
more problems available•
rapid grading window:  Friday, December 5 - Wednesday, December 11•

Homework 4 due (hard deadline) Wednesday, December 11 at 5 PM.

Final exam on Thursday, December 12 at 6:30 PM.

Complex variable techniques can be used in clever ways to analyze problems in fluid 
mechanics in two-dimensional domains, when the flow is incompressible  (subsonic) 

(        irrotational (         , and steady (no time-dependence) where        
is the fluid velocity.  

Two-dimensional fluid mechanic problems are relevant when the fluid is thin in the 
third dimension (in which case the fluid velocity is often negligible in that direction) 
or otherwise uniform along the third dimension.  
Can't get nontrivial flows in bounded, simply connected
domains.

Also the velocity field has the property that on any rigid boundary of the 
domain D in which the fluid lies, we must have:

The key problem in such fluid mechanic problems is to describe the flow velocity 
field       given the shape of the domain and possibly some "far-field" boundary 
conditions if the domain is unbounded in some direction.

If the domain D is simply connected then the irrotational (curl-free) condition implies the 
existence of what's known as a velocity potential:      .  

•

The incompressibility condition implies the existence of a stream function•

A few comments:  

Notice that the equations for the fluid flow can be expressed in terms of the velocity 
potential and stream function as:

•
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Let's map these concepts into complex analysis, and see what it can do for us in helping to solve for 
these ideal two-dimensional fluid flows.

This is just the Cauchy-Riemann equations, meaning that the complex velocity 
potential     for our ideal fluid flow is an analytic function.  

The derivative of the complex velocity potential:

Define the complex velocity potential                     where        .

We see that the complex velocity potential must be an analytic function respecting the 
boundary conditions, and once we have it, we can easily obtain the flow field.  Let's see 
how we can use this fact to solve some basic fluid mechanics problems.
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how we can use this fact to solve some basic fluid mechanics problems.

Example A:  Uniform free space flow:
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What is a consistent flow pattern past a corner according to the ideal 
fluid conditions?  

Why does this work?  This is a simple illustration of the principle of 
conformal mapping.  One uses analytic functions to map a fluids 
problem (or more generally a Laplace equation problem) from a given 
domain to a domain on which the problem is solved.

The pullback function is analytic on the prescribed domain because 
it's a composition of analytic functions.

•

Boundary conditions are OK because analytic mappings are 
conformal, meaning they preserve relationships of angles.  

•

Conformal mapping works more broadly on problems involving 
Laplace's equation, because it is invariant under conformal 
mapping.  

•

Why does this pullback of a solution through an analytic mapping solve 
the given problem:

Example D:  Flow around cylinder
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Let's see why this mapping works.  Easier to see by inversion:

This gives us two roots, whose product is   .  Therefore either both 
roots are on the circle of radius a about the origin, or one is inside the 
circle and one is outside.  

Let's see where the boundary itself maps.  Notice that if z is real, then 
its image under the mapping is real (i.e., on the boundary).  As for the 

upper semicircle, we can parameterize it by       

So we see that the boundary in the given domain maps into the real 
axis (the boundary of the simpler domain in w plane), and one can 
check directly that this mapping is 1-1.  

The only thing that's left to do is to check that the mapping actually 
takes the interior of the given domain to the interior of the target 
domain.  To do this, note that the given domain can be defined:
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And one can show that the mapping is surjective (onto) because every 
other domain in the wall in the given domain can be accounted for via 
the above observation of 2-1 mapping:

Therefore we compose the solution on the simple flat wall domain with 
our analytic mapping to get:

Now just need to check that the far field conditions (velocity = U for 
large    ).  Let's do this after the fact.

Check far-field conditions:
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Check far-field conditions:

So we have successfully solved this flow around a cylinder attached to a 
wall.

Closely related example:  Flow past a free cylinder:

How do we guess conformal mappings?  Experience!
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To map polygons into simpler shapes, use Schwarz-Christoffel formula.

To handle ellipses and hyperbolas, think of using the mapping       

To map parabolas into lines, consider the mapping    

The use of complex analysis on fluid problems can go much deeper than this conformal mapping.  See for 
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The use of complex analysis on fluid problems can go much deeper than this conformal mapping.  See for 
example the article D. Crowdy and M. Siegel, "Exact Solutions for the Evolution of a Bubble in Stokes 
Flow: A Cauchy Transform Approach," SIAM J. Appl. Math. 65 (3), 941-963 in the reading list.  

Also, consider a problem of a free jet flowing out of a slit in a wall.

This has a challenging free boundary aspect to it; don't know the boundary of the jet; have to 
solve for it.  How?  Construct a complex velocity potential, and then use a sort of hodograph
method.  This is a technique in partial differential equations where you exchange the role of 
independent and dependent variables.  Look at the problem not in the physical (x,y) plane, but 
in the image of this plane under the mapping by the complex velocity potential. Boundary 
conditions are more easily expressed in terms of rectangles in this complex velocity potential 
plane because stream function is constant along the boundary! 
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