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1.1 Introduction

Bela I. Sandor

Engineers use the concepts and methods of mechanics of solids in design&ugletihg tools,
machines, and structures, ranging from wrenches to cars to spaddwaftquired educational back-
ground for these includes courses in statics, dynamics, mechanics of materials, and relatedsubjects.
example, dynamics of rigid bodies is needed in generalizing the spectrum of service loads,on a ca
which is essential in defining tivehiclés deformations and long-term duraliliin regard to structural
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1-2 Section 1

FIGURE 1.1.1 Artist’'s concept of a oving stainless steel roadway toivaér the suspension system through a
spinning, articulated wheel, simulating three-dimensional motions and forces. (MTS Systems Corp., Minneapolis,
MN. With permission.) Notes: Flatrac® Roadway Simulatp R&D100 Award-winning system in 1993. See also
Color Plate I.

integrity and durabiliy, the designer should think not only abowvpnting the catastrophfailures of
products but also of customer satéction.For example, a car with gradually loosening bolts (which is
difficult to prevent in a corrase and thermal and mechaniayclic loading evironment) is a poor
product because of safewibration, and noise problemBhere are sophisticated methods to assure a
products performance and reliabiytasexemplified inFigure 1.1.1A similar but even more realistic
test setup is swn in Color Plate 1

It is commonexperience among engineers thagyttihave to eview some old kowledge or learn
something ew, but what is needed at the moment is not at tfiegertips This chapter may help the
reader in such a situatiowithin the constraints of a single book on mechanical engineeringyitps
overviews of topics with modern perspaats, illustrations of typical applications, modeling toveol
problems quantitately with realistic simpfications, equations and procedures, useful hints and remind-
ers of common errors, trends ofagnt material and mechanical systemdvérs, and references to
additional information.

The chapter is lie an emregercy toolbox. It includes a coherent assortment of basic tools, such as
vectorexpressions useful for calculating bending stresses caused by a three-dimensional force system
on a shaft, and sophisticated methods, such as life prediction of components using fracture mechanics
and modern measurement techniques. Inyncases much more information should be considered than
is covered in this chapte

* Color Plates 1 to 16 fav page 1-131.
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1.2 Statics

Bela I. Sandor

Vectors. Equilibrium of Particles. Free-Body Diagrams

Two kinds of quantities are used in engineering mechahissalar quantity has only magnitude (mass,
time, temperature, ... A vector quantity has magnitude and direction (foxedgcity, ...). Vectors are
represented here by aws and boldace symbols, and are used in analysis according itersally
applicable rules thdacilitate calculations ineariety of problemsThevector methods are indispensable
in three-dimensional mechanics analy®esjn simple cases eyalent scalar calculations arefstient.

Vector Components and Resultants. Parallelogram Law

A given vector F may be replaced byvb or three othewectors that &ve the same netffect and
representationThis is illustrated for the chosen directiomsand n for the components df in two
dimensions Figure 1.2.)]. Cawersey, two concurrentvectorsF and P of the same units may be
combined to get a resultaRt (Figure 1.2.2.

FIGURE 1.2.1 Addition of concurrentectorsF andP.

P R=P+F

0 . FIGURE 1.2.2 Addition of concurrent, coplanar
(a) Paralielogram law (b) Triangie rule vectorsA, B, andC.

Any set of components of\ectorF must satisfy th@arallelogram lawAccording to Figure 1.2.1,
the lw of sines anddwv of cosines may be useful.

F,_F F

n m

sna  sinB sinf180° — (a + )]

(1.2.1)
F? = F? +F? - 2F,F, cod180° - (a +B)]

Any number of concurrentectors may be summed, mathematically or graplyicatid in ay orde,
using the abve concepts as illustrated frigure 1.2.3

FIGURE 1.2.3 Addition of concurrent, coplanar vectors
A, B, andC.




1-4 Section 1

Unit Vectors

Mathematical manipulations efctors are greatlfacilitated by the use of uniectors A unit vector
n has a magnitude of unity and afided direction The most useful of these are the unit coordinate

vectorsi, j, andk as slown in Figure 1.2.4

FIGURE 1.2.4 Unit vectors in Cartesian coordinates (the sanje
andk set applies in a parallgly’z system of ges).

The three-dimensional components and associated quantitiegcbaF are slown in Figure 1.2.5
The unitvectorn is collinear withF.

FIGURE 1.2.5 Three-dimensional components of a vedtor
The vectorF is written in terms of its scalar components and the unit coordieaters,
F=Fi+Fj+Fk=Fn (1.2.2)
where
F.=Fcosd, F =Fcosb, F,=Fcosf,
F= F+F +F
n, =cosB, n =cosb, n,=cosh,
n+ni+n;=1

n _n,
FF,

X

1
F

N-I-I ‘Ns

The unitvector notation is awenient for the summation of concurreseictors in terms of scalar or
vector components:

Scalar components of the resultét

R=SF R=>F R=3F (1.2.3)
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Vector components:

RX:ZFX:ZFXi Ry:ZFYZZij RZ:ZFZ:ZFZK (1.2.4)

Vector Determination from Scalar Information
A force, forexample, may beigen in terms of its magnitude its sense of direction, and its line of

action. Such a force can bepressed irvector form using the coordinates afyawo points on its line
of action The vector sought is
F=FRi+Fj+Fk=Fn

The method is to find on the line of point&\(x,, y;, z) andB(X,, ¥,, Z,):

_ vectorAtoB _ di+dj+dk
distance A to B \dXZ +d2 +d?

whered, = X, —x;, d, =y, -y, d, =2 - 7.
Scalar Product of Two Vectors. Angles and Projections of Vectors
The scalar product, or dot product, witconcurrenvectorsA andB is defined by

A [B = ABcos@ (1.2.5)

whereA andB are the magnitudes of thiectors anais the angle between them. Some usefpiessions
are

AB=B[A=AB +AB, +AB,

AB+AB +AB,

= arccos
¢ AB

The projectiorF’ of avectorF on an arbitrary line of interest is determined by placing avegitor
n on that line of interest, so that

F'=Fh=Fn, +FEn +Fn,

Equilibrium of a Particle

A particle is inequilibrium when the resultant of all forces acting on it is zero. In such cases the
algebraic summation of rectangular scalar components of foreadsand covenient:

ZFX:O ZFy:O ZFZ:O (1.2.6)

Unknown forces may be determined readily if a body is in equilibrium and can be modeled as a patrticle.
The methodrvolvesfree-body diagrams which are simple representations of the actual bodlles
appropriate model is imagined to be isolated from all other bodies, with thécsigh#éfects of other
bodies sbhwn as forcevectors on the free-body diagram.

Free-Body Diagrams



1-6 Section 1

Example 1

A mast has three guy wir€Bhe initial tension in each wire is planned to be 20M@ktermine whether
this is feasible to hold the mastrtical Figure 1.2.8.

y

FIGURE 1.2.6 A mast with guy wires.

Solution.
R = TAB + TAC + TAD

The three tensions of kwn magnitude (200 Ib) must be written\ators.

_ . (di +d,j+dk)
T s = (tension AB)(unit vector AtoB) =200 Ibn,, =200 b *————~

200 Ib

=————(-5-10j +4k)f—t =-84.21bi-168.41bj+67.4 bk
V5% +10% + 42 ft

o= 200 5 10j4ak) ft =84.21bi +168.4 b +67.4 Ibk
1187 ft
o= 20000 (i 10j+6K) ft = -17151bj - 1029 Ibk
1166 ft

The resultant of the three tensions is

R= z Fi+ Z Fi+ Z Fk=(-842+842+0)Ibi+(-168.4-168.4—1715) Ib]|
+(67.4+67.4-102.9) Ibk =01bi —508 Ibj + 319 Ibk

There is a horizontal resultant of 31.9 thAaso the mastvould not remairvertical.

Forces on Rigid Bodies

All solid materials deform when forces are applied to tHermpften it is reasonable to model components
and structures as rigid bodies, at least in the early part of the anéheifrces on a rigid body are
generally not concurrent at the center of mass of thg, lbddch cannot be modeled as a patrticle if the
force system tends to cause a rotation of the.bod
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Moment of a Force

The turning #ect of a force on a body is called the moment of the force, or toftpeemomenM,
of a forceF about a poihA is defined as a scalar quantity

M, = Fd (1.2.7)

A

wher d (the moment arm oeler arm) is the nearest distancenfré to the line of action foF. This
nearest distance may bdfitiult to determine in a three-dimensional scalar analysigctor method
is needed in that case.

Equivalent Forces

Sometimes the edqealence ofwo forces must be established for simplifying the solution of a problem.
The necessary andf§igient conditions for the edwalence of force$ andF' are that thy have the
same magnitude, direction, line of action, and moment évea gigid body in static equilibriunThus,

F=F ad M, =M,

For example, the ball joinA in Figure 1.2.7experiences the same moment whetherviirtical force
is pushing or pulling dvnward on the yke pin.

hydraulic actuator
load cell

F (pushing force)

F=F
(either can be
F’ (pulling force) used in a test)

load cell

hydrauiic actuator . . .
FIGURE 1.2.7 Schematic of testing a ball joint of arca

Vector Product of Two Vectors

A powerful method ofvector mechanics iavailable for solving comgk problems, such as the moment
of a force in three dimensionBhe vector poduct(or cross product) ofmo concurrentvectos A and
B is defined as theecta V = A x B with the following properties:

. 'V is perpendicular to the plane wéctorsA andB.

. The sensefoV is gven by the right-hand ruld-igure 1.2.3.

. The magnitude fov is V = AB sinf, where@ is the angle betweeA andB.
4. AxB#BXxA,butA xB =—-B xA).

5. For threevectorsA x (B +C)=A xB +A x C.

WN P

A

(fingers curling
from A toward B)

V=AxB
(thumb pointing) FIGURE 1.2.8 Right-hand rule fowector products.
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The vector product is calculated using a determinant,

=ABji+ABj+ABk-ABk-ABj-AB| (1.2.8)

Nwl\> =~

P
V=|A A
B, B,

Moment of a Force about a Point

The vector product is very useful in determining the moment of a foadmout an arbitrary poirD.
The vector definition of moment is

My=rxF (1.2.9)

wherer is the position vector from poif@ to any point on the line of action Bf A double arrow is
often used to denote a moment vector in graphics.

The momenM, may have three scalar componeMs, M,, M,, which represent the turning effect
of the forceF about the corresponding coordinate axes. In other words, a single force has only one
moment about a given point, but this moment may have up to three components with respect to a
coordinate system,

My =M,i+Mj+Mk

Triple Products of Three Vectors

Two kinds of products of three vectors are used in engineering mechanicsixEldetriple productor
scalar product) is used in calculating moments. It is the dot product of Rewiithn the vector product
of vectorsB andC,

>
L >
w >

ABxC)=

jos)

=A(BC,-BC)+A(BC, -BC)+A(BC,-BC,)  (1.2.10)

X

O
@]
O

<

X z

The vector triple produci{A x B) x C =V x C is easily calculated (for use in dynamics), but note that

(AxB)xC#Ax(BxC)

Moment of a Force about a Line

It is common that a body rotates about an axis. In that case the mdmeina force F about the axis,
say line¢, is usefully expressed as

non n
M,=nMg=nl{rxF)=r, 1, T, (1.2.11)
FEF, F

wheren is a unit vector along the ling andr is a position vector from poil@ on ¢ to a point on the
line of action offF. Note thatM, is the projection oM on line¢.
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Special Cases

1. The moment about a &Y is zero when the line of actiorf B intersecty (the moment arm is
zero).

2. The moment about a &Y is zero when the line of actiorii B is parallel to€ (the projection of
Mg on{ is zero).

Moment of a Couple

A pair of forces equal in magnitude, parallel in lines of action, and opposite in direction is called a
couple The magnitude of the moment of a couple is

M=Fd

whered is the distance between the lines of action of the forces of maghitlidle moment of a couple

is a freevectorM that can be appliedgwhere to a rigid body with the same turnirféeet, as long

as the direction and magnitudeM are the same. In othewords, a coupleector can be oved to ay

other location on aigen rigid body if it remains parallel to its original position (eglent couples).
Sometimes a curled aw in the plane of theato forces is used to denote a couple, instead of the couple
vecta M, which is perpendicular to the plane of th® tforces.

Force-Couple Transformations

Sometimes it is adntageous to transform a force to a force system acting at another point, or vice
versa The method is illustrated iRigure 1.2.9

B F

FIGURE 1.29 Force-couple transformations.

1. A force F acting atB on a rigid body can be replaced by the sameefBracting 4 A and a
momern M, =r x F abou A.

2. A forceF and momenM , acting & A can be replaced by a forEeacting atB for the same total
effect on the rigid bog

Simplification of Force Systems

Any force system on a rigid body can be reduced to aivagat system of a resultant fer® and a
resultant moment .. The equivalent force-couple systenis formally stated as

R:ZE and MR:ZMi:Z(riXE) (1.2.12)

whereMy depends on the chosen reference point.
Common Cases

1. The resultant force is zerbyt there is a resultant momeft:= 0, My # 0.

2. Concurrent forces (all forces act at one poiRt¥ 0, M = 0.

3. Coplanar forcesR # 0, Mg # 0. M is perpendicular to the plane of the forces.
4. Parallel forcesR # 0, My # 0. My is perpendicular t&.
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Example 2

The torque wrench ifrigure 1.2.10has an arm of constant lehdt but avariable soket lengthd =
OA because of interchangeable tool sizes. Determimethe moment applied at p¢i® depends on
the lengthd for a constant forcé from the hand.

FIGURE 1.2.10 Model of a torque wrench.

Solution.UsingM, =r x F with r = Li + dj andF = Fk in Figure 1.2.10,
M = (Li +dj) x Fk = Fdi - FLj

Judgment of the Result

According to a visual analysis the wrench should turn clockwise, sg t@mponent of the moment
is justified. Looking at the wrench from the poatx direction, poihA has a tendewy to rotate
counterclockwise. Thuyshe i component is correct using the right-hand rule.

Equilibrium of Rigid Bodies

The concept of equilibrium is used for determining wwkm forces and moments of forces that act on
or within a rigid body or system of rigid bodieBhe equations of equilibrium are the most useful
equations in the area of statics, anéythre also important in dynamics and mechanics of materials.
The dewing of appropriate free-body diagrams is essential for the application of these equations.

Conditions of Equilibrium

A rigid body is in static equilibrium when the equivalentcéacouple system of the externaicks
acting on it is ze. In vector notation, this condition expressed as

ZF:O
ZMO:Z(rXF):O

whereO is an arbitrary point of reference.
In practice it is often most ceenient to write Equation 1.2.13 in terms of rectangular scalar com-
ponents,

(1.2.13)

zFX:O ZMX:O
ZFy:O ZMy:O
ZFZ:O zMZ:O
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Maximum Number of Independent Equations for One Body

1. One-dimensional problenyF = 0
2. Two-dimensional problem:

zFX:O ZFy:o XMAZO
or ZFX:O ZMA=O ZMB:O (xaxisnot 0 AB)
or ZMA:O ZMB:O ZMC:O (ABnot || BO)

3. Three-dimensional problem:

ZFX:O ZFyzo ZFZ:O
ZMX=O ZMy=O 2M2=o

wherexyzare orthogonal coordinatees, ad A, B, C are particular points of reference.

Calculation of Unknown Forces and Moments

In solving for unkmmwn forces and momentdyays dew the free-body diagrafirst. Unkrown external
forces and moments must beosh at the appropriate places of action on the diagidma directions

of unkrowns may be assumed arbitrgribut should be done consistently for systems of rigid bodies.
A negaive answer indicates that the initial assumption of the direstia® opposite to the actual
direction. Modeling for problem solving is illustratedkigures 1.2.15and1.2.12

flexible
tension

members T T
" :
w
(@) sketch of setup (b) free-body diagram FIGURE 1.2.11 Example of two-dimensional modeling.

y E F
0 My Fy 0
X —_—
" -—
z - Fgz F
Mz y

b,

(a) cantilever beam with unsymmetric loading (b) free-body diagram

FIGURE 1.2.12 Example of three-dimensional modeling.

Notes on Three-Dimensional Forces and Supports

Each case should be analyzed cargf@bmetimes a particular force or moment is possible aviae)
but it must be aglected for most practical purpos&®r example, avery short sleve bearing cannot



1-12 Section 1

support significant momenta& roller bearing may be designed to carry muebdaloads perpendicular
to the shaft than along the shaft.

Related Free-Body Diagrams

When tvo or more bodies are in contact, separate free-body diagrams maywheareach bog The

mutual forces and moments between the bodies are related accordisgao’ dlthird bw (action and
reaction) The directions of unkswn forces and moments may be arbitrarily assumed in one diagram,
but these initial choicesffect the directions of unkmvns in all other related diagramghe number of
unknowns and of usable equilibrium equations both increase with the number of related free-body
diagrams.

Schematic Example in Two Dimensions (Figure 1.2.13)

F2 F3

| A M
| ] H—=rPr3
| B

P Po FIGURE 1.2.13 Free-body diagram.

Given:F,, F,, F5, M
Unknowns P,, P,, P;, and forces and moments at jofa(rigid connection)

Equilibrium Equations
ZFX =-F+R, =0
sz:Pl+PZ—F2—F3:O
ZMO =Pc+P(c+d+e)+M-Fa-F,(a+b)=0

Three unkowns @y, P,, P;) are in three equations.

Related Free-Body Diagrams (Figure 1.2.14)

F2 F3

Ay Ay
l Ma Ma My,

T B
arbitraty directions
directions predetermined
P from left part
1 of joint P2

forces and moments cancel in pairs
within the joint

FIGURE 1.2.14 Related free-body diagrams.

Dimensiors a, b, ¢, d, ande of Figure 1.2.13 are als@lid here.
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New Set of Equilibrium Equations

Left part:
on) ZFX— F+A =0
ZFY:P1+A/—F2:O
ZMO:Plc+A/(c+d)+MA—F2a:O
Right side: B B
(A8) ZFX— A +PR =0

ZFy:PZ—A/—FB:O
ZMA:—MA+P2e+M—F3f:0

Six unkrowns @y, P,, P;, A, A, M,) are in six equations.

Note In the first diagram (Figure 1.2.13) the caill may be roved awywhere fromO to B. M is
not stown in the second diagra(® to A) because it is sivn in the third diagram (in which it may be
moved awywhere fran A to B).

Example 3

The arm of dactory robot is modeled as three bdfgre 1.2.1pwith coordinats A: (0.6, —0.3, 0.4)
m; B: (1, -0.2, 0) m; an€: (0.9, 0.1, —0.25) nirhe weight of the arm is representedWd, = —-60 N
a A amd Wz = -40 N atB. A momen M. = (100 — 2§ + 5) N - m is applied to the arnt €.
Determine the force and moment reaction®,aassuming that all joints are temporafilyed.

@) FIGURE 1.2.15 Model of a factory robot.

Solution.The free-body diagram is avn in Figure 1.2.15pslowing the unkiown force and moment
reactions aD. From Equation 1.2.13,

ZF:O
Fo +W, +W, =0

F,—60Nj-40Nj=0



1-14 Section 1

F, =100 N j

Z M, =0
MO+MC +(rOAxWA)+(rOB ><WB) :0
M, +(100i - 20j +50k) N [in +(0.6i - 0.3 + 0.4k) m x (-60 N j) + (i = 0.2j) mx (-40 N j) = 0
My+100NMi—20NOnj+50NOMk —36 NOnk+24 Nni-40N[Onk =0
M, = (=124 + 20j + 26k) N [in

Example 4

A load of 7 kN may be placedwavhere withh A andB in the trailer of egligible weight. Determine
the reactions at the wheelsatE, andF, and the force on the hitdd that is mounted on the dor

the extreme positios A andB of the load The mass of the car is 1500 kg, and its weight is acting at
C (seeFigure 1.2.16)

Wy - T >

! 4m

FIGURE 1.2.16 Analysis of a car with traite

Solution.The scalar method is best here.

Put the load at positioA first Put the load at positioB next
For the trailer alone, witly as thevertical axis For the trailer alone
YMe = 7(1) —Hy(3) = 0,H, = 2.33 kN YMg = 0.8(7) -H,(3) = 0,H, = -1.87 kN
On the car On the car
H,=2.33 kN (Ans. H,=1.87 kN (Ans.
YF,=233-7+,=0,F,=4.67 kN 1tAns. YF,=-187-74,=0
For the car alone E,=8.87 kN 1Ans.
>Mg = -2.33(1.2) -D,(4) + 14.72(1.8) = 0 For the car alone
D, =593 kN tAns. YMe = —<(1.87)(1.2) D(4) + 14.72(1.8) = 0
YF, =593 +E, - 14.72-233=0 D,=7.19 kN tAns.
E,=11.12 kN tAns. >F, =719 +E - 14.72 - (-1.87) =0

E,=5.66 kN 1Ans.

Forces and Moments in Beams

Beams are common structural members whose main function is to resist b&hdiggometric changes
and safety aspects of beams are analyzefirdlyassuming that &y are rigid The preceding sections
enable one to determine (1) tedernal (supporting) reactions acting on a statically determinate beam,
and (2) the internal forces and momentsrgt Goss section in a beam.
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Classification of Supports
Common supports anekternal reactions forto-dimensional loading of beams areowh in Figure
1.2.17

Beam model: Possible unknowns for
arbitrary 2-D loading:

|
A —_—X |=> Ax
%/A %A
5 Ay By

|

7 Ma
X = g B

A Ax h
yl Ay
7 MA MB

) ( )
A B AXT Bx
Ay By

FIGURE 1.2.17 Common beam supports.

Internal Forces and Moments

The internal force and moment reactions in a beam causedédmal loading must be determined for
ewaluating the strength of the beam. If there is no torsion of the beam, three kinds of internal reactions
are possible: a horizontal normal ferd on a cross sectiowgrtical (transerse) shear forc¥, and
bending momenM. These reactions are calculated from the equilibrium equations applied to the left
or right part of the beam from the cross section considéies processnivolves free-body diagrams

of the beam and a consistently applied system of sigmesmodeling is illustrated for a castier beam

in Figure 1.2.18

V. L=a+b
0 A Bl— P

(a) Given beam with loading

F
Vo

L
Ho <ﬁ|0 A Bl——» P
Mo
(b) Free-body diagram of whole beam

V
0 a VA
Ho Ax Ax *6-?-[/* Bl—P
Mo vVa£Ma MA

(c) Free-body diagrams for parts OA and AB

FIGURE 1.2.18 Internal forces and moments in a cavélr beam.

Sign ConventionsConsistent sign ewentions should be used imyagiven problemThese could be
arbitrarily set upput the folowing is slightly adtantageous. It ms the signs of the answers to the
equilibrium equations correct for the directions of the shear force and bending moment.

A moment that miees a beam comage upvard is tken as posive. Thus, a clockwise moment is
posiive on the left side of a section, and a counterclockwise moment is/@asit the right sideA



1-16 Section 1

shear force that acts ward on the left side of a section, amshward on the right side, is posi
(Figure 1.2.1%

1 ¢ ) L —

(a) beam concave upward: (b) positive shear forces . .
moments are positive here FIGURE 1.2.19 Preferred sign awentions.
Shear Force and Bending Moment Diagrams

The critical locations in a beam are determined from shear force and bending moment diagrams for the
whole length of the beanThe construction of these diagramsfagilitated by folowing the steps
illustrated for a cantdver beam inFigure 1.2.20

F

o

Z a

Ol
>
{0]

Given beam with load

S
o
o

Free-body diagram

=

o

N\

—»

=
ORI L= -1 E

s

Shear force diagram

0 W X  Bending moment diagram
@ Values known by inspection
FIGURE 1.2.20 Construction of shear force and bending moment diagrams.

1. Draw the free-body diagram of the whole beam and determine all reactions at the supports.

2. Draw the coordinate xes for the shear forc@/) and bending momer(M) diagrams directly
below the free-body diagram.

3. Immediately plot thosealues ofV andM that can be determined by inspection (especially where
they are zero), observing the signmeentions.

4. Calculate and plot as maadditionalvalues ofV andM as are necessary foragdiing reasonably
accurate cwes through the plotted points, or do it all by compute

Example 5

A construction crane is modeled as a rigidA@ which supports the boom by a pin at B and wire CD.
The dimensions arAB = 10¢, BC = Z, BD = DE = 4. Draw the shear force and bending moment

diagrams for beAC (Figure 1.2.2}.

Solution.From the free-body diagram of the entire crane,

ZFXZO ZFyZO ZMAZO
A =0 -P+A =0 -P(8)+M, =0

A =P M, =8P/
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FIGURE 1.2.21 Shear force and bending moment diagrams of a component in a structure.

Now separate baAC and determine the forces at B and C.

ZFX:O ZFy:o ZMA:

2
B, +Typ, =0 P—By—TCDy =0 —%TCD(12£)+BX(1O£)+MA:0
2 1 24/ 200
(a) BX = \75TCD (b) By = P_\/75TCD _ETCD +\75TCD = _8P€

©) Ty = S\TSP =2.5P

From (a) and (c)B, = 4P and T, = 4P. From (b) and (c)B, =P — 2P = P and T, = 2P.

Draw the free-body diagram of bAC horizontaly, with the shear force and bendlng moment diagram
axes bebw it. Measure x from end C for neenience and analyze sections < 2¢ and Z < x< 12¢
(Figures 1.2.21b to 1.2.21f

1. 0sx<s2¢

ZFy:O

~4P+V, =0

Y-

M, +4P(x)=0

V., =4P MKl

Ky

= —4Px

2. 20<sx< 1%
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sz:O ZMK:O

4P-4P+V, =0 My, = 4P(x—2f) +4P(x) = 0

Vi, =0 M,, =-8P¢
At point B, x = 2¢, MKl =4P(2¢) = -8¢ = MK2 = M,. The results for sectivAB, 2¢ < x < 12¢, slow
that the combinedffect of the forcesteB andC is to produce a couple of magnie8P¢ on the beam.
Hence, the shear force is zero and the moment is constant in this.SEoéisa results are plotted on
the aes bebw the free-body diagram of ba-B-C.

Simple Structures and Machines
Ryan Roloff and Bela I. Sandor

Equilibrium equations are used to determine forces and moments acting on statically determinate simple
structures and machine& simple structure is composed solely wbtforce membersA machine is
composed of multiforce membeithe method of joints and the method of sections are commonly used

in such analysis.

Trusses

Trusses consist of straight, slender members whose ends are connected &vwidith ensionaplane
trussescarry loads acting in their planes and are often connected to form three-dimlespsoearusses
Two typical trusses are aln in Figure 1.2.22

L, ANV

(a) Howe Roof Truss (b) Pratt Bridge Truss FIGURE 1.2.2 Schematiexamples of trusses.

To simplify the analysis of trusses, assume frictionless pin connections at thdjuirstsall members
are tvo-force members with forces (and no moments) acting at the joints. Members may be assumed
weightless or maydve their weightsvenly dvided to the joints.

Method of Joints

Equilibrium equations based on the entire truss and its joirdw &ir determination of all internal
forces andexternal reactions at the joints using the daiihg procedure.

1. Determine the support reactions of the trddss is done using force and moment equilibrium
equations and a free-body diagram of the entire truss.

2. Select ay arbitrary joint where only one owb unkrown forces act. Daw the free-body diagram
of the joint assuming unlown forces are tensions (ews directedaway from the joint).

3. Draw free-body diagrams for the other joints to be analyzed, usiwoN's third bw consistently
with respect to the first diagram.

4. Write the equations of equilibriun} F, = 0 and}F, = 0O, for the forces acting at the joints and
solve them To simplify calculations, attempt to progress from joint to joint in suglay that
each equation contains only one uokn. Posiive answers indicate that the assumed directions
of unkrown forces were correct, and vigersa.

Example 6

Use the method of joints to determine the forces actiAgB, C, H, and | of the truss iRgure 1.2.23a
The angles ara = 56.3, 3 = 38.7, ¢ = 39.8, andb = 36.9.
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FIGURE 1.2.23 Method of joints in analyzing a truss.

Solution.First the reactions at the supports are determined andava shFigure 1.2.2B. A joint at
which only tvo unkrown forces act is the best starting point for the solution. ChoosingApitihe
solution is progres$eely developed, &ways seeking theert joint with only twvo unkrowns. In each
diagram circles indicate the quantities that aresmnfrom the preceding analysis. Sample calculations
show the approach and some of the results.

Joint A: ZFX:O ZFy:o
FAI =0 FAB_A\/ZO
F.,s —50kips=0

F.s = 50 Kips (tension)

Joint H: ZFX:O ZFy:o

Fey SINB—F,, cosa - F,, =0 Fe sina+F,, +F,,cosB-F, =0
F,(0.625) +(60.1kips)(0.555) ~0=0 —(60.1kips)(0.832) + Fy,, —(53.4 kips)(0.780) + 70 kips= 0

F.., = —53.4 kips (compression) Fon = 21.7 kips (tension)

GH —

Method of Sections

The method of sections is useful when onlyea forces in truss members need to be determined
regardless of the size and compty of the entire truss structur&€his method emplys any section of

the truss as a free body in equilibritiftne chosen section mage aty number of joints and members

in it, but the number of unlawn forces should naxceed three in most cases. Only three equations of
equilibrium can be written for each section of a plane tiiss following procedure is recommended.

1. Determine the support reactions if the section used in the analysis includes the joints supported.
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2. Section the truss by making an imaginary cut through the members of interest, preferably through
only three members in which the forces are wakrs (assume tensiongjhe cut need not be a
straight line The sectioning is illustrated by lis&l, mm, andn-n in Figure 1.2.24

3. Write equations of equilibrium. Choose angenient point of reference for moments to simplify
calculations such as the point of intersection of the lines of actiowdarrtmore of the unlawn
forces. If vo unkrown forces are parallel, sum the forces perpendicular to their lines of action.

4. Solve the equations. If necesganse more than one cut in the vicinity of interest toralriting
more equilibrium equations. Pas# answers indicate assumed directions of awkrforces were
correct, and viceersa.

@ (b)

FIGURE 1.2.24 Method of sections in analyzing a truss.

Space Trusses

A space truss can be analyzed with the method of joints or with the method of sécticrech joint,
there are three scalar equilibrium equatigns, = 0, 3 F, = 0, and} F, = 0. The analysis mustegin
at a joint where there are at least onewkmforce and no more than three uokn forces The solution
must progress to other joints in a simifashion.

There are six scalar equilibrium equati@wailable when the method of sections is usel, = 0,
>F,=0,3F,=0,3M,=0,3M, =0, andyM, = 0.

Frames and Machines

Multiforce members (with three or more forces acting on each member) are common in structures. In
these cases the forces are not directed along the membery; aceth little more comgk to analyze

than the wo-force members in simple trusses. Multiforce members are used ikirtds of structure.
Framesare usually stationary and fully constrainbthchineshave noving parts, so the forces acting

on a member depend on the location and orientation of the membe

The analysis of multiforce members is based on the consistent use of related free-body .diagrams
solution is ofterfacilitated by representing forces by their rectangular components. Scalar equilibrium
equations are the mostreenient for wo-dimensional problems, angctor notation is agantageous
in three-dimensional situations.

Often, an applied force acts at a pin joinimg tor more members, or a support or connection may
exist at a joint betweenmo or more members. In these cases, a choice should be made of a single
member at the joint on which to assume ékiernal force to be actinghis decision should be stated
in the analysisThe following compreherise procedure is recommended.

Three independent equations of equilibriumaeelable for each member or combination of members
in two-dimensional loading; foexample,yF, = 0,3F, = 0,3 M, = 0, whee A is an arbitrary point of
reference.

1. Determine the support reactions if necegsar
2. Determine allwo-force members.
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3. Draw the free-body diagram of the first member on which the unknown forces act assuming that
the unknown forces are tensions.

4. Draw the free-body diagrams of the other members or groups of members using Newton’s third
law (action and reaction) consistently with respect to the first diagram. Proceed until the number
of equilibrium equations available is no longer exceeded by the total number of unknowns.

5. Write the equilibrium equations for the members or combinations of members and solve them.
Positive answers indicate that the assumed directions for unknown forces were correct, and vice
versa.

Distributed Forces

The most common distributed forces acting on a body are parallel force systems, such as the force of
gravity. These can be represented by one or more concentrated forces to facilitate the required analysis.
Several basic cases of distributed forces are presented here. The important topic of stress analysis is
covered in mechanics of materials.

Center of Gravity

The center of gravity of a body is the point where the equivalent resultant force caused by gravity is
acting. Its coordinates are defined for an arbitrary set of axes as

X:M V:M z:jiw (1.2.14)

W w W

wherex, y, z are the coordinates of an element of we@M andW is the total weight of the body. In
the general cas#W =y dV, andW = [y dV, wherey = specific weight of the material ad¥ = elemental
volume.

Centroids

If yis a constant, the center of gravity coincides with the centroid, which is a geometrical property of
a body. Centroids of linds, areasA, and volumegd/ are defined analogously to the coordinates of the
center of gravity,

x dL ydL zdL
Lines x= y= zZ= (1.2.15)
w L L
x dA y dA I zdA
Areas. X= y= zZ= (1.2.16)
A A A
x dv I ydv zdv
Volumes X= y= zZ= 1.2.17)
\Y \Y \Y

For example, an are@ consists of discrete parfs, A,, A;, where the centroids,, x,, X; of the three
parts are located by inspection. Theoordinate of the centroid of the whole afeia X obtained from
AX = Ay + A, + AgXs.
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Surfaces of Revolutioithe suface areas angblumes of bodies ofevolution can be calculated using
the concepts of centroids by the theoremPBagpus (seeekts on Statics).
Distributed Loads on Beams

The distrbuted load on a member may beatsn weight and/or some other loading such as from ice
or wind. The external and internal reactions to the loading may be determined using the condition of
equilibrium.

External Reaction®Replace the whole distxited load with a concentrated force equal in magnitude to
the area under the load dibtriion curve and applied at the centroid of that area parallel to the original
force system.

Internal ReactionsFor a beam under a didiuted loadw(x), wherex is distance along the beam, the
shear force/ and bending momem are related according teigure 1.2.25as

w(X)

M<VT L)MmM

V+dv

x| FIGURE 1.2.25 Internal reactions in a beam under distted loading.
wx)=-3  y=M (1.2.18)
dx “dx
Other usefukexpressions for my two cross sectianA andB of a beam are
XB
V, -V, :J' w(x) dx = area under w(x)
§ (1.2.19)

X
Mg - M, :J’XBV dx = areaunder shear force diagram
A

Example 7 (Figure 1.2.26)

g % w (AK)

ﬁlv}m
.

+V|
ol
t
I
+My
olb—
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A /

w25

FIGURE 1.2.26 Shear force and bending moment diagrams for a eagétibeam.

Distributed Loads on Flexible Cables

The basic assumptions of simple analyses of cables are that there is no resistance to bending and that
the internal force atny point is tangent to the cable at that poirtie loading is denotedybw(x), a
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continuousbut possiblyvariable load, in terms of force per unit lendilhe diferential equation of a
cable is

(1.2.20)

whereT, = constant = horizontal component of the tendian the cable.
Two special cases are common.

Parabolic CablesThe cable supports a ldav which is uniformly distthuted horizontail. The shape
of the cable is a parabolavgn by

2

(x =0 at lowest point) (1.2.21)

_ WX
y 2T

[o]

In a symmetric cable the tensie T = ,JTOZ +wx?

Catenary CablediVhen the loadv is uniformly distrbuted along the cable, the cabBlehape isigen by

_ T O WX O
y_WE:OSh?O ]H (1.2.22)

The tension in the cable 5= T, + wy.

Friction

A friction force F (or %, in typical other notation) acts between contacting bodies whegnstide
relaive to one anothrgor when sliding tends to oactThis force is tangential to each body at the point
of contact, and its magnitude depends on the normat fdnoressing the bodies together and on the
material and condition of the contactingfaiwesThe material and stace properties are lumped together
and represented by the édaent of friction p. The friction force opposes the force that tends to cause
motion, as illustrated fomto simple cases iRigure 1.2.27

- B
W [

—F \N—Wcosﬂ

(a) ) FIGURE 1.2.27 Models slowing friction forces.

The friction forces= mayvary from zero to a maximuwalue,

Fro =UN (0<F<F ) (1.2.23)

depending on the applied force that tends to causeveelaotion of the bodiesThe coéficient of
kinetic friction p, (during sliding) is dwer than the cdécient of static frictiom y or g, p, depends on
the speed of sliding and is not easily quiedi.
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Angle of Repose

The critical angléd, at which motion is impending is the angle of repose, where the friction force is at
its maximum for a given block on an incline.

tan®, :%:us (1.2.24)
So6. is measured to obtajn. Note that, even in the case of static, dry frictiqrlepends on temperature,
humidity, dust and other contaminants, oxide films, surface finish, and chemical reactions. The contact
area and the normal force affectonly when significant deformations of one or both bodies occur.

Classifications and Procedures for Solving Friction Problems

The directions of unknown friction forces are often, but not always, determined by inspection. The
magnitude of the friction force is obtained fréiy,, = N when it is known that motion is impending.
Note thatF may be less thah,,,,. The major steps in solving problems of dry friction are organized in
three categories as follows.

A. Given: Bodies, forces, or coefficients of friction are known. Impending motion is
not assuredfF # pN.
Procedure: To determine if equilibrium is possible:
Construct the free-body diagram.
Assume that the system is in equilibrium.
Determine the friction and normal forces necessary for equilibrium.
Results:  (a) F < pN, the body is at rest.

(b) F>pN, motion is occurring, static equilibrium is not
possible. Since there is motioR,= uN. Complete
solution requires principles of dynamics.

B. Given: Bodies, forces, or coefficients of friction are given. Impending motion is
specified.F = pN is valid.
Procedure:  To determine the unknowns:

1. Construct the free-body diagram.

2. Write F = pN for all surfaces where motion is impending.

3. Determingy, or the required forces from the equation of equilibrium.

C. Given: Bodies, forces, coefficients of friction are known. Impending motion is
specified, but the exact motion is not given. The possible motions may be
sliding, tipping or rolling, or relative motion if two or more bodies are
involved. Alternatively, the forces or coefficients of friction may have to be
determined to produce a particular motion from several possible motions.

Procedure: To determine the exact motion that may occur, or unknown quantities
required:

1. Construct the free-body diagram.

2. Assume that motion is impending in one of the two or more possible
ways. Repeat this for each possible motion and write the equation of
equilibrium.

3. Compare the results for the possible motions and select the likely event.
Determine the required unknowns for any preferred motion.

PwbhpE

Wedges and Screws

A wedge may be used to raise or lower a body. Thus, two directions of motion must be considered in
each situation, with the friction forces always opposing the impending or actual motion. The self-locking
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aspect of a wedge may be of interest. The analysis is straightforward using interrelated free-body
diagrams and equilibrium equations.

Screw threads are special applications of the concept of wedges. Square threads are the easiest to
model and analyze. The magnitudleof the moment of a couple required to move a square-threaded
screw against an axial lo&lis

M = Pr tan(a + @) (1.2.25)

where r = radius of the screw
a = tan? (L/2mr) = tan? (np/21T)

L = lead = advancement per revolution

n = multiplicity of threads

p = pitch = distance between similar points on adjacent threads
@ = tarmiu

The relative values af and@ control whether a screw is self-locking> a is required for a screw to
support an axial load without unwinding.

Disk Friction

Flat surfaces in relative rotary motion generate a friction moMeopposing the motion. For a hollow
member with radiR, andR, under an axial forck,

3 _ p3
M=2up "R (1.2.26)
3 R-R
The friction moment tends to decrease (down to about 75% of its original value) as the surfaces weatr.
Use the appropriate, or p, value.

Axle Friction

The friction momenM of a rotating axle in a journal bearing (sliding bearing) is approximatedgif
low) as

M =Pru (1.2.27)
where P = transverse load on the axle
r = radius of the axle
Use the appropriate, or y, value.

Rolling Resistance

Rolling wheels and balls have relatively low resistance to motion compared to sliding. This resistance
is caused by internal friction of the materials in contact, and it may be difficult to predict or measure.
A coefficient of rolling resistanca is defined with units of length,

Fr

al— 1.2.28
5 (1.2.28)
where r = radius of a wheel rolling on a flat surface

F = minimum horizontal force to maintain constant speed of rolling

P =load on wheel

Values ofa range upward from a low of about 0.005 mm for hardened steel elements.



1-26 Section 1

Belt Friction
The tensiond, andT, of a belt, rope, or wire on a pulley or drum are related as

T,=Te* (T,>T) (1.2.29)

wheref = total angle of belt contact, radiafis< 2rm for a member wrapped around a drartimes).
Use, for impending slipping ang, for slipping.
For a V belt of belt angleq®

= uB/sing
T,=Te

Work and Potential Energy

Work is a scalar quantity. It is the product of a force and the corresponding displacement. Potential
energy is the capacity of a system to do work on another system. These concepts are advantageous in
the analysis of equilibrium of complex systems, in dynamics, and in mechanics of materials.

Work of a Force
The workU of a constant forc€ is

U=Fs (1.2.30)

wheres = displacement of a body in the direction of the veEtor
For a displacement along an arbitrary path from point 1 to 2,dvitangent to the path,

2 2
U :I F (o :I (F ax+F, ay+F, dz
1 1
In theory, there is no work when:

1. A force is acting on a fixed, rigid bodgr(= 0,dU = 0).
2. A force acts perpendicular to the displacemEntdr = 0).

Work of a Couple
A couple of magnitud®1 does work

U=M6 (1.2.31)

wheref = angular displacement (radians) in the same plane in which the couple is acting.
In a rotation from angular positiam to 3,

U:fMEMGZJP(MXdOX+Myd6y+MZdOZ)

Virtual Work

The concept of virtual work (through imaginary, infinitesimal displacements within the constraints of a
system) is useful to analyze the equilibrium of complex systems. The virtual work of & farogoment
M is expressed as
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oU = F [&r
oU =M [56
There is equilibrium if
esu:ZFi g +ZMiE&SGj =0 (1.2.32)
1= IE

where the subscripts refer to individual forces or couples and the corresponding displacements, ignoring
frictional effects.

Mechanical Efficiency of Real Systems
Real mechanical systems operate with frictional losses, so

input work = useful work + work of friction
(output work)

The mechanical efficienay of a machine is

_ output work _ useful work
input work  total work required

O<n<1

Gravitational Work and Potential Energy

The potential of a body of weigh to do work because of its relative heightvith respect to an
arbitrary level is defined as its potential energyn I§ the vertical i) distance between level 1 and a
lower level 2, the work of weight in descending is

2
u, :J' W dy = Wh = potentia energy of the body at level 1 with respect to level 2
1

The work of weightW in rising from level 2 to level 1 is

1
u,, :J'z - W dy = -Wh = potential energy of the body at level 2 with respect to level 1

Elastic Potential Energy

The potential energy of elastic members is another common form of potential energy in engineering
mechanics. For a linearly deforming helical spring, the axial féraad displacement are related by
the spring constark,

F=kx (similarly, M = k8 for atorsion spring)

The workU of a forceF on an initially undeformed spring is

u :%kxz (1.2.33)
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In the general case, deforming the spring from pasijdo Xx,,
1
U= Ek(xg - xf)

Notation for Potential Energy
The change in the potential egg V of a system is

U=-AV

Note that egaive work is done by a system while itg/n potential enegy is increased by the action
of anexternal force or momenthe external agent does pasi work at the same time since it acts in
the same direction as the resulting displacement.

Potential Energy at Equilibrium
For equilibrium of a system,

v,
dq

whereq = an independent coordinate along which there is possibility of displacement.
For a system witm degrees of freedom,

6V:

— =0, i=142,...,n
g '=1

Equilibrium is stable if ¢?v/dg?) > 0.
Equilibrium is unstable ifd?v/dc¢f) < 0.

Equilibrium is neutral only if all dévatives ofV are zero. In cases of coraplconfigurationsevaluate
deiivatives of higher order as well.

Moments of Inertia

The topics of inertia are related to the method&irsf momentsThey are traditionally presented in
statics in preparation for application in dynamics or mechanics of materials.

Moments of Inertia of a Mass
The moment of inertidl, of an elemental masiM about thex axis Figure 1.2.28is defined as

di, =r2dM = (y? +22) dM

wherer is the nearest distance fin@M to thex axis The moments of inertia of a body about the three
coordinate ges are
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I, :J'r2 dM :J'(y2 +22) dM

Iy:J'(x2+22)dM (1.2.34)

I, :‘[(x2 +y?) dM

FIGURE 1.2.28 Mass elemendM in xyz coordinates.

Radius of GyrationThe radius of gyratior, is defined g r, = JIX/M ,and similarly for ay other
axis. It is based on the concept of the body ofsivadeing replaced by a point nsdd (same mass)

at a distance, from a gven axis A thin strip or shell with all mass essentially at a constant distance
ry from the axis of reference is @galent to a point mass for some analyses.

Moment of Inertia of an Area
The moment of inertia of an elementaladd about thex axis Figure 1.2.29is defined as

d, =y*dA

whery is the nearest distance finalA to thex axis The moments of inertia (second moments) of the
areaA about thex andy axes (becaussA is in thexy plane) are

|X:J’y2 dA |y:‘[x2 dA (1.2.35)

FIGURE 1.2.29 AreaA in thexy plane.

The radius of gyration of an area idided the samway as it is for a mass; = |, /A, etc.

Polar Moment of Inertia of an Area

The polar moment of inertia is fileed with respect to an axis perpendicular to the area considered. In
Figure 1.2.29 this may be tlzeaxis The polar moment of inertia in this case is

% :J'r2olA:J’(x2+y2)o|A:|X+|y (1.2.36)

Parallel-Axis Transformations of Moments of Inertia

It is often cowenient to first calculate the moment of inertia about a centroidal axis and then transform
this with respect to a parallel axihe formulas for the transformations are
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=1,

=1,

+ Md?

+ Ad?

Jo = Jc + Ad?

Section 1
for amassM
for an area A (1.2.37)
for an area A

wherel or Jo = moment of inertia oM or A about any line

lcorJe

and parallel to¢
d = nearest distance between the parallel lines
Note that one of the two axes in each equation must be a centroidal axis.

Products of Inertia

moment of inertia oM or A about a line through the mass center or centroid

The products of inertia for areas and masses and the corresponding parallel-axis formulas are defined
in similar patterns. Using notations in accordance with the preceding formulas, products of inertia are

|y :IxydA for area,

l yz

| Xz

:J’ysz

:J'xsz

Parallel-axis formulas are

xy

yz

L, +Add

l,, +Add,

Ix’z’ +A dxdz

for areq,

or

or

or

or Ixy dM  for mass

or J'yz dm (1.2.38)
or J’xz dMm
l,, +Mdd, formass
Iy,z, +M dydZ (1.2.39)
Ix‘z‘ + M dxdz

Notes: The moment of inertia is always positive. The product of inertia may be positive, negative, or
zero; it is zero ik ory (or both) is an axis of symmetry of the area. Transformations of known moments
and product of inertia to axes that are inclined to the original set of axes are possible but not covered
here. These transformations are useful for determining the principal (maximum and minimum) moments
of inertia and the principal axes when the area or body has no symmetry. The principal moments of
inertia for objects of simple shape are available in many texts.
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1.3 Dynamics

Stephen M. Birn and Bela I. Sandor

There arewo major catgories in dynamics, kinematics and kinetikgnematics involves the time-
and geometry-dependent motion of a particle, rigid/bdeformable bog or a fluid without considering
the forces that cause the motion. It relates positielocity, acceleration, and tim&inetics combines
the concepts of kinematics and the forces that cause the motion.

Kinematics of Particles

Scalar Method

The scalar method of particle kinematics is adequate for one-dimensional afapsiticle is a body
whose dimensions can begtected (in some analysegry lage bodies are considered particld$)e
equations described here are easily adapted and applied smtl three dimensions.

Average and Instantaneous Velocity

The averagevelocity of a particle is the change in distandeiddd by the change in tim&he
instantaneouselocity is the particles velocity at a particular instant.

AV oA _dx .
Vave_E Ving _llm)a_a_x (131)

Average and Instantaneous Acceleration

The average acceleration is the changevétocity dvided by the change in tim&he instantaneous
acceleration is the particteacceleration at a particular instant.

_Av

Av Av _dv _.
At

a,, = lim V=X (1.3.2)

Qe _mﬂOKt_E

Displacementyelocity, acceleration, and time are related to one andtbe example, ifvelocity is
given as a function of time, the displacement and acceleration can be determined thepugtiomt
and dfferentiation, respeistely. The following example illustrates this concept.

Example 8
A particle noves with avelocity v(t) = 3?2 — &. Determire x(t) anda(t), if x(0) = 5.

Solution.

1. Determinex(t) by integration

:%

dt

vdt =dx
J'3tz—8tdt:J’dx
t* - 4t> +C = x

fromx(0)=5 C=5
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x(t) =t* -4t +5

2. Determire a(t) by differentiation

dv _ d
a:a":a(az—&)

a(t)=6t-8

There are foukey points to be seen from these grapfig(re 1.3.1

8 T T T
w”
g
>
2
2
4
- | ! |
0 1 2 3 4
time, t
8 T T T
« 4 -
g
"=
E oo -
g
4 _
g l L I
0 1 2 3 4
time, t

FIGURE 1.3.1 Plots of a particles kinematics.

N

v = 0 at the local maximum or minimum ofetk-t curve.

a = 0 at the local maximum or minimum ofeti-t cuive.

The area under thet cuive in a specific time inteal is equal to the net displacement change
in that inteval.

The area under theet curve in a specific time inteal is equal to the neflocity change in that
interval.
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Useful Expressions Based on Acceleration
Equations for nonconstant acceleration:

t

dv Y
a=—>0 [ dv={[ adt 1.3.3
dt J;O ,[a ( )

vdv:adeJ'vdv:J’adx (1.3.4)
Vo X0

Equations for constant acceleration (projectile motion; fiatie
v=at+y,
v :Za(x—x0)+v§ (1.3.5)

1
X :Eat2 +Vt+ X,

These equations are only to be used when the acceleratiomis tmbe a constarithere are other
expressionsvailable depending ondw avariable acceleration is\@n as a function of timeglocity,
or displacement.

Scalar Relative Motion Equations

The concept of relate motion can be used to determine the displacemelugity, and acceleration
betweenwo particles that &vel along the same line. Equation 1.3.6vutes the mathematical basis
for this methodThese equations can also be used when analyzmgdints on the same body that are
not attached rigidly to each othéfigure 1.3.2

0 VA vB8

I - - — &~ — — & —Xx
XBIA
X,
A XA/B FIGURE 1.3.2 Relatve motion of two particles along
X8 a straight line.
Xgn = Xg ™ Xp
Vg = Vg ~ V4 (1.3.6)

g p =85 8,

The notation BA represents the displacement, velgcitr acceleration of particle B as seemrh
particle A Relatve motion can be used to analyzengndifferent agrees-of-freedom systerm#s degree
of freedom of a mechanical system is the number of independent coordinate systems nedited to de
the position of a particle.
Vector Method
Thevector methodacilitates the analysis ofb- and three-dimensional problems. In general, curvilinear
motion occurs and is analyzed using avemient coordinate system.
Vector Notation in Rectangular (Cartesian) Coordinates
Figure 1.3.3llustrates thevector method.
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(a) b)
FIGURE 1.3.3 Vector method for a particle.

The mathematical method is based on determginianda as functions of the positiorectorr. Note
that the time deévatives of unitvectors are zero when the xyz coordinate systefixésl The scalar
componerg (X, Y, X,...) can be determined from the appropriate scalar equatievioysly presented
that only include the quantities eeant to the coordinate direction considered.

r=x+yj+z

L ST S S T (1.3.7)
dt dt ot ot

_dv_d*,  d’y. d’z

= +—k=X+Vyj+2k
dt  dt? dt2J dt? y

There are adiv key points to remember when considering curvilinear motion. First, the instantaneous
velocity vector isalwaystangent to the path of the particle. Second, the speed of the particle is the
magnitude of therelocity vecta. Third, the acceleratiomector isnot tangent to the path of the particle
and not collinear witlv in curvilinear motion.

Tangential and Normal Components

Tangential and normal components are useful in analyz#hgcity and acceleratiorfigure 1.3.4
illustrates the method and Equation 1.3.8 is thesming equations for it.

vV =vn,

a=an, +an,

- _v
&=q & 0
(1.3.8)
[1+ (dy/dx)z]w2

d?y/dx?

p =r = constant for a circular path

\a t=adv/dt ny

v=vng

an=v2/pny P

& aih FIGURE 1.34 Tangential and normal componen.
0 4 P X is the center of cwature.
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The osculating planeontains the univectorsn, andn,, thus defining a plan&/hen using normal
and tangential components, it is common t@é to include the component of normal acceleration,
especially if the particle &els at a constant speed along avedrpath.

For a particle that wves in circular motion,

v—ré:roo
dv -
=— =r0=ra 1.3.9
a==ro=r (1.3.9)
2 .
a =—=r0"=rw’

Motion of a Particle in Polar Coordinates
Sometimes it may be best to analyze particle motion by using polar coordinatesnas(fatjure 1.3.5:

v=rn_+rén, (always tangent to the path)

%:é:w, rad)s (1.3.10)

a= ('r' - réz)nr + (ré + 2fé)n9

X FIGURE 1.3.5 Motion of a particle in polar coordinates.

For a particle that wves in circular motion the equations simplify to

B _b=iv=a, ras
dt

V= r'ene (1.3.112)

a=-r8°n, +rén,

Motion of a Particle in Cylindrical Coordinates

Cylindrical coordinates pride a means of describing three-dimensional motion as illustratedune
1.3.6

V=rn, +ren, + &
. L (1.3.12)
a= ('r' - rez)nr + (rG + ZiG)ne + 7k
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k (I to z)
ng (Ifto xy)

nr (ftor)

y
YO
FIGURE 1.3.6 Motion of a particle ircylindrical coordinates.

Motion of a Particle in Spherical Coordinates

Spherical coordinates are useful ineav fspecial casebut are dificult to apply to practical problems.
The governing equations for them aagailable in may texts.

Relative Motion of Particles in Two and Three Dimensions
Figure 1.3.7shows relatve motion in wo and three dimension$his can be used in analyzing the

translation of coordinatexas. Note that the unitectors of the coordinate systems are the same.
Subscripts are arbitratyut must be used consistently s, = -, €tc.
rB = I’A + rB/A

Vg =V + Vg, (1.3.13)

g =a, + 8ga

y
Y : "
o B (moving relative
to xyz)
Taia
A X
z Moving system
(relative to XYZ)
Fa s
V4 0 Fixed system

FIGURE 1.3.7 Relatve motion using translating coordinates.

Kinetics of Particles
Kinetics combines the methods of kinematics and the forces that cause the Triwienare averal
useful methods of analysis based aswddn's secondaw.

Newton’s Second Law

The magnitude of the acceleration of a particle rectly poportional to the magnitude of thesultant
force acting on it, and inverselygportional to its mass. Therdction of the acceleration is the same
as the diection of theresultant foce.

F=ma (1.3.14)

wherem is the particlss massThere are threkey points to remember when applying this equation.

1. Fis the resultant force.
2. ais the acceleration of a single particlegag for the center of mass for a system of particles).
3. The motion is in a nonaccelerating reference frame.
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Equations of Motion
The equations of motionfor vector and scalar notations in rectangular coordinates are

ZF:ma

(1.3.15)
ZFX:maX sz:may ZFZ:rnaZ
The equations of motion for tangential and normal components are
2
z F, =ma, = mY
P (1.3.16)

_ R ¢ \'
S F = =m=mv %

The equations of motion in a polar coordinate system (radial andéraascomponents) are

ZFr =ma, :n‘('r'—réz)
zFQ:mae :m(ré—zfé)

(1.3.17)

Procedure for Solving Problems

1. Draw a free-body diagram of the particleogling all forces. (The free-body diagram will look
unbalanced since the particle is not in static equilibrium.)
2. Choose a awenient nonaccelerating reference frame.
3. Apply the appropriate equations of motion for the reference frame chosen to calculate the forces
or accelerations applied to the particle.
4. Use kinematics equations to determimdocities and/or displacements if needed.
Work and Energy Methods

Newton's secondaw is not dways the most ewenient method for solving a probleWork and enmyy
methods are useful in problemwalving changes in displacement avelocity, if there is no need to
calculate accelerations.

Work of a Force
The totalwork of a forceF in displacing a particl® from position 1 to position 2 alongwapath is

U, :J’:F élr :J’:(FX dx +F, dy+ F, dz (1.3.18)

Potential and Kinetic Energies

Gravitational potential engy: U, :J' W dy =Wh =V,, whereW=weight andh = vertical evation
difference. 1

Elastic potential engy: U :J’ “lox dx = %k(x;" -x2) =V,, wherek = spring constant.

Kinetic enegy of a particleT = 1/2n\?, where m = mass an& = magnitude of/elocity.

Kinetic enegy can be related taork by theprinciple of work and engy,
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U,=T,-T, (1.3.19)

whereU,, is the work of a force on the particle moving it from position 1 to positidn i8,the kinetic
energy of the particle at position 1 (initial kinetic energy), &nid the kinetic energy of the particle at
position 2 (final kinetic energy).

Power
Power is defined as work done in a given time.
du _ Flar _

ower = ——
P a dr

Fv (1.3.20)

wherev is velocity.
Important units and conversions of power are

1W=1Js=1N /s
1 hp = 550 ft [Ib/s = 33,000 ft (lb/min = 746 W
1ft Ob/s=1.356 J/s=1.356 W

Advantages and Disadvantages of the Energy Method
There are four advantages to using the energy method in engineering problems:

1. Accelerations do not need to be determined.

2. Modifications of problems are easy to make in the analysis.

3. Scalar quantities are summed, even if the path of motion is complex.
4. Forces that do not do work are ignored.

The main disadvantage of the energy method is that quantities of work or energy cannot be used to
determine accelerations or forces that do no work. In these instances, Newton’s second law has to be used.

Conservative Systems and Potential Functions

Sometimes it is useful to assume a conservative system where friction does not oppose the motion of
the particle. The work in a conservative system is independent of the path of the particle, and potential
energy is defined as

Up = OV
work of F difference of potential
from1to2  energiesatland2

A special case is where the particle moves in a closed path. One trip around the path icyelted a

u:fdu =fF|]jr=f(Fx dx+F, dy+F, dz):o (1.3.21)

In advanced analysis differential changes in the potential energy fun@)iare calculated by the
use of partial derivatives,

. . bv. av. ov U
F=Fi+Fj+Fk=- +—j+—Kk
TR H&I 6yJ az 0
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Conservation of Mechanical Energy

Consevation of mechanical engy is assumed if kinetic ergy (T) and potential engy (V) change
back and forth in a consetive system (the dissipation of egg is considered agligible). Equation
1.3.22 formalizes such a situation, where position 1 is the initial state and position 2insltstate.
The reference (datum) should be chosen to reduce the number of terms in the equation.

T+V, =T, +V, (1.3.22)
Linear and Angular Momentum Methods

The concept of linear momentum is useful in engineering when the accelerations of particles are not
known but thevelocities areThe linear momentum is deed from Newton's secondaw,

G=mv (1.3.23)

The time rate of change of linear momentum is equal to .fdrbenmv is constant, the consation
of momentum equation results,

ZF:GZ%(W)

Z F=0 nwv=congtant  (conservation of momentum)

(1.3.24)

The method of angular momentum is based on the momentum of a particle fikedtpmint, using
the vector product in the general caseglre 1.3.8.

Hy=rxmv (1.3.25)

x FIGURE 1.3.8 Definition of angular momentum for a particle.

The angular momentum equation can berexsblusing a scalar method if the motion of the particle
remains in a plane,

— : - - 2
Ho, =nmrvsing=nmrv, =nr<0

If the particle does not remain in a plane, then the general space motion equatipnEhapre
deiived from the cross-productx mv,
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Ho =H,i+Hj+HJk
ol )
H, = m(zvx - xvz)
H, = m(xvy - yvx)

Time Rate of Change of Angular Momentum

(1.3.25a)

In general, a force acting on a particle changes its angular moméhéutime rate of change of angular
momentum of a particle is equal to the sum of the moments of the forces acting on the particle

: d
Vectors: Ho :a(r xnmv)=r XZF: XHO (1.3.26)
Scalars: ZMX:HX ZMy:Hy ZMz:-Z
ZMO:O H, =r x mv = constant
(conservation of angular momentum) (1.3.27)

A special case is when the sum of the moments about @amtzero. This is the conservation of
angular momentum. In this case (motion under a central force), if the distentceases, the velocity
must decrease, and vice versa.

Impulse and Momentum

Impulse and momentum are important in considering the motion of particles in impact. The linear
impulse and momentum equation is

t.

2
Fdt= mv, - mv, (1.3.28)
ty 7\*—‘ —
inal initial
impulse momentum  momentum

Conservation of Total Momentum of Particles

Conservation of total momentum occurs witlea initial momentum of n particles is equal to the final
momentum of those same n patrticles,

n

i(mvi)l = > (mv), (1.3.29)

total initial total final
momentum at timet;  momentum at timet,

When considering the response of two deformable bodies to direct central impact, the coefficient of
restitution is used. This coefficieatrelates the initial velocities of the particles to the final velocities,

_ Vgt ~Vy _ |relative velocity of separation

e =
v, -V, [relative velocity of approach

(1.3.30)
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For real materials, O &< 1. If both bodies arperfectly elastice = 1, and if either body igerfectly
plastic e = 0.

Kinetics of Systems of Particles

There are three distinct types of systems of particles: discrete particles, continuous particles in fluids,
and continuous particles in rigid or deformable bodies. This section considers methods for discrete
particles that have relevance to the mechanics of solids. Methods involving particles in rigid bodies will
be discussed in later sections.

Newton’s Second Law Applied to a System of Particles
Newton’s second law can be extended to systems of particles,

ZE = Zmai (1.3.31)
Motion of the Center of Mass

The center of mass of a system of particles moves under the action of internal and external forces as if
the total mass of the system and all the external forces were at the center oEquag®mn 1.3.32
defines the position, velocity, and acceleration of the center of mass of a system of particles.

mesym o we=ymyo m=yma  YEem (1332

Work and Energy Methods for a System of Particles

Gravitational Potential EnergyThe gravitational potential energy of a system of particles is the sum of
the potential energies of the individual particles of the system.

V, = gZ my, = ZV\Wi = mgy, =Wy, (1.3.33)

where g = acceleration of gravity
yc = vertical position of center of mass with respect to a reference level

Kinetic Energy.The kinetic energy of a system of particles is the sum of the kinetic energies of the
individual particles of the system with respect to a fixed reference frame,

T:;Zm\/f (1.3.34)

A translating reference frame located at the mass céntafra system of particles can be used
advantageously, with

n

T= Em"é + 1 mv;? (v' are with respect to atransiating frame)  (1.3.35)
2 __ 24
motion of total ~
mass imagined to motion of &ll

beconcentrated at ¢~ Particlesrelativeto C
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Work and Energy

The work and energy equation for a system of particles is similar to the equation stated for a single
particle.

Z“"ZV*Z w336)

= AV + AT

Momentum Methods for a System of Particles

Moments of Forces on a System of Particlé®e moments of external forces on a system of particles
about a poinD are given by

i(ri xFi):iMio+i(ri xma,) (1.3.37)

Linear and Angular Momenta of a System of Particlés resultant of the external forces on a system
of particles equals the time rate of change of linear momentum of that system.

:imvi ZF:G (1.3.38)

The angular momentum equation for a system of particles about a fixedDpsint

n

Hgy = Z(ri xmai)
ZM Z(r xma,)

The last equation means tlia¢ resultant of the moments of the external forces on a system of particles
equals the time rate of change of angular momentum of that system.

(1.3.39)

Angular Momentum about the Center of Mass

The above equations work well for reference frames that are stationary, but sometimes a special approach
may be useful, noting th#étte angular momentum of a system of particles about its center of mass C is
the same whether it is observed from a fixed frame at point O or from the centroidal frame which may
be translating but not rotatingn this case

Ho =Hc +roxmvg
. (1.3.40)
ZMO =H +r. xmag
Conservation of Momentum

The conservation of momentum equations for a system of particles is analogous to that for a single
particle.
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G = constantlJ
Hy = constant% not the same constants in general
H

H . = constant]

Impulse and Momentum of a System of Particles
The linear impulse momentum for a system of particles is

n

t
Z Fdt=G,-G,=nmv, -y (1.3.41)

= Ju
The angular impulse momentum for a system of particles is

n t
Z thiOdt:Hoz—Hol (1.3.42)
Kinematics of Rigid Bodies

Rigid body kinematics is used when the methods of particle kinematics are inadequatedagsatblem.
A rigid body is defined as one in which the particles are rigidly connettésiassumption ailvs for
some similarities to particle kinematicEhere are wo kinds of rigid body motion, translation and
rotation These motions may occur separately or in combination.

Translation
Figure 1.3.9models the translational motion of a rigid pod

fo=Ta*Tga (Tga = cONStant]

A (1.3.43)

TA

FIGURE 1.3.9 Translational motion of a rigid bgd

z

These equations represent an imporfact: when a rigid body is in translation, the motion of a
single point completely spéeis the motion of the whole byod

Rotation about a Fixed Axis

Figure 1.3.10models a poinP in a rigid body rotating aboutfaxed axis with an angulasmelocity w.
The velocity v of pointP is determined assuming that the magnitufle is constant,

V=wXr (1.3.44)
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Y| fixed axis of rotation

z FIGURE 1.3.10 Rigid body rotating about axid axis.

The acceleratioa of pointP is determined aweniently by using normal and tangential components,

a, =axr+wx(wxr)
v ———
* 2 (1.3.45)
a =pa a = pwz
Note thatthe angular acceleratio and angular velocityw are valid for any line perpendicular to
the axis ofrotation of the rigid body at a given instant.

Kinematics Equations for Rigid Bodies Rotating in a Plane
For rotational motion with or without fixed axis, if displacement is measured by ana@gl

Angular speed: W= d8
dt
Angular acceleration: a= do = wdﬁ
dt de

For a constant angular speexl

Angular displacement: =6, + wt (9:(90 att:O)

For a constant angular acceleratio,

w=w, +at (w:woatt:O)
1.
6:90+w0t+5at

w? = w? +2a(0-86,)
Velocities in General Plane Motion

General plane motion of a rigid body isfided by simultaneous translation and rotation in a plane.

Figure 1.3.11illustrates low thevelocity of a poimA can be determined using Equation 1.3.46, which
is based on relate motion of particles.

VaT Vg + WXy (1.3.46)
trandation rotation
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Va
y
resultant
X vVa
moving A
\' frame
w
0 fxed frame X Ve Vam
(a) General (b) Translation (c) Rotation (d) Result for
plane motion only only point A

FIGURE 1.3.11 Analysis ofvelocities in general plane motion.

There are fie important points to remember when solving general plane motion problems, including
those of interconnected rigid bodies.

1. The angulawelocity of a rigid body in plane maotion is independent of the reference point.

2. The common point ofwo or more pin-jointed members musivla the same absolutelocity
even though the indidual members mayaie different angularelocities.

3. The points of contact in members that are in temporary contact may or magv@ahdé same
absolutevelocity. If there is sliding between the members, the points in congaet diferent
absolutevelocities The absoluteelocities of the contacting particles ateays the same if there
is no sliding.

4. If the angularvelocity of a member is not kwn, but some points of the membeiowe along
defined paths (i.e., the end points of a piston rod), these péittes dee directions of theelocity
vectors and are useful in the solution.

5. The geometric center of a wheel rolling ofia suface noves in rectilinear motion. If there is
no slipping at the point of contact, the linear distance the center paielstis equal to that
portion of the rim circumference that has rolled alongfldesuface.

Instantaneous Center of Rotation

The method oinstantaneous center oftationis a geometric method of determining the anguséwcity
when tvo velocity vectors are kown for a gven rigid bog. Figure 1.3.12llustrates the method his
procedure can also be used to determilecities that are parallel to one of theep velocities, by
similar triangles.

m
\

\ FIGURE 1.3.12 Schematic for instantaneous center of rotation.

Velocities v, andvg are gven; thus the body is rotating about gdimt that instant. Poirithas zero
velocity at that instanbut generally has an acceleratidhis method doesotwork for the determination
of angular accelerations.

Acceleration in General Plane Motion

Figure 1.3.13llustrates a method of determining accelerations of points of a rigid Bbi$ is similar
to (but more dificult than) the procedure of determinimglocities.
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Y ag=a, y
a, given ap
B B "B/ B
= + A M
A \_j @ glv%n A W moving
\/l . given \_\-//l‘ o frame
0 fixed frame
(a) General (b) Translation only (c) Rotation only
plane motion
Vie/A (a B/A In
(apa)e

apa a
a B =
‘ﬁ BiA)t resuitant ag=a,
B

Ae ~ (agan B
(d) Velocity and acceleration (e) Total acceleration
of point B from rotation only of point B

FIGURE 1.3.13 Accelerations in general plane motion.

+oo><(m><rB/A)

QD
1

a, ta XrB/A

(1.3.47)

2= 3, +(aan), *(a0s)
B oa BA/, BAJ,

translation -
rotation

There are sikey points to consider when solving this kind of a problem.

1. The angularvelocity and acceleration of a rigid body in plane motion are independent of the
reference point.

2. The common points of pin-jointed members muasththe same absolute accelerateen though
the indvidual members mayaue different angulawelocities and angular accelerations.

3. The points of contact in members that are in temporary contact may or magveahdé same
absolute acceleration.veén when there is no sliding between the members, only the tangential
accelerations of the points in contact are the same, while the normal accelerations are frequently
different in magnitude and direction.

4. The instantaneous center of zemocity in general has an acceleration and shoat be used
as a reference point for accelerations unless its acceleratiomwis nd included in the analysis.

5. If the angular acceleration of a member is nawkm but some points of the membepwe along
defined paths, the geometric constraints of motidimeehe directions of normal and tangential
acceleratiorvectors and are useful in the solution.

6. The geometric center of a wheel rolling ofia suface noves in rectilinear motion. If there is
no slipping at the point of contact, the linear acceleration of the center point is paralldlab the
suiface and equal tax for a wheel of radius and angular accelerati@n

General Motion of a Rigid Body

Figure 1.3.14llustrates the compk general motion (three-dimensional) of a rigid fadtlis important
to note that here the angubelocity and angular acceleratiorctors are not necessarily in the same
direction as thy are in general plane motion.

Equations 1.3.48ige thevelocity and acceleration of a point on the rigid ypdthese equations are
the same as those presented for plane motion.
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A and B are points

in a rigid body
X ) -
z 0 FIGURE 1.3.14 General motion of a rigid bgd
VB :VA+erB/A
aB:aA+axrB/A+w><(ooxrB/A) (1.3.48)

2 =, +(a0a), *(20n),

The most dficult part of solving a general motion problem is determining the angular acceleration
vecta. There are three cases for the determination of the angular acceleration.

1. The direction ofw is constantThis is plane motion @ha = w can be used in scalar solutions
of problems.

2. The magnitude oo is constanbut its direction change#sn example of this is a wheel which
travels at a constant speed on avedr path.

3. Both the magnitude and directioh @ changeThis isspace motiorsince all or some points of
the rigid body lve three-dimensional pattsn example of this is a wheel which accelerates on
a cuwved path.

A usefulexpression can be obtained from item 2 &mglre 1.3.15The rigid body is fed at point
O andw has a constant magnitude tlkerotate about @Y axis with angulavelocity Q. The angular
acceleration is determined from Equation 1.3.49.

FIGURE 1.3.15 Rigid body fked at pointO.

=—"=0Q 1.3.49
a=-=0xwe ( )

For space motiorit is essential to combine the results of items 1 and 2, whislider components
of a for the change in magnitude and the change in direclioa following example illustrates the
procedure.

Example 9

The rotor shaft of an alternator in a car is in the horizontal plane. It rotates at a constant angular speed
of 1500 rpm while the caravels atv = 60 ft/sec on a horizontal road of 400 ft radibggre 1.3.1%
Determine the angular acceleration of the rotor shafiricreases at the rate of 8 ft/sec
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IR=400 1t
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i
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top view of car
— ¥ | -
path = v=601fs
alternator
1500 rpm

FIGURE 1.3.16 Schematic of shdt motion.

Solution.There arewo components afi. One is the change in the direction of the rotor &aff and
the other is the change in magnitude from the acceleration ofthe ca

1. Component from the change in direction. Deteenin of the ca

V=rw,

w, = 0.15 rad/sec k
Use Equation 1.3.49:

ik
a=w xw=| 0 0 0.15/=23.6j rad/sec?
1571 O 0

2. Component from the acceleration of the. ¢ése Equation 1.3.9:

o.r =3,
o = 0.02k rad/sec’

The angular acceleration of the rotor shaft is

o =(23.6] + 0.02k) rad/sec?

This problem could also be sell using the method in thext section.

Time Derivative of a Vector Using a Rotating Frame

The basis of determining time detives of avector using a rotating frame is illustrated-igure 1.3.17

Qe =(Q)

+QxQ
XyZ

FIGURE 1.3.17 Time deivative of avector using a
rotating reference frame.
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Analysis of Velocities and Accelerations Using Rotating and Translating Frames

With the concept of general motion understood, aram@tgeous method of determiningjocities and
accelerations isvailable by the method of rotating reference frariiégre arewo cases in which this
method can be used.

For a common origin oKYZandxyz with r being a positiorvector to a poinP,

Vp =V, +Qxr

. (1.3.50)
ap =8, +QXr+Qx(Qxr)+2Qxv,
For the origh A of xyztranslating with respectYZz
VP = VA + (I;P/A)xyz + Q x I’P/A
(1.3.51)

aF,=aA+axyz+Q><rF,/A+Q><(Q><rF,/A)+ZQ><vXyz

whete Q is the angulavelocity of thexyzframe with respecbtXYZ 2Q x v, , is the Coriolis acceleration.

Kinetics of Rigid Bodies in Plane Motion

Equation of Translational Motion

The fundamental equation for rigid body translation is based ewtdN's secondaw. In Equation
1.3.52 a is the acceleration of the center of mass of the rigig,bual matter where the resultant force
acts on the bad The sum of the externalrées is equal to the mass of the rigid body times the
acceleration of the mass center of the rigid ypaddependent ofry rotation of the bog

ZF:mac (1.3.52)

Equation of Rotational Motion

Equation 1.3.53 states thie sum of the external moments on the rigid body is equal to the moment
of inertia about an axis times the angular acceleration of the body about thatTéwisangular
acceleratia a is for the rigid body rotating about an axiis equation is independent of rigid body
translation.

ZMC = I.a (1.3.53)

where M, = Hc, H. = I.w. An application is illustrated iColor Plate 2

Applications of Equations of Motion

It is important to use the equations of motion prgp&dr plane motion, three scalar equations are used
to define the motion in a plane.

D Fo=ma, > F=m > Mc=lea (1.3.54)
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If a rigid body undegoes only translation,

Z.:x = ma, sz:nnCy ZMC =0 (1.3.55)

If the rigid body undegoes pure rotation about the center of mass,

ZFX:O ZFy:O ZMC:ICO( (1.3.56)

Rigid body motions are cagorized according to the constraints of the motion:

1. Unconstrained MotionEquations 1.3.54 are directly applied with all three equations independent
of one anothe

2. Constrained MotionEquations 1.3.54 are not independent of one anddemeraly, a kinematics
analysis has to be made to determioe the motion is constrained in the plafibere arewo
special cases:
a. Point constraint: the body hadiged axis.
b. Line constraint: the body ames along a fed line or plane.

When considering systems of rigid bodies, it is important to remember that at most only three equations
of motion areavailable from each free-body diagram for plane motion teesfdr three unkowns The
motion of interconnected bodies must be analyzed using related free-body diagrams.

Rotation about a Fixed Axis Not Through the Center of Mass

The methods presentedaab are essential in analyzing rigid bodies that rotate abiixeédaxis, which
is common in machines (shafts, wheels, gears, linkadés mass of the rotating body may be
nonuniformly distrbuted as modeled iRigure 1.3.18

@) ) FIGURE 1.3.18 Rotation of a rigid body about aéd axis.

Note thatr is the nearest distance betweenftked axisO and the mass centér The figure also
defines the normal and tangential coordinate system used in Equations 1.3.57, which are the scalar
equations of motion using normal and tangential compon€héssum of the forces must include all
reaction forces on the rigid body at the axis of rotation.

Z F, = nmr.w? Z F =nmr.Qa Z M, = 1,0 (1.3.57)
General Plane Motion

A body that is translating and rotating is in general plane molioa scalar equations of motion are
given by Equation 1.3.54. If an arbitrary g4 is used to find the resultant moment,

ZMA:IAameaC (1.3.58)
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wher C is the center of mass. It is a common error tgdbto include the cross-product term in the
analysis.

There arewo special cases in general plane matiofiing andsliding.

Figure 1.3.1%hows pure rolling of a wheel without slipping with the center ofsxiaat the geometric
center of the wheeThis is called pure rolling of a balanced wheel.

P P

Z F TN

() (b) FIGURE 1.3.19 Pure rolling of a wheel.

From this figure the scalar equation of motion results,

a. =ra ZMA =1,0 (1.3.59)

X

For balanced wheels either sliding or not sliding, theofaglig schematic is helpful.

2F1=mac, P—F =mac, @—] —
ZFy=m“c, N-mg=0 4_f?’rn'o < for
slippin; Lippi
SMe=lca sr=la +—] " < e
ac, =ar 4
F =N

If slipping is not certain, assume there is no slipping and check wi#thgu N. If F > p N (not
possible; there is sliding), start the solutmwer using? = N but not usingy a. = ra, which is not
valid here.

For the problemrivolving unbalanced wheels (the mass center and geometric center do not coincide),
Equations 1.3.60 result.

ac_ #ro ag =ra
(1.3.60)
a.=ag+a :aG+(a +(a

/G /G ) n /G )t

Energy and Momentum Methods for Rigid Bodies in Plane Motion

Newton's secondaw in determining kinetics relationships is nbdivays the mostfécient, although it
awaysworks. As for particles, engy and momentum methods are often useful to analyze rigid bodies
in plane motion.

Work of a Force on a Rigid Body
Thework of a force acting on a rigid bodyoming from position 1 to 2 is

2 2
u12=J’ Fmr:J' Fvdt (1.3.61)
1 1
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Work of a Moment
The work of a moment has a similar form, for angular positéons

0
U,=[ Mo (1.3.62)

6

In the common case where the moment vektas perpendicular to the plane of motid,- d6 =
M db.
It is important to note those forces that do no work:

1. Forces that act at fixed points on the body do not do work. For example, the reaction at a fixed,
frictionless pin does no work on the body that rotates about that pin.

2. A force which is always perpendicular to the direction of the motion does no work.

3. The weight of a body does no work when the body’s center of gravity moves in a horizontal plane.

4. The friction force% at a point of contact on a body that rolls without slipping does no work.
This is because the point of contact is the instantaneous center of zero velocity.

Kinetic Energy of a Rigid Body

The kinetic energy of a particle only consists of the energy associated with its translational motion. The
kinetic energy of a rigid body also includes a term for the rotational energy of the body,

+T, = tme +%Icw2 (1.3.63)

T:T rot 2

trans

whereC is the center of mass of the rigid body.
The kinetic energy of a rigid body rotating about an arbitrary axis at @oist

T:%Iowz

Principle of Work and Energy

The principle of work and energy for a rigid body is the same as used for particles with the addition of
the rotational energy terms.

T,=T,+U, (1.3.64)
where T, = initial kinetic energy of the body

T, = final kinetic energy of the body
U,, = work of all external forces and moments acting on the body moving from position 1 to 2

This method is advantageous when displacements and velocities are the desired quantities.

Conservation of Energy
The conservation of energy in a conservative rigid body system is

T+V, =T, +V, (1.3.65)

where T = kinetic energy
V = total potential energy (gravitational and elastic)

Power
The net power supplied to or required of the system is
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power:T +T +\'/g+\'/e (1.3.66)

trans rot

This can be calculated by taking timeidatives of the kinetic and potential egg terms. Each term
is considered posite when it represents thevper supplied to the system anehaive when pwer is
taken from the system.

Impulse and Momentum of a Rigid Body

Impulse and momentum methods are particularly useful when timeekouities are of intereskigure
1.3.20shows how rigid bodies are to be considered for this kind of analysis. Notice that rotational motion
of the rigid body must be included in the modeling.

i_nitial net impulse

linear of alt external

momentum forces

+ = _
final linear

initial net impulse of al final angular  momentum
angular externat moments momentum
momentum

(@ b) ©

FIGURE 1.3.20 Impulse and momentum for rigid bodies.

The impulse of thexternal forces in theigen intewal is

szth:mq("q ~ve) (1.3.67)

wheret is time,C is the center of mass, ajd includes allexternal forces.
The impulse of thexternal moments in theixen intewval is

.EZZMCdt:HCQ—HCL (1.3.68)

For plane motion, iy M is parallel tow, the scalaexpressions are

fz Mq dt = 1c(, - w,)

t
IZZ M, dt = Io(w2 - ool) for rotation about afixed point O
Yy

(1.3.69)

Impulse and Momentum of a System of Rigid Bodies

A system of rigid bodies can be analyzed using one ofubéailowing procedures, illustrated Figure
1.3.21

1. Apply the principle of impulse and momentum to each rigid member sepaitel mutual
forces acting between members must be included in the formulation of the solution.

2. Apply the principle of impulse and momentum to the entire system of bodies, ignoring the mutual
forces between members.
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finat tinear

initial Iir;ear momenturn  final linear
R momentum . net impulse of all of A momentum
initiat linear g net impulse of all external moments ofB

momentum external moments £5\ on B <

of A onA
Cs (¢
AT, D -
\/4 initial angular net impulse of alt \/ final angular

extemal forces on B
initial angular momentum of B final angutar  mementum of B

momentum of A net impulse of afl momentumn of A
external forces on A

(a) (b) ()

FIGURE 1.3.21 System of rigid bodies.

Conservation of Momentum

The principle of conseation of linear and angular momentum of particles camextended to rigid
bodies that &ve noexternal forces or moments acting on thde conseration of linear momentum
means that the center of & moves at a constant speed in a constant direction,

zF:OD AG=0

(1.3.70)
Ve =V,
Likewise, for consemtion of angular momentum of rigid bodies,
Z M =00 AH. =0
(1.3.71)
ICwl = ICwZ

For a system of rigid bodies, use the sdmed reference poirO for all parts of the systerhus,
for plane motion,

AHy =0 1,0, = 0, (1.3.72)

There arewo important points to remember when using these equations. &Htst= 0 does not
imply thatAH = O, or viceversa. Second, consation of momentum does not require the simultaneous
consevation of both angular and linear momenta @mample, there may be an angular impulse while
linear momentum is consexd).

Kinetics of Rigid Bodies in Three Dimensions

The concepts of plane rigid body motion canekieended to the more complicated problems in three
dimensions, such as of gyroscopes and jet endiihés section briefly avers some fundamental topics.
There are may additional topics and useful methods that are included in the technical literature.

Angular Momentum in Three Dimensions

For analyzing three-dimensional angular momentum, three spediaitidas are usedThese can be
visualized by considering a spinning tdgigure 1.3.22

Precession— rotation of the angularelocity vector about thg axis.

Space Cone— locus of the absolute positions of the instantaneous axis of rotation.

Body Cone— locus of the positions of the instantaneous axisivelab the bog The body cone
appears to roll on the space cone (nawwshhere).
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FIGURE 1.3.22 Motion of an inclined, spinning top.

Equations 1.3.73 provide the scalar components of the total angular momentum.

H, = Lo, - Lw, - lw,
H, =-l ,w +1lw -1,0, (1.3.73)
H, =-1,0, -0, +,0,

Impulse and Momentum of a Rigid Body in Three-Dimensional Motion

The extension of the planar motion equations of impulse and momentum to three dimensions is straight-
forward.

Hinear momentum of mass center (G)
System momenta = (1.3.74)
%ngul ar momentum about mass center (H c)
whereG andH have different units. The principle of impulse and momentum is applied for the period
of timet, tot,,

G, =G, +(external linear impuls&s)‘f
(1.3.75)
He, =Hg, +(external angular impulses)‘:
Kinetic Energy of a Rigid Body in Three-Dimensional Motion
The total kinetic energy of a rigid body in three dimensions is
T= Jm2 + ol (1.3.76)

tranglation rotation about
of mass center mass center

For a rigid body that has a fixed poit

T:%wmo (1.3.77)
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Equations of Motion in Three Dimensions

The equations of motion for a rigid body in three dimensions are extensions of the equations previously
stated.

ZF:rnaC
ZMC:HC:(HC)M+QXHC

where a. = acceleration of mass center
H. = angular momentum of the body about its mass center
xyz = frame fixed in the body with origin at the mass center
Q = angular velocity of thetyzframe with respect to a fixexiyZframe

(1.3.78)

Note that an arbitrary fixed poi@ may be used for reference if done consistently.

Euler’s Equations of Motion

Euler's equations of motion result from the simplification of allowingxyraxes to coincide with the
principal axes of inertia of the body.

ZMy =1,00, = (1, = 1,)0,0, (1.3.79)

> M, =L, = (1 -1, o0,

where all quantities must be evaluated with respect to the appropriate principal axes.

Solution of Problems in Three-Dimensional Motion
In order to solve a three-dimensional problem it is necessary to apply the six independent scalar equations.

DFme  YFEm ) Rm
Y M, =H, ro,H, o H,
z M, = H, +w,H, -0 H, (1.3.80)
M, =, 0, H, - 0,H,

These equations are valid in general. Some common cases are briefly stated.

Unconstrained motianThe six governing equations should be used wjthaxes attached at the
center of mass of the body.

Motion of a body about a fixed paifithe governing equations are valid for a body rotating about a
noncentroidal fixed poin®. The reference axeg/zmust pass through the fixed point to allow
using a set of moment equations that do not involve the unknown reactions at

Motion of a body about a fixed axighis is the generalized form of plane motion of an arbitrary rigid
body. The analysis of unbalanced wheels and shafts and corresponding bearing reactions falls in
this category.
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1.4 Vibrations

Bela I. Sandor with assistance by Stephen M. Birn

Vibrations in machines and structures should be analyzed and controligdhifte undesirableféects
such as noise, unpleasant motionsfatigue damage with potentially catastrophic consequences. Con-
versey, vibrations are sometimes eraptd to useful purposes, such as for compacting materials.

Undamped Free and Forced Vibrations

The simplest vibrating system has motion of oegreke of freedom (DOF) described by the coordinate
x in Figure 1.4.1 (An analogous approach is used for torsional vibrations, with similar results.)

7

_.T 0
X
F=Fosin Qt FIGURE 1.4.1 Model of a simple vibrating system.

Assuming that the spring has no mass and that there is no damping in the system, the equation of
motion forfree vibration (motion under internal forces onl = 0) is

mx+kx=0 or X+w>x=0 (1.4.1)

wherew = ' k/m = natural circular frequexy in rad/sec.
The displacement as a function of timeis

x = C,sinwt + C, coswt (1.4.2)

whereC, andC, are constants depending on the initial conditions of the matitarnaively,
x = Asin(wt + @)

where C, = Acosp, C, = Asing, and@ is the phase angle, another constAntompletecycle of the
motion occurs in time, theperiod of simple harmonic motip

21 ‘m
T=— =21 — (Seconds per cycle
W \fk( per ey )

The frequencyin units ofcycles per second (cps) or hertz (Hgf £ 1A.

The simplest case dbrced vibration is modeled in Figure 1.4.1, with the ferE included. Using
typical simplifying assumptions as @, the equation of motion for a harmonic force of forcing
frequery Q,

X+ kx = F, SinQt (1.4.3)
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The vibrations of a mags may also be induced by the displacetreér d sinQt of a foundation or
another masM to whichm is attached by a spdrk. Using the same reference point and axis for both
x andd, the equation of motion fan is

mx + k(x - d,sinQt) =0
(1.4.4)
mx + kx = kd, SnQt

whered, is the amplitude of vibration of theaving supportM, andQ is its frequeny of motion.
The general solution of the forced vibration ie siteady statéafter the initial, transient be¥ior) is

X = AsnQt
F_ FJk (1.4.5)

o —_—

AT k- mo? 1-(Q/w)?

whetre Q is the forcing frequesy andw is the natural circular frequeyn of the system o andk.

ResonanceThe amplitude of the oscillations in forced vibrations depends on the figoratio Q/w.
Without damping or jysical constraints, the amplitusuld become infinite @ = w, the condition
of resonance Dangerously lege amplitudes may occur at resonance and at other frgquegios near
the resonant frequep A magnification factoiis defined as

_ (1.4.6)

Several special cases of this are noted:

1. Static loadingQ =0, orQ < w; MF = 1.

2. Resonance®) = w; MF = oo,

3. High-frequemy excitation: Q > w; MF = 0.

4. Phase relationship$he vibration isn phasefor Q < w, and it is 180 out of phasdor Q > w.

Damped Free and Forced Vibrations

A vibrating system of oneadree of freedom and damping is modeledfigure 1.4.2The equation of
motion fordamped rfee vibrationgF = 0) is

%
k
FeFosinQt | 0
X
c

s

The displacement as a function of timeéis

mX +cx+kx =0 (1.4.7)

FIGURE 1.4.2 Model of a damped vibrating system.

N



Mechanics of Solids 1-59

x=eM (1.4.8)

€, ocf_k
2 2m \DZmD m

The value of the coefficient of viscous dampmthat makes the radical zero is tnitical damping
coefficientc, = 2m , k/m = 2mw. Three special cases of damped free vibrations are noted:

1. Overdamped systern:> c,; the motion isnonvibratoryor aperiodic.

2. Critically damped systene:= c; this motion is also nonvibratory;decreases at the fastest rate
possible without oscillation of the mass.

3. Underdamped systera:< c; the roots\, , are complex numbers; the displacement is

x = Ae (@2t g n(oo RE (p)

whereA andg are constants depending on the initial conditions, andtimped natural frequency
is

@ =0,1-g B:H

The ratioc/c, is thedamping factoil. The damping in a system is determined by measuring the
rate of decay of free oscillations. This is expressed byoterithmic decremend, involving
any two successive amplitudesandx;, ,,

X, 21¢
0=In—=——=21¢
Xiva \51_Z2

The simplifying approximation fod is valid for up to about 20% damping € 0.2).

The period of the damped vibratias 1, = 21w, It is a constant, but always larger than the period
of the same system without damping. In many real systems the damping is relatively sm@lR},
wheret, = T andw, = w can be used.

The equation of motion falamped forced vibrationd=igure 1.4.2F # 0) is

mX +cx + kx = F, sinQt (1.4.9)

The solution for steady-state vibration of the system is

x = Asin(Qt - ¢) (1.4.10)

where the amplitude and phase angle are from
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The magnification factorfor the amplitude of the oscillations is

MF=_A :dﬁz L (1.4.11)

Fo/k \f[ZZ(Q/w)]z + [1— (Q/w)2]2

(o]

This quantity is ketched as a function of the freqagmatio Q/w for several dampindactors inFigure
1.4.3 Note that the amplitude of vibration is reduced avallles & Q/w if the codficient of damping
c is increased in a particular system.

RESONANCE

(4]

Magnification factor A/Fq /k or A/dg

o
-
N H«
w

Q/w

FIGURE 1.4.3 Magnification factor in damped forced vibration.

Vibration Control

Vibration Isolation

It is often desirable to reduce the forces transmitted, or the noise and motions inside or in the-neighbo
hood of vibrating machines and structurésis can be done to sonegtent within the constraints of
space and additional weight and cost by the use of isolators, such as rubber engine mounts and wheel
suspension systems in cars.rj&inds of isolating materials and systems aualable commerciajl

The dfectiveness of vibration isolation expressed by thegansmissibilityTR, the ratio of the force
transmittel F; to the disturbing foreF,. A simple isolation system is modeled as a spring and a dashpot
in parallel, for which the transmissibility isvgn by Equation 1.4.12 an#etched inFigure 1.4.4

TR:FT: : Al 4Z2( / ) (1412)
! 2 2
o \[1-(9/&)) ] +4ZZ(Q/(D)
5
€ =01
4
g
%3
E 0.2
s 2
= 0.5 Ao !
) — vibration isolation
1
S S
: — |
0 1 yz 2 3 4

Qlo

FIGURE 1.44 Transmissibility patterns of a vibration isolato
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When damping is egligible,

1

"= (Q/w)* -1

Note from the figure that

=

Vibration isolation occurs &/w >+ 2 .

Isolation dficiency increases with decreasingfstess of the isolation mounts.

3. Damping reduces isolatiorifieiency. However, some damping is normally required if resonance
may occur in a systemven for short periods.

4. The response cues are essentially independent of dampingn@evis large (>3) and damping
is low ({<0.2). HereTR = 1/[(Q/w)? — 1].

5. For a system with more than omecitation frequeny, the bwest excitation frequeny is of

primary importance.

N

The dficiency of an isolating system is fieed by the reductioR in transmissibiliy,
R=1-TR

If a certain reductiomR in transmissibility is desired, the appropriatéfistissk of an isolation system
is obtained fronw = ./k/m and

w

Q_\/Z—R
1-R

A small magnitude of dfnessk makes the reductioR in transmissibility lage. It is dfficult to acheve

isolation forvery low excitation frequencies because of the requiredelastatic deflectiongo obtain
highly ficient isolation atdw excitation frequencies, ange supporting madd may be utilized, with
thevalue d w=/k/(m+M).

Vibration Absorption

In some cases a vibratory force is purposely generated in a system by a secondary spring-mass system
to oppose a primary disturbing force and thereby reduce or eliminate the undesiralffecheire
interestingexample of this is the “tuned-mass damper” inea Bkyscrapers, designed to counter the
oscillatory motions caused by win@ihe secondary spring-mass system has disdadges of itown,

such asxtra weight, compxity, and éfectiveness limited to a single frequeyn

Balancing of Rotating Components

The conditions of static or dynamic unbalance of rotating bodies|bng been recognize@ihese can
be analyzed by the methods of elementary mechanics, simple tests can be perfornrmgatasesa and
adequate corrections can be made routinely toeaetialance, such as for the wheels of automaot
vehicles Three catgories of increasing comglity are distinguished.

1. Static unbalanceThe distrbuted or lumped masses causing unbalance are in a single axial plane
and all on the same side of the axis of rotatiigyre 1.4.%. Thin disks are also in this egbry.
Static unbalance is detected in a static test since the centewity gf the body is not on the
axis, and correction is made by adding or weimg mass at a ewenient radial distance from
the axis.

2. Static balance with dynamic unbalan@his may be the case when the masses causing unbalance
are in a single axial planaut on opposite sides of the axis of rotatiéigire 1.4.6a Static
balance is ackved if the center of gwity of the body is on the axifut dynamic unbalance
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results from the couple of the unbalance forgas?r) during rotation, causing a shaking of the
axle.

3. Static and dynamic unbalaacThis is the general case of unbalance, which can be visualized by
letting m; andm, and the axis of rotation not all lie in the same pldxigure 1.4.6h

~

o2

m2
m1
axis
A . end view
axis of rotation
FIGURE 1.45 Schematic of static unbalance.
m m
axis axis
axis m2 m2
of rotation / - mo
-
[ (b) static and dynamic
- unbalance

(a) static balance / dynamic unbalance

FIGURE 1.46 Schematic of two cases of dynamic unbalance.

The magnitude and angular position of a bedynbalance can be determined using a dynamic
balancing machine. Here the shaking forces are measured by electronically sensing the small oscillations
of the bearings that can be correlated with the position of thg bod

Critical Speed of Rotating Shafts

A rotating shaft may become dangerously unstable and whirl wigh lateral amplitudes of displace-
ment at a critical speed of rotatioFhe critical speed, inevolutions per second, corresponds with the
natural frequeey of lateral vibration of the systerihus, it can be analytically predictéalrly well
and can be safely measured in a feélnonrotating machine with high precision.

If unavoidable, as at startup, the critical speed should be pagsedpidy. Otherways of minimizing
the problems of whirling shafts include the proper balancing of rotors and the replacing of bent shafts
andworn bearings.

Random Vibrations. Shock Excitation

Many structures are subjected to nonharmanigtations and respond with transient vibrations rather
than steady-state motions. Random vibration is often caysglblokexcitation, which implies that the
loading occurs suddenlin a short time with respect to the natural period of vibration of the system.
Such a loading, typically caused by impact conditions, may be highfpuliar in terms of amplitude,
waveform, and repetitionHigure 1.4.3, but normally it is possible textract practically uniform critical
events from the loading history for purposes of future design and life prediction.

For most practical purposes, this plot represents aperiodic motion, where the important quantities are
the maximum andverage lege amplitudes and the projected total repetitions (in this case, at the rate
of about 1000 per dayver the design life of the structuréhe small-amplitude transient vibrations
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FIGURE 1.4.7 Strain-time history at one strain-gage location on a steel bridge caused by two tovekg im
opposite directions. (A) Garbage truck in the near lane; (B) tractor trailer in the faaights unkown. (Data
courtesy Mark J. Fleming, Wrersity d Wisconsin-Madison.)

associated with therige events are kely to be rgligible here in terms of both dynamic laglor and
fatigue damage, although the réelaty large number of small oscillations may cause one to be concerned
in some cases.

Random vibrations arefficult to deal with analytical Numerical methodswolving computers are
advantageous to obtain response (or shock) spectrums of a system, assymagmeters and simple
models of nonharmongxcitations such as impule forces and force step functions. Since the maximum
transient response is relaly insensitve to damping, an undamped system is useful in modeling
response spectrums. Experimental techniques are neededfyche analytical predictions, especially
when the bedvior of a multiple-ggree-of-freedom system is determined from the response spectrum
of a single-dgree-of-freedom system.

Multiple-Degree-of-Freedom Systems. Modal Analysis

The analysis of a system with more than oegree of freedom requires an independent coordinate for
each dgree of freedom to describe the fignrationsThus, am-degree-of-freedom system $ianatural
frequencies and normalmodesof vibration. Compix systems can be classified as (1) discrete and
lumped-parameter systems withite numbers of ejrees of freedom or (2) continuous elastic bodies
of distributed mass with infinite number oégtees of freedom (in theory) commonexample of the
latter is a vibrating beam, with tliest two modes of vibration sfwn in Figure 1.4.8 Eat nodal point

is a point of zero deflection. Usually tendamental naturaréquencythe bwest) is the most important,
and only thedwest fw frequencies are considered in practice.

simply- nod
supported no support
no vertical defiection
(a) first mode (b) second mode

FIGURE 1.4.8 Simply supported beam in two modes of vibration.
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A systems harmonic vibrations aresiprincipal modesThere are also nmg ways in which the system
can vibrate nonharmonicgliPeriodic motion of compk wave form can be analyzed as a combination
of principal-mode vibrations.

The classical method of mathematical solution andstperimental techniques become increasingly
cumbersome and sometimes inaccurate for a system of more tvanlayfees of freedonThe recent
emegence of sophisticated numericlihite elementfFigure 1.4.9 and experimental (electro-optics)
techniques has resulted in siicent progress in this areéhe synegistic aspects ofeseral rew methods
are especially remarkableor example, damage caused by vibrations can egmitly dfect a systens
own modal beblvior and, consequentlthe rate of damag®olution. Such nonlinear changes of a system
can row be nvestigated andventually predicted by thieybrid applications of computerized numerical
methodsfatigue and fracture mechanics (Section 1.6), and high-speed, noncontactiingdfulbration
and stress imaging (Sections 1.¥jbration-Measuring Instrumentsand 1.5, “Experimental Stress
Analysis and Mechanitdalesting”). These enhance the alreadgmerful modern methodsfanodal
analysisfor accurately describing the response of multigrele-of-freedom systems.

AdNEEET

FETT Y I

EETEEAT

2O e-E7

TEME-F

EENr-BE
Eyuwianicnd fos s
EEEr-a8

FIGURE 1.49 Modal analysis of a vibrating plate. (Photo courteswi® T. Cor, University d Wisconsin-
Madison.)

Vibration-Measuring Instruments

There are may kinds of instruments for thexperimental mvestigation of vibrating systemBhey range
from simple, irxpensve devices to sophisticated electro-optics with lasers or infrared detectors, with
the list stillexpanding in may areas.

The basic quantities of interesgarding a vibrating system are the displacemezicity, accele-
ation, and frequeny. A typical sensor (or pickup or transducer) for determining these is the piezoelectric
acceleromete which is attached to the vibrating machine or structure to be analjzeccomplete
setup normally includes amfiérs, frequecy analyze, oscilloscope, and recorde/n instrumented
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impact hammer may be used tamyde well-defined impulsexcitation to determine the natural fre-
guencies of structure$he frequeny analyzer can display the accelerometer output in either the time
or the frequeoy domain.

Other kinds of evices used for vibration sensing include seismic spring-mass systems, electrical-
resistance straigages, and electromagnetic transducers.

Care must bexercised in matching a transducer to the task at hand, since reliable data can be obtained
only if the transducer has dldt-response” frequen region for the measurements of intereSor
example, electromagnetic vibrometers (or seismometersioarérdquerty transducers thatae low
natural frequecy compared to the frequen of the motion to be measurefit the otherextreme,
piezoelectric accelerometers are designedate fnigher natural frequen than the frequesy to be
measured.

It is also important to use transducers afligible mass compared to the mass of the vibrating system
being measured/ery small, light-weight accelerometers available to satisfy this condition in mga
casesThere are situationspolvever, where only noncontacting means of motion measuremewtdpr
satigactory results. Optical technigues are prominent in this affsing sveral adantages besides
the noncontacting measurement capapbilihey can be full-field techniques, which means that data may
be obtained rapidly from mg points on a body using one instrumerttey have excellent resolution
and precision, and some of them are easy toTusee kinds of optical instruments are distinguished
here for vibratory system analysis, depending on the primary quantity measured:

1. Displacement measement Holography and speckle pattern imagiragenexcellent resolution,
but they are adersely dfected by unstable measuring conditioibey are most useful in
laboratory applications.

2. \elocity meastementLaser Doppler systemsguide time-resoled, accelerometédi ke measure-
ments They are relat/ely undfected by measuring conditions, and are simple and rugged enough
to use either in the laboratory or in tfield. Sveral important capabilities of such a vibration
pattern imaging system aveorth mentioning Color Plates 3 to)7

« Noncontacting; the structueeresponse is nofffacted by the instrumentation; applicable in
some hazardousng@ronments (hot structures etc.), and short or long raager 00 m) on
natural sufaces

« Single-point or full-field data acquisition at high resolution from areas5ot 0.5 mm to 8x
8 m; up to 500 inidual points can be programmed

» Wide frequeny range; 0 to 100 kHz (feexample,Figure 1.4.1D

Sensitvity to a wide range of vibratiorelocities; 0.005 to 1000 mm/sec

Large depth of focust3 m at 10-mworking distance

» Node spacing @vn to a Bw millimeters can be resgd

Resolution of small displacementsweh to thewavelength of the laser source (typiga#l A)

 Safe, class Il laser system; <1 mW output

» Conventional signal processing is used teegmultipoint modal parameters fiamiliar format
for analytical comparisons

3. Dynamic stess measement Differential thermogrdpy via dynamic thermoelasticity={gure
1.4.17 has recently become awperful technique for measuring the modal response of vibrating
structures and, uniquglfor directly assessing the structuralegrity and durability aspects of
the situationThis approach uses high-speed infrared electro-optics and hasipeecigiability
because it can be quantitely combined with moderfatigue and fracture mechanics methods.
For example, it can #ectively relate vibration modes to coreplfracture modes and damage
evolution rates of a real componeaten under arbitrary and un@&nn loading with unkown
boundary conditions. See Section 1.5, “Experimental S&ralysis and Mechanitdesting’
for more on the dynamic thermoelasticity technique.
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FIGURE 1.4.10 Lase-based, noncontacting vibration analysis of a point on a car ({@eata courtesy of Ometron
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FIGURE 1.4.11 Schematic of modal analysis of a jet engine turbine blade by thermal imaging of théisliess
caused by comgxk vibration.For sample data, seéeolor Plate 8
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1.5 Mechanics of Materials

Bela I. Sandor

Mechanics of materials, also called strength of materiatwjdes quantitave methods to determine
stresses (the intensity of forces) and strains (¢herisy of deformations), ooverall deformations or
load-carrying abilities of components and structurée stress-strain ba¥ior of materials under a wide
range of service conditions must be considered inymasigns. It is also crucial to base the analysis
on correct modeling of component geometries extdrnal loadsThis can be dficult in the case of
multiaxial loading, andeven more so if time- or temperature-dependent materiavimel must be
considered.

Proper modelingrivolves free-body diagrams and equations of equilibriuoweser, it is important
to remember thahe equilibrium equations of staticseavalid only for foces or for moments ofrices
and not for stresses.

Stress

The intensity of a force is called stress and fnde as the force acting on arimitesimal areaA
normal strese is defined as

o=Iimd (1.5.1)

da-0dA

where dF is a dfferential normal force acting on afférential arealA. It is often useful to calculate
the average normal stress= P/A, whereP is the resultant force on an ar A shear stress caused
by a shearing forc¥ is defined kewise,

t=1im &V (1.5.2)

An average shear stress is obtainedrfid/A
It is helpful to consider the general cases of stresses using rectangular elementsirid three
dimensions, while ignoring the deformations caused by the stresses.

Plane Stress

There are relately simple cases where all stragxtors lie in the same plankhis is represented by

a to-dimensional element iRigure 1.5.1 whee o, and/ora, may be either tensile (pulling on the
element as shwn) or compresse (pushing on the element; notogim). Normal stresses are easy to
visualize and set up corregtl

Oy

ITyx
Txy =Tyx for equilibrium

Oy 4———0 — Oy

oy FIGURE 1.5.1 Generalized plane stress.

Shear stresses need to be discussed here in a little Tetailotation means thay, for example, is
a shear stress acting ireth direction, on dace that is perpendicular toetk axis. It follows thatt,, is
acting in thex direction, on dace that is perpendicular toethh axis The four shear stres®ctors are
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pointed as tey are because of the requirement that the element be in equilibrium: the net forces and
moments of forces on it must be zeftus, eversing the direction of all fout's in Figure 1.5.1 is
possible but reversing less than four is not realistic.

Three-Dimensional State of Stress

The concept of plane stress can be generalized for a three-dimensional elemamh asEigure 1.5.2
working with the three primarfiaces of the cube and nobsling stresses on the hiddiates, for clarit

Oy

L IYX

tyz; Xy

Tz
Y %—»(Jx
u
TZX

oz FIGURE 1.5.2 Three-dimensional general state of stress.

Again, the normal stresses are easy to set up, while the shear stresses may require considerable
attention The compéx cases of stresses result from multiaxial loading, such as combined axial, bending,
and torsional loading. Note thaten in compéx situations simplifications are possibiar example, if
the rightface in Figure 1.5.2 is a free fage,o, = 1,, = 1,, = 0. This leaves a plane stress state with

0,, 0, andt,,, at most.

Stress Transformation

A free-body element with lawn stresses on it allvs the calculation of stresses in directions other than
the gvenxyzcoordinatesThis is useful when potentially critical welded or glued jointsfilwers of a
composite, are along othexesm The stress transformations are simplest in the case of plane stress and
can be done inegeralways. In ay case, at aigen point in a material there is only one state of stress
at a particular instanAt the same time, the components of the stresses depend on the orientation of the
chosen coordinate system.

The stress transformation equations depend on the chosen coordinate system and theesiipnco
adopted A common arrangement is@hn in Figure 1.5.3 where(a) is the kmmwn set of stresses and
(b) is the unkown set, denoted by primes.

B \/ S
N
| \
(@) (b)

FIGURE 1.5.3 Elements for stress transformation.

In the present sign agention an owvard normal stress is pasi¢, and an upard shear stress on
the right-handace of the element is pasi. The transformation equations are
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_o,+0, 0,-0

o, = +—"—Yc0s20+1,,5N20
X 2 Xy
_o,+0, 0,-0, _
g, = > T 5 c0os26 - 1, sin26 (1.5.3)
__9% 79
Ty =~ 5 sin26 + 1, cos26

If a result is egaive, it means that the actual direction of the stress is opposite to the assumed direction.

Principal Stresses

It is often important to determine the maximum and mininuatones of the stress at a point and the
orientations of the planes of these stredsamsplane stress, the maximum and minimum normal stresses,
called principal stressesare obtained from

0 =5k (1.5.4)

o, +0, fDox—cyDz ,
B2 B

There is no shear stress acting on the principal planes on which the principal stresses areaetiery. H
there are shear stresses on other pldres maximum shear stress is calculated from

o, -0,

L. :\; 5 yH +15, (1.5.5)

This stress acts on planes orient&f #om the planes of principal streShere is a normal stress on
these planes af,,, theaverage ofo, anda,,

G, =X (1.5.6)

Mohr’s Circle for Plane Stress

The equations for plane stress transformatiare ta graphical solution, called Mosrcircle, which is
convenient to use in engineering practice, including “back-of-tivelepe” calculations. Mofs circle
is plotted on a — 1 coordinate system as Figure 1.5.4with the centeC of the circle &ays on the
0 axis ato,,. = (0, + 0,)/2 and its radis R=[(0, —0,)/2]* + 1} . The positve T axis is dwnward
for convenience, to miee 6 on the element and the correspond2Agon the circle agree in sense (both
counterclockwise here).

The following aspects of Mofs circle should be noted:

1. The centelC of the circle is lvays on theo axis,but it may nove left and right in a dynamic
loading situationThis should be considered fiailure pevention.

2. The radiusR of the circle ist,,,, and it may changeven pulsate, in dynamic loadinghis is
also rebvant infailure pevention.

3. Working back and forth between the rectangular element and the circle should be done carefully
and consistengl An angle® on the element should be represente@®yn the corresponding
circle. If T is positve cownward for the circle, the sense of rotation is identical in the element
and the circle.
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Tey)

6=0

FIGURE 1.54 Mohr's circle.

4. The principal stresses, ando, are on they axis ¢ = 0).

5. The planes on whicti; ando, act are oriented atig from the planes af, ando, (respedtely)
in the circle and &, in the element.

6. The stresses on an arbitrary plane can be determined by @it coordinates from the circle.
These coordinates\g magnitudes and signs of the stres§he physical meaning oft#vs. <
regarding material response is normally not as distinetoags. -6 (tension vs. compression).

7. To plot the circle, either use the calculated ae@teoordinate and the radii, or directly plot
the stress coordinates favd mutually perpendicular planes andwithe circle through thevo
points @ andB in Figure 1.5.4) which must be diametrically opposite on the circle.

Special Cases of Mohr’s Circles for Plane Stress
SeeFigures 1.5.5to 1.5.9

] ™ Ox Oy=05=0 ox=001
T Tmax=0x/2 FIGURE 1.55 Uniaxial tension.
a
Oy _02 01 .
T
Tmax =0x/2 FIGURE 1.5.6 Uniaxial compression.

4

(and similarly for biaxiat
- —= Ox=0 y ) [e] compression, with a point
0x=0y=01 = 02 circle on the negative
l normal stress axis)

1 (point circie)

FIGURE 1.5.7 Biaxial tension:.o, = o, (and similarly for biaxial compressionoz= -g, ).

FIGURE 1.5.8 Pure shea
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”

+—q —> Oy

(note similarity to the
case of pure shear)

T foxl=loyi

FIGURE 1.59 Biaxial tension-compressioro,| = |s,| (similar to the case of pure shear).

Absolute Maximum Shear Stress

In the case of a general three-dimensional state of stress, the transformations to arbitrary planes are
compkx and keyond the scope of this book. It is useful to notyéver, that in general there are three
principal stresses at point in a material. (Plane stress is a special case with one of these stresses
being zero.) If the three principal stresses amawk it is easy to determine the absolute maximum
shear stress, which i&luable in assessing a matésggderformance in servic&€he idea is to \ew the

element as three separat®idimensional elements, each time from féedént principal direction, and

plot the Mohis circles for them in the same diagtdrhis is illustrated schematically figure 1.5.10

for an element with three tensile principal stresses, of a maximum, a minimum, and an interalediate

Gint plane stress with O and o;, only

plane stress with o5y and i, only
Omax
Omin

plane stress with omax and o onty

Tabs max

FIGURE 1.5.10 Principal stresses of three-dimensional element.

The Mohts circles are interrelated since the threvsiof the elementdre common principal stresses
associated with thenThe absolute maximum shear stress is

T, =—me —mn (1.5.7)

Note that in calculating the absolute maximum shear stress for a state of plane stress, the actual third
principal stress afi; = 0 may be significant if that is the minimum stress, and should be used in Equation
1.5.7 instead of a Iger intermediate stresBor example, assume, = 200 ksi ando, = 100 ksi in a
case of plane stress. Using these g, ando i, Tmax = (200 — 100)/2 = 50 ksi. ddvever, thefact that
0, = 0 is important heréThus, correcHl, T, max= (200 — 0)/2 = 100 ksiThere is an important lesson
here: apparentlyagligible quantities cannotheays be ignored in mechanics of materials.

Strain

Solid materials deform when forces are acting on thermgeLadeformations are possible in some
materials. Extremely small deformations arfficlilt to measurebut they still may be significant in
critical geometry change or gradual damagaution. Deformations are normally nonunifoeven in
apparently uniform components of machines and strucflineseverity of deformation is called strain,
which is separately defined f@golumetric change and angular distortion of aybod
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Normal Strain

The elongation or shortening of a linegment of unit length is called normal strain or axial strén
define this quantitately, consider a uniform bar of lergt,, and call this original length thgage
length Assume the bar elgates by an amourg to a rew lengthL, under the action of a foed~
(Figure 1.5.1) or by thermaé&xpansionThe normal straie is defined, with the gage length approaching
zero in the limit, as

g= (1.5.8)

L1
— = F

L e b FIGURE 1.5.11 Model for calculating axial or normal strain.

The strain calculated thisay is called engineering strain, which is useful tmdy accurate for small
deformations. Elogation is considered posie.

Normal strain is a dimensionless quantiut it is customary to label it inveay that indicates strain,
such as in./in., or m/m, or %y p in./in., orpe (microstrain), depending on the system of units and the
numerical representation.

True Strain

A difficulty of proper definition arises if the deformatie is not infinitesimal, because in a sense the
gage length itself is increasinthe correct definition in such a case is based on the instantaneous length
L and infinitesimal changelL in that lengthThus, the total true strain in a member axially deforming
from lengthL, to a final length.; by an amouné is

L L
€= '$=/6n|_—f=/én(l+e) (1.5.9)

LO 0

True strain is practically identical to engineering strain up tewvapkercent of engineering straifihe
approximate final length; of an axially deformed, short linegnent of original length,, is sometimes
expressed as

L, =(1+e)L, (1.5.10)

Shear Strain

Angular distortions are called shear strains. More pregiskéar straily is the change in angle ofid
originally perpendiculai® = 172) line sgments.For consistegy, assume that a decreasing angle
represents posie shear strain, and an increasing angle is fregaiwve shear strainThe angéy is
measured in radiand usefulway to slow shear strain isigen inFigure 1.5.12

y

+Y xy/2
Xy strained

element

unstrained
element

0 “Hi e x FIGURE 1.5.12 Shear strain in two dimensions.
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Strain Transformation
The method of transforming strain at a point is similar to that for stress. In general, there are three
components of normal strais,, €, ande, and three components of shear strgp,y,, andy,,
Transformations of plane strain components are the simplest.

For a consistent approach, assume that strain transformation is desired kpooardinate system
to anxy set of axes, where the latter is rotated counterclockwiBg fém the xy system. The
transformation equations for plane strain are

_ g te, g €

X

€, = + Y 0520+ 9 §n20
2 2
g, +te, €, -€
g, = > —Mcosze—y—xysinZG (1.5.11)
y 2 2 2
y &, "€
Var = 5% gnog+ ¥ cos2e
2 2 2

Note the similarity between the strain and stress transformation equations, as well as the differences.

Principal Strains

For isotropic materials only, principal strains (with no shear strain) occur along the principal axes for
stress. In plane strain the principal straipande, are expressed as

g +e -g, f IZh/XyD2

€10 = 2 \E 5 H FH (1.5.12)

The angular positio, of the principal axes (measured positive counterclockwise) with respect to the
givenxy system is determined from

tan2e, = (1.5.13)
€, €,
Like in the case of stress, the maximum in-plane shear strain is
Y ey -e, 0 oy, O
= 1.5.14
2 J HrH2E (1.5.14)
which occurs along axes at°4fsfom the principal axes, determined from
g, —¢
tan26 = - y (1.5.15)
Yy
The corresponding average normal strain is
g te
€. .= Y (1.5.16)
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Mohr’s Circle for Plane Strain

As in the case of stress, there is a graplaeatview by Mohr's circle of the directional dependence of
the normal and shear strain components at a point in a matdiglircle has a cent€ ate, . = (g,
+¢,)/2 which is &ways on thee axis,but is shifting left and right in a dynamic loading situatidhe
radiss R of the circle is

Jg;sg SVFH (1.5.17)

Note the proper labelin@ vs.y/2) and preferred orientation of the strakesas stwn in Figure 1.5.13.
This sets up &avorable uniformity of angular displacement between the elemérdqunterclockwise)
and the circle (+2 counterclockwise).

y

|
et | N
)Y | €4
\msz 0| &2 ‘@ 8
ay 5 *
Py

Y2 ¥ xymax/2

FIGURE 1.5.13 Mohr's circle for plane strain.

Mechanical Behaviors and Properties of Materials

The stress-strain response of a material depends on its chemical composition, microstructurey, geometr
the magnitude and rate of change of stress or strain applied,nanghmentalfactors. Numerous
guantitatve mechanical properties are used in engineering. Some of the basic properties and common
variations of them are described here becausedte essential in mechanics of materials analyses.

Stress-Strain Diagrams

There are everal distincive shapes of uniaxial tension or compression stress-strain plots, depending on
the material, test conditions, and the quantities plofied chosen represeritet schematic diagram

here is a true stress vs. true strairvedor a ductile, nonferrous metal tested in tension (Figure 1.5.14).
The important mechanical properties listadable 1.5.1are obtained from such a test or a similar one

in pure shear (not all areshn in Figure 1.5.1%

g
A ot
Oy ’ /1 fracture
/ | /o
/ ’ o
OpL / ;| /
/ / | / !
/ / I / !
E /E /E | /E=slope |
/ / | / |
7/ / | / |
/ / Lo [
0 £ €y €y
0.2 % offset ]
€pa €eA
T 1

FIGURE 1.5.14 True stress vs. true strain for a ductile, nonferrous metal.
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Table 1.51 Basic Mechanical Poperties

Symbol Definition Remarks
E Modulus of elasticityYounds modulusE = ale, Hookés law; T andg, effects small
G Shear modulus of elasticityG = L E/2(1+v) T ande, effects small
e
. . €
v Poissors ratig v = —'aea T ande, effects small
8Icmgn.
Op Proportional limit; at onset of noticeable yielding Flow property; inaccuratéf ande,
(or at onset of nonlinear elastic lzgtor) effects lage
o, 0.2% dfset yield strengthbit yielding can occur at  Flow property; accuratel ande,
0 <g,if o5 <0) effects lage
P
O; True fracture strengthg, = - Fractl_Jre propertyT and, effects
A medium
& True fracture ductility Max. g,; fracture propertyT ande,
A 100 effects medium
g =In—==In——7——
A 100—-%RA
. -A Fracture propertyT andg, effects
% RA Percent reduction of are&oRA = Ao A %100 1re prop v P
medium
n Strain hardeningxponent; ¢ = Ke" Flow property T ande, effects small
p
to large
Toughness Area undem vs. g, cuve True toughness or intrinsic
toughnessT andeg, effects lage
o, Ultimate strength; P oo Fractl_Jre propertyT ande, effects
medium
) - . .
B L0 Area under original elastic portion
M, Modulus of resilience;M, =~ of o —¢ cunve

Notes T is temperatureg, refers to prior plastic strain, especiaticlic plastic strain (fatigue) (these are
qualitatve indicators heregxceptions are possible)

n
E = € + ¢ :E+D£|jl'/n:g+8 Sigv
tottal elaseuc plas’t)m E kO E f °¢0

Another useful mechanical property (not measured fraroth € plot) is hardnessThis is a fow
propery, with some qualitéfe correlations to the other properties.

It is important to appreciate that the mechanical properties of a material depend on its chemical
composition and its history of thermal treatment and plastic deformationsaakdcyclic plasticity).
For example, consider the wide ranges of monotonic @mic stress-strain cues for 1045 steel (a
given chemical composition) at room temperature, as functions of its hardness resulting from thermal
treatment Figure 1.5.1% See Section 1.6Fatigue’ for more oncycle-dependent material betiors.

Generalized Stress-Strain Expressions. Hooke’s Law

An important special case of stress-strain responses is when the material acts entirely e{ggstically
0, g = ¢&). In this case, for uniaxial loading, the haldiooke's law o = E€ can be used, and similarly
for unidirectional sheat = Gy. For multiaxial loading Color Plate 9, the generalized Hée's law is
applicable,
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m (600)
300
¢ (600)
K]
f;. 200 m (400) monotonic
%: € (400) cyclic
100 |- m (225)
¢ (225)
(~BHN)
muchgycle—dependem
5°:'e“'"9°“""s°"al’“m FIGURE 1.5.15 Influence of hardness and deformation
0 0.01 002 gyain history on the stress-strain response of SAE 1045 steel.
_1
€, =E g, —\/(cry +GZ)
€ :io —v(o +0) (1.5.18)
y gLy X z U

g, = é[oz - v(crX + oy)]

Other useful expressions for ideally elastic behavior are as follows. Relating the axial and shear moduli,

G= (1.5.19)

The change in volume per unit volume is the volumetric strain or dilatation,

1-2v
e="_ (0, +0,+0,) (1.5.20)
The bulk modulu is the ratio of a uniform stress (hydrostatic) to the dilatation,

k:%:ﬁ (1.5.21)

For most metalsy = 1/3 andk = E.

Uniaxial Elastic Deformations

The total elastic deformatiad of axially loaded bars, columns, and wires is calculated with the aid of
basic expressions. Usirg= Ee ando = P(X)/A(X),whereP(x) andA(x) are, respectively, the internal
force and cross-sectional area of a bar at a distafroen one end,

_ ¢ P
5_J’0 A(X)de (1.5.22)

wherelL is the total length considered.

In most casesi(x) is a constantP(x) may also be a constant, except where several different axial
forces are applied, and occasionally for vertical bars and columns, where the member’s own weight may
causeP(x) to vary significantly along the length.A{x), P(x), andE are constants,
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5=t (1.5.23)
AE

Thermally Induced Deformations

Thermalexpansion or contraction is a linearly dependentowvexable deformation Ke purely elastic
deformations are-or a homogeneous and isotropic material, the thermally induced deformation from
the original length. is calculated from

8, = aATL (1.5.24)

wher a is the linear cdicient of thermalexpansion (strain peregree of temperature, a material
property), and\T is the change in temperature.

The thermal strain can beegented or reduced by constraining a membethat case the stresses
and strains can be calculated using the methods pertaining to statically indeterminate members.

Stresses in Beams

To calculate stresses in beams, one rfiust model the beam correctly in terms of its supports and
loading (such as simply supported, with distted loading), determine the appropriate workmexternal
reactions, and establish the corresponding shear and moment diagrams using a consisterersign co
Both normal and shear stresses mayeho be calculatedut typically the normal stresses are the most
significant.

Flexure Formula

The normal stresses at a particular cross section in a beam are caused by the bending moment that acts
at that cross section, and are digtred by magnitude and sign (both tension and compression) so that
the beam is in equilibriunThe basic concept for calculating the stresses is that there is a neutral axis
n-n of € =0 = 0 in the beam, and that the longitudinal normal straiies linearly with distarey from
the neutral axis.
If the beam is bedwing entirely elasticayl, the stress distiition is also lineq as inFigure 1.5.16
In this case, the stress at a diseanfrom the neutral axis is calculatedfid/ = [o(y)y dAand results in

o(y)=—2 (1.5.25)

tension 4

ﬁ(y) y dA I _fy
2¢ y M n n, x
)

compression

FIGURE 1.5.16 Internal normal stresses in a beam caused by bending.

wher | = moment of inertia of the cross-sectional area about the neutral axis.
The maximum stress, with the appropriate sign, is

o= (1.5.26)

There are everal special cases of bending that require additional considerations and analysis as outlined
below.
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Inelastic Bending

A beam may plastically deform under an increasing moment, yiefiisigin its outer layers and
ultimately throughout its depth. Such a beam is analyzed by assuming that the normal strains are still
linearly varying from zero at the neutral axis to maximuatues at the outer layershus, the stress
distributions depend on the stress-strainveunf the materialWith the stress distiution established,
the neutral axis can be determinedhirfo(y) dA = 0, and the resultant momentrfrdM = [ya(y) dA

A fully plastic beam of rectangular cross section #atitop yielding supports 50% more bending
moment than its maximum elastic moment.

Neutral Axis of Semisymmetric Area

If the cross-sectional area is semisymmetric, suaTashape, and the loading is in a centroidal plane

of symmety, the neutral axis for elastic deformations is at the ceh@aif the area as stvn in Figure

1.5.17 and Equation 1.5.25 can be used. Note that the magnitudes of the maximum tensile and com-
pres$ve stresses are not the same in this case.

Y1 forces actonly
e inyz plane

FIGURE 1.5.17 Neutral axis of a semisymmetric area.

Unsymmetric Bending

In the general case, the cross-sectional area has an arbitrary shape and the loading is arbitrarily applied.

The problem of an arbitrary area is handled by choosing the celhtxgidaordinate system such that

the es are principalxes of inertia for the are@he principal aes can be determined by using inertia

transformation equations or Mogrcircle of inertia. ldving an axis of symmetry is a simple special

case because the principaka are the axis of symmetry and the axis perpendicular to it.
Theflexureformula can be applied directly if the principadess of inertia are kawn, and the bending

moment is applied about one of these centroidal princigsd A more compdx case is if the moment

is not about a principal axis asogin in Figure 1.5.18

y
A—— _ _ m n
My=Msin6 e/"jla/
0 WheMoos8
B FIGURE 1.5.18 Schematic of arbitrary bending moment.

Different exts may present tierent formulas for calculating the bending stresses in such situations,
depending on the choice of a coordinate system and the sigention adopted. It is better not to rely
on a cookbook formulghut to break dwn the problem into simple, easily visualized parts, and then
reason out an algebraic superposition of the stress comporeitiisstrate this approach schematigall
consider the stresses at psiAtandB in Figure 1.5.18. Instead @forking directly with the applied
momern M, resove M into its componentd/, and M,. M, causes a tensile steew,, a A and a
compreswe stres - o, atB. M, causes tensile stresses ahi#oandB, Oy, ard O, Themagnitudes
of these stress components are readily calculated frofietuee formula with the appropriate dimen-
sions and inertias for eachhe resultant stresses are
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The neutral axis at arglr in the general case is not coincident with the directioM o(Figure
1.5.18). In the present cages defined by

tana ::—Xtane (1.5.27)

y

Composite Beams

Nonhomogeneous beams are often designettié¢atiiantage of the properties @fa different materials.

The approach for analyzing these is to imagine a transformation of thésbeass section to an
equvalent cross section of afféirent shapéut of a single material, so that tfiexure formula is usable.
This is illustrated for a beaA with reinforcing plate®, as inFigure 1.5.19

EB; area ap{ area ag2 = n a1

{ n=EB/EA

(@) (b}

FIGURE 1.5.19 Equvalent area method for a symmetric composite beam.

The transformatioriactorn is obtained from

n= 8 (1.5.28)

Note that in a composite beam the straiagy linearly with distance from the neutral axisit the
stresses do not, because of thiéedint elastic moduli of the componerithie actual stress in the
transformed area is determined fingt calculating the “pretend” sties’ for the uniform transformed
area and then multiplying itytn,

g=nc’ (1.5.29)

Nonsymmetric composite beams (such agirty only one reinforcing platB in Figure 1.5.19) are
analyzed similayl, but first require the location of the neutral axis.

Reinforced concrete beams are important special cases of composite Dearssess analysis of
these is influenced by tHact that concrete is much vkeat in tension than in compression. Empirical
approaches are particularly useful in this area.

Curved Beams

The stress analysis of m@d beams requires some additional consideratfrsexample, the #ixure

formula is about 7% in error (the calculated stresses aremgonhen the beata radius of curature

is five times its depth (hooks, chain link$he cuwed-beam formula pwides realisticvalues in such
cases.
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Shear Stresses in Beams

Tranwverse loads on beams are common, amyl dause trangerse and complementary longitudinal
shear stresses in the beams. Schematith# trangerse shear stresses are disted on a rectangular
cross section as alvn in Figure 1.5.20The shear stress is zero at frefanes by definition.

area A’

t | parabolic
distribution of
V2 n I/ T magnitudes

Tmax

oS
~
<
——_—— e — —

I
n A Tave =V/A

(a) (®)

FIGURE 1.5.20 Transrerse shear stress dibtrtion.

The internal shear stress is calculated according to Figure 1.5.20 from

T :% (1.5.30)

where 1 = shear stresgalue at ay point on the ling — ¢ at a distancg' from the neutral axis
V = total shear force on cross-sectionalake
Q = Yy'A’; A = area abve linef — ¢; y' = distance from neutral axis to centroid/d
moment of inertia of entire aé\ about neutral axis
width of cross section wher is to be determined

|
t

This shear formulaigest,,,, = 1.5V/Aif t is constant for the whole section (rectangle).
Note that the magnitude of the shear stress blision changes sharply where there is an abrupt
change in width, such as in an I-bearRjgure 1.5.21

parabolic shear stress

flange distributions

—
a

|
)

flange

(@) ) FIGURE 1.5.21 Shear stress distration for I-beam.

Shear Flow
In the analysis obuilt-up members, such as welded, bolted, nailed, or glued box beams and channels,
a useful quantity is the shethow g measured in force per unit length along the beam,

q=Q (1.5.31)
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where all quantities are fieed as for Equation 1.5.30. Care must leriato use the appropriatalue
for Q. For example, consider a channel section of tHiatpieces glued together ashigure 1.5.22
There arewo critical joint iegionsB here, and the aae' is between thenThe shear &w is carried
by the wo joints togethe so the actual force per unit length on one ja&y/2 here.

B

FIGURE 1.5.22 Critical joint regions of abuilt-up beam.

Shear Flow in Thin-Walled Beams

The sherflow distribution over the cross section of a thivelled member is @yerned by equilibrium
requirements. Schemataxamples of this areigen inFigure 1.5.23Note the special case of unsym-
metrical loading in part (c), which causes a bending and a twisting of the Heaitwisting is pevented

if the vertical forceV is applied at the shear cen@rdefined by the quantity,

e="" (1.5.32)

wher d is the centroidal distance between thwe horizontal flanges anld is the shear force in the
flanges @.,. times width of flange).

=1°

I
.J
.

(@ ) ©

FIGURE 1.5.23 Shear fbw distributions.

Deflections of Beams

Small deflections of beams can be determinedvelgteasiy. The first step is to assess a b&ealmading
and support conditions anletch anexaggerated elastic deflection eearas inFigure 1.5.24

y
w(x) P
%
c Y
B D

FIGURE 1.5.24 Exaggerated elastic ate of a beam in bending.
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The boundary conditions at the supports are useful in the solution for the whole beam. Here at the
fixed em A there is novertical displacement and no rotation, while at the roller sugptinere is no
vertical displacemerdut rotation of the continuous beam occiitse boundary and continuity conditions
can be determined by inspection in simple cases.

Moment vs. Curvature
For a homogeneous and elastic beam,

-M (1.5.33)

El

Ok

wherep = radius of curature at a specific point on the elasticveurlp is the cuvature The product
El is called the #xural rigidity; it is often a constant along the whole beam.

Integration Method for Slope and Displacement

For small displacements/d = d?y/d». In the general case, a dibtried external loadig w(x) should
be included in the modeling of the problefnset ofexpressions isvailable to sole for the deflections
in rectangular coordinates:

dv dty
— =Y g2
w(x) dx dx*
dm d3y
V(X)=——=El—2 1.5.34
() dx dx® ( )
d?y
M(x) = El —-
(X) dXZ

The deflectiory of the elastic cwe is obtained by succegs integrations, using appropriate constants
of integration to satisfy the boundary and continuity conditions. In genexedred functions must be
written for the momen#(x), one for each distincegion of the beam, between loading discontinuities.
For example, theseegions in Figure 1.5.24re AC, CB, andBD. Considerable care is required to set
up a solution with a consistent signnegention and selection of coordinates for simple affidient
forms of M(X).

In practice,even relatvely compkx problems of beam deflections areveal using the principle of
superposition and handbowé&lues of slopes and deflections for subsets of basic loadings and supports.
The literature contains arlge variety of such subset8 sampling of these isigen n Table 1.5.2

Deflection Caused by Shear

The transerse shear acting on a beam causes a displacement that tends tofibargignmpared to
bending deflections only ivery short beams'he shear deflectioover a lengh L is approximated by

y = -ae- (1.5.35)

Torsion

The simplest torsion memberavie circular cross sectionhe main assumptions in their analysis are
that cross-sectional circles remain plane circles during twisting of a shaft and that radial lings on a
cross section remain straight and rotate through the same &hgléength and diameter of the shaft
are unchanged in small angular displacements. It is useful in the analysis that singarestes linearly
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along ay radial line, from zero at the centerline of a solid dutar shaft to a maximum at the outer

TABLE 1.5.2
Beam Slope: Idy/dxi Max. deflection
d
L2 P e PL2/16E! PL3 / 48EI
X
PP P2 atx=0, L at x=L/2
simply-supported
w
ED:DI’]:Q wL3 / 24E| 5wL4 / 384E]
X L wli2 atx=0, L at x=L/2
w2 simply-supported
7,
P PL2 /2l PL3/ 3EI
X L
at x=L at x=L
cantilever
P/ w
2
AX L at x= at x=L
cantilever
4 e P w 0 PL3/192El
X atx=0, L2, L at x=L/2
fixed-ended
. w
X g atx=0, L2 L at x=L/2
fixed-ended
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suiface,

Y Y max (1.5.36)
where = radial distance torg element in the shaft

r = radius of the shaft

Using T = Gy for an elastically deforming materidtigure 1.5.2%5

=P (1.5.37)

T 5.
The torsion formula relating shear stress to the appliedddrgs from T = 2rtftp? dp,
Tr Tp
max (1.5.38)

T,y = OF T=—
J J
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Tmax Ty Ty
Pa \

\ \

T1 T2 >T1 T3 > T2

(a) elastic (b) elastic-plastic (c) fully plastic
FIGURE 1.5.25 Shear stress didmtions in a shaft.

whereJ = the polar moment of inertia of the cross-sectional area; for a solid dircta*/2; for a tube,
J=(/2)(ry - r*).

Power Transmission
The pwer P transmitted by a shaft under toegli and rotating at angulaelocity w is

P=Tw (1.5.39)

wher w = 2rf; f = frequemry of rotation or number ofevolutions per second.

Angle of Twist

For a homogeneous shaft of constant are& @nover a lengthL, under a torqud, the angular
displacement of one end reled to the other is

_TL

=— 1.5.40
G ( )

o

For a shaft consisting ofegments withvarious material and/or geometric properties, unéeeral
different torques in each, the net angular displacement is calculated freactitresum of the indidual
twists,

Tk (1.5.41)
‘]i C-\"i

The right-hand rule is used for a sigmeention for torques and angles: bdtandg are posive, with

the thumb pointing outard from a shaft and tHimgers curling in the direction of torque and/or rotation,
as inFigure 1.5.26 Note that egardless of the number of torques applied to a shaftraius places
along its length, there is only one torque af\eeig cross section, and this torque is a constant in that
segment of the shaft (until anothexternal torque is encountered, requiring &edent free-body
diagram).

thumb
—

fingers

FIGURE 1.5.26 Right-hand rule for posite torque and angle.

Inelastic Torsion

A shaft may plastically deform under an increasing torque, yiefistgn its outer layers and ultimately
throughout the cross section. Such a shaft is analyzed by assuming that the shear strains are still linearly
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varying from zero at the centerline to a maximum at the outer lajlaus, the shear stress distition
depends on the shear stress-straimecof the materiakor example, an elastic, elastic-plastic, and fully
plastic solid circular shaft is modeled in Figure 1.5.25, assuftatpp yielding at,. The torque T in
any case is obtained by Bgrating the shear stressager the whole area,

T= 2nJ' % dp (1.5.42)
A

The fully plastic torque in this case is 33% greater than the maximum elastic torque.

Noncircular Shafts

The analysis of solid noncircular members, such as rectangles and triangigsnisthe scope of this
book The reason for the ffiiculty is that plane sections do not remain pldugwarp. It can be noted
here, lowever, that a circular shaft utilizes material the mdfitently since it has a smaller maximum
shear stress and a smaller angle of twist than a noncircular shaft of the same weight per unit length
under the same torque.
Noncircular tubes with thirwalls can be analyzed using the concept of sfear that must be
continuous and constant on the closed path of the cross-sectiondlteresdear stress under a torque
T is essentially constawier a uniformly thinwall (from inside to outside), and isvgn by

= (1.5.43)

where t = thickness of the tube
A, = mean area within the centerline of thall thickness

The angle of twist for an elastically deforming thiatled tube of lenditL and constant thicknssis

TL
AN Gt

Q= ds (1.5.44)

where the line irgral represents the total length of thall's centerline boundary in the cross section (for a

circular tube, this becorae2rr). For a tube withvariable thickness the inegrand becomef ds/t.

Statically Indeterminate Members

Members that &e more supports or constraints than the minimum required for static equilibrium are
called statically indeterminat&hey can be analyzed if a Sicient number of additional relationships
areavailable These are fundamentally similar to one another in terms of compatibility for displacements,
and are described separately for special cases.

Statically Indeterminate Axially Loaded Members
Several subsets of these are common; three am@rskchematically irFigure 1.5.27

1. From a free-body diagram of part (a), assumingarg forcesF, and Fg at end A and B,
respedtely, the force equilibrium equation is

F

+tF,-P=0
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4 A v/ A —
Y
C mat. A \/ mat. B
1 %
7B 7 B §_/j rigid end
(@ azz?erg :gada (b) thermal stress ~ (¢) composite structure

FIGURE 1.5.27 Statically indeterminate axially loaded members.

The displacement compatibility condition is that both ends are fixed, so

S5 =0
Then
Fulae Rl L L
A-AC _ BBCZO, F/-\: i, FB:P&
AE AE L L

Alternatively, first assume th&; = 0, and calculate the total downward displacement (tensile)
of the free end. Then calculate the required forEg to compressively deform the rod upward
so that after the superposition there is no net displacement &. dited results are the same as
above for elastically deforming members.

2. Constrained thermal expansion or contraction of part (b) is handled as above, using the expression
for thermally induced deformation,

5, = ATL (1.5.45)

where a linear coefficient of thermal expansion
AT = change in temperature

3. The force equilibrium equation of part (c) is

P-F,

-F, =0

B

Here the two different component materials are deforming together by the same amount, so

5, =8,
FL _ Rl
AAEA ABEB

providing two equations with two unknowiig,andFg. Note that rigid supports are not necessarily
realistic to assume in all cases.

Statically Indeterminate Beams

As for axially loaded members, the redundant reactions of beams are determined from the given
conditions of geometry (the displacement compatibility conditions). There are various approaches for
solving problems of statically indeterminate beams, using the methods of integration, moment-areas, or
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superposition. Handbook formulas for the slopes afi@at®ns of beams are especially useful, noting
that the boundary conditions must be wefimked in &y case The method of superposition is illustrated
in Figure 1.5.28

~

N

B

p
(D) A}—g—\—%‘
]

C
= —Xx

1P
B
deflection curv} %/f (©) A’_—_.—-—:ﬂ Yo
Cy

(a)

FIGURE 1.5.28 A statically indeterminate beam.

Choosing the reactiort & as the redundant support reaction (otherwise, the morhéntauld be
taken as redundant), and first rermg the unkiewn reactionC,, the statically determinate and stable
primary beam is obtained in Figure 1.52Bere the slope and deflectionfeare both zerdrhe slopes
a B andC are the same becausgmentBC is straight. Nt the external loadP is renmoved, and a
cantilever beam fied & A and with loadC, is considered in Figure 1.5.28c. From the original boundary
conditions atC, -y, +y, = 0, and the problem can be\sal easily usingrgy appropriate method.

Statically Indeterminate Torsion Members

Torsion members with redundant supports are analyzed essentially thevagnas other kinds of
statically indeterminate membefhe unkmwn torques, forexample, are determined by setting up a
solution to satisfy the requirements of equilibrigiT = 0), angular displacement compatilyiliand
torque-displacement (angteTL/JG) relationshipsAgain, the boundary conditions must be reasonably
well defined.

Buckling

The elastiduckling of relatvely long and slender members under axial compredsading could result

in sudden and catastrophiada displacementdhe criticalbuckling load is the smallest for avgn

ideal column when it is pin-supported at both ends; the critical loadgisr Ithan this for other kinds

of supportsAn ideal column is made of homogeneous material, is perfectly straight prior to loading,
and is loaded only axially through the centroid of its cross-sectional area.

Critical Load. Euler’s Equation

The buckling equation (Eules equation) for a pin-supported columiveg the critical or maximum
axial loadP, as

TCEl
P, = 2 (1.5.46)
where E = modulus of elasticity
I = smallest moment of inertia of the cross-sectional area
L = unsupported length of the pinned column

A useful form of this equationiges the criticabverage stress prior towayielding, for arbitrary end
conditions,

o = TE
cr (kL/r)2

(1.5.47)
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where r = I/A =radius of gyration of cross-sectional @are
L/r = slenderness ratio
k = dfective-lengthfactor; constant, dependent on the end constraints

kL/r = dfective-slenderness ratio

The slenderness ratio indicates, forigweg material, the tendey for elasticbuckling orfailure by
yielding (where the Euler formula is not applicablr example,buckling isexpected in mild steel if
L/r is approximately 90 or fger, and in an aluminum a if L/r > 6Q Yielding would occur first at
smallervalues ofL/r. Ratios of 200 or higher indicatery slender members that cannot suppaogela
compresie loads.

Several common end conditions of slender columns apenstschematically irfFigure 1.5.29

P
P ) P
constrained constrained
to move to move
‘ vertically 7 vettically
k=1 k=0.5 k=2
L
7 7, fixed 7, fived
(a) pinned at ends (b) no rotation (c) free at top

at ends

FIGURE 1.5.20 Common end conditions of slender columns.

Secant Formula

Real columns are not perfectly straight and homogeneous ankedyedi be loaded eccentricallSuch
columns first bend and deflect lateyatather tharbuckle suddent The maximum elastic compreéss
stress in this case is caused by the axial and bending loads and is calculated forflectédnderom
the secant formula,

PDec

O e §\‘ EA% (1.5.48)

whete e is the eccentricity of the ldaP (distance from the neutral axis of am) andc is measured
from the neutral axis to the outer layer of the column w/bigr, occurs.

The load and stress are nonlinearly related; if thereemegad loads on a column, the loads should
be properly combined first before using the secant formula, rather than linearly superpasiag s
individually determined stresses. Similaflactors of safety should be applied to the resultant load.

Inelastic Buckling

For columns that may yield befobeickling elastical}, the generalized Euler equation, also called the
Engesser equation, is approprial&is involves substituting the tangent modails; (tangent to the
stress-strain cue) for the elastic modulus in the Euler equation,

o, = (;ZL/E;)Z (1.5.49)
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Note thatE; must bevalid for the stresg,,, but E; is dependent on stress when the deformations are
not entirely elasticThermal or plastic-straievents mayeven alter the stress-strain garof the material,
thereby further changinE;. Thus, Equation 1.5.49 should be used with caution in a trial-and-error
procedure.

Impact Loading

A mass impacting another object causes deformations that depend on thevellatity between them.
The simplest model for such avent is a mastalling on a springThe maximum dynamic deformation
d of a linearly responding spring is related to the static deformdtjgthe deformation caused by a
weight W applied sbwly) by afactor that depends dn the height of fredall from a static position.

0 ! O
d=d,d+ 1+207 (1.5.50)
O Vv dog

The dynamic and static stresses are related in a siwvalar

U O
o=0,01+ 1+j—hg (1.5.51)
U s O

The quantity in parentheses is called the imfactir, which stows the magnification of deflection or
stress in impactgwolving freefall. Note that the real impaéctor is sorawhat smaller than what is
indicated here, because somergpés dways dissipated by friction during tffiell and deceleration of
the bog. This includes internal friction during plasfiow at the points of contact between the bodies.
Other small errors may result froneghecting the mass and possible inelasticity of the spring.

A specialvalue of the impadiactor isworth rememberingNVhen the load is applied suddenly without
a prior freefall, h = 0, and

d=2d, and o0=20,

This means that the minimum impdattor is aboutvto, and it is lkely to be lager thanwo, causing
perhaps a “bottoming out” of the spring, or permanent damagendwre in the structure or the payload
supported by the spring.

Combined Stresses

Combinations of dferent kinds of loads on a member are comnidre resultant states of stress at
various points of interest can be determined by superposition if the material does ndthg@dlitee-
dimensional visualization and correct modeling of such a problem is typically the fffiesitdiart of
the solution, folbwed by routine calculations of the stress components and resultantexMeethods

of analysis are needed here.

The approach is toketch an infinitesimal cube at each critical point in the member and determine
the indvidual stresses (magnitudes and signs) acting on that element, generally caused by axial, shea
bending, torsion, and internal pressure loadiigs is illustrated irFigure 1.5.30for a case of medium
compkxity.

Consider a solid circular rod of ragi®, fixed atz = 0 (in thexy plane), and loaded byt forces
at pointB of a rigid arm. Set up the stress analysis attpdiG-R, 0, 0), assuming there is no stress
concentration at thevall fixture of the rod (Figure 1.5.30a).

First the egivalent loading at the origin O is determined (Figure 1.5.3Dhis can be done most
accurately invector form The indvidual stresses at pdiA are set up in the subdiagram (c). Check that
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fye= 4,
y x=ly=nR474 Y|
f My=Flj
(cow, viewed
from +y)
M=Pik 4P

(cew, viewed \ X

from -z}
0
/ F
My=-Pli

z
(cow, viewed
from -x}

(b) equivalent loading at 0
(caused by forces F and P)

(a) problem modeling

/ T =PQAIxt=4P/M3R2 (direct shear)
0 T =MzR/Jo=2PIxR3 (torsional shear)
O1=F#R2 (axial loading by F)
\Sg:MyH/Iy:4FI/mH3 (bending by F)
\ogiMx(O)/Ix=O (point A is on the neutral axis for M)
\ )

(c) superposition of stresses at point A
FIGURE 1.5.30 lllustration of stress analysis for combined axial, shieending, and torsion loading.

each stressven in symbolic form has the proper units of force per.arka net normal force in this
case i, + 0, and the net shear stresgjst 1,.

The state of stress isfféirent at other points in the membiote that some of the stresses at a point
could have different signs, reducing the resultant stress at that location. Such is the case &Ca poin
diametrically opposite to pair in the presergxample R, 0, 0), where the axial lodlandM, generate
normal stresses of opposite sighisis stows the importance of proper modeling and setting up a problem
of combined loads before doing the numerical solution.

Pressure Vessels
Maan H. Jawad and Bela |I. Sandor

Pressurevessels are made infidirent shapes and sizédsdure 1.5.3landColor Plate 1pand are used

in diverse applicationd'he applications range from air rége&r's in gasoline stations to nuclear reactors
in submarines to heaxchangers in refinerieshe required thicknesses for some commonly encountered
pressurevessel components depend on the geometry asvioll

Cylindrical Shells
The force per unit length in the hoop (tangential) directinrequired to contain aivgen pressur@

in a cylindrical shell is obtained by taking a free-body diagrddigre 1.5.32pnof the cross section.
Assuming the thicknest to be much smaller than the raglie and summing forces in theertical
direction gves

2N,L=2RLp

or

N, = pR (1.5.52)
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(b)
FIGURE 1.5.31 Various pressureessels. (Photos courtesy Nooter Corp., St. Louis, MO.)

The corresponding hoop stresmj = pR/t
The longitudinal force per unit lengtNl,, in thecylinder due to pressure is obtained by summing
forces in the axial directiorF{gure 1.5.32)
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Nx
P=R2p
(@ )
FIGURE 1.5.3 Analysis ofcylindrical pressurevessels.
2TRN, = R’p
or
N, = pR2 (1.5.53)

The corresponding axial stressol, = pR/2t. It is seen that the magnitudeN, (anda,) is twice that of
N, (anda,). If Sis the albwable stress antlis the required minimum thickness,

t=pR'S (1.5.54)

Spherical Shells
A free-body diagram of the spherical cross sectionas/shn Figure 1.5.33Summation of forcesiges

t=pR/2S (1.5.55)

Nx

TP:nRQp FIGURE 1.5.33 Analysis of spherical pressure vessels.

Example 10

Determine the required thickness of the shell and heads of the awerestewn in Figure 1.5.34f p
=100 psi ands = 15,000 psi.

7 7 FIGURE 1.5.34 Sketch of a pressunessel.
Solution.From Equation 1.5.54, the required thickness forcifiedrical shell is
t =100 x 18/15,000 = 0.12 in.

The required head thickness from Equation 1.5.55 is
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t =100 x18/2 x 15,000 = 0.06 in.

Conical Shells
The governing equations for the longitudinal and circumferential forces in a conicaligelte 1.5.35p

due to internal pressure are similar to Equations 1.5.52 and 1.5.&giridrical shells, with the radius
taken normal to the stace Thus,
N, = pr/cosa (1.5.56)
N, = pr/2cosa (1.5.57)

wherea is half the apx angle of the cone.
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FIGURE 1.5.35 Analysis of conical shells.
The junction between a conical aoglindrical shell, Figure 1.5.35pis subjected to an additional

force H, in the horizontal direction due to internal presstitee magnitude of this additional force per
unit length can be obtained by taking a free-body diagramasih Figure 1.5.35b,

H =N, sina (1.5.58)

A ring is usually povided at the cone-toylinder junction to carry the horizontal force Fhe required
area A of the ring is obtained frorigure 1.5.35@s

H2r = 2AS

or
A=Hr/S= (Nxsina)r/S: (przsina)/(ZScosa) (1.5.59)

The stress in the ring is compriessat the lege end of the cone and tensile at the small end of the
cone due to internal pressufiéhis stress mayeverse in direction due to other loading conditions such
as weight of contents and end loads on the cone due to wind and datluads.

Example 11

Determine the required thickness of thw tylindrical shells and cone sln in Figure 1.5.36aue to
an internal pressure of 200 psi. Calculate the area of the rings required at the juAstante the
allowable stress to be 20 ksi in tension and 10 ksi in compression.
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FIGURE 1.5.36 Cylindrical shells with cone connection.

Solution.From Equation 1.5.54, the thickness of thgdaylinder is
t = 200 x 60/20,000 = 0.60 in.

The thickness of the smaiylinder is
t =200 x 30/20,000 = 0.30 in.

The thickness of the cone is obtained from Equation 1.5.56 as

t = 200 x 60/(20,000 x cos30°) = 0.69 in.

The required area of the ring at theglaend of the cone is obtained from Equation 1.5.59 using the
allowable compressge stress of 10 ksi.

A =200 x 60* x sin30°/(2 x 10,000 x cos30°) = 20.78in.?

The required area of the ring at the small end of the cone is obtained from Equation 1.5.59 using the
allowable tensile stress of 20 ksi.

A =200 x 30% x sin30°/(2 x 20,000 x c0s30°) = 2.60 in.?

The rings at the junction are incorporated in a numbevayk such as thoseatn in Figure 1.5.36.

Nozzle Reinforcement

Reinforcements around openings in pressessels are needed to minimize the local stress in the area
of the openingThe calculation for the needed reinforcement around an opening is based on the concept
that pressure in aixen area of aessel is contained by the material in Ylesselwall surrounding the
pressureThus inFigure 1.5.37if we teke an infinitesimal lengtdL along thecylinder, the force caused

by the pressure within this length ivgn by the quantitpR dL The force in the correspondingssel

wall is gven bySt dL Equating theseano quantities results in thexpressiont = pR/Swhich is gven

earlier as Equation 1.5.54. Similarly for the nozzle in Figure 1.9.37pr/S The intersection of the
nozzle with thecylinder results in an opening where the pressure mABED is not contained byrg

material Accordingly, an additional area must be supplied in the vicinity of the openingeterr
overstress of theessel The required aieA is determined from Figure 1.5.37 as
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A=pRr/S
Substituting Equation 1.5.54 into this expression gives
A=tr (1.5.60)

This equation indicates that the needed additional area is equal to the removed area of the vessel wall.

=
- f —-H<—dl. t
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FIGURE 1.5.37 Nozzle reinforcement.

Creep-Fatigue of Boilers and Pressure Vessels
See Figure 1.6.27 in Section 1.6, “Fatigue.”

Composite Materials for Pressure Vessels
lan K. Glasgow

Some pressure vessels can be made of fibrous composite materials with high strength-to-weight ratios.
The advantages of using such a material are remarkable in the case of a tubular vessel, where the hoop
stress is twice the longitudinal stress, if the fiber quantities and orientations are optimally designed to
resist the applied load caused by internal pressure. Simplistically (since a basic element of a composite
is strong along the fibers and weak perpendicular to the fibers), this requires twice as many fibers oriented
circumferentially as axially. In practice, fibers are commonly laifl & winding angle) at which the

hoop and axial stress components are equal, to efficiently create an optimized configuration.

Example 12

Determine the minimum weight of the tube portion of a thin-walled cylindrical pressure vessel of
8 in. (20 mm),£ = 10 ft (3.05 m)p = 8 ksi (55 MPa)t = ? Assume using a typical graphite/epoxy
composite of 60% fibers by volume with allowable tensile stigss300 ksi (207 MPa) at 0.058 IbAn.
(1600 kg/mi). For comparison, consider a steebpf 200 ksi (138 MPa) at 0.285 IbAr{7890 kg/md).

Solution.
Composite: o, = pr/t, t = 0.213 in. (5.41 mm) for circumferential plies
o, = pr/2t, t = 0.107 in. (2.72 mm) for axial plies

Total minimum wall thickness: 0.32 in. (8.13 mm)

Total material in tube: 112 Ib (50.8 kg)

Steel:g, = pr/t, t = 0.32 in. (8.13 mm)

Total material in tube: 550 Ib (249 kg) = 4.9 (composite material)

Note that there are additional considerations in practice, such as cost and potential problems in making
adequate connections to the tube.
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Experimental Stress Analysis and Mechanical Testing
Michael L. Brown and Bela I. Sandor

Experimental stress analysis is based mostly on the measurement of strains, which may be transformed
into stressedA variety of techniques available to measure strais few of these are described here.

Properties of Strain-Measuring Systems

Strain-measuring systems are based aarigty of sensors, including mechanical, optical, and electrical
devices. Each has some specialattagesut can usually be adapted for other needs as well. No one
system is entirely safisctory for all practical requirements, so it is necessary to optimizeate

system to each problem according to a set of desirable characteristics. Some of the common characte
istics used t@valuate the systels adequey for a typical application are

1. The calibration constant for thgage should be stable; it should natry with either time,
temperature, or otheng@ronmentalfactors.

2. The gage should be able to measure strains with an egaditel pe over a strain range @f10%.

3. The gage size, i.e., thgage length, and widthw,, should be small so that strain at a point is
approximated with small emo

4. The response of thgage, lagely controlled by its inertia, should beffitient to permit recording

of dynamic strains with frequey componentgxceeding 100 kHz.

. The gage system should permit on-location or remote readout.

. Both the gage and the associated auxiliary equipment shouldxpemsve.

. The gage system should be easy to install and operate.

8. The gage shoulexhibit a linear response to straiker a wide range.

~N O O

Three of these basic characteristics deskrther mention here: tigage length,, the gage sensiity,
and the range of the stragage The gage length is often the most important because in nonlinear strain
fields the error will depend on tlyage length.

Sensiltvity is the smallestalue of strain that can be read on the scale associated with thegagrain
and should not be midtan for accurey or precisionThe sensivity chosen should not be higher than
necessary because it needlessly increases the eamplf the measuring method and introduces n
problems.

The range of the straigage refers to the maximuwalue of strain that can be recorded. Since the
range and sensiity of the gage are interrelated, it is often necessary to compromise betwean the t
for optimal performance of batWarious compromisesate resulted in thewto main kinds of strain
gagesgextensometers and electrical strgages There are numerous electrical strgage systemsyut
only electrical-resistance stragages will be considered here.

Extensometers

Variousextensometergwolving mechanical, electrical, magnetic, or optioalides are used in material
test systemsA typical extensometerKigure 1.5.38is used in the cwentional tensile test where the
stress-strain diagram is record@tlis kind ofextensometer is attached to the specimen by knife edges
and spring clips. Electrical-resistance stigages are attached to the crfisgural member and pride

the strain outpufThe main adantage oextensometers is thate§p can be reused and recalibrated after
each testThe disadantages are thate§n are much leyer and morexpensve than electrical-resistance
strain gages.

Electrical-Resistance Strain Gages

The electrical-resistance strajage fulfills most of the requirements of an optimum system and is widely
used forexperimental stress analysiBhe electrical-resistance strajage consists of a metal-foil grid
bonded to a polymer backingrigure 1.5.39 A Wheatstone bridge is often used in this system to
enhance the ability to measure changes in resistAa@specimen is deformed the strain is transmitted
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Specimen

=1

[

Clips Extensometer

‘l I —\ FIGURE 1.5.38 Extensometer attached to a tensile
Lead wires

specimen.

to the grid, which has a current applied to it. The change in resistance of the grid is converted to a
voltage signal output of the Wheatstone bridge. The basic equation used with this system is

AR_o. (1.5.61)

whereR is the resistance of the gagds the applied strain, arf§] is the sensitivity, or gage factor, of
the metallic alloy used in the conductor. The most commonly used alloy is a copper-nickel alloy called
Advance, for which the sensitivity is 2.1.

4 Backing film

k— Grid center-line markings

Copper-plated solder tabs

v

FIGURE 1.5.39 Model of metal-foil strain gages.

Electrical-Resistance Strain Gage Mounting Methods

For precision strain measurements, both the correct adhesive and proper mounting procedures must be
employed. The adhesive serves a vital function in the strain-measuring system; it must transmit the strain
from the specimen to the sensing element without distortion. Bonding a strain gage to a specimen is
one of the most critical steps in the entire process of measuring strain with an electric-resistance strain
gage. When mounting a strain gage, it is important to carefully prepare the surface of the component
where the gage is to be located. This includes sanding, degreasing, etching, cleaning, and finally
neutralizing the surface where the gage is to be mounted. Next, the surface is marked to allow accurate
orientation of the strain gage. The gage is then put in place and held with tape while the adhesive is
allowed to dry. Several of the adhesive systems commonly used for this are epoxy cements, cyanoacrylate
cement, polyester adhesives, and ceramic adhesives. Once the adhesive has been placed, the drying
process becomes vitally important, as it can cause residual stresses in the grid work of the gage which
could influence the output. After allowing the adhesive to dry, the cure must be tested to ensure complete
drying. Failure to do so will affect the stability of the gage and the accuracy of the output. The cure
state of the adhesive can be tested by various resistance tests. Also, the bonded surface is inspected to
determine if any voids are present between the gage and the specimen due to bubbling of the adhesive.

After the bonding process is complete, the lead wires are attached from the soldering tabs of the gage
to an anchor terminal, which is also bonded to the test specimen. This anchoring terminal is used to
protect the fragile metal-foil gages. Finally, wires are soldered from this anchor terminal to the instru-
mentation being used to monitor the resistance changes.
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Gage Sensitivities and Gage Factor

The electrical-resistance strajage has a sensiity to both axial and trarerse strainThe magnitude

of the transerse strain transmitted to the grid depends on a numbactofs, including the thickness
and elastic modulus of the adhes the carrier material, the grid material, and the width-to-thickness
ratio of the axial egments of the grid. Sometimes it is necessary to calculate thealuee of strain
that includes all contoutions, from

_ (ARR)  1-v,K,

fa S, 1+Kt(£t/£a)

(1.5.62)

whetre g, is the normal strain along the axial direction of tage, ¢, is the normal strain along the
tranyerse direction of thgage,v, = 0.285 is Poissos ratio for the calibration beam, &K, is the
transrerse-senditity factor of thegage The strain gage senisity facta, S, is a calibration constant
provided by the marfacture. By using Equations 1.5.61 and 1.5.62 the percent emvotved in
neglecting the trangerse senditity can be calculated’hese errors can be sifjnant for lage values
of bothK, andg,/e,, so it may be necessary to correct for the trarse senditity of the gage Kigure
1.5.40.
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FIGURE 1.5.40 Error as a function of tramerse-sensitity factor with the biaxial strain ratio as a paramete

Strain Analysis Methods

Electrical-resistance stragages are normally enggled on the free stace of a specimen to establish
the stress at a particular point on thisface. In general it is necessary to measure three strains at a
point to completely define either the stress or the sfralid. For this general case, where nothing is
known about the stress field or its directions befeqgerimental analysis, three-element rosettes are
required to establish the stredgsld. This is accomplished by using the three-elengage with orien-
tations at arbitrary angles, asoaim in Figure 1.5.41Using this setup, the straig,, €, andy,, can be
determinedThesevalues can be used to determine the principal strains and principal directions,

o R I e
‘, :%(gxx +5w)‘%v“€m (1.5.63)
n2g=
XX Yy

where @is the angle between the principal gxg and thex axis The principal stresses can be computed
using the principal strains,
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0-1 = E 2 (81 +V€2)
1-v
(1.5.64)

0-2 = 1_EV2 (82 +V£l)

These expressions give the complete state of stress since the principal directions are known from Equation
1.5.63.

2 0,
—
gage 1 1
gage 2 el
W
gage3/ /
T FIGURE 1.5.41 Three gage elements placed at arbitrary
3 angles relative to the andy axes.

Optical Methods of Strain Analysis

Moiré Method of Strain Analysi§he moiré technique depends on an optical phenomenon of fringes
caused by relative displacement of two sets of arrays of lines. The arrays used to produce the fringes
may be a series of straight parallel lines, a series of radial lines emanating from a point, a series of
concentric circles, or a pattern of dots. The straight parallel line “grids” are used most often for strain
analysis work and consist of equal width lines with opaque spacing of the same width between them.
These straight parallel lines are spaced in a “grating” scheme of typically 50 to 1000 lines per inch for
moiré work. In the cross-grid system of two perpendicular line arrays, the grid placed on the specimen
is referred to as the model grid. The second grid is referred to as the reference grid and is overlaid on
top of the model grid. Often a thin layer of oil or some other low-friction substance is placed between
the model grid and the reference grid to keep them in contact while attempting to minimize the
transmission of strains from the model to the reference grid.

To obtain a moiré fringe pattern the grids are first aligned on the unloaded model so that no pattern
is present. The model is loaded and light is transmitted through the two grids. Strain displacement is
observed in the model grid while the reference grid remains unchanged. A moiré fringe pattern is formed
each time the model grating undergoes a deformation in the primary direction equal to tipeopitch
the reference grating. For a unit gage length= np, whereAL is the change in length per unit length,

p is the pitch of the reference grating ané the number of fringes in the unit gage length. In order

to calculateg,, &, andy,, two sets of gratings must be applied in perpendicular directions. Then
displacements andv (displacements in theandy directions, respectively) can be established and the
Cartesian strain components can be calculated from slopes of the displacement syrfade&lx, €,,

= 0v/dy, andy,, = av/ox + du/dy. The displacement gradients in théirection,0w/dx andow/dy, have

been neglected here because they are not considered in moiré analysis of in-plane deformation fields.

PhotoelasticityThe method of photoelasticity is based on the physical behavior of transparent, noncrys-
talline, optically isotropic materials that exhibit optically anisotropic characteristics, referred to as
temporary double refraction, while they are stressed. To observe and analyze these fringe patterns a
device called a polariscope is used. Two kinds of polariscope are common, the plane polariscope and
the circular polariscope.
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The plane polariscopd-igure 1.5.42 consists of a light sourcewd polarizing elements, and the
model The aes of the wo polarizing elements are oriented at@® @ngle from each othelf the
specimen is not stressed, no light passes through the analyzer andieldizslobsered. If the model
is stressed,wo sets of fringes, isoclinics and isochromatics, will be obtained. Black isoclinic fringe
patterns are the loci of points where the principal-stress directions coincide with the axis of the.polarize
These fringe patterns are used to determine the principal stress directions at all points of a photoelastic
model When the principal stressfféirence is zeron(= 0) or sificient to produce an iagral number
of wavelengths of retardatiom & 1, 2, 3, ...), the intensity of light ergeng from the analyzer is zero.
This condition forextinction gves a second fringe pattern, called isochromatics, where the fringes are
the loci of pointsexhibiting the same order @ktinction 0 =0, 1, 2, 3, ...).

n= N:—(ol—cz) (1.5.65)

where N is the isochromatic fringe ordeThe order ofextinction n depends on the principal stress
difference ¢, —0,), the thicknesh of the model, and the material fringa&luef;. When monochromatic

light is used, the isochromatic fringes appear as dark bdftten white light is used, the isochromatic
fringes appear as a series of colored bands. Black fringes appear in this case only where the principal
stress dference is zero.

Axis of polarization

Stressed model

Axis of polarization

FIGURE 1.5.42 Schematic of a stressed photoelastic model in a plane polariscope.

A circular polariscope is a plane polariscope witlo tadditional polarizing plates, called quarte
wave plates, added between the model and the original polarizing plafese(1.5.43 The wo quarte-
wave plates are made of a permanently doubly refracting matEhalcircular polariscope is used to
eliminate the isoclinic fringes while maintaining the isochromatic frinfesaccomplish this, mono-
chromatic light must be used since the quas@ve plates are designed for a sfiecivavelength of
light. For the dark-field arrangementasim, no light is passed through the polariscope when the model
is unstressed\ light-field arrangement is aavied by rotating the analyze®? The adiantage of using
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FIGURE 1.5.43 Schematic of a stressed photoelastic model in a circular polariscope.

both light- and dark-field analysis is that twice as much data is obtained for the whole-field determination
of o, — 0,. If a dark-field arrangement is usedandN still coincide, as in Equation 1.5.65. If a light-
field arrangement is used, they are not coincident. In this case Equation 1.5.65 becomes

N:%+n:—(ol—02) n=0,1,23 .. (1.5.66)

By determining both the isoclinic fringes and the isochromatic fringes, the principal-stress directions
and the principal-stress difference can be obtained. In order to obtain the individual principal stresses,
a stress separation technique would need to be employed.

The advantages of the photoelastic method are that it allows a full-field stress analysis and it makes
it possible to determine both the magnitude and direction of the principal stresses. The disadvantages
are that it requires a plastic model of the actual component and it takes a considerable effort to separate
the principal stresses.

Thermoelastic Stress Analydidodern thermoelastic stress analysis (TSA) employs advanced differential
thermography (or AC thermography) methods based on dynamic thermoelasticity and focal-plane-array
infrared equipment capable of rapidly measuring small temperature changes (down ¥G)0ca0%ed

by destructive or nondestructive alternating stresses. Stress resolutions comparable to those of strain
gages can be achieved in a large variety of materials. The digitally stored data can be processed in near-
real time to determine the gradient stress fields and related important quantities (such as combined-mode
stress intensity factors) in complex components and structures, with no upper limit in temperature. The
efficient, user-friendly methods can be applied in the laboratory and in the field, in vehicles, and structures
such as bicycles, automobiles, aircraft, surgical implants, welded bridges, and microelectronics. Optimum
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design, rapid prototypingiailure analysis, life prediction, and rationally accelerated testing can be
facilitated with the ew TSA methods Color Plates &nd11 to 14.

Brittle Coatings.If a coating is applied to a specimen that is thin in comparison with the thickness of
the specimen, then the straireweloped at the stace of the specimen are transmitted without §icamt
change to the coatin@his is the basis of the brittle coating method of stress analyssivo kinds
of coatingsavailable are resin-based and ceramic-based coalihgseramic-based coatings are seldom
used due to the high application temperatures (950 t6°El®equired The coatings are sprayed on
the component until a layer approximately 0.003 to 0.010 in. thick has accumulated. It is also necessary
to spray calibration bars with the coating at the same time in order to obtain the threshold strain at which
the coating will crackThese calibration bars are tested in a cavatilapparatus and the threshold strain
is calculated using theeflure formula and Hde's law. Once the threshold strain isdam and the
actual specimen has been tested, the principal stress perpendicular to the crack can be determined by
using Hode's law. The procedure is to load the component, apply the coating, and then quickly release
the loading in steps to obserany cracks.

The main adantages of this method are that both the magnitude and direction of the principal strains
can be quickly obtained and that the coating is applied directly to the compbhisnalso albws a
quick analysis of where the maximum stresgans are located so that a better method can be used to
obtain more accurate resulhe main disadhntage is that the coatings asry sensite to ambient
temperature and might notMe suficiently uniform thickness.

Mechanical Testing

Standads. Many engineering societiesale adopted mechanical testing standards; the most widely
accepted are the standards published bytherican Society foTesting and Materials. Standards for
many engineering materials and mechanical tests (tension, comprefsdigue, plane strain fracture
toughness, etc.) agwailable in tle Annual Book BASTMStandads.

Open-LoopTesting Machinesln an open-loop mechanical testing system there is no feedback to the
control mechanism thatould allow for continuous adjustment of the controlled paramétstead, the
chosen parameter is “controlled” by the prdsetory adjustments of the control mechanism. It is not
possible for such a machine to continually adjust its operation tevacaichosen (constant or not
constant) displacement rate or loading rate.

A human operator can be added to the control loop in some systems in an attempt to maintain some
paramete such as a loading rate, at a constamtll This is a poor means of obtaining iroped
equipment response and is prone torerro

Closed-LoopTesting Machinesin a closed-loop, most commonly elet¢lydraulic, testing system, a
senvo controller is used to continuously control the chosen parariéten there is a small fierence
between the desiradilue that has been programmed in and the achlizé that is being measured, the
servo controller adjusts thediv of hydraulic fluid to the actuator to reduce thi&edence (the error).
This correction occurs at a rate muelster than sy human operator could aehe. A standard system
makes 10,000 adjustments per second automaticall

A typical closed-loop systenCplor Plates 9, 11, }5llows the operator to control load, strain, or
displacement as a function of time and can be adjusted to control other parametersTésswetkes
it possible to perform nmy different kinds of tests, such as tension, compression, torsion, creep, stress
relaxation,fatigue, and fracture.

Impact Testing. The most common impact testing machines utilize either a pendulum hammer or a
dropped weight. In the pendulum system a hammer is released froowm lkeight and stkies a small
notched specimen, causing it to fractufee hammer proceeds to soffiveal height The diference
between the initial and final heights of the hammer is directly proportional to thgy extesorbed by
the specimerfor the Chapy test the specimen is mounted horizontally with the ends supported so that
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the pendulum will strike the specimen in midspan, opposite the notch. In the Izod test the specimen
bottom is mounted in a vertical cantilever support so that the pendulum will strike the specimen at a
specific distance above the notch, near the unsupported top end.

A large variety of the drop-weight tests are also available to investigate the behaviors of materials
and packages during impact.

Hardness TestingThe major hardness tests are the Brinell, Rockwell, Vickers, and Shore scleroscope
tests.

The Brinell hardness test uses a hardened steel ball indenter that is pushed into the material under a
specified force. The diameter of the indentation left in the surface of the material is measured and a
Brinell hardness number is calculated from this diameter.

The Rockwell hardness test differs from the Brinell test in that it uses’®adi2fiond cone with a
spherical tip for hard metals and a 1/16-in. steel ball for soft metals. The Rockwell tester gives a direct
readout of the hardness number. The Rockwell scale consists of a number of different letter designators
(B, C, etc.) based on the depth of penetration into the test material.

The Vickers hardness test uses a small pyramidal diamond indenter and a specified load. The diagonal
length of the indentation is measured and used to obtain the Vickers hardness number.

The Shore scleroscope uses a weight that is dropped on the specimen to determine the hardness. This
hardness number is determined from the rebound height of the weight.
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1.6 Structural Integrity and Durability

Bela I. Sandor

The engineer is often concerned about the long-termvtmeland durability of machines and structures.
Designs based just on statics, dynamics, and basic mechanics of materials are typically able to satisfy
only minimal performance and reliability requiremertsr realistic service conditions, there may be
numerous egradations to consideA simple and common approach is to use sdf@tyors based on
experience and judgmenthe degradations could becomevere and require sophisticated analyses if
unfavorable interactions occuFor example,fatigue with corrosion or high temperatures iialilt to
predict accuratg] and much more so when corrosion is occurring at a high temperature.

There are may kinds of agradations and interactions between them, andya [@nd still gowing)
technical literature isvailable in most of these ared$he present@erage cannot possibly do justice
to the magnitude of the most serious problems andvhitable resources to deal with them. Instead,
the material here is to highlight some common problems amidprfundamental concepts to prepare
for more serious féorts. The reader is encouraged to study the technical literature (including that by
technical societies sucts ASM, ASME, ASNT, ASTM, SAE), attend specialized short courses, and
seek consulting advice (ASMSTM, Teltech) as necessar

Finite Element Analysis. Stress Concentrations

The most common problem in creating a machine or structure with good strength-to-weight ratio is to
identify its critical locations and the corresponding maximum stresses or strains and to adjust the design
optimally. This is dfficult if a membes geomety, including the geometry and time-dependence of the
loading, is compx. The modern analytical tool for addressing such problerfisiie element analysis

(FEA) or finite element modeling (FEM).

Finite Element Analysis

The finite element (FE) methadas dveloped by engineers usingysical insight. In all applications
the analyst seeks to calculaéeld quantity in stress analysis it is the displacenmiéeid or the stress
field; in thermal analysis it is the temperatfiedd or the heat flux; and so on. Results of the greatest
interest are usually peaklues of either the field quantity or its gradiefitse FE method is way of
getting anumericalsolution to aspecificproblem An FEA does not produce a formula as a solution,
nor does it sale a class of problemalso, the solution is approximate unless the problem is so simple
that a covenientexact formula is alreadgvailable. Furthermore, it is importantualidate the numerical
solution instead of trusting it blingl

The pwer of the FE method is itgersatiliy. The structure analyzed mayae arbitrary shape,
arbitrary supports, and arbitrary loads. Such generality doesxisbtin classical analytical methods.
For example, temperature-induced stresses are usudiilguttito analyze with classical methodsen
when the structure geometry and the temperdtale are both simpléThe FE method treats thermal
stresses as readily as stresses induced by mechanical load, and the temperdiutiorditdglf can be
calculated by FE. blvever, it is easy to mie mist&es in describing a problem to the computer program.
Therefor it is essential that the user have a good understanding ofrtiidepn and the modelingp
that errors in computed results can be detected by judgment.

Stress Concentrations

Geometric discontinuities cause localized stress increases tieaverage orfar-field stressA stress
raisets dfect can be determined quantitaly in sveral ways, but not dways readi. The simplest
method, if applicable, is to use adwm theoreticalstress concentration facto, K,, to calculate the
peak stress from the nominal, average value,

o =Ko (1.6.)
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This is illustrated irfFigure 1.6.1The area under the true stress distion dways equals the area under
the nominal stress\el,

L%e dA:J'AGave dA=0,.A (1.6.2)

|11 LT fomes

~Cave

FIGURE 1.6.1 Stress disthution (simplistic) in a
notched member under uniaxial load.

ThefactorK, depends mainly on the geometry of the notch, not on the matrdaft when the material
deforms sverely under load, values are normally obtained from plots such dsigure 1.6.2and are

strictly valid only for ideally elastic, $fi membersK, values can also be determined by FEA or by
several experimental technique3here are nd, values readilyavailable for sharp notches and cracks,

but one canlavays assume that such discontinuities produce the highest stress concentrations, sometimes
factors of tensThis is the reason for brittle, high-strength materials beitigmely sensite even to

minor scratches. Ifatigue, forexample, ivisible toolmarks may lead to prematureexpectedfailures

in strong steels.
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FIGURE 1.6.2 Samples of elastic stress concentration factors. (Condensed from Figures 10.1 andwllthg, D
N. E. 1993 Mechanical Behavior of Material$rentice-Hall, Englvood Cliffs, NJ With permission.)
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There are may otherfactors that may seem similarK,, but they should be carefully distinguished.
The first is the true stress concentrafiactorK, defined as

K, = Jma (1.6.3)
Oave
which means tha, = K, (by Equation 1.6.1) for ideally elastic materidds is most useful in the case
of ductile materials that yield at the notch tip aoddr the stresslel from that indicated bi..

Similarly, a true strain concentratidacta, K,, is defined as

K, = —max (1.6.4)

wheree,,. = 0,,/E.

Furthermore, a tge number oktress intensity factorsare used in fracture mechanics, and these
(such a¥, K, K|, etc.) are easily confused WwiK, andK_, but their definitions and uses ardfeient
as seen in theewt section.

Fracture Mechanics

Notches and other geometric discontinuities are common in solid materials eanenith tofacilitate

the formation of cracks, which are in turn momese stress raisers. Sharp cracks and their further
growth are seldom simple to analyze and predict, because the actual stresses and strains at a crack tip
are not kiown with the required accuma Infact, this is the reason the classfedure theories (maximum
normal stress, or Rankine, theory; maximum shear stre3sesca, theory; distortion emyy, or von
Mises or octahedral shear stress, theonggagltly simple as #y are, are not $ficiently useful in
dealing with notched member& powerful modern methodology in this area is fracture mechanics,
which was originated pA. A. Griffith™ in 1920 and has gwn in depth and breadth enormously in
recent decadeJhe space here is not adequateven list all of the significant references in this still
expanding arealhe purpose here is to raise the engilsemareness to a quantitat, practically useful
approach in dealing with stress concentrations @sdffiect structural irdgrity and durabiliy.

Brittle and Ductile Behaviors. Embrittlements

Brittleness and ductility are often tfiest aspects of fracture consideratidms, they often require some
qualifications. Simplistica}{ a material that fractures in a tension test with 0% reduction of area (RA)
is perfectly brittle (andery susceptible to fracture at stress raisers), while one with 100% RA is perfectly
ductile (and quite tolerant of discontinuities). Between tlesemesfall most engineering materials,
with the added complication that embrittlement is often made possiblevbyals mechanisms or
environmental conditionsFor example, temperature, microstructure, chemiagairenment, internal
gases, and certain geometries are comi@actors in embrittlemenA few of these will be discussed late

" The Grifith criterion of fracture states that a crack may propagate when the decrease in elastic sfrain ene
is at least equal to the egg required to create theam crack surfaces The available elastic strain ergy must
also be adequate to me@rt into other forms of emgy associated with the fracture process (heat from plastic
deformation, kinetic engy, etc.) The critical nominal stress for fracture according to thefi@ritheory is

proportional © 1/./crack length. This is significant since crack lengven inside a membeis easier to measure

nondestrudtely than stresses at a crack tip. Modern, practical methods of fracture analysis are sophisticated
engineering tools on a common physical and mathematical basis with ffith Greoy.
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Linear-Elastic Fracture Mechanics (LEFM)

A major special case of fracture mechanics is when little or no plastic deformations occur at the critical
locations of notches and cracks. It is important &ah intrinsically ductile materials may satisfy this
condition in common circumstances.

Modes of DeformatioriThree basic modes of deformation (or cracKee displacement) of crheed
members are defined as illustrated schematicaljigore 1.6.3 Each of these modesvsry common,
but Mode | is the easiest to deal with both analytically equbrimentaly, so most datavailable are
for Mode I.

TP

> P |Force in
Force out
P
fp
(a) Mode ) (b) Mode Il (c) Mode Il
(opening mode) {in-plane shear) {out-of-plane shear)

FIGURE 1.6.3 Modes of deformation.

Stess Intensity Factor§he stresses on an infinitesimal element near a crack tip under Mode | loading
are obtained from the theory of linear elasfyicReferring toFigure 1.6.4

K
o, =——f(6)+
X \21_“, 1()
(1.6.5)
KI
= (0
% (21 (6)
KI
= f.(0) +
Txy \ 2T 3()
1,=1,=0

Oy

r
il
FIGURE 1.6.4 Coordinates for fracture analysis.

There arewo special cases @,

o, = 0 for plane stress (thin members)
0, = V(o, + 0,) for plane strain, witte, = O (thick members)

The factorK in these and similaexpressions characterizes the intensity or magnitude of the stress
field near the crack tip. It is thus called the stress intefaity, which represents\aery useful concept,
but different from that of the well-lown stress concentratidacta. K, is a measure of thexgrity of
a crack, and most oeeniently it isexpressed as
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K, = o\ maf (geometry) (1.6.6)

wher a is the crack length anf is a function of the geometry of the member and of the loading
(typically, f 01 £ 0.25). Sometimekincludes may terms,but all stress intensitfactors lave the same
essential features and units of stré@gth. In any casegxpressions DK for many common situations
are available in the literature, and numerical methods are presented for calculatind Kpeaiaes.
Differential thermogrdpy via dynamic thermoelasticity is ayperful, ficient modern method for the
measurement of actual stress intensagtors under aariety of compéx conditions (Section 1.6,
“Experimental StresAnalysis and Mechanitdesting”; Figure 1.6.12Color Plates 8 and 11 to 14).

Fracture Toughness of Notched Members

The stress intensitiacta, simplyK for now, is analogous to a stress-strainveyras inFigure 1.6.5K

increases almost linearly from ® @ = 0, to avalue K, at a critical (fracturepvent. K, is called the
fracture toughnessf a particular member tested. It does depend on the mabetidl,is not a reliable
material property because it depends on the size of the member tooTimiscis illustrated irFigure
1.6.6for plates of the same matertalt different thicknesses.

Keb — — ;

0 displacement FIGURE 1.65 K, = fracture toughness of a particular membe

many different K, values for a given materiat
/ <

safe stress intensity factors (K)
below the curve

} thickness t FIGURE 1.6.6 K, = plane strain fracture toughness of
A material.

(for many steels, A~1in.)

At very small thicknes¥, tends to drop. More significaptlK, approaches awer limiting value
at large thickness (&). This worst-casevalue ofK_ is calledK,, theplane strain fractoe toughnesn
Mode I. It may be considered a pseudomaterial property since it is independent of geometry at least
over a range of thicknesses. It is important to remember that the thickfeztcan be ratheregere.
An intrinsically ductile metal may fracture in an apparently brfekhion if it is thick enough and has
a notch.

Fracture Toughness DataCertain criteria about crack sharpness and specimen dimensions must be
satisfied in order to obtain reliable bakj. data (se ASTM Standals). K, data for may engineering
materials arevailable in the technical literaturA schematicoverview of various materialK,, values

is gven inFigure 1.6.7 Note that particulaexpectedvalues are not necessarily attained in practice.
Poor material production or maagturing shortcomings and errors could resultaverely lowered
toughness. On the other hand, special treatments or combinatiorffedndbut favorably matched
materials (as in composites) could substantially raise the toughness.

Besides the thicknes$fect, there are a number of majoflirences on aigen materidk toughness,
and thkey may occur infavorable or ufaevorable combinations. e8eral of these are described here
schematicall, stowing general trends. Note that some of the actuaihpatterns are not necessarily
as simple or well defined as indicated.
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Ceramics; Polymers: 0.5-5

Epoxy. 0.6
PVC:24
Alumina Al203: 4.0
Silicon carbide SiC: 3.7 Kic
Metais: 20 - 200 MPa(m)1/2
0 7075 T651: 29 AlSI 4130: 110 ASTM AS517F: 187 200
Aluminum Steel Steel

FIGURE 1.6.7 Plane strain fracture toughness ranges (approximate).

Kic

Yield strength FIGURE 1.6.8 Yield strength #ect on toughness.

Yield Stength.High yield strength results in aw fracture toughnesd-igure 1.6.8, and therefore it
should be chosen carefgllunderstanding the consequences.

Temperatue. Two kinds of temperatureffect on toughness should be mentioned HEney both may
appea, at least for part of the data, as-igure 1.6.9with high temperature causing increased toughness.
One temperatureffect is by the increased ductility at higher temperafliné tends todwer the yield
strength éxcept in bw-carbon steels that strain-age at moderatelyatdd temperatures, about 100 to
500°C), increase the plastic zone at the notch tip, &iedtively blunt the stress concentratidmother
effect, the distinct temperature-transition &eébr in low-carbon steels (BCC metals, in general; easily
shown in Chapy tests), is caused by microstructural changes in the metal and igetglabmpéx in
mechanism.

Kic

Temperature FIGURE 1.6.9 Temperature féect on toughness.

Loading RateThe higher the rate of loading, thever the fracture toughness in most cases. Note that
toughness results obtained in notch-impacequosion tests are most eglnt to applications where
the rate of loading is high.

Microstructural Aspectsin some cases apparentlggligible variations in chemical composition or
manudacturing processes mage a lage dfect on a materi& fracture toughnesBor example, carbon,

sulfur, and hydrogen contents may be digaint in gveral embrittling mechanismalso, the common
mechanical processing of cold or atrking (rolling, extruding, faging) influences the grain structure
(grain size andekture) and the corresponding toughness. Neutron radiation also tends to cause micro-
scopic defects, increasing the yield strength and consequewndyiig the ductility and toughness of

the material.

Overview ofToughness Degradation$here is a multitude of mechanisms and situations that must be
considered singly and in realistic combinations, as illustrated schematicadlgure 1.6.10(review
Figure 1.6.6 for r&lvant toughness definitions).
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Ke

basic Kie | — k
(handbook
values, etc.) \

Y thickness t FIGURE 1.6.10 Trends of toughnessegradations.

degrading factors

Degrading factors

Some chemical compositions
Sharper notch

Greater thickness

Faster loading

Lower temperature

Higher yield strength
Hostile chemical mvironment
Liquid metal embrittlement
Tensile residual stress
Neutron irradiation
Microstructural features
Moisture

Gases in solid solution
Surface hardening

Note The toughness can drop essentially to
zero in some cases.

Crack Propagation

Crack gowth may be classified as either stable (subcritical) or unstable (critical). Often stable cracks
become unstable in time, although the oppositeatiehy cracks decelerating araéen stopping, is
sometimes possible. Unstable cracks under load contretiaeenely dangerous becauseytipropagate
at speeds nearly 40% of the speed of sound in that particular@uBdmeans, foexample in steels,
a crack gowth speed of about 1 mi/sethus,warnings andeven electronically adtated, automated
countermeasures during the unstable pgapan are useles¥he only reasonable course is tovide,
by design and proper maagture, pevenive measures such as ductisgions in a structure where
cracks become stable andvglto grow, allowing for inspection and repai

There are three kinds of stable cractvgh, each important in i@wn right, with interactions between
them possible. Under steady loadsyienmentally assisted crackagvth (also called stress corrosion
cracking) and creep crackagrth are commonly found. Undeyclic loadingfatigue crack gwith is
likely to occu. In each case thete of crack growth tends to accelerate in time or with progress
cycles of load if the loads are maintained while the cracks reduce the load-bearing cross-sectional area.
This common situation, caused by increasing true stresses, is illustrated schemati¢gllyeiri.6.11
wherea, is an initial few’s sizeda/dNandda/dtare thdatigue and creep crackayth rates, respeieely,
ard a, is the critical crack siz8 he rate of stable crackavth is controlled by the stress intendiagta.
This will be discussed late

Design and Failure Analysis Using Stress Intensity Concepts

The concept of stress intensity of dt@d members is highly useful and practiddiree major possi-
bilities are outlined here with respect to the essentialdramk of

K O stress . /crack length (1.6.7)
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unstable
- crack

stable crack
ao

0 time t or cycles of load N FIGURE 1.6.11 Crack gowth rates under constant load.

Here K may be either an operating stress intenfgigtor or aK,. value, a material property (the units
are the same). In design, the idea ifixmne or o quantities by some initial constraints of the case,
thenwork with the results according to Equation 1.6.7.

1. Operating stress and mater{&l.) are predetermined his forces one to measure crack length
and set the maximum ellable size of cracks.

2. Operating stress and detectable crack size are predetermimedforces one to choose an
appropriate material with the requir,. value.

3. The material (K, value) and the detectable crack size are predetermined. This forces one to limit
the operating stress accordingly.

Similar thinking can be used failure analysis and corresponding design iterafonexample, the
critical crack size at the end of the stable pgagian (and start of the unstable, high-speesivtr) can
often be determined by looking at the ken parts The material propeyt K., can also be estimated
from the parts at hand, and thus the stress that causkdluhe can be calculated. It can be determined
if the stresswvas within normal bounds avas anoverload from misuse of the equipmemhese are
powerful, quantitave methods that are useful in iroping designs and mafacturing.

Special Methods

There are may other important and useful methods in fracture mechanics that cavemobe listed
here.For example, there areegeral methods in the area of elastic-plastic fracture mechahitsn
this area, mainly applicable to thin members of ductile materials, thegdaintpproach alone has been
covered in a lege number of books and journal articles.

Nondestructive Evaluation

Since all of fracture mechanics is based oowling the crack size and its location and orientation,
nondestrudte evaluation (NDE) is a major part of quantite, predicive work in this area. May
techniques of NDE arevailable, and some are still rapidgyolving. Two major caggories of NDE
methods are defined here:

1. Geometry-based methodd best, the size, shape, location, and orientatiorflafveare measured.
Considerable additionaffert is needed to estimate th#eet of the few on structural irdgrity
and durabiliy. Common methodswolve acoustic, magnetic, mawave, optical (including the
mal), or X-ray instruments.

2. Stress-based methadsflaw’s dfect on the stress-strdiield is directly measured, which is often
much more important than juhding that ftw (a flaw of a gven geometry may be benign or
malignant, depending on the stréigsdd of the neighborhood). Only aw optical methods are
readilyavailable for stress-based NDE; the md&etive one for laboratory and field applications
is thermoelastic stress analysis by infrared meligsi(e 1.6.12Color Plates 8, 11 to 14; Section
1.5, “Experimental StresAnalysis and Mechanitdesting”).
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Kiova)

0 alw

FIGURE 1.6.12 Practical fracture mechanics with NDE: nearly instantaneous measurement of ceanidgte
actual stress intensity factor viavaticed thermoelastic stress analy§tsee membeés loading (including boundary
conditions) need not be &wn to obtain reliable data using this method.

Creep and Stress Relaxation

Creep and stress relaxation are related time- and temperature-dependent phenomena, with creep occurring
under load control and stress relaxation under deformation control. In both cases the'sratapal

ature is a gverningfactor egarding what happens. Spiécally, for most metals, the creep and relaxation
regimes are defined as high homologous (retatdimensionless) temperatures, normally thoseeab

half the melting point in absolute temperature for each mgtals, solder at room temperature creeps
significantly under load, while steel and aluminum do naivdéfer, some creep and relaxation may
occureven at bw homologous temperatures, anéytlare not vays regligible. For polymers, the creep

regime is alove the glass transition temperaturais is typically nofar from room temperatur€igures
1.6.13and1.6.14slow trends of creep and stress relaxation in thgelscale phenomenoggion.

higher stress and/or 1emperaturle

-
- Tertiary
\ - : (unstable)

-

Rupture

- Secondary
(steady-state)

Primary
(transient)

|
¢ =de/dt=AlG)"
(creep rate)

€046 — Iower stress andjor temperature
initial total
strain

0 time t

FIGURE 1.6.13 Creep under constant loadt/dt = A(o)". A and n are material parameters.

iniial Gg
stress
€ =const.)

lower temperature

higher
temperature

time t

FIGURE 1.6.14 Stress relaxation under constant deformatinr.o,e €. E andn are material parameters.

Stress vs. rupture life cugs for creep may be nearly linear when plotted on log-log coordinates
(Figure 1.6.1%
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FIGURE 1.6.15 Approximate stress vs. ruptuiigds of S-590 alloy as functions of temperature. (After Figure 15.8,
Dowling, N. E. 1993Mechanical Behavior of Material$’rentice-Hall, Englvood Cliffs, N1 With permission.)

Mechanical Models of Viscoelastic Behaviors

Creep and stress relaxation appear to be combinations afidrstof viscous liquids and elastic solids.
The so-called viscoelastic phenomena are commonly modeled by simple mechanical components, springs
and dashpots, as Figure 1.6.16The Maxwell model and related others are based on such elements.

% % %
ﬂ?dszmt:oz
£2
T =04 [E l3a_d ‘T‘

load load

(a) spring (b) dashpot (c) combined
FIGURE 1.6.16 Viscoelastic elements.
The Maxwell model for creep under constant stgsis
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o
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For relaxationg = constant and varies, so
de ldo o
7:0:774_7 169
dt Ed n ( )
e t
J’ d—O:—EJ’ d, o=g,e "
(o1} o rl [o]

Time-Temperature Parameters. Life Estimation

It is often necessary &trapolate from laboratory creep test data, which are limited in time (from days
to years), to real servicévés, which tend to be from years teveral decadesTime-temperature
parameters are useful for this purpoBeree common parameters are outlined here. Note that no such
parameter is entirely reliable in all cas&éhey are best if used consistently in direct comparisons of
materials.
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Sherby-Dorn Parameter (Pgp)

0o

Py, =log6, =logt, _0'217QDTD (1.6.10)

where, for steady-state creep,
6, = temperature-compensated time to rupture
t. = rupture time, hours
Q = activation energy = constant
T = temperature, K

Stress-life data at high and lowt, are needed to pldy, vs. stress, in order to predict a longeat a
lower T.

Larson-Miller Parameter (P,,,)

This approach is analogous to the Sherby-Dorn approach, but is based on different assumptions and
equations.

P =0.217Q = T(logt, +C) (1.6.11)

whereC = —lodf, 020 for steels. For using temperature in degrees Fahrenheit (as in most of the data),

Pvle = 18Py, (1.6.12)
Manson-Haferd Parameter (Py,.)
=TT (1.6.13)
logt, —logt,

whereT, andt, are temperature and time constants representing a point of convergence for a family of
data points. As above, for different temperature scales,

Purlop = 18Pl (1.6.14)
Overview.The greater the extrapolation using any parameter, the greater the likelihood of error. A factor
of ten or less extrapolation in life is often reasonable. At very large extrapolations there may be different
damage mechanisms from that of the tests, as well as unpredictable service loading and environmental
conditions.

Fatigue

Fatigue is a process of damage evolving in a material due to repeated loads, also called cyclic loads.
This is a common degradation that affects virtually all solid materials, and thus it is often the main (or
a contributing) factor in the failure of vehicles, machinery, structures, appliances, toys, electronic devices,
and surgical implants. Many apparently well-designed and -fabricated items that fail inexplicably have
problems rooted in the fatigue area.

Nearly two centuries of fatigue studies and engineering efforts have resulted in a huge, and still
expanding, technical literature. This brief review can cover only a few major topics, some old but valuable
items of wisdom, and practical modern methods. Three important approaches are presented: the stress-
based (useful for long lives), strain-based (useful for short lives), and fracture mechanics methods.
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Definitions

Constant-amplitude, stress- or strain-controfigzling is common in testing and some service situations.
Figure 1.6.1/hows the stresso) quantities in sucleycling. Similar notations are used for strains. In
completely eversed stresg,,, = 0 andR = -1, Zero-to-tension (a special case of pulsating tension) has
Omin = 0 @andR = 0.

min

+ - =~ %~ % ~%max
0y |Ao=stress range

/_ oa I_om=mean st-ress
o] time

- - =% min

A0=20, Oy =stress amplitude
(alternating stress)

stress ratio R= 0 min /O max

amplitude ratio A=G3/0Om Om=Omax +O min)/2

FIGURE 1.6.17 Notation for constant-amplitude stress cycling.

Material Properties in Cyclic Loading

The mechanical properties of some materials are gradually changgdibylastic strainsThe changes
that occur are tgest early in théatigue life and becomesgligible beyond about 20 to 50% of the life.
The most important material properties that could changefisigmily thisway are the @w properties
(vield strength, proportional limit, strain hardeniegponent), while the modulus of elasticity is little
affected.For metals, three initial conditions can bdided using the strain hardeniegponentn as a
key paramete The concept of &yclic stress-strain cue, as opposed to that in monotonic (static)
loading, is also used to distinguish possible materiad@ts in fatigue, as fobbws.

» Stable 0.15 <n < 0.2 (approx.)
The monotonic andyclic stress-strain cues are the same for most practical purposes (though
seldom coincident).
Examples:7075-T6 Al; 4142 steel (550 BHN)

¢ Cycle-Dependent Softenig: n < 0.15 (approx.) (means initially hard, caldrked material)
The cyclic stress-strain cue falls significantly bedw the monotonic cwe, which means a
gradually decreasing deformation resistanagyelic loading progresse$hecyclic yield strength
may be less than half the tensile yield strength in some cases.
Examplesi4340 steel (350 BHN); 4142 steel (400 BHN)

¢ Cycle-Dependent Hardenirg: n > 0.2 (approx.) (means initially soft, annealed material)
Thecyclic stress-strain cue is significantly abve the monotonic cue, which means a gradually
increasing deformation resistancecgslic loading progresses.
Examples:2024-T Al; 4142 steel (670 BHN)

Note that the hardest steels tend to further hardeyclit loading Thus, a @ven steel (such as 4142)
may be stable, softening, or hardening, depending on its initial hardness.
In the technical literature, primes are normally used to dewyolie material propertieszor example,

0, is the yield strength obtained frontyclic stress-strain cue.

Stress vs. Life (S-N) Curves

The most common and historidaltigue life plots present data of stress amplitude (simplisticatr
S) on a linear scale vsycles tofailure (N or N;) on a logarithmic scale as Figure 1.6.18
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FIGURE 1.6.18 Schematic of S-N cues.

Many steels (plain carbon oo alloy) appear to &e a distinctfatigue limit. For other metals that
do not lave such a limit (aluminum, faxample), an arbitrarfatigue limit is defined as a stress amplitude
corresponding to a specified life, typically’ @ 1@ cycles.

Trends in S-N Curves
There are may influences on the shape and position of a matefalgue life cuve as briefly discussed
below.

Ultimate Stength.lIt is widely beleved that, at least for steels, tfagigue limito, is about one half of
the ultimate strengtlo,. In fact, this is a groseversimplification, with actuabalues beingdwer or
higher than that in nmy cases.

Mean Stess, Residual &iss.Several main points areorth remembering: residual stresses (also called
self-stresses) are common, ang/thre to be treated as mean stresses (by sign and magnitfatijue;

a tensile mean stresalers the life while a comprease one increases it. Simplistioglha tensile mean
stress dwers the abbwable cyclic stress amplitude according Fagure 1.6.19vhere

o,+0,<0, or g, (if yieldingisto be prevented)

Oa

Ou

line of Oy + 05 =0y
(Ne=1)

030y — =< —

0 070y ©Su Om FIGURE 1.6.19 Schematic of tensile mean streffeet.

For example, ifo,, = 0.70,, then the maximum alternating stress for opee is 0.%,. This kind of
graphical relationship is called a Goodman diagréhere are everal speciakxpressions for dealing
with the detrimental féects of tensile mean stressBer example, the modified Goodman equation is

Q

a1 0m g (1.6.15)
c)-U

Ge

wherea, is thefatigue limit for fully reversed loading.
Sometimes cwed lines represent real tawior better than the linear theoryosim in Figure 1.6.19.
In that case the Gerber parabola may be appropriate, in the form of



Mechanics of Solids 1-117

o, To O
2+ =1 f 20 1.6.16
O‘e Eag or Gm ( )

Another approackvorth mentioning is the Moow expression, a mechanisticallyeghnt and sensible
one, which will be presented late

Note that tensile mean stresses are generally detrimental and tha@ppeoachesdve been proposed
to deal with them, yet no single method is capable of good predictions in all cases. In practice it is best
to use a particular method that has a good track record for the material and situation at hand. Constant-
life diagrams are useful, elaborate idaives of the Goodman approach, igthinclude a broad data
base Figure 1.6.2D

4.0 A=1 0.25 [}
-0.6 R=0 0.6 1
\ I 7
\ | /
A\ } N=104 /
\ Ultimate
A= oo \ 105 strength
R=-1 {
\ /
\ b o108
1 ‘ / *+ Mean stress
g N \ LA 7
7 Alternating /
% stress | /
= \ | /
+ A=alt. stress / mean stress
\ | / 450 R=min. stress / max stress
0
0

- «— Minimum stress —» +

FIGURE 1.6.20 Constant-life diagram.

Notch EffectsStress raisers can lextremely detrimental irfatigue, except when thy help create
localized compresee residual stresses in ductile metals, delaying crack formation ewthgihese
are discussed in connection with the strain-based approach.

Microstructue. Large grain size (annealed metalayérs thefatigue strength, and small grain size (by
cold working) increases it, especially at lorigels, under load control.

Surface EffectsThe condition of a material suface may influence tHatigue bebvior in many ways,
typically in combinations.

Toolmarks are common detrimental features, especially since ofegnatte aligned perpendicular
to the principal tensile stress in axial or bending loadkmgexample is a shaft cut in a lathe. Note that
in the case of high-strength, hard materaisn nvisible scratches from grinding amdffing may be
stress raisers. Machining also tends to create tensile or coimpressdual stresses in fare layers.

Surface reatmentssuch as céwrizing or nitriding of steelsféect thefatigue life by changes in
chemical composition, microstructure, hardness, or residual stress. Shot peeffiaug, salling, or
burnishing is done to introduce compligssresidual stresses, which delay cracking in long-life service.
Plating (chromium, nkel) tends to create layers of pdatigue resistance and harmful tensile residual
stresses. Shot peening after plating is a fo@akstep.

Environment.Hostile chemical mvironments can everely reduce most materialiatigue resistance.
Common causes of problems are salte, salt in the aj salt on the road, moisture, aagkn pollutants
in the ar. For example, sulfur in the air results in aggtigsssulfuric acid on machines and structures.

Statistical Scatte There is lways statistical scatter in a matesdhtigue life at ay given stressevel,
especially at longives The scatter band mapwer sveral orders of magnitude in life at a single stress
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level. Because of the scattéhere is no uniquiatigue life cuve for ay material — the cwe depends

not only on physicalactors such agweironment,but also on the number of tests done. It is nifiGent

to do a handful of tests andadr a cuve sonewhere through the data poings a simple rule, todve

a high kvel of confidence (>99%) infatigue life cuve, at least six identical tests are needed to obtain
a mearvalue at each ofeseral kevels of stresses in the general life range of intefesurve through
these meanwalues isfairly representate of theaverage life cuwre (50% probability ofailure), but still

may not be adequate to deal with scafi®te that the minimum number of test specimens according
to theASTM Standard E 739 is 6 to 12 for prelimipaexploratorywork, or for research andelopment

and component testing, and 12 to 24 for desigmalles or reliability assessment.

Ideally, additional analysis is done, using Gaussian (normal) statisticabuligtn or some other
model, such as &Weibull distribution. The latter is particularly informiae in determining the proba-
bility of fatiguefailure The practical problem is that engineers may requerg low probabilities of
failure (less than 1%)ut neither the necessary mathematical methods nor the data baaes|alée
for that A family offatigue life cuves forvarious probabilities diilure and other revant considerations
for one material are stvn schematically irFigures 1.6.210 1.6.23

S
50% probability of fallure

P=0.99
0.9

0.5
0.1
0.01

log N¢
FIGURE 1.6.21 Schematic S-N cwes withvarious probabilities of failure.

lack of data and methods / use caution in extrapolation

J——

of failure, %

99
log Nf

FIGURE 1.6.22 Probability aspects of fatigue depending on stress.|

Variable Amplitude Loading

Many machinesyehicles, and structuresperience random or blockwise changing loadiFiggy can

be simplistically modeled for life prediction using tredmgren-Miner rule, illustrated in Figure 1.6.24.
There arewo major assumptions for this rule for completadyersed loading:

1. Everycycle at a gzen level of stress amplitude causes the same amount of damage, whether the
cycle is early or late in the life.

2. The percentage of damage caused by a cycle of load at any level of stress is equivalent to the same
percentage of damage at any other level of stress.
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Usage Product
severity strength

Probability of occurrence

product failure

Severity of loading

FIGURE 1.6.23 Probability aspects of fatigue depending on applied stress and product strength.
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FIGURE 1.6.24 Schematic folPalmgren-Miner rule.

Thus, since 100% of the dif\; is exhausted afailure at ay single stress ampliteds;, in multilevel
loading the life fractions sum to upitas mathematically formulated here and illustratdeiganre 1.6.24

N N N,
71+72+.__:Z =1 (1617)
Nfl Nf2 Nfi

whetre N; is the actual number afcles ato; andN; is the life ato,.

In practice, summations of about 0.8 to 1.2 can be accepted, saying tRalntgesn-Miner rule is
valid in that case. Gros®dations from summations of 1 are common, especially when the mean stress
is not zero There are modifiedersions of the basic rule for such cades,they should be used with

caution.

Cycle CountingHighly irregular loading requires the use of specatle counting methods, such as
level crossing, range counting, or v cycle countingThe latter is the best modern method, lending
itself to dficient field data acquisition and computerk (ASTM Standard E104$AE Fatigue Design

Handbook.
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Multiaxial Fatigue

Compkx states of stress are common in engineering components, fatidire analysis 8y may cause
serious dfficulties There are may methodsavailable,but none of them are adequate for all cathae
simplest situations that might be handled reasonably mllvie fully reversed loading by in-phase or
18 out-of-phase proportional stresses at the same fregudnoltiaxial fatigue testing is fficult and
expensve, so it is often desired to use uniaxial test data for predicting the multiaxéldreh typical
approach for this is based on computing #acve stress amplitdo, from the amplitudes of the
principal stresses,,, 0,,, 05, With the concept of the octahedral shear yield criterion,

1

/ 2 2 2
e J2 \‘ (Gla - Gza) + (Oza - Osa) + (Gsa - 0-1a)

o) (1.6.18)

where in-phase stresses are posiand 180 out-of-phase stresses amgatve.

The life is estimated by entegmw, on the appropriate S-N au&. Note that mean stresses, localized
or general yielding, creep, and random frequencies of loading further complicate the problem and require
more sophisticated methods than outlined here.

Strain vs. Life (-N) Curves

A strain-based approach is necessaffaiigue when measurable inelastic strains ndoweneral, total
strain consists of elastic, plastic, and creep strains, with the latidyeing in the cagory of inelastic
strains,

€ =€, *E tE (1.6.19)

When g, or/ande; are dominant, the life is relaely short and the situation is callemivtcycle fatigue
(LCF), as opposed to higtycle fatigue (HCF), where, is dominant The mechanics of LCF can be
understood by first consideritnysteresis loops of elastic and plastic strains fiselkinFigure 1.6.25

Ao =20'a

FIGURE 1.6.25 Hysteresis loop.

Simplistically, HCF means a thin loop (a straight linevaty long life) and LCF meansfat loop.
Strain-life plots are especially useful in the LGgime where material properti€s, o;) obtained in
monotonic tension tests are directly usefufatigue life prediction as stvn in Figure 1.6.26 Most
commonly the total strain amplitad, is plotted vs. the lif@N;, with a corresponding equation (called
Cdffin-Manson equation) for fullyeversed loading,

sazc—é(sz)b+sf(2Nf)° (1.6.20)
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loge 5
£ 4 € pdominates | &g dominates

£y vs.life =gg vs. life + £p vs. life

Eg vs. life
(equiv. to S-N plot)

1 reversal NT \ log 2N
(equivatent to tension test)  trans. life (rev. to failure)

FIGURE 1.6.26 Schematic of strain vs. life curves.

It is remarkable that all metals are similar to one another in their values of the expoentsl)
andc (= —0.6), differing only in fracture strength and fracture ductilityg;. These allow a simplistic
fatigue life prediction if at least; andg; are known.

If there is a mean stress, its effect is equivalent to an altered fracture strength. Using the Morrow
approach in a simplified version,

e, =0Ef§1—z:1g(zwf)b +e,(2N,) (1.6.21)

whereag,, is positive for tensile and negative for compressive mean stress.

Notch Effects

The localized plastic strains of notched members complicate the fatigue analysis considerably. It should
be noted, first of all, that the theoretical stress concentration tdcternot entirely relevant to such
members, because yielding lowers the actual peak stresses from those predicted. This leads to the
definitions of the true stress and strain concentration factors,

= peak stress K, = peak strqm (1.6.22)
ave. stress ave. strain
According to Neuber’s rule,
K, = ,\‘KUKE (1.6.23)

which is useful for notch analysis in fatigue. This expression is strictly true for ideally elastic behavior
and is qualitatively evident for elastic-plastic deformations.

Residual Stresses at Notch&s.extremely important, and somewhat surprising, phenomenon can occur

in notched members if they yield locally under variable-amplitude loading. If a large load (called an
overload) causes yielding at a notch and is followed only by smaller loads, a residual stress of the
opposite sign to the overload’s sign is generated at the root of the notch. Thus, a tensile overload (such
as at one side of a shaft in a straightening operation) creates a compressive residual stress, and vice
versa. These stresses may remain in the member for a long time or be relaxed by other plastic strain
events or by annealing. Of course, such stresses are effective mean stresses and can alter the life greatly.
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Creep-Fatigue Interactions

Inelastic strains (plastic and creep strains) are the basic causes of tinugelardependent damage
processedVhen both kinds of strains occur during the life of a particular component, @odgrhage
interactions may arisd he simplest and mosteglant approach in such a case is to sum both of the
different damages linearly (as in tRalmgren-Miner summation for pufatigue), assuming thatejn

are egivalent to one anotheln otherwords, assume that X percentage of creepeéiteausted is
equvalent to the same X percentagefatigue lifeexhaustedThus, a lineaexpression rivolving time
andcycle fractions can be stated,

Ztt * Zﬂ'“ = 1 (1.6.24)

purecreep purefatigue a failure

wheret; = actual time spent at stressgdli in creep}; = total time to rupture at streswel i, n, = actual
number ofcycles at stressVel j, andN;; = cycles tofailure at stressebel .

This idealized lineagxpression is plotted as a dashed linEigure 1.6.27in contrast, a more realistic
ASME code and possiblegere agradations are also plotted.

qév = creep damage + X fatigue damage =1
£
[}
©
[}
=
2 ASME Code
&
severe FIGURE 1.6.27 Schematic of creep-fatigue interac-
oroep-faligue tions The bilinear damage rule is recommended in the
05 1.0 ASME Boiler and PressarVessel Code, Section IlI,
creep damage Code Case N47.

There are may other methods (such as damage rate equations; strain-range partitioning) to deal with
creepfatigue problemsyut none of them are adequate for all situatidhe dificulty is mainly because
of the need to account for important, comptetails of the loadingycle (frequeny, hold times,
temperature, and deformatiorave shape).

Fracture Mechanics Method in Fatigue

Cyclic loading can cause crackogth with or without the presence of a hostile chemicgirenment.

The rate of crack gwth depends on the stress intendidgta K Oova. Investigations of this
dependencedre led to the évelopment of pwerful techniques in design ardilure analysisThe

fatigue crack gmwth betavior is quantified by théaris equation,

da
— =c(AK)" 1.6.25
an = C0K) (1.6.25)

where da/dN = crack gowth rate
C, m = materid constants
AK = K.« Kin = Stress intensitjactor range
Kmax D Gmax
Kmin D 0-min
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Typical data for a wide range of craclogth rates bve patterns as iRigure 1.6.28whee AK,, is
a thresholdvalue akin to datigue limit The linear part of the cue is useful for life prediction and
failure analysis.

log da/dN
rapid
crack growth

FIGURE 1.6.28 Schematic of fatigue crack propagation
log AK data.

Abridged Example of a Modern Fatigue Analysis

Many of the concepts mentionedae are applied in Sandia National Laboratdriéssers Manual
for FAROW: Fatigue and Reliability oWind Turbine ComponenfsSAND94-2460, Mvember 1994.
FAROW is a computer program for the probabilistic analysis @felavind turbines, using structural
reliability techniques to calculate the mean timéaiture, probability offailure before a tget lifetime,
relaive importance of each of the random inputs, and the sétysiof the reliability to all input
parametersThe method is useful whethextensve data arewailable or not (stwing how much can
be gained by reducing the uncertainty in each input). It helps one understéaiigtre reliability of a
component and indicatesva to improve the reliabiliy. The sample figures={gures 1.6.290 1.6.32
illustrate some of thi&ey data and results for the machines and materials considered.

S-N Coefficient

Wind
Distribution
Shape

Stress Conccntratlon \\\

RMS Stress Coeficient

Mean Wind Speed

Mean Stress

FIGURE 1.6.29 Relatve importance factors as fractions of the total influence on the probability of failure. (Courtesy
Sandia National Laboratorie&lbuquerque, NM.)

Note especially a fge discrepacy between mean lifetime and probabilityfaflure in a éw years.
A mean lifetime of 600 yeanwas calculated for a critical component, using the medidures for all
the randonvariables considered and using the constaloies for all the other input parameterewéver,
the probability of the componefuiling in less than 5 years is estimated at 7.6% (Figure 1.6.8R)
shows the uncertaintgven in sophisticatefatigue life calculations because of reasonable uncertainty
in the inputs and the serisity of fatigue life to parameterariation.
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FIGURE 1.6.30 Fatigue life data for 6063 Al. (Courtesy Sandia National Laboratories, Albuquerque, NM.)
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FIGURE 1.6.31 Fatigue life data for uniaxial fiberglass composite. (Courtesy Sandia National Laboratories, Albu-
querque, NM.)
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FIGURE 1.6.32 Example FAROW results for probability of premature failure as a function of target lifetime.
(Courtesy Sandia National Laboratories, Albuquerque, NM.)
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1.7 Comprehensive Example of Using Mechanics of Solids
Methods

Richard C. Duveneck, David A. Jahnke, Christopher J. Watson, and
Bela I. Sandor

A conciseoverview of an engineering project is presented to illustrate trewamte and coordinated
application of everal concepts and methods in this chagthe &ketchy outline is limited in breadth
and depth, emphasizes modern methods, and is not aiming for completengspdrtieular area.

The Project

Analyze the currently uskA-shaped arm of the suspension system of a small, special-purpose ground
vehicle The goal is to redesign the componentagesweight and, more importaptireduce the cost
of mandacturing, while assuring the prodiscteliability over itsexpected service life.

Concepts and Methods

Statics

Vectors

Free-body diagrams. Equilibrium
Two-force member: shock absorber
Frame components

Beams. Bending moments
Moments of inertia

Center of mass

Dynamics

Velocity, acceleration
Rigid-body dynamics
General plane motion
Relaive motion

Vibrations

Natural frequegy

Damping. Logarithmic decrement
Mechanics of Materials

Stress and straiffransformation equations. Principal stresses. Maximum shear stress
Material properties. Material selection

Bending stresses. Beam optimization

Strain gages. Mechanical testing with closed-loop equipment

Durability

Stress concentrations. Finite element analysis

Cumulatve fatigue damage. Cycle counting in random loading. Mean stresses. Goodman diagrams.
Life prediction

Thermoelastic stress analysis

Illustrations
A few aspects of the project are graphically illustrate@ator Plate 1@GandFigures 1.7.10 1.7.3
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FIGURE 1.7.1 Accelerometer data from front suspension system of vehicle. Logarithmic decrémdntx,/x,);
damping ratio{ = 0.16.

Defining Terms

STATICS

Equilibrium : A concept used to determine uimkm forces and moment& rigid body is in equilibrium
when the egwalent force-couple system of tleeternal forces acting on it is zerdhe general
conditions of equilibrium arexpressed irvector form §F = 0, YM4 = >[r x F] = 0) or scalar
foom 0F,=0,5F,=0,3F,=0,3M,=0,>M,=0,>M,=0).

Equivalent force-couple systemAny system of forces and moments acting on a rigid body can be
reduced to a resultant force and a resultant mariieasformations of a force-couple system
involving chosen points of reference are easy tkemihese are useful for determining uotum
forces and moments and the critical locations in structural members.

Free-body diagram A method of modeling and simplifying a problem for tHéceent use of the
equilibrium equations to determine umkn forces and moment8 body or group of bodies is
imagined to be isolated from all other bodies, and all Sanit external forces and moments
(known or unkrown) are sbwn to act on the free-body model.
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FIGURE 1.7.2 Axial stress and force vs. time in shock absorber shaft.

DYNAMICS

Equations of motion Expressions of the acceleration of a body related to the forces acting on the body.
The basic equation of motion for a particle of nmass Y F = ma. Many other equations of motion
may be stated, depending on the dimensions of the body and its motion (such as two- or three-
dimensional motion) and the coordinate system chosen.

Kinematics: The analysis of motion based on geometry and time-dependent aspects. Forces may or may
not be associated with the motion, but the analysis does not involve considerations of forces. The
parameters of interest in kinematics are position, displacement, velocity, acceleration, and time.

Kinetics: The analysis of motion based on kinematics and the effects of forces on masses.

VIBRATIONS

Forced vibration: Involves an exciting force applied periodically during the motion. A forced vibration
may also be described in terms of the displacement of a foundation or primary mass that supports
the vibrating system.

Free vibration: Occurs when only two kinds of forces are acting on a mass: (a) the elastic restoring
force within the system and (b) the force of gravity or other constant forces that cause no
displacement from the equilibrium configuration of the system.
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FIGURE 1.7.3 Stressew,, 0,, andt,, measured at one point of the A-arm by strain gages as the vehicle travels
over bumps.

Resonance A critical aspect of forced vibrations; it occurs when the forcing frequency equals the
system’s natural frequency. In this condition the amplitude of the displacements becomes infinite
in theory, or dangerously large in practice when the damping is small. Near-resonance conditions
may also be undesirable.

MECHANICS OF MATERIALS

Flexure formula: Used to calculate the bending stresses in beams. Must be applied with modifications
if there are inelastic deformations, unsymmetric bending, or for composite beams and curved
beams.

Hooke’s law: Applicable for calculating uniaxial or multiaxial stress-strain responses when the material
acts entirely elastically. Involves the modulus of elastiEignd Poisson’s ratia

Principal stresses The maximum and minimum normal stresses at a point, on an infinitesimal element.
An important related quantity is the absolute maximum shear stress. These quantities can be
determined (given an arbitrary state of applied stress) from stress transformation equations or from
their graphical solution, Mohr’s circle. Principal strains are determined in a similar way.

Stress-strain diagram Shows the stress-strain response and many important mechanical properties for
a material. These properties depend greatly on the material’s chemical composition and several
other factors of fabrication and service conditions. Monotonic (tension or compression) and cyclic
loading conditions may result in grossly different mechanical behaviors even for a given material.
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STRUCTURAL INTEGRITY AND DURABILITY

Rate of crack growth: A measure of damage evolution and remaining life of a member. In fatigue, the
crack propagation ratéa/dN depends on the stress intensity factor rahigeand material properties.
This relationship is the basis of the powerful, well-established damage-tolerant design method.
Stress concentration factor The localized stress-raising effect of a geometric discontinuity. There are
many, potentially confusing, forms of quantifying this effect. The most prominent factors are distin-
guished concisely:

a. Theoretical stress concentration fackQrs 0,,.,/0ave
Depends on geometry of notch, not on material
Has no engineering units
b. True stress concentration factdf, = 0,,.,/0ave
Depends on geometry of notch and mateKal= K, for perfectly elastic materiak, < K, for
ductile material
Has no engineering units
c. True strain concentration fact®t, = €,,,/€,.0 €Eave = OadE
Depends on geometry of notch and mateKal= K, for perfectly elastic materiak, > K, for
ductile material
Has no engineering units

Stress intensity factor:A measure of the severity of a crack, or the intensity of the stress field near the
crack tip. There are many, potentially confusing, forms of this factor, having identical engineering units
of stress,/length, but a variety of definitions and applications. A few are listed concisely:

a. Opening-mode stress intensity factqr,
Depends on geometry of a crack and applied stress, not on material
Units of stress/length
b. Plane strain fracture toughneks,
Depends on material but not on geometry above a certain thickness, and not on applied stress
Units of stress/length
c. Stress intensity factor rang® = K.« — Kiin
Depends on geometry of a crack and applied cyclic stress, not on material
Units of stress/length
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Further Information

Many technical societies are active in various areas of mechanics of solids, and they are excellent, steady
sources of long-accepted and new information, some of which is available within hours. They also
organize committee work, conferences, symposia, short courses, and workshops; establish codes and
standards; and publish books, papers, journals, and proceedings, covering the latest developments in
numerous specialties. A short list of societies is given here; note that they tend to have international
breadth, regardless of the name. It is wise to belong to several relevant societies and at least scan their
announcements.

ASM International (formerly American Society for Metals) (800-336-5152)

ASME — American Society for Mechanical Engineers (800-843-2763)

ASNT — American Society for Nondestructive Testing (800-222-2768)

ASTM — American Society for Testing and Materials (215-299-5585)

SAE — Society of Automotive Engineers (412-776-4841)

SEM — Society for Experimental Mechanics (203-790-6373)

SES — Standards Engineering Society (513-223-2410)
As a hint of the scope and magnitude of what is available from the large technical societies, here are
selected offerings of ASTM:

* ASTM Staff Access/Tel: 215-299-5585; Fax: 215-977-9679; E-mail: infoctr@local.astm.org

« ASTM Standardization Newa monthly magazine; regularly presents information on “the devel-
opment of voluntary full consensus standards for materials, products, systems and services and
the promotion of related knowledge... the research, testing and new activities of the ASTM
standards-writing committees... the legal, governmental and international events impacting on
the standards development process” (quotes from the masthead).

e Over 50 volumes of ASTM Standards
Samples of standards:
Friction, wear, and abrasion (B611 on wear resistance of carbides; G77 on ranking of materials
in sliding wear)
Fracture mechanics (E399 on fracture toughness testing of metals)
Fatigue (E466 on axial fatigue tests of metals; D671 on flexural fatigue of plastics)
¢ Training courses for ASTM Standards (215-299-5480)
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« ASTM International Directory of Testing Laboratories
« ASTM Directory of Scientific & Technical Consultants & Expert Witnesses

« ASTM Special Technical Publications (STP) are books of peer-reviewed papers on recent research
and developments

Samples of STPs:

STP 1198 —Nondestructive Testing of Pavements and Backcalculation of Mdgketiond
Volume; 1995

STP 1231 —Automation in Fatigue and Fracture: Testing and Analy$895.



PLATE 1 Flat-Trac® Roadway Simulator, R&D 100 Award-winning system in 1993. (Photo courtesy MTS Systems
Corp., Minneapolis, MN.)

PLATE2 Spinning torque transducer with on-board preamplifier. An angular accelerometer is attached at the center
of the torque cell. (Photo courtesy MTS Systems Corp., Minneapolis, MN.)
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PLATE 3 Vibration screening of a circuit board using an electromagnetic shaker and a laser doppler vibration pat-
tern imager. (Photo courtesy Ometron Inc., Sterling, VA.)
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PLATE 4 Vibration patterns of a computer hard disc reader head at 4540 Hz. (Photo courtesy Ometron Inc., Ster-
ling, VA.)
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PLATE5 Vibration patterns of a car door at 40 Hz and 300 Hz. (Photos courtesy Ometron Inc., Sterling, VA.)
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PLATE6 Changes in the vibration patterns of a car door caused by the addition of damping material. (Photos cour-
tesy Ometron Inc., Sterling, VA.)
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PLATE 7 Detection of delaminations in a foam-and-steel composite plate using vibration pattern imaging. (Photo
courtesy Ometron Inc., Sterling, VA.)

PLATE 8 Modal analysis of a vibrating turbine blade using Thermoelastic Stress Analysis. (Photo courtesy Stress
Photonics Inc., Madison, W1.)
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PLATE 9 Biaxial test setup. (Photo courtesy MTS Systems Corp., Minneapolis, MN.)

PLATE 10 Pressure vessel. (Photo courtesy Nooter Corp., St. Louis, MO.)
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PLATE 11 Delta Therm 1000 Stress Imaging System with principal inventor Jon R. Lesniak. R&D 100 Award-win-
ning instrument in 1994. (Photo courtesy Stress Photonics Inc., Madison, WI.)

PLATE 12 TSA stress images and samples of data processing by Delta Therm instrument (Color Plate 11). (Photo
courtesy Stress Photonics Inc., Madison, WI.)
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PLATE 13 TSA stress images showing damage evolution at a weld. Top: beginning of fatigue testing; yellow shows
stress concentration at weld toe (no crack); dark blue spots represent lower stress at weld splatter. Bottom: gross and
uneven stress redistribution to tips of crack (= 0.5 in. long) after 1 million cycles. (Photos courtesy Mark J. Fleming,
University of Wisconsin-Madison.)

PLATE 14 Direct measurement of crack length and stress intensity factors by TSA stress imaging. Top: crack at
41,000 cycles. Bottom: crack at 94,000 cycles; light shows through the crack; blues show stress relief at crack faces and
nearby. (Photos courtesy Mark J. Fleming, University of Wisconsin-Madison.)
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PLATE 15 Closed-loop, electro-hydraulic mechanical testing systems. (Photo courtesy MTS Systems Corp., Minne-
apolis, MN.)

PLATE 16  Strain-gauging of a vehicle’s suspension system in progress.
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