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3. EXAMPLES OF GROUPS 
 
§3.1. Abstract Groups and the Group Axioms 
 Before we surf the wide ocean of group theory let’s review the definition of a 
group so that we’ll easily recognise one when we come across it. 
 For Galois, a group was the symmetry group of certain algebraic expressions 
involving the roots of a polynomial.  In time his work was abstracted from its 
polynomial setting as the emphasis shifted to groups of “substitutions” (as they were 
called at the time) or “permutations” (as we refer to them now).  The symbols being 
permuted could now can be anything, not just roots of polynomials.  This was the first 
stage in the process of abstraction. 
 A considerable body of theory was built up and many books were written on 
the subject until it was realised that almost every theorem could be derived from just 
four simple facts.  That resulted in the process of abstraction being continued one 
stage further as groups and permutations were uncoupled.  Now any algebraic system 
that behaves in a manner described by these four axioms could be called a group. 
 
 “Group” is the name given to a certain type of algebraic structure that satisfies 
four basic properties called the group axioms or group laws.  On the basis of these 
axioms it’s possible to develop a considerable body of theory – group theory.  We can 
prove theorems about groups without needing to know what they’re groups of, just by 
basing the proofs on these four axioms. 
 The advantage of this abstract approach is that we can deal with countless 
algebraic systems all at once.  A single theorem in group theory immediately becomes 
a theorem for groups of matrices, groups of numbers, groups of permutations, and so 
on. 
 
A binary operation * on a set G is a function that associates with every ordered pair 
of elements a, b ∈ G, a unique element of G, denoted by a * b. 
 
A group (G, *) is a set G together with a binary operation * such that: 
(1) Closure Law:   a * b ∈ G for all a, b ∈ G. 
(2) Associative Law:   (a * b) * c = a * (b * c) for all a, b, c ∈ G. 
(3) Identity Law:   There exists e ∈ G such that  a * e = a = e * a  for all a ∈ G. 
(4) Inverse Law:   For all a ∈ G there exists b ∈ G such that a * b = e = b * a. 
 
COMMENTS 
(1) The closure law is redundant because it’s implicit in the definition of a binary 

operation.  However it’s usually included for emphasis. 
(2) The element  e  is called the identity for G.  We’ll show later that it must be 

unique, that is, a group can only have one identity for its operation. 
(3) The element  b  in the last axiom is called the inverse of  a  (under *).  It too is 

unique.  Every element has exactly one inverse. 
(4) The inverse of the inverse of an element is that element itself. 
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 An abelian group G (so called to honour the Norwegian mathematician, Abel, 
whose work preceded Galois) is one that, in addition, satisfies the following: 
 
Commutative Law:  a * b = b * a for all a, b ∈ G. 
 
§3.2. Subgroups 
 Groups are not isolated structures.  Rather they’re nested, one inside another, 
like a set of Russian dolls.  Open up a group and you’ll usually find lots of smaller 
groups living inside of it.  They are called “subgroups” of the larger group. 
 
A subset H of G is a subgroup if: 

(1)  a 
* b ∈ H for all a, b ∈ H; 

(2)  e (the identity element of G) ∈ H; 
(3) the inverse of every element of H is in H. 

Notation: H ≤ G. 
 
NOTES: 
(1) We often summarise these by saying that H is closed under the operation, under 

the identity and under inverses. 
(2) These properties correspond to three of the four group axioms.  The associative 

law doesn’t have to be verified for a subgroup because it holds throughout all of 
the group.  So subgroups are groups in their own right. 

(3) The operations in H and G have to be the same.  You can’t have a subset of a 
group of numbers under addition being a subgroup under multiplication.  For 
example the group of positive real numbers under multiplication is not a subgroup 
of the group of all reals under addition. 

(4) Every group is a subgroup of itself. 
 

The order of a group G is its number of elements.  If this is finite we say that 
G is a finite group.  Otherwise it’s an infinite group.  This distinction is important 
because the theories of finite groups and infinite groups use somewhat different 
methods.  For example in finite group theory the divisibility properties of the natural 
numbers play an important role. 

 
Notation: The order of the group G is denoted by |G|. 
 
 We’re now ready to go hunting for groups and we’ll find that they’re native to 
practically every continent of the world of mathematics. 
 
§3.3. Groups of Numbers 
 The easiest place to find groups is in the various number systems.  Numbers 
can be both added and multiplied but if we focus our attention on just one of these we 
can produce examples of groups.  And because the commutative law holds for 
addition and multiplication of numbers the groups we’ll get will all be abelian. 
 Let’s begin with (ℤ, +), the group of integers under addition.  If you replace * 
in the group axioms by + you’ll see that they all hold.  The identity, e, in this case is 
the number 0 and the inverse of  x  is  −x. 
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 Now (ℤ, ×) is not a group.  The problem lies with inverses under 
multiplication.  Not only does 0 fail to have an inverse, numbers such as 2 have no 
inverse, not within the system of integers at any rate, since ½ is not an integer.  It’s not 
enough for an inverse to exist.  It has to lie within the set under consideration.  In fact 
the only integers which do have multiplicative inverses within ℤ are ±1. 
 Within the group of integers under addition there’s the subgroup 2ℤ of even 
integers (even + even is even, 0 is even and minus an even is even).  Other subgroups 
are mℤ for any m, the multiples of a fixed integer m. 
 The rational numbers under addition form the group (ℚ, +) (rational plus 
rational is rational etc.) and (ℤ, +) is one of its many subgroups.  Under multiplication 
(ℚ, ×) almost qualifies.  Only zero fails to have an inverse under multiplication.  If we 
exclude zero, and denote the set of non-zero rationals by ℚ#, we do get a group.  But 
note that we have to rethink the closure law.  It’s no longer enough that the product of 
two rationals is a rational.  We need the product of two non-zero rationals to be a non-
zero rational.  Fortunately this is so by the cancellation law: 

xy = 0 implies that x = 0 or y = 0. 
 One subgroup of (ℚ#, ×) is the set of all powers of 2: {2n | n ∈ ℤ}.  This is 
because 2m.2n = 2m+n, the identity under multiplication is 1 = 20 and (2n)−1 = 2−n. 
A really small subgroup of (ℚ#, ×) consists just of ±1.  An even smaller one is {1}. 
 In fact for any group G the subset {e}, consisting of just the identity, is a 
subgroup known as the trivial subgroup of G.  Check it: 

(1) e * e = e; 
(2) {e} contains the identity; 
(3) the inverse of e is e. 

 
 Things work for the real and complex numbers in very much the same way.  
The group (ℂ, +) contains the subgroup (ℝ, +).  Another subgroup is the set of 
imaginary numbers.  Within (ℝ, +) you find (ℚ, +) and a subgroup of (ℚ, +) is (ℤ, +) 
etc. 
 The non-zero complex numbers under multiplication form the group (ℂ#, ×) 
which in turn contains (ℝ#, ×).  One of the many subgroups of (ℝ#, ×) is (ℚ#, ×) and 
(ℚ#, ×) has within it the subgroup (ℚ+, ×) of positive rationals. 
 
 For groups of numbers we usually omit the operation and just write ℚ or ℚ# 
etc.  There’s no ambiguity because there’s a simple way to determine whether the 
operation is intended to be addition or multiplication, by a process of elimination.  If 
the set contains zero, such as ℝ, it can’t be a group under multiplication because zero 
doesn’t have an inverse.  But if zero is excluded it can’t be a group under addition 
because zero is the identity under addition and so must be included. 
 So 0 ≤ ℤ ≤ ℚ ≤ ℝ ≤ ℂ and 1 ≤ ℚ+ ≤ ℚ# ≤ ℝ# ≤ ℂ#.   Notice that it’s usual to 
denote the trivial subgroup by just 0 or 1 depending on the operation. 
 Of course if the operation is neither addition nor multiplication, and there’s no 
reason why it has to be one or the other, then it must be spelt out explicitly. 
 Here’s a group of numbers where the operation is neither addition nor 
multiplication. 
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Example 1:  Let G = {x ∈ ℝ | x ≠ −1} and define x * y = x + y + xy.  Then (G, *) is a 
group. 
Closure: If x, y ∈ G then x * y = (x + 1)(y + 1) − 1 ≠ −1 so x * y ∈ G. 
Associative law: Since this is an operation we’ve never seen before we must check 
associativity: 
(x * y) * z = (x * y) + z + (x * y)z 
                = (x + y + xy) + z + (x + y + xy)z 
                = x + y + z + xy + xz + yz + xyz 
and x * (y * z) = x + (y * z) + x(y * z) 
                       = x + y + z + yz + x(y + z + yz) 
                       = x + y + z + xy + yz + xz + xyz. 
Identity: The identity is 0. 
Inverse: the inverse of x ∈ G is −x

x +1  since x +  
−x

x +1  + x



−x

x +1   = 0. 

Note that the denominator is non-zero since x ≠ −1. 
Moreover, −x

x +1  = −1 +  
1

x + 1  ≠ −1. 

 
 Another type of number is an integer-modulo-m, for some positive integer 
modulus m.  Under addition these give the groups (ℤm, +).  Because the operation is 
different to ordinary addition (eg. 1 + 1 = 0 mod 2) they’re not subgroups of (ℤ, +).  In 
fact none of them is a subgroup of any of the others. 
 Under multiplication we may have to exclude more than just 0.  Consider ℤ10 
under multiplication.  The numbers 2, 4, 5, 6 and 8 fail to have inverses under 
multiplication because they’re not coprime to 10.  For example if  y  was the inverse 
of 6 mod 10 then 6y would have to be 1 plus a multiple of 10, which is clearly 
impossible. 
 Only 1, 3, 7 and 9 have inverses mod 10 and these inverses are 1, 7, 3 and 9 
respectively.  [Remember, for example, that 3.7 = 1 mod 10.] 

Moreover the set {1, 3, 7, 9} is closed under multiplication as can be seen if 
we write out the multiplication table: 

   ℤ10
# 1 3 7 9 
1 1 3 7 9 
3 3 9 1 7 
7 7 1 9 3 
9 9 7 3 1 

The associative law holds because it holds for integers.  So we get a group. 
 We denote the set of invertible elements of ℤm (the ones that have inverses, or 
equivalently, are coprime to m) by ℤm

#.   This will always be a group because the 
product of two invertible elements is invertible. 
 
Now the group ℤ12

# also has four elements {1, 5, 7, 11} and multiplication table: 
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ℤ12

# 1 5 7 11 
1 1 5 7 11 
5 5 1 11 7 
7 7 11 1 5 

11 11 7 5 1 
 
In Chapter 1 we encountered the mattress group which also has order 4.  Its table is: 

 I A B C 
I I A B C 

A A I C B 
B B C I A 
C C B A I 

 Which of the tables, the one for ℤ10
# or the one for ℤ12

# does this most 
resemble?  The answer is ℤ12

#.  The mattress group and ℤ12
# follow the same pattern: 

everything squared is the identity and the product of any two of the non-identity 
elements is equal to the third.  In fact we can turn one table into the other by the code 

I → 1, A → 5, B → 7, C → 11. 
 The group ℤ10

# on the other hand is rather different.  It can’t be changed into 
the mattress group by any relabelling.  The most obvious difference is that in ℤ10

# 
there are only 2 solutions to the equation x2 = 1 while in both the mattress group and 
ℤ12

# all four elements satisfy this equation. 
 If two groups have essentially the same structure, meaning that the group table 
for one can be turned into the table for the other by a suitable renaming, we say that 
the groups are isomorphic.  So ℤ12

# is isomorphic to the mattress group but neither of 
these is isomorphic to ℤ10

#.  (We’ll define isomorphism a little more formally later.) 
 So there are at least two, essentially different, groups of order 4.  In fact, as 
we’ll see later, these are the only two.  There are only finitely many groups with any 
given finite order (up to isomorphism) and one of the fundamental problems of finite 
group theory is to classify them. 
 
§3.4. Groups of Permutations 
 The symmetric group, Sn, is the group of all permutations on {1, 2, … , n}.  An 
important subgroup is the alternating group, An, the group of all even permutations.  
Another subgroup of Sn is the set H of all permutations that fix the symbol 1.   The 
elements of H permute the remaining elements 2, 3, ... , n  in all the (n − 1)! possible 
ways.  By renumbering these symbols as 1, 2, ... , n − 1 we can turn this group into a 
copy of Sn−1.  In other words H is isomorphic to Sn−1. 
 
 An important subgroup of S4 is called the Klein group (after the 
mathematician Felix Klein) or the Viergruppe (German for the “four-group”).  It’s 
often denoted by V4 which is a bit silly in a way because both the V for “vier” and the 
4 tell us that there are four elements: V4 = {I, (12)(34), (13)(24), (14)(23)}. 
 
Its multiplication table is: 
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V4 I (12)(34) (13)(24) (14)(23) 
I I (12)(34) (13)(24) (14)(23) 

(12)(34) (12)(34) I (14)(23) (13)(24 
(13)(24) (13)(24) (14)(23) I (12)(34) 
(14)(23) (14)(23) (13)(24) (12)(34) I 

 
 Notice that once again this has the same pattern as both ℤ12

# and the mattress 
group.  V4 is a permutation group that’s isomorphic to these other groups. 
 For many decades “groups” meant only groups of permutations.  Introducing 
the group axioms freed us from this connection and enabled us to look for groups 
anywhere.   But in fact it didn’t really lead us to find any extra groups, just different 
disguises for the same groups.  This is because every group is isomorphic to a group 
of permutations.  Multiplication of the elements of a group G by a fixed element is a 
permutation and these permutations form a group that’s isomorphic to G. 
 This is known as Cayley’s Theorem and we’ll give a formal proof of it later 
once we’ve defined the word “isomorphic” properly.  But you can see it working in 
the following example. 
 Take the group ℤ12

#: 
 

ℤ12
# 1 5 7 11 
1 1 5 7 11 
5 5 1 11 7 
7 7 11 1 5 

11 11 7 5 1 
 
Multiplication on the right by 5 permutes these four elements in a way that can be 
described in cycle notation as (1 5)(7 11).  The corresponding permutations for all 
four elements are: 
 

1 I 
5 (1 5)(7 11) 
7 (1 7)(5 11) 
11 (1 11)(5 7) 

 
 Now relabelling the elements of ℤ12

# by the code: 1→1, 5→2, 7→3, 11→4 
these four permutations become I, (12)(34), (13)(24), (14)(23), the elements of V4.  
 
§3.5. Groups of Polynomials, Functions and Vectors 
 Polynomials can be added and subtracted, and the set of all polynomials in  x  
over a field F forms an abelian group F[x].  Polynomials can also be multiplied but we 
don’t get a group, even if we exclude the zero polynomial, because expressions such 
as 1

x + 1  are not polynomials. 
 

Functions f: ℝ → ℝ can be added, and again we get an abelian group.  
Multiplying functions, in the way that we might multiply the functions f(x) = x2 and 
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g(x) = sin x to get the function f(x)g(x) = x2sin x, raises problems with inverses.  For 
example g doesn’t have an inverse.  What about cosec x = 1

sin x ?  That’s not a function 

from ℝ to ℝ since it’s undefined when x = nπ for any integer n. 
But there’s another way of multiplying functions – function of a function.  For 

any set X, if we have two functions f, g from X to X we can form their product fg, 
defined by (fg)(x) = g(f(x)), that is, we first apply  f  and then apply  g.  If f(x) = x2 and 
g(x) = sin x then the product  fg  is the function (fg)(x) = sin(x2), while gf is the 
function (gf)(x) = (sin x)2, which we normally write as sin2x.  Clearly, if we do get a 
group out of this it will be non-abelian. 

In fact the groups we get out of this operation are the familiar groups of 
permutations on a set X.  But X can be infinite and in such cases the examples will 
look rather different to the usual permutation groups.  Here’s an example of a finite 
group of permutations on an infinite set. 
 
Consider the functions: 

a(x) = x, 
b(x) = 1 − x, 
c(x) =  1x , 

d(x) = 1
1 − x , 

e(x) =  x − 1
x  , 

f(x) = x
x − 1 . 

Since these are undefined for x = 0 and x = 1 we must exclude these values from the 
domain.  So let’s take X to be the set ℝ − {0, 1}, that is, the set of all real numbers 
excluding 0 and 1.  Not only are all the above defined for every x ∈ X, a quick check 
will reveal that their range is also X and that these are 1-1 and onto functions on X. 

 Now d2(x) = d(d(x)) = 1

1 − 
1

1 − x

 =  
x − 1

x = e(x) and 

                               (bd)(x) = 
1

1 − (1 − x)  =   
1
x = c(x) 

so that d2 = e and bd = c.  We can complete the multiplication table for this group of 
order 6: 

 a b c d e f 
a a b c d e f 
b b a d c f e 
c c e a f b d 
d d f b e a c 
e e c f a d b 
f f d e b c a 

Note that d3 = de = a, the identity, so d has order 3, b2 = a, and so d has order 2, and 
bd = c = eb = d−1b.  So this group is isomorphic to the dihedral group 

D6 = 〈A, B | A3 = 1, B2 = 1, BA = A−1B〉, 
with A corresponding to  d  and B corresponding to  b.   
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 Among the axioms for a vector space V, over a field F, are the group axioms 
for V to be a group under addition.  In fact if we ignore scalar multiplication, vector 
spaces are just abelian groups.  So we can produce examples of abelian groups by 
taking the set of all vectors (x1, x2, ... , xn) with each xi ∈ F, under the operation of 
addition. 
 If we want to get a finite group we’d need to take F to be a finite field, of 
which the best-known examples are the integers modulo a prime. 
 We denote the set of all vectors (x1, x2, ... , xn), with each xi ∈ Zp by 

ℤp ⊕ ℤp ⊕ ... ⊕ ℤp (n copies of ℤp). 
We will explain the full meaning of the symbol ⊕ in a later chapter. 
 
But since we’re only adding these components there’s no need for them to come from 
a field.  In other words p need not be prime. 
 ℤ6 ⊕ ℤ6 ⊕ ℤ6 is the set of all vectors of the form (x, y, z) where x, y, z ∈ ℤ6.  
With 6 choices for each component this gives a group of order 63 = 216. It isn’t 
even necessary for the modulus to be the same for each component.  So ℤ4 ⊕ ℤ6  is a 
group, under addition, of  order 24, consisting of all vectors (x, y)  where 

x ∈ ℤ4 and y ∈ ℤ6. 
Here (3, 5) + (2, 4) = (1, 3) since 3 + 2 = 1 (mod 4) and 5 + 4 = 3 (mod 6). 
 
§3.6. Groups of Matrices 
 If F is a field GL(n, F) denotes the group of all invertible n × n matrices over 
F under multiplication.  The phrase “over F” means that the components come from F 
and “under multiplication” means that the operation is matrix multiplication. 
 This group is called the general linear group of degree n over F.  Checking 
the axioms needs a little non-trivial knowledge about matrices.  We know that the 
associative law holds for matrix multiplication.  Checking the closure law requires us 
to know that the product of two invertible matrices is invertible.  And we need to 
know more than just the fact that every invertible matrix has an inverse.  We need to 
observe that such an inverse is itself invertible. 
 An interesting subgroup of GL(n, F) is T+(n, F) the set of all n × n upper-
triangular matrices over F, that is, n × n matrices of the form: 









a11 a12 a13 ...  a1n

0  a22 a23 ...  a2n
0  0  a33 ...  a3n
...  ...  ...  ...  ... 
0 0 0  ...  ann

  

where each diagonal component is non-zero. 
 Check out for yourself that this set is closed under multiplication and that the 
inverse of any one of these matrices again has the same form. 
 Then there are the lower triangular matrices T−(n, F) which are the 
transposes of the upper triangular ones.  The intersection of these are the invertible 
diagonal matrices D(n, F).  It’s closed under multiplication, identity and inverses 
simply because each of T+(n, F) and T−(n, F) are.  This is a special case of the general 
fact that: 
 

The intersection of any collection of subgroups is itself a subgroup. 
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 Within D(n, F) we have the non-zero scalar matrices S(n, F).  These are 
simply the diagonal matrices that have the same non-zero entry down the diagonal, 
that is, non-zero scalar multiples of the identity matrix. 
 
 Another interesting subgroup of T+(n, F) is the group of uni-upper-triangular 
matrices UT+(n, F).  These are the upper-triangular matrices with 1’s down the 
diagonal: 

 









1  a12 a13 ...  a1n

0  1  a23 ...  a2n
0  0  1  ...  a3n
...  ...  ...  ...  ... 
0 0 0  ...  1

  

And inside T−(n, F) we have the uni-lower-triangular matrices UT−(n, F). 
We can summarise the connections between these subgroups in a “lattice diagram”: 
 
                                                     GL(n, F) 
 
 
 
                                    T+(n, F)                            T−(n, F) 
 
 
 
                                                         D(n, F) 
 
                                  UT+(n, F)                            UT−(n, F) 
 
                                                         S(n, F) 
 
 
 
                                                              1 
 
 Another very important subgroup of GL(n, F) is SL(n, F) consisting of all the 
matrices with determinant 1.  It’s called the special linear group of degree n over F.  
We could incorporate this into our lattice of subgroups but including its intersections 
with the other subgroups would make the diagram very messy. 
 
 The lattice of subgroups of a group G is such a picture of all its subgroups.  
One subgroup is contained in another if and only if there is an ascending path in the 
diagram from the smaller to the larger.  The intersection of two subgroups is the 
largest subgroup contained in them both and is easily picked out from the diagram. 
 
 If F is a finite field, such as ℤp we get a finite group.  The group GL(n, ℤp) is 
generally written as GL(n, p). 
 Matrix groups provide a very rich source of examples of groups, both abelian 
and non-abelian.  In fact, since every finite group is isomorphic to a group of 
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permutations, and every permutation can be represented by a permutation matrix it 
follows that every finite group is isomorphic to some matrix group.  This fact provides 
the basis for representation theory which we’ll study in a later chapter. 
 
§3.7. Symmetry Groups 
 Symmetry can be found in many places, in art, graphic design, music, 
architecture, in the natural world and in science.  And there are many types of 
symmetry.  There is the mirror symmetry we expect to find in the human face, there is 
the rotational symmetry such as you find in many flowers and the translational 
symmetry that’s found in a repetitive piece of music or a recurring decimal expansion.  
Sometimes the symmetry is a combination of translational, rotational and mirror 
symmetry as in a honeycomb or a brick wall. 
 Poetry exhibits aspects of symmetry in its rhyming patterns and physical laws 
involve symmetry.  Even asymmetry makes use of symmetry for its effect relies on 
our unsatisfied expectation of symmetry. 
 But what really is symmetry?  The most useful definition is in terms of 
operations that keep something the same.  The human face is never exactly 
symmetrical, but we imagine it to have mirror symmetry about a vertical axis of 
symmetry.  If reflected left-to-right in this axis a face appears to be the same.  The 

reflection operation is therefore a symmetry operation for the face. 
 
 So whenever we have an axis of symmetry we have a 
symmetry operation.  In this case the symmetry is mirror 
symmetry (though for a 2-dimensional shape we can also think of 
it as a 180° rotation in a third dimension).  But, as we saw with 
the square there’s rotational symmetry as well. 
 The infinite pattern of bricks below exhibits two other 
forms of symmetry, translational symmetry and glide 
symmetry.  A translation is a movement in a certain distance by a 
certain amount and if an infinite pattern is fixed by such a 

translation it is said to have translational symmetry.  The brick pattern has horizontal 
translational symmetry through one brick length (or any integer multiple of this 
distance). 
 A glide is a reflection in an axis followed by a translation along that axis.  The 
brick pattern has horizontal axes of symmetry running through the midpoints of the 
bricks but the lines which run between the rows of bricks are not mirror axes.  Yet if 
you reflect in such a line and then translate by half a brick length, the pattern snaps 
back into place.  So the pattern is fixed as a whole by this glide. 
 
 
 
 
 
 

 Isometries are distance-preserving functions.  They include reflections, 
rotations, translations and glides (in two dimensions these are the only isometries).  A 
symmetry operation for a shape is an isometry that fixes the shape as a whole.  
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While individual points are moved by the operation the whole shape occupies exactly 
the same region of space. 
 It’s clear that if you multiply one symmetry operation by another you get a 
symmetry operation.  The identity is always a symmetry operation and the inverse of a 
symmetry operation is a symmetry operation.  So the set of all symmetry operations 
for a shape forms a group, called the symmetry group of the shape. 
 
Castle Turrets: 
 The machicolations on a castle wall form the jagged outlines from which 
archers can fire their arrows.  An infinitely long pattern of this type has translational 
symmetry in that if you translate the pattern through a certain distance it remains 
unchanged – each turret just gets moved on to the next. 

 There is also 
reflectional symmetry in the 
infinitely many vertical axes of 
symmetry (the horizontal axis is 

not an axis of symmetry).  Then there is 180° rotational symmetry about the centres 
indicated by dots.  Finally there is what is called glide symmetry along the horizontal 
axis.  Reflecting the pattern of turrets in the horizontal axis and then translating half a 
turret distance, every point on the pattern is moved to an equivalent one.  The sine 
curve also exhibits this same type of symmetry. 
 If T is the translation that takes each peak to the next on its right, R is the 180° 
rotation about one of the marked points, M is the reflection in the vertical axis 
immediately to the right of this point and G is the glide that takes each peak to the 
next trough to the right then T = G2, R = GM, M2 = I and GM = MG−1.  The symmetry 
group of the pattern is generated by G and M alone and is in fact the infinite dihedral 
group 〈G, M | M2 = 1, GM = MG−1〉. 
 
Railway lines: 
 A set of railway tracks is another infinite repeating pattern.  But unlike the sine 
curve or the castle turrets, the horizontal axis is an axis of reflectional symmetry and 
not just an axis of glide symmetry. 

 As well, there are infinitely many vertical axes of symmetry and infinitely 
many centres of 2-fold, that is 180°, rotational symmetry.  And finally there are glides 
built up from these reflections and translations. 
 If T denotes the translation that takes each “railway sleeper” to the next on the 
right, H the reflection in the horizontal axis and V the reflection in one of the vertical 
axes of symmetry then the group of symmetries is the infinite group 

〈T, H, V | H2 = V2 = 1, TH = HT, TV = VT−1, HV = VH〉. 
 
 The people who are most interested in symmetry groups, particularly for 3 
dimensional patterns, are crystallographers.  Crystallography is the branch of 
chemistry that deals with the possible crystal lattices for various substances and the 
crystallographers long ago classified all possible symmetry groups in 2 and 3 
dimensions. 
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§3.8. Group Tables 
 A finite group can be described by displaying its group table as follows: 

The set {a, b, c} becomes a group under the binary operation defined by the table: 
 

* a b c 
a a b c 
b b c a 
c c a b 

 
 Given a table, however, it’s not always easy to verify that it’s a group table.  
The closure, identity and inverse axioms are easy to check but the associative law 
would involve a considerable amount of laborious checking.  The quickest way to 
check the associative law is in fact to construct a group (where you know the 
associative law holds) and show that it’s isomorphic to the one in the given table.  For 
example, to show that the above table is a group table we would need to check that 
(xy)z = x(yz) for 27 combinations of x, y and z.  But we can instead observe that G = 
{1, ω, ω2} is a group under multiplication, where ω = e2πi/3 is a non-real cube root of 
unity and that the code 1→a, ω→b, ω2→c transforms the group table for G to the one 
above. 
 
§3.9. Group Presentations 
 The above group can be described very concisely by the notation 〈A | A3 = 1〉.  
This is called a presentation for the group with the first part being a list of generators 
(in this case there’s just one).  A set of generators is a subset of the group such that 
every element is a product of their powers.  The second part of the description is a list 
of the relations that generate all the relations that hold between the generators. 
 The relation A3 = 1 is not the only relation that holds in this group.  We also 
have A6 = 1, A9 = 1, ... not to mention A−3 = 1, A−6 = 1, ... But all of these are 
consequences of the given one and so they may be omitted. 
 The trivial group also has a generator A such that A3 = 1, so why doesn’t this 
notation refer to that group as well?  The assumption is not simply that the given 
relations hold in the group but that any relation which does hold is a consequence of 
the stated ones.  In the trivial group we also have A = 1 and A2 = 1, but these can’t be 
deduced from the relation A3 = 1. 
 This is only a fairly informal definition of presentations, but it will suffice for 
now.  A more rigorous definition in terms of quotient groups of free groups will be 
given in a later chapter. 
 The relations can always be put in the form R = 1, though it’s not always 
convenient to do so.  When a relation is expressed in this form the expression R is 
called a relator and often just the relator is given.  So the above group could be 
expressed as 
〈A | A3〉. 

*       y 
 
x 

: 
... x*y   ... 
: 
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It’s even permissible to mix relators and relations in the same presentation.  
The Klein group, V4, has the presentation 

〈A, B | A2, B2, AB = BA〉. 
Other presentations for V4 are 

〈A, B | A2, B2, (AB)2〉 and 
〈A, B, C | A2, B2, C2, AB = C = BA〉. 

Here you see yet another small variation in the notation as a shortcut, that of having a 
chain of equalities. 
 A very common presentation for the dihedral group of order 8 is: 

D8 = 〈A, B|A4, B2, BA = A−1B〉. 
More generally the dihedral group of order 2n can be defined by the presentation: 

D2n = 〈A, B | An, B2, BA = A−1B〉. 
 In principle all the information about a group is locked up in such a compact 
presentation but it isn’t always easy to release it.  For many presentations, such as the 
one above for the dihedral group, we can argue that every element has the form ArBs 
for some integers r, s.  That is because the relation BA = A−1B can be interpreted by 
saying that if we move a B past an A, the B doesn’t change but the A is inverted. 
 Now a typical element of the group is a product of powers of the generators A 
and B, such as A5BA−2B3A.  Using the relation BA = A−1B we can move all the B’s past 
all the A’s to the back.  The relation acts a bit like the commutative law, except that 
the power of A will not simply be the sum of all the powers scattered throughout the 
expression.  For this example we’d have 

A5BA−2B3A = A5A2BB3A = A7B4A = A7AB4 
(the last A gets inverted 4 times by the B4 so remains as A) 

                                                      = A8B4. 
 Of course since B2 = 1 this simplifies further to A8 and if n is 8 or less we 
could reduce this further.  But whenever you have a relation of the form BA = AkB 
anything generated by A and B can be expressed in the form ArBs. 
 For the dihedral group 〈A, B | An, B2, BA = A−1B〉 a typical element can be put 
in the form ArBs where 0 ≤ r < n and s = 0 or 1.  Moreover these 2n expressions 
represent distinct elements so we can infer that the group has order 2n. 
 With the elements written as 1, A, A2, ... , An−1, B, AB, A2B, ... , An−1B we can 
prepare a group table.  To multiply any pair of elements we simply use the rule (valid 
for dihedral groups but not for groups in general) that moving a B past an A inverts 
the A but leaves the B unchanged.  For example A5BA3 = A5A−3B = A2B.  And once 
we have the group table we can investigate the properties of the group fully. 
 Things are not always that easy.  Given a very complicated presentation we 
may not even be able to decide whether the group is finite or infinite, or even whether 
the group has more than one element! 
 
 The Word Problem for groups asks the following: 

WORD PROBLEM 
Find an algorithm which can determine whether a given word in a 
group described by a given presentation is equal to the identity. 
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 The Word Problem is unsolvable.  It’s not simply that nobody has yet found 
such an algorithm.  No, a proof has been given that no such algorithm can possibly 
exist! 
 Fortunately in practice things are not quite so gloomy.  There’s an algorithm, 
called the Todd Coxeter algorithm which mostly works.  (We’ll visit it in a later 
chapter.)  It’s an algorithm that isn’t completely deterministic in that at one place in 
each cycle a choice has to be made.  Make a good decision each time and you’ll get an 
answer.  The algorithm is reliable in the sense that you’ll never get a wrong answer.  
But it may fail to terminate. 
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EXERCISES FOR CHAPTER 3 
 
EXERCISE 1: Which of the following subsets of ℤ are groups under addition? 

A = the set of even integers; 
B = the set of odd integers; 
C = the set of non-negative integers; 
D = {0}; 
E = the set of integers which are expressible as 42m + 1023n for integers m, n. 

 
EXERCISE 2:  Which of the following subsets of ℂ are groups under multiplication? 

A = the set of non-zero rational numbers; 
B = the set of positive integers; 
C = {1, −1, i, −i}; 
D = {1, ½, 2}; 
E = {a + bia > 0}; 
F = {1, π, π2, π3, ... }. 

 
EXERCISE 3: Let G = {x ∈ ℝ | x ≠ 1} and define x * y = xy − x − y + 2. 
Prove that (G, *) is a group. 
 
EXERCISE 4: 
Prove that {I, (12), (345), (354), (12)(345), (12)(354)} is a group. 
   
EXERCISE 5: 
Jack and Jill are going out together, as are Romeo and Juliet.  Tonight they’re going 
out on a double date, with Jack and Jill sitting in the front seat of their red convertible 
and with Romeo and Juliet cuddling in the back.  It’s a long drive and so every so 
often they stop and change drivers.  But at all times Jack and Jill must sit together and 
so must Romeo and Juliet, so not every permutation on the set {Jack, Jill, Romeo, 
Juliet} is permitted.  Show that the permutations that keep each couple together form 
a group. 
 
 
 
 
 
 
 
 
 
 
 
EXERCISE 6: Which of the following are groups under polynomial addition 

(a) The set of all real polynomials that have x − 1 as a factor; 
(b) The set of all real polynomials of even degree, together with 0; 
(c) The set of all integer polynomials whose sum of coefficients is even; 
(d) The set of all integer polynomials where every coefficient is odd. 

4 3 

2 1 
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EXERCISE 7: In the group ℤ4 ⊕ ℤ5 ⊕ ℤ10 perform the following additions: 
(a) (3, 2, 7) + (2, 1, 8); 
(b) (0, 4, 2) + (1, 4, 3); 
(c) (2, 3, 4) + (2, 2, 6). 

EXERCISE 8: Show that the set of all real matrices of the form  



1 x

0 1  is a group 

under matrix multiplication.  Does it satisfy the commutative law? 
 
EXERCISE 9: Find the rotation group of a parallelogram: 
 
 
 
 
EXERCISE 10: Find the rotation group of a diamond shape and write out its group 
table. 
 
 
 
 
 
 
EXERCISE 11: Find the rotation group of the insignia of the Isle of Man: 

EXERCISE 12: Find the rotation groups of the letters of the alphabet (use the most 
symmetric possible way of writing each letter). 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
 
EXERCISE 13: Find the symmetry group of a regular hexagon. 
 
 
 
 
EXERCISE 14: Find the order of the rotation group of a tetrahedron (triangular 
pyramid with four identical equilateral triangular faces). 
 
 
 
 
EXERCISE 15: Find the order of the rotation group of a cube. 
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EXERCISE 16: Find the rotation group of the following shape: 

          
EXERCISE 17:  G is a group given by the following group table: 
 

 A B C D E F 
A A B C D E F 
B B A D C F E 
C C E A F B D 
D D F B E A C 
E E C F A D B 
F F D E B C A 

 
Calculate the following: 

(a) BD; 
(b) FACE; 
(c) E−1; 
(d) D2B3FE−1; 
(e) (BC)−2BF. 

 
EXERCISE 18: Find all possible group tables on the set {1, a, b} where  1  is the 
identity. 
 
EXERCISE 19: Construct the group table for the group 〈A | A3〉. 
 
EXERCISE 20: In the group 〈A, B, C | A7, B3, C2

, BA = A3B, CA = AC, CB = B2C〉 
express each of the following in the form AqBrC 

s 

(a) (BC)2; 
(b) B2A3; 
(c) C3A−2; 
(d) (ABC)−1; 
(e) (AB)3. 

 

SOLUTIONS FOR CHAPTER 3 
EXERCISE 1: 
A, D, E 
 
EXERCISE 2: 
A, C 
 
EXERCISE 3: 
Closure: Let a, b ∈ G, so a ≠ 1 and b ≠ 1.  Suppose a * b = 1. 
Then ab − a − b + 2 = 1 and so (a − 1)(b − 1) = 0 which implies that a =  1 or b = 1, a 
contradiction. 
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Associative:  Unlike the examples in exercise 1, this is a totally new operation that we 
have never encountered before.  We must therefore carefully check the associative 
law. 
(a * b) * c = (a * b)c − (a * b) − c + 2 
                = (ab − a − b + 2)c − (ab − a − b + 2) − c + 2 
                = abc − ac − bc + 2c − ab + a + b − 2 − c + 2 
                = abc − ab − ac − bc + a + b + c 
Similarly a * (b * c) has the same value (we can actually see this by the symmetry of 
the expression. 
Identity: An identity, e, would have to satisfy: e * x = x = x * e for all x ∈ G, that is, 
ex − e − x + 2 = x, or (e − 2)(x − 1) = 0 for all x.  Clearly e = 2 works.  We can now 
check that 2 is indeed the identity. 
Inverses:  If x * y = 2, then xy − x − y + 2 = 2.  So y(x − 1) = x + 2 and hence 

y = 
x + 2
x − 1 .  This exists for all x ≠ 1, i.e. for all x ∈ G.  But we must also check that it is 

itself an element of G.  Clearly this is so because  
x + 2
x − 1  ≠ 1 for all x ≠ 1. 

 
EXERCISE 4: 
The multiplication table is 

 I (12) (345) (354) (12)(345) (12)(354) 
I I (12) (345) (354) (12)(345) (12)(354) 

(12) (12) I (12)(345) (12)(354) (345) (354) 
(345) (345) (12)(345) (354) I (12)(354) (12) 
(354) (354) (12)(354) I (345) (12) (12)(235) 

(12)(345) (12)(345) (345) (12)(354) (12) (354) I 
(12)(354) (12)(354) (354) (12) (12)(345) I (345) 

From this we can see that the set is closed under multiplication, and the fact that I 
appears in every row and column shows that every element has an inverse.  The set 
contains the identity permutation.  Since multiplication of permutations is associative 
all four group axioms hold. 
 
EXERCISE 5: 
One way is to represent the four young people by real numbers xJack, xJill, xRomeo and 
xJuliet and to consider the algebraic expression E = xJack.xJill + xRomeo.xJuliet.  The 
permissible permutations that are allowed are those that keep the value of E 
unchanged.  This is clearly a group. 
 
Or we can number the positions as follows: 
 
 
 
 
 
 4 3 

2 1 
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The permissible permutations are: I, (12), (34), (12)(34), (13)(24), (14)(23), (1324), 
(1423).  These are the same permutations in the symmetry group of the square 
 
 
 
 
 
EXERCISE 6: 
(a), (b), (c) 
 
EXERCISE 7: 
(a) (1, 3, 5),   (b) (1, 3, 5),   (c) (0, 0, 0). 
 
EXERCISE 8: 

Closure: 



1 x

0 1   



1 y

0 1  = 



1   x + y

0    1    so the set is closed under multiplication. 

Identity: I = 



1 0

0 1  belongs to this set. 

Inverses: The inverse of 



1 x

0 1   is   



1 −x

0  1  , which belongs to this set. 

 
The commutative law clearly holds, so this is an abelian group. 
 
EXERCISE 9: 
G = {I, R} where R is a 180° rotation  NOTE: A parallelogram has no axes of 
symmetry unless it is a more symmetrical parallelogram such as a rhombus or a 
rectangle. 

 
EXERCISE 10: 
G = {I, R, D, E} where R is a 180° rotation about the 
centre and D, E are 180° rotations about the axes 
indicated.  The group table is: 

 
EXERCISE 11: 
G = {I, R, R2} where R is a 120° rotation about the centre and R2 is a 240° rotation. 
 
EXERCISE 12: 
Each of A, B, C, D, E, K, L, M, T, U, V, W has one axis of symmetry (vertical for A, M, T, U, V, 
W diagonal for L assuming both arms have the same length, and horizontal for B, C, D, E, 
K) so their rotation groups are {I, R} where R is a 180° flip about these axes.  The 

R
 

 I R E D 
I I R E D 
R R I D E 
E E D I R 
D D E R I 

D 
R 

E 

1 

2 

3 

4 
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letters N, S and Z also have this group as their rotation group but this time R is a 180° 
rotation about the centre. 
 The letters F, G, J, Q and R have “no symmetry”, but since everything has the 
identity operation as a symmetry operation, their rotation group is just {I}. 
 The letters H and I have the same symmetry as a rectangle: {I, H, V and R} 
where H, V and R are a 180° rotations about the horizontal axis, the vertical axis and 
the centre, respectively. 
 The rotation group of the letter X (if the axes are at right angles) is the same as 
that of the square, that is, the dihedral group of order 8 and the rotation group of the 
letter Y (assuming the arms are 120 degrees apart) is D6. 
 The letter O, represented by a circle, has an infinite symmetry group. Any line 
through the centre is an axis of symmetry and any rotation about the centre is a 
symmetry operation. 
 
EXERCISE 13: 
G = {I, R, R2, R3, R4, R5, A, B, C, D, E, F} where R is a 60° 
rotation about the centre and A to F are 180° rotations about the 
six axes of symmetry. 
 
 
EXERCISE 14: 
There is 3-fold symmetry.  Rotations through 120° and 240° about each 
of the four axes from a vertex to the midpoint of the opposite face are in 
the rotation group. 
 
Less obvious is the 2-fold symmetry.  Rotations through 180° about 
each of the three axes that join the midpoint of each edge to the 
midpoint of its opposite edge are in the rotation group. 
The rotation group thus has order 12: 

one identity 
eight 3-fold rotations (2 about each of 4 axes) 
three 2-fold rotations (1 about each of 3 axes) 

 
EXERCISE 15: 
The most obvious symmetry is the 4-fold rotational symmetry about each of the three 
axes that join the centre of one face to the centre of the opposite face.  For each such 
axis we have three rotations: 90°, 180° and 270°), giving us 9 rotations.  Then there 
are the 2-fold rotations about the axes that join the midpoints of the edges.  There are 
6 such axes, each associated with one rotation.  Finally there are the 
rotations about the three diagonals joining each vertex to the 
opposite vertex.  If you examine the three edges that come out of 
each vertex you will see that there is 3-fold rotational symmetry 
about these diagonal axes.  That is, a 120° or a 240° rotation about 
one of these axes returns the cube to a similar orientation.  This gives 2 symmetry 

operations for each of 4 axes, a total of 8 symmetry operations 
altogether.  Altogether we have identified 9 + 6 + 8 = 23  
operations, plus of course the identity giving a total of 24.  This is 

A

B

C
D

E

F

 
A

B

C

D
 

A

B

C

D
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the size of the rotational symmetry group of the cube.  There are an additional 24 
symmetry operations that arise from reflections. 
 
EXERCISE 16: 
The rotation group is {I, R, R2, A, B, C} where R is a 120° rotation about the centre, 
and A, B, C are 180° rotations about the three axes of symmetry.  This shape has the 
same rotation group as the equilateral triangle. 
 
EXERCISE 17: 
(a) C; (b) D; (c) D; (d) E; (e) B 
   
EXERCISE 18: There is only one: 

 1 a b 
1 1 a b 
a a b 1 
b b 1 a 

 
EXERCISE 19: 

 1 A A2 

1 1 A A2 

A A A2 1 
A2 A2 1 A 

 
EXERCISE 20: 
(a) (BC)2 = B(CB)C = BB2CC = B3C2 = 1; 
 
(b) B2A3 = B(BA)AA = BA3(BA)A = BA3A3BA = BA6(BA) = BA6A3B = BA9B 
= BA2B = BAAB = A3BAB = A3A3BB = A6B2; 
 
(c) C3A−2 = CA5 = A5C; 
 
(d) (ABC)−1 = C−1B−1A−1 = CB2A6 = (CB)BA6 = B2CBA6 = B2B2CA6 = B4A6C 
= BAA5C = A3BAA4C = … = (A3)6BC = A18BC = A4BC. 
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	Note that d3 = de = a, the identity, so d has order 3, b2 = a, and so d has order 2, and bd = c = eb = d(1b.  So this group is isomorphic to the dihedral group
	D6 = (A, B | A3 = 1, B2 = 1, BA = A(1B(,
	with A corresponding to  d  and B corresponding to  b.
	ABCDEFGHIJKLMNOPQRSTUVWXYZ
	A, D, E
	A, C


