.

NONE

start_eventmgr

Starts an event manager instance.

NONE

start_instance

Command to start a Master Data Engine
instance; Microsoft Windows alternative is
starting through a Microsoft Windows
Service.

NONE

start_ldap

Command to start either an embedded or a
stand-alone instance of the IBM Initiate
LDAP directory server; Microsoft Windows
alternative is starting through Microsoft
Windows Service.

NONE

start_perflogmgr

Command to start the Performance Logging
Manager process. Additional detail is
provided in the IBM Initiate Master Data
Service Software Operations Guide.

NONE

stop_hubconnector

Stops an IBM InfoSphere Master Data
Management Hub Connector instance.

NONE

stop_entitymgr

Stops an entity manager instance.

NONE

stop_eventmgr

Stops an event manager instance.

NONE

stop_instance

Command to stop a Master Data Engine
instance; Microsoft Windows alternative is
stopping through Microsoft Windows
Service.

NONE

stop_ldap

Command to stop either an embedded or a
stand-alone instance of the IBM Initiate
LDAP directory server; Microsoft Windows
alternative is starting through Microsoft
Windows Service.

NONE

stop_perflogmgr

Command to stop the Performance Logging
Manager process. Additional detail is
provided in the IBM Initiate Master Data
Service Software Operations Guide.

NONE

108 Master Data Engine Installation Guide

Table 23. madconfig options (continued)

Options and targets

Description

Default

support™

Gathers hub metrics for IBM Software
Support or for sizing. Queries are run against
the database; the metrics are written to the
instance-specified support directory in a
single compressed file named after the run
date. For example, if run on February 25
2010, the file is: $MAD_HOMEDIR/support/
201002025.z1p. Within the compressed file,
madconfig writes a pipe-delimited .un1 file
with the result for each query.

Metrics gathered. The support target gathers
several metrics, including:

definitional source count
member count

entity type count

member type count
attributes defined count
member segment count

row counts for all member segments
bucket count

comparison string count
bucket role count
comparison role count
interactions audited count
user count

group count

large bucket count (optional)

large entity count (optional)

NONE

test datasource

Tests a database data source.

NONE

undeploy entitymgr handlers”

Deactivates an entity manager handler.

When prompted to “Unregister all existing
Handlers” and “Register new Handlers,”
your response should always be “no.”

undeploy_eventmgr_eventhandler

Deactivates the event handler for an event
manager instance.

undeploy_instance_eventhandler

Deactivates an event handler for a Master
Data Engine instance.

Chapter 12. Using the Master Data Engine utilities 109

Table 23. madconfig options (continued)

Options and targets Description Default
undeploy instance handlers” Deactivates a Master Data Engine instance

handler.

When prompted to “Unregister all existing

Handlers” and “Register new Handlers,”

your response should always be “no.”
unregister_handlers” Unregisters a previously registered handler.

While this option remains, all handlers

should be registered and unregistered

through IBM Initiate Workbench.
upgrade_entitymgr Upgrade an entity manager instance.
upgrade_eventmgr Upgrades an event manager instance.
upgrade_instance Upgrades a Master Data Engine instance. NONE

upgrade_Tdap

Upgrades an IBM Initiate LDAP Server
instance.

validate weights’

Executes a validation process against the
weights generated.

version

Shows the version of the engine or broker.

Related tasks

[Creating an automated madconfig utility script” on page 49|

“Using ping requests to monitor Master Data Engine and database availability” onl|

page 59

maddbx utility

The maddbx utility allows for database operations to retrieve information about a
database, create or delete tables and indexes, along with several other
database-related operations.

Table 24. maddbx options

Option Type Description Default
-numTabs Number of tables NONE
-tabList Table name (or names) for NONE
operation. Use ALL for all tables, or
specify individual tables by name
(for example, mpi_memstat).
-collist tabName Columns for table ‘tabName' NONE
-idxList tabName Indexes for table ‘tabName' NONE
-numcols tabName Number of columns for table NONE
‘tabName'
-numidxs tabName Number of indexes for table NONE
‘tabName'
-numrows tabName Number of rows of specified tables | NONE
-crTable tabName Creates table ‘tabName' NONE
-drTable tabName Deletes table ‘tabName' NONE

110 Master Data Engine Installation Guide

Table 24. maddbx options (continued)

Option Type Description Default
-crindex idxName Creates index ‘idxName' NONE
-drIndex idxName Deletes index ‘idxName' NONE
-crTabIdx tabName Creates all indexes for table NONE
‘tabName'
-drTabIdx tabName Deletes all indexes for table NONE
‘tabName'
-optimize tabName Optimize specified tables or ALL NONE
tables.
This command is used as a starting
point for table optimization. It is a
generic command based on default
optimizer settings. The effectiveness
of the command could vary
depending on the optimizer settings
in place for that implementation. If
table optimization is not achieved
by running this command, contact
the responsible database
administrator to update statistics in
a manner tailored to the optimizer
settings in place for that
implementation.
-Toadunl tabName Loads table ‘tabName' from .unl NONE
file*
-unload tabName Unloads table ‘tabName to a .unl NONE
file
-rebuild tabName Rebuilds (creates the table and NONE
indexes) for table ‘tabName
-truncate tabName Truncates (deletes all data) from NONE
table “tabName'
-sqlexec sqlFile Executes commands from an SQL NONE
file.
These next

arguments are
additional arguments
for —loadunl:

-onepass Implies —truncate, -Toaddata,
-index

-truncate Truncate tables only

-loaddata Load data information table (or
tables) only

-index Index table (or tables) only

-useint Use internal loader instead of the
database utility. For improved
performance, use the internal loader.

-remote Database is remote

-maxErrs Maximum number of “per-table”

errors allowed before ending

Chapter 12. Using the Master Data Engine utilities

111

Table 24. maddbx options (continued)

Option

Type

Description

Default

-commitSize

Number of records processed
between commits

-otherArgs

Additional arguments to database
utility

-rootDir

MAD_ROOTDIR; location of IBM Initiate
Master Data Service software. The
environment variable setting for this
option (shown in uppercase) can be
used in place of the command-line
options.

-homeDir

MAD_HOMEDIR; location of a Master
Data Engine instance. The
environment variable setting for this
option (shown in uppercase) can be
used in place of the command-line
options.

-connStr

MAD_CONNSTR; ODBC connection
string

-objCode

MAD_OBJCODE; restrict command to
table or index belonging to this
object. The environment variable
setting for this option (shown in
uppercase) can be used in place of
the command-line options.

-dbtype

MAD_DBTYPE; native database name.
The environment variable setting for
this option (shown in uppercase)
can be used in place of the
command-line options.

-dbServer

MAD_DBSERVER; native database
server. The environment variable
setting for this option (shown in
uppercase) can be used in place of
the command-line options.

Optional if not
using native

-dbname

MAD_DBNAME; native database name.
The environment variable setting for
this option (shown in uppercase)
can be used in place of the
command-line options.

Optional if not
using native

-dbuser

MAD_DBUSER; native database user ID.
The environment variable setting for
this option (shown in uppercase)
can be used in place of the
command-line options.

Optional if not
using native

-dbpass

MAD_DBPASS; native database
password. The environment variable
setting for this option (shown in
uppercase) can be used in place of
the command-line options.

Optional if not
using native

112 Master Data Engine Installation Guide

Table 24. maddbx options (continued)

Option

Type

Description

Default

-dd1file

MAD DDLFILE; data definition file.
The environment variable setting for
this option (shown in uppercase)
can be used in place of the
command-line options.

Optional based
on command

-stofile

MAD_STOFILE; storage definition file.
The environment variable setting for
this option (shown in uppercase)
can be used in place of the
command-line options.

Optional

-unldir

MAD_UNLDIR; load or unload .unl
directory. The environment variable
setting for this option (shown in
uppercase) can be used in place of
the command-line options.

Optional based
on command

-tabPfx

MAD_TABPFX; table and index name
prefix. The environment variable
setting for this option (shown in
uppercase) can be used in place of
the command-line options.

Optional

-tabSfx

MAD_TABSFX; table and index name
suffix. The environment variable
setting for this option (shown in
uppercase) can be used in place of
the command-line options.

Optional

-encoding

MAD_ENCODING; encoding of .unl
files; options are: UTF8, UTF16, or
LATINI. The environment variable
setting for this option (shown in
uppercase) can be used in place of
the command-line options.

LATIN1

-noexec

Show SQL statements only; no
execution is performed

NONE

-help

List help information

NONE

-version

List version number

NONE

Related concept

[“Master Data Engine environment variables” on page 87|

madentcreate utility

The madentcreate utility creates database tables and indexes to support a new
entity type (enttype).

Table 25. madenicreate options

Option Type Description Default

-entType entType Specifies the name of the entity on NONE
which to perform the operation

-rptPfx List the entity name prefixes NONE

-nolnit Do not initialize after creation NONE

Chapter 12. Using the Master Data Engine utilities

113

Table 25. madentcreate options (continued)

Option

Type

Description

Default

-noExec

Show SQL statements only; no
execution is performed

NONE

-verbose

Show progress information

NONE

-help

List help information

NONE

-version

List version number

NONE

-rootDir

MAD_ROOTDIR; location of IBM Initiate
Master Data Service software. The
environment variable setting for this
option (shown in uppercase) can be
used in place of the command-line
options.

-homeDir

MAD_HOMEDIR; location of Master Data
Engine instance. The environment
variable setting for this option (shown
in uppercase) can be used in place of
the command-line options.

-connStr

MAD_CONNSTR; ODBC connection string.
The environment variable setting for
this option (shown in uppercase) can
be used in place of the command-line
options.

-dbType

MAD_DBTYPE; native database name. The
environment variable setting for this
option (shown in uppercase) can be
used in place of the command-line
options.

-dbServer

MAD_DBSERVER; native database server

Optional if not
using native

-dbName

MAD_DBNAME; native database name. The
environment variable setting for this
option (shown in uppercase) can be
used in place of the command-line
options.

Optional if not
using native

-dbUser

MAD_DBUSER; native database user ID.
The environment variable setting for
this option (shown in uppercase) can
be used in place of the command-line
options.

Optional if not
using native

-dbPass

MAD_DBPASS; native database password.
The environment variable setting for
this option (shown in uppercase) can
be used in place of the command-line
options.

Optional if not
using native

-encoding

MAD_ENCODING; encoding of .unT files;
options are: UTF8, UTF16, or LATIN1.
The environment variable setting for
this option (shown in uppercase) can
be used in place of the command-line
options.

LATIN1

Related concept

114 Master Data Engine Installation Guide

[“Master Data Engine environment variables” on page 87|

madentdrop utility

The madentdrop utility drops database tables and indexes of an entity type

(enttype).

Table 26. madentdrop options

Option

Type

Description

Default

-entType

entType

Specifies the name of the entity on
which to perform the operation

NONE

-rptPfx

List the entity name prefixes

NONE

-noExec

Show SQL statements only; no
execution is performed

NONE

-verbose

Show progress information

NONE

-help

List help information

NONE

-version

List version number

NONE

-rootDir

MAD_ROOTDIR; location of IBM Initiate
Master Data Service software. The
environment variable setting for this
option (shown in uppercase) can be
used in place of the command-line
options.

-homeDir

MAD_HOMEDIR; location of Master Data
Engine instance. The environment
variable setting for this option (shown
in uppercase) can be used in place of
the command-line options.

-connStr

MAD_CONNSTR; ODBC connection string.
The environment variable setting for
this option (shown in uppercase) can
be used in place of the command-line
options.

-dbType

MAD DBTYPE; native database name. The
environment variable setting for this
option (shown in uppercase) can be
used in place of the command-line
options.

-dbServer

MAD_DBSERVER; native database server.
The environment variable setting for

this option (shown in uppercase) can
be used in place of the command-line
options.

Optional if not
using native

-dbName

MAD_DBNAME; native database name. The
environment variable setting for this
option (shown in uppercase) can be
used in place of the command-line
options.

Optional if not
using native

-dbUser

MAD_DBUSER; native database user
ID.The environment variable setting
for this option (shown in uppercase)
can be used in place of the
command-line options.

Optional if not
using native

Chapter 12. Using the Master Data Engine utilities 115

Table 26. madentdrop options (continued)

Option Type Description Default
-dbPass MAD_DBPASS; native database password. | Optional if not
The environment variable setting for using native
this option (shown in uppercase) can
be used in place of the command-line
options.
-encoding MAD_ENCODING; encoding of .unT files; LATIN1
options are: UTF8, UTF16, or LATIN1.
The environment variable setting for
this option (shown in uppercase) can
be used in place of the command-line
options.
Related concept
[“Master Data Engine environment variables” on page 87|
madentload utility
The madentload utility loads the entity tables from .un1 files.
Table 27. madentload options
Option Type Description Default
-entType entName Specifies the name of the entity on | NONE
which to perform the operation
-rptPfx List the entity name prefixes NONE
-tablist tabName Table name (or names) to load. Use | NONE
ALL for all tables, or specify
individual tables by name (for
example, mpi_memstat).
-unlDir dirName Location of the .unl files NONE
-onepass Implies —truncate, -1oaddata, and NONE
—index options
-truncate Truncates (deletes all data) from the |NONE
table (or tables) before loading
-loaddata Loads the data from the .un1 file NONE
-index Indexes the table (or tables) NONE
-useint Use internal database loader instead | NONE
of DBMS-specific utility.
For improved performance, use the
internal loader.
-remote The DBMS is remote from this server | NONE
-maxErrs N Maximum errors before ending NONE
-commitSize N Number of records to process before | NONE
issuing a database commit operation
-otherArgs args Additional arguments for native NONE
DBMS utilities
-noExec Show SQL statements only; no NONE
execution is performed

116 Master Data Engine Installation Guide

Table 27. madentload options (continued)

Option

Type

Description

Default

-verbose

Show progress information

NONE

-help

List help information

NONE

-version

List version number

NONE

-rootDir

MAD_ROOTDIR; location of IBM Initiate
Master Data Service software. The
environment variable setting for this
option (shown in uppercase) can be
used in place of the command-line
options.

-homeDir

MAD_HOMEDIR; location of Master Data
Engine instance. The environment
variable setting for this option
(shown in uppercase) can be used in
place of the command-line options.

-connStr

MAD_CONNSTR; ODBC connection
string. The environment variable
setting for this option (shown in
uppercase) can be used in place of
the command-line options.

-dbType

MAD_DBTYPE; native database name.
The environment variable setting for
this option (shown in uppercase) can
be used in place of the
command-line options.

-dbServer

MAD_DBSERVER; native database server.
The environment variable setting for
this option (shown in uppercase) can
be used in place of the
command-line options.

Optional if not
using native

-dbName

MAD_DBNAME; native database name.
The environment variable setting for
this option (shown in uppercase) can
be used in place of the
command-line options.

Optional if not
using native

-dbUser

MAD_DBUSER; native database user ID.
The environment variable setting for
this option (shown in uppercase) can
be used in place of the
command-line options.

Optional if not
using native

-dbPass

MAD_DBPASS; native database
password. The environment variable
setting for this option (shown in
uppercase) can be used in place of
the command-line options.

Optional if not
using native

-encoding

MAD_ENCODING; encoding of .unT files;
options are: UTF8, UTF16, or
LATIN1. The environment variable
setting for this option (shown in
uppercase) can be used in place of
the command-line options.

LATIN1

Related concept

Chapter 12. Using the Master Data Engine utilities 117

[“Master Data Engine environment variables” on page 87|

madentreset utility

The madentreset utility truncates an entity.

Table 28. madentreset options

Option

Type

Description

Default

-entType

entType

Specifies the name of the entity on
which to perform the operation

NONE

-rptPfx

List the entity name prefixes

NONE

-noExec

Show SQL statements only; no
execution is performed

NONE

-verbose

Show progress information

NONE

-help

List help information

NONE

-version

List version number

NONE

-rootDir

MAD_ROOTDIR; location of IBM Initiate
Master Data Service software. The
environment variable setting for this
option (shown in uppercase) can be
used in place of the command-line
options.

-homeDir

MAD_HOMEDIR; location of Master Data
Engine instance. The environment
variable setting for this option (shown
in uppercase) can be used in place of
the command-line options.

-connStr

MAD_CONNSTR; ODBC connection string.
The environment variable setting for
this option (shown in uppercase) can
be used in place of the command-line
options.

-dbType

MAD DBTYPE; native database name. The
environment variable setting for this
option (shown in uppercase) can be
used in place of the command-line
options.

-dbServer

MAD_DBSERVER; native database server.
The environment variable setting for

this option (shown in uppercase) can
be used in place of the command-line
options.

Optional if not
using native

-dbName

MAD_DBNAME; native database name. The
environment variable setting for this
option (shown in uppercase) can be
used in place of the command-line
options.

Optional if not
using native

-dbUser

MAD_DBUSER; native database user ID.
The environment variable setting for
this option (shown in uppercase) can
be used in place of the command-line
options.

Optional if not
using native

118 Master Data Engine Installation Guide

Table 28. madentreset options (continued)

Option Type Description

Default

The environment variable setting for

this option (shown in uppercase) can
be used in place of the command-line
options.

-dbPass MAD_DBPASS; native database password.

Optional if not
using native

-encoding MAD_ENCODING; encoding of .unT files;
options are: UTF8, UTF16, or LATIN1.
The environment variable setting for
this option (shown in uppercase) can
be used in place of the command-line
options.

LATIN1

Related concept

[“Master Data Engine environment variables” on page 87|

madentunload utility

The madentunload utility unloads one or more entity tables into .un1 files.

Table 29. madentunload options

tables, or specify individual tables
by name (for example,
mpi_memstat).

Option Type Description Default

-entType entType Defines the suffix for entity table | NONE
names

-rptPfx Defines report prefix for entity
table names

-tablList Defines the list of entity tables on | ALL |
which to operate. Use ALL for all tabName(s)

-uniDir Location of .unl files

-commitSize Defines the number of records
processed between commits

-noExec Show SQL statements only, no
execution is performed
-verbose Displays progress information
-help Displays usage information
-version Displays version information
-rootDir MAD_ROOTDIR; location of IBM

Initiate Master Data Service
software. The environment variable
setting for this option (shown in
uppercase) can be used in place of
the command-line options.

Chapter 12. Using the Master Data Engine utilities 119

Table 29. madentunload options (continued)

Option

Type

Description

Default

-homeDir

MAD_HOMEDIR; location of Master
Data Engine instance. The
environment variable setting for
this option (shown in uppercase)
can be used in place of the
command-line options.

-connStr

MAD_CONNSTR; ODBC connection
string. The environment variable
setting for this option (shown in
uppercase) can be used in place of
the command-line options.

-dbType

MAD_DBTYPE; native database name.
The environment variable setting
for this option (shown in
uppercase) can be used in place of
the command-line options.

-dbServer

MAD_DBSERVER; native database
server. The environment variable
setting for this option (shown in
uppercase) can be used in place of
the command-line options.

Optional if not
using native

-dbName

MAD_DBNAME; native database name.
The environment variable setting
for this option (shown in
uppercase) can be used in place of
the command-line options.

Optional if not
using native

-dbUser

MAD_DBUSER; native database user
ID. The environment variable
setting for this option (shown in
uppercase) can be used in place of
the command-line options.

Optional if not
using native

-dbPass

MAD_DBPASS; native database
password. The environment
variable setting for this option
(shown in uppercase) can be used
in place of the command-line
options.

Optional if not
using native

-encoding

MAD_ENCODING; encoding of .unl
files; options are: UTF8, UTF16, or
LATIN1. The environment variable
setting for this option (shown in
uppercase) can be used in place of
the command-line options.

LATIN1

Related concept

[“Master Data Engine environment variables” on page 87|

120 Master Data Engine Installation Guide

madhubcreate utility

The madhubcreate utility creates database tables and indexes, and initializes base
tables to support a new IBM Initiate Master Data Service software installation.

Table 30. madhubcreate options

Option

Type

Description

Default

-nolnit

Do not initialize after creation

NONE

-noExec

Show SQL statements only; no
execution is performed

NONE

-verbose

Show progress information

NONE

-help

List help information

NONE

-version

List version number

NONE

-rootDir

MAD_ROOTDIR; location of IBM Initiate
Master Data Service software. The
environment variable setting for this
option (shown in uppercase) can be
used in place of the command-line
options.

-homeDir

MAD_HOMEDIR; location of Master Data
Engine instance. The environment
variable setting for this option
(shown in uppercase) can be used in
place of the command-line options.

-connStr

MAD_CONNSTR; ODBC connection
string. The environment variable
setting for this option (shown in
uppercase) can be used in place of
the command-line options.

-dbType

MAD DBTYPE; native database name.
The environment variable setting for
this option (shown in uppercase) can
be used in place of the
command-line options.

-dbServer

MAD_DBSERVER; native database server.
The environment variable setting for
this option (shown in uppercase) can
be used in place of the
command-line options.

Optional if not
using native

-dbName

MAD_DBNAME; native database name.
The environment variable setting for
this option (shown in uppercase) can
be used in place of the
command-line options.

Optional if not
using native

-dbUser

MAD_DBUSER; native database user ID.
The environment variable setting for
this option (shown in uppercase) can
be used in place of the
command-line options.

Optional if not
using native

-dbPass

MAD_DBPASS; native database
password. The environment variable
setting for this option (shown in
uppercase) can be used in place of
the command-line options.

Optional if not
using native

Chapter 12. Using the Master Data Engine utilities 121

Table 30. madhubcreate options (continued)

Option

Type

Description

Default

-encoding

MAD_ENCODING; encoding of .un1 files;
options are: UTF8, UTF16, or
LATINI. The environment variable
setting for this option (shown in
uppercase) can be used in place of
the command-line options.

LATIN1

Related concept

[“Master Data Engine environment variables” on page 87|

madhubdrop utility

The madhubdrop utility drops the database tables and indexes of an IBM Initiate
Master Data Service software installation.

Table 31. madhubdrop options

Option

Type

Description

Default

-confirm

Required to confirm execution of
drop command

NONE

-noExec

Show SQL statements only; no
execution is performed

NONE

-verbose

Show progress information

NONE

-help

List help information

NONE

-version

List version number

NONE

-rootDir

MAD_ROOTDIR; location of IBM Initiate
Master Data Service software. The
environment variable setting for this
option (shown in uppercase) can be
used in place of the command-line
options.

-homeDir

MAD_HOMEDIR; location of Master Data
Engine instance. The environment
variable setting for this option
(shown in uppercase) can be used in
place of the command-line options.

-connStr

MAD_CONNSTR; ODBC connection
string. The environment variable
setting for this option (shown in
uppercase) can be used in place of
the command-line options.

-dbType

MAD_DBTYPE; native database name.
The environment variable setting for
this option (shown in uppercase) can
be used in place of the
command-line options.

-dbServer

MAD_DBSERVER; native database server.
The environment variable setting for
this option (shown in uppercase) can
be used in place of the
command-line options.

Optional if not
using native

122 Master Data Engine Installation Guide

Table 31. madhubdrop options (continued)

Option

Type

Description

Default

-dbName

MAD DBNAME; native database name.
The environment variable setting for
this option (shown in uppercase) can
be used in place of the
command-line options.

Optional if not
using native

-dbUser

MAD_DBUSER; native database user ID.
The environment variable setting for
this option (shown in uppercase) can
be used in place of the
command-line options.

Optional if not
using native

-dbPass

MAD_DBPASS; native database
password. The environment variable
setting for this option (shown in
uppercase) can be used in place of
the command-line options.

Optional if not
using native

-encoding

MAD_ENCODING; encoding of .un] files;
options are: UTF8, UTF16, or
LATINI. The environment variable
setting for this option (shown in
uppercase) can be used in place of
the command-line options.

LATIN1

Related concept

[‘Master Data Engine environment variables” on page 87|

madhubload utility

The madhubload utility loads one or more IBM Initiate Master Data Service tables
from .un1 files.

Table 32. madhubload options

Option Type Description Default

-objCode objCode Object code (DIC, MEM, AUD, REL, TAG, HST, ANL) |NONE
for the data to be loaded

-tabList tabList List of tables to be loaded. Use ALL for all NONE
tables, or specify individual tables by name
(for example, mpi_memstat).

-unlDir dirName Location of the .un1 files NONE

-onepass Implies —truncate, -Toaddata, and —index NONE
options

-truncate Truncates (deletes all data) from the table NONE
(tables) before loading

-loaddata Loads the data from the .unl file NONE

-index Indexes the table (tables) NONE

Chapter 12. Using the Master Data Engine utilities

123

Table 32. madhubload options (continued)

Option

Type

Description

Default

-useint

Use internal database loader (ODBC) instead
of DBMS-specific bulk load utility. This
option can be used when the bulk load
utilities are not installed on the system where
the Master Data Engine is installed.

For improved performance, use the internal
loader.

NONE

-remote

The DBMS is remote from this server

NONE

-maxErrs

Maximum errors before stopping

NONE

-commitSize

Number of records to process before issuing
a database commit operation

NONE

-otherArgs

args

Additional arguments for native DBMS
utilities

NONE

-noExec

Show SQL statements only; no execution is
performed

NONE

-verbose

Show progress information

NONE

-help

List help information

NONE

-version

List version number

NONE

-rootDir

MAD_ROOTDIR; location of IBM Initiate Master
Data Service software. The environment
variable setting for this option (shown in
uppercase) can be used in place of the
command-line options.

-homeDir

MAD_HOMEDIR; location of Master Data Engine
instance. The environment variable setting for
this option (shown in uppercase) can be used
in place of the command-line options.

-connStr

MAD_CONNSTR; ODBC connection string. The
environment variable setting for this option
(shown in uppercase) can be used in place of
the command-line options.

-dbType

MAD_DBTYPE; native database name. The
environment variable setting for this option
(shown in uppercase) can be used in place of
the command-line options.

-dbServer

MAD_DBSERVER; native database server. The
environment variable setting for this option
(shown in uppercase) can be used in place of
the command-line options.

Optional if
not using
native

-dbName

MAD_DBNAME; native database name. The
environment variable setting for this option
(shown in uppercase) can be used in place of
the command-line options.

Optional if
not using
native

-dbUser

MAD_DBUSER; native database user ID. The
environment variable setting for this option
(shown in uppercase) can be used in place of
the command-line options.

Optional if
not using
native

124 Master Data Engine Installation Guide

Table 32. madhubload options (continued)

Option

Type

Description

Default

-dbPass

MAD_DBPASS; native database password. The
environment variable setting for this option
(shown in uppercase) can be used in place of
the command-line options.

Optional if
not using
native

-encoding

MAD_ENCODING; encoding of .un1 files; options
are: UTFS, UTF16, or LATINI. The
environment variable setting for this option
(shown in uppercase) can be used in place of
the command-line options.

LATIN1

Related concept

[“Master Data Engine environment variables” on page 87|

madhubreset utility

The madhubreset utility truncates a Master Data Engine instance.

Table 33. madhubreset options

Option

Type

Description

Default

-noExec

Show SQL statements only; no
execution is performed

NONE

-verbose

Show progress information

NONE

-help

List help information

NONE

-version

List version number

NONE

-rootDir

MAD_ROOTDIR; location of IBM Initiate
Master Data Service software. The
environment variable setting for this
option (shown in uppercase) can be
used in place of the command-line
options.

-homeDir

MAD_HOMEDIR; location of Master Data
Engine instance. The environment
variable setting for this option (shown
in uppercase) can be used in place of
the command-line options.

-connStr

MAD_CONNSTR; ODBC connection string.
The environment variable setting for
this option (shown in uppercase) can
be used in place of the command-line
options.

-dbType

MAD_DBTYPE; native database name. The
environment variable setting for this
option (shown in uppercase) can be
used in place of the command-line
options.

-dbServer

MAD_DBSERVER; native database server.
The environment variable setting for

this option (shown in uppercase) can
be used in place of the command-line
options.

Optional if not
using native

Chapter 12. Using the Master Data Engine utilities 125

Table 33. madhubreset options (continued)

Option

Type

Description

Default

-dbName

MAD_DBNAME; native database name. The
environment variable setting for this
option (shown in uppercase) can be
used in place of the command-line
options.

Optional if not
using native

-dbUser

MAD_DBUSER; native database user ID.
The environment variable setting for
this option (shown in uppercase) can
be used in place of the command-line
options.

Optional if not
using native

-dbPass

MAD_DBPASS; native database password.
The environment variable setting for
this option (shown in uppercase) can
be used in place of the command-line
options.

Optional if not
using native

-encoding

MAD_ENCODING; encoding of .un1 files;
options are: UTF8, UTF16, or LATIN1.
The environment variable setting for
this option (shown in uppercase) can
be used in place of the command-line
options.

LATIN1

Related concept

[‘Master Data Engine environment variables” on page 87|

madhubunload utility

The madhubunload utility unloads one or more core (non-entity) tables into .unl

files.

Table 34. madhubunload options

Option

Type

Description

Default

-objCode

Object code (DIC, MEM, AUD, REL, TAG,
HST, ANL) for the data to be loaded

-tablList

List of tables to be loaded. Use ALL
for all tables, or specify individual
tables by name (for example,
mpi_memstat).

-unlDir

Identifies the location of .un1 files

-commitSize

Defines the number of records
processed between commits

-orderBy

You can sort .unl files by the
column or columns specified in the
orderBy parameter. If a column is
specified that does not belong to a
table that you are trying to unload,
then the madhubunload utility
fails.

-noExec

Show SQL statements only, no
execution is performed

126 Master Data Engine Installation Guide

Table 34. madhubunload options (continued)

Option

Type

Description

Default

-verbose

Shows progress information

-help

Shows usage information

-version

Shows version information

-rootDir

MAD_ROOTDIR; location of IBM
Initiate Master Data Service
software. The environment variable
setting for this option (shown in
uppercase) can be used in place of
the command-line options.

-homeDir

MAD_HOMEDIR; location of Master
Data Engine instance. The
environment variable setting for
this option (shown in uppercase)
can be used in place of the
command-line options.

-connStr

MAD_CONNSTR; ODBC connection
string. The environment variable
setting for this option (shown in
uppercase) can be used in place of
the command-line options.

-dbType

MAD_DBTYPE; native database name.
The environment variable setting
for this option (shown in
uppercase) can be used in place of
the command-line options.

-dbServer

MAD_DBSERVER; native database
server. The environment variable
setting for this option (shown in
uppercase) can be used in place of
the command-line options.

Optional if not

using native

-dbName

MAD_DBNAME; native database name.
The environment variable setting
for this option (shown in
uppercase) can be used in place of
the command-line options.

Optional if not

using native

-dbUser

MAD_DBUSER; native database user
ID. The environment variable
setting for this option (shown in
uppercase) can be used in place of
the command-line options.

Optional if not

using native

-dbPass

MAD_DBPASS; native database
password. The environment
variable setting for this option
(shown in uppercase) can be used
in place of the command-line
options.

Optional if not

using native

-encoding

MAD_ENCODING; encoding of .unl
files; options are: UTFE8, UTF16, or
LATIN1. The environment variable
setting for this option (shown in
uppercase) can be used in place of
the command-line options.

LATIN1

Chapter 12. Using the Master Data Engine utilities

127

Related concept

[“Master Data Engine environment variables” on page 87|

madload utility

The madload utility loads a database table from a .unT file.

This utility uses ODBC access to load the file one record at a time. (See the
madhubload utility —useInt option.)

Table 35. madload options

Option Type Description Default

-con CONNSTR; ODBC connection string NONE

-tabName tabName Name of table to be loaded NONE

-inpFile filename Name of .unl file to be loaded NONE

-encoding Encoding of .un1 files; options are: | LATIN1
UTFS, UTF16, or LATIN1

madpass utility

The madpass utility generates the encrypted form of a plain text password.

This utility takes the plain text password as the only input parameter.

madpwd2 utility

The madpwd?2 utility takes a plain text password and encrypts it, enabling
administrators to type encrypted text in configuration and profile files.

Table 36. madpwd?2 options

Option Type Description Default
-e string The plain-text version of the NONE
password.

madpwd3 utility
The madpwd3 utility takes a plain text password and encrypts it by using the
Advanced Encryption Standard (AES) 128, 192, or 256-bit encryption method.

Restriction: Before running this utility, you must have an AES key and
initialization vector (iv) generated. You can enter the key and iv from a file or
directly at the command line.

Table 37. madpwd3 options

Option Type Description Default

-key AES key If you are entering the key at the
command line, this option is the
name of .dat file created during key
generation. Usage example:

madpwd3 -key
99CA56BDF62638567F456941650237AB

128 Master Data Engine Installation Guide

Table 37. madpwd3 options (continued)

Option

Type

Description

Default

-keyfile

filename

If you are entering the key from a
file, this option is the full path and
key filename. Usage example:
madpwd3 -keyfile c:\Program
Files\IBM\Initiate\
Enginel0.0.0.x\myaeskey.dat

IV key

If you are directly entering the iv at
the command line, this option is the
name of .dat file created during iv
generation. Usage example: madpwd
-iv
7E892875A52C59A3B588306B13C31FBD

-ivfile

filename

If you are entering the iv from a file,
this option is the full path and iv
filename. Usage example: madpwd3
-ivfile c:\Program
Files\IBM\Initiate\
Enginel0.0.0.x\myiv.dat

text

The plain text version of the
password.

Related concept

[Appendix I, “AES encryption,” on page 243|

madsql utility

The madsql utility runs an SQL statement or file of SQL statements through the
Master Data Engine interface.

Before loading .un1 files, be aware of any data encoding before setting options.

Table 38. madsql options

data

Option Type Description Default
-conn MAD_CONNSTR; ODBC
connection string
-dsn ODBC dsn name
-uid ODBC user ID
-pwd ODBC user password
-quiet Prevents display of results from NONE
command
-unload Generates the output in .unl format | NONE
and enables the display of Unicode
characters
-in INPUTENCODING Specifies the encoding type (UTFS, |LATIN1
UTF16, or LATINI) of the input
data
-out Specifies the encoding type (UTFS, |LATIN1
OUTPUTENCODING UTF16, or LATIN1) of the output

Chapter 12. Using the Master Data Engine utilities

129

Table 38. madsql options (continued)

Option Type Description Default

-sqlfile sqlFile Name of a file containing a list of | NONE
SQL commands to execute

-sqlstmt sqlString A single SQL command to execute | NONE

madunload utility
The madunload utility unloads database tables into .un1 files.

Table 39. madunload options

Option Type Description Default
-con CONNSTR; ODBC connection string
-tabName tabName List of table names to unload
-encoding Encoding of .un1 files; options are LATIN1
UTF8, UTF16, or LATIN1
-outFile fileName | Defines the output file name.
If outfile is not specified, the
unloaded table contents are
displayed.

mpidelete utility
The mpidelete utility enables command-line access to the MEMDELETE (member
delete) interaction.
Restriction: When running the mpidelete utility, you must use an MPINET
connection.

Table 40. mpidelete options

Option Type Description Default
-conn ODBC connection string
-usrLogin User ID
-usrPass User password
-rec recString The member record to delete, NONE
where sourceCode:recordID
identifies the source and record.

mpidrop utility
The mpidrop utility enables command-line access to the MEMDROP (member
drop) interaction.
Restriction: When running the mpidrop utility, you must use an MPINET
connection.

Table 41. mpidrop options

Option Type Description Default

-conn MPINET connection string

130 Master Data Engine Installation Guide

Table 41. mpidrop options (continued)

Option Type Description Default
-usrLogin User ID
-usrPass User password
-rec recString The member record to drop, NONE
where sourceCode:recordID
identifies the source and record.

mpiengget utility

The mpiengget utility outputs the logging levels that you have set in real time.

Restriction: When running the mpiengget utility, you must use an MPINET

connection.

Table 42. mpiengget options

Option Type Description Default
-unT or -htmI Outputs the logging levels to a
computer screen or HTML
-usrlLogin User ID
-usrPass User password
-bgcolor Use only if you elect to output the |Pink
levels to HTML

mpimcomp utility

The mpimcomp utility enables command-line access to the MEMCOMPARE

(member compare) interaction.

This utility can be run from the command line or from IBM Initiate Workbench,
Initiate menu > New Job Set. See the IBM Initiate Workbench User’s Guide. This
command takes “entType memRecnol memRecno2” as input text at the command line.
It outputs the comparison information as text.

Restriction: When running the mpimcomp utility, you must use an MPINET
connection. This command operates only in ODBC mode.

Table 43. mpimcomp options

Option Type Description Default
-entType memRecnol Specifies the name of the entity on
which to perform the operation
memRecno?
-encoding
-usrLogin User ID
-usrPass User password

mpimerge utility

The mpimerge utility enables command-line access to the MEMMERGE (member

merge) interaction.

Chapter 12. Using the Master Data Engine utilities 131

Restriction: When running the mpimerge utility, you must use an MPINET
connection.

Table 44. mpimerge options

Option Type Description Default

-recl recString Record 1 (Survivor) where NONE
sourceCode:recordID identifies the
source and record.

-rec2 recString Record 2 (Obsolete) where NONE
sourceCode:recordID identifies the
source and record.

-conn MPINET connection string
-usrlLogin User ID
-usrPass User password

mpimshow utility

The mpimshow utility is a diagnostic utility used to dump the in-memory contents
of a member identified by a memRecno. The entire contents of the member are
dumped to stdout, including associated derived data.

This command takes “memRecno” as input text at the command line. The command
outputs the detailed information for a member as text.

Restriction: This command operates only in ODBC mode.

Table 45. mpimshow options

Option Type Description Default
-html or -xml Outputs information to an HTML

or XML file
-memRecno Identifies one or more member

record numbers

mpinetget utility

The mpinetget utility captures engine performance statistics without needing to
shut down the engine.

In mpinetget output, the time shown is in milliseconds (ms), and these values
indicate interaction totals:

* Totexecs, total number of interactions received by this hub.

* Totgood, number of the total interactions (Totexecs) that did not return an error
code to the sender.

Before running mpinetget from the command line, make sure that your
environment has MAD_CTXLIB set to MPINET (not ODBC) and points to the
applicable engine with MAD_CONNSTR. Running mpinetget in ODBC mode
yields inapplicable results based on an internal instance of the engine. In this case,
the command creates the temporary instance, and all counts are 0. In a multi-hub
environment, run mpinetget against each hub, and then calculate the totals.

132 Master Data Engine Installation Guide

Table 46. mpinetget options

Option Type Description Default
-unl Outputs the information to the
screen
-html Dump the output to HTML format
-report Dumps the output to text format
-usrlLogin User ID
-usrPass User password
-bgcolor Use with HTML only Pink

mpitxm utility

The mpitxm utility can be used to update members without having to shut down
the Master Data Engine.

During normal operation, the IBM Initiate Master Data Service software performs
various operations each time a member is updated. These operations include the
update of derived data used in cross matching, and the cross match of the updated
member against other candidate members. The Master Data Engine uses bulk
utilities that can perform these updates for the entire member population at load
time or during system conversions. The bulk utilities work quickly, but they
require that the engine be quiescent. There are times when you might want the
engine to perform the update of the derived data, or to re-cross match many
members. This utility provides a way to update the members without having to
shut down the engine.

This utility works by generating a pseudo-update on each member specified in the
input to the program. No data is changed or inserted, but the engine is "tricked"
into performing the described maintenance activities. Since this utility looks like
any other IBM Initiate Master Data Service client application, you can run more
than one instance of the utility at the same time, to increase throughput. See the
mpitxm options tables on how running multiple instances might affect the load on
the running system.

The mpitxm utility differs from other engine utilities in that it is launched by using
the madconfig utility. Navigate to the Master Data Engine MAD_ROOTDIR\scripts
directory. Use this command to start the process:

madconfig run_mpitxm
Restriction: The engine instance must be up and running before starting the

mpitxm utility. If the engine is taken down during the run, mpitxm reports an
error and stops processing.

Chapter 12. Using the Master Data Engine utilities 133

Attention: This utility can generate a large amount of traffic on a production
server. Be careful not to impact production users. Information about settings, such
as bulk processing and wait time between updates, is provided in the mpitxm

options table.

Because mpitxm operates quickly, it can monopolize a server (context pool) thread.
If you have a low number of threads, your user interactions might queue up and

have to wait to get in between the mpitxm bulk puts. Be sure to check this setting
before running this utility in production. Use a low priority entity manager queue
setting for mpitxm so that your real-time traffic is processed first.

Table 47. mpitxm options

madconfig

prompt Description Default

Engine host name |The name of the host where the engine is installed. Local host
This name can be a symbolic name or IP address. name

Engine host port
number

The TCP/IP port number on which the engine is
listening for client connections.

Local host port
number

Engine user name

Then engine user name.

Password scheme

The password scheme used.

User password

The user password.

Log path

Specify the file name where the log output is stored.
This defaults to the name mpitxm.log in the
MAD_ROOTDIR\scripts directory.

MAD_ROOTDIR\
scripts\
mpitxm.Tlog

Memrecno range

nn

A"y" or 'n" response indicates whether the utility
processes memrecnos within a specified range.

Minimum If you entered "y" to using a memrecno range, you

memrecno are prompted to specify the minimum memrecno for
the utility to process.

Maximum If you entered "y" to using a memrecno range, you

memrecno are prompted to specify the maximum memrecno for

the utility to process. If a member is not found in the
memrecno range, the utility produces a
non-unrecoverable error in the log and continues
processing.

Memrecno file

If you respond "n" to using a memrecno range, the
utility asks if you want to use a memrecno file.
Specify the file name of a text file containing one
memrecno per line. The utility generates errors for
any memrecno not found and continues on with the
next member in the list. See the file formats section
later in this topic for more information.

Memrecno file
path

Enter the location of the memrecno file.

134 Master Data Engine Installation Guide

Table 47. mpitxm options (continued)

madconfig
prompt Description Default
srccode | If you respond "n" to using a memrecno file, the

memidnum file

utility asks if you want to use a srccode | memidnum
file. Specify the name of a text file containing a list of
source code and memidnum combinations that
identify the members to be updated. This option is
the fastest because the utility does not read in the
member first. Rather the utility generates an update
based on the identifying information provided. The
format of the file is shown in the file format section
later in this topic, along with sample SQL for
dumping this output.

srccode |
memidnum file
path

Enter the location of the srccode | memidnum file.

Derive the data
only

non non

A'y"or"n
derived.

response indicates whether data will be

If you do not use the derive data option, each
updated member is re-cross matched. If you use
asynchronous entity management (most systems use
asynchronous), then the engine creates a queue record
that triggers the entity manager (or multiple entity
managers, ir applicable) to start the re-cross match
process. The mpitxm process can produce these queue
records much faster than the entity managers can
consume them. The mpi_entique table (or tables if
you have multiple entities), grow very quickly. Make
sure that you have enough database space to contain
the queue records.

On systems that use optimized put mode, the mpitxm
utility is able to support only the re-derivation of the
member data. Since mpitxm does not change any
attribute data, the optimized put setting prevents it
from creating entity manager queue records.

Chapter 12. Using the Master Data Engine utilities

135

Table 47. mpitxm options (continued)

updated in a single interaction.

The mpitxm utility creates an audHead record for
each Member Put interaction. It might also generate
an audXmem row. On systems with a large number
of members, consider how much space might be
consumed by the audit data and whether you have
enough room in the database before running the
utility. By specifying a bulk size, you can lower the
amount of growth in the audit tables. If you have a
one-million-member table and set your bulk size to
10, you create only 100,000 audHead records. The
tendency is to set the bulk size to a high number, but
remember that each bulk put is a single database
transaction. The members in each batch remain
locked while the put is processed. If you set the bulk
size too high, you can cause resource contention and
timeouts for production users. Set the bulk size to a
number of 30 or less. On slower systems, or systems
with a high amount of user traffic, set it to 10. The
final downside to a large batch setting is that the bulk
interaction is an all-or-nothing transaction. If one
member in the batch fails, the entire batch is rolled
back and none are updated. See the logging section in
this topic for information.

madconfig
prompt Description Default
Bulk size Specify the size of the batch of members to be 1

Progress report

This entry is used to specify how often the utility
reports its progress. A setting of 100 reports after 100
members are read. This information can be used to
restart the utility should it be interrupted for any
reason. It is a good idea to make this setting a
multiple of your bulk size, as you might report on a
member that has been read from the input but not yet
updated.

If you set the reporting frequency, try to not set too
low of a number for the progress report. The utility
generates two lines of text in the log every time the
reporting frequency count is reached. If you have a
two-million-member database and you set the
reporting frequency to 20, you have two million text
rows in the log just for status. Try to set the number
to a multiple of -bulk. If the bulk size is 10, set the
reporting frequency to 10000. By using a multiple of
-bulk, you can eliminate the possibility of reading a
row and reporting it to the log before the put batch is
full and written to the engine.

1000 members

136 Master Data Engine Installation Guide

Table 47. mpitxm options (continued)

madconfig

prompt Description Default
Wait between Specify the number of seconds to wait between each |0
updates update. If a time is not specified, the updates occur

without pause. This option can be used to spread the
load on the entity manager to allow real incoming
updates to be processed in between the
pseudo-updates.

This option can be used to slow down the queue
generation. The mpitxm utility pauses for (x) seconds
between each batch of records. If you have this set to
5 and bulk size set to 20, then the utility waits for 5
seconds after each batch of 20 members has been

processed.
Entity manager Specify the entity manager work queue priority. The
work queue lower the number, the higher the priority of the item
priority in the queue. Values are 1 - 32767. The default value

is the lowest priority. If you have a low number of
context pool threads, you can use a low priority
setting to process your real-time traffic processed first.

File formats:

The file specified by the memrecno file option should look like:

398392
309843
398293

II|II

Each field in the file needs to have a trailing pipe delimiter. The utility
complains about improperly formatted lines, or missing members, but continues
processing. This is an example of the SQL used to generate the output into file
form:

select s.srccode, h.memidnum from mpi_memhead h, mpi_srchead s
where s.srcrecno = h.srcrecno and h.memstat = 'A';

If you save this SQL into a file called buildList.sql, you can use madsql to
generate a pipe delimited file for you.

madsql -unload -sqlfile buildList.sql > idNum.txt

You can add on to the "where" clause to pick a subset of the members needed for
processing. Run this utility only against active members (memStat = “‘A’). You
might want to split large result sets into multiple input files for parallel processing.

Logging:

The application logs its activity and errors to a text file. The mpitxm utility uses
the internal Java logging facilities which generate at least two lines of text for each
item reported. If you use an existing log file for multiple runs of the utility, it
appends new information to the end of the file. This is an example of what the
output can look like:

Chapter 12. Using the Master Data Engine utilities 137

Jun 7, 2010 3:15:11 PM com.initiatesystems.mpitxm.MpiTxm TogSetup
Jun 7, 2010 3:15:12 PM com.initiatesystems.mpitxm.MpiTxm procRange
INFO: 50 completed. Last memRecno processed: 1044

Jun 7, 2010 3:15:13 PM com.initiatesystems.mpitxm.MpiTxm procRange
INFO: 100 completed. Last memRecno processed: 1094

Jun 7, 2010 3:15:14 PM com.initiatesystems.mpitxm.MpiTxm cleanup
INFO: Program finished.

After each 50 rows, an INFO line is printed to show the last member record read
(or calculated in the example of a minimum and maximum range). You might also
see WARNING lines that list errors or problems that were not fatal. Non-fatal
errors can include missing memrecno values, or improper or blank lines in an
input file. If a batch failed because one of the records could not be processed, then
the log shows the starting and ending members of the batch to let you know that
none of them were updated.

If you see SEVERE messages in the file that means that an error occurred where
processing stops.

mpiunmrg utility

The mpiunmrg utility enables command-line access to the MEMUNMERGE
(member unmerge) interaction.

Restriction: When running the mpiunmrg utility, you must use an MPINET
connection.

Table 48. mpiunmrg options

Option Type Description Default

-rec recString Obsolete record where NONE
sourceCode:recordID identifies
the source and record

-conn MPINET connection string
-usrlLogin User ID
-usrPass User password

mpxbchk utility

The mpxbchk utility is an optional diagnostic utility used to check bucket sizes
during bulk cross match operations.

All options and flags are case independent; option values are not.

Table 49. mpxbchk options

Option Type Description Default
-entType Name Entity type name NONE
-bxmInpDir dirName .bin file input directory NONE
-bxmOutDir dirName .bin file output directory NONE
-nthreads N Number of threads 1
-nBktParts N Number of bucket partitions 1
-maxbktsize N Maximum bucket-set size 500

138 Master Data Engine Installation Guide

Table 49. mpxbchk options (continued)

Option Type Description Default
-minBktTag N Minimum bucket tag to use (0 = 0

any)
-maxBktTag N Maximum bucket tag to use (0 = 0

any)

mpxcomp utility

The mpxcomp utility enables the comparison of records and is one of the processes
used during bulk (BXM) and incremental cross matches (IXM).

There are four different situations in which you run the mpxcomp utility. You can
run mpxcomp:

* During the initial stage of implementation to generate baseline comparison
scores.

* During the “reiterate” step of the implementation process. After going through
the entire set of implementation steps and analyzing your data results, you
might determine that modifications to your algorithm and data dictionary are
necessary. If so, you typically re-derive your data (by using the mpxdata,
mpxfsdvd, or mpxredvd utilities) and run another BXM.

 After implementation if you modify the attributes that are used by your
comparison functions (for example, adding an alias to a name comparison) or
you make changes to your bucketing configuration. Comparison function and
bucket changes require new weights, a re-derivation of data, and a new BXM.

* When running an IXM.

The utility can be run from a command line or, preferably, from the IBM Initiate
Workbench jobset wizard.

When run, this utility selects candidates, compares member records, and assigns
comparison scores. The mpxcomp utility must be run once for each type of entity
(for example, identity and household) implemented, because the comparison
algorithm is specific to each entity type.

Regarding system performance, the mpxcomp utility loads the entire input data set
into memory for processing. Working with large can cause memory issues. Your
server must have sufficient continuous memory to accommodate the data files. For
large data sets, you can elect to use the *Part options to conserve system memory
and optimize performance. Use of these options (-nMemParts, OnBktParts,
-minBktPart, -maxBktPart, and -maxParts) partitions the data to avoid pulling the
entire set into memory at one time. To accommodate available memory, start by
adjusting the OnBktParts option.

If you plan to partition data, devise a partitioning strategy before beginning data
derivation. Data must be partitioned consistently between the derivation step
(mpxdata, mpxfsdvd, mpxprep, or mpxredvd utility), the comparison step
(mpxcomp utility), and the linkage step (mpxlink utility).

mpxcomp utility input and output dependencies

The input to mpxcomp is the binary files of derived data (bucket and comparison
string binary files) from the mpxdata, mpxfsdvd, mpxprep, or mpxredvd utilities.
The binary files are read into memory to speed up all the comparison calculations.

Chapter 12. Using the Master Data Engine utilities 139

Attention: The mpxdata utility is used to created derived data binary files from
raw extracts. If the member data exists in the database, either the mpxprep or
mpxredvd utility can be used. If the member data exists in .un1 files, the
mpxfsdvd utility is often used to produce the binary files.

In addition to the derived data binary files, before running the mpxcomp utility
you must have:

* A Master Data Engine instance created if you are running the utility from IBM
Initiate Workbench; if running from a command line, the engine instance is not
required

* A hub configured with your algorithm and data dictionary (includes threshold
settings)

* Generated weights

The bulk cross match (BXM) process uses the weights to create an aggregate
comparison score, which is then compared to the threshold settings to determine
auto-links and tasks.

The output is additional binary files that represent the entity link and task
groupings and comparison scores. This output is the input to the next phase of a
BXM, which is the mpxlink utility.

mpxcomp utility options

There a number of options you can use when running the mpxcomp utility.

Command-line example: mpxcomp -entType id -bxmInpDir /u@l/isi/bxm
-bxmOutDir /u@l/isi/bxm.

About performance tuning in mpxcomp:

The term “partitions” as used in these options refers to breaking the member,
bucket, or query data files into pieces. The derivation utilities (mpxdata, mpxprep,
mpxfsdvd, and mpxredvd) produce a set of initial bulk cross match (BXM) files
that are used by other utilities down-stream to do a cross match or generate
weights. If the data set is large, the BXM files are also large. The utilities that read
these files (for example, mpxcomp) must be able to fit this data into the available
memory (RAM). If the memory requirement is larger than the available memory,
the processes might swap or even run out of memory and fail. By breaking the
data into pieces (partitions), the utilities can read pieces of the BXM data at a time
and run within the available memory.

Keep in mind these points when preparing to run mpxcomp.

1. Both BktParts and MemParts options are specified when doing data derivation.
The output of the data derivation utilities becomes the input for the mpxcomp
utility. The value specified for mpxcomp must match the value set for the data
derivation processes.

2. minBktPart and maxBktPart settings override any value set for nBktParts.

3. To expedite the BXM process, set minBktPart and maxBktPart to run multiple
processes against the same pool of buckets part files. For example, with a pool
of 10 files (mpx_bxmbktd.001 through mpx_bxmbktd.010), running the
mpxcomp utility set with -minBktPart 5 and -maxBktPart 10 instructs
mpxcomp to consume only mpx_bxmbktd.005 through mpx_bxmbktd.010.

Important:

140 Master Data Engine Installation Guide

If you want to preserve Enterprise IDs (entrecnos) when running an incremental
cross match (IXM), you must specify -ixmMode to specify incremental mode when
running mpxcomp. If -ixmMode is not specified, the downstream mpxlink utility
starts with the current entity set (the IXM process also includes running the
mpxlink utility). Setting -ixmMode causes the mpxlink utility to re-evaluate all
entity sets, preserving the previous Enterprise ID when all previous members are
present in the new entity set.

When running from the command line, all options are case independent meaning
that you can type, for example, -entType, -enttype or -ENTTYPE as your
command-line option. However, option values are not case independent. For
example, if your entity type is defined as ‘id" in the database, you must enter “id'
on the command line as opposed to ‘ID' or ‘Id'".

Default option values are used if a value is not explicitly set.

Table 50. mpxcomp options

Command line Workbench
option option Description

-entType Entity Type This option identifies the type of entity being
computed. If you are implementing multiple entity
types (for example, id for Identity and hh for
Household), you muse run mpxcomp for each type.

Required: Yes
Default value: none

-bxmInpDir Input directory | This option is the directory where the input binary
(.bin) files from the mpxdata utility are stored. This
directory is typically the work directory created
under MAD_HOMEDIR/inst/mpinet_$instname/work.
Multiple hubs might share the same MAD_HOMEDIR, but
have different instance names. The hub instance that
you connect to dictates where the work directory
lives.

Required: Yes
Default value: none

-bxmQutDir Output This entry is the directory in which you want the
directory mpxcomp output binary files to be placed. This
location is typically relative to the work directory on
the server hosting the hub configuration.

Required: Yes
Default value: none

-nthreads Number of The number of threads to used for the mpxcomp
threads process. The number of threads set can have an
affect on system performance. The value should
correspond to the number of CPUs available on the
server (for example, if the server has 4 CPUs, set the
number of threads for mpxcomp to 4 to optimize the
time it takes to process).

Required: Yes

Default value: 1

Maximum value: 64

Suggested value: 1 thread per processor

Chapter 12. Using the Master Data Engine utilities 141

Table 50. mpxcomp options (continued)

Command line Workbench

option option Description

-nBktParts Number of This option breaks up the member bucket data
bucket (membktd) into smaller, more manageable chunks to
partitions optimize memory use. This option can assist sort

performance on large data sets. All members that
share a given bucket value end up in the same part
and are compared to one another. The number of
bucket parts you set when running mpxcomp should
match the number you specified for the derivation
utility process (mpxdata, mpxfsdvd, or mpxredvd). If
running an IXM, set this option to the number used
in the original data load. To accommodate for
available memory, BktParts is the first option you
adjust.

If -minBktParthand -maxBktPart options in
mpxcomp are used, they override any settings for
-nBktParts. When attempting to reduce your
memory footprint, increase BktParts before adjusting
MemParts. Running a utility with the -noexec option
outputs memory usage requirements that can help
you determine how to adjust the -n*Part settings.

Required: Optional

Default value: 1

Maximum value: 100

Suggested value: Match the number of bktParts
created in the bxmInpDir.

142 Master Data Engine Installation Guide

Table 50. mpxcomp options (continued)

Command line
option

Workbench
option

Description

-nMemParts

Number of
member
partitions

This option identifies the data partitions consumed
by the mpxcomp utility. When this option is defined
for the mpxdata, mpxprep, mpxredvd, or mpxfsdvd
utilities, the processes breaks up the data from
memHead and memCmpd (comparison data). While
using this option can cut your memory usage
significantly, your setting can affect performance. The
higher the memParts setting, the slower your
comparison process because the Master Data Engine
is forced to do more duplicate comparisons. In order
to compare every member that shares at least one
bucket, the engine compares each memPart against
itself and then against all other memParts. For
example if you had memParts set to 3, you would
have parts A, B, and C. For each BktPart, you
compare:

A>A,A>B A>C
B>B,B>C
C>C

If it is necessary to use this option, specify a
minimum setting of 3. Since the comparison has to
bring in two parts to compare against each other,
only splitting the data in half does not save memory.
Use enough parts to get all of the comparison data
into physical memory.

Required: Optional

Default value: 1

Maximum value: 100

Suggested value: 1. The value used for the data
derivation process should be the same values used
for mpxcomp and mpxlink.

-minBktPart

Minimum
bucket
partitions to
process

Determines the minimum number of bucket parts to
process. Both

-minBktPart and -maxBktPart are performance
options that allow mpxcomp to process a range of
bucket parts. This option is often used when running
mpxcomp across multiple servers. For example, you
can run bucket parts 1 through 5 on server 1 and
parts 6 through 10 on server 2.

Required: Optional

Default Value: 0

Maximum value: Less than or equal to the value of
the maxBktPart option

Chapter 12. Using the Master Data Engine utilities 143

Table 50. mpxcomp options (continued)

Command line
option

Workbench
option

Description

-maxBktPart

Maximum
bucket
partitions to
process

Determines the maximum number of bucket parts to
process.

Required: Optional

Default Value: 0

Maximum value: 100

Important: The mpxcomp utility fails when:

¢ Either minBktPart or maxBktPart option is set to 0
(which means bktPart is not used). The minimum
and maximum bucket parts must be set to a valid
range (for example, -minBktPart 1 - maxBktPart
5).

* The value of minBktPart is greater than or equal to
the value of maxBktPart.

-nMxmParts

Maximum
number of
output
partitions

This option partitions the output of mpxcomp into
smaller chunks for use by the mpxlink utility. The
value set for mpxcomp determines how many
partitioned file segments are passed to mpxlink, thus
the MxmParts value for both must be the same.

Required: Optional
Default Value: 1
Maximum value: 100

-maxbktsize

Maximum
bucket set size

Maximum bucket size determines the maximum
number of members that can have the same bucket
value for candidate selection. For example, with a
the default of 500, if more than 500 members have
the same bucket value, mpxcomp ignores those
members for comparison. The value set depends on
various factors, including the number of members in
the database and the bucketing strategy. The log
reports bucket hash values exceeding this parameter,
as well as 5 members for the user to examine. If set
appropriately, the values reported in the log might
indicate a bucket value that can be defined as an
anonymous value.

Required: Optional
Default Value: 500
Maximum value: 1048576

-minBktTag

Minimum
bucket role

Minimum bucket tag to use. Bucket tags are used for
speed optimization. Tags allow bucket data to be
created on bucket roles greater than or equal to the
minimum bucket tag, and less than or equal to the
maximum bucket tag. By using the bucket tag
option, you can eliminate roles that do not have any
impact on the linking outcome.

Required: No
Default Value: 0
Maximum value: 15

144 Master Data Engine Installation Guide

Table 50. mpxcomp options (continued)

Command line
option

Workbench
option

Description

-maxBktTag

Maximum
bucket role

Maximum bucket tag to use.

Required: No
Default Value: 0
Maximum value: 15

-cmpMode

Comparison
mode

This option controls the mpxcomp utility comparison
behavior and is intended to improve performance by
excluding comparisons configured only for searching.
Comparison modes can be set in your algorithm as
such: cmpmode 1 = match and link members,
cmpmode 2 = search members, cmpmode 3 = search,
match and link members. The mode set in your
algorithm does not have to match the option
specified for mpxcomp. The cmpMode option acts as
a filter for selecting which comparison functions are
used for comparison. For example, if you specify
option 1 (match and link), mpxcomp uses only the
comparison functions that are set to match and link.

Typically you use mpxcomp with comparison mode
3. If this option is not set, all comparison modes
configured in your algorithm are compared. If set to
1, comparison modes 1 and 3 are compared. If set to
2, comparison modes 2 and 3 are compared.

Required: No
Default Value: 3

-{no}bxmLink

Write linkage
item records

Determines whether to write the output for linkage
records. The output is written to a file Use
-nobxmLink if you do not want to write records.

Required: No
Default Value: -bxmLink (write linkage records)

-{no}bxmTask

Write task item
records

Determines whether to write the output for task
records. Use -nobxmTask if you do not want to write
records.

Required: No
Default Value: -bxmTask (write task records)

-{no}bxmRvid

Write review
identifier item
records

Determines whether to write the output for Review
Identifier task records. Use -nobxmRvid if you do not
want to write records.

Required: No
Default Value: -bxmRvid (write Review Identifier
tasks)

-{no}DiffSrcOnly

Do only
different source
comparisons

Use this option if you want to compare members
from one source to only records in a different source.
For example, records from Source A are compared to
records in Source B and C, but not against records in
A.

Required: No
Default Value: -noDiffSrcOnly (compares records
across all sources)

Chapter 12. Using the Master Data Engine utilities 145

Table 50. mpxcomp options (continued)

Command line
option

Workbench
option

Description

-{no}SameSrcOnly

Do only same
source
comparisons

Use this option to compare records against only
those from the same source. For example, records
from Source A are compared against A, but not B
and C.

Required: No
Default Value: -noSameSrcOnly (compares records
across all sources)

-allAtts

Not applicable
for mpxcomp
job. This option
is found in the
Weight
Generation job.

This true or false option applies to weight generation
and generates statistics on all attributes used in the
comparison. When used with the -Msamp option,
matched set statistics are generated by using all the
attributes. Without use of the -allAtts option (set to
false) during stat generation for an attribute, the
attribute weight is omitted when computing.

Required: No
Default Value: True

-wgtInpDir

Not applicable.

Use this setting to specify the directory containing
weight (wgt) tables as .un1 files that are used in the
comparison. This setting is optional and is used
during weight generation when weights from
another step in the process need to be considered
(for example, determining when weights have
converged, meaning the previous weights are
compared to the new weights).

Required: No
Default Value: None

-strInpDir

Not applicable.

Use this setting to specify the directory containing
string (str) tables as .un1 files that are used in the
comparison.

Required: No
Default Value: None

-encoding

Encoding

Determines the encoding of the .un1 files. Options
are latinl, utf8, and utfl6.

Required: No
Default Value: latinl

-Usamp

Not applicable
for mpxcomp
job. This option
is found in the
Weight
Generation job.

This option directs the process to conduct random
(unmatched) pair sampling during weight
generation. This option compares unmatched pairs of
members. Unmatched means that the members are
not in the same buckets, while matched pairs are in
common buckets.

Required: No
Default Value: -noUsamp

-Msamp

Not applicable
for mpxcomp
job. This option
is found in the
Weight
Generation job.

This option directs the mpxcomp process to conduct
matched pair sampling during weight generation.

Required: No
Default Value: -noMsamp

146 Master Data Engine Installation Guide

Table 50. mpxcomp options (continued)

Command line
option

Workbench
option

Description

-Mpair Not applicable | This option directs mpxcomp to create candidate
for mpxcomp matched pairs during weight generation.
job. This option
is found in the |-Mpair is shorthand for -bxmItem -tMinWgt 80%
Weight comphead.wgtmat, meaning that you can specify
Generation job. |-bxmItem, -tMinWgt, and -tMaxWgt explicitly, and

possibly with a different value for -tMinWgt. Or you
can use -Mpair, which assumes the options:
-bxmItem, -tMinWgt is 80 percent of the value set in
mpi_cmphead.wgtmat, and tMaxWgt = 0.

Required: No

Default Value: -noMpair

-bootWgts Not applicable | This option can be used during the unmatched
for mpxcomp (random) pair sampling stage of the weight
job. This option |generation process to generate the initial weight
is found in the |tables. This setting overrides the requirements that
Weight explicit weight tables exist in the dictionary.
Generation job.

Required: No
Default Value: -noBoothWgts
-{no}bxmItem Not applicable. | Write item records. Used for weight generation only.
Required: No
Default Value: -noBxmItem

-tMinWgt Not applicable | The threshold for the minimum weight to include in
for mpxcomp the output. Used for weight generation only.
job. This option
is found in the |Required: No
Weight Default Value: 0 (all)

Generation job.

-tMaxWgt Not applicable | The threshold for the maximum weight to include in
for mpxcomp the output. Used for weight generation only.
job. This option
is found in the |Required: No
Weight Default Value: 0 (all)

Generation job.

-nokExec Generate This true or false option generates memory usage
memory usage |information. This information is viewable in IBM
information Initiate Workbench by running the Get job results
only action on the mpxcomp job entry returned by the

hub.
Required: No
Default Value: false
-ixmMode Not applicable. |This true or false option sets the IXM mode. In IXM

mode, a subset of members are compared rather than
the entire member set. If running a BXM, use the
default of false. If running an IXM, set this option to
true.

Required: No
Default Value: false

Chapter 12. Using the Master Data Engine utilities 147

Table 50. mpxcomp options (continued)

Command line Workbench
option option Description
-{no}dense Not applicable. | When -dense is specified, mpxcomp creates a

membhead lookup table that is used during the
comparison operation. The lookup table replaces
runtime computation with a simple array indexing
operation. The -dense option uses more memory, but
is faster than -nodense. Specify -dense when you
have sufficient memory for the data set, and if you
have large gaps in your memRecno ranges. The
default is -nodense.

mpxconv utility

The mpxconv utility is a weight generation program to check for weight table
convergence.

All options and flags are case independent; option values are not.

Table 51. mpxconv options

Option Type Description Default
-entType Name Entity type name NONE
-wgtInpDir dirName |Input weight directory NONE
-encoding Determines the encoding of the .unl LATIN1
files. Options are LATIN1, UTES, or
UTF1e.

mpxdata utility

The mpxdata utility uses raw data to build member unload files (.un1), generate
comparison strings, assign bucket hashes, and create binary files.

The utility allows you to specify memput (member put) or memcompute (member
compute) interactions based on file input. You can run mpxdata from IBM Initiate
Workbench Initiate menu > New Job Set. See the IBM Initiate Workbench User’s
Guide or from a command line.

The mpxdata utility performs several steps while running, from parsing data into
.unl files to deriving data and organizing member records into buckets. The
mpxdata utility also creates binary files, which are used to compare data faster
than scanning through strings. The mpxdata utility parses raw data extracts into
attribute-specific sets of data. For example, it can take a single record for a person
and create one record for the address elements, another for the name elements, and
a third for the telephone numbers. Parsing allows the hub to store multiple
iterations of active and inactive data (such as a former address or phone number)
and increases responsiveness when searching and comparing.

The mpxdata utility logic can process multiple attributes for a single member from
the input data file. The attribute rows in the data file are grouped together by the
record identifier (source code and memidnum pair), which means all attribute rows
for the same member are continuous. Duplicate values are treated as a single

148 Master Data Engine Installation Guide

value, and empty values are skipped. Active (nsactive) and maximum (nsexist)
settings are enforced before the attribute values and derived data are written into

the output file.

All options and flags are case independent; option values are not.

Restriction: When running the mpxdata utility, you must use an ODBC

connection.

Table 52. mpxdata options

Option

Type

Description

Default

-ixnCode

ixnCode

Interaction code, either MEMCOMPUTE
or MEMPUT. MEMPUT inserts or
updates members in an existing hub
database for each record in the input
file. MEMCOMPUTE generates .un] files
which can then be loaded by using the
madunlload utility, or another load
utility. When processing an extract,
MEMCOMPUTE is most often used
because loading .un1 files is faster than
inserting each member through
MEMPUT.

NONE

-putType

enumVal

Put type (MEMPUT only). Choices are
insert_update, insert_only, and
update_only. This option works at a
member level, not an attribute level.

* insert_only restricts the Master Data
Engine to creating a member. If a
member exists for this srcCode and
memIdnum combination, the
interaction fails with an error code of
EXISTS.

* update_only restricts the Master Data
Engine to updating existing members
only. If an attempt is made to update
a member that does not exist, the

interaction fails with an error code of
ENOREC.

* insert_update adds a member if one
does not exist. If the member does
exist, an update is made.

MPI_PUTTYPE_
INSERT_UPDATE

Chapter 12. Using the Master Data Engine utilities 149

Table 52. mpxdata options (continued)

Option

Type

Description

Default

-memMode

enumVal

Member mode (MEMPUT only). Choices
are complete, partial, attrcomp, and
explicit. More detail on these modes can
be found in the “Member put
interaction” appendix of the IBM Initiate
Master Data Service SDK Reference for Java
and Web Services.

e Partial is used when a source system
sends an update to a member, but you
do not know if the input is a complete
picture of the member, or if you have
the complete range of values for a
given attribute.

* Attrcomp stands for attribute
complete. Like the partial mode, the
attrcomp mode tells the Master Data
Engine that it might not have a
complete picture of all the attributes
that make a complete member.
However, for the attributes that are
present, all known values for the
member are included in the member
put interaction.

* Complete tells the engine that the
input to the member put interaction
contains all of the values for all of the
attributes defined for this member
type.

* Explicit is used in situations where
you want to control exactly what is
stored for the member and the record
status of the attributes being stored.

MPI_
MEMMODE_
COMPLETE

-entPrior

Sets the entity management priority. Use
this option when you want to set the
priority at member write and override
any default entity priority previously set
for the associated source.

source priority
(Default Entity
Priority setting in
IBM Initiate
Workbench)

-config

fileName

Name of configuration file. This is a
specially formatted file that defines the
fields for the data input file. For more
information about the structure of the
configuration file, see IBM Initiate
Workbench User’s Guide.

NONE

-recSize

Fixed-length record size (for fixed-length
input files). Add the appropriate
end-of-line characters to this value.

NONE

-fldDelim

delimChar

Field delimiter character for variable
length record fields

150 Master Data Engine Installation Guide

Table 52. mpxdata options (continued)

Option

Type

Description

Default

-inpFile

fileName

Input file name defined by the
configuration filename and either fixed
length or delimited by the field delimiter
(fldDelim) character. The location of this
file is in the hub instance directory
project workspace: (MAD_HOMEDIR\inst\
mpinet_instance_name\work\
project_name\work).

input.dat

-rejFile

filename

Rejected record file. If mpxdata is unable
to parse data as it reads each row in the
input file, it writes that data to the
Rejects file. The mpxdata utility
continues to parse remaining data,
adding any additional "rejected" data to
the rejects file. The default filename is
rejects.txt.

reject.dat

-maxRecs

Maximum number of records to process
before ending the mpxdata process. This
option is disabled when the "Process all
records" option is selected.

Unlimited

-maxErrs

Maximum number of errors allowed
before stopping the process. This option
sets a threshold for errors in the data.
Once the threshold is reached, the
mpxdata utility stops (that is not
considered an mpxdata error). This
option allows you to process an extract
with tolerance for known data issues.
For example, if the delimited extract file
has too few or too many delimiters in a
few records, you can set this option to
an expected value. If the value is
exceeded, mpxdata stops and gives you
an opportunity to resolve the problem in
the extract data or configuration file. The
mpxdata utility writes records it cannot
parse to the rejects file. The total error
count (totErrs) is reported in the
mpxdata log as an INFO message:

06:59:53 mpxdata INFO MPX BxmData:
totRecs=6, totErrs=3, elapsed=1
secs., recs/sec=6, minbkttag=0,
maxbkttag=0, nMemParts=1,
nBktParts=1, buffsize=65536

100

-skipRecs

Number of records to skip before
beginning processing. If there are any
rows of text in the input file before the
data rows begin, indicate how many
rows to ignore. The number of skipped
rows does not include lines that are
commented out with the hash (#)
character.

Chapter 12. Using the Master Data Engine utilities

151

Table 52. mpxdata options (continued)

Option

Type

Description

Default

-rptRecs

N

Report records processed interval. The
mpxdata log reports a status every n
records. You might want to decrease the
frequency to reduce the log output for
large data sets, or increase it to get more
granularity.

100000

-buffSize

Size for each file input and output buffer

65536

-verbose

Show progress information

FALSE

-noexec

Show SQL statements only; no execution
is performed

FALSE

-encoding

Encoding of .unT files; options are
LATIN1, UTES, or UTF16

LATIN1

-methods

Output the method data, but do not
process data.

For details about using methods to trim
blanks and zeros from data, see IBM
Initiate Workbench User’s Guide.

NONE

-version

Output the version information

NONE

-memRecno

MEMCOMPUTE ONLY.

Starting memrecno. The value supplied
is used as the first memrecno in the .unT
files and is incremented by one for each
additional record.

-audRecno

MEMCOMPUTE ONLY

Common audrecno. The value supplied
is used as the first audrecno in the .unl
files and is incremented by one for each
additional record.

-unlOQutDir

dirName

MEMCOMPUTE ONLY. This option
identifies the

.unl file output directory. Used with
-un10utSegs, this option instructs
mpxdata to create .unl files after
reading and parsing the extract file.

NONE

-unT0utSegs

seglist

MEMCOMPUTE ONLY.

The Attribute segments to include in the
output. Used with -unT0utDir, this
option instructs mpxdata to create .unl
files after reading and parsing the
extract file. This option enables you to
select the attributes (segments) to be
included in the .unl1 output files.

NONE

152 Master Data Engine Installation Guide

Table 52. mpxdata options (continued)

Option

Type

Description

Default

-unTAudSegs

segList

Use this option to specify the audit
segments you want to create during the
mpxdata process and include in the .unl
files. This allows you to preserve the
record creation or last modified time and
map it to the evtctime field, as well as
mapping additional source system
information to the evtType, evtInitiator
and evtLocation audit fields. The
mapping of these fields is available in
the .cfg file specified by the -config
option . You can choose audhead or
audxmem. When using the -unTAudSegs
option, the -audhead option is
unavailable and the -audRecno indicates
the starting audrecno for the records
being created.

NONE

-bxmOutDir

dirName

MEMCOMPUTE ONLY

. .bin output directory. Specifies the
directory where the bulk cross match
(BXM) files are saved.

NONE

-{no}bxmBktd

Generate member bucket (MEMBKTD)
output

-bxmBktd

-{no}bxmCmpd

Generate member comparison data
(MEMCMPD) output

-bxmCmpd

-{no}bxmQryd

Generate member query data
(MEMQRYD) output. This option is used
with the relationship linker and instructs
mpxdata to create BXM files containing
query data. The relationship types,
attributes, and rules must already be
defined, so that mpxdata knows what
data to include in the BXM file.

-bxmQryd

-nMemParts

MEMCOMPUTE ONLY

. Number of member partitions. Setting
this partition depends on the size of
your data set, your algorithms, and how
much memory you have on the hub
server. The utility that consumes the
mpxdata output (such as mpxfreq) must
use a matching “memparts” value.
Leave this option at the default unless
you need more memory. The higher the
member partition the slower your
mpxcomp process, as the hub must do
more duplicate comparisons.

-nBktParts

MEMCOMPUTE ONLY.

Number of bucket partitions. Setting this
partition depends on the size of your
data set, your algorithms, and how
much memory you have on the hub
server. Leave this option at the default
unless you need more memory.

Chapter 12. Using the Master Data Engine utilities

153

Table 52. mpxdata options (continued)

Option

Type

Description

Default

-minBktTag

N

MEMCOMPUTE ONLY.

Minimum bucket tag to use (0=any).
Specifies the lowest bucketing role to be
included in the operation.

0

-maxBktTag

MEMCOMPUTE ONLY.

Maximum bucket tag to use (0O=any).
Specifies the highest bucketing role to be
included in the operation.

-nQryParts

MEMCOMPUTE ONLY.

Number of query partitions. Setting this
partition depends on the size of your
data set, your algorithms, and how
much memory you have on the hub
server. Leave this option at the default
unless you need more memory. This
option is enabled only when the option
to Generate query BXM is also enabled.

-minQryRole

MEMCOMPUTE ONLY.

Minimum query role to use (0=any)
when the ‘Generate query BXM' option
is enabled. This option specifies the
lowest query role to be included in the
operation.

-audhead

MEMCOMPUTE ONLY.

Write audhead records. When enabled,
audhead records are written to .unl files
(to be uploaded to the database later).

FALSE

-append

MEMCOMPUTE ONLY.

Append to .unl files. This option applies
only to the .un1 files. If you are
processing multiple extract data files (for
example, from different sources),
mpxdata writes new (or overwrites
existing) .unl files when this option is
not used. If used, the new .unl data
written by mpxdata is added to the end
of the existing .un1 file.

FALSE

-memType

memName

MEMCOMPUTE ONLY.

Member type name. This option sets a
filter on the output of mpxdata for the
specified member type. Setting this field
to ALL processes all member types for
the hub.

NONE

-entType

entName

MEMCOMPUTE ONLY.
Entity type name.

NONE

-strInpDir

dirName

Allows specification of a directory
containing string (str) tables as .un1 files
to update or append the contents in the
dictionary.

NONE

154 Master Data Engine Installation Guide

mpxdist utility

The mpxdist utility is a weight generation program used to compute weight
distributions, as well as clerical review and auto-link scores.

All options and flags are case independent; option values are not.

Table 53. mpxdist options

Option Type Description Default
-entType Name Entity type name NONE
-bxmInpDir dirName |.bin input directory NONE
-bxmOutDir dirName |.bin output directory NONE
-nMemParts N Number of member partitions 1
-nthreads N Number of threads 1
-wgtInpDir N .un1 weight input directory override; | NONE

allows specification of a directory
containing weight (wgt) tables as .unl
files to update or append the contents
in the dictionary

-strlnpDir N .unl string input directory override; NONE
allows specification of a directory
containing string (str) tables as .unl
files to update or append the contents
in the dictionary

-encoding Encoding of .un1 files; options are LATIN1
LATIN1, UTES, or UTF16

-cmpMode N Comparison mode: 3
e 1 for match and link
e 2 for search

¢ 3 for match, link, and search

mpxdump utility
The mpxdump utility dumps binary files to text format.

Table 54. mpxdump options

Option Type Description Default

-binFile filename Binary file name NONE

-mapFile Filename Binary file name NONE

-tFPR v False positive rate (distribution NONE
sampling file [dsamp] only)

-tFNR \% False negative rate (dsamp only) NONE

Chapter 12. Using the Master Data Engine utilities

155

mpxfprof utility

The mpxfprof utility produces diagnostic information about the size and the
number of fields and records in a data file.

Table 55. mpxfprof options

Option Type Description Default
-inpFile fileName Input file name
-encoding Encoding of .un1 files; options | LATIN1
are LATIN1, UTFES, or UTF16
-rptFile
-f1dDelim Delimiter used for field
separation
-header File header
-skipRecs Skip specified records
-maxRecs Maximum number of records
to process

mpxfreq utility

The mpxfreq utility creates frequency files to support weight generation.

This utility can be run from the command line or from IBM Initiate® Workbench
through the Initiate menu > New Job Set option. See the IBM Initiate Workbench
User’s Guide for job set details.

The mpxfreq utility generates data from which attribute frequencies can be
derived. It requires derived data as input, such as that generated by the mpxdata,
mpxprep, mpxfsdvd, or mpxredvd utilities.

The mpxfreq utility has three main options that determine the purpose of running

the utility:

The -rawMode option generates raw frequency table output for counting the
values that are checked to determine whether they are anonymous.

The -fbbMode option is for generating frequency tables to enable frequency-based
bucketing (FBB). Frequency-based bucketing counts the number of occurrences
of a particular string in the database, and then determines the buckets that
exceed the maximum bucket frequency number (set in the bucket group
properties in the algorithm).

The -wgtMode option is used for generating frequency tables for weight
generation.

Keep in mind these items when preparing to run mpxfreq:

156 Master Data Engine I

All options and flags are case independent; option values are not.

Either -memType or —entType can be specified, but not both.

Only one of -rawMode, —wgtMode or —fbbMode can be specified.

In —fbbMode, the output is mpx_bkrfreq MEMTYPE.sql and mpi_strhead/freq.unl.
In-wgtMode, the output is mpx_wgtfreq MEMTYPE.txt and is used by the mpxwgts
utility.

In -rawMode, the output is mpi_strhead.unl and mpi_strfreq.unl and is used by
the Anonymous Values Utility.

nstallation Guide

In —wgtMode, mpx_cmpfreq_MEMTYPE.sql is the output for experimental use only.

When using -wgtMode, -entType is required.

—refSrcCode is used to sub-filter the memType and entType.

If using the -MI option, -minFreqCnt2 defaults to 1 if it is not explicitly set.

If you do not specify -MI, then -minMemPart and -maxMemPart options cannot be

specified.

You can specify -minMemPart, -maxMemPart, and -nMemparts. However, be aware
that the-maxMemPart setting overrides the -nMemParts setting.

Table 56. mpxfreq options

Option

Type

Description

Default

-memType

Name

Member type name. If you have
multiple member types in the
hub database and want to
compute frequencies for one of
those member types, the member
type filter can be used. All entity
types for that member are
processed.

NONE

-entType

Name

Entity type name. If you have
multiple entity types in the hub
database and want to compute
frequencies for one of those entity
types, the entity type filter can be
used. All member types within
the specified entity type are
processed.

NONE

-rawMode

Instructs mpxfreq to count the
values that are checked to
determine whether they are
anonymous. (This option was
called anonMode in earlier
versions of the software.) The
option provides the numeric
input for the Anonymous Values
Utility. You must have
anonymous string codes
configured, and they must be
referenced in the standardization
functions in your algorithm
before you can run the mpxfreq
utility to generate the output to
feed to the Anonymous Values
Utility.

For more detail, see the IBM
Initiate Workbench User's Guide.

Restriction: This option does not
generate the files needed for
weight generation. When running
the Generate Weights job, start
from the “Delete artifacts from
previous run” option. See the
IBM Initiate Workbench User's
Guide.

NONE

Chapter 12. Using the Master Data Engine utilities

157

Table 56. mpxfreq options (continued)

Option

Type

Description

Default

-{no}cmpFreqSql

This -rawMode flag instructs
mpxfreq to generate SQL files in
the \frq subdirectory. You
typically do not need both SQL
output and UNL output.

-cmpFreqgSql

-{no}cmpFrequnl

This -rawMode flag instructs
mpxfreq to generate .unl files in
the \frq subdirectory. You
typically do not need both SQL
output and UNL output.

-cmpFreqUnl

-rawQutFile

Name

When using -rawMode with -MI
and -merge options, this flag
specifies the output file for the
current patterns.

NONE

-fbbMode

Generates mpi_strfreq tables for
all buckets that have “minway <
maxway” settings. Uses the
derived bucket data to generate a
list of string frequencies. If a
given string is over the maximum
limit, it is added to a list in the
dictionary and is not used for
candidate selection.

* Limits are specified in the
algorithm.

¢ Each bucket role can have a
different limit.

* Static process — you must run
this step again as your data set
changes and grows.

If any strings are added to
strFreq, then you can re-derive
the bucket data in order to reduce
the number of comparisons
required by mpxcomp.

NONE

-{no}bktFreqSql

This -fbbMode flag generates SQL
output. Instructs mpxfreq to
generate SQL files in the FRQ
output directory. You typically do
not need both SQL output and
UNL output.

-nobktFreqSql

-{no}bktFrequnl

This -fbbMode flag generates UNL
output. Instructs mpxfreq to
generate UNL files in the FRQ
output directory. You typically do
not need both SQL output and
UNL output.

-bktFreqUnl

-fbbNway

Name

This -fbbMode flag used only in
combination with the -MI option,
instructs mpxfreq to do a single
pass of the Nwayfbb patterns.

NONE

158 Master Data Engine Installation Guide

Table 56. mpxfreq options (continued)

Option

Type

Description

Default

-fbbInpList

Name

This -fbbMode flag used only in
combination with the -MI option,
specifies the input file or files for
the previous patterns.

NONE

-fbbOutFile

Name

This -fbbMode flag used only in
combination with the -MI and
-merge options, specifies the
output file for the current
patterns.

NONE

-wgtMode

Generates frequency tables for
weight generation.

For more detail, see the IBM
Initiate Workbench User's Guide.
This option is identical to running
the “Generate counts for all
attribute values” option in the
Generate Weights job with
“Execute all remaining steps
through end of process”
disabled. The advantage to using
this option, rather than executing
the Generate Weights script
functionality, is that you can take
advantage of the Performance
Tuning options when generating
the frequency tables.

When using this option, be sure
to direct the frequency output to
the correct directory. The
Generate Weights job typically
expects to find the output in the
\weights\frq subdirectory. If you
later run Generate Weights
starting with “Generate random
pairs of members” you must first
create the necessary directories
for the weight generation output.

NONE

-{no}wgtFreqTxt

This -wgtMode flag is used only in
combination with -MI and -merge
options, and instructs mpxfreq to
generate an
mpx_wgtfreq_ENTTYPE. txt file.

-wgtFreqTxt

-wgtOutFile

Name

This -wgtMode flag is used only in
combination with -MI and -merge
options, specifies the output file
for the current patterns.

NONE

Chapter 12. Using the Master Data Engine utilities

159

Table 56. mpxfreq options (continued)

Option

Type

Description

Default

-bxmInpDir

dirName

.bin; specifies the bulk cross
match (BXM) input directory. This
directory is the BXM directory
that contains the comparison
binary work files.

These files were produced by one
of the data derivation methods,
so match this path to BXM output
directory specified by the selected
derivation process.

NONE

-nMemParts

Number of member partitions.
This number should correspond
to the number of member
partitions used when running
mpxdata, mpxprep, mpxredvd, or
mpxfsdvd (these utilities can also
produce the starting BXM data).
If you use the -MI option and set
the -maxMemPart flag, the
-nMemParts setting is overridden.

-frqOutDir

dirName

.frg; specifies the output
directory to which frequency
results are written.

NONE

-nthreads

Number of threads. This value
should correspond to the number
of processors available on the
hub. The goal is to take
advantage of all the processing
resources available. For example,
if running the hub on a computer
with four processors, set the
number of threads to 4. This
setting keeps all four processors
busy and minimizes the time
mpxfreq takes to run. If you were
to set it to 2, only two processors
would be used, and the
processing time would be longer.
Setting it too high would cause
the hub to switch back and forth
between running threads and
threads waiting for available
processor cycles.

-refSrcCode

srcCode

Sub-filter by this source code.
Enables frequency analysis to be
performed on a single source
(-memType and —entType are still
required with this option).

NONE

-minFreqCnt2

Overrides the data dictionary
settings.

If you are using the -MI option,
-minFreqCnt2 defaults to 1 if not
explicitly set.

NONE

160 Master Data Engine Installation Guide

Table 56. mpxfreq options (continued)

Option

Type

Description

Default

-hashlCnt

Primary hash slot count. This
setting is the number of slots
available in the hash table. The
larger the diversity of the data
set, the greater the advantage in
increasing this number. Each slot
maintains a list of string values
with their counts. The fewer
string values that need to be
parsed in a slot, the faster the
program runs. Increasing this
number also increases memory
requirements.

-hash2Cnt

Compression hash slot count.
This setting is the number of slots
available during the join of
multiple threads into the master
frequency list. All records have
been processed and the hub is
adding up the totals. This
number is typically smaller than
primary hash slot count. Like
primary hash slot count,
increasing this number also
increases memory requirements.

-h12CvPct

Slot compression ratio. This
option allows the hash tables to
be compressed down if the ratio
of total nodes to nodes per nway
falls above the percentage
specified. -h12CvPct sets
scavenging, converting primary
to secondary hash.

-pageSize

Page size. This setting is the
amount of memory in megabytes
initially allocated for string
nodes. Base this value on the size
of the strings being frequencied
and the number of unique string
values.

-audRecno

Common audRecno for all .unl
and .sql

-encoding

Encoding of .un1 files; options
are LATIN1, UTFES, or UTF16.

LATIN1

Chapter 12. Using the Master Data Engine utilities

161

Table 56. mpxfreq options (continued)

Option Type Description Default

-MI Sets multi-instance mode. -noMI

Use the -MI option with -fbbNway
(but without Omerge) on multiple
servers to do a single pass of the
Nway fbb patterns. By specifying
a different -fbbNway on each
server, you can reduce the time
required to generate frequencies.
Bring all the files together on one
server and use -MI and -merge
together to unify the parts into an
output file.

-minMemPart N This flag is used only with the 0
-MI option and specifies the
minimum number of member
partitions that you want each
instance to work on.

-maxMemPart N This flag is used only with the 0
-MI option and specifies the
maximum number of member
partitions that you want each
instance to work on.

-merge Use only in combination with -noMerge
-MI, merges results from multiple
instance runs.

-mrgInplist Name This -merge flag specifies the NONE
input list of files from other
instance runs to be merged.

-mrgOutFile Name This -merge flag specifies the NONE
output file for the merged results.

mpxfsdvd utility

The mpxfsdvd utility enables the creation of bulk cross match (BXM) files from
.un1 files.

This utility is a data derivation method that uses pre-existing member unload files
to extract and create comparison strings, bucket hashes, and binaries. It is most
commonly used when you have made changes to your algorithm but the data
itself has not changed. This utility can be run from a command line or from the
IBM Initiate Workbench Initiate menu > New Job Set. See IBM Initiate Workbench
User’s Guide for more information

Keep in mind these items when preparing to run mpxfsdvd:

* All options and flags are case independent; option values are not.

* Both -unlInpdir and -unlInpSegs are required.

* Either one or both of -unTOutdir -unTOutSegs or -bxmOutDir must be specified.
Important: If you want to preserve Enterprise IDs (entrecnos) when running an
incremental cross match (IXM), you must use the -ixmmode option when running

the mpxfsdvd utility. If -ixmmode is not specified, the downstream mpxlink utility

162 Master Data Engine Installation Guide

process starts with the current entity set. Setting -ixmmode causes mpxlink to

re-evaluate all entity sets, preserving the previous Enterprise ID when all previous
members are present in the new entity set.

Table 57. mpxfsdvd options

Option

Type

Description

Default

-unTInpDir

dirName

Location of .un1 files. The
mpxfsdvd utility reads the member
attribute data from the .unl files in
the directory specified here. This
directory is relative to the project
work directory on the hub:

MAD_HOMEDIR\inst\
mpinet_instance_name\work\
project_name\work\UNL_INPUT_DIR

NONE

-unlInpSegs

segList

List of segments contained by the
.unl files

NONE

-unlQutDir

dirName

.unl file output directory. The
output of the mpxfsdvd utility is
the derived data segments
(comparison, bucket, and,
optionally, query data), which have
their own .un1 files
(mpi_memempd, mpi_membktd,
and mpi_memqryd) written to the
directory specified here. This
directory is relative to the project
work directory on the hub:

MAD_HOMEDIR\inst\
mpinet_instance_name\work\
project_name\work\UNL_OUTPUT DIR

Used with the Qun10utSegs option
and indicates whether mpxfsdvd
should generate .unl files during
processing. Also with -un10OutSegs,
instructs mpxfsdvd to create .unl
files containing bucket data or
comparison data, or instructs
mpxfsdvd to generate query .unl
files during processing (the files are
used by the relationship linker).

NONE

-unTOutSegs

seglist

Attribute segments to output. Used
with the -un10utDir option and
indicates whether mpxfsdvd
should generate .unl files during
processing. Instructs mpxfsdvd to
create .unl files containing bucket
data or comparison data, or
instructs mpxfsdvd to generate
query .unl files during processing
(the files are used by the
relationship linker).

NONE

-encoding

Encoding of .un1 files; options are
LATIN1, UTES, or UTF16

LATIN1

Chapter 12. Using the Master Data Engine utilities

163

Table 57. mpxfsdvd options (continued)

Option

Type

Description

Default

-bxmOutDir

dirName

.bin output directory. Indicates
where you want the BXM output
files to be located. This directory is
relative to the project work
directory on the hub:

MAD_HOMEDIR\inst\
mpinet_instance_name\work\
project_name\work\BXM_OUTPUT_DIR

NONE

-{no}bxmBktd

Generate MEMBKTD output.

-bxmBktd

-{no}bxmCmpd

Generate MEMCMPD output.

-bxmCmpd

-{no}bxmQryd

Generate MEMQRYD output. This
option is for use with the
relationship linker and instructs
mpxfsdvd to create BXM files
containing query data. The
relationship types, attributes, and
rules should already be defined so
that mpxfsdvd knows what data to
include in the BXM file.

-bxmQryd

-nMemParts

Number of member partitions.
Setting this partition depends on
the size of your data set, your
algorithms, and how much
memory you have access to on the
hub. The utility that consumes the
mpxfsdvd output (such as
mpxfreq) must use a matching
“memparts” value. Leave this
option at the default unless you
need the memory. The higher the
member partitions, the slower your
mpxcomp process because the hub
must do more duplicate
comparisons.

-nBktParts

Number of bucket partitions.
Setting this partition depends on
the size of your data set, your
algorithms, and how much
memory you have access to on the
hub. Leave this setting at the
default unless you need the
memory.

-minBktTag

Minimum bucket tag to use
(O=any). The lowest bucketing role
designation used in the algorithm
to include in the process.

-maxBktTag

Maximum bucket tag to use
(O=any). The highest bucketing role
designation used in the algorithm
to include in the process.

164 Master Data Engine Installation Guide

Table 57. mpxfsdvd options (continued)

Option

Type

Description

Default

-nQryParts

N

Number of query partitions. Setting
this partition depends on the size
of your data set, your algorithms,
and how much memory you have
access to on the hub. Leave this
setting at the default unless you
need the memory. This option is
enabled only when the option to
Generate query BXM is also
enabled.

1

-minQryRole

Minimum query role to use (0=all).
The lowest query role designation
used in the algorithm to include in
the process. This option is enabled
only when the option to Generate
query BXM is also enabled.

-buffSize

Size for each file input and output
(I/0) buffer.

65536

-memType

memName

Member type name. If you have
multiple member types in the hub
database and need to derive data
for only one of those member
types, select the member type here;
otherwise, select ALL.

NONE

-entType

entName

Entity type name

NONE

-skipRecs

N

Number of member records to skip
before re-deriving members from
the specified input files. Processing
begins with the next member read
from MEMHEAD after skipping
this number of records.

When used with the -maxRecs
option, this parameter lets you set
a range of members from the
specified input file to process.

0

-maxRecs

Maximum number of member
records to re-derive from the
specified input files. When using
this parameter along with skipping
member records, this number
includes the number skipped.

When used with the -skipRecs
option, this parameter lets you set
a range of members from the
specified input file to process. This
option is useful when running
multiple instances of MPXFSDVD
against the same set of input files

Unlimited

Chapter 12. Using the Master Data Engine utilities

165

Table 57. mpxfsdvd options (continued)

Option

Type

Description

Default

-maxErrs

N

Maximum errors before halting
processing. This option sets a
threshold for errors in the data.
Once the threshold is reached, the
mpxfsdvd utility stops. The intent
of this option is to allow you to
process a set of input .unl files
with tolerance for data issues. For
example, if the .unTfile has an
incorrect number of fields, the
member record is rejected and
re-derivation does not complete for
that member. The mpxfsdvd utility
writes detailed information into the
log file, including the line number,
input file, and reason for the
rejection.

100

-{no}HeadSq1

flag

Generates SQL output. Instructs the
mpxfsdvd utility to generate an
SQL file in the specified .unl
output directory. If a .un1 output
directory is not specified then the
output is written to the BXM
output directory. This SQL file
contains a query against the
mpi_membhead table for members
that were identified as missing.
These members are identified when
there is an attribute row that does
not have a corresponding head
row.

-noHeadSql

-ixmmode

This true or false option sets the
IXM mode. In IXM mode, a subset
of members are compared rather
than the entire member set. If
running a BXM, use the default of
false. If running an IXM, set this
option to true.

FALSE

mpxitob utility

The mpxitob utility is a weight generation program to generate bucket records
from item records.

All options and flags are not case-sensitive; option values are not.

Table 58. mpxitob options

Option Type Description Default
-bxmInpDir dirName .bin input directory NONE
-bktOutDir dirName .bin output directory NONE
-nMxmParts N Maximum number of input partitions 1
-nBktParts N Number of bucket output partitions 1
-entType Name Entity type name NONE

166 Master Data Engine Installation Guide

mpxlink utility

The mpxlink utility is a cross match program that enables entity linkage.

The mpxlink utility takes comparison results from the mpxcomp utility and creates
entity link and task files (.un1 files) that can be loaded into the database. This
utility can be run from the command line or from IBM Initiate WorkbenchInitiate
menu > New Job Set. See IBM Initiate Workbench User’s Guide for more
information.

All options and flags are case independent; option values are not independent.

Generating task sets can be a lengthy operation.

If you want to retain existing Enterprise IDs (entrecnos) while doing an
incremental cross match (IXM), you must use the correct options:

ixmmode: Specify -ixmmode with mpxlink to ensure that entity sets are processed
correctly. If -ixmmode is not specified, the mpxlink process starts with the current
entity set. Setting -ixmmode causes mpxlink to re-evaluate all entity sets,
preserving the previous Enterprise ID when all previous members are present in
the new entity set.

bxmxeia: This option is required if the existing Enterprise IDs are to be
considered when entity sets are formed during the IXM.

noTskSets: Specifying -noTskSets reduces utility run time without affecting task
creation.

noTskRelatedMembers: Specifying -noTskRelatedMembers also reduces utility run
time.

entrecno: Set an -entrecno value to a number higher than any currentrecno
column value in any of the mpi_entlink tables in the system. If you do not set
-entrecno in this way, you risk creating overlapping Enterprise IDs, which can
result in new members incorrectly being added to an existing entity.

audrecno: Set an -audrecno value to a number higher than any current
audrecnos in the mpi_audhead tables. If you do not set -audrecno in this way,
you risk creating inaccurate entity linkage history data.

audhead: Specify -audhead in order to create an mpi_audhead.unl file as part of
the mpxlink operation.

Table 59. mpxlink options

Option Type Description Default

-entType Name Entity type name. This option | NONE

identifies the type of entity
being computed. If you are
implementing multiple entity
types (for example, identity
and household), you must run
mpxlink for each type. This
option is required and there is
no default setting.

Chapter 12. Using the Master Data Engine utilities 167

Table 59. mpxlink options (continued)

Option Type Description Default

-bxmInpDir dirName | .bin input directory. The NONE
directory where the input
binary (.bin) files to link are
stored. Input files can be from
the mpxcomp utility output, or
other processes such as an
IXM.

This directory is typically the
work directory on the server
hosting your hub
configuration. This option is
required and there is no
default setting.

You can list multiple
directories for this option;
separate multiple directories
with single spaces.

-bxmQutDir dirName | .bin output directory. Indicate | NONE
where you want the BXM
output files to be located. This
directory is relative to the
projects work directory on the
hub:

MAD_HOMEIDR\inst\
mpinet_instance_name\work\
project_name\work\
bxm_output_dir

Also generate bulk cross match
data in the designated BXM
output directory.

-un10utDir dirName | .un1 output directory. The NONE
directory in which you want
the mpxlink output binary
files located. Binary output
files are used by the
relationship linkers. The binary
output file is named
mpx_bxmxmem. bin.

This directory is typically
relative to the work directory
on the server hosting the hub
configuration.

Generating the output in
binary form is optional;
specifying an output directory
with this option is what causes
binary output to be generated.
In other words, if no directory
is specified here, no binary
output is generated.

168 Master Data Engine Installation Guide

Table 59. mpxlink options (continued)

Option

Type

Description

Default

-nMemParts

N

Number of member partitions
(MemParts). MemParts are
used to partition the data set.
Typically this partition is done
for memory considerations.
Because the mpxlink utility
requires the entire input data
set (for example, the binary
files of comparison results) to
be read into memory at once,
breaking the data set into
smaller pieces allows them to
fit into available memory.

The MemParts option differs
from the MxmParts option in
that MemParts breaks up the
memHead and memCmpd
data files, whereas MxmParts
breaks up link and task files
(the output of the mpxcomp
utility).

The MemParts value set here
must be the same as the
MemParts value set in
mpxcomp, and in the utility
that created the input for
mpxcomp (for example,
mpxfsdvd, mpxprep, or
mpxredvd). In other words,
the MemParts setting in
mpxcomp determines how
many partitioned file segments
are passed to mpxlink; the
mpxlink MemParts setting
must accurately reflect the
number of partitioned file
segments coming from
mpxcomp.

There is a performance
consideration to partitioning
the data set: the higher the
MembParts is set, the slower
the mpxlink process.

Leave this value set to 1 unless
memory is an issue. The
maximum value is 100.

1

Chapter 12. Using the Master Data Engine utilities

169

Table 59. mpxlink options (continued)

Option Type Description Default

-nMxmParts N Number of maximum out 1
partitions. Like MemParts, the
MxmParts option partitions
the output of the mpxcomp
process. As with MemParts,
this option is used when the
output file is too large to be
read into memory in its
entirety, and needs to be
broken up into smaller
sections in order to fit into
available memory.

The MxmParts option differs
from MemParts in that
MxmParts breaks up link and
task files (the output of the
mpxcomp utility), whereas
MemParts breaks up the
memHead and memCmpd
data files.

The MxmParts value set here
must be the same as the
MxmParts value set in
mpxcomp, which provides the
input to mpxlink. In other
words, the MxmParts setting
in mpxcomp determines how
many partitioned file segments
are passed to mpxlink. The
mpxlink MxmParts setting
must accurately reflect the
number of partitioned file
segments coming from
mpxcomp.

Leave this value set to 1 unless
memory is an issue. The
maximum value is 100.

170 Master Data Engine Installation Guide

Table 59. mpxlink options (continued)

Option

Type

Description

Default

-{no}bxmDiff

Use explicit different records
from entrule. This option
controls whether mpxlink uses
existing entity rules when
forming entities. For example,
if two members in an entity
are separated in IBM Initiate
Inspector, a non-identity rule is
created by the Master Data
Engine. (Likewise if two
members are manually linked,
an identity rule is created.)
The mpxrule utility captures
these rules as "same" (identity)
or "diff" (non-identity) rules. If
you re-crossmatch an existing
database, including these rules
prevents the mpxlink utility
from reforming linkages (in
the case of diff rules), or force
members to be in the same
entity (in the case of a "same"
rule).

The input data used here is
created with the corresponding
mpxcomp-bxmDiff option (Use
explicit different records from
entrule option in IBM Initiate
Workbench).

-noBxmDiff

-{no}bxmSame

Use explicit same records from
entrule. Like -bxmDi ff, this
option controls whether the
mpxlink utility uses existing
entity rules when forming
entities. See description for the
-bxmDi ff option.

The input data used here is
created with the corresponding
mpxcomp utility -bxmSame
option (Use explicit same
records from entrule in IBM
Initiate Workbench).

-noBxmSame

-{no}bxmXeia

Use implicit link records from
entlink. This option instructs
mpxlink to include the output
from the mpxxeia utility. The
mpxxeia utility captures
existing entity data. The input
data used here is created with
the corresponding mpxcomp
utility -bxmXeia option (Use
implicit link records from
entlink in IBM Initiate
Workbench).

-noBxmXeia

Chapter 12. Using the Master Data Engine utilities

171

Table 59. mpxlink options (continued)

Option Type Description Default

-{no}bxmPD Use potential duplicate task -noBxmPD
records from entxtsk. The
mpxlink utility uses this data
to form review identifier tasks
that can be loaded into the
database.

The input data used here is
created with the corresponding
mpxcomp utility -bxmRvid
(Use reviewid records from
mpxcomp in IBM Initiate
Workbench).

-{no}bxmPL Use potential linkage task -noBxmPL
records from the mpxxtask
utility (entxtsk), which
captures existing task
information from the database.

-{no}bxmRI Use review identifier task -noBxmRI
records from the mpxxtask
utility (entxtsk), which
captures existing task
information from the database.

-{no}bxmRule Use member rule records from | -bxmRule
the mpxprep, mpxredvd, or
mpxfsdvd utilities. Member
rules express the relationship
between the survivor and
obsolete members in a merge.
Because the input data used
here is created by default in
the mpxprep utility, it is not
necessary to specify a
corresponding option in

mpxprep.

-{no}bxmLink Use linkage records from the -bxmLink
mpxcomp utility. The mpxlink
utility uses this data to form
entities that can be loaded into
the database. The input data
used here is created with the
corresponding mpxcomp
utility -bxmLink option (Use
linkage records from
mpxcomp in IBM Initiate
Workbench).

172 Master Data Engine Installation Guide

Table 59. mpxlink options (continued)

Option

Type

Description

Default

-{no}bxmTask

Use task records from the
mpxcomp utility. The mpxlink
utility uses this data to form
tasks that can be loaded into
the database. The input data
used here is created with the
corresponding mpxcomp
utility -bxmTask option (Use
task records from mpxcomp
in IBM Initiate Workbench).

-bxmTask

-{no}bxmRvid

Use review identifier records
from the mpxcomp utility. The
mpxlink utility uses this data
to form review identifier tasks
that can be loaded into the
database.

The input data used here is
created with the corresponding
mpxcomp utility -bxmRvid
option (Use reviewid records
from mpxcomp in IBM Initiate
Workbench).

-bxmRvid

-{no}entLink

Instruct the engine to write
new linkages and entity level
tasks to a .unl file
(mpi_entlink.unT).

-entLink

-{no}entXeia

Instruct the engine to write
historical Enterprise ID data to
a .unl file (mpi_entxeia.unl).

-entXeia

-{no}entXtsk

Instruct the engine to write
information about tasks related
to an entity to a .un1 file
(mpi_entxtsk.unT).

-entXtsk

-{no}seqGen

When specified, this option
writes a .unl file containing
updated sequence generator
numbers that can then be
loaded into the database. The
engine normally updates this
table properly on startup. This
option is useful for an
installation that, when doing
multiple links, needs to update
the sequence numbers without
starting an engine.

-noSeqGen

Chapter 12. Using the Master Data Engine utilities

173

Table 59. mpxlink options (continued)

Option

Type

Description

Default

-{no}tskSets

Compute full task set
information. Assigns a task set
number to a member in a task.
A task set identifies a group
(two or more) of records
explicitly identified as being in
a task.

For example, if memrecnos 1,
2, and 3 are in a potential
duplicate task, they are all
assigned tskset=1; memrecno,
If memrecnos 4 and 5 are in a
Potential Linkage task, they
are assigned tskset=2, and so
on.

This data is typically used for
reporting purposes.

-noTskSets

-{no}tskRelated
Members

Create a count of members in
a task so that when you have
a trigger member, you can tell
that there are n members in
the task. The count is only
calculated when a member is
cross matched.

-tskRelatedMembers

-{no}strict

Forces xeia (entity linkage)
information to default to
existing information (rules and
prior data). Setting this option
to -strict makes the mpxlink
utility sensitive to anomalies in
the data.

Disable this option to instruct
mpxlink to ignore anomalies
in the data. For example,
inconsistencies or
discrepancies arising from live
updates to the table. (That is,
discrepancies that might occur
because data is changing from
updates as it is being collected
by the mpx utilities that create
the input for mpxlink.)

This option is typically used
for reporting purposes.

-strict

-ixmMode

Indicates IXM mode. Used for
IXM only.

FALSE

174 Master Data Engine Installation Guide

Table 59. mpxlink options (continued)

Option

Type

Description

Default

-entRecno

N

Used with .un1 only. The
starting entity record number
for the .unl.

The option allows for
specifying an entity record
number to start with for the
creation of the
mpi_entTink_xx.unl file. The
parameter is optional. If not
set, then the mpxlink utility
defaults to applying 1 as the
starting entity record number.

1

-tskRecno

Used with .un1 only. Allows
for specification of a starting
task record number in the .unl
file. This option reads the
tskrecno from the mpi_seqgen
table.

mpi_seqgen.

tskrecno

-audRecno

Used with .un1 only. Common
audRecno for all .un1 files.
This option sets the audit
record number for the .unl
files that are loaded into the
mpi_audhead database table.
When the -{no}audHead option
(Write mpi_audhead.unl in
IBM Initiate Workbench) is
enabled, you can set the
-audRecno option to an
existing mpi_audhead record
number.

-usrRecno

Used with .un1 only. Common
usrRecno for all .un1 files.
This option sets the user
record number for the .unl
files that are loaded into the
mpi_audhead database table.
When the -{no}audHead option
(Write mpi_audhead.unl in
IBM Initiate Workbench is
enabled, you can set this
option to an existing
mpi_usrhead user record
number.

Chapter 12. Using the Master Data Engine utilities

175

Table 59. mpxlink options (continued)

Option Type Description Default

-ixnRecno N Used with .un1 only. This 71
setting is the ixnRecno for
audhead record. This option
sets the transaction record
number for the .unl files that
are loaded into the
mpi_audhead database table.
When the -{no}audHead option
(Write mpi_audhead.unl in
IBM Initiate Workbench is
enabled, you can set this
option to an existing
mpi_ixnhead user record
number.

-evtTypeno N Used with .un1 only. This 0
setting is the evtTypeno for the
audhead record. Use this
option to specify an event type
for the audhead records. When
the -{no}audHead option (Write
mpi_audhead.unl in IBM
Initiate Workbench is enabled,
you can set this option to an
existing mpi_evttype event
type number.

-{no}audHead Used with .un1 only. Writes -noAudHead
mpi_audhead.unl file, and uses
the audrecno specified in the
-audRecno option. (Common
audit record number for all
.unl option.) This option is
commonly used in new
implementations where no
audit records exist yet.

-bktOutDir dirName | Used with NTE only; the NONE
output directory for the BXM
files.

176 Master Data Engine Installation Guide

Table 59. mpxlink options (continued)

Option

Type

Description

Default

-entBktd

Used with NTE only. Write
entBktd information. This
option and the -bktOutDir
used together allow the
mpxlink utility to generate a
binary bucket file that is
consumed by the mpxcomp
utility to rescore members that
exist in the same transitive
entity. This is leveraged for
non-transtive entities to get
scores between members who
were brought together by a
"glue" member and would not
have a score generated by our
traditional binary bucket file
generated during the mpxprep
or mpxfsdvd process. This
setting allows a second pass
using the mpxcomp and
mpxlink utilities to produce
accurate non-transitive entities.
Although non-transitive
entities can be produced with
a single pass through the
mpxcomp and mpxlink
utilities, the two-pass approach
improves accuracy.

FALSE

mpxpair utility

The mpxpair utility is a cross match program used to generate random pairs for

weight generation.

All options and flags are not case-sensitive; option values are not.

Either -memType or —entType must be specified.

Table 60. mpxpair options

Option Type Description Default

-bxmInpDir dirName Directory containing NONE
mpi_memhead.bin files

-bktOutDir dirName Directory to which random pairs NONE
are written

-nBktParts N Number of bucket partitions 1

-npairs N Number of random pairs to NONE
generate; suggest 10 million

-memType Name Member type name NONE

-entType Name Entity type name NONE

Chapter 12. Using the Master Data Engine utilities

177

mpxprep utility

The mpxprep utility is a cross match program used to generate bulk cross match

(BXM) data.

This utility can be run from the command line or from IBM Initiate Workbench
Initiate menu > New Job Set. See the IBM Initiate Workbench User’s Guide.

All options and flags are case independent; option values are not.

For incremental cross match (IXM), use —srcRecno or —[min/max]MaudRecno, but not

both.

-memType and -entType cannot be specified at the same time.

Table 61. mpxprep options

option is for use with the
relationship linker and instructs the
mpxprep utility to create BXM files
containing query data. The
relationship types, attributes, and
rules should already be defined so
that mpxprep knows what data to
include in the BXM file.

Option Type Description Default
-bxmOutDir dirName Directory where you want any .bin | NONE but

output files located. This directory |required

is relative to the instance work

directory on the server hosting the

hub.
-{no}bxmBktd Generate MEMBKTD output -bxmBktd
-{no}bxmCmpd Generate MEMCMPD output -bxmCmpd
-{no}bxmQryd Generate MEMQRYD output. This | -bxmQryd

178 Master Data Engine Installation Guide

Table 61. mpxprep options (continued)

Option

Type

Description

Default

-nMemParts

N

Number of member partitions.
Member partitions (MemParts) are
used to partition up the data set.
Typically option is set because of
memory considerations. Because the
mpxlink utility requires the entire
input data set (for example, the
binary files of comparison results)
to be read into memory at once,
breaking the data set into smaller
pieces allows them to fit into the
available memory on the server.

MemParts breaks up the memHead
and memCmpd data files. If you set
a value other than 1 here, you must
set a matching MemParts value for
any downstream utility that uses
the output of the mpxprep utility
(such as mpxcomp or mpxlink). In
other words, the MemParts setting
in those downstream utilities must
accurately reflect the number of
partitioned file segments coming
from the mpxprep utility.

Leave this value set to 1 unless
memory is an issue.

1

-nBktParts

Number of bucket partitions. Like
the -nMemParts option (Maximum
number of Member Partitions in
IBM Initiate Workbench), the
maximum number of bucket
partitions option partitions the
output of the mpxprep process. As
with MemParts, this option is used
when the output file is too large to
be read into memory in its entirety,
and needs to be broken up into
smaller sections in order to fit into
available memory.

BktParts differs from MemParts in
that it breaks up the membktd data.
This option is the most common one
used for reducing your memory
footprint (and can also help sort
performance on large data sets).

-minBktTag

Minimum bucket tag to use (0=any).
This setting specifies the lowest
bucketing role to be included in the
operation.

-maxBktTag

Maximum bucket tag to use
(0=any). This setting specifies the
highest bucketing role to be
included in the operation.

Chapter 12. Using the Master Data Engine utilities

179

Table 61. mpxprep options (continued)

Option Type Description Default

-nQryParts N Number of query partitions. Setting |1
this partition depends on the size of
your data set, your algorithms, and
how much memory you have access
to on the hub. Leave this setting at
the default unless you need the
memory. This option is enabled only
when the option to generate query
BMX (-bxmQryd) is also enabled.

-minQryRole N Minimum query role to use (0=all). |0
The lowest query role designation
used in the algorithm to include in
the process. This option is enabled
only when the option to generate
query BMX (-bxmQryd) is also
enabled.

-minMemRecno N Minimum memRecno filter (O=any). |0
Specifies the lowest MEMRECNO to
include in the process.

-maxMemRecno N Maximum mem~Recno filter (0=any). |0
Specifies the highest MEMRECNO
to include in the process.

-b1kSize N Bulk size (number of members) 1000

-buffSize N Size (in bytes) for each file input 65536
and output (I/O) buffer

-memType Name Member type name. If you have NONE
multiple member types in the hub
database and need to generate BXM
data for only one of those member
types, the Member Type filter can
be used. All entity types for that
member are processed.

-entType Name Entity type name NONE

-ixmMode Used with IXM only. Indicates IXM | FALSE
mode

-minMaudRecno N Used with IXM only. IMinimum 0
audRecno filter (O=any)

-maxMaudRecno N Used with IXM only. IMaximum 0
audRecno filter (O=any)

-srcRecno N Used with IXM only. IsrcRecno filter | 0
(0=any)

mpxrebkt utility

The mpxrebkt utility regenerates bucket data into the database, or .un1 files, or
bulk cross match (BXM) files.

All options and flags are case independent, option values are not.

-dbupdate and, or -un1Outdir -un10utSegs and, or -bxmOutDir must be specified.

180 Master Data Engine Installation Guide

-memType and -entType cannot be specified at the same time.

Table 62. mpxrebkt options

Option Type/Argument |Description Default
-un10utDir dirName Output directory for .unl files NONE
-un1QutSegs segList The segments to output in the NONE
.unl file
-encoding encoding Encoding of .unT files; options LATIN1
are LATIN1, UTFS, or UTF16
-bxmQutDir dirName .bin output directory NONE
-{no}bxmBktd Generate MEMBKTD output -bxmBktd
-{no}bxmCmpd Generate MEMCMPD output -bxmCmpd
-nMemParts N Number of member partitions 1
-nBktParts N Number of bucket partitions 1
-minBktTag N Minimum bucket tag (0 = any) 0
-maxBktTag N Maximum bucket tag (0 = any) 0
-nQryParts N Number of query partitions 1
-minQryRole N Minimum query role to use 0
(0=all)
-minMemRecno N Minimum memrecno at which to |0
start the rebucket (0 = any)
-maxMemRecno N Maximum memrecno at which to |0
end the rebucket (0 = any)
-bTkSize N Number of members in a block | 1000
-buffSize N Size for each input and output 65536
(I/0) buffer
-{no}dbUpdate Database update -noDbUpdate
-memType Name Member type name NONE
-entType Name Entity type name NONE

mpxredvd utility

The mpxredvd utility regenerates derived data into the database, or .unl files, or
bulk cross match (BXM) files.

This utility can be run from the command line or IBM Initiate WorkbenchlInitiate
menu > New Job Set. See the IBM Initiate Workbench User’s Guide.

All options and flags are case independent, option values are not.

-dbupdate and, or -un1Outdir -un10utSegs and, or-bxmOutDir must be specified.

-memType and -entType cannot be specified at the same time.

Chapter 12. Using the Master Data Engine utilities

181

Table 63. mpxredvd options

Option Type

Description

Default

-un10utDir dirName

.unl file output directory. The
output of the mpxredvd utility is
the derived data segments
(comparison, bucket and,
optionally, query data), which have
their own .un1 files (mpi_memcmpd,
mpi_membktd, and mpi_memqryd)
written to the directory specified
here. This directory is relative to
the project work directory on the
hub:

MAD_HOMEDIR\inst\
mpinet_instance_name\work\
project_name\work\unl output_dir

Use -un10utDir with-un10utSegs to
indicate whether the mpxredvd
utility should generate .un1 files
during processing. Also with
-unlOutSegs, create .unl files
containing bucketing data or
comparison data, or instruct
mpxredvd to generate query .unl
files during processing (the files are
used by the relationship linker).

NONE

-unlOutSegs segList

List of segments to include in the
output. Use with -unTQutDir to
indicate whether mpxredvd should
generate .unl files during
processing. Also with -un10utDir,
creates .unl files containing
bucketing data or comparison data,
or instructs mpxredvd to generate
query .unl files during processing
(the files are used by the
relationship linker).

NONE

-encoding encoding

Encoding of .unl files; options are
LATIN1, UTES8, or UTF16

LATIN1

-bxmOutDir dirName

.bin output directory. Indicates
where you want the BXM output
files to be located. This directory is
relative to the project work
directory on the hub:

MAD_HOMEDIR\inst\
mpinet_instance_name\work\
project_name\work\bxm_output_dir

NONE

-{no}bxmBktd

Generate MEMBKTD output. In
combination with -{no}bcmCmpd,
instructs mpxredvd to generate
output files for bulk cross
matching.

-bxmBktd

182 Master Data Engine Installation Guide

Table 63. mpxredvd options (continued)

Option

Type

Description

Default

-{no}bxmCmpd

Generate MEMCMPD output. In
combination with -{no}bxmBktd,
instructs mpxredvd to generate
output files for bulk cross
matching.

-bxmCmpd

-{no}bxmQryd

Generate MEMQRYD output.
Indicates whether mpxfsdvd
should generate query BXM files
during processing. These files are
used by the relationship linker.

-bxmQryd

-nMemParts

Number of member partitions.
Setting this partition depends on
the size of your data set, your
algorithms, and how much
memory you have access to on the
hub. The utility that consumes the
mpxredvd output (such as the
mpxfreq utility) must use a
matching MemPart value. Use the
default unless you need the
memory. The higher the member
partitions the slower your
mpxcomp process, as the hub must
do more duplicate comparisons.

-nBktParts

Number of bucket partitions.
Setting this partition depends on
the size of your data set, your
algorithms, and how much
memory you have access to on the
hub. Use the default unless you
need the memory.

-minBktTag

Minimum bucket tag (0=any). The
lowest bucketing role designation
used in the algorithm to include in
the process.

-maxBktTag

Maximum bucket tag (O=any). The
highest bucketing role designation
used in the algorithm to include in
the process.

-nQryParts

Number of query partitions. Setting
this partition depends on the size
of your data set, your algorithms,
and how much memory you have
access to on the hub. Use the
default unless you need the
memory. This option is enabled
only when the option to Generate
query BXM is also enabled.

-minQryRole

Minimum query role to use (0=all).
The lowest query role designation
used in the algorithm to include in
the process. This option is enabled
only when the option to Generate
query BXM is also enabled.

0

Chapter 12. Using the Master Data Engine utilities

183

Table 63. mpxredvd options (continued)

Option Type Description Default
-minMemRecno N Minimum memrecno at which to 0
start the re-derivation
-maxMemRecno N Maximum memrecno at which to |0
end the re-derivation
-b1kSize N Number of members in a block 1000
-buffSize N Size for each input and output 65536
(I/0) buffer
-{no}dbUpdate Database update -nodbUpdate
-memType memName Member type name. If you have NONE
multiple member types in the hub
database and need to derive data
for only one of those member
types, select the member type here;
otherwise, select ALL.
-entType entName Entity type name NONE

mpxrule utility

The mpxrule utility is a cross match program that generates bulk cross match
(BXM) data.

The mpxrule utility is used by the incremental cross match (IXM) process and you
need to run this program only for IXM.

All options and flags are case independent; option values are not.

Table 64. mpxrule options

Option Type Description Default

-entType Name Entity type name NONE

-bxmQutDir dirName | .bin output directory NONE

-{no}bxmDiff Write non-identity information from -bxmDi ff
database

-{no}bxmSame Write identity information from -bxmSame
database

mpxsmooth utility

The mpxsmooth utility is used during the weight generation process.

Previously when weights were generated by the weight generation process, there
was almost always a need for manually editing the weights to make them optimal
for the implementation. This process is called weight "smoothing". Smoothing is
accomplished by reading the matched and unmatched sampling binary data
generated by the mpxcomp utility. The utility reads this binary data and applies
any necessary adjustments in order to ensure a smoothed output. The data is
considered smoothed when the sample data is monotonically decreasing for
msamps (matched samples) and increasing for usamps (unmatched samples). This
output can then be used with the mpxwgts utility to generate the smoothed

184 Master Data Engine Installation Guide

weights used by the engine. The smoothing process applies only to data that
represents one-dimensional (1DIM), two-dimensional (2DIM), and
three-dimentional (3DIM) weights.

The reason the sampling data files are generally non-monotonically increasing and
decreasing is due to irregular counts in the unmatched and matched samples
where they are not expected. Fixing the discrepancy before running the weight
generation step where the final weights are computed ensures smoothed weights.
The process begins by setting all input values to wgtFLR if they are less than this
value. Next, each value is compared with its nearest neighbor to determine if an
adjustment must be made. If an adjustment is needed, the slope (derivative) and
the mid point of these two values are calculated. The result of these calculations is
used to correct the current and next sampling data value. This process is repeated
until the data monotonically increases or decreases.

The mpxsmooth utility eliminates the need for manual intervention. The weight
generation utility, which is started from IBM Initiate Workbench or by using the
madconfig generate_weights target, automatically runs this utility. The only time
you might run mpxsmooth is when you already have the matched sample and
unmatched sample binary files from a previous weight generation and want to
smooth them. Manually running mpxsmooth requires that you also run the
mpxwgts utility.

If the bxmOutDir option is not provided, then a view of the before and after
smoothing process is dumped to stdout (console). Both Usamp and Msamp options
can be provided at the same time. Remember that this utility replaces the original
binary and text files if the bxmOutDir setting is the same as bxmInpDir.

Table 65. mpxsmooth options

Options and targets Description Default

entType Identifies the entity type for which the sampling
data applies.

bxmInpDir This setting is the directory containing the
matched (msamp) and unmatched (usamp)
binary files.

bxmOutDir This setting is the directory you want the
smoothed matched and unmatched files written
to.
slopeReduction This parameter specifies the slope rate of change |3

between data points. The slope calculation is
inversely proportional to this value. This means
that larger values result in smaller rates of
change. The default value is 3.

Usamp This option directs the utility to smooth the
unmatched samples file.

Msamp This option directs the utility to smooth the
matched samples file.

mpxsort utility

The mpxsort utility is used to reorder a binary file generated from the bulk cross
match (BXM) and incremental cross match (IXM) utilities.

Chapter 12. Using the Master Data Engine utilities 185

Specifically, mpxsort reorders the bxmlink file when there are multiple member
parts or multiple threads used during the creation of the bxmlink file. This sort
order is required by the non-transitive logic to keep the transitive entity sets
grouped together so that members can be removed from the set (and possibly form
additional entities) for the non-transitive phase.

The mpxsort utility is run between the second mpxcomp and mpxlink phase. The
input to mpxsort is the output of the mpxcomp utility. When using the mpxsort
utility, match the number of parts (-mpxparts) with the number of parts specified
for the mpxcomp utility. The mpxsort output is then consumed by the mpxlink
utility.

A command-line parameter unique to mpxsort is the -{no}radix sort option. A
radix sort, also known as a binary sort, is an extremely fast method of sorting
binary records. While a radix sort is faster than a quick sort (which is our default
sorting algorithm), the radix sort consumes twice as much memory as a quick sort.
On servers where memory is a constraint, the -noradixsort option can be specified
and a quick sort is used to conserve memory. On servers where memory is not an
issue and maximum performance is required, the default -radixsort option can be
used.

Again, the mpxsort utility supports only bxmlink files which are the output of the
mpxcomp utility. I

Usage example:
mpxsort -enttype hh -bxmlink -bxminpdir /bxminp -bxmoutdir /bxmout

This example sorts the mpx_bxm1ink_xx.XXX file for the household (hh) entity type.
All options and flags are case independent; option values are not.

-nthreads option defaults to the number of processors on the server.

Table 66. mpxsort options

Option Type Description Default
-entType name entity type name NONE
-bxmInpDir dirName | .bin file input directory NONE
-bxmQutDir dirName | .bin file output directory NONE
-nMxmParts N Number of maximum partitions. Match |1

this setting to the number of parts
specified in the output of the BXM
utility used to generate the file being
used as input to the mpxsort utility.

-nThreads N Number of threads the number of
CPUs
-{no}bxmLink Use linkage records from the mpxcomp | -nobxmLink
utility.

Currently, the mpxsort utility supports
only bxmlink files which are the
output of the mpxcomp utility. Use the
-bxmLink to avoid errors.

-{no}radixSort Use quick sort instead of radix sort. radixSort

186 Master Data Engine Installation Guide

mpxstd utility

The mpxstd utility is a diagnostic utility that displays the standardized output

from various standardization routines.

This command always reads from stdin to get the strings for standardization.

You must choose one of addr, bxnm, pxnm, phone2, email, or dump options.

Table 67. mpxstd options

Option Type Description Default

-addr Show address standardization |NONE

-bxnm Show business name NONE
standardization

-pxnm Show person name NONE
standardization

-phone2 Show phone standardization | NONE
(as used by the PHONE2
standardization function)

-email Show email standardization NONE

-dump Dumps the string tables used |NONE
for standardization.
The output can be large.

mpxwgts utility

The mpxwgts utility generates weight tables.

All options and flags are case independent; option values are not.

If —-bootwgts option is used, frequency files are might be required based on the

comparison functions used.

If —bootwgts option is used, the matched sample file is not needed.

If —-bootwgts option is used, frequency files are required.

Table 68. mpxwgts options

Option Type Description Default
-entType Name Entity type name NONE
-frqInpDir dirName Frequency input directory NONE
-uSampFile fileName Unmatched sample (usamp) file NONE
-mSampFile fileName Matched sample (msamp) file NONE
-wgtOutDir dirName Weight results output file NONE
-bootwgts Generate bootstrap weight tables FALSE
-audRecno number Use a specific audit record number |2
(audRecno) for auditing
-bootfrqga Generate similarity weight tables FALSE

Chapter 12. Using the Master Data Engine utilities

187

mpxxeia utility
The mpxxeia utility is a cross match program used to unload existing entity

linkage data from the database.

The utility unloads contents of the mpi_entxeia_enttype table to binary format. If
the mpxlink utility is run in IBM Initiate® Workbench with the “Force xeia
information to default to existing information” option enabled, run the mpxxeia
utility first. See the IBM Initiate Workbench User’s Guide. Used by the incremental
cross match (IXM) process.

All options and flags are case independent; option values are not.

You only need to run this program for IXM.

Table 69. mpxxeia options

Option Type Description Default

-entType Name Entity type name. This option NONE
identifies the type of entity being
computed. If you are implementing
multiple entity types (for example,
identity and household), you must
run mpxlink for each type. This
option is required and there is no
default setting.

-bxmQutDir dirName .bin file output directory. The NONE
directory in which you want the
mpxxeia output binary files located.
Binary output files are used by the
relationship linkers. This directory is
typically relative to the work
directory on the server hosting the
hub, such as:

MAD_HOMEDIR\inst\
mpinet_instance_name\work\
project_name\work\bxm_output_dir

Generating output in binary form is
optional. Specifying an output
directory with this option is what
causes binary output to be
generated. If no directory is
specified here, no binary output is
generated.

-{no}bxmXeia Write entity record number -bxmXeia
(entRecno) information from
database

mpxxtsk utility

The mpxxtsk utility is a cross match program that unloads existing task data.

This utility is used by the incremental cross match (IXM) process. You need to run
this program for IXM only.

All options and flags are case independent; option values are not.

188 Master Data Engine Installation Guide

Table 70. mpxxtsk

Option Type Description Default

-entType Name Entity type name NONE

-bxmOutDir dirName .bin file output directory NONE

-{no}bxmPD Write potential duplicate (PD) task | -bxmPD
information from database

-{no}bxmPL Write potential linkage (PL) task -bxmPL
information from database

-{no}bxmRI Write review identifier (RI) task -bxmRI

information from database

Chapter 12. Using the Master Data Engine utilities

189

190 Master Data Engine Installation Guide

Chapter 13. Configuring SSL

By default, engine instances are not configured to use SSL communication. To
configure SSL communication, you must complete this procedure.

Before you begin
Review the SSL security topic.

Procedure

1. Procure production certificates from a certificate authority (CA). For
information about creating .penm files for a production certificate, see the
OpenSSL documentation at |http:/ /www.openssl.org/|

2. Import certificate data into the applicable runtime environments.
3. Configure the instance SSL environment variables in the configuration files.

Two-way SSL communication is enabled with useSSL variable set to true within
the com.initiate.server.net.cfg file and the javax.net.ssl1.keystore and
javax.net.ssl.trustStore variables set within the
com.initiate.server.system.cfg file.

4. Restart the engine instance.

Important: To complete the two-way SSL configuration, the clients such as IBM
Initiate Workbench or IBM Initiate Inspector also must be configured for
two-way SSL communication.

SSL security

Socket Layer Security (SSL) certificates enable secure, encrypted communication
between the IBM Initiate Master Data Service software and clients.

An SSL certificate is made up of a public key that is used to encrypt information
and a private key that is used to decipher the encrypted information. A virtual
“handshake” authenticates the server to the client and syncs the encryption
methods and keys that are used to transmit information. Security is further
enhanced by session renegotiation to ensure that the same encryption key is not
used for a persisted connection.

There are two options for certificate presentation: one-way SSL and two-way SSL.

In a one-way SSL configuration, the server must present a certificate to the client,
but the client is not required to present a certificate to the server. To successfully
negotiate an SSL connection, the client must authenticate the server. However, the
server accepts any client into the connection. With one-way SSL, the client is
required to provide its user name and password credentials to the Master Data
Engine when executing an interaction. One-way SSL is common on the Internet
where customers want to create secure connections before sharing personal data.

With two-way SSL, the server presents a certificate to the client, and the client also
presents a certificate to the server. Two-way SSL enables “trusted user” behavior.
Once the certificates have been passed between server and client, the Master Data
Engine does not validate the password provided in the MPINET protocol. By

© Copyright IBM Corp. 1995, 2011 191

http://www.openssl.org/

enabling two-way SSL, the IBM Initiate Master Data ServiceAPIs can be used
inside of an application server such that authentication can be deferred to the
application server. In this case, the Master Data Engine performs interactions as
that user without authentication.

All IBM Initiate Master Data Service clients support SSL communication.

Important: If you enable SSL communication for IBM Initiate Master Data Service
clients, you must also enable SSL for communication with LDAP. Enabling or
disabling SSL is a configuration-wide setting. It must be enabled for IBM Initiate
Master Data Service clients and for LDAP, or for neither.

Libraries required to enable SSL are installed with the Master Data Engine.
Certificate data is stored in .pem files. For example, the default IBM Initiate Master
Data Service certificate is stored in the ibmcorporationcert.pem, with its private
key data stored in ibmcorporationkey.pem. Both .penm files are located in the engine
installation \conf directory. For example:

Microsoft Windows: C:\Program Files\IBM\Initiate\Enginel0.0.0\conf
IBM AIX, Linux, or Solaris: /opt/IBM/Initiate/Enginel0.0.0/conf/

able 71| describes the SSL environment variables set in the
com.initiate.server.system.cfg file. This file is written to the instance conf
directory at instance creation time. For example:
Microsoft Windows: MAD_HOMEDIR\inst\mpinet_name\conf

IBM AIX, Linux, or Solaris: /MAD _HOMEDIR/inst/mpinet_name/conf

where MAD_HOMEDIR is the full path to the directory created for the associated
runtime instances (for example, prod or qa), and name is the engine instance name.

By default, engine instances are not configured to use SSL communication.

Table 71. SSL environment variables in the Engine configuration files

Value set at instance creation

Variable and description and guidelines

useSSL false

Configures JMX communication profile. To configure SSL, change this value
to:

Set within the com.initiate.server.jmx.jmxmp.cfg |tyye.

file.

useSSL false

Indicates whether to use SSL communication’. To configure SSL, change this value
to true.

Set within the com.initiate.server.net.cfg file.

192 Master Data Engine Installation Guide

Table 71. SSL environment variables in the Engine configuration files (continued)

Value set at instance creation
Variable and description and guidelines

javax.net.ssl.keystore ${mad.root.dir}/conf/

ibmcorporation.pl2
IBM Initiate Master Data Service keystore file

(collection of keys and certificates); typically, the
implementation-specific files are stored in the

/conf directory of the Master Data Engine software.
For example:

Microsoft Windows C:\Program
Files\IBM\Initiate\Enginel0.0.0\conf

IBM AIX, Linux, or Solaris
/opt/IBM/Initiate/Enginel0.0.0/conf

Set within the com.initiate.server.system.cfg file.

javax.net.ssl.trustStore ${mad.root.dir}/conf/

ibmcorporationtrust.jks
The ibmcorporationtrust.jks file (trusted entities

and certificates); this file is usually the \conf folder
in the engine installation MAD_ROOTDIR directory.

Set within the com.initiate.server.system.cfg file.

javax.net.ssl.keyStorePassword rmi+ss]
Specifies the password for the keystore.

Set within the com.initiate.server.system.cfg file.

javax.net.ssl.trustStorePassword rmi+ss]
Specifies the password for the truststore.

Set within the com.initiate.server.system.cfg file.

javax.net.ss1.keyStoreType PKCS12
Indicates keystore type.

Set within the com.initiate.server.system.cfg file.

javax.net.ss1.trustStoreType JKS

Indicates truststore type.

Set within the com.initiate.server.system.cfg file.

*Two-way SSL communication is enabled with useSSL set to true within the
com.initiate.server.net.cfg file and the javax.net.ss1.keystore and
javax.net.ssl.trustStore variables set within the
com.initiate.server.system.cfg file. To complete the two-way SSL configuration,
the clients such as IBM Initiate Workbench or IBM Initiate Inspector also must be
configured for two-way SSL communication.

Sample com.initiate.server.system.cfg configured for SSL

The com.initiate.server.system.cfg contains most of the SSL configuration
variables.

Chapter 13. Configuring SSL 193

javax.
javax.
javax.
javax.
javax.
javax.

net.
.ssl
net.
net.
net.
net.

net

ssl

ssl
ssl

ssl.
.trustStoreType=JKS

ssl

.keyStore=${mad.root.dir}/conf/ibmcorporation.pl2
.trustStore=${mad.root.dir}/conf/ibmcorporation.jks
.keyStorePassword=rmi+ss]
.trustStorePassword=rmi+ss]

keyStoreType=PKCS12

194 Master Data Engine Installation Guide

Chapter 14. Configuring globalization of the Master Data
Engine

IBM Initiate Master Data Service can be configured to run in languages other than
U.S. English.

About this task

To accomplish alternate language implementation of the IBM Initiate Master Data
Service software, interaction messages from the Master Data Engine to a client are
translated. Internal message logs are not translated because typically the messages
are only used by IBM Software Support.

Use this procedure to configure the engine for a language other than U.S. English.

Procedure

1. Configure Unicode settings for your database before installing the engine.

2. Set the default language. This step is done during the creation of the engine
instance.

3. Set the MAD_ENCODING variable. This variable is not set during instance creation
and must be manually set in the com.initiate.server.system.cfg
configuration file.

Attention: Log files created by the Master Data Engine are in ASCII encoding.
Code points not encompassed by ASCII are in the standard Unicode form of
U+XXXX.

Database prerequisites for using Unicode in the Master Data Engine

Unicode enables the Master Data Engine to process customer data in any language
and allows a single Master Data Engine instance to store data in multiple
languages. The Master Data Engine supports UTF16, UTE8, and ISO-8859-1
(Latin1) (Cp1252) encoding.

You must have these database requirements in place for Unicode:
* SQL Server: new MAD_DBTYPE is “mssqlu”

* Oracle: CREATE DATABASE dname.. CHARACTER SET AL32UTF8. You must
also set the character length semantics for Unicode. Set the variable
NLS_LANG_SEMANTICS to CHAR (the default setting is BYTE). Use the
command:

ALTER SYSTEM SET NLS_LENGTH_SEMANTICS=CHAR SCOPE=BOTH

If you are using a non-wire connect driver with an Oracle client, you must also
set this variable for the user connecting to the hub.
NLS_LANG=AMERICAN_AMERICA.AL32UTF8

* DB2: CREATE DATABASE dname USING CODESET UTE-8 TERRITORY ferritory
code. For example: create database prod using codeset UTF-8 territory us,
where prod is the database name and us is the territory.

© Copyright IBM Corp. 1995, 2011 195

Default language setting for the Master Data Engine

Translated strings are stored in the \smt directory. These files, such as fr_FR.smt or
en_US.smt, contain the interaction messages for return to clients.

To configure the software, the environment variable MAD_SMTLIST must be set in the
com.initiate.server.system.cfg configuration file. This variable points to the
appropriate *.smt file. This variable is typically set when you respond to the
madconfig utility locale prompt during Master Data Engine instance creation.

Environment

variable Description Default

MAD_SMTLIST Comma-separated list of language | Optional; default = “us_EN' for
(SMT) codes U.S. English

While setting the MAD_SMTLIST option to multiple languages (smtcode), the Master
Data Engine can potentially load multiple languages (strings) at one time.
However, the IBM Initiate Master Data Service components display the strings for
only one language at a time. For example, the same Master Data Engine is
configured to send a French client French messages while sending an English client
English messages.

If client software is not configured to use an alternate language, only Master Data
Engine level information is returned in the chosen language. Translation or
globalization of the data stored in the Master Data Engine database, such as dates,
is not converted when displayed in IBM Initiate Master Data Service clients.
Rather, this information displays in the locale in which it was received from the
source.

196 Master Data Engine Installation Guide

Appendix A. LDAP Directory Server for the Master Data

Engine

All authentication to the Master Data Engine is done through an LDAP directory
server installed during the normal engine installation process.

There are multiple ways to set up a Master Data Engine environment with the
bundled LDAP directory server. You can embed the IBM Initiate LDAP servers in
the Master Data Engine itself or configure a stand-alone server. The IBM Initiate
LDAP server can be internally managed by using IBM Initiate Workbench. A
corporate LDAP server is externally managed through your LDAP management
tool. Some of the possible configurations are described in this topic.

All information and instructions regarding LDAP assume that you have a basic
understanding of the configuration and support of LDAP.

Attention: User and group management is done in IBM Initiate Workbench. For
details, see IBM Initiate Workbench User’s Guide.

IBM Initiate LDAP configurations:

¢ Embedded LDAP - The LDAP server is part of the Master Data Engine server.
The embedded server is created by using the madconfig utility create_instance
target.

+ Stand-alone LDAP - The stand-alone LDAP server exists externally to the Master
Data Engine. During instance creation, you respond 'n’ to the embedded option
and then point to the existing LDAP server when prompted. If you have not
created the stand-alone LDAP servers, create them by running the madconfig
utility create_ldap target before creating your engine instance and starting the
Master Data Engine.

Restriction: The embedded LDAP directory server is not intended for advanced
deployment scenarios. For example, you cannot enforce corporate password policy
(such as password format or expiration rules) through an embedded LDAP. If your
implementation requires password policy enforcement, you must use an external
corporate LDAP server.

Corporate LDAP configuration:

* By using the corporate LDAP option you can leverage your existing security, like
your corporate directory, to manage users and groups that access the IBM
Initiate Master Data Service components.

Restriction: Because the Master Data Engine manages users and groups jointly, all
users and groups must be maintained together either on an IBM Initiate provided
LDAP server or on a separate corporate LDAP server. The Master Data Engine
does not support maintaining users on the IBM Initiate provided LDAP server
with groups on the corporate LDAP server, or vice versa.

Combination configurations:

There are some combined configurations that are supported.

© Copyright IBM Corp. 1995, 2011 197

* Embedded IBM Initiate LDAP and stand-alone combination: The Master Data
Engine server has an embedded LDAP server and can also be connected to a
stand-alone IBM Initiate LDAP server.

* Embedded Initiate LDAP and corporate combination: The Master Data Engine
server has an embedded IBM Initiate LDAP server and is also connected to a
corporate LDAP server.

* Stand-alone IBM Initiate LDAP and corporate combination: The Master Data
Engine server uses a stand-alone IBM Initiate LDAP server and is also connected
to a corporate LDAP server.

* Cluster: Implementations with multiple Master Data Engine instances often use
a cluster of embedded and stand-alone LDAP servers for high availability and
disaster recovery (HA/DR). Clustering is only supported among IBM Initiate
provided directory servers (embedded or stand-alone). Clustering is not
supported among corporate directory servers or if any of the components is a
corporate LDAP server (external).

Important: All implementations must enable either the embedded or stand-alone
IBM Initiate LDAP directory server, even if you are using a corporate LDAP for
your main user and group repository. This restriction is because the Master Data
Engine needs to define internal system users and groups that are required for the
engine to operate. If you use a corporate directory server, the Master Data Engine
communicates with its directory server by using the LDAP protocol to request user
and group information. The Master Data Engine supports the use of any LDAPv3
compliant server.

The illustrations in this topic show three basic examples of Master Data Engine
configurations. In these graphics:

* ADS = Apache Directory Studio

* While only IBM Initiate Inspector is shown, all IBM Initiate Master Data Service
web applications, including IBM Initiate Enterprise Viewer and IBM Initiate Web
Reports, communicate directly with the engine through MPINET.

* Master Data Engine 2 can treat the embedded server on Engine 1 as a
stand-alone instance

The first graphic depicts a configuration that uses both an embedded and a
stand-alone directory server.

198 Master Data Engine Installation Guide

Workbench

LDAP Directory Server

Initiate standalone LDAP

Master Data

Engine 1 Master Data Engine 2

LDAP Directory Server
(Initiate embedded)

=

Initiate Inspector

Figure 3. IBM Initiate embedded and stand-alone directory servers

The next graphic shows a configuration that uses both an embedded LDAP
directory server with an external corporate directory server.

Appendix A. LDAP Directory Server for the Master Data Engine 199

Workbench

Corporate (External)
LDAP Directory server

I I

Master Data
Engine 1

Master Data Engine 2

LDAP Directory Server
({Initiate embedded)

Initiate Inspector

Figure 4. Embedded LDAP directory server with corporate (external) directory server

The configuration shown in this graphic uses an embedded and a stand-alone
directory server along with an external directory server.

200 Master Data Engine Installation Guide

Workbench

Corporate (External) |
LDAP Directory server

LDAP Directory Server

Initiate standalone LDAP

Master Data
Engine 1

LDAP Directory Server
(Initiate embedded)

Initiate Inspector

Figure 5. Embedded and stand-alone LDAP directory server with corporate (external) directory server

IBM Initiate LDAP directory server communicates with other IBM Initiate® Master
Data Service® directory servers only if replication is enabled. Clustering is available
only among IBM Initiate provided directory servers.

From version 8.1 forward, the move to a bundled LDAP server of the IBM Initiate
Master Data Service dictates that all permissions are now group-based rather than
user and group-based. Enhancements to support a group-based model have been
made to the mpi_grphead and mpi_usrhead tables. Additionally, mpi_usrprop and
mpi_usrxgrp tables were removed in an earlier release.

Configuration flow for the Master Data Engine LDAP directory server

Before beginning the installation of the Master Data Engine, review the task flow
for configuring your LDAP directory server.

Appendix A. LDAP Directory Server for the Master Data Engine 201

1. Determine your LDAP implementation requirements. For example, if you
already have an external corporate directory server, whether you are going to
use it with an embedded or stand-alone IBM Initiate Master Data Service
provided LDAP directory server. If you are not using an external server, you
must enable at least one embedded or stand-alone IBM Initiate LDAP directory
server.

2. Install the Master Data Engine.

3. Create an engine instance by using the madconfig utility. Answer the prompts
for the type of IBM Initiate Master Data Service provided LDAP directory
server you are planning to use. You are prompted to indicate whether you
want to use an embedded directory server, the directory server host (if you are
not using an embedded server), the directory server port number and server
admin port number, and whether the directory server is in a cluster with other
LDAP directory servers.

4. If your implementation is using a corporate LDAP directory server, you must
edit the com.initiate.server.ldap.cfg file. Information about enabling the
Master Data Engine to communicate with the corporate server is provided in
the configuring an external corporate LDAP Directory Server task.

5. Install the IBM Initiate Workbench application and include the User and Group
Management plug-in.

6. Create your connections and add or modify your users and groups in IBM
Initiate Workbench. The IBM Initiate Master Data Service provided LDAP
directory server ships with a set of pre-configured groups, although you can
add additional groups as necessary. These groups, which are provided
primarily for compatibility with earlier versions, are discussed in the IBM
Initiate Workbench User’s Guide.

Attention: If you remove a Master Data Engine instance, the associated
embedded LDAP directory server instance is also removed.

Related reference

“LDAP directory server worksheet” on page 1
Y pag

[“Master Data Engine instance worksheet” on page 6|

[‘com.initiate.server.ldap.cfg file” on page 203

Related task

[‘Configuring an external corporate LDAP Directory Server” on page 207]

Upgrade considerations for Master Data Engine LDAP directory server

When you upgrade your Master Data Engine, the madconfig utility
upgrade_instance target generates all the necessary SQL and LDIF (LDAP Data
Interchange Format) files needed to complete the upgrade.

All users, groups, and associated permissions defined in earlier versions of the
Master Data Engine data model are promoted to the new IBM Initiate® Master
Data Service® LDAP directory server during the upgrade process. Users who are
not already members of any group are granted the default group for the
interaction session. However, such users are visible to administrators within the
LDAP tools; membership to this default group is maintained internally.

202 Master Data Engine Installation Guide

During an upgrade from 8.5 to 8.7, the madconfig utility prompts you to enter the
direct path to the LDAP folder located under the instance being upgraded.

During upgrades, the LDAP data migration occurs only for instances that use
embedded LDAP servers. No LDAP data migration occurs if stand-alone LDAP
servers are implemented. Any superseding Master Data Engine instance being used
as the upgrader must follow the same LDAP setup scheme as the instance being
upgraded. In other words, upgrade from embedded LDAP servers to embedded
LDAP servers, rather than from embedded LDAP servers to stand-alone LDAP
servers.

com.initiate.server.ldap.cfg file

During creation of a Master Data Engine instance, an
com.initiate.server.ldap.cfg file is stored in the instanceName\inst\
mpinet_instanceName\conf directory. This file contains all the properties necessary
to enable embedded, stand-alone, and corporate LDAP configuration scenarios.

When using the madconfig utility to create your engine instance, the answers you
give provide the property settings for the embedded and stand-alone (internal)
LDAP directory server. Settings for external corporate LDAP directory servers are
manually added to the configuration file.

Validation of group authorization flows from embedded LDAP server to
stand-alone LDAP server to corporate LDAP server. In other words, the
mechanism checks first to determine whether the embedded LDAP server is
enabled. If not, it checks to determine whether the stand-alone LDAP server is
enabled. If not, it checks to determine whether the corporate LDAP server is
enabled.

The com.initiate.server.ldap.cfg properties are described in this topic.
Properties listed as multi-value support multiple entries for the property to be
used. For example, by using the property external.ldap.user.search.basedn.1,
you can define multiple user search base dns like so:
external.ldap.user.search.basedn.l=ou=Usersl,dc=example,dc=com
external.ldap.user.search.basedn.2=ou=Users2,dc=example,dc=com

external.ldap.user.search.basedn.n=ou-=UsersN,dc=example,dc=com (where n is
an arbitrary number)

Embedded LDAP server properties

embedded.1dap.enabled=true

Indicates if the embedded LDAP server is enabled or disabled. If this property is
set to “true,” do not change it for this instance. Otherwise, the authentication
process can fail.

Responding "y" to this prompt during the create_instance process marks this
property as true:

Will this Initiate Master Data Engine instance use an embedded IBM Initiate

LDAP Server?
Valid Options: (y, n)

Remember, you must have either embedded or internal marked as true.

Appendix A. LDAP Directory Server for the Master Data Engine 203

Stand-alone (internal) LDAP server properties

internal.ldap.enabled=true

Indicates if the stand-alone LDAP server is enabled or disabled. Responding "n" to
this prompt during the create_instance process marks this property as true:

Will this Initiate Master Data Engine instance use an embedded IBM Initiate

LDAP Server?
Valid Options: (y, n)

internal.ldap.host.1=Tocalhost
Specifies the hostname of the stand-alone LDAP server in which to connect. This
property is a multi-value option to allow for clustering.

internal.ldap.port.1=1389
Specifies the port number of the stand-alone LDAP server to connect to. This
property is a multi-value option to allow for clustering.

internal.ldap.ss1.enabled=true
Specifies that socket connections to this stand-alone LDAP server use SSL. The
stand-alone LDAP server must be configured to listen for SSL connections.

internal.ldap.referral.type=ignore
Specifies how referrals (or aliases) are handled. Valid options are: follow, ignore, or
throw.

internal.ldap.security.authentication.type=simple
Specifies the type of authentication to use when connecting to this stand-alone
LDAP server. Valid options are: none, simple, CRAM-MD5, or DIGEST-MD?5.

internal.ldap.security.binddn=cn=binduser,ou=Users,dc=exampledomain,dc=com
Specifies the DN of the user to use for searching, reading, and comparing LDAP
entries on this server. By default this property is
cn=Bind,ou=System,ou=Users,dc=initiatesystems,dc=com.

internal.ldap.security.bindpassword=bindpassword
This property is used if the bindpassword is stored in plaintext. The default
password for the bind user is ‘initiate’.

internal.ldap.security.bindpassword2=856F383EB11CF91507442F342FFDE9F3
This property is used if the bindpassword is requested to be encrypted.

Corporate (external) Master Data Engine LDAP server properties

Important: Corporate (external) LDAP DN settings must be added manually to the
property file before configuring LDAP connections in IBM Initiate Workbench.

external.ldap.enabled=true
Indicates whether a corporate LDAP server is enabled or disabled.

external.ldap.host.l=examplehost
Specifies the hostname of the corporate LDAP server to connect to. This property is
a multi-value option.

external.ldap.port.1=389

Specifies the port number of the corporate LDAP to connect to. This property is a
multi-value option.

204 Master Data Engine Installation Guide

external.ldap.ssl.enabled=true
Specifies that socket connections to this corporate LDAP server use SSL. The
corporate LDAP server must be configured to listen for SSL connections.

external.ldap.referral.type=follow
Specifies how referrals (or aliases) are handled. Valid options are: follow, ignore,
and throw.

external.ldap.security.authentication.type=simple
Specifies the type of authentication to use when connecting to this corporate LDAP
server. Valid options are: none, simple, CRAM-MDS5, DIGEST-MD5.

external.ldap.security.binddn=cn=binduser,ou=Users,dc=exampledomain,dc=com
Specifies the bind user or service account to use for searching, reading, and
comparing LDAP entries on this server.

external.ldap.security.bindpassword=bindpassword
This property is used if the bindpassword is stored in plaintext.

external.ldap.security.bindpassword2=madpwd2_encrypted bindpassword
This property is used if the bindpassword is requested to be encrypted.

external.ldap.user.default.groupdn=cn=Default,ou=Group,dc=example,dc=com
Specifies the default group to assign users who are not members of any other
group. This option is not required.

external.ldap.user.search.basedn.l=ou=Users,dc=example,dc=com
Specifies the search basedn to use for locating users. This property is a multi-value
option.

external.ldap.user.search.filter.pattern=(

&(objectclass=person) (sAMAccountName={0}))

Specifies the filter pattern to use when searching for users. The parameter {0}
designates the user name of the authenticating user that is substituted. The value
varies depending on schema and back-end configuration.

external.ldap.user.search.filter.scope=subtree
Specifies the depth of the tree to do a user search. Valid options are subtree, object,

and onelevel.

external.ldap.user.attribute.name=cn
Specifies the attribute that contains the full name of the user.

external.ldap.user.attribute.firstname=givenName
Specifies the attribute that contains the first name of the user.

external.ldap.user.attribute.lastname=sn
Specifies the attribute that contains the last name of the user.

external.ldap.user.attribute.email=mail
Specifies the attribute that contains the user email address.

external.ldap.user.attribute.userid=sAMAccountName
Specifies the attribute that contains the user ID.

Appendix A. LDAP Directory Server for the Master Data Engine 205

external.ldap.group.search.basedn.l=ou=Groups,dc=example,dc=com
Specifies the search basedn to use for locating groups. This property is a
multi-value option.

external.ldap.group.search.filter.pattern.all=(objectclass=group)
Specifies the filter to use when searching for all groups that are not
member-specific. Common values include GroupOfNames, group, and
groupOfURLs, but any number of values are possible.

external.ldap.group.search.filter.pattern.member=(

&(objectclass=group) (member={0}))

Specifies the filter to use when searching for groups that a user is explicitly a
member of. The parameter {0} designates the full DN of the authenticated user.

external.ldap.group.search.filter.scope=subtree
Specifies the depth of the tree to do a group search. Valid options are subtree,

object, and onelevel.

external.ldap.group.attribute.name=cn
Specifies the attribute that contains the group name.

external.ldap.group.attribute.description=displayName
Specifies the attribute that contains the group description.

external.ldap.group.attribute.member=member
Specifies the attribute that contains the group member information.

Related task

[“Configuring an external corporate LDAP Directory Server” on page 207

Changing the port setting for a stand-alone (internal) Master Data
Engine LDAP Directory Server

If you need to change the port designation of a stand-alone (internal) LDAP server,
editing the config.1dif configuration file can save you the trouble of reinstalling a
new LDAP server.

Procedure

1. On the server running the Master Data Engine, go to the configuration
directory for your stand-alone LDAP servers: MAD_HOMEDIR\inst\
mpildap_name\ldap\config\

where MAD_HOMEDIR is the full path to the directory created for the associated
runtime instances (for example, prod or qa), and name is the name of the
LDAP instance.

2. Open config.1dif file for editing. The file is divided into sections by DN.

3. Search within the config.1dif file for the ds-cfg-Tisten-port entry. This
entry appears several times within the file. Specifically, check within these
DNs:

e cn=LDAP Connection Handler,cn=Connection Handlers,cn=config
e ¢cn=LDAPS Connection Handler,cn=Connection Handlers,cn=config

4. Edit the instance of the ds-cfg-Tisten-port parameter that appears within the
DN that is enabled. (The enabled DN is the one with the ds-cfg-enabled
parameter set to true.)

206 Master Data Engine Installation Guide

After you make the change, save and close the config.1dif file.
On the same server, go to: MAD_HOMEDIR\inst\mpinet_name\conf\
Open the com.initiate.server.ldap.cfg file for editing.

© N o O

If the internal.ldap.enabled property is set to true, edit the value for the
internal.ldap.port.# parameter (or parameters), where # indicates a number.

Important: You do not need to edit the com.initiate.server.ldap.cfg
configuration file unless the engine instance references the stand-alone LDAP
server. A setting of internal.ldap.enabled= false indicates that the engine
does not reference any stand-alone LDAP servers.

9. Save and close the com.initiate.server.ldap.cfg file.

10. Restart the LDAP server by using the madconfig utility stop_ldap and
start_ldap commands.

11. If you make changes to the com.initiate.server.ldap.cfg file, restart the
Master Data Engine by using the madconfig utility stop_instance and
start_instance commands.

Configuring an external corporate LDAP Directory Server

If you use an external corporate LDAP directory server, there are a few steps
required to enable communication between the Master Data Engine and your
corporate directory server.

Before you begin

Before beginning the configuration process, groups must be defined in the
corporate directory server and all users must be assigned to groups. Group and
user definition must be done before implementation because the Master Data
Engine associates internal permissions with an LDAP group. Because the IBM
Initiate® Master Data Service® LDAP services provide default groups and users,
implementing a corporate LDAP server requires that you have either an embedded
or stand-alone (internal) IBM Initiate LDAP configured.

Procedure

1. Go to the engine instance MAD_HOMEDIR\inst\mpinet_name\conf\ directory.
2. Open the com.initiate.server.ldap.cfg file.

3. Make sure that the external.ldap.enabled property is set to “true.”

4. These substeps define specific connection properties.

a. In order for the Master Data Engine to create a connection to the corporate
LDAP directory server instance, you must edit the external.ldap.host and
external.ldap.port properties. Both of these properties allow multiple
entries to be specified by appending a dot (.) followed by a number for each
additional entry. If you want the engine to attempt connection to two
servers on ports 389 and 1389 you would set the properties like this
example:
external.ldap.host.l=examplehostl.com

external.ldap.host.2=examplehost2.com

external.ldap.port.1=389
external.ldap.port.2=1389

Appendix A. LDAP Directory Server for the Master Data Engine 207

Attention: The Master Data Engine does not provide replication or
load-balancing of corporate LDAP servers. It is assumed that corporate
system administrators configure and enable replication and load-balancing
according to their specific needs. Allowing multiple entries for corporate
LDAP hosts and ports is intended primarily to enable fail-over.

b. If the directory server supports SSL encryption, set the
external.ldap.ss1.enabled property to “true.” You are also required to set
up the necessary system properties in the com.initiate.server.system.cfg
file to enable location of your certificate trust and keystores. Information
about using SSL for communications with a corporate server is provided in
the "Configuring SSL communications with corporate LDAP directory
server" task.

c. Some directory instances might use referrals or aliases that reference entries
in the LDAP directory server, but live in a different part of the tree or in a
different LDAP server. To instruct the Master Data Engine on how to handle
references, set the external.ldap.referral.type property to follow, ignore,
or throw.

d. If the directory server uses more advanced authentication mechanisms, they
can be specified through the external.ldap.security.authentication.type
property. Typical values are “none,” “simple,” “CRAM-MFD5”, or
“DIGEST-MD5.”

e. The Master Data Engine requires certain credentials for a user to make the
initial connection to the directory server to execute reads, searches, and
compares on users and groups. This user is called a bind user and has basic
directory rights that anyone can use. A bind user typically has basic
directory rights such as compare, search, and read. These properties are
specific to this user: external.ldap.security.binddn
external.ldap.security.bindpassword
external.ldap.security.bindpassword2

The binddn is the fully qualified DN of the bind user. If storing the
password in encrypted format is not required, specify the password in the
bindpassword property. If encryption is required, use the madpwd?2 utility
to encrypt the password and place the result in the bindpassword2
property.

5. Next you must add information specific to user search base DN, filters, and
attribute names. Defining parameters to search only the relevant portions of the
LDAP hierarchy, rather than the entire hierarchy, helps to improve
performance.

a. To specify a default group for users who are not a member of any
registered group, set the property external.ldap.user.default.groupdn to
the fully qualified DN of the default group.

b. Search DNs must be specified to enable the Master Data Engine to locate
users during authentication through the external.ldap.user.search.basedn
property. This property allows for multiple entries by appending a dot and
a number for each additional entry. For example:
external.ldap.user.search.basedn.l=ou=Userl,dc=exampledomain,dc=com

external.ldap.user.search.basedn.2=ou=User2,dc=exampledomain,dc=com
external.ldap.user.search.basedn.3=ou=User3,dc=exampledomain,dc=com

c. Use the external.ldap.user.search.filter.pattern property to tell the
Master Data Engine how to match a specific user during authentication.
This property can be set to any LDAP-compliant filter. The only restriction
is that at least one attribute must be used to match the login name. For
example, you have a DN for user John Doe set to cn=John

208 Master Data Engine Installation Guide

Doe,cn=Users,dc=1absvcsl,dc=exampledomain,dc=com.. You can either use
the common name (cn), sAMAccountName, or any other attribute that can
uniquely identify the user John Doe.

To tell the Master Data Engine how far down the tree to search for a user,
edit the external.ldap.user.search.filter.scope property. Typical values
are:

* subtree- runs the search starting at the search base DN and recursively
drills down to every leaf in the tree. This method is the most often used.

* onelevel - runs the search starting at the search base DN and searches
only those entries one level beneath the search base.

* object - searches for exact DN and filter.

For the Master Data Engine to understand how to map user attributes in
the directory server to domain objects used internally, set these properties to
the corresponding attributes in your directory server.

external.ldap.user.attribute.name
external.ldap.user.attribute.firstname
external.ldap.user.attribute.lastname
external.ldap.user.attriubte.email
external.ldap.user.attribute.userid

6. The final group of properties enable the Master Data Engine to locate group
search base DN, filters, and attribute name information. Defining parameters
to search only the relevant portions of the LDAP hierarchy, rather than the
entire hierarchy, helps to improve performance.

a.

Specify the group search base DN by using the
external.ldap.group.search.basedn property. This property allows multiple
entries by appending a dot and number for each additional entry.

Use the external.ldap.group.search.filter.pattern.member property to
tell the engine how to match a specific group for a user. This property can
be set to any LDAP-compliant filter and the only restriction is that at least
one attribute must be used to match the DN of the user. For example, if the
DN for user John Doe is cn=John Doe,cn=Users,dc=exampledomain,dc=com
and this user is a member of the group with DN
cn=Builtin,dc=exampledomain,dc=com, then the group must contain an
attribute that has John Doe as an assigned member.

To filter the list of groups found during a group synchronization, set a filter

in the external.ldap.group.search.filter.pattern.all property. This

property can be any LDAP-compliant filter, however no substitutions are

completed on this filter.

Next, tell the Master Data Engine how far down the tree to search for a

group by setting the external.ldap.group.search.filter.scope property.

Typical values are:

* subtree - runs the search starting at the search base DN and recursively
drills down to every leaf in the tree. This method is most often used.

* onelevel - runs the search starting at the search base DN and searches
only those entries one level beneath the search base.

* object - searches for the exact DN and filter.

To tell the Master Data Engine how to map group attributes in the directory
server to domain objects used internally, set these properties to the
corresponding attributes in your directory server:
external.ldap.group.attribute.name

external.ldap.group.attribute.description
external.ldap.group.attribute.member

Appendix A. LDAP Directory Server for the Master Data Engine 209

Results
After these steps have been completed, restart the Master Data Engine server so
that it reads the new values in the com.initiate.server.ldap.cfg file. Then use

IBM Initiate Workbench to create and test your connections.

Related task

[‘Configuring SSL communications with a corporate LDAP directory server”|

Configuring SSL communications with a corporate LDAP directory

server

Enabling SSL for a corporate LDAP directory server does not require that you
enable SSL for communications with the Master Data Engine.

About this task

These instructions describe the configuration of one-way SSL, between your
corporate LDAP server and the Master Data Engine. Enabling SSL communications
for LDAP directory servers that support encryption requires that you configure
values within the com.initiate.server.ldap.cfg and
com.initiate.server.system.cfg files. You can use these instructions to configure
SSL for a corporate LDAP server regardless of whether SSL is configured for the
Master Data Engine.

If you enable SSL for the Master Data Engine after you have enabled SSL for your
corporate LDAP directory server, you do not need to repeat the process of enabling
SSL for the corporate LDAP directory server. Instead add the corporate LDAP
certificate to the truststore used by the Master Data Engine.

SSL communication also requires that you specify a truststore file. The Master Data
Engine provides a default truststore (ibmcorporationtrust.jks), but you can
choose to generate your own using the Java keytool utility. When generating a new
truststore, the certificate can be self-signed, though it is suggested that you use a
certificate from a trusted certificate authority (CA). The certificate is used for the
handshake between your corporate LDAP server and the Master Data Engine.

Procedure

1. If you have not already done so, set the external.ldap.ss1.enabled property
to "true" within the com.initiate.server.ldap.cfqg file.

2. Also within the com.initiate.server.1ldap.cfg file, change the value of
external.ldap.port.1 from “389” to the port that your environment uses for
encrypted LDAP. The default port for LDAP is 389; encrypted LDAP typically
uses port 636.

3. If you do not want to use the default ibmcorporationtrust.jks as the
truststore, create a truststore file with keytool. Keytool is the native Java key
and certificate management utility. Use the -import command to add your
corporate LDAP certificate to the truststore. For complete information about the
keytool utility, see the documentation at fhttp:/ /java.sun.com/j2se/1.3/docs /|
[tooldocs /win32/keytool.html|

210 Master Data Engine Installation Guide

http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.html
http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.html

After you have generated the truststore file, copy it to the MAD_HOMEDIR\inst\
mpinet_name\conf directory, where MAD_HOMEDIR is the full path to the
directory created for the associated runtime instances (for example, prod or qa,
and name is the engine instance name.

4. Edit the com.initiate.server.system.cfqg file within the MAD_HOMEDIR\inst\
mpinet_name\conf directory:
javax.net.ssl.trustStore
javax.net.ss1.trustStorePassword
javax.net.ssl.trustStoreType
If you are using the default truststore, ibmcorporationtrust.jks, set the values
to:
javax.net.ssl.trustStore=§{mad.root.dir}/conf/ibmcorporationtrust.jks
javax.net.ssl.trustStorePassword=rmi+ss]
javax.net.ssl.trustStoreType=JKS
If you are using a new truststore, set the properties to the values you provided
to the keytool utility.
In addition to the trustStore properties, the com.initiate.server.system.cfg
file contains keyStore properties. Those properties are not required for this
configuration.

5. Restart the Master Data Engine server so that it reads the new values in the
com.initiate.server.ldap.cfg and com.initiate.server.system.cfq files.

High-availability and replication configuration for the Master Data
Engine LDAP directory server

The IBM Initiate® Master Data Service® LDAP directory uses a multi-master
replication scheme for synchronizing data between multiple IBM Initiate® Master
Data Service® provided LDAP directory instances.

A multi-master directory server topology enables all servers within the cluster to
do both read and write operations by publishing their changes to a central
replication service. Each directory server in this topology can act as a replication
service which provides high availability to directory resources without the
possibility of a single point of failure. Each instance of a Master Data Engine can
be configured to use one or more LDAP directory instances for authentication
purposes. In situations where the software must be available 24 by 7, replication
provides a way to meet this use case.

Important: High-availability and replication is available only among IBM Initiate
provided LDAP directory servers. It is not available if your configuration includes
a corporate LDAP server.

To allow for failover, the LDAP configuration files on each LDAP server must list
the connection information for all other LDAP servers in the cluster.

The replication technology used in the embedded and stand-alone LDAP
directories is specific to the vendor used (OpenDS) and cannot be used with other
directory server implementations (for example, Active Directory). For more
architectural information about the directory server replication abilities, visit
[https: / /www.opends.org/wiki/page/ ArchitecturalOverview]

Excessive writes to a directory with replication enabled can influence performance,
and the effect on performance becomes more apparent as the number of nodes in
the cluster increases.

Appendix A. LDAP Directory Server for the Master Data Engine 211

https://www.opends.org/wiki/page/ArchitecturalOverview

Enabling replication for the Master Data Engine LDAP
directory server

Replication is enabled for a directory instance through the madconfig utility during
Master Data Engine or LDAP instance creation.

Before you begin

Make sure that you have a Master Data Engine that uses an existing embedded or
stand-alone IBM Initiate LDAP directory instance running and listening on port
1389. Make sure that when you created this engine instance that you responded no
to the prompt for participation in a cluster with other IBM Initiate LDAP servers.

You can answer yes to this question only after you have at least one embedded or
stand-alone IBM Initiate LDAP instance installed.

Procedure

1. Create an LDAP directory instance by using the madconfig utility
create_instance or create_ldap target.

2. Type a name for the instance and provide the appropriate database
information.

3. Type the server host name or IP address.

4. Type a value for the listening port of this LDAP instance. This port number
must be different from any other if you are added directories on the same
server.

Type y to identify that the LDAP server is participating in a cluster.
Press Enter to accept the default replication port number.

Type the cluster peer host name.

Type the name or IP address of the server that has the peer located on it.

© ® N>

Enter a cluster peer port number. The default is 1389. Unless your peer LDAP
server is listening on another port, press Enter to accept the default.

10. Enter the peer replication port number. The default is 8§989.
Results

After answering all prompts, the output can be similar to this example:
Executing c:\1dap2\inst\mpildap_ldap2\1dap\bin\dsreplication.bat

Establishing connections Done.

Checking Registration information Done.

Configuring Replication port on server
examplehost620.Initiatesystems.com:1389 Done.

Configuring Replication port on server
examplehostd620.Initiatesystems.com:2389 Done.

Updating replication configuration for baseDN dc=initiatesystems,dc=com on
server examplehostd620.Initiatesystems.com:1389 Done.

Updating replication configuration for baseDN dc=initiatesystems,dc=com on
server examplehostd620.Initiatesystems.com:2389 Done.

Updating Registration configuration on server
examplehostd620.Initiatesystems.com:1389 Done.

Updating Registration configuration on server
examplehostd620.Initiatesystems.com:2389 Done.

Updating replication configuration for baseDN cn=schema on server
examplehostd620.Initiatesystems.com:1389 Done.

Updating replication configuration for baseDN cn=schema on server
examplehostd620.Initiatesystems.com:2389 Done.

Initializing Registration information on server

212 Master Data Engine Installation Guide

examplehostd620.Initiatesystems.com:2389 with the contents of server

examplehostd620.Initiatesystems.com:1389 Done.
Initializing schema on server examplehostd620.Initiatesystems.com:2389 with
the contents of server examplehostd620.Initiatesystems.com:1389 Done.

Return Code: 0, Time elapsed: 18.201 sec

Executing c:\1dap2\inst\mpildap_ldap2\1dap\bin\dsreplication.bat

Initializing base DN dc=initiatesystems,dc=com with the contents from
examplehostd620.Initiatesystems.com:1389:

12 entries processed (44 % complete).

27 entries processed (100 % complete).

Base DN initialized successfully.

For each additional node added, you must give the coordinates to only one other
node in the cluster. The nodes can self-discover all other nodes through the
replication service. All data replicated over the replication ports is encrypted. The
only data that is not encrypted, unless SSL is enabled, is the information sent over
your registered LDAP port number.

You can test your configuration by using the madconfig utility start_ldap target.

Related reference

[“madconfig utility” on page 102|

Appendix A. LDAP Directory Server for the Master Data Engine 213

214 Master Data Engine Installation Guide

Appendix B. Sample com.initiate.server.system.cfg file

The com.initiate.server.system.cfg file contains most of the configuration
parameters for the instance including global settings for logging, the language
locale setting (C layer), and the detail settings for SSL communication.

On an engine host, the com.initiate.server.system.cfg properties file is located
in the instance conf directory. For example:

Microsoft Windows: \MAD_HOMEDIR\inst\type_name\conf
IBM AIX, Linux, or Solaris: /MAD_HOMEDIR/inst/type _name/conf

where MAD_HOMEDIR is the full path to the instance directory, type is one of the
these options, whichever applicable; and name is name of the runtime instance:

* mpinet for an engine instance.
* mpientmgr for an entity manager.
* mpildap for an IBM Initiate LDAP directory server.

The back slash (\) is the escape character, so you must use a double back slash
(\\) to introduce one as demonstrated in the mad.root.dir definition.

The example is for an engine instance with the name prod100_1.

MAD_CONNSTR=DSN=prod100_1;UID=prod100_dbuser;PWD=prod100_dbpassword
MAD_DBTYPE=mssqlu

MAD_DBXTEST=1

MAD_CTXLIB=0DBC

MAD_SRVN0=54422837

MAD_SMTLIST=en US

mad.root.dir=C:\\Program Files\\IBM\\Initiate\\Enginel0.0.0
mad.home.dir=C:\\IBM\\initiate\\home\\prod100 1
mad.inst.dir=C:\\IBM\\initiate\\home\\prod100 1\\inst\\mpine
t_prod100_1

mad.inst.name=prod100_1

mad.Tog.name=mpinet_prod100_1-%s.mlg
mad.perflog.name=mpinet prodl00 1-%s.plg
mad.triggerlog.name=mpinet_prod100_1-%s.tlg
mad.ant.interactive=false

mad. jmx.objectname=com.customer:service=MPINETPROD100_1
cloveretl.properties=cloveretl.properties
felix.fileinstall.dir=C:\\Program Files\\IBM\\Initiate\\Enginel0.0.0\\conf
felix.fileinstall.filter=org\\.apache\\.felix\\.fileinstall-.*\\.cfg
felix.fileinstall.tmpdir=work

javax.net.ss1.keyStore=C:\\Program
Files\\IBM\\Initiate\\Enginel0.0.0\\conf\\ibmcorporation.pl2
javax.net.ss1.trustStore=C:\\Program
Files\\IBM\\Initiate\\Enginel0.0.0\\conf\\ibmcorporationtrust.jks
javax.net.ssl.keyStorePassword=rmi+ss]
javax.net.ssl.trustStorePassword=rmi+ssl
javax.net.ss1.keyStoreType=PKCS12

javax.net.ssT.trustStoreType=JKS

MAD_CALLBACKLIB=

For more information about Java-based property files, see jhttp://java.sun.com}

© Copyright IBM Corp. 1995, 2011 215

http://java.sun.com

216 Master Data Engine Installation Guide

Appendix C. Master Data Engine storage files (stofiles)

Storage files (or stofiles), are text files used to specify RDBMS-specific syntax
related to table and index creation. This information can include sizing, locking
mode, and physical location.

The format of a stofile is: S|stoname|stoclause|optional comment |

stoname is the name of the object to be modified. This object is a table name or
index name.

stoclause is the RDBMS-specific text that is appended to the create table or create
index statement.

comment is any text or note you want to include. This comment is optional. If left
empty, however, you must include the trailing pipe character.

Any row that begins with a number sign (#) is treated as a comment line and is
ignored. Blank lines are acceptable.

See your RDBMS-specific documentation on what is allowed in the stoclause.
This example shows an Oracle storage file:
S|mpi_syskey|TABLESPACE MYDATAO1 storage (initial 10M next 5M)]| |

S|mpi_syskeyl|TABLESPACE MYINDEX1 storage (initial 10M next 5M PCTINCREASE 0)|No
increase on the index|

© Copyright IBM Corp. 1995, 2011 217

218 Master Data Engine Installation Guide

Appendix D. Thread count settings

Service thread count settings are tuned during the implementation process to allow
for determination of the best use of available resources.

As a starting point, these settings are suggested:

* One context pool object (service thread) for each inbound and outbound
Message Broker Suite interface that is going to have consistent traffic.

* For data stewardship (for example, task and entity management), one context
pool object for every 10 users in a low volume setting, or a one-to-five ratio for
higher volume.

¢ If there are other pool-based resources connecting to the Master Data Engine
each one has a connection pool of their own that rides over the top of the
Master Data Engine. A starting point of one service thread for every two
contexts pooled is suggested.

After setting the starting point, measure response time and adjust the thread count
settings up or down as required.

An example a configuration consisting of two IBM Initiate Inspector users (high
volume), 50 IBM Initiate® Enterprise Viewer users with a pool of six contexts, two
inbound broker interfaces, and one outbound broker yields a total of seven service
threads based on this definition:

* Three service threads for inbound and outbound brokers.
* Three service threads for IBM Initiate® Enterprise Viewer.
* One service thread for IBM Initiate Inspector.

© Copyright IBM Corp. 1995, 2011 219

220 Master Data Engine Installation Guide

Appendix E. Data source prompt examples

You can use the madconfig utility to create data sources. Each database platform
yields different prompts.

These examples show the specific prompts per database platform.

IBM DB2 data source prompts
prompt: (Type the database data source name:)
response example: prod

prompt: (Type the database type:)
response example: db2

prompt: (Type the DB2 database host:)
response example: dbprod.customer.com

prompt: (Type the DB2 database port:)
response example: 50000

prompt: (Type the DB2 database name:)
response example: prod

MSSQL data source prompts
prompt: (Type the database data source name:)
response example: prod

prompt: (Type the database type:)
response example: mssqlu

prompt: (Type the SQL Server server name:)
response example: dbprod.customer.com

prompt: (Type the SQL Server database name (this value is case
sensitive):)
response example: prod

Oracle Net data source prompts

prompt: (Type the database data source name:)
response example: prod

prompt: (Type the database type:)
response example: oracle

prompt: (Type the Oracle database host (for wire protocol only,
otherwise leave blank:)
response example:

prompt: (Type the Oracle server name)
response example: prod

Oracle Wire data source prompts

prompt: (Type the database data source name:)
response example: prod

prompt: (Type the database type:)
response example: oracle

prompt: (Type the Oracle database host (for wire protocol only,

© Copyright IBM Corp. 1995, 2011 221

otherwise leave blank:)
response example: dbprod.customer.com

prompt: (Type the Oracle database port:)
response example: 1521

prompt: (Type the Oracle database SID (leave blank to specify RAC

service name instead of SID:)
response example: oral0264

222 Master Data Engine Installation Guide

Appendix F. Uninstall the Master Data Engine environment

Uninstalling a Master Data Engine environment includes removing all engine
runtime instances and datasources, and running the uninstaller.

Before beginning the uninstall process:

* If you are planning to re-install this runtime environment using the same
database instance that it uses, make sure that you create a backup image of the
database as a precaution.

If the runtime environment was not in production and the database has no
member data, you do not need to back up the database.

¢ In the environment that you want to uninstall, stop each runtime engine
instance and each stand-alone entity manger instance.

After completing the prerequisites, continue with these tasks in this order:
1. Remove all engine runtime instances.
2. Remove the engine data source.

3. Run the uninstaller.

Related tasks

“Stopping an engine instance from the Microsoft Windows Control Panel” on page

56

[‘Stopping an engine instance with the madconfig utility” on page 57|

[“Stopping an engine instance with its batch or script file” on page 57

“Stopping an entity manager instance from Microsoft Windows Control Panel” on|
page 60|

[‘Stopping an entity manager instance with the madconfig utility” on page 60|

[‘Stopping an entity manager instance with its batch or script file” on page 61|

[‘Removing Master Data Engine runtime instances”|

[‘Removing Master Data Engine data sources” on page 224|

[‘Running the Master Data Engine uninstaller” on page 224

Removing Master Data Engine runtime instances

Before you uninstall a Master Data Engine, you must remove any associated
engine instances. The madconfig utility is used to remove instances.

About this task

Repeat this procedure to remove each runtime instance associated with the
environment you are planning to uninstall.

© Copyright IBM Corp. 1995, 2011 223

Attention: If you remove a Master Data Engine instance, the associated
embedded LDAP directory server instance is also removed.

Procedure

1. On the command line, go to the Master Data Engine installation directory
(MAD_ROOTDIR). Then go to the scripts directory. For example:

Microsoft Windows: cd C:\Program Files\IBM\Initiate\Enginel0.0.x\scripts
IBM AIX, Linux, or Solaris: cd /opt/IBM/Initiate/Enginel0.0.x/scripts

2. Run the madconfig utility command applicable to your operating system:
Microsoft Windows: madconfig remove_instance
IBM AIX, Linux, or Solaris: madconfig.sh remove _instance

3. For each prompt, review the information; type a value; and then press Enter.
Results

In the output, confirm that a BUILD SUCCESSFUL message displays. If the instance is
successfully removed, continue with removing the datasource.

Related task

['Removing Master Data Engine data sources”]

Removing Master Data Engine data sources

Use the madconfig utility to remove data sources.
About this task

Repeat this procedure for each data source configuration that is created for the
runtime environment you plan to uninstall. Typically, there is only one data source
per runtime environment.

Procedure

1. On the command line, go to the Master Data Engine installation directory
(MAD_ROOTDIR). Then go to the scripts directory. For example:

Microsoft Windows: cd C:\Program Files\IBM\Initiate\Enginel0.0.x\scripts
IBM AIX, Linux, or Solaris: cd /opt/IBM/Initiate/Enginel0.0.x/scripts
2. Run the command applicable to your operating system:
Microsoft Windows: madconfig remove_datasource
IBM AIX, Linux, or Solaris: madconfig.sh remove datasource

3. Type the name of the data source configuration you want to remove, and then
press Enter.

Results

In the output, confirm that the BUILD SUCCESSFUL message displays.

Running the Master Data Engine uninstaller

After you have removed your Master Data Engine instance and data source, you
can run the Master Data Engine uninstaller.

224 Master Data Engine Installation Guide

About this task

On Microsoft Windows, IBM AIX, Linux, or Solaris systems, you can run GUI- or
CLI-based uninstall processes.

Procedure
1. Be sure that you have read and followed the prerequisites described in
"Uninstall the Master Data Engine environment".
2. On the host with the runtime environment you want to uninstall, verify that
you have removed your engine instance and data source.
3. Browse to the root of the corresponding installation directory. For example:
Microsoft Windows
cd C:\Program Files\IBM\Initiate\Enginel0.0.x\uninstall
IBM AIX, Linux, or Solaris
cd /opt/IBM/Initiate/Enginel0.0.x/uninstall
4. Start the uninstaller:
* Microsoft Windows: Double-click uninstaller.exe
* XWindows: From the command-line terminal, run uninstaller
For complete X Windows information, see its documentation.
5. In the uninstall wizard, follow the instructions to complete the engine

installation.

Related concept

[Appendix F, “Uninstall the Master Data Engine environment,” on page 223|
Related tasks

[‘Removing Master Data Engine runtime instances” on page 223|

[‘Removing Master Data Engine data sources” on page 224

Appendix E. Uninstall the Master Data Engine environment

225

226 Master Data Engine Installation Guide

Appendix G. Performance planning for the Master Data
Engine

Performance is a critical but complex subject. The performance topics are intended
to give you an overview of performance considerations as they apply to IBM
Initiate Master Data Service applications.

The topics include a general discussion of performance concepts, hardware and
software considerations, and IBM Initiate Master Data Service workload profiles
and performance implications of each profile. This information is offered in the
context of optimizing performance for IBM Initiate Master Data Service
applications, and is not meant to be a primer on performance in general.

When planning, monitoring, and tuning performance, bear in mind that there are
many factors to consider, and many tradeoffs. These factors include not only
performance itself, but also considerations like hardware costs, administrative
costs, and maintainability.

Many factors can affect the effectiveness of hardware configuration or software
settings. Consult with your project team or architect before making significant
changes to your hardware or software configuration.

Performance evaluation and tuning considerations

As you plan your performance strategy, there are some key considerations to keep

in mind.

* What works well in one installation or software and hardware combination stack
might not work as well in a different one. Always take your specific applications
and hardware configuration into account as you benchmark and tune your
performance.

* Start with a standard, “plain vanilla” installation of software, such as operating
system and database. Baseline your performance on the standard platform so
that you have a baseline from which to evaluate the effects of changes to your
setup.

* Be clear on what your performance goals are. Understand the difference between
latency and throughput, and know which one is more important in your
particular installation. Likewise, understand the different IBM Initiate® Master
Data Service® workload profiles, and plan appropriately to meet your
performance targets for each.

* As you modify your configuration, test at regular intervals to validate each
change. Be sure that you have a clear strategy for backing out any changes that
do not yield the wanted results.

Performance benchmarking

Users must not disclose the results of any benchmark test of the IBM Initiate®
Master Data Service® or its subcomponents to any third party without prior
written permission from IBM.

© Copyright IBM Corp. 1995, 2011 227

Users can disclose the results of any benchmark test of the IBM Initiate® Master
Data Service® or its subcomponents to any third party if the user meets these
requirements:

1. Publicly discloses the complete methodology used in the benchmark test (for
example, hardware and software setup, installation procedure, and
configuration files).

2. Contacts IBM to set up benchmark testing running the IBM Initiate® Master
Data Service®. The IBM Initiate® Master Data Service® must be run in its
specified operating environment by using the latest applicable updates, patches,
and fixes available for the IBM Initiate® Master Data Service® from IBM or third
parties that provide IBM products.

3. Follows all performance tuning guidance available by contacting IBM.

Performance key concepts

Work

Before beginning your performance evaluation and tuning, it is helpful to
understand some general performance concepts.

The most common performance concepts include:
* work

* latency

e throughput

- CPU

* memory

* storage

* networks

The concept of work is the most important factor to consider when evaluating and
optimizing performance.

In the simplest terms, servers perform work, and each subsystem in a server
supports this role:

* CPUs perform the work, manipulating data.

* Memory caches work for faster access. It optimizes the flow of information from
persistent storage to the CPUs, ensuring the CPUs can perform work efficiently.

* Storage persists the work product, so you can reference it at a later time.

* Networks allow servers that perform different work to communicate with each
other.

The IBM Initiate® Master Data Service® applications ask servers to perform work.
Server performance depends on how much work the server is asked to do and

how appropriately sized that server is for the workload.

Related concepts

[“CPU” on page 229

['Memory” on page 230|

[‘Storage” on page 231|

228 Master Data Engine Installation Guide

[“Networks” on page 232

Latency

Latency is a measure of how long a transaction takes to complete.

This measure is speed on an atomic transaction level: how fast can a server
complete a transaction? Latency is measured in time per transaction. Typical
transaction latencies are measured in milliseconds (ms) per transaction.

An analogy might be, how long does it take someone to drive from point A to
point B? Typically the trip can be made in 3 hours without traffic; the transaction
latency is 3 hours for this trip. However, the average latency for this trip might be
3.5 hours per trip because there is typically traffic congestion that slows the driver
down. This analogy illustrates how latency is a representation of an atomic event;
the drive from point A to point B.

Latency can be critical for end-user driven workloads.

Throughput

CPU

Throughput is a rate. A rate is the measure of how many actions are completed in
a unit of time.

This measure is most often characterized as TPS (transactions per second), TPM
(transactions per minute), TPH (transactions per hour), or TPD (transactions per
day). Throughput is not the inverse of latency. Your installation might have a high
latency of 2 seconds, but a tremendous throughput rate of 2,000 TPS. This
throughput might be acceptable in a batch environment where there is not a major
concern with individual transaction durations but overall record processing rates.

As an analogy, consider the trip from point A to point B in the example
from the highway department perspective. How many cars travel from point A to
point B in a day? The highway department concern is not with the latency of an
individual car, but with the overall throughput of the highway, measured in cars
per day. The department might find that by lowering the speed limit from 70 miles
per hour to 50 miles per hour they get more cars from point A to point B in a day
(for example, 10,000 versus 12,000). The increase in throughput is because there are
fewer accidents that cause overall delays. From an atomic perspective, an
individual car is going 29 percent slower, resulting in a longer trip (higher latency),
but the overall throughput for the road has risen by 20 percent. Now the highway
department might choose to build two more traffic lanes. The overall throughput
then doubles from 12,000 to 24,000 cars per day, but the latency is still 3 hours per
car. Individual drivers are not going any faster, but a lot more people are now
getting from point A to point B in the same time period.

Throughput is typically critical for automated workloads, such as harness-driven
inputs or bulk search operations.

The CPU is responsible for performing the work completed on a server.
While CPU capacity typically receives much attention when a server system is

sized, an IBM Initiate Master Data Service application requires a great deal of
processing power only during the bulk cross match (BXM) process.

Appendix G. Performance planning for the Master Data Engine 229

Apart from the BXM, CPU processing power is not as significant a performance
bottleneck as memory and storage subsystems.

Related concept

For information about BXM and run time operations, see [“Master Data Engine]
[workload profiles” on page 232

Memory

Memory plays a key role in optimal performance.

When considering performance, memory and [“Storage” on page 231| subsystems
are linked. To truly understand server performance, you must think of a server not
as a machine, but as a tool for getting work done. In order to complete work, you
must continually feed the server processors with information, to ensure maximum
efficiency. Since parts within the server operate at different speeds, a series of
memory buffers are used to perform speed matching between these components.
This illustration shows the presence of memory buffers throughout a server:

store
WORK

PN
A—

persistent
storage

perform
WORK

CPUs

—

memeory hierarchy

Figure 6. Memory buffer caches

These buffer caches minimize the differences in speed of components within a
server. The buffer caches allow for the efficient flow of data back and forth
between persistent storage where information is stored, and the CPU, where work
is performed on the data. If these buffer caches are not sized appropriately, then a
server might not operate efficiently while moving data, leading to a performance
problem.

The most critical buffer that you have direct influence over is main memory. Main
memory is typically the largest buffer cache in a server. Main memory provides a
mechanism to satisfy read requests to persistent storage from “near memory” and
reducing the number of trips required to “far memory”. (“Near memory” is faster
than “far memory.”) In terms of database server performance, large read buffer
caches residing in main memory dramatically boost the performance of a

230 Master Data Engine Installation Guide

read-intensive application. The boost is due to a reduction in the number of trips
made to physical disk to retrieve information.

To avoid undersizing main memory buffer cache, ensure that you have enough
available room to expand the buffers on both the application and the database

servers.

Memory requirements for the Master Data Engine differ during bulk and run time
operations.

Related concept

[“Master Data Engine workload profiles” on page 232|

Storage

The storage subsystem is a critical server component that is often overlooked.
Input and output (I/O) bandwidth is a key consideration when evaluating storage
needs.

I/0 bandwidth is composed of spindles (the physical disks backing the system)
and I/0O channels (the number and width of the connections from the server to the
storage array). I/O is critical for moving data from persistent storage up the
memory hierarchy to the CPUs to get work done. If an I/O subsystem is
undersized, performance suffers dramatically.

Here are some key terms for storage:

Table 72. Storage terminology

Acronym Term Description
DAS Direct attached | This storage type is the most common, where the spindles
storage are attached directly to the server. These systems can be

fast and well-suited to high performance environments.
However, as database sizes grow and spindle requirements
increase, their efficiency drops. Most large scale,
high-performance database environments are deployed on
SANSs rather than DAS.

SAN Storage area The SAN is the most common high performance storage
network environment used today. It centralizes spindles into a
storage array that is available to multiple servers through a
private storage network. SAN connections are persistent
and well-suited to high availability (HA) deployments.
SAN fabric speeds are typically 2 - 4 Gbps (gigabits per
second) and array sizes can grow to thousands of spindles.

NAS Network- NAS systems are commonly used for non-persistent
attached storage |storage connections such as file sharing and network
backups. They are typically not used for database
applications due to the non-persistent state of the
connection.

iSCSI iSCSI is a protocol that is used with less expensive NAS
devices to make connections persistent, suitable for
database applications. This protocol makes SAN type
flexibility available at a lower price point. However, most
enterprise level deployments leverage SAN technology as
their foundation.

Appendix G. Performance planning for the Master Data Engine 231

Networks

Networks allow you to communicate with servers.

From a performance perspective, most applications are concerned with the level of
traffic that is generated by users or other servers over a network. Typically the
Master Data Engine does not generate a significant load on this subsystem. The
Master Data Engine typically has a low user count, and most of the data it sends
“over the wire” requires a fraction of the bandwidth that is available. A typical
busy installation uses about 30 percent of the bandwidth available on a gigabit
network. Performance tuning efforts focus instead on the CPU, memory, and
storage subsystems.

Master Data Engine workload profiles

The Master Data Engine has two distinct workload profiles: bulk processing and
run time.

Bulk processing typically refers to the bulk cross match (BXM) process, which is
most commonly performed during the initial stage of an implementation, and
again right before the system goes live.

Run time processing refers to the day-to-day operations of the Master Data Engine,
after the initial bulk phase has been completed.

Each workload profile has its own performance profile and suggestions.

Bulk processing

Bulk processing typically refers to the bulk cross match (BXM) process, which is
most commonly performed during the initial stage of an implementation, and
again right before the system goes live.

BXM is a Master Data Engine process that enables the comparison and linkage of
thousands of records per second. This process loads the binary .unl extracts from
any of the derivation utilities and then measures the comparison scores against
your threshold settings to create entity assignments (linkages) and initial tasks.

The typical performance “footprint” of the bulk processing phase is:
* CPU-intensive
* Memory-intensive

* Storage demands focus on sequential input and output (I/O) operation

CPU considerations in bulk processing
Bulk processing (BXM) tends to be CPU intensive.

The mpxcomp utility is the most computationally intensive phase of the BXM
process. Larger customers (100 million records plus) might leverage 8 -16 cores
during the mpxcomp utility process to execute a thread per core to speed up the
comparison phase by using parallel threads of execution.

Memory considerations in bulk processing
The Master Data Engine server memory requirements for the application server are
highest during the bulk processing (BXM) phase.

232 Master Data Engine Installation Guide

Several key phases (specifically when running the mpxcomp and mpxlink utilities)
require enough memory to house several key objects into memory. This leads to a
requirement for 8 GB or more of available memory for typical customers, and 64+
GB for large-scale implementations.

Attention: Database memory requirements are discussed separately from
application server memory requirements. Memory requirements for the application
server are high during bulk processing and relatively low for run time operations.
Database memory requirements are typically higher during run time operation
than during bulk processing. However, the overall memory footprint for each
profile might be similar.

Storage considerations in bulk processing
Storage access follows a typical bulk profile, with large sequential reads and writes

following large blocks of computation time on the server running the bulk cross
match (BXM).

The footprint of the BXM phase can be large, as storage is required for the source
data, intermediate files, and the final .un1 files. These footprints are determined by
a host of variables specific to your data; estimates can be generated during
implementation.

Database considerations in bulk processing

A database is not required for bulk cross match (BXM) processing, except for the
final data load phase. Database performance is generally not a critical
consideration for this phase.

For customers seeking to minimize the bulk processing window, database loads
can be done in parallel to certain long running phases. This BXM timeline diagram
illustrates the overlap of the membktd utility load with the mpxcomp utility phase
for a sample 50 million member BXM. The shaded regions in the timeline could be
compressed to save further time.

Appendix G. Performance planning for the Master Data Engine 233

QENUMN| e——
load memhegd.
fraq —
load memakr =
load memsddr =
load memdate =
foad mempame =
load memident =

load memphong ==

load memblktd

comp
load memcmpd ==

wngd audnegd -+

[irik
SITHOAT —

I T T T T T T T 1
Pl] (=]] (]] Pl (]]
=] =] = L = = =
= | = [] o = = o |
oo oo oo o0 (n 5] o0 (u] (n 5] o0
L1} L) m 23]) Ll) Y
ey = = y = = = = =2
(%] (%] [L%] fod (]] Pl (] ko
- . =, — 5]] (%] 5] (%]
— — ~ % = = (=] [= | =
B = o e = 2 e b o
B - — .'.,_'- (= |] e o o
T £n Pt 5 = o] by £

Figure 7. A sample BXM timeline

Run time processing

Run time processing refers to the day-to-day operations of theMaster Data Engine,
once the initial bulk cross match (BXM) phase has been completed.

While cross matching is still performed as new sources are brought online, or as
records from existing sources are added to the Master Data Engine database, it is
done incrementally (by using incremental cross match [IXM]) as opposed to in bulk
cross match (BXM).

The typical performance footprint of run time processing is:
* CPU loads are relatively light, but dependent on customer scaling requirements
* Application server memory demands are relatively light

* Database CPU loads are heavier than application server loads, in
search-intensive environments

* Database memory demands are greater than for bulk processing

234 Master Data Engine Installation Guide

+ Storage demands shift from sequential operation to random

CPU considerations in run time processing
Run time processing CPU loads are relatively light in comparison to bulk loads.

Typically, the Master Data Engine places a larger burden on the server CPU
subsystem when compared to the application server. Generally, IBM Initiate®
Master Data Service® installations deploy ~2 cores on a typical application server,
and 4 cores on the database server. In larger scale deployments (greater than 20
transactions per second), a custom sizing might be required to determine the
appropriate application and database server core counts. Typical large-scale
installations deploy 2 - 4 quad core application servers and mirrored 8-way to
16-way database servers. Though the CPU ratio is 1:1, the application server CPU
workload is lighter-weight. The application server cores are not saturated and the
nodes are used primarily for load balancing and high availability purposes.

Memory considerations in run time processing
The Master Data Engine memory profile flips when making the transition from
bulk to run time operations.

Memory requirements on the application server tend to drop, while the memory
footprint on the database server increases. There are exceptions to this theory in
deployments with unique context count demands, but in general, the application
server memory footprint is much smaller than the database server footprint. The
primary reason for the larger database server memory footprint is the active
working set size; the “front end” SEARCH and MATCH activities work extensively
against CMPD1 (the index for CMPD), CMPD (the database table that stores
standardization and comparison strings), and BKTD2 (index to BKTD table that
stores bucketing data). The interaction rates are much higher when these objects
are cached in near memory. Thus, the preferred strategy is to size the database
server buffer cache to allow these objects to reside in memory to maximize the
buffer cache hit rate.

Depending on the way you search, “back end” attribute data retrieval can become
a significant workload also. In performance-sensitive environments, pay special
attention to how much data you are retrieving on average per search. This
information can be tracked through the Master Data Engine TIMER log.

Storage considerations in run time processing
Storage performance is critical to the run time processing phase.

The key characteristics of the Master Data Engine input and output (I/O) footprint
for the run time workload are:

* Runtime workload is online transaction processing (OLTP) style
* Reads are random (not sequential like most data warehouses)
* 80 percent to 90 percent reads, and 20 percent to 10 percent writes

* The engine interaction mix (that is, the distribution of interactions like
MEMGET, MEMPUT, and MEMSEARCH) determines the size of the I/O
workload. Different interactions have different I/O footprints.

Consult your IBM services representative for an I/O footprint estimate for your
particular deployment. You can use that footprint estimate to determine what your
SAN level requirements are. I/O subsystems are much easier to build at the start
of a project (by using horizontally scalable solutions) than they are to redeploy
once the installation has gone live. Corrective actions are often limited to caching

Appendix G. Performance planning for the Master Data Engine 235

solutions at the database tier, so focus on implementing a correctly sized 1/O
subsystem that is scalable at the start of your project.

Database considerations in run time processing
The storage underlying the database can typically be a performance bottleneck.

High search throughputs typically drive high input and output (I/O) rates on the

database server. This either overwhelms an undersized 1/O subsystem, or puts
CPU pressure on the database as it services requests from the application server.

236 Master Data Engine Installation Guide

Appendix H. Operational Monitoring with JConsole

The JConsole JMXMP (Java Management Extensions) tool is packaged with the
Master Data Engine and provides a method for monitoring performance and
resource consumption.

JConsole (officially known as the Java Monitoring and Management Console) offers
access to dynamic MBeans whose attributes contain up-to-date data that is of
interest to System Administrators.

When you create your Master Data Engine instance, the madconfig utility prompts
you to enter an engine management port number. This number is the port used by
JConsole to monitor the Master Data Engine from a remote system. The default
value is 1199.

The JConsole application is located in the /_jvm/bin directory where you installed
the Master Data Engine (WAD_ROOTDIR/ibm/initiate/enginex.x.x/_jvm/bin/
jconsole.exe).

JMXMP is the protocol used for JMX (Java Management Extensions)
communication. J]MX replaces the previously used RMI protocol. JIMXMP is based
on TCP sockets and relies on SASL (Simple Access Security Layer) for security.
This method is generally more secure than RMI. When a Master Data Engine
instance is created, the useSSL variable is set to false in the
com.initiate.server.jmx.jmxmp.cfg configuration file. If your implementation
uses SSL, you must change this setting.

Table 73. Settings for useSSL within com.initiate.server.jmx.jmxmp.cfg
Using SASL only: useSSL=false
Using SSL: useSSL=true

If you are using a version of JConsole that is different from the one included with
the Master Data Engine, you must copy one file before launching JConsole. Copy
the jmxremote_initiate.jar file from your MAD_ROOTDIR/1ib/jvmext directory into
the JRE Tib/ext directory.

Any vendor applications that connect to the Master Data Engine through JMX
must have the jmxremote_initiate.jar file in the application classpath.

To continue availability of an RMI JMX connection, you can uncomment the RMI
example in the jmx.xml file. The jmx.xml file is located in your type_name/conf
directory. This scenario occurs only in implementations where a customer external
integration already uses RML

Important: If you uncomment the RMI example, do not remove the JMXMP
connector as IBM Initiate® Workbench always uses this method.

Additional monitoring options: In addition to JConsole, other monitoring options
include the J]MX Browser, which is embedded in IBM Initiate Workbench, and the
web-based Performance Log Manager.

Additional information

© Copyright IBM Corp. 1995, 2011 237

To learn about the JMX Browser, see “Operational monitoring” in IBM Initiate
Workbench User’s Guide.

To learn about the Performance Log Manager, see IBM Initiate Master Data Service
Software Operations Guide.

To learn about the JConsole architecture and features, see [http://java.sun.com|

Accessing JConsole

Use this procedure to access the JConsole monitoring tool. The JConsole JMXMP
(Java Management Extensions) tool provides a method for monitoring Master Data
Engine performance and resource consumption.

Procedure

1. From the MAD_ROOTDIR/ibm/initiate/enginex.x.x/_jvm/bin/ directory, run the
jconsole.exe file.

2. Choose Remote Process and supply connection information in the form of:
service:jmx:jmxmp://host:port

where host is the server running the Master Data Engine and port is the
associated Master Data Engine Management port.

3. Enter your username and password. The username must be part of the IBM
Initiate® Master Data Service® Administrator group.

Results

The connection information is written to the Master Data Engine log file during
startup.

For additional information about connection on various platforms, see:
Ihttp: / /java.sun.com/j2se/1.5.0/docs/guide/management/faq .htmll

JConsole Mbeans tab

JConsole includes the MBeans tab.

Under the com.initiatesystems tree are nodes for LDAP, Interactions, Log4j, and a
node for the Master Data Engine instance that you requested on the connection
dialog. Within the node for the instance name are nodes for Jobs, Listeners,
Metadata, and ThreadPools. For each item, you can view an Attributes or Info tab.
For monitoring purposes, view the contents of the Attributes tab. The Info tab
provides the MBean name and the associated Java classname. Some nodes also
have an Operations tab.

If you have implemented third-party callouts, you also see a Callouts node.
Listeners node
To view information about Master Data Engine transactions, go to

com.initiatesystems > Interactions. Within the MPINET instance_name node is the
Master Data Engine port number node, and below that is the Interactions node.

238 Master Data Engine Installation Guide

http://java.sun.com
http://java.sun.com/j2se/1.5.0/docs/guide/management/faq.html

If the Interactions node does not appear, go to com.initiatesystems > MPINET
instance_name> Listeners. Under the port number for the instance, choose the
Operations node and click the refreshIxnStats button to refresh the Interactions
node.

To view the activity of an interaction, select the Interactions node to see a list of all
interactions. Select an interaction from the list, expand the node, and select the
Attributes node. Each time an interaction is requested, it is logged in this view. The
view does not automatically change if it is in focus. Click the Refresh button to
update the display.

This table describes each Interaction MBean attributes.

Table 74. Interaction MBean attributes

MBean attribute Description

AvgBktCands Average number of member candidates returned from buckets

AvgRcvSize Average size of messages received by the Master Data Engine

AvgSndSize Average size of messages sent by the Master Data Engine to clients

AvgTicks Average number of milliseconds

MaxBktCands Maximum number of member candidates returned from buckets

MaxRcvSize Maximum size of messages received by the Master Data Engine

MaxSndSize Maximum size of messages sent by the Master Data Engine to
clients

MaxTicks Maximum number of milliseconds

MinRcvSize Minimum number of member candidates returned from buckets

MinSndSize Minimum size of messages received by the Master Data Engine

MinTicks Minimum number of milliseconds

TotBktCands Total number of member candidates returned from buckets

TotBktSrchs Total number of bucket searches

TotExecs Total number of times this interaction was called

TotGood Total number of times this interaction returned a response with no
error

TotRevSize Total size of messages received by the Master Data Engine

TotSndSize Total size of messages sent by the Master Data Engine to clients

TotTicks Total number of milliseconds

Log4j node

Select Log4j to view log settings and error log notifications. Log4j handles logging
for the Master Data Engine. Within Log4j, there is a root Appenders tree. From this
tree, you can control how logging is done in the Java application.

ThreadPools node
Through the ThreadPools node within com.initiatesystems > MPINET
instance_name, you can monitor the service threads or context objects connected to

the Master Data Engine. From the ThreadPools node, expand the Listener node
and select Attributes.

Appendix H. Operational Monitoring with JConsole 239

The context pool size is the number of Master Data Engine threads that are started
concurrently. Each context pool has its own connection to the database and can
operate independently of the others. If you have your context pool set at 5, for
example, you can send in five searches, gets, or puts at the exact same millisecond,
and they are all processed concurrently. If six are sent, then the first five process
while the sixth waits for the next free context.

CurrentContexts is the number of context threads currently in use. MaxContexts
shows the peak number of contexts that have been in use at one time.

By double-clicking the value field for ContextPoolSize, CurrentContexts, or
MaxContexts, you can view an activity chart. Click Discard chart to return the
normal display.

Additional information: For additional information about the MBeans displayed
in JConsole and each interaction, see “Operational monitoring” in IBM Initiate
Workbench User’s Guide.

For additional documentation about JConsole, see to |http:/ /java.sun.com|and
search for JConsole.

For more information about Log4j, see [http:/ /java.sun.com|

JConsole administrative actions

If you log in to JConsole with an administrative user name and password, you can
bounce or stop the Master Data Engine, or perform a thread dump. These actions
are performed from the org.tanukisoftware.wrapper node.

System attributes
Expand the WrapperManager node and choose Attributes to view current settings.
System operations

Expand the WrapperManager node and choose Operations to view the available
operations.

To stop the Master Data Engine instance, click stop. The instance is stopped and
connection to JConsole is terminated. You must restart the Master Data Engine and
reconnect JConsole.

To bounce the Master Data Engine, click restart. The instance stops and then
restarts. Connection to JConsole is lost, but you can reconnect after waiting a few
moments.

In some instances when you are working with IBM Software Support, they might
need a thread dump. By clicking requestThreadDump, the JVM thread information
is output into the instance_name.out log directory in the instance log directory.
System overview

If you log in to JConsole with an administrative password, you can view

additional information from the Overview tab. Click the Memory, Threads, or
Classes tabs to access graphs of current processes.

240 Master Data Engine Installation Guide

http://java.sun.com
http://java.sun.com

For more information about the Overview tab, see [http:/ /java.sun.com|

Appendix H. Operational Monitoring with JConsole 241

http://java.sun.com

242 Master Data Engine Installation Guide

Appendix I. AES encryption

Advanced Encryption Standard (AES) is an additional method for encrypting
passwords for the Master Data Engine, Message Broker Suite, and IBM Initiate
Web Reports.

After you install your Master Data Engine, you must generate an AES key. Next,
you must encrypt a password. The madpwd3 utility is used to encrypt password
and requires the AES key and initialization vector (iv).

After you have generated your AES key and encrypted password, you then use the
madconfig utility to create your Master Data Engine or Message Broker Suite
instances. The madconfig create_instance process prompts you to indicate your use
of an AES-encrypted password by entering pwd3. The madconfig utility then
requires you to provide AES key and iv files.

When creating the Master Data Engine instance, you must also identify your
JSSE/]JCE AES cipher provider. You can accept the default setting from the
Jjava.security file, unless your organization uses a JCE provider other than the
default included with the provided JVM.

When prompted to enter the password, you type the encrypted output obtained
from running the madpwd3 utility.

After your Master Data Engine instance is created, these variables are set in your
com.initiate.server.system.cfq file.

MAD_SSLLIB=ssleay32.dl1l

MAD_SSLCRYPTOLIB=Iibeay32.dl1

MAD_SSLAESKEYFILE=MAD_ROOTDIR\\conf\\initiateaeskey.

dat

MAD_SSLAESIVFILE=MAD_ROOTDIR\\conf\\initiateaesiv.da

t

For your broker instances, the same variables are set in your services.ini file. The
values set for the variables depend upon your responses to the madconfig utility
prompts.

Also for your Master Data Engine, these Java properties are added in your
jdbc.properties file. Again the values might be different for your installation.
mad.password.scheme=PWD3

mad.aes.key.file=MAD_ROOTDIR\\conf\\initiateaeskey.d

at

mad.aes.iv.file=MAD_ROOTDIR\\conf\\initiateaesiv.dat

mad.aes.provider=SunJCE

password3=99CA56BDF62638567F456941650237AB
aeskeyfile=MAD_ROOTDIR\\conf\\initiateaeskey.dat
aesivfile=MAD_ROOTDIR\\conf\\initiateaesiv.dat
aesprovider=SunJCE

The 1dap.properties use the default IBM Initiate® Master Data Service® AES key
and IV files. By default, the globaladmin and bind user passwords are encrypted
with AES 256-bit. This cypher-strength requires the unrestricted policy files to be
installed.

© Copyright IBM Corp. 1995, 2011 243

embedded. 1dap.security.adminpassword3=99CA56BDF62638567F456941650237AB
embedded. 1dap.security.aeskeyfile=MAD_ROOTDIR\\conf\
\initiateaeskey.dat

embedded. 1dap.security.aesivfile=MAD_ROOTDIR\\conf\\

initiateaesiv.dat

embedded.Tdap.security.aesprovider=SunJCE

internal.ldap.security.bindpassword3=99CA56BDF62638567F456941650237AB
internal.ldap.security.aeskeyfile=MAD_ROOTDIR\\conf\
\initiateaeskey.dat
internal.ldap.security.aesivfile=MAD_ROOTDIR\\conf\\
initiateaesiv.dat

internal.ldap.security.aesprovider=SunJCE

By default only the embedded and internal prefixes are set. You can also use AES
for your external prefixes. The aesprovider property is empty if you decide to use
settings from your java.security file for JCE cipher selections. Otherwise, this
property contains the value that you provide to the madconfig utility prompts.

Related task

[‘Generating AES keys and password”)

Related reference

[“AES policy JAR files” on page 246)

Generating AES keys and password

Use the OpenSSL command-line tool, which is included with the Master Data
Engine, to generate AES 128-, 192-, or 256-bit keys. The madpwd3 utility is used to
create the password.

Before you begin

Verify that these environment variables are set in your
com.initiate.server.system.cfg file:

* On Microsoft Windows, set MAD_SSLLIB=ss1eay32.d11 and
MAD_SSLCRYPTOLIB=Tibeay32.d11

* On IBM AIX, Linux, or Solaris, set 1ibss1.so and Tibcrypto.so
— Microsoft Windows command example: set MAD_SSLLIB=ssleay32.d11
— IBM AIX, Linux, or Solaris command example: export MAD_SSLLIB=1ibss1.so

Procedure

1. On the command line, go to the Master Data Engine installation directory
(MAD_ROOTDIR). Then go to the \bin directory. For example:

Microsoft Windows: cd C:\Program Files\IBM\Initiate\Enginel0.0.x\bin
IBM AIX, Linux, or Solaris: cd /opt/IBM/Initiate/Enginel0.0.x/bin
2. On the command line, type:
* For 128-bit key:
openss] enc -aes-128-cbc -k secret -P -md shal
* For 192-bit key:
openss] enc -aes-192-cbc -k secret -P -md shal
* For 256-bit key:
openss] enc -aes-256-cbc -k secret -P -md shal

244 Master Data Engine Installation Guide

“secret” is a passphrase for generating the key.

The output from the command is similar to:

- 128-bit:
salt=92AE31A79FEEB2A3
key=770A8A65DA156D24EE2A093277530142
1v=F5502320F8429037B8DAEF761B189D12

- 192-bit:
salt=D495560961CCCFEO
key=4D92199549E0F2EF009B4160F3582E5528A11A45017F3EF8
iv =35B2FF0795FB84BBD666DB8430CA214E

- 256-bit:
salt=263BC60258FF4876
key=B374A26A71490437AA024EAFADD5B497 FDFF1A8EAGFF12F6FB65AF2720B59CCF
iv =7E892875A52C59A3B588306B13C31FBD

3. Copy the key output into a .dat file, excluding the “key” characters. For
example, a “myaeskey.dat” file for 256-bit can contain:

B374A26A71490437AA024E4FADD5B497FDFF1A8EA6FF12F6FB65AF2720B59CCF
Do not have a carriage return or line feed in the file.

4. Place the iv output into another .dat file, excluding the “iv” characters. For
example, a myiv.dat file can contain:

7E892875A52C59A3B588306B13C31FBD
Do not have a carriage return or line feed in the file.

Important: If the key and iv are generated with another tool, you must verify
that the result is hex-encoded and that the size of the key for 128 is 32
characters, 192 is 48 characters, and 256 is 64 characters. The hex-encoded iv is
32 characters in length. Hex encoding means that each character in the key and
iv are converted to its hexadecimal equivalent. For example, the letter “A” is
“41” in hexadecimal. Hex encoding eases the storage and transport of the key
and iv because the non-encoded versions of these items can contain ASCII
control character sequences.

The IBM Initiate Master Data Service implementation expects the
Cipher-Block-Chaining (CBC) method. The “salt” is not used in any future
decryption operations and can be discarded.

5. Run the madpwd3 utility to generate the encrypted password. The madpwd3
utility allows for the key and iv to be entered either from a file or directly on
the command line. Use the -keyfile and -ivfile options to specify as a file or
use the -key and -iv options to enter them at the command prompt. There is
no limit on the length of the password input and the output length is variable.
For example:

madpwd3 -keyfile myaeskey.dat -ivfile myaesiv.dat -in foopass

generates this output:

PLAINTEXT = (foopass)
ENCRYPTED = (99CA56BDF62638567F456941650237AB)
DECRYPTED = (foopass)

The madconfig utility prompts for this information when creating Master Data
Engine and Message Broker Suite instances.

Results
AES decryption in the Master Data Engine is supported via native OpenSSL APIs

as well as Java APIs.

Appendix I. AES encryption 245

Related reference

[“madpwd3 utility” on page 128|

AES policy JAR files

Depending on your choice of cipher strength (128, 192 or 256) for your AES
password, you might need to add the unrestricted policy JAR files.

The unrestricted policy JAR files are added to either the§JAVA_HOME/jre/1ib/
security or $JAVA_HOME/1ib/security directories. AES 128 does not require use of
the policy files. The policy JAR files are named: Tocal_policy.jar and
US_export policy.jar.

These policy files are included with the JVM embedded with the Master Data
Engine. However, IBM Initiate Web Reports use a different JVM from the Master
Data Engine and you might need to download these files for bit strengths greater
than 128.

For the Sun JVM, download the policy JAR files from:
*+ JDK 15

https:/ /cds.sun.com/is-bin/INTERSHOP.enfinity / WFS/CDS-CDS_Developer-
Site/en_US/-/USD/ ViewProductDetail-Start?ProductRef=jce_policy-1.5.0-oth-
JPR@CDS-CDS_Developer

- JDK 1.6

https:/ /cds.sun.com/is-bin /INTERSHOP.enfinity / WFS/CDS-CDS_Developer-
Site/en_US/-/USD/ ViewProductDetail-Start?ProductRef=jce_policy-6-oth-
JPR@CDS-CDS_Developer

For the IBM JVM, download from:
+ JDK1.5

http:/ /www.ibm.com/developerworks/java/jdk/security /50/
* JDK 1.6

http:/ /www.ibm.com/developerworks/java/jdk/security /60/

AES password test

You can test the usage of your AES password by running the madconfig utility
test_datasource target, and supplying the encrypted database password.

AES usage appears in the engine log similar to this example:

TRACE MAD_DbxFixConnStr:
szConnStrIn="'DSN=foodsn;UID=usernamel;PWD3=99CA56BDF62638567F456941650237AB" .

Passwords can also be decrypted by using the Java class file
com.initiatesystems.common.util.Pwd3Helper. The class file is contained in
madcommon. jar. Usage:

com.initiatesystems.common.util.Pwd3Helper -keyfile filename -ivfile
filename -in encrypted -provider provider optional

246 Master Data Engine Installation Guide

Appendix J. Interceptor tool

When performing an upgrade or routine maintenance, recording interactions
executed on one Master Data Engine and replaying those interactions on other
Engines can reduce downtime.

Important: If you have not previously used the Interceptor tool, consult IBM
Software Support for guidance.

The Interceptor tool combines two processes: the Recorder and the Replayer. The
Recorder intercepts interactions destined for a Master Data Engine, logs them to an
“interaction data” file, and then forwards the interactions on to the engine in a
transparent manner. The interactions in the file can then be replayed on a
destination engine to facilitate routine maintenance or upgrade.

1. Maintenance purposes: Within a multi-engine configuration, you can use
Recorder as you step through a maintenance process for one engine, and then
use Replayer to execute the process identically for other engines. (This
functionality is available only with engines running releases 9.2, 9.5 and 10.0.)

If you are performing maintenance, you might find it easier to use the replayer
targets of the madconfig command-line utility (rather than using the Replayer
API). Choosing to use the madconfig utility replayer targets or the Replayer
API depends on whether you need to manipulate the recorded interactions
before replaying them.

2. Upgrade purposes: You can use Recorder and Replayer to facilitate upgrades
from release 8.7, 9.0, 9.2, or 9.5 to release 10.0.

If you are performing an upgrade, use the Replayer API (rather than the
madconfig utility replayer targets). See [‘Replayer API” on page 251

Inputs to Recorder can come only from Master Data Engine releases 8.7, 9.0, 9.2,
9.5, or 10.0. Replayer can output to release 9.2, 9.5, or 10.0 only.

Whether performing maintenance or upgrade, use the madconfig utility recorder
targets to create the interaction data file.

The Interceptor process is:

1. Upon starting the Recorder, interactions intended for a source Master Data
Engineare directed to the Recorder process.

2. The Recorder writes the interactions out to the interaction data file.

w

The Recorder passes the interactions transparently to the engine.

4. When you are ready to replay the interactions to a destination engine, start the
madconfig utility replayer or your own application created with the Replayer
APIL The Replayer reads from the interaction data file created by the Recorder
in step 2.

5. The madconfig utility replayer (or your own application) iterates through the
interactions in the file and replays them to the destination engine.

The Interceptor process figure illustrates steps 1 through 5 in flow chart format.

© Copyright IBM Corp. 1995, 2011 247

Master Data Engine

release 8.7, 9.0, 9.2, 9.5, or 9.7

Interactions Recorder

Interaction Data File

Replayer

Master Data Engine
release 9.2, 9.5, or 9.7

Figure 8. The Interceptor process

To the Master Data Engine, both the Replayer and the Recorder appear as clients
issuing interactions. These two processes run independently of each other. The
speed of the replay is dependent on the destination engine.

Starting the Interceptor Recorder with the madconfig utility

You can use the madconfig utility to start the Interceptor Recorder.
About this task

Only one instance of the start_recorder target can be run at any given time on a
single Master Data Engine.

Until you stop the Recorder, it continues to write interactions to the interaction
data file, gradually increasing the size of the file. Make sure that you have
adequate space on the file system and monitor the file as it grows.

Procedure

1. On the command line, go to the Master Data Engine installation directory
(MAD_ROOTDIR). Then go to the scripts directory. For example:

Microsoft Windows: cd C:\Program Files\IBM\Initiate\Enginel0.0.x\scripts
IBM AIX, Linux, or Solaris: cd /opt/IBM/Initiate/Enginel0.0.x/scripts

2. Run the applicable command:
Microsoft Windows: madconfig start_recorder

248 Master Data Engine Installation Guide

IBM AIX, Linux, or Solaris: madconfig.sh start_recorder

3. Enter an existing Master Data Engine instance name. This name is the “source”
Master Data Engine.

4. Enter the Master Data Engine user password.

5. Enter interaction types. Default value: [] By default, interactions of all types

are recorded. For a complete list and descriptions of interactions, see the IBM
Initiate Workbench User’s Guide .

6. Enter the file name. By default, the file name is Record.rcd and it is written to
the MAD_HOMEDIR\inst\mpinet_name directory. The file can be written to an
alternative path by supplying the full path and file name. Do not include
spaces in the file name.

7. Leave the command line open while the Recorder is running.

Stopping the Interceptor Recorder with the madconfig utility

When you have finished recording your Master Data Engine interactions, you can
use the madconfig utility to stop the Interceptor Recorder.

About this task

Until you stop the Recorder, it continues to write interactions to the interaction
data file, gradually increasing the size of file. Make sure that you have adequate
space on the file system and monitor the file as it grows.

Procedure

1. From the command line you used to start the Recorder (the engine installation
MAD_ROOTDIR\scripts directory, run the applicable command:

Microsoft Windows: madconfig stop_recorder

IBM AIX, Linux, or Solaris: madconfig.sh stop_recorder
2. Enter the Master Data Engine name.
3. Enter the Master Data Engine user name.

4. Enter the Master Data Engine user password.

Starting the Interceptor Replayer with the madconfig utility

You can use the madconfig utility to start the Interceptor Replayer if you are
replicating interactions from one 10.0 Master Data Engine to another 10.0 engine.

About this task
If you are performing an upgrade, use the Replayer API.

You can run only one instance of the madconfig utility start_replayer target at any
given time on a single engine.

Procedure

1. On the command line, go to the Master Data Engine installation directory
(MAD_ROOTDIR). Then go to the scripts directory. For example:

Microsoft Windows: cd C:\Program Files\IBM\Initiate\Enginel0.0.x\scripts
IBM AIX, Linux, or Solaris: cd /opt/IBM/Initiate/Enginel0.0.x/scripts

2. Run the applicable command:
Microsoft Windows: madconfig start_replayer

Appendix J. Interceptor tool 249

IBM AIX, Linux, or Solaris: madconfig.sh start_replayer

3. Enter an existing Master Data Engine instance name. This version of the
instance must be release 10.0 or later.

4. Enter the Directory with Recorded file. Point to the location of the file created
by the Recorder.

5. Enter the Recorded file to Replay. Default value: Record.rcd

6. Enter the Start Line Number. Indicate where in the recorded file you want the
Replayer to begin executing interactions to be sent to the destination engine.
The Replayer executes all interactions from the line number you supply until
the end of the file. The default is 1.

Results

The Replayer creates a replay.log file to log the start_replayer actions if these
conditions are met:

* that Tog4j-+.jar is in the classpath upon class creation

* that Tog4j-*.jar is in the classpath for the replayer script

* that you have this VM argument set
-DTog4j.configuration=interceptor.log4j.xml

The Replayer creates the replay.log file in the same directory as the recorded file.
The Replayer, upon starting, establishes a connection with the destination engine,
scans the interaction data file (one interaction per line), and sends the interaction
to the new engine. There is no madconfig utility stop_replayer target; the Replayer

stops when it reaches the end of the interaction data file.

Related reference

[‘Replayer API” on page 251|

The fields of the interaction data file

The Interceptor Recorder intercepts interactions that are destined for a Master Data
Engine and logs them to an interaction data file.

Each line in the interaction data file represents an individual interaction. Each
interaction contains these fields:

* system time

* message size

* message number

* version number

° message

* interaction type

e user ID

e member ID in the source system

For example:

1258673233759|342|0|98|4d454d505554000000006e000000020073797374656d00737
97374656d

00
0000000300000001000000010000000000000000 |MEMPUT | system| [RMC:870504]

250 Master Data Engine Installation Guide

¢ The system time is: 1258673233759

The entry is a UNIX and Linux system epoch time that, in this case, converts to
December 4, 2009 7:28:29pm

* The message size is: 342 bytes
¢ The message number is: 0

The 0 indicates a native message type. The other possible message type is 1,
which is a Java message. This message distinction is internal to IBM Initiate®
Master Data Service®.

* The version number is: 90
This number identifies the Master Data Engine version number.
¢ The message, a hex-encoded string containing the message for the interaction, is:

4d454d505554000000006€000000020073797374656d0073797374656d
000
0000000000000000300000001000000010000000000000000

* The interaction type is: MEMPUT

Other possibilities include MEMDROP, MEMDELETE, MEMMERGE, and
MEMUNMERGE. By default, the Recorder intercepts all interactions.

* The user ID is: system
* The member ID in the source system is: [RMC:870504]
The format is[Source :MemberID]

Replayer API

Use the Replayer API to facilitate upgrade from an 8.7, 9.0, 9.2, or 9.5 engine to a
10.0 engine.

If you are performing maintenance that does not require manipulating recorded
interactions before replaying them, use the madconfig utility replayer target.

The Replayer API allows you to account for changes in the format of interactions
between product releases as well as format changes you might have made to suit
your implementation.

Use the Replayer API to create Java applications to decode, map, and execute the
interactions of the interaction data file. Specifically, your application:
1. Decodes (in other words, reads) the interaction from the interaction data file.

2. Maps the interaction from the format used by the source Master Data Engine to
the format used by the destination engine.

3. Executes the interaction by sending the newly formatted interaction to the
destination engine.

Of the three steps, IBM Initiate® Master Data Service® provides code to perform
decode and execute steps, as well as sample code for the mapping step. Use that
code to create custom mappings to accommodate the interactions of your own
configuration.

IBM Initiate® Master Data Service® does provide several sample applications that
cover most upgrade cases.

The Replayer API is made available through Interceptor.zip file, which is
installed by default in this directory:

* Microsoft Windows: [engine]\1ib\sdk\

Appendix J. Interceptor tool ~ 251

e IBM AIX, Linux, or Solaris: [engine]/1ib/sdk/

The compressed file includes:

1. A 1ib directory containing JAR files. When you add the JAR files to your
classpath, you must specify each JAR file by name. Classes are created if you
include .../1ib/* in the classpath.

2. An example directory of sample Java programs for replaying 8.7, 9.0, 9.2, and
10.0 interactions along with sample mappings for 8.7 and 9.0. The examples
differ only in how the mapping is performed.

3. A doc directory contains Javadocs for the Replayer APL

4. The replayerbat and replayer.sh executable programs can be used to
demonstrate the execution of the sample applications.

5. A readme file with basic information about the Recorder API.

The Replayer API consists of a single Replayer class
(com.initiatesystems.hub.interceptor.replayer) with various methods for:

* decoding the interaction data file and replaying interactions, and

* getting and setting the host and port of the engine, the name of the interaction
data file, and the starting line for replaying the interactions.

For detail about the individual methods, see the IBM Initiate Java SDK Javadoc
Information available within the doc directory of the Interceptor.zip file.

The decodelxns method returns an iterator. To take advantage of the iterator,
ensure that your application:

1. Sets up a loop that makes a call to hasNext() of the returned iterator. Set up the
loop to iterate as long as hasNext() returns true.

2. Within the loop, obtain each interaction by calling next() on the returned
iterator.

Related task

[‘Starting the Interceptor Replayer with the madconfig utility” on page 249|

Related reference

[“Interceptor mapping files”

Interceptor mapping files

Mapping files are used to map interactions between versions of the Master Data
Engine.

The Interceptor.zip file contains sample Java applications for replaying
interactions recorded with Master Data Engine releases 8.7, 9.0, 9.2, 9.5, and 10.0.
The interactions can be replayed only to a 9.2, 9.5, or 10.0 release version of the
engine. The Interceptor.zip file also contains two mapping files (MapIxn87.java
and MapIxn90.java) that you can use to map from version 8.7 to 10.0 and from
version 9.0 to 10.0. You can use these files if you have not customized the
interaction formats for your installation.

Specifically, ReplayerClient87.java calls the decodedIxns method to decode the

interaction data file created by the 8.7 engine. A call to the decodeIxns method
returns an iterator by which the code obtains each interaction. The iterator invokes

252 Master Data Engine Installation Guide

the mapIxn method of the MapIxn87 class to perform the mapping from 8.7 to 10.0.
Finally, the code calls the replay method to replay the interactions against the 10.0
Master Data Engine.

The same mechanism applies to all subsequent releases. For example,
ReplayerClient90.java executes the same steps except that it invokes the MapIxn90
class to perform the mapping from 9.0 to 10.0. Similarly,

* ReplayerClient92.java invokes MapIxn92.
* ReplayerClient95.java invokes MapIxn95.
* ReplayerClient97.java invokes MapIxn97.

Because the source and destination engines are both 10.0, no mapping is required.

Use MapIxn87.java and MapIxn90.java as templates, as you devise the mapping
required for the upgrade of your particular installation.

Other mapping scenarios

In addition to the standard mapping from one release to another, you might need
to write custom mapping code to manage these complexities:

* To account for miscellaneous business logic that has changed between the two
releases. For example, between the 9.2 release and the 10.0 release, you might
have added a new attribute or changed from one type of MEMPUT interaction
to another.

* To parse the interaction data file based on an interaction user ID, interaction
type, version number, and so on. For example, you might want to specify that
the interactions associated with one source system are to be replayed to one
engine, while interactions from another source system are to be replayed to a
different engine.

To create custom mapping, use the Replayer APIL. The ReplayerClientx.java and
the MapIxn#.java are sample files, so you can either modify those files or use them
as a base for new files. You can also write your own version of ReplayerClients.
Use the information provided in the Java docs that are included in the
Interceptor.zip file to write your own clients.

Running your custom Replayer application

If you have written a custom Replayer application, you must edit the replayer.bat
or replayer.sh script so that the script calls your application.

About this task

The replayer.bat and replayer.sh scripts that are included within
interceptor.zip file call ReplayerClient90. Edit the script if you want to call a
different version of ReplayerClient or to call your own Replayer application.

You can run multiple Replayer applications simultaneously, though the Replayer
itself is single threaded.

Procedure
1. Extract the interceptor.zip file.

2. Edit the replayer.bat or replayer.sh script available with in interceptor.zip
file so that the script calls your custom application, or another version of
ReplayerClient.

Appendix J. Interceptor tool 253

3. Open a command line from the directory in which you extracted the
interceptor.zip file and run the command for your operating system:

Microsoft Windows: replayer.bat [targetHost] [targetPort] [logFile]
[startLine]

IBM AIX, Linux, or Solaris: replayer.sh [targetHost] [targetPort]
[TogFile] [startLine]

where

* targetHost is the host name for the destination Master Data Engine.
 targetPort is the port for the destination engine.

* logFile is the interaction data file. By default this setting is record.rcd

¢ startline is the line in interaction data file to begin processing; the default is
1. This value is optional.

254 Master Data Engine Installation Guide

Appendix K. FIPS compliance

Federal Information Processing Standards (FIPS) is a security standard developed
by the U.S. federal government. FIPS compliance is required in many U.S. federal
government installations.

If you are installing in a U.S. federal government environment, your
implementation must be FIPS-compliant. The Master Data Engine, Message Broker
Suite, and engine command-line utilities that communicate over SSL can be
FIPS140-2 enabled.

The madconfig utility includes additional prompting for creating a FIPS-enabled
instance when you start the utility using this command:

madconfig -Dmad.sec.show.prompts=true create_instance

Two important items to note when creating FIPS-compliant instances:

* Several of the Master Data Engine Java Runtime Engine files are updated when
creating a FIPS-compliant instance. Because of this configuration, you cannot
have a FIPS-compliant instance and a non-FIPS compliant instance sharing the
same Master Data Engine (MAD_ROOTDIR).

* Also, if you uninstall and then reinstall a Master Data Engine, you must first
remove the FIPS-compliant instance and recreate it after reinstallation of the
engine.

Related information

For guidelines on installing the IBM Initiate Master Data Service components in a
U.S. government environment, see IBM Initiate Master Data Service Security Technical
Implementation Guide (STIG) .

To create FIPS-compliant brokers, see IBM Initiate Master Data Service Message
Broker Suite Reference .

If you are installing IBM Initiate Web Reports or IBM Initiate Inspector, see IBM
Initiate Web Reports Installation and Configuration Guide or IBM Initiate Inspector
Installation and Configuration Guide

Enabling FIPS compliance in the Master Data Engine

If you are installing in a U.S. federal government environment, your Master Data
Engine instance must be FIPS-compliant.

Before you begin

Review the FIPS compliance topic.

About this task

To enable FIPS compliance in the Master Data Engine, use the madconfig utility to
create your instance. FIPS prompts are not a standard part of the madconfig
create_instance process. To display the necessary SSL and FIPS prompts, you must

use a specific command. This command instructs madconfig to expose specific SSL

© Copyright IBM Corp. 1995, 2011 255

and FIPS prompts during the instance creation. These prompts appear after
entering the engine instance home directory.

The default key and truststore password is: rmi+ ssl.

Procedure

1. On the command line, go to the Master Data Engine installation directory
(MAD_ROOTDIR). Then go to the scripts directory. For example:

Microsoft Windows: cd C:\Program Files\IBM\Initiate\Enginel0.0.x\
scripts

IBM AIX, Linux, or Solaris: cd /opt/IBM/Initiate/Enginel0.0.x/scripts
2. Type this command:
madconfig -Dmad.sec.show.prompts=true create_instance

3. The first two prompts are standard madconfig utility create_instance prompts.
Provide the name of the engine instance and the instance home directory.

4. Type y to enable SSL when communicating with the Master Data Engine.

5. Enter the full path and name of the JSSE truststore for the Master Data Engine
instance. The default value is MAD_ROOTDIR/conf/ibmcorporationtrust.jks

6. Enter the password for accessing the JSSE truststore for the Master Data
Engine instance. Password characters are not displayed.

7. Enter the JSSE truststore type for the Master Data Engine instance. The default
value is JKS.

8. Enter the full path and name of the JSSE keystore for the Master Data Engine
instance. The default value is MAD_ROOTDIR/conf/ibmcorporation.pl2.

9. Enter the password for accessing the JSSE keystore for the Master Data Engine
instance.

10. Enter the JSSE keystore type for the Master Data Engine instance. The default
value is PKCS12.

11. Enter y if you want to enable FIPS 140-2 compliance mode for the v instance.

12. Continue with the remaining create_instance prompts.
Results

The madconfig utility automatically updates your JRE and instance folders with
the proper configuration for FIPS enablement as follows:

e com.initiate.server.system.cfg with MAD_SSLFIPSMODE=1
e wrapper.conf with wrapper.java.additional.16=-

Dcom. ibm.mdshs.jsse2.JSSEFIPS=true (This example shows the numeric suffix of
“16.” The exact number in your file might vary.)

* java.security with these security providers if they do not exist, starting at order
2:

security.provider.2=com.ibm.mdshs.crypto.fips.provider.IBMJCEFIPS
security.provider.3=com.ibm.mdshs.crypto.provider.IBMJICE

security.provider.4=com.ibm.mdshs.jsse2.IBMJSSEProvider2

* java.security with these ssl socket providers if they do not exist:
— ss1.SocketFactory.provider=com.ibm.mdshs.jsse2.SSLSocketFactoryImpl

— ssl.ServerSocketFactory.provider=com.ibm.mdshs.jsse2.
SSLServerSocketFactoryImpl

These JAR files are installed into your JRE Tib/ext directory.
* ibmjcefips.jar

256 Master Data Engine Installation Guide

* ibmjcefw.jar

* ibmjceprovider.jar
* ibmjsseprovider2.jar
e ibmpkcs.jar

The embedded JVM that comes with the installation contains the appropriate
Unlimited Strength Jurisdiction Policy Files in order to unlock high-strength
ciphers. These files are located in your JRE 1ib/ext directory.

* local policy.jar
* US_export_policy.jar

Related concept

[Appendix K, “FIPS compliance,” on page 255

Enabling FIPS compliance for command-line utilities

The MAD_SSLFIPSMODE variable is used to enable FIPS compliance within
Master Data Engine command-line utilities that communicate over MPINET and
SSL.

Procedure

1. In your Master Data Engine instance directory (MAD_HOMEDIR/instance_name/
mpinet_instance_name/conf), open the com.initiate.server.system.cfg
configuration file.

2. Set the MAD_SSLFIPSMODE variable to 1. The default is 0 (not enabled). For
instance, to FIPS-enable the mpinetget utility you can use this environment
configuration:

MAD_SECLIB=SSL
MAD_SSLLIB=Tibss1.so
MAD_SSLCRYPTOLIB=1ibcrypto.so
MAD_SSLCACERTFILE=/1ocal/install/engine/conf/ibmcorporationcert.pem
MAD_SSLFIPSMODE=1
MAD_CONNSTR=Tocalhost|16000
MAD_CTXLIB=MPINET
AuditLog=1

3. Setting the AuditlLog variable to 1 places an entry in the log file specifying that
SSL has been configured for FIPS mode. An SSL version of TLSv1 is only
applicable to FIPS mode. Any other version is logged as incompatible and reset
to TLSv1, as shown in this example log snippet from executing the
FIPS-enabled mpinetnget utility:
16:06:27 mpinetget AUDIT MAD_SSL Toad _crypto 1ib: SSL configured for FIPS
140-2 compliance mode.

16:06:27 mpinetget AUDIT MAD_ComSetup: SSL version 'SSLv3' cannot be used
with FIPS 140-2 compliant mode. SSL version has been changed to TLSvl.

Debugging SSL and FIPS configuration

SSL debugging can be enabled by editing your instance wrapper.conf file.

Procedure

1. In your engine instance MAD_HOMEDIR/inst/mpinent_instance_name/conf
directory, open the wrapper.conf file.

2. Add this line as a wrapper.java.additional property:

Appendix K. FIPS compliance 257

wrapper.java.additional.N=-Djavax.net.debug=ss]

Where N is the next logical number that can be used. When using the
madconfig utility to start the instance, output similar to this example can

display for your instance .out file. Notice the entry which states that IBMJSSE
is in FIPS mode.

INFO | jvm 1| 2009/07/29 16:01:17 IBMJSSEProvider2 Build-Level: -20090506
INFO | jvm 1| 2009/07/29 16:01:23 | setting up default SSLSocketFactory
INFO | jvm 1| 2009/07/29 16:01:23 | class

com.ibm.mdshs.jsse2.SSLSocketFactoryImpl is loaded
INFO | jvm 1| 2009/07/29 16:01:23 | IBMJSSE is in FIPS mode

258 Master Data Engine Installation Guide

Legal Statement

Licensed Materials — Property of IBM

© Copyright IBM Corporation, 1995, 2011. US Government Users Restricted Rights
- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp. IBM, the IBM logo, InfoSphere, Initiate, and Initiate Master Data Service
are trademarks of IBM Corp., registered in many jurisdictions worldwide. Java and
all Java-based trademarks and logos are trademarks or registered trademarks of
Oracle and/or its affiliates. Other product and service names might be trademarks
of IBM, or other companies. This Program is licensed under the terms of the
license agreement accompanying the Program. This license agreement may be
either located in a Program directory folder or library identified as "License" or
"Non-IBM License", if applicable, or provided as a printed license agreement.
Please read this agreement carefully before using the Program. By using the
Program, you agree to these terms.

© Copyright IBM Corp. 1995, 2011 259

260 Master Data Engine Installation Guide

Notices and trademarks

This information was developed for products and services offered in the U.S.A.
Notices

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web

© Copyright IBM Corp. 1995, 2011 261

sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

J46A /G4

555 Bailey Avenue

San Jose, CA 95141-1003 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

262 Master Data Engine Installation Guide

IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.

Other product and service names might be trademarks of IBM or other companies.

A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at fwww.ibm.com/legal /copytrade.shtml}

The following terms are trademarks or registered trademarks of other companies:

Adobe is a registered trademark of Adobe Systems Incorporated in the United
States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Notices and trademarks 263

http://www.ibm.com/legal/copytrade.shtml

264 Master Data Engine Installation Guide

Index
A

AES
downloading policy JAR files 246
generating keys and passwords 244
test password 246
using madpwd3 44
AES encryption 243
AES password
test 246
AlgorithmLog 88
Apache Directory Studio 197
architecture
defining for Master Data Engine 31
logging suggested settings 99
post-installation steps for Master Data
Engine 55
AuditLog 88, 99
authentication
configuring SSL 191
LDAP directory servers 197
AvgBktCands 238
AvgRevSize 238
AvgSndSize 238
AvgTicks 238

backups
existing .ini file for Master Data
Engine 25, 31
benchmarking 228
brokers
identifying prerequisites 31

C

caching log writer 98
com.initiate.server.event.cfg 85
com.initiate.serverjmx jmxmp.cfg 237
com.initiate.serverldap.cfg 202
com.initiate.serverldap.cfg file
configuring 203
com.initiate.server.system.cfg 215
sample configured for SSL. 194
compliance
STIG 28, 255
U.S. government environment 6
configuration
SSL environment variables 191
configuration files
changes in file structure in version
9.2 52
com.initiate.server.appsvcs.cfg 50
com.initiate.server.entity.cfg 50
com.initiate.server.event.cfg 85
com.initiate.server.features.cfg 50
com.initiate.serverhandler.cfg 50
com.initiate.server.hibernate.cfg 50
com.initiate.serverjdbc.cfg 50
com.initiate.serverjmxjmxmp.cfg 50

© Copyright IBM Corp. 1995, 2011

configuration files (continued)
com.initiate.serverjmx.rmi.cfg 50
com.initiate.serverldap.cfg 50, 203
com.initiate.server.logic.cfg 50
com.initiate.servernet.cfg 50
com.initiate.server.queue.cfg 50, 76
com.initiate.server.search.cfg 50
com.initiate.server.smt.cfg 50
com.initiate.server.system.cfg 50, 194,
215
com.initiate.server.tasks.cfg 50
com.initiate.server.web.cfg 50

logj4.xml 50
wrapper.conf 50
configure

LDAP directory server 14
stand-alone entity manager 16
configuring
com.initiate.serverldap.cfg file 203
environment variables 87
environment variables and
settings 88
external corporate LDAP directory
server 207
log location and naming 97
Master Data Engine database 36
SSL 191
connectivity
ping request 59
ConversionPattern 88, 99
corporate (external) LDAP directory
server
configuring SSL 210
corporate LDAP 197
create command
database 36
creating
Master Data Engine database 36
Master Data Engine directory
structure 32
Master Data Engine instance 47
stand-alone entity manager 47
customer support
contacting 267

D

data source

create 45

create_datasource 102

DB2 prompts 221

Master Data Engine 26

Master Data Engine environment
variables 88

Master Data Engine runtime
environment 26

MSSQL prompts 221

naming 36

Oracle Net prompts 221

Oracle Wire prompts 221

data source (continued)
previewing engine installation
process 43
remove_datasource 102
removing 224
test_datasource 109
data stewardship 219
database
creating and configuring for Master
Data Engine 36
DB2 36
encrypting password 43
for Master Data Engine 26
I18N and L10N prerequisites 195
Microsoft SQL Server 36
Oracle 36
ping request 59
storage files 217
upgrade 70
user account 36
database connections 3
DB2
data source prompts 221
database platform notes 36
table space page 36
DFBB
dynamic frequency-based
bucketing 11
directories
guidelines for directory structure 32,
33
MAD_HOMEDIR 33
MAD_ROOTDIR and
MAD_HOMEDIR 32
MAD_ROOTIDR 33
directory structure
MAD_HOMEDIR and
MAD_ROOTDIR 32

E

embedded entity manager
com.initiate.server.queue.cfg
location 76
embedded LDAP 197
embedded LDAP server
properties 203
encrypting password
using madpwd2 44
using madpwd3 44
encryption
AES 243
engine See Master Data Engine 31
entlque record 76
entity management
asynchronous 73
priority 73
synchronous 73
entity manager
creating stand-alone 47
embedded 73

265

entity manager (continued)
implement 29
queue configuration parameters 76
queue management 76
stand-alone 29, 73
stand-alone worksheet 16
starting on Microsoft Windows 60
starting with batch script 61
starting with madconfig 60
stopping on Microsoft Windows 60
stopping with batch script 61
stopping with madconfig 60
entity types 73
envarbat file 88
environment variables 88
configuring 87
SSL in configuration files 191
event notification 81
embedded 81
enabling 83
stand-alone 81
external corporate LDAP directory server
configuring 207
configuring SSL 210
external LDAP directory server 197

F

FIPS compliance 6, 28, 255
debugging 257
enabling FIPS for the Master Data
Engine 255
enabling utilities 257
Master Data Engine
FIPS compliance 255

G

globalization
setting default language 196

H

high-availability
installing Initiate Master Data Service
for 27
LDAP directory server
configuration 211

IBM AIX 31
IBM Initiate Enterprise Viewer
thread count settings 219
IBM Initiate Inspector
thread count settings 219
IBM Initiate Master Data Service
government installation 255
installing in a U.S. government
environment 28, 255
installing in high-availability
environment 27
SSL configuration 191

Initiate Master Data Service
installing in a U.S. government
environment 6
Inspector
configuring SSL 191
installation 6
LDAP directory server 202
Master Data Engine 26
planning Master Data Engine
install 25
preparing your environment 31
previewing process for Master Data
Engine 43
running the engine installer 41, 225
stand-alone entity manager
worksheet 16
uninstall the Master Data Engine 225
worksheets 3, 4, 14
instance
create engine instance 47
installation
MAD_ROOTDIR 33
MAD_HOMEDIR 33
Microsoft Windows 39
stand-alone LDAP 29
Interceptor
interaction mapping files 252
mapping scenarios 252
Recorder
stopping with madconfig 249
replayerbat 253
replayer.sh 253
start_replayer 249
starting recorder and replayer 249
starting recorder with madconfig 248
starting replayer with madconfig 249
stopping recorder with
madconfig 249
Interceptor tool 247
for maintenance 247
for upgrading Master Data Engine
runtime environment 247
interaction data file 250
Interceptor.zip file 251
Recorder API 251
Replayer API 251
replayerbat 251
replayerbat and replayer.sh 251
replayer.sh 251
start_recorder 247
internal LDAP directory server
properties 203

J

JConsole
access monitoring tool 238
administrative actions 240
Listeners node 238
Log4j node 238
MBeans
tab 238
MBeans tab 238
monitor 237
ThreadPools node 238
JDBC drivers 31

266 Master Data Engine Installation Guide

K

keys
AES 244

L

language
setting default for Master Data
Engine 196

latency 229
LDAP (Lightweight Directory Access
Protocol)
changing port setting 206
com.initiate.serverldap.cfg 202
configuring external corporate
directory server 207
creating stand-alone instance 46
directory server configurations 197
high-availability /replication
configuration 211
installation and configuration
flow 202
properties for embedded directory
server 203
properties for stand-alone (internal)
directory server 203
replication 212
SSL communications with corporate
(external) directory server 210
upgrade considerations 202
worksheet 14
LDAP configurations
embedded 197
external corporate 197
stand-alone 197
LDAP directory server
stand-alone 29
stand-alone LDAP 29
legal notices 261
Linux 31
setting user limits 36
log files
suggested settings 99
log4j.xml 98
ConversionPattern 99
logging
caching log writer 98
log file location and naming 97
log4j 99
settings 99
types 98
Logs
diagnostic 97
Environment variables
diagnostic logs 97
log4j 97

M

MAD_CALLBACKLIB 88
MAD_CONFNAME 88
MAD_CONNSTr 88
MAD_CONNSTR 88
MAD_CTXLIB 88
MAD_DBNAME 88
MAD_DBPASS 88

MAD_DBSERVER 88
MAD_DBSETUP 88
MAD_DBTYPE 88
MAD_DBUSER 88
MAD_DBXTEST 88
MAD_DDLFILE 88
MAD_DICTIMEOUT 88
MAD_ENCODING 88
MAD_GNRCONFIG 88
MAD_HOMEDIR 32, 33, 88
MAD_INSTDIR 88
MAD_IPVERSION 88
MAD_OBJCODE 88
MAD_ROOTDIR 32, 88
MAD_ROOTIDR 33
MAD_SECLIB 88
MAD_SMTLIST 88, 196
MAD_SRVNO 88
MAD_SSLFIPSMODE 88
MAD_STOFILE 88
MAD_TABPFX 88
MAD_TABSEX 88
MAD_UNLDIR 88
MAD_UNLFSR 88
mad.log.name 88, 99
madcode utility 101
madconfig

automated script 49

confirm engine instance 58

recorded response file 49

removing engine instances 223

starting entity manager 60

starting Master Data Engine 56

stopping entity manager 60

stopping Master Data Engine 57
madconfig utility 102
maddbx utility 110
madentcreate utility 113
madentdrop utility 115
madentload utility 116
madentreset utility 118
madentunload utility 119
madhubcreate utility 121
madhubdrop utility 122
madhubload utility 123
madhubreset utility 125
madhubunload utility 126
madload utility 128
madpass utility 128
madpwd2

database password encryption 44
madpwd?2 utility 128
madpwd3

database password encryption 44
madpwd3 utility 128
madsql utility 129
madunload utility 130
Master Data Engine 63

configuration files 50

confirm running instance 58

confirm running instance with

MPINET 58

create data source 45

create instance 47

creating and configuring the database

for 36
creating runtime environment 65

Master Data Engine (continued)
data source 26
database 26
database connections worksheet 3
database user account 36
defining architecture for 31
elements 26
environment variables 88
install planning 25
installation 26
installer 41
instance 26
ping request 59
post-upgrade 70
pre-upgrade tasks 64
preparing your environment 31
prerequisites 31
previewing installation 43
removing data sources 224
removing runtime instances 223
running uninstaller 225
runtime environment 26
setting default language 196
starting on Microsoft Windows 56
starting with batch script 57
starting with madconfig 56
stopping on Microsoft Windows 56
stopping with batch script 57
stopping with madconfig 57
thread count settings 219
ulimit 36
uninstall 225
upgrade 66
using utilities 101

MaxBktCands 238

MaxRcvSize 238

MaxSndSize 238

MaxTicks 238

MBeans 237

memory 230
run time 235

merging multiple files 50

Message Broker Suite
thread count settings for inbound and

outbound 219

Microsoft SQL Server
database platform notes 36

MinRcvSize 238

MinSndSize 238

MinTicks 238

monitor 237
performance and resource

consumption 238

mpidelete utility 130

mpidrop utility 130

mpiengget utility 131

mpimcomp utility 131

mpimerge utility 132

mpimshow utility 132

MPINET
confirm engine instance 58

mpinetget utility 132

mpitxm utility 133

mpiunmrg utility 138

mpxbchk utility 138

mpxcomp utility
input and output dependencies 140

mpxcomp utility (continued)

options 140

overview 139
mpxconv utility 148
mpxdata utility 148
mpxdist utility 155
mpxdump utility 155
mpxfprof utility 156
mpxfreq utility 156
mpxfsdvd utility 162
mpxitob utility 166
mpxlink utility 167
mpxpair utility 177
mpxprep utility 178
mpxrebkt utility 180
mpxredvd utility 181
mpxrule utility 184
mpxsmooth utility 184
mpxsort utility 186
mpxstd utility 187
mpxwgts utility 187
mpxxeia utility 188
mpxxtsk utility 188
MSSQL (Microsoft SQL Server)

data source prompts 221

N

NativeLog 88
net-listener 88
net-servlet 88

o)

ODBC drivers 31
Oracle
data source prompts for Net
driver 221
database platform notes 36

P

password
AES encryption 243
database encryption with
madpwd2 44
database encryption with
madpwd3 44
encrypting database user
password 43
generating AES keys and
passwords 244
passwords
AES policy JAR files 246
performance 234
benchmarking 228
bulk processing 232
bulk processing (BXM) 232
bulk processing database 233
bulk processing memory 233
bulk processing storage 233
concepts 228
CPU 229
CPU bulk processing 232
evaluation 227
latency 229

Index

267

performance (continued)
memory 230
monitor 238
networks 232
planning 227
run time 232
run time CPU 235
run time database 236
run time memory 235
run time storage 235
storage 231
throughput 229
tuning 227
work 228
workload 232
PerformanceLog 88
planning
Master Data Engine install 25
preparing your environment 31
post-installation 55
pre-installation
completing installation worksheets 6,
14
creating and configuring database 36
engine elements and high-level
dependencies 26
getting started 31
planning 25
preparing your environment 31
prerequisites
database ones for I18N and
LION 195
Master Data Engine 31

Q

queue management
entity manager 76

R

Recorder 247
starting the Interceptor with
madconfig 248
removing
Master Data Engine data sources 224
Master Data Engine runtime
instances 223
Replayer 247
starting Interceptor with
madconfig 249
Replayer API 251
Custom interaction mapping 252
custom mapping 252
replayerbat 251, 253
replayer.bat and replayer.sh 251
replayer.sh 251, 253
replication
enabling for LDAP directory
servers 212
LDAP directory server
configuration 211
requirements
system and software users and groups
for Master Data Engine 36
response file 49

response property file 50
run time 234
runtime environment
for additional Master Data
Engines 55
installation worksheet 6
Master Data Engine 26
uninstalling Master Data Engine 223
worksheets for creating Master Data
Engine instance 6

S

software services
contacting 267
SqlLog 88
SSL
configuration 191
configuring 191
configuring for IBM Initiate Master
Data Service 191
corporate (external) LDAP directory
server 210
stand-alone entity manager
com.initiate.server.queue.cfg
location 76
creating 47
implement 29
starting on Microsoft Windows 60
starting with batch script 61
starting with madconfig 60
stopping on Microsoft Windows 60
stopping with batch script 61
stopping with madconfig 60
worksheet 16
stand-alone LDAP 197
stand-alone LDAP server
creating instance 46
standalone LDAP server
properties 203
start_recorder 247
start_replayer 249
starting
Master Data Engine 57
STIG compliance 6, 28, 255
stofiles files 217
stop_recorder 249
stopping
Master Data Engine 57
storage 231
run time processing 235
storage files 217
support
customer 267

T

table space page

DB2 36
thread count settings 219
throughput 229
TimeLog 99
TimerLog 88
TotBktCands 238
TotBktSrchs 238
TotExecs 238

268 Master Data Engine Installation Guide

TotGood 238
TotRcvSize 238
TotSndSize 238
TotTicks 238
TPS - transactions per second 229
trademarks
list of 261

U

U.S. government environment
installation 28
ulimit
Master Data Engine 36
Unicode
configuring globalization 195
uninstall 223
Master Data Engine 225
uninstaller
running Master Data Engine 225
UNIX
getting started 31
setting user limits 36
UNIX and Linux
guidelines for directory structure 33
instance directory 26
instance home directory 26
Master Data Engine installation 26
upgrade 52
database 70
Interceptor tool 247
Master Data Engine database 66
post-upgrade tasks 70
pre-upgrade tasks 64
upgrading the engine 63
upgrades
database worksheet 68
from 7.5 or later 25, 31
LDAP directory server
considerations 202
upgrading from a version earlier than
92 52
upgrading the engine 63
user accounts
configuring SSL. 191
encrypting database password 43
encrypting database password with
madpwd2 44
encrypting database password with
madpwd3 44
LDAP directory servers 197
Master Data Engine database 36
thread count settings 219
user administration
configuring SSL. 191
database user account 36
encrypting database password 43
encrypting database password with
madpwd2 44
encrypting database password with
madpwd3 44
LDAP directory server 197
thread count settings 219
upgrade considerations for LDAP
directory servers 202
user limits 36
user requirements 36

utilities W
enabling for FIPS compliance 257
madcode 101 worksheets
madconfig 102 data source 4, 6
maddbx 110 database connections 3
madentcreate 113 database upgrade 68
madentdrop 115 LDAP directory server 14
madentload 116 Master Data Engine installation 6
Master Data Engine instance 6
stand-alone entity manager 16

madentreset 118
madentunload 119

madhubcreate 121 worksheetsinstallation planning 3
madhubdrop 122 WrapperManager
madhubload 123 JConsole 240

madhubreset 125
madhubunload 126
madload 128
madpass 128
madpwd2 128
madpwd3 128
madsql 129
madunload 130
mpidelete 130
mpidrop 130
mpiengget 131
mpimcomp 131
mpimerge 132
mpimshow 132
mpinetget 132
mpitxm 133
mpiunmrg 138
mpxbchk 138
mpxcomp input and output
dependencies 140
mpxcomp options 140
mpxcomp overview 139
mpxconv 148
mpxdata 148
mpxdist 155
mpxdump 155
mpxfprof 156
mpxfreq 156
mpxfsdvd 162
mpxitob 166
mpxlink 167
mpxpair 177
mpxprep 178
mpxrebkt 180
mpxredvd 181
mpxrule 184
mpxsmooth 184
mpxsort 186
mpxstd 187
mpxwgts 187
mpxxeia 188
mpxxtsk 188
using utillities 101

\'

variables 88
configuring 87
MAD_SMTLIST 196

Index 269

270 Master Data Engine Installation Guide

Contacting IBM

You can contact IBM for customer support, software services, product information,
and general information. You also can provide feedback to IBM about products
and documentation.

The following table lists resources for customer support, software services, training,
and product and solutions information.

Table 75. IBM resources

Resource Description and location

IBM Support Portal You can customize support information by
choosing the products and the topics that
interest you at [www.ibm.com /support/|
entry/portal /Overview /Software /|
Information_Management/IBM|
Initiate_Master_Data_Service|

Software services You can find information about software, IT,
and business consulting services, on the
solutions site at ﬁww.ibm.com/ |
[pusinesssolutions /|

My IBM You can manage links to IBM web sites and

information that meet your specific technical
support needs by creating an account on the
My IBM site at www.ibm.com/account/|

Training and certification You can learn about technical training and
education services designed for individuals,
companies, and public organizations to
acquire, maintain, and optimize their IT
skills athttp:/ /www.ibm.com/software/sw-|
training /

IBM representatives You can contact an IBM representative to
learn about solutions at
[www.ibm.com/connect/ibm/us/en/|

Providing feedback
The following table describes how to provide feedback to IBM about products and
product documentation.

Table 76. Providing feedback to IBM
Type of feedback Action

Product feedback You can provide general product feedback
through the Consumability Survey at
www.ibm.com /software /data/info /|
consumability-survey]

© Copyright IBM Corp. 1995, 2011 271

http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/IBM_Initiate_Master_Data_Service
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/IBM_Initiate_Master_Data_Service
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/IBM_Initiate_Master_Data_Service
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/IBM_Initiate_Master_Data_Service
http://www.ibm.com/businesssolutions/
http://www.ibm.com/businesssolutions/
http://www.ibm.com/account/
http://www.ibm.com/software/sw-training/
http://www.ibm.com/software/sw-training/
http://www.ibm.com/connect/ibm/us/en/
http://www.ibm.com/software/data/info/consumability-survey/
http://www.ibm.com/software/data/info/consumability-survey/

Table 76. Providing feedback to IBM (continued)

Type of feedback

Action

Documentation feedback

To comment on the information center, click
the Feedback link on the top right side of
any topic in the information center. You can
also send comments about PDF file books,
the information center, or any other
documentation in the following ways:

¢ Online reader comment form:
[www.ibm.com /software /data /rcf /|

¢ E-mail: comments@us.ibm.com

272 Master Data Engine Installation Guide

http://www.ibm.com/software/data/rcf/

Printed in USA

GI13-2612-00

	Contents
	Figures
	Tables
	Chapter 1. Introduction
	Chapter 2. Installation worksheets
	Master Data Engine database connections worksheet
	Data source worksheet
	Master Data Engine installation worksheet
	Master Data Engine instance worksheet
	LDAP directory server worksheet
	Stand-alone entity manager worksheet
	Event notification worksheets

	Chapter 3. Planning your Master Data Engine installation
	Master Data Engine elements and high-level interdependencies
	Master Data Engine installation in a high-availability environment
	Master Data Engine installation in U.S. government environments
	IBM Initiate LDAP directory server stand-alone instance
	Entity manager stand-alone instance
	Event notification - stand-alone instance

	Chapter 4. Preparing your environment
	Server prerequisites
	Master Data Engine directory structure - MAD_ROOTDIR and MAD_HOMEDIR
	Directory structure guidelines for MAD_ROOTDIR (software) and MAD_HOMEDIR (instances)

	System and software users for the Master Data Engine
	User limits on UNIX and Linux platforms
	Master Data Engine database configuration
	Master Data Engine and instances installed on different drives (Microsoft Windows)

	Chapter 5. Installing the Master Data Engine
	Chapter 6. Configuring the Master Data Engine environment
	Database user account password encryption
	Encrypting the password for the database user account with the madpwd2 utility
	Encrypting the password for the database user account with the madpwd3 utility

	Creating a data source
	Creating a stand-alone IBM Initiate LDAP directory server instance
	Creating stand-alone entity managers
	Creating a Master Data Engine instance
	Creating an automated madconfig utility script
	Running the madconfig utility by using a recorded response file
	Merging multiple response property files
	Installation error log
	Master Data Engine configuration files
	Configuration file changes

	Post-installation tasks
	Starting and stopping your instances
	Starting an engine instance from the Microsoft Windows Control Panel
	Stopping an engine instance from the Microsoft Windows Control Panel
	Starting an engine instance with the madconfig utility
	Stopping an engine instance with the madconfig utility
	Starting an engine instance with its batch or script file
	Stopping an engine instance with its batch or script file
	Using the madconfig utility to confirm that an engine instance is running
	Using the MPINET protocol to confirm that an engine instance is running
	Using ping requests to monitor Master Data Engine and database availability
	Starting an entity manager instance through the Microsoft Windows Control Panel
	Stopping an entity manager instance from Microsoft Windows Control Panel
	Starting an entity manager instance with the madconfig utility
	Stopping an entity manager instance with the madconfig utility
	Starting an entity manager instance with its batch or script file
	Stopping an entity manager instance with its batch or script file

	Chapter 7. Upgrading the Master Data Engine environment
	Conducting the pre-upgrade tasks
	Creating the initial 10.0 runtime environment
	Upgrade the Master Data Engine database to 10.0
	Database upgrade worksheet
	Running the database upgrade

	Conducting the Master Data Engine post-upgrade tasks

	Chapter 8. Entity managers
	Entity manager queue management
	Entity manager configuration parameters

	Chapter 9. Event notification
	Enabling event notification
	Sample com.initiate.server.event.cfg configuration file

	Chapter 10. Configuring Master Data Engine environment variables
	Master Data Engine environment variables

	Chapter 11. Diagnostic logging
	Log file location and naming
	Logging types
	ConversionPattern format specification
	Suggested logging settings

	Chapter 12. Using the Master Data Engine utilities
	madcode utility
	madconfig utility
	maddbx utility
	madentcreate utility
	madentdrop utility
	madentload utility
	madentreset utility
	madentunload utility
	madhubcreate utility
	madhubdrop utility
	madhubload utility
	madhubreset utility
	madhubunload utility
	madload utility
	madpass utility
	madpwd2 utility
	madpwd3 utility
	madsql utility
	madunload utility
	mpidelete utility
	mpidrop utility
	mpiengget utility
	mpimcomp utility
	mpimerge utility
	mpimshow utility
	mpinetget utility
	mpitxm utility
	mpiunmrg utility
	mpxbchk utility
	mpxcomp utility
	mpxcomp utility input and output dependencies
	mpxcomp utility options

	mpxconv utility
	mpxdata utility
	mpxdist utility
	mpxdump utility
	mpxfprof utility
	mpxfreq utility
	mpxfsdvd utility
	mpxitob utility
	mpxlink utility
	mpxpair utility
	mpxprep utility
	mpxrebkt utility
	mpxredvd utility
	mpxrule utility
	mpxsmooth utility
	mpxsort utility
	mpxstd utility
	mpxwgts utility
	mpxxeia utility
	mpxxtsk utility

	Chapter 13. Configuring SSL
	SSL security
	Sample com.initiate.server.system.cfg configured for SSL

	Chapter 14. Configuring globalization of the Master Data Engine
	Database prerequisites for using Unicode in the Master Data Engine
	Default language setting for the Master Data Engine

	Appendix A. LDAP Directory Server for the Master Data Engine
	Configuration flow for the Master Data Engine LDAP directory server
	Upgrade considerations for Master Data Engine LDAP directory server
	com.initiate.server.ldap.cfg file
	Changing the port setting for a stand-alone (internal) Master Data Engine LDAP Directory Server
	Configuring an external corporate LDAP Directory Server
	Configuring SSL communications with a corporate LDAP directory server
	High-availability and replication configuration for the Master Data Engine LDAP directory server
	Enabling replication for the Master Data Engine LDAP directory server

	Appendix B. Sample com.initiate.server.system.cfg file
	Appendix C. Master Data Engine storage files (stofiles)
	Appendix D. Thread count settings
	Appendix E. Data source prompt examples
	Appendix F. Uninstall the Master Data Engine environment
	Removing Master Data Engine runtime instances
	Removing Master Data Engine data sources
	Running the Master Data Engine uninstaller

	Appendix G. Performance planning for the Master Data Engine
	Performance evaluation and tuning considerations
	Performance benchmarking
	Performance key concepts
	Work
	Latency
	Throughput
	CPU
	Memory
	Storage
	Networks

	Master Data Engine workload profiles
	Bulk processing
	CPU considerations in bulk processing
	Memory considerations in bulk processing
	Storage considerations in bulk processing
	Database considerations in bulk processing

	Run time processing
	CPU considerations in run time processing
	Memory considerations in run time processing
	Storage considerations in run time processing
	Database considerations in run time processing

	Appendix H. Operational Monitoring with JConsole
	Accessing JConsole
	JConsole Mbeans tab
	JConsole administrative actions

	Appendix I. AES encryption
	Generating AES keys and password
	AES policy JAR files
	AES password test

	Appendix J. Interceptor tool
	Starting the Interceptor Recorder with the madconfig utility
	Stopping the Interceptor Recorder with the madconfig utility
	Starting the Interceptor Replayer with the madconfig utility
	The fields of the interaction data file
	Replayer API
	Interceptor mapping files
	Running your custom Replayer application

	Appendix K. FIPS compliance
	Enabling FIPS compliance in the Master Data Engine
	Enabling FIPS compliance for command-line utilities
	Debugging SSL and FIPS configuration

	Legal Statement
	Notices and trademarks
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Contacting IBM

