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Abstract. Two constructions due to Drápal produce a group by modifying exactly
one quarter of the Cayley table of another group. We present these constructions in
a compact way, and generalize them to Moufang loops, using loop extensions. Both
constructions preserve associators, the associator subloop, and the nucleus. We con-
jecture that two Moufang 2-loops of finite order n with equivalent associator can be
connected by a series of constructions similar to ours, and offer empirical evidence
that this is so for n = 16, 24, 32; the only interesting cases with n ≤ 32. We further
investigate the way the constructions affect code loops and loops of type M(G, 2). The
paper closes with several conjectures and research questions concerning the distance
of Moufang loops, classification of small Moufang loops, and generalizations of the two
constructions.
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1. Introduction

Moufang loops, i.e., loops satisfying the Moufang identity ((xy)x)z = x(y(xz)), are
surely the most extensively studied loops. Despite this fact, the classification of Moufang
loops is finished only for orders less than 64, and several ingenious constructions are
needed to obtain all these loops. The purpose of this paper is to initiate a new approach
to finite Moufang 2-loops. Namely, we intend to decide whether all Moufang 2-loops
of given order with equivalent associator can be obtained from just one of them, using
only group-theoretical constructions. (See below for details). We prove that this is the
case for n = 16, 24, and 32, which are the only orders n ≤ 32 for which there are at
least two non-isomorphic nonassociative Moufang loops (5, 5, and 71, respectively). We
also show that for every m ≥ 6 there exist classes of loops of order 2m that satisfy our
hypothesis. Each of these classes consists of code loops whose nucleus has exactly two
elements (cf. Theorem 8.8).

As it turns out, we will only need two constructions that were introduced in [7], and
that we call cyclic and dihedral. They are recalled in Sections 3 and 4, and generalized
to Moufang loops in Sections 6 and 7. The main feature of both constructions is that,
given a Moufang loop (G, ·), they produce a generally non-isomorphic Moufang loop
(G, ∗) that has the same associator and nucleus as (G, ·), and whose multiplication
table agrees with the multiplication table of (G, ·) in 3/4 of positions.

The constructions allow a very compact description with the help of simple modular
arithmetic, developed in Section 2. Nevertheless, in order to prove that the constructions
are meaningful for Moufang loops (Theorems 6.3, 7.3), one benefits from knowing some
loop extension theory (Section 5). (An alternative proof using only identities is available
as well [17], but is much longer.)
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We then turn our attention to two classes of Moufang loops: code loops (Section 8),
and loops of type M(G, 2) (Section 9).

Up to isomorphism, code loops can be identified with maps P : V −→ F whose
3rd derived form is trilinear, where F = GF (2) and V is a finite vector space over F .
Section 8 explains how P is modified under our constructions. These modification can
be described in terms of linear and quadratic forms, and it is not difficult to see how one
can gradually transform a code loop to any other code loop with equivalent associator
(cf. Proposition 8.7).

The loops of type M(G, 2) play a prominent role in the classification of Moufang
loops, chiefly thanks to their abundance among small loops. In Section 9, we describe
how the loops M(G, 2) behave under both constructions.

It has been conjectured [6] that from each finite 2-group one can obtain all other
2-groups of the same order by repeatedly applying a construction that preserves exactly
3/4 of the corresponding multiplication tables. For n ≤ 32, this conjecture is known to
be true, and for such n it suffices to use only the cyclic and dihedral constructions [20].
For n = 64, these constructions yield two blocks of groups and it is not known at this
moment if there exists a similar construction that would connect these two blocks [2].

In view of these results about 2-groups, it was natural to ask how universal the cyclic
and dihedral constructions remain for Moufang loops of small order. A computer search
(cf. Section 10) has shown that for orders n = 16, 24, 32 the blocks induced by cyclic and
dihedral constructions coincide with blocks of Moufang loops with equivalent associator.
This is the best possible result since none of the constructions changes the associator,
and since the two constructions are not sufficient even for groups when n = 64.

The search for pairs of 2-groups that can be placed at quarter distance (a phrase
expressing that 3/4 of the multiplication tables coincide) stems from the discovery that
two 2-groups which differ in less than a quarter of their multiplication tables are isomor-
phic [6]. We conjecture that this property remains true for Moufang 2-loops. Additional
conjectures, together with suggestions for future work, can be found at the end of the
paper.

We assume basic familiarity with calculations in nonassociative loops and in Moufang
loops in particular. The inexperienced reader should consult [14].

A word about the notation. The dihedral group 〈a, b; an = b2 = 1, aba = b〉 of order
2n will be denoted by D2n, although some of the authors we cite use Dn; for instance
[11]. We count the Klein 4-group among dihedral groups, and denote it also by V4. The
generalized quaternion group 〈a, b; a2n−1

= 1, a2n−2
= b2, bab−1 = a−1〉 of order 2n will

be denoted by Q2n . We often write ab instead of a · b. In fact, following the custom, we
use “·” to indicate the order in which elements are multiplied. For example, a · bc stands
for a(bc) = a · (b · c).

2. Modular Arithmetic and the Function σ

Let m be a positive integer and M the set {−m+1, −m+2, . . . , m−1, m}. Denote by
⊕ and ª the addition and subtraction modulo 2m in M , respectively. More precisely,
define σ : Z −→ {−1, 0, 1} by

σ(i) =





1, i > m,
0, i ∈ M,
−1, i < 1−m,

and let
i⊕ j = i + j − 2mσ(i + j), iª j = i− j − 2mσ(i− j),
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for any i, j ∈ M . In order to eliminate parentheses, we postulate that ⊕ and ª are
more binding than + and −. Observe that 1 − i belongs to M whenever i does, and
that σ(1− i) = −σ(i).

We will need the following identities for σ in Sections 3 and 4:

σ(i + j) + σ(i⊕ j + k) = σ(j + k) + σ(i + j ⊕ k),(1)
−σ(i + j) + σ(1− i⊕ j + k) = σ(1− j + k)− σ(i + j ª k).(2)

The identity (1) follows immediately from (i ⊕ j) ⊕ k = i ⊕ (j ⊕ k). To establish (2),
consider (i⊕j)ªk = i⊕(jªk). This yields−σ(i+j)−σ(i⊕j−k) = −σ(j−k)−σ(i+jªk).
Since −σ(i⊕ j − k) = σ(1− i⊕ j + k) and −σ(j − k) = σ(1− j + k), we are done.

3. The Cyclic Construction

Let us start with the less technical of the two constructions—the cyclic one. We will work
in the more general setting of Moufang loops, and take full advantage of the function σ
defined in Section 2.

Let G be a Moufang loop. Recall that Z(G), the center of G, consists of all elements
that commute and associate with all elements of G. In more detail, given x, y, z ∈ G,
the commutator [x, y] of x, y (resp. the associator [x, y, z] of x, y, z) is the unique
element w ∈ G satisfying xy = yx · w (resp. (xy)z = x(yz) · w). When three elements
of a Moufang loop associate in some order, they associate in any order. Hence Z(G) =
{x ∈ G; [x, y] = [x, y, z] = 1 for every y, z ∈ G}.

We say that (G, S, α, h) satisfies condition (C) if
- G is a Moufang loop,
- S E G, and G/S = 〈α〉 is a cyclic group of order 2m,
- 1 6= h ∈ S ∩ Z(G).

Then we can view G as the disjoint union
⋃

i∈M αi, and define a new multiplication ∗
on G by

(3) x ∗ y = xyhσ(i+j),

where x ∈ αi, y ∈ αj , and i, j ∈ M .
The resulting loop (that is Moufang, as we shall see) will be denoted by (G, ∗).

Whenever we say that (G, S, α, h) satisfies (C), we assume that (G, ∗) is defined by (3).
The following Proposition is a special case of Theorem 6.3. We present it here because

the associative case is much simpler than the Moufang case.

Proposition 3.1. When G is a group and (G, S, α, h) satisfies (C) then (G, ∗) is a
group.

Proof. Let x ∈ αi, y ∈ αj , z ∈ αk, for some i, j, k ∈ M . Since h ∈ Z(G), we have

(4) (x ∗ y) ∗ z = (xy)z · hσ(i+j)+σ(i⊕j+k),

x ∗ (y ∗ z) = x(yz) · hσ(j+k)+σ(i+j⊕k).

This follows from (3) and from the fact that xy ∈ αi⊕j , yz ∈ αj⊕k. By (1), (G, ∗) is
associative. ¤

4. The Dihedral Construction

We proceed to the dihedral construction. Let G be a Moufang loop, and let N(G) be
the nucleus of G. Recall that N(G) = {x ∈ G; [x, y, z] = 1 for every y, z ∈ G}, and
that [x, y, z] = 1 implies [y, x, z] = [x, z, y] = 1 for every x, y, z ∈ G.

We say that (G, S, β, γ, h) satisfies condition (D) if
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- G is a Moufang loop,
- S E G and G/S is a dihedral group of order 4m (where we allow m = 1),
- β, γ are involutions of G/S such that α = βγ is of order 2m,
- 1 6= h ∈ S ∩ Z(G0) ∩ N(G) and hxh = x for some (and hence every) x ∈ G1,

where G0 =
⋃

i∈M αi, G1 = G \G0.
We can then choose e ∈ β and f ∈ γ, view G as the disjoint union

⋃
i∈M (αi ∪ eαi) or⋃

j∈M (αj ∪ αjf), and define a new multiplication ∗ on G by

(5) x ∗ y = xyh(−1)rσ(i+j),

where x ∈ αi ∪ eαi, y ∈ (αj ∪ αjf) ∩Gr, i, j ∈ M , and r ∈ {0, 1}.
The resulting loop (again always Moufang) will be denoted by (G, ∗). As in the cyclic

case, whenever we say that (G, S, β, γ, h) satisfies (D), we assume that (G, ∗) is defined
by (5).

Note that ∗ does not depend on the choice of e ∈ β and f ∈ γ. Also note that when
(G, S, β, γ, h) satisfies (D), then (G0, S, α = βγ, h) satisfies (C).

Since G/S is dihedral, α, β and γ satisfy

βαi = αªiβ, γαi = αªiγ, βαi = α1−iγ, αiγ = βα1−i,

for any i ∈ M , where we write ªi rather than −i to make sure that the exponents
remain in M .

Remark 4.1. Although α, G0, G1, e and f are not explicitly mentioned in condition
(D), we will often refer to them. Strictly speaking, we did not need to include S among
the parameters of any of the constructions, as it can always be calculated from the
remaining parameters. Finally, we will sometimes find ourselves in a situation when we
do not want to treat (C) and (D) separately. Let us therefore agree that G0 = G1 = G,
e = f = 1, and that β, γ are meaningless when (C) applies.

Lemma 4.2. Assume that (G, S, β, γ, h) satisfies (D). Then (ex) ∗ y = e(x ∗ y) and
(x ∗ y)f = x ∗ (yf) whenever y ∈ N(G).

Proof. Choose x ∈ αi ∪ eαi, y ∈ (αj ∪ αjf) ∩Gr, and note that ex belongs to αi ∪ eαi,
while yf belongs to (αj ∪αjf)∩Gr+1. For the sake of brevity, set t = h(−1)rσ(i+j). Then
(ex) ∗ y = (ex)y · t = e(xy) · t = e(xy · t) = e(x ∗ y), and (x ∗ y)f = (xy · t)f = xy · tf =
xy · ft−1 = (xy)f · t−1 = x(yf) · t−1 = x ∗ (yf), where we used y ∈ N(G) and h ∈ N(G)
several times. ¤

Similarly as in the cyclic case, Proposition 4.3 is a special case of Theorem 7.3:

Proposition 4.3. When G is a group and (G, S, β, γ, h) satisfies (D) then (G, ∗) is a
group.

Proof. If (x ∗ y) ∗ z = x ∗ (y ∗ z), Lemma 4.2 implies that ((ex) ∗ y) ∗ z = (ex) ∗ (y ∗ z)
and (x ∗ y) ∗ (zf) = x ∗ (y ∗ (zf)). We can therefore assume that x ∈ αi, z ∈ αk, and
y ∈ αj ∪ αjf , for some i, j, k ∈ M .

When y ∈ αj , the definition (5) of ∗ coincides with the cyclic case (3), and x, y, z
associate in (G, ∗) by Proposition 3.1. Assume that y ∈ αjf ⊆ G1, and recall the coset
relations αjγ = βα1−j . Then

(6) (x ∗ y) ∗ z = (xy)z · h−σ(i+j)+σ(1−i⊕j+k),

x ∗ (y ∗ z) = x(yz) · hσ(1−j+k)−σ(i+jªk),

because xy ∈ αiαjγ = αi⊕jγ = βα1−i⊕j , and yz ∈ αjγαk = αjªkγ. By (2), (G, ∗) is
associative. ¤
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5. Factor Sets

Before we prove that (G, ∗) is a Moufang loop if (C) or (D) is satisfied, let us briefly
review extensions of abelian groups by Moufang loops. We follow closely the group-
theoretical approach, cf. [15, Ch. 11].

Let Q be a Moufang loop and A a Q-module. Since, later on, we will deal with
two extensions at the same time, we shall give a name to the action of Q on A, say
ϕ : Q −→ AutA. Consider a map η : Q×Q −→ A, and define a new multiplication on
the set product Q×A by

(x, a)(y, b) = (xy, aϕ(y) + b + η(x, y)),

where we use additive notation for the abelian group A. The resulting quasigroup will
be denoted by E = (Q, A, ϕ, η).

It is easy to see that E is a loop if and only if there exists c ∈ A such that

(7) η(x, 1) = c, η(1, x) = cϕ(x),

for every x ∈ Q. The neutral element of E is then (1, −c).
From now on, we will assume that E satisfies (7) with c = 0, and speak of E as an

extension of A by Q. Verify that E is a group if and only if Q is a group and

(8) η(x, y)ϕ(z) + η(xy, z) = η(y, z) + η(x, yz)

holds for every x, y, z ∈ Q. Moreover, using the Moufang identity (xy · x)z = x(y · xz),
one can check by straightforward calculation that E is a Moufang loop if and only if

(9) η(x, y)ϕ(xz) + η(xy, x)ϕ(z) + η(xy · x, z) = η(x, z) + η(y, xz) + η(x, y · xz)

holds for every x, y, z ∈ Q. (Note that ϕ(y · xz) = ϕ(yx · z) even if x, y, z do not
associate.)

Every pair (ϕ, η) satisfying (7) with c = 0 is called a factor set. If it also satisfies (8),
resp. (9), we call it associative factor set, resp. Moufang factor set.

Given two factor sets (ϕ, η) and (ϕ, µ), we can obtain another factor set, their sum
(ϕ, η + µ), by letting (η + µ)(x, y) = η(x, y) + µ(x, y) for every x, y ∈ Q. Since A is
an abelian group, the sum of two associative factor sets (resp. Moufang factor sets) is
associative (resp. Moufang). As every group is a Moufang loop, it must be the case that
every associative factor set is Moufang. Here is a proof that only refers to factor sets:

Lemma 5.1. Every associative factor set is Moufang.

Proof. Let (ϕ, η) be an associative factor set. Substituting xz for z in (8) yields

(10) η(x, y)ϕ(xz) + η(xy, xz) = η(y, xz) + η(x, y · xz),

while substituting xy for x, and simultaneously x for y in (8) yields

(11) η(xy, x)ϕ(z) + η(xy · x, z) = η(x, z) + η(xy, xz).

The identity (9) is obtained by adding (10) to (11) and subtracting η(xy, xz) from both
sides. ¤

Assume that (ϕ, η) is a Moufang factor set. Then the right inverse of (x, a) in
(Q, A, ϕ, η) is (x−1, −aϕ(x−1) − η(x, x−1)), as a short calculation reveals. Similarly,
the left inverse of (x, a) is (x−1, −aϕ(x−1) − η(x−1, x)ϕ(x−1)). Since (Q, A, ϕ, η) is a
Moufang loop, the two inverses coincide, and we have

(12) η(x, x−1) = η(x−1, x)ϕ(x−1),
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for any Moufang factor set (ϕ, η) and x ∈ Q. (Alternatively—and more naturally—the
identity (12) follows immediately from (9) when we substitute x−1 for x, x for y, and 1
for z.)

Lemma 5.2. Assume that (ϕ, η) is a Moufang factor set and (ϕ, µ) is an associative
factor set. Then the associators in (Q, A, ϕ, η) and (Q, A, ϕ, η + µ) coincide if and
only if

(13) µ((x · yz)−1, xy · z) = µ(x · yz, (x · yz)−1)ϕ(xy·z)

for every x, y, z ∈ Q. This happens if and only if

(14) µ(x · yz, [x, y, z]) = 0

for every x, y, z ∈ Q. In particular, the associators coincide if Q is a group.

Proof. Let (x, a), (y, b), (z, c) ∈ (Q, A, ϕ, η). Then

u = (x, a)(y, b) · (z, c) = (xy · z, s + t),
v = (x, a) · (y, b)(z, c) = (x · yz, s),

where

s = aϕ(yz) + bϕ(z) + c + η(y, z) + η(x, yz),

t = η(x, y)ϕ(z) + η(xy, z)− η(y, z)− η(x, yz).

The associator [(x, a), (y, b), (z, c)] in (Q, A, ϕ, η) is therefore equal to v−1u =
([x, y, z], d), where

d = t + η((x · yz)−1, xy · z)− η(x · yz, (x · yz)−1)ϕ(xy·z).

Similarly, the same associator in (Q, A, ϕ, η + µ) is ([x, y, z], d + e + f), where

e = µ(x, y)ϕ(z) + µ(xy, z)− µ(y, z)− µ(x, yz),

f = µ((x · yz)−1, xy · z)− µ(x · yz, (x · yz)−1)ϕ(xy·z).

Since (ϕ, µ) satisfies (8), e vanishes. Therefore the two associators coincide for all x, y,
z ∈ Q if and only if (13) is satisfied for every x, y, z ∈ Q.

Substituting x · yz for x, (x · yz)−1 for y, and xy · z for z into (8) yields

µ(x · yz, (x · yz)−1)ϕ(xy·z) = µ((x · yz)−1, xy · z) + µ(x · yz, [x, y, z]).

Hence (13) is satisfied if and only if (14) holds. The latter condition is of course satisfied
when Q is a group. ¤

6. The Cyclic Construction for Moufang loops

Throughout this section, assume that (G, S, α, h) satisfies (C), and that A is the subloop
of S generated by h. Using loop extensions, we prove that (G, ∗) is a Moufang loop
with the same associators, associator subloop, and nucleus as (G, ·). Recall that the
associator subloop of a loop L is the subloop A(L) generated by all associators [x, y, z],
where x, y, z ∈ L.

Lemma 6.1. A is a normal subloop of both (G, ·) and (G, ∗). Moreover, (G, ·)/A =
(G, ∗)/A.



MOUFANG LOOPS THAT SHARE ASSOCIATOR 7

Proof. Since h ∈ Z(G, ·), the subgroup A = 〈h〉 ⊆ Z(G, ·) is normal in (G, ·). In fact,
x ∗ h = xh, h ∗ x = hx for every x ∈ G (since h ∈ S = α0), and thus A is normal in
(G, ∗) as well.

Write the elements of G/A as cosets xA. Since, for some t, we have xA · yA =
(xy)A and xA ∗ yA = (x ∗ y)A = (xyht)A = (xy)A, the loops (G, ·)/A and (G, ∗)/A
coincide. ¤

Let Q be the Moufang loop (G, ·)/A = (G, ∗)/A. Let ι be the trivial homomorphism
Q −→ AutA, ι(q) = idA, for every q ∈ Q. We want to construct two factor sets (ι, η),
(ι, η∗) such that (Q, A, ι, η) ' (G, ·) and (Q, A, ι, η∗) ' (G, ∗). In order to save space,
we keep writing the operation in A multiplicatively.

Let π : Q = G/A −→ G be a transversal, i.e., a map satisfying π(xA) ∈ xA for every
x ∈ G. Then, for every xA, yA, there is an integer τ(xA, yA) such that π((xy)A) =
π(xA)π(yA)hτ(xA, yA).

Proposition 6.2. Assume that (G, S, α, h) satisfies (C), and that A is the subloop of S
generated by h. With Q = (G, ·)/A = (G, ∗)/A and τ as above, define η, η∗ : Q×Q −→
A by

η(xA, yA) = h−τ(xA, yA),

η∗(xA, yA) = η(xA, yA)hσ(i+j),

where x ∈ αi, y ∈ αj, and i, j ∈ M . Then (Q, A, ι, η) ' (G, ·) and (Q, A, ι, η∗) '
(G, ∗).
Proof. First of all, when x belongs to αi then every element of xA belongs to αi, and so
η∗ is well-defined.

Let θ : (Q, A, ι, η) −→ (G, ·) be defined by θ(xA, ha) = π(xA)ha. Note that θ is
well-defined, and that it is clearly a bijection. Since

θ((xA, ha)(yA, hb)) = θ((xy)A, ha+bη(xA, yA)) = π((xy)A)ha+bη(xA, yA)

= π(xA)π(yA)hτ(xA, yA)ha+bh−τ(xA, yA) = π(xA)haπ(yA)hb = θ(xA, ha)θ(yA, hb),

θ is an isomorphism.
Similarly, let θ∗ : (Q, A, ι, η∗) −→ (G, ∗) be defined by θ∗(xA, ha) = π(xA)ha. This

is again a bijection. Pick x ∈ αi, y ∈ αj . Since

θ∗((xA, ha)(yA, hb)) = θ∗((xy)A, ha+bη∗(xA, yA)) = π((xy)A)ha+bη∗(xA, yA)

= π(xA)π(yA)hτ(xA, yA)ha+bh−τ(xA, yA)hσ(i+j) = π(xA)π(yA)ha+bhσ(i+j)

= π(xA)ha ∗ π(yA)hb = θ∗(xA, ha) ∗ θ∗(yA, hb),

θ∗ is an isomorphism. ¤
We are now ready to prove the main theorem for the cyclic construction:

Theorem 6.3. The Moufang factor sets (ι, η) and (ι, η∗) introduced in Proposition 6.2
differ by an associative factor set (ι, µ) that satisfies (13). Consequently, (G, ∗) is a
Moufang loop, the associators in (G, ·) and (G, ∗) coincide, A(G, ·) = A(G, ∗) coincide
as loops, and N(G, ·) = N(G, ∗) coincide as sets.

Proof. With µ = η∗ − η and x ∈ αi, y ∈ αj , we have µ(xA, yA) = hσ(i+j). Since
µ(xA, A) = µ(A, xA) = hσ(i) = h0 = 1, (ι, µ) is a factor set. Pick further z ∈ αk. We
must verify that (ι, µ) is associative, i.e., that

µ(xA, yA)µ(xA, yAzA) = µ(yA, zA)µ(xA, yAzA).
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But this follows immediately from (1), as xAyA ∈ αi⊕j and yAzA ∈ αj⊕k. Thus (ι, µ)
is associative, in particular Moufang. Then (ι, η∗) = (ι, η) + (ι, µ) is a Moufang factor
set.

It is easy to verify that all associators of (G, ·) belong to α0. This means that
µ(xAyA · zA, [xA, yA, zA]) vanishes, and hence the associators in (G, ·) and (G, ∗)
coincide by Lemma 5.2. The associator subloops A(G, ·) and A(G, ∗) are therefore
generated by the same elements. In fact, the multiplication in A(G, ·) coincides with the
multiplication in A(G, ∗) because, once again, every associator belongs to α0. Finally,
since an element belongs to the nucleus if and only if it associates with all other elements,
we must have N(G, ·) = N(G, ∗). ¤

7. The Dihedral Construction for Moufang Loops

We are now going to prove that the dihedral construction works for Moufang loops, too.
The reasoning is essentially that of Section 6, however, we decided that it deserves a
separate treatment since it differs in several details. The confident reader can proceed
directly to the next section.

Throughout this section, we assume that (G, S, β, γ, h) satisfies (D), and that A is
the subloop of S generated by h.

Lemma 7.1. A is a normal subloop of both (G, ·) and (G, ∗). Moreover, (G, ·)/A =
(G, ∗)/A.

Proof. We claim that A is a normal subloop of (G, ·). It suffices to prove that xA = Ax,
x(Ay) = (xA)y and x(yA) = (xy)A for every x, y ∈ G. Since A ≤ N(G), we only have
to show that xA = Ax for every x ∈ G. When x ∈ G0, there is nothing to prove as h ∈
Z(G0). When x ∈ G1, we have xA = {xha; 0 ≤ a < 2m} = {h−ax; 0 ≤ a < 2m} = Ax,
because hxh = x. Thus A is normal in (G, ·). In fact, x ∗ h = xh, h ∗ x = hx for every
x ∈ G (since h ∈ S = α0), and thus A is normal in (G, ∗) as well.

Write the elements of G/A as cosets xA. Since, for some t, we have xA · yA =
(xy)A and xA ∗ yA = (x ∗ y)A = (xyht)A = (xy)A, the loops (G, ·)/A and (G, ∗)/A
coincide. ¤

We let Q be the Moufang loop (G, ·)/A = (G, ∗)/A, and continue to construct two
factor sets (ϕ, η), (ϕ, η∗) such that (Q, A, ϕ, η) ' (G, ·) and (Q, A, ϕ, η∗) ' (G, ∗).

Fix a transversal π : Q = G/A −→ G. Then, for every xA, yA, there is an integer
τ(xA, yA) such that π((xy)A) = π(xA)π(yA)hτ(xA, yA).

Proposition 7.2. Assume that (G, S, β, γ, h) satisfies (D), and that A is the subloop of
S generated by h. With Q = (G, ·)/A = (G, ∗)/A and τ as above, define ϕ : Q −→ AutA

by aϕ(y) = a(−1)r
, where y ∈ Gr, r ∈ {0, 1}. Furthermore, define η, η∗ : Q×Q −→ A by

η(xA, yA) = h−τ(xA, yA),

η∗(xA, yA) = η(xA, yA)h(−1)rσ(i+j),

where x ∈ αi∪eαi, y ∈ (αj∪αjf)∩Gr, i, j ∈ M , r ∈ {0, 1}. Then (Q, A, ϕ, η) ' (G, ·)
and (Q, A, ϕ, η∗) ' (G, ∗).
Proof. Since GrGs = Gr+s (mod 2) for every r, s ∈ {0, 1}, ϕ is a homomorphism.

When x belongs to αi ∪ eαi, then every element of xA belongs to αi ∪ eαi. When y
belongs to (αj ∪αjf)∩Gr, then every element of yA belongs to (αj ∪αjf)∩Gr. Hence
η∗ is well-defined.
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Let θ : (Q, A, ϕ, η) −→ (G, ·) be defined by θ(xA, ha) = π(xA)ha. This is clearly a
well-defined bijection. When y ∈ Gr, we have

θ((xA, ha)(yA, hb)) = θ((xy)A, h(−1)rahbη(xA, yA))

= π((xy)A)h(−1)rahbη(xA, yA) = π(xA)π(yA)hτ(xA, yA)h(−1)rahbh−τ(xA, yA)

= π(xA)π(yA)h(−1)rahb = π(xA)haπ(yA)hb = θ(xA, ha)θ(yA, hb),

and θ is an isomorphism.
Similarly, let θ∗ : (Q, A, ϕ, η∗) −→ (G, ∗) be defined by θ∗(xA, ha) = π(xA)ha. This

is again a bijection. With x ∈ αi ∪ eαi, y ∈ (αj ∪ αjf) ∩Gr, we have

θ∗((xA, ha)(yA, hb)) = θ∗((xy)A, h(−1)rahbη∗(xA, yA))

= π((xy)A)h(−1)rahbη∗(xA, yA)

= π(xA)π(yA)hτ(xA, yA)h(−1)rahbh−τ(xA, yA)h(−1)rσ(i+j)

= π(xA)haπ(yA)hbh(−1)rσ(i+j) = π(xA)ha ∗ π(yA)hb = θ∗(xA, ha) ∗ θ∗(yA, hb),

and θ∗ is an isomorphism. ¤

Theorem 7.3. The Moufang factor sets (ϕ, η) and (ϕ, η∗) introduced in Proposition
7.2 differ by an associative factor set (ϕ, µ) that satisfies (13). Consequently, (G, ∗) is a
Moufang loop, the associators in (G, ·) and (G, ∗) coincide, A(G, ·) = A(G, ∗) coincide
as loops, and N(G, ·) = N(G, ∗) coincide as sets.

Proof. Let µ = η∗ − η. For x ∈ αi ∪ eαi, y ∈ (αj ∪ αjf) ∩ Gr, we have µ(xA, yA) =
h(−1)rσ(i+j).

Since µ(xA, A) = µ(A, xA) = h0 = 1, (ϕ, µ) is a factor set. By the first 2 paragraphs
of the proof of Proposition 4.3, (ϕ, µ) is associative, hence Moufang. Then (ϕ, η∗) =
(ϕ, η) + (ϕ, µ) is a Moufang factor set.

It is easy to verify that every associator of (G, ·) belongs to α0. We can therefore
reach the same conclusion as in Theorem 6.3. ¤

8. Code Loops

Now when we know that (G, ∗) is a Moufang loop for both constructions, we will focus
on the effect the constructions have on two important classes of Moufang loops: code
loops and loops of type M(G, 2). These loops are abundant among small Moufang loops,
as we will see in Section 10. The results of Sections 8 and 9 are not needed elsewhere in
this paper. Let us get started with code loops.

A loop G is called symplectic if it possesses a central subloop Z of order 2 such
that G/Z is an elementary abelian 2-group. When G is symplectic, we can define
P : G/Z −→ Z, C : G/Z ×G/Z −→ Z, A : G/Z ×G/Z ×G/Z −→ Z by P (aZ) = a2,
C(aZ, bZ) = [a, b], A(aZ, bZ, cZ) = [a, b, c], for every a, b, c ∈ G. Note that the three
maps are well defined. For obvious reasons, we will often call P the power map, C the
commutator map, and A the associator map.

Every symplectic loop G is an extension (V, F, ι, η) of the 2-element field F = {0, 1}
by a finite vector space V over F , where η : V × V −→ F satisfies η(u, 0) = η(0, u) = 0
for every u ∈ V (i.e., (ι, η) is a factor set as defined in Section 5). We can then identify
F with Z, V with G/Z, and consider P , C, A as maps P : V −→ F , C : V × V −→ F ,
A : V × V × V −→ F .

It is known that the triple (P, C, A) determines the isomorphism type of G (cf. [1,
Theorem 12.13]).
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Before we introduce code loops, we must define derived forms and combinatorial de-
gree. We will restrict the definitions to the two-element field F ; more general definitions
can be found in [1] and [19].

Let f : V −→ F be a map satisfying f(0) = 0. Then the nth derived form fn : V n −→
F of f is defined by

fn(v1, . . . , vn) =
∑

{i1, ..., im}⊆{1, ..., n}
f(vi1 + · · ·+ vim),

where the summation runs over all nonempty subsets of {1, . . . , n}. Although it is not
immediately obvious, fn(v1, . . . , vn) vanishes whenever v1, . . . , vn are linearly depen-
dant, and it makes sense to define the combinatorial degree of f , cdeg f , as the smallest
nonnegative integer n such that fn+1 = 0.

Every form fn is symmetric, and two consecutive derived forms are related by polar-
ization, i.e.,

fn+1(v1, . . . , vn+1) = fn(v1, v3, . . . , vn+1)+fn(v2, . . . , vn+1)+fn(v1+v2, v3, . . . , vn+1),

for every v1, . . . , vn+1 ∈ V . Thus fn is n-linear if and only if cdeg f ≤ n. Since
f(0) = 0, the form f2 is alternating. Recall that every alternating bilinear form over
the two-element field is symmetric. When f is a quadratic form, f2 is an alternating
(thus symmetric) bilinear form. Therefore the subspace of all forms f : V −→ F with
cdeg f ≤ 2 coincides with the subspace of all quadratic forms.

A symplectic loop G defined on V × F is called a code loop if the power map P :
V −→ F has cdeg P ≤ 3, the commutator map C coincides with P2, and the associator
map A coincides with P3. The power map therefore determines a code loop up to an
isomorphism, and we will use the notation G = (V, F, P ).

Remark 8.1. Code loops were discovered by Griess [12], who used them to elucidate
the construction of the Parker loop, that is in turn involved in the construction of the
Monster group. We completely ignore the code aspect of code loops here, and model
our approach on [1] and [13].

Of course, not every symplectic loop is a code loop, however, as Aschbacher proved
in [1, Lemma 13.1], Chein and Goodaire in [4], and Hsu in [13]:

Theorem 8.2. Code loops are exactly symplectic Moufang loops.

Thus our two constructions apply to code loops and we proceed to have a closer look
at them. Recall that the radical Rad f of an n-linear form f : V n −→ F is the subspace
consisting of all vectors v1 ∈ V such that f(v1, . . . , vn) = 0 for every v2, . . . , vn ∈ V .

The radical of P3 determines the nucleus of the associated code loop, and vice
versa. We offer a complete description of the situation when P3 has trivial radical
(i.e., RadP3 = F ). Then there is only one choice of h for (C) and (D) (see below). We
expect to return to code loops with nontrivial radical in a future paper.

Remark 8.3. Code loops with nontrivial radical are not closed under the two construc-
tions. (cf. Example 10.2). In fact, all code loops of order 32 have this property.

Lemma 8.4. Let G = (V, F, P ) be a code loop. Assume that (C) or (D) is satisfied with
some h, S. Then:

(i) If G is not a group or if h ∈ F , then S ⊇ F , and G/S ' C2 or G/S ' V4.
(ii) If h ∈ F then the resulting loop (G, ∗) is a code loop with the same radical as G.
(iii) If RadP3 = F then h ∈ N(G) = Z(G) = F .
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Proof. Since G = (V, F, P ) is a code loop, we have A(G) ⊆ F . Let us prove (i). First
assume that G is not a group. Since |F | = 2, we must have A(G) = F . As G/S is
associative, the subloop S contains A(G) = F . Now assume that 1 6= h ∈ F . Since h
belongs to S, we immediately obtain S ⊇ F . Hence, in any case, G/S ≤ G/F , and G/S
is an elementary abelian 2-group. The only two elementary abelian 2-groups satisfying
(C) or (D) are C2 and V4, respectively.

To prove (ii), assume that h ∈ F . Then (F, ∗) is a subloop of (G, ∗), by (3) and (5).
Now, x ∗ a = xa and a ∗ x = ax for every x ∈ G, a ∈ F . Since F is central in G, (F, ∗)
is also central in (G, ∗). Finally, x ∗ x belongs to F for every x ∈ G, thus (G, ∗)/(F, ∗)
is an elementary abelian 2-group. By Theorems 6.3 and 7.3, (G, ∗) is a Moufang loop.
Then Theorem 8.2 implies that (G, ∗) is a code loop. Another consequence of Theorems
6.3 and 7.3 is that N(G) = N(G, ∗). Hence the radical of the associator map P3 in
G coincides with the radical of the associator map P ∗

3 , where P ∗ is the power map in
(G, ∗).

To prove (iii), suppose that RadP3 = F . Then h ∈ N(G) ⊆ F ⊆ Z(G) ⊆ N(G),
where the only nontrivial inclusion N(G) ⊆ F follows from the fact that RadP3 is
trivial. ¤

Consider this general result about Moufang loops and code loops with trivial radical.

Lemma 8.5. Suppose that L is a Moufang loop whose associator is equivalent to the
associator of a code loop G with trivial radical. Then L is a code loop with trivial radical.

Proof. By the assumptions, A(G) ≤ N(G) = Z(G), therefore A(L) ≤ N(L) = Z(L),
and L/N(L) is a group. Let R be the associator map in L, and let x, y, z ∈ L.
Then R(x, y, z) = 0 if and only if R(x−1, y, z) = 0, by the Moufang theorem. Since
|A(L)| ≤ 2, we obtain

(15) R(x, y, z) = R(x−1, y, z)

for every x, y, z ∈ L. Because R is equivalent to the associator map of the code loop
G, it is trilinear and RadR = N(L). Then (15) implies xN(L) = x−1N(L) in L/N(L),
and L/N(L) is an elementary abelian 2-group. ¤
Lemma 8.6. Assume that h ∈ F , and that (G, ∗) is constructed from a code loop
G = (V, F, P ) as in Lemma 8.4. Let P ∗ be the power map of (G, ∗). When G/S ' C2

then

(16) P ∗(xF ) =
{

P (xF ), x ∈ S,
P (xF ) + h, x ∈ G \ S,

and P ∗ − P is linear.
Else G/S ' V4,

(17) P ∗(xF ) =
{

P (xF ), x 6∈ α,
P (xF ) + h, x ∈ α,

(where α = βγ is as usual), and P ∗ − P is a quadratic form.

Proof. Since x ∗ y ∈ {xy, xyh}, the addition in G/F coincides with the addition in
(G, ∗)/F , and we can let G/F = (G, ∗)/F = V . By Lemma 8.4(i), G/S ' C2 or
G/S ' V4. If G/S ' C2, we have (16). Thus P ∗ − P is linear.

If G/S ' V4, we have (17). We claim that R = P ∗ − P is a quadratic form. First
of all, R2(xF, yF ) = R(xF ) + R(yF ) + R(xF + yF ) does not vanish if and only if x, y
belong to α∪β∪γ but not to the same coset at the same time. Then R3(xF, yF, zF ) =
R2(xF, zF )+R2(yF, zF )+R2(xF + yF, zF ) always vanishes, as one easily checks. ¤
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We are ready to characterize all loops obtainable from code loops with trivial radical
via both of the constructions. We will also show how to connect all code loops with the
same associator maps.

Proposition 8.7. Let G = (V, F, P ) be a code loop with power map P . Let H0 = G,
H1, . . . , Hs be a sequence of loops, where Hi+1 is obtained from Hi by the cyclic or the
dihedral construction, for i = 0, . . . , s − 1. If RadP3 is trivial, then Hs is a code loop
with power map R satisfying cdeg (R− P ) ≤ 2. Whether RadP3 is trivial or not, every
code loop Hs with power map R satisfying cdeg (R− P ) ≤ 2 can be obtained from H0 in
this way.

Proof. Denote by P ∗ the power map in H1. For the rest of this paragraph, assume that
P3 has trivial radical. By Lemma 8.4, H1 is a code loop with trivial radical, and, by
Lemma 8.6, cdeg (P ∗ − P ) ≤ 2. By induction, Hs is a code loop and cdeg (R− P ) ≤ 2.

In fact, the two maps P ∗ − P from (16) and (17) are available as long as h ∈ F , no
matter what RadP3 is.

In order to obtain all code loops with cdeg (R− P ) ≤ 2 from H0, we must show that
the forms P ∗−P from (16) and (17) generate all forms with cdeg ≤ 2, i.e., all quadratic
forms. Every quadratic form Q determines an alternating bilinear form Q2, and when
Q2 = T2 for two quadratic forms Q, T , their difference Q− T is a linear form. We must
therefore show how to obtain all linear forms, and also all alternating bilinear forms as
second derived forms of maps stemming from (16) and (17).

Note that the difference P ∗−P in (16) determines a hyperplane S∩V of V . Conversely,
if W ≤ V is a hyperplane, then W + F is a normal subloop of V + F . In this way, we
obtain all linear forms.

In (17), Q = P ∗ − P is a quadratic form such that RadQ2 = S has codimension
2 (since |G/S| = 4). Moreover, Q2(γ, γ) = Q2(β, β) = 0, Q2(β, γ) 6= 0, so that
Q = U ⊕ S for a hyperbolic plane U = 〈x, y〉, x ∈ β, y ∈ γ. In this way, we can
obtain all hyperbolic planes. Every alternating bilinear form f can be expressed as
U1 ⊕ · · · ⊕ Uk ⊕Rad f , where every Ui is a hyperbolic plane. Thus, by summing up the
differences Q from repeated applications of the dihedral construction, we can obtain any
alternating bilinear form. ¤

Let us summarize the results about code loops obtained in this section:

Theorem 8.8. If G is a code loop with trivial radical and (C) or (D) is satisfied for some
S ≤ G, then G/S is isomorphic to C2 or V4. The resulting loop (G, ∗) is a code loop with
trivial radical, and the associators of G and (G, ∗) are equivalent. Every Moufang loop
whose associator is equivalent to the associator of a code loop with trivial radical is itself
a code loop with trivial radical. Finally, any two code loops with equivalent associators
can be connected by the cyclic and dihedral constructions, possibly repeated.

Remark 8.9. It is not hard to check that trilinear alternating forms with trivial radical
exist in dimension n if and only if n = 3 or n ≥ 5. (There are many nonequivalent
trilinear alternating forms with trivial radical when n ≥ 9.) Consequently, there are
code loops with trivial radical (i.e., with two-element nucleus) of order 2n if and only if
n = 4 or n ≥ 6.

9. Loops of Type M(G, 2)

Chein [3] discovered the following way of building up nonassociative Moufang loops from
nonabelian groups: Let G be a finite group, and denote by G the set of new elements
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{x; x ∈ G}. Then M(G, 2) = (G ∪G, ◦) with multiplication ◦ defined by

(18) x ◦ y = xy, x ◦ y = yx, x ◦ y = xy−1, x ◦ y = y−1x

is a Moufang loop that is associative if and only if G is abelian. As the restriction of
the multiplication ◦ on G coincides with the multiplication in G, we will usually denote
the multiplication in M(G, 2) by ·, too.

Many small Moufang loops are of this type; for instance 16/k for k ≤ 2, and 32/k for
k ≤ 9, where n/k is the kth nonassociative Moufang loop of order n. (See Section 10
for details. Table 1 in [11, p. A-3] lists all loops M(G, 2) of order at most 63.)

In this Section we are going to explore the effects of our constructions on loops
M(G, 2). The results are summarized in Corollary 9.3 for the cyclic construction, and
in Proposition 9.4 for the dihedral construction.

The following Lemma gives some basic properties of loops M(G, 2):

Lemma 9.1. Let G be a group and let L = M(G, 2) be the Moufang loop defined above.
Then:

(i) If G is an abelian group then N(L) = L, else N(L) = Z(G).
(ii) If G is an elementary abelian 2-group then Z(L) = L, else Z(L) = Z(G) ∩ {x ∈

G; x2 = 1}.
(iii) If S ≤ L then S ≤ G or |S ∩G| = |S ∩G|.
(iv) If S E G then S E L.
(v) If SEL then SEG, or both G/(S∩G) and L/S are elementary abelian 2-groups.

Proof. We know that N(L) = L if and only if G is abelian. Assume that G is not
abelian. Then there are x, y, z ∈ G such that x · yz = x(yz)−1 6= xy−1z−1 = xy · z,
and thus no element of G belongs to N(L). We have x · yz = zyx, while xy · z = zxy.
Also, x(y · z) = xz−1y, while xy · z = z−1yx. Hence x ∈ G belongs to N(L) if and only
if x ∈ Z(G). This proves (i).

When G is an elementary abelian 2-group, we have L ' G × C2. As xy = yx and
yx = yx−1, an element x ∈ G commutes with all elements of L if and only if x ∈ Z(G)
and x2 = 1. This proves (ii).

Part (iii) is an easy exercise (or see [16, Proposition 4.5]).
Let S E G, and let ϕ : G −→ H be a group homomorphism with kernel S. It is then

easy to see that ψ : M(G, 2) −→ M(H, 2) defined by ψ(g) = ϕ(g), ψ(g) = ϕ(g), for
g ∈ G, is a homomorphism of Moufang loops with kernel S. Thus S E M(G, 2), and
(iv) is proved.

Finally, assume that S E L and S 6≤ G. Then there is y ∈ G such that y ∈ S. For
every x ∈ G, the element xyx−1 · y belongs to S, since S E L. However, xyx−1 · y =
yxx · y = y−1yxx = xx. That is why S ∩ G contains all squares x2, for x ∈ G, and
the group G/(S ∩G) must be an elementary abelian 2-group. Also, x · x = 1 for every
x ∈ G. Hence L/S is an elementary abelian 2-group. ¤

We now investigate the two constructions for loops M(G, 2).

Lemma 9.2. Let G be a group and let L = M(G, 2) be the Moufang loop defined above.
Then:

(i) If (G, S, α, h) satisfies (C) then L/S is dihedral, h ∈ N(L), and hxh = x for
every x ∈ L \G.

(ii) If L/S is cyclic then L/S ' C2 and either S = G or G/S ∩G ' C2.

Proof. Assume that S E G and G/S = 〈α〉 is cyclic of order m. Set a = α, b = S = α0.
Then 〈a, b〉 = L/S and, thanks to diassociativity, L/S is a group. Moreover, am = S,
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b2 = S · S = S, and aba = αα0α = αα = α0 = b. We know from Lemma 9.1(i) that
h ∈ S∩Z(G) belongs to N(L). Pick g ∈ G. Then hgh = ghh = ghh−1 = g. This proves
(i).

We proceed to prove (ii). Assume that L/S = 〈α〉 is cyclic. There must be some
x ∈ G such that x ∈ α, else α ⊆ G, which is impossible. As x · x = 1, we have α2 = S,
and L/S ' C2 follows. The rest is obvious. ¤

Consider this generalization of loops M(G, 2), also found in [3, Theorem 2’]: Let G
be a group, θ an antiautomorphism of G, and 1 6= h ∈ Z(G) such that θ is an involution,
θ(h) = h, and xθ(x) ∈ Z(G) for every x ∈ G. Then the loop M(G, θ, h) = (G ∪ G, ◦)
with multiplication ◦ defined by

(19) x ◦ y = xy, x ◦ y = yx, x ◦ y = xθ(y), x ◦ y = θ(y)xh,

is a Moufang loop that is associative if and only if G is abelian.
Notice how the multiplication in M(G, −1, h) differs from that of M(G, 2) only at

G×G.
We claim that M(G, −1, h) is never isomorphic to M(H, 2), for any groups G, H:

Every element of H in M(H, 2) is an involution. Calculating in M(G, −1, h), we get
x ∗ x = h for every x ∈ G. Thus every element of G in M(G, −1, h) is of order 2|h|,
where |h| is the order of h. Then there are simply not enough elements of order 2|h| in
M(H, 2) for M(H, 2) to be isomorphic to M(G, −1, h).

Using Lemma 9.2 and the definitions (18) and (19), we get:

Corollary 9.3. Let G be a group and let L = M(G, 2) be the Moufang loop defined
above. Assume that (L, S, α, h) satisfies (C). Then S = G or G/(S ∩G) ' C2. When
S = G, the Moufang loop (L, ∗) is isomorphic to M(G, −1, h). Every loop M(G, −1, h)
with h2 = 1 can be obtained in this way. When G/(S ∩G) ' C2, then the multiplication
in (L, ∗) is given by

(20) x ∗ y =
{

x · y, if x ∈ S or y ∈ S,
(x · y)h, otherwise,

where x, y ∈ L, and where · is the multiplication in L.

With the classification [11] available, one can often determine the isomorphism type of
(L, ∗) from Corollary 9.3. To illustrate this point, assume that (L = M(G, 2), S, α, h)
satisfies (C) and that S = G. When G = D8, the loop L = M(D8, 2) contains 2
elements of order 4. Hence (L, ∗) must contain 2 + 8 = 10 elements of order 4, and it
turns out that the only such nonassociative Moufang loop of order 16 is 16/5, according
to [11]. Similarly, 16/2 = M(Q8, 2) always yields 16/2—the octonion loop of order 16.
If L = 24/1 = M(D12, 2), (L, ∗) is isomorphic to 24/4; if L = 32/9 = M(Q16, 2), (L, ∗)
is 32/38, etc.

Now for the dihedral construction:

Proposition 9.4. Let G be a group and let L = M(G, 2) be the Moufang loop defined
above. Assume that (L, S, β, γ, h) satisfies (D). Then (L, ∗) is isomorphic to M(H, 2)
for some group H. Moreover, S E G, or L/S ' G/(S ∩ G) ' V4. When S E G, then
(G, S, G \ S, h) satisfies (C), and the loop (L, ∗) is equal to M((G, ∗), 2).

Proof. Assume that (L, S, β, γ, h) satisfies (D). Since the only elementary abelian 2-
group that is also dihedral is V4, Lemma 9.1(v) implies that S EG, or L/S ' G/S∩G '
V4. When S E G, the group G/S is obviously cyclic.
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Suppose that S E G and α = G \ S. Then (G, S, α, h) satisfies (C), and we can
construct the group (G, ∗). We are going to show that the loop (L, ∗) obtained from L
by the dihedral construction is equal to (L, ◦) = M((G, ∗), 2), where we have denoted
the operation by ◦ to avoid confusion.

Write G =
⋃

i∈M αi. Without loss of generality, suppose that αi = αiγ = βα1−i

for every i ∈ M . Let x ∈ αi and y ∈ αj . We must show carefully that x ∗ y =
x ◦ y, x ∗ y = x ◦ y, x ∗ y = x ◦ y, and x ∗ y = x ◦ y. Clearly, x ∗ y = x ◦ y. Also,
x ∗ y = (x · y) · h−σ(i+j) = yx · h−σ(i+j) = yxhσ(i+j) = y ∗ x = x ◦ y. Similarly, x ∗ y =
(x · y) · hσ(1−i+j) = xy−1 · hσ(1−i+j) = xy−1h−σ(1−i+j) = xy−1hσ(i−j) = x ∗ y−1 = x ◦ y,
where we have used the coset relation αiγ = βα1−i, and −σ(t) = σ(1 − t). Finally,
x ∗ y = (x · y) · h−σ(1−i+j) = y−1xh−σ(1−i+j) = y−1xhσ(i−j) = y−1 ∗ x = x ◦ y.

It remains to show that (L, ∗) = M(H, 2) for some H whenever L/S is dihedral. We
take advantage of [3, Theorem 0]: If Q is a nonassociative Moufang loop such that every
minimal generating set of Q contains an involution, then Q = M(H, 2) for some group
H.

Pick x ∈ eα1−i = αif . If x ∈ G then α2 = S, and x ∗ x = x · x = 1. If x 6∈ G then
x ∗ x = x · x · hσ(1−i+i) = 1. Because 〈α〉 is a subloop of (L, ∗), we have just shown that
every (minimal) generating set of (L, ∗) contains an involution. ¤

We conclude this section with an example generalizing [5].

Example 9.5. It is demonstrated in [5] that D2n can be obtained from Q2n via the
cyclic construction, for n > 2. Indeed, if G = D2n = 〈a, b〉, then 〈a〉 = S E G,
G/S ' C2, h = a2n−2 ∈ Z(G), and (G, S, a, h) satisfies (C). The inverse of b in (G, ∗)
is hb, as b ∗ hb = bhbh = 1. Thus a2n−1

= 1, b ∗ b = bbh = a2n−2
, (b ∗ a) ∗ (a2n−2

b) =
ba ∗ a2n−2

b = baa2n−2
ba2n−2

= bab = a−1, and (G, ∗) ' Q2n follows. Then, by Lemma
9.2(ii), L/S = M(D2n , 2)/S is dihedral of order 4, and (L, S, β, γ, h) satisfies (D),
where we can choose β, γ so that α = βγ = G \ S. Proposition 9.4 then yields (L, ∗) =
M((G, ∗), 2) ' M(Q2n , 2).

10. Small Moufang Loops

Both the cyclic and dihedral constructions were studied for small 2-groups. In particular,
using computers, the following question was answered positively for groups of order 8, 16
and 32 in [20]: Given two groups G, H of order n, is it possible to construct a sequence
of groups G0 ' G, G1, . . . , Gs ' H so that Gi+1 is obtained from Gi by means of the
cyclic or the dihedral construction? The purpose of this section is to study an analogous
question for small Moufang loops, not necessarily of order 2n.

We will rely heavily on [11], where one finds multiplication tables of all nonassociative
Moufang loops of order less than 64; one for each isomorphism type. The book [11] is
based on Chein’s classification [3].

Following the notational conventions of [11] closely, the kth Moufang loop of order n
will be denoted by n/k. Whenever we refer to a multiplication table of n/k, we always
mean the one given in [11].

As we have mentioned in the Introduction, the only orders n ≤ 32 for which there are
at least two non-isomorphic nonassociative Moufang loops are n = 16, 24, and 32, with
5, 5, and 71 loops, respectively.
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For n = 24 and n = 32, all nonassociative Moufang loops of order n can be split into
two subsets according to the size of their associator subloop (or nucleus). Namely,

A24 = {24/1, 24/3, 24/4, 24/5},
B24 = {24/2},
A32 = {32/1, . . . , 32/6, 32/10, . . . , 32/26, 32/29, 32/30,

32/35, 32/36, 32/39, . . . , 32/71},
B32 = {32/7, . . . , 32/9, 32/27, 32/28, 32/31, . . . , 32/34, 32/37, 32/38}.

The size of the nucleus and the size of the associator subloop for loops in the subsets
Ai, Bi are as follows:

class size of nucleus size of associator subloop
A24 2 3
B24 1 4
A32 4 2
B32 2 4

All loops 16/k, for 1 ≤ k ≤ 5, have associator subloop and nucleus of cardinality 2.
Since the associator subloops do not change under our constructions (cf. Theorems 6.3
and 7.3), a loop from set Ai cannot be transformed to a loop from set Bi via any of the
two constructions. The striking result is that the converse is also true:

Theorem 10.1. For n = 16, 24, 32, let G(n) be a graph whose vertices are all isomor-
phism types of nonassociative Moufang loops of order n, and where two vertices form an
edge if a representative of the second type can be obtained from a representative of the
first type by one of the two constructions. (Lemmas 6.1 and 7.1 guarantee that G(n) is
not directed.) Then:

(i) The graph G(16) is connected.
(ii) There are two connected components in G(24), namely A24 and B24.
(iii) There are two connected components in G(32), namely A32 and B32.

In all cases, the connected components correspond to blocks of loops with equivalent
associator, and also to blocks of loops that have nucleus of the same size.

Proof. The proof depends on machine computation that, together with detailed infor-
mation about exhaustive search for edges in G(n), will be presented elsewhere. Our
GAP libraries are available online [10]. ¤

It is possible to select representatives of each connected component so that they can
be described in a uniform way. For instance, select representatives 16/1 = M(D8, 2),
24/1 = M(D12, 2), 24/2 = M(A4, 2), 32/1 = M(D8 × C2, 2), and 32/7 = M(D16, 2).
See Section 9 for the definition of loops M(G, 2).

It is certainly of interest that, although the groups D16 and D8 × C2 are connected,
the loops M(D16, 2) = 32/7 and M(D8 × C2, 2) = 32/1 are not. This, in view of
Proposition 9.4, means that the groups D16 and D8 × C2 cannot be connected via the
cyclic construction.

Example 10.2. Let us return to code loops. Their multiplication tables are easy to
spot thanks to this result of Chein and Goodaire [4, Theorem 5]: A loop L is a code
loop if and only if it is a Moufang loop with |L2| ≤ 2. Here, L2 denotes the set of all
squares in L.
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Table 1. Multiplication table of 32/1 = M(D8 × C2, 2).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
2 3 4 1 6 7 8 5 10 11 12 9 14 15 16 13 18 19 20 17 24 21 22 23 26 27 28 25 32 29 30 31
3 4 1 2 7 8 5 6 11 12 9 10 15 16 13 14 19 20 17 18 23 24 21 22 27 28 25 26 31 32 29 30
4 1 2 3 8 5 6 7 12 9 10 11 16 13 14 15 20 17 18 19 22 23 24 21 28 25 26 27 30 31 32 29
5 8 7 6 1 4 3 2 13 16 15 14 9 12 11 10 21 22 23 24 17 18 19 20 29 30 31 32 25 26 27 28
6 5 8 7 2 1 4 3 14 13 16 15 10 9 12 11 22 23 24 21 20 17 18 19 30 31 32 29 28 25 26 27
7 6 5 8 3 2 1 4 15 14 13 16 11 10 9 12 23 24 21 22 19 20 17 18 31 32 29 30 27 28 25 26
8 7 6 5 4 3 2 1 16 15 14 13 12 11 10 9 24 21 22 23 18 19 20 17 32 29 30 31 26 27 28 25
9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 25 26 27 28 29 30 31 32 17 18 19 20 21 22 23 24

10 11 12 9 14 15 16 13 2 3 4 1 6 7 8 5 26 27 28 25 32 29 30 31 18 19 20 17 24 21 22 23
11 12 9 10 15 16 13 14 3 4 1 2 7 8 5 6 27 28 25 26 31 32 29 30 19 20 17 18 23 24 21 22
12 9 10 11 16 13 14 15 4 1 2 3 8 5 6 7 28 25 26 27 30 31 32 29 20 17 18 19 22 23 24 21
13 16 15 14 9 12 11 10 5 8 7 6 1 4 3 2 29 30 31 32 25 26 27 28 21 22 23 24 17 18 19 20
14 13 16 15 10 9 12 11 6 5 8 7 2 1 4 3 30 31 32 29 28 25 26 27 22 23 24 21 20 17 18 19
15 14 13 16 11 10 9 12 7 6 5 8 3 2 1 4 31 32 29 30 27 28 25 26 23 24 21 22 19 20 17 18
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 32 29 30 31 26 27 28 25 24 21 22 23 18 19 20 17
17 20 19 18 21 22 23 24 25 28 27 26 29 30 31 32 1 4 3 2 5 6 7 8 9 12 11 10 13 14 15 16
18 17 20 19 22 23 24 21 26 25 28 27 30 31 32 29 2 1 4 3 8 5 6 7 10 9 12 11 16 13 14 15
19 18 17 20 23 24 21 22 27 26 25 28 31 32 29 30 3 2 1 4 7 8 5 6 11 10 9 12 15 16 13 14
20 19 18 17 24 21 22 23 28 27 26 25 32 29 30 31 4 3 2 1 6 7 8 5 12 11 10 9 14 15 16 13
21 22 23 24 17 20 19 18 29 30 31 32 25 28 27 26 5 8 7 6 1 2 3 4 13 16 15 14 9 10 11 12
22 23 24 21 18 17 20 19 30 31 32 29 26 25 28 27 6 5 8 7 4 1 2 3 14 13 16 15 12 9 10 11
23 24 21 22 19 18 17 20 31 32 29 30 27 26 25 28 7 6 5 8 3 4 1 2 15 14 13 16 11 12 9 10
24 21 22 23 20 19 18 17 32 29 30 31 28 27 26 25 8 7 6 5 2 3 4 1 16 15 14 13 10 11 12 9
25 28 27 26 29 30 31 32 17 20 19 18 21 22 23 24 9 12 11 10 13 14 15 16 1 4 3 2 5 6 7 8
26 25 28 27 30 31 32 29 18 17 20 19 22 23 24 21 10 9 12 11 16 13 14 15 2 1 4 3 8 5 6 7
27 26 25 28 31 32 29 30 19 18 17 20 23 24 21 22 11 10 9 12 15 16 13 14 3 2 1 4 7 8 5 6
28 27 26 25 32 29 30 31 20 19 18 17 24 21 22 23 12 11 10 9 14 15 16 13 4 3 2 1 6 7 8 5
29 30 31 32 25 28 27 26 21 22 23 24 17 20 19 18 13 16 15 14 9 10 11 12 5 8 7 6 1 2 3 4
30 31 32 29 26 25 28 27 22 23 24 21 18 17 20 19 14 13 16 15 12 9 10 11 6 5 8 7 4 1 2 3
31 32 29 30 27 26 25 28 23 24 21 22 19 18 17 20 15 14 13 16 11 12 9 10 7 6 5 8 3 4 1 2
32 29 30 31 28 27 26 25 24 21 22 23 20 19 18 17 16 15 14 13 10 11 12 9 8 7 6 5 2 3 4 1

All loops 16/k, 1 ≤ k ≤ 5, are code loops with trivial radical (i.e., with nucleus of
cardinality 2). In view of Proposition 8.7 and Theorem 10.1, it suffices to establish this
just for one loop 16/k; for example, the octonion loop of order 16 is a code loop.

The loops 32/k are code loops for k ∈ {1, . . . , 3, 10, . . . , 22}, all with nontrivial
radical. Markedly, it is possible to obtain a code loop from a loop that is not code.
Consider the loops 32/1 = M(D8 ×C2, 2) (its multiplication table is given in Table 1),
and the loop 32/4 = M(16Γ2c1, 2) (its multiplication table is given in Table 2). The
group 16Γ2c1 has presentation 〈a, b; a4 = b4 = (ab)2 = [a2, b] = 1〉. The loop 32/1 is a
code loop, while the loop 32/4 is not, by the result of Chein and Goodaire. They are
connected, however, by Theorem 10.1.

11. Conjectures and Prospects

Recall that given two Moufang loops (or groupoids) (G, ◦), (G, ∗) defined on the same
set G, their distance d(◦, ∗) is the cardinality of the set {(a, b) ∈ G×G; a ◦ b 6= a ∗ b}.

Assume that (G, ∗) is constructed from the Moufang loop (G, ◦) via one of the con-
structions. Then, as we hinted on in the title, d(◦, ∗) = n2/4, where n = |G|. We
conjecture that, similarly as for groups, this is the smallest possible distance:

Conjecture 11.1. Every two Moufang 2-loops of order n in distance less than n2/4 are
isomorphic.

Since A(G, ∗) = A(G, ◦) if (C) or (D) is satisfied, we wonder what is the minimum
distance of two Moufang loops with nonequivalent associator.

Conjecture 11.2. Two Moufang loops of order n with nonequivalent associator are in
distance at least 3n2/8.



18 A. DRÁPAL AND P. VOJTĚCHOVSKÝ

Table 2. Multiplication tables of 32/4 = M(16Γ2c1, 2) and 32/7 = M(D16, 2).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
2 3 4 1 6 7 8 5 10 11 12 9 14 15 16 13 18 19 20 17 22 23 24 21 32 29 30 31 28 25 26 27
3 4 1 2 7 8 5 6 11 12 9 10 15 16 13 14 19 20 17 18 23 24 21 22 27 28 25 26 31 32 29 30
4 1 2 3 8 5 6 7 12 9 10 11 16 13 14 15 20 17 18 19 24 21 22 23 30 31 32 29 26 27 28 25
5 6 7 8 1 2 3 4 13 14 15 16 9 10 11 12 21 22 23 24 17 18 19 20 29 30 31 32 25 26 27 28
6 7 8 5 2 3 4 1 14 15 16 13 10 11 12 9 22 23 24 21 18 19 20 17 28 25 26 27 32 29 30 31
7 8 5 6 3 4 1 2 15 16 13 14 11 12 9 10 23 24 21 22 19 20 17 18 31 32 29 30 27 28 25 26
8 5 6 7 4 1 2 3 16 13 14 15 12 9 10 11 24 21 22 23 20 17 18 19 26 27 28 25 30 31 32 29
9 16 11 14 13 12 15 10 1 8 3 6 5 4 7 2 25 26 27 28 29 30 31 32 17 18 19 20 21 22 23 24

10 13 12 15 14 9 16 11 2 5 4 7 6 1 8 3 26 27 28 25 30 31 32 29 24 21 22 23 20 17 18 19
11 14 9 16 15 10 13 12 3 6 1 8 7 2 5 4 27 28 25 26 31 32 29 30 19 20 17 18 23 24 21 22
12 15 10 13 16 11 14 9 4 7 2 5 8 3 6 1 28 25 26 27 32 29 30 31 22 23 24 21 18 19 20 17
13 12 15 10 9 16 11 14 5 4 7 2 1 8 3 6 29 30 31 32 25 26 27 28 21 22 23 24 17 18 19 20
14 9 16 11 10 13 12 15 6 1 8 3 2 5 4 7 30 31 32 29 26 27 28 25 20 17 18 19 24 21 22 23
15 10 13 12 11 14 9 16 7 2 5 4 3 6 1 8 31 32 29 30 27 28 25 26 23 24 21 22 19 20 17 18
16 11 14 9 12 15 10 13 8 3 6 1 4 7 2 5 32 29 30 31 28 25 26 27 18 19 20 17 22 23 24 21
17 20 19 18 21 24 23 22 25 30 27 32 29 26 31 28 1 4 3 2 5 8 7 6 9 14 11 16 13 10 15 12
18 17 20 19 22 21 24 23 26 31 28 29 30 27 32 25 2 1 4 3 6 5 8 7 16 9 14 11 12 13 10 15
19 18 17 20 23 22 21 24 27 32 25 30 31 28 29 26 3 2 1 4 7 6 5 8 11 16 9 14 15 12 13 10
20 19 18 17 24 23 22 21 28 29 26 31 32 25 30 27 4 3 2 1 8 7 6 5 14 11 16 9 10 15 12 13
21 24 23 22 17 20 19 18 29 26 31 28 25 30 27 32 5 8 7 6 1 4 3 2 13 10 15 12 9 14 11 16
22 21 24 23 18 17 20 19 30 27 32 25 26 31 28 29 6 5 8 7 2 1 4 3 12 13 10 15 16 9 14 11
23 22 21 24 19 18 17 20 31 28 29 26 27 32 25 30 7 6 5 8 3 2 1 4 15 12 13 10 11 16 9 14
24 23 22 21 20 19 18 17 32 25 30 27 28 29 26 31 8 7 6 5 4 3 2 1 10 15 12 13 14 11 16 9
25 30 27 32 29 26 31 28 17 20 19 18 21 24 23 22 9 12 11 10 13 16 15 14 1 6 3 8 5 2 7 4
26 31 28 29 30 27 32 25 18 17 20 19 22 21 24 23 10 9 12 11 14 13 16 15 8 1 6 3 4 5 2 7
27 32 25 30 31 28 29 26 19 18 17 20 23 22 21 24 11 10 9 12 15 14 13 16 3 8 1 6 7 4 5 2
28 29 26 31 32 25 30 27 20 19 18 17 24 23 22 21 12 11 10 9 16 15 14 13 6 3 8 1 2 7 4 5
29 26 31 28 25 30 27 32 21 24 23 22 17 20 19 18 13 16 15 14 9 12 11 10 5 2 7 4 1 6 3 8
30 27 32 25 26 31 28 29 22 21 24 23 18 17 20 19 14 13 16 15 10 9 12 11 4 5 2 7 8 1 6 3
31 28 29 26 27 32 25 30 23 22 21 24 19 18 17 20 15 14 13 16 11 10 9 12 7 4 5 2 3 8 1 6
32 25 30 27 28 29 26 31 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 2 7 4 5 6 3 8 1

This is illustrated in Table 2 for n = 32, where one can find multiplication tables of
32/4 = M(16Γ2c1, 2) and 32/7 = M(D16, 2) the way they are listed in [11]. To obtain
the multiplication table for 32/7, permute the 8 · 8 = 64 framed triangular regions by
switching region (2k, j) with region (2k + 1, j), for k = 0, . . . , 3, j = 0, . . . , 7.

This does not mean that two loops with nonequivalent associator cannot be closer.
In fact, if a group multiplication table contains a subsquare

(21) a b
b a

and if the group is sufficiently large (n ≥ 6), then the loop obtained by switching a and
b in (21) cannot be associative.

We conclude the paper with a few suggestions for future research:
1. Decide whether two Moufang loops M0, Ms of order n with equivalent associator

can be connected by a series of Moufang loops M0, M1, . . . , Ms so that the
distance of Mi+1 from Mi is n2/4, for i = 0, . . . , s − 1. (Note that additional
constructions are needed already for n = 64.)

2. The main result of [9] says that when the parameters of any of the constructions
are varied in a certain way, the isomorphism type of the resulting group will not
be affected. Can this be generalized to Moufang loops? (See [18] for a step in
this direction.)

3. Is there a general construction that preserves three quarters of the multiplication
table yet yields a Moufang loop with nonequivalent associator?

4. This paper attempts to launch a new approach to Moufang 2-loops, by ob-
taining them using group-theoretical constructions. One can envision a similar
programme for Bol loops modulo Moufang loops, for instance.
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5. While this paper was under review, one of the authors has determined by com-
puter search that there are 4262 nonassociative Moufang loops of order 64 that
can be obtained from loops M(G, 2) by the two constructions, where G is a
nonabelian group of order 32. See [18] for more details. Are there other nonas-
sociative Moufang loops of order 64?
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