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1.1 Introduction

Bela I. Sandor

Engineers use the concepts and methods of mechanics of solids in designing and evaluating tools,
machines, and structures, ranging from wrenches to cars to spacecraft. The required educational back
ground for these includes courses in statics, dynamics, mechanics of materials, and related subjFor
example, dynamics of rigid bodies is needed in generalizing the spectrum of service loads onr,
which is essential in defining the vehicle’s deformations and long-term durability. In regard to structural
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integrity and durability, the designer should think not only about preventing the catastrophic failures of
products, but also of customer satisfaction. For example, a car with gradually loosening bolts (which 
difficult to prevent in a corrosive and thermal and mechanical cyclic loading environment) is a poor
product because of safety, vibration, and noise problems. There are sophisticated methods to assure
product’s performance and reliability, as exemplified in Figure 1.1.1. A similar but even more realistic
test setup is shown in Color Plate 1.*

It is common experience among engineers that they have to review some old knowledge or learn
something new, but what is needed at the moment is not at their fingertips. This chapter may help the
reader in such a situation. Within the constraints of a single book on mechanical engineering, it provides
overviews of topics with modern perspectives, illustrations of typical applications, modeling to solve
problems quantitatively with realistic simplifications, equations and procedures, useful hints and rem
ers of common errors, trends of relevant material and mechanical system behaviors, and references to
additional information.

The chapter is like an emergency toolbox. It includes a coherent assortment of basic tools, suc
vector expressions useful for calculating bending stresses caused by a three-dimensional force 
on a shaft, and sophisticated methods, such as life prediction of components using fracture me
and modern measurement techniques. In many cases much more information should be considered t
is covered in this chapter.

* Color Plates 1 to 16 follow page 1-131.

FIGURE 1.1.1 Artist’s concept of a moving stainless steel roadway to drive the suspension system through 
spinning, articulated wheel, simulating three-dimensional motions and forces. (MTS Systems Corp., Minne
MN. With permission.) Notes: Flat-Trac® Roadway Simulator, R&D100 Award-winning system in 1993. See also
Color Plate 1.*
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1.2 Statics

Bela I. Sandor

Vectors. Equilibrium of Particles. Free-Body Diagrams

Two kinds of quantities are used in engineering mechanics. A scalar quantity has only magnitude (mas
time, temperature, …). A vector quantity has magnitude and direction (force, velocity, ...). Vectors are
represented here by arrows and bold-face symbols, and are used in analysis according to universally
applicable rules that facilitate calculations in a variety of problems. The vector methods are indispensabl
in three-dimensional mechanics analyses, but in simple cases equivalent scalar calculations are sufficient.

Vector Components and Resultants. Parallelogram Law

A given vector F may be replaced by two or three other vectors that have the same net effect and
representation. This is illustrated for the chosen directions m and n for the components of F in two
dimensions (Figure 1.2.1). Conversely, two concurrent vectors F and P of the same units may be
combined to get a resultant R (Figure 1.2.2).

Any set of components of a vector F must satisfy the parallelogram law. According to Figure 1.2.1,
the law of sines and law of cosines may be useful.

(1.2.1)

Any number of concurrent vectors may be summed, mathematically or graphically, and in any order,
using the above concepts as illustrated in Figure 1.2.3.

FIGURE 1.2.1 Addition of concurrent vectors F and P.

FIGURE 1.2.2 Addition of concurrent, coplanar 
vectors A, B, and C.

FIGURE 1.2.3 Addition of concurrent, coplanar vectors
A, B, and C.
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Unit Vectors

Mathematical manipulations of vectors are greatly facilitated by the use of unit vectors. A unit vector
n has a magnitude of unity and a defined direction. The most useful of these are the unit coordina
vectors i, j , and k as shown in Figure 1.2.4.

The three-dimensional components and associated quantities of a vector F are shown in Figure 1.2.5.
The unit vector n is collinear with F.

The vector F is written in terms of its scalar components and the unit coordinate vectors,

(1.2.2)

where

The unit vector notation is convenient for the summation of concurrent vectors in terms of scalar or
vector components:

Scalar components of the resultant R:

(1.2.3)

FIGURE 1.2.4 Unit vectors in Cartesian coordinates (the same i, j ,
and k set applies in a parallel x′y′z′ system of axes).

FIGURE 1.2.5 Three-dimensional components of a vector F.
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(1.2.4)

Vector Determination from Scalar Information

A force, for example, may be given in terms of its magnitude F, its sense of direction, and its line o
action. Such a force can be expressed in vector form using the coordinates of any two points on its line
of action. The vector sought is

The method is to find n on the line of points A(x1, y1, z1) and B(x2, y2, z2):

where dx = x2 – x1, dy = y2 – y1, dz = z2 – z1.

Scalar Product of Two Vectors. Angles and Projections of Vectors

The scalar product, or dot product, of two concurrent vectors A and B is defined by

(1.2.5)

where A and B are the magnitudes of the vectors and φ is the angle between them. Some useful expressions
are

The projection F′ of a vector F on an arbitrary line of interest is determined by placing a unit vector
n on that line of interest, so that

Equilibrium of a Particle

A particle is in equilibrium  when the resultant of all forces acting on it is zero. In such cases
algebraic summation of rectangular scalar components of forces is valid and convenient:

(1.2.6)

Free-Body Diagrams

Unknown forces may be determined readily if a body is in equilibrium and can be modeled as a pa
The method involves free-body diagrams, which are simple representations of the actual bodies. The
appropriate model is imagined to be isolated from all other bodies, with the significant effects of other
bodies shown as force vectors on the free-body diagram.
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Example 1

A mast has three guy wires. The initial tension in each wire is planned to be 200 lb. Determine whether
this is feasible to hold the mast vertical (Figure 1.2.6).

Solution.

The three tensions of known magnitude (200 lb) must be written as vectors.

The resultant of the three tensions is

There is a horizontal resultant of 31.9 lb at A, so the mast would not remain vertical.

Forces on Rigid Bodies

All solid materials deform when forces are applied to them, but often it is reasonable to model componen
and structures as rigid bodies, at least in the early part of the analysis. The forces on a rigid body are
generally not concurrent at the center of mass of the body, which cannot be modeled as a particle if th
force system tends to cause a rotation of the body.

FIGURE 1.2.6 A mast with guy wires.
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Moment of a Force

The turning effect of a force on a body is called the moment of the force, or torque. The moment MA

of a force F about a point A is defined as a scalar quantity

(1.2.7)

where d (the moment arm or lever arm) is the nearest distance from A to the line of action of F. This
nearest distance may be difficult to determine in a three-dimensional scalar analysis; a vector method
is needed in that case.

Equivalent Forces

Sometimes the equivalence of two forces must be established for simplifying the solution of a proble
The necessary and sufficient conditions for the equivalence of forces F and F′

 
are that they have the

same magnitude, direction, line of action, and moment on a given rigid body in static equilibrium. Thus,

For example, the ball joint A in Figure 1.2.7 experiences the same moment whether the vertical force
is pushing or pulling downward on the yoke pin.

Vector Product of Two Vectors

A powerful method of vector mechanics is available for solving complex problems, such as the momen
of a force in three dimensions. The vector product (or cross product) of two concurrent vectors A and
B is defined as the vector V = A × B with the following properties:

1. V is perpendicular to the plane of vectors A and B.
2. The sense of V is given by the right-hand rule (Figure 1.2.8).
3. The magnitude of V is V = AB sinθ, where θ is the angle between A and B.
4. A × B ≠ B × A, but A × B = –(B × A).
5. For three vectors, A × (B + C) = A × B + A × C.

FIGURE 1.2.7 Schematic of testing a ball joint of a car.

FIGURE 1.2.8 Right-hand rule for vector products.

M FdA =

F F= ′ = ′and M MA A
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The vector product is calculated using a determinant,

(1.2.8)

Moment of a Force about a Point

The vector product is very useful in determining the moment of a force F about an arbitrary point O.
The vector definition of moment is

(1.2.9)

where r  is the position vector from point O to any point on the line of action of F. A double arrow is
often used to denote a moment vector in graphics.

The moment MO may have three scalar components, Mx, My, Mz, which represent the turning effec
of the force F about the corresponding coordinate axes. In other words, a single force has on
moment about a given point, but this moment may have up to three components with respe
coordinate system,

Triple Products of Three Vectors

Two kinds of products of three vectors are used in engineering mechanics. The mixed triple product (or
scalar product) is used in calculating moments. It is the dot product of vector A with the vector product
of vectors B and C,

(1.2.10)

The vector triple product (A × B) × C = V × C is easily calculated (for use in dynamics), but note th

Moment of a Force about a Line

It is common that a body rotates about an axis. In that case the moment M, of a force F about the axis,
say line ,, is usefully expressed as

(1.2.11)

where n is a unit vector along the line ,, and r  is a position vector from point O on , to a point on the
line of action of F. Note that M, is the projection of MO on line ,.
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Special Cases

1. The moment about a line , is zero when the line of action of F intersects , (the moment arm is
zero).

2. The moment about a line , is zero when the line of action of F is parallel to , (the projection of
MO on , is zero).

Moment of a Couple

A pair of forces equal in magnitude, parallel in lines of action, and opposite in direction is ca
couple. The magnitude of the moment of a couple is

where d is the distance between the lines of action of the forces of magnitude F. The moment of a couple
is a free vector M that can be applied anywhere to a rigid body with the same turning effect, as long
as the direction and magnitude of M  are the same. In other words, a couple vector can be moved to any
other location on a given rigid body if it remains parallel to its original position (equivalent couples).
Sometimes a curled arrow in the plane of the two forces is used to denote a couple, instead of the cou
vector M , which is perpendicular to the plane of the two forces.

Force-Couple Transformations

Sometimes it is advantageous to transform a force to a force system acting at another point, o
versa. The method is illustrated in Figure 1.2.9.

1. A force F acting at B on a rigid body can be replaced by the same force F acting at A and a
moment MA = r  × F about A.

2. A force F and moment MA acting at A can be replaced by a force F acting at B for the same total
effect on the rigid body.

Simplification of Force Systems

Any force system on a rigid body can be reduced to an equivalent system of a resultant force R and a
resultant moment MR. The equivalent force-couple system is formally stated as

(1.2.12)

where MR depends on the chosen reference point.

Common Cases

1. The resultant force is zero, but there is a resultant moment: R = 0, MR ≠ 0.
2. Concurrent forces (all forces act at one point): R ≠ 0, MR = 0.
3. Coplanar forces: R ≠ 0, MR ≠ 0. MR is perpendicular to the plane of the forces.
4. Parallel forces: R ≠ 0, MR ≠ 0. MR is perpendicular to R.

FIGURE 1.2.9 Force-couple transformations.
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Example 2

The torque wrench in Figure 1.2.10 has an arm of constant length L but a variable socket length d =
OA because of interchangeable tool sizes. Determine how the moment applied at point O depends on
the length d for a constant force F from the hand.

Solution. Using MO = r  × F with r  = Li + dj  and F = Fk in Figure 1.2.10,

Judgment of the Result

According to a visual analysis the wrench should turn clockwise, so the –j  component of the moment
is justified. Looking at the wrench from the positive x direction, point A has a tendency to rotate
counterclockwise. Thus, the i component is correct using the right-hand rule.

Equilibrium of Rigid Bodies

The concept of equilibrium is used for determining unknown forces and moments of forces that act o
or within a rigid body or system of rigid bodies. The equations of equilibrium are the most usef
equations in the area of statics, and they are also important in dynamics and mechanics of materi
The drawing of appropriate free-body diagrams is essential for the application of these equations

Conditions of Equilibrium

A rigid body is in static equilibrium when the equivalent force-couple system of the external forces
acting on it is zero. In vector notation, this condition is expressed as

(1.2.13)

where O is an arbitrary point of reference.
In practice it is often most convenient to write Equation 1.2.13 in terms of rectangular scalar co

ponents,

FIGURE 1.2.10 Model of a torque wrench.
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Maximum Number of Independent Equations for One Body

1. One-dimensional problem: ∑F = 0
2. Two-dimensional problem:

3. Three-dimensional problem:

where xyz are orthogonal coordinate axes, and A, B, C are particular points of reference.

Calculation of Unknown Forces and Moments

In solving for unknown forces and moments, always draw the free-body diagram first. Unknown external
forces and moments must be shown at the appropriate places of action on the diagram. The directions
of unknowns may be assumed arbitrarily, but should be done consistently for systems of rigid bodi
A negative answer indicates that the initial assumption of the direction was opposite to the actua
direction. Modeling for problem solving is illustrated in Figures 1.2.11 and 1.2.12.

Notes on Three-Dimensional Forces and Supports

Each case should be analyzed carefully. Sometimes a particular force or moment is possible in a device,
but it must be neglected for most practical purposes. For example, a very short sleeve bearing cannot

FIGURE 1.2.11 Example of two-dimensional modeling.

FIGURE 1.2.12 Example of three-dimensional modeling.
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support significant moments. A roller bearing may be designed to carry much larger loads perpendicular
to the shaft than along the shaft.

Related Free-Body Diagrams

When two or more bodies are in contact, separate free-body diagrams may be drawn for each body. The
mutual forces and moments between the bodies are related according to Newton’s third law (action and
reaction). The directions of unknown forces and moments may be arbitrarily assumed in one diag
but these initial choices affect the directions of unknowns in all other related diagrams. The number of
unknowns and of usable equilibrium equations both increase with the number of related free
diagrams.

Schematic Example in Two Dimensions (Figure 1.2.13)

Given: F1, F2, F3, M
Unknowns: P1, P2, P3, and forces and moments at joint A (rigid connection)

Equilibrium Equations

Three unknowns (P1, P2, P3) are in three equations.

Related Free-Body Diagrams (Figure 1.2.14)

Dimensions a, b, c, d, and e of Figure 1.2.13 are also valid here.

FIGURE 1.2.13 Free-body diagram.

FIGURE 1.2.14 Related free-body diagrams.
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New Set of Equilibrium Equations

Six unknowns (P1, P2, P3, Ax, Ay, MA) are in six equations.

Note: In the first diagram (Figure 1.2.13) the couple M may be moved anywhere from O to B. M is
not shown in the second diagram (O to A) because it is shown in the third diagram (in which it may be
moved anywhere from A to B).

Example 3

The arm of a factory robot is modeled as three bars (Figure 1.2.15) with coordinates A: (0.6, –0.3, 0.4)
m; B: (1, –0.2, 0) m; and C: (0.9, 0.1, –0.25) m. The weight of the arm is represented by WA = –60 Nj
at A, and WB = –40 Nj  at B. A moment MC = (100i – 20j  + 50k) N · m is applied to the arm at C.
Determine the force and moment reactions at O, assuming that all joints are temporarily fixed.

Solution. The free-body diagram is drawn in Figure 1.2.15b, showing the unknown force and moment
reactions at O. From Equation 1.2.13,

FIGURE 1.2.15 Model of a factory robot.
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Example 4

A load of 7 kN may be placed anywhere within A and B in the trailer of negligible weight. Determine
the reactions at the wheels at D, E, and F, and the force on the hitch H that is mounted on the car, for
the extreme positions A and B of the load. The mass of the car is 1500 kg, and its weight is acting
C (see Figure 1.2.16).

Solution. The scalar method is best here.

Forces and Moments in Beams

Beams are common structural members whose main function is to resist bending. The geometric changes
and safety aspects of beams are analyzed by first assuming that they are rigid. The preceding sections
enable one to determine (1) the external (supporting) reactions acting on a statically determinate be
and (2) the internal forces and moments at any cross section in a beam.

FIGURE 1.2.16 Analysis of a car with trailer.

Put the load at position A first
For the trailer alone, with y as the vertical axis

∑MF = 7(1) – Hy(3) = 0, Hy = 2.33 kN
On the car

Hy = 2.33 kN ↓Ans.
∑Fy = 2.33 – 7 + Fy = 0, Fy = 4.67 kN ↑Ans.

For the car alone
∑ME = –2.33(1.2) – Dy(4) + 14.72(1.8) = 0
Dy = 5.93 kN ↑Ans.
∑Fy = 5.93 + Ey – 14.72 – 2.33 = 0
Ey = 11.12 kN ↑Ans.

Put the load at position B next
For the trailer alone

∑MF = 0.8(7) – Hy(3) = 0, Hy = –1.87 kN
On the car

Hy = 1.87 kN ↓Ans.
∑Fy = –1.87 – 7 + Ey = 0
Ey = 8.87 kN ↑Ans.

For the car alone
∑ME = –(1.87)(1.2) – Dy(4) + 14.72(1.8) = 0
Dy = 7.19 kN ↑Ans.
∑Fy = 7.19 + Ey – 14.72 – (–1.87) = 0
Ey = 5.66 kN ↑Ans.

F jO = 100 N 

MO∑ = 0

M M r W r WO C OA A OB B+ + ×( ) + ×( ) = 0

M i j k  i j k  j i j  jO + − +( ) ⋅ +  − +( ) × −( ) + −( ) × −( ) =100 20 50 0 6 0 3 0 4 60 0 2 40 0 N m  m  N  m  N . . .  .

M i j k k i kO + ⋅ − ⋅ + ⋅ − ⋅ + ⋅ − ⋅ =100 20 50 36 24 40 0 N m  N m  N m  N m  N m  N m 

M i j kO = −  +  +( ) ⋅124 20 26  N m
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Classification of Supports

Common supports and external reactions for two-dimensional loading of beams are shown in Figure
1.2.17.

Internal Forces and Moments

The internal force and moment reactions in a beam caused by external loading must be determined fo
evaluating the strength of the beam. If there is no torsion of the beam, three kinds of internal re
are possible: a horizontal normal force H on a cross section, vertical (transverse) shear force V, and
bending moment M. These reactions are calculated from the equilibrium equations applied to th
or right part of the beam from the cross section considered. The process involves free-body diagrams
of the beam and a consistently applied system of signs. The modeling is illustrated for a cantilever beam
in Figure 1.2.18.

Sign Conventions. Consistent sign conventions should be used in any given problem. These could be
arbitrarily set up, but the following is slightly advantageous. It makes the signs of the answers to th
equilibrium equations correct for the directions of the shear force and bending moment.

A moment that makes a beam concave upward is taken as positive. Thus, a clockwise moment is
positive on the left side of a section, and a counterclockwise moment is positive on the right side. A

FIGURE 1.2.17 Common beam supports.

FIGURE 1.2.18 Internal forces and moments in a cantilever beam.
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shear force that acts upward on the left side of a section, or downward on the right side, is positive
(Figure 1.2.19).

Shear Force and Bending Moment Diagrams

The critical locations in a beam are determined from shear force and bending moment diagrams
whole length of the beam. The construction of these diagrams is facilitated by following the steps
illustrated for a cantilever beam in Figure 1.2.20.

1. Draw the free-body diagram of the whole beam and determine all reactions at the suppor
2. Draw the coordinate axes for the shear force (V) and bending moment (M) diagrams directly

below the free-body diagram.
3. Immediately plot those values of V and M that can be determined by inspection (especially wh

they are zero), observing the sign conventions.
4. Calculate and plot as many additional values of V and M as are necessary for drawing reasonably

accurate curves through the plotted points, or do it all by computer.

Example 5

A construction crane is modeled as a rigid bar AC which supports the boom by a pin at B and wire C
The dimensions are AB = 10,, BC = 2,, BD = DE = 4,. Draw the shear force and bending mome
diagrams for bar AC (Figure 1.2.21).

Solution. From the free-body diagram of the entire crane,

FIGURE 1.2.19 Preferred sign conventions.

FIGURE 1.2.20 Construction of shear force and bending moment diagrams.
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Now separate bar AC and determine the forces at B and C.

From (a) and (c), Bx = 4P and = 4P. From (b) and (c), By = P – 2P = –P and = 2P.
Draw the free-body diagram of bar AC horizontally, with the shear force and bending moment diagra

axes below it. Measure x from end C for convenience and analyze sections 0 ≤ x ≤ 2, and 2, ≤ x ≤ 12,
(Figures 1.2.21b to 1.2.21f).

1. 0 ≤ x ≤ 2,

2. 2, ≤ x ≤ 12,

FIGURE 1.2.21 Shear force and bending moment diagrams of a component in a structure.
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At point B, x = 2,, = –4P(2,) = –8P, = = MA. The results for section AB, 2, ≤ x ≤ 12,, show
that the combined effect of the forces at B and C is to produce a couple of magnitude 8P, on the beam.
Hence, the shear force is zero and the moment is constant in this section. These results are plotted on
the axes below the free-body diagram of bar A-B-C.

Simple Structures and Machines

Ryan Roloff and Bela I. Sandor

Equilibrium equations are used to determine forces and moments acting on statically determinate
structures and machines. A simple structure is composed solely of two-force members. A machine is
composed of multiforce members. The method of joints and the method of sections are commonly u
in such analysis.

Trusses

Trusses consist of straight, slender members whose ends are connected at joints. Two-dimensional plane
trusses carry loads acting in their planes and are often connected to form three-dimensional space trusses.
Two typical trusses are shown in Figure 1.2.22.

To simplify the analysis of trusses, assume frictionless pin connections at the joints. Thus, all members
are two-force members with forces (and no moments) acting at the joints. Members may be as
weightless or may have their weights evenly divided to the joints.

Method of Joints

Equilibrium equations based on the entire truss and its joints allow for determination of all internal
forces and external reactions at the joints using the following procedure.

1. Determine the support reactions of the truss. This is done using force and moment equilibriu
equations and a free-body diagram of the entire truss.

2. Select any arbitrary joint where only one or two unknown forces act. Draw the free-body diagram
of the joint assuming unknown forces are tensions (arrows directed away from the joint).

3. Draw free-body diagrams for the other joints to be analyzed, using Newton’s third law consistently
with respect to the first diagram.

4. Write the equations of equilibrium, ∑Fx = 0 and ∑Fy = 0, for the forces acting at the joints an
solve them. To simplify calculations, attempt to progress from joint to joint in such a way that
each equation contains only one unknown. Positive answers indicate that the assumed directio
of unknown forces were correct, and vice versa.

Example 6

Use the method of joints to determine the forces acting at A, B, C, H, and I of the truss in Figure 1.2.23a.
The angles are α = 56.3°, β = 38.7°, φ = 39.8°, and θ = 36.9°.

FIGURE 1.2.22 Schematic examples of trusses.
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Solution. First the reactions at the supports are determined and are shown in Figure 1.2.23b. A joint at
which only two unknown forces act is the best starting point for the solution. Choosing joint A, the
solution is progressively developed, always seeking the next joint with only two unknowns. In each
diagram circles indicate the quantities that are known from the preceding analysis. Sample calculatio
show the approach and some of the results.

Method of Sections

The method of sections is useful when only a few forces in truss members need to be determin
regardless of the size and complexity of the entire truss structure. This method employs any section of
the truss as a free body in equilibrium. The chosen section may have any number of joints and members
in it, but the number of unknown forces should not exceed three in most cases. Only three equations
equilibrium can be written for each section of a plane truss. The following procedure is recommended

1. Determine the support reactions if the section used in the analysis includes the joints sup

FIGURE 1.2.23 Method of joints in analyzing a truss.
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2. Section the truss by making an imaginary cut through the members of interest, preferably th
only three members in which the forces are unknowns (assume tensions). The cut need not be a
straight line. The sectioning is illustrated by lines l-l, m-m, and n-n in Figure 1.2.24.

3. Write equations of equilibrium. Choose a convenient point of reference for moments to simplif
calculations such as the point of intersection of the lines of action for two or more of the unknown
forces. If two unknown forces are parallel, sum the forces perpendicular to their lines of ac

4. Solve the equations. If necessary, use more than one cut in the vicinity of interest to allow writing
more equilibrium equations. Positive answers indicate assumed directions of unknown forces were
correct, and vice versa.

Space Trusses

A space truss can be analyzed with the method of joints or with the method of sections. For each joint,
there are three scalar equilibrium equations, ∑Fx = 0, ∑Fy = 0, and ∑Fz = 0. The analysis must begin
at a joint where there are at least one known force and no more than three unknown forces. The solution
must progress to other joints in a similar fashion.

There are six scalar equilibrium equations available when the method of sections is used: ∑Fx = 0,
∑Fy = 0, ∑Fz = 0, ∑Mx = 0, ∑My = 0, and ∑Mz = 0.

Frames and Machines

Multiforce members (with three or more forces acting on each member) are common in structu
these cases the forces are not directed along the members, so they are a little more complex to analyze
than the two-force members in simple trusses. Multiforce members are used in two kinds of structure.
Frames are usually stationary and fully constrained. Machines have moving parts, so the forces acting
on a member depend on the location and orientation of the member.

The analysis of multiforce members is based on the consistent use of related free-body diagra. The
solution is often facilitated by representing forces by their rectangular components. Scalar equilib
equations are the most convenient for two-dimensional problems, and vector notation is advantageous
in three-dimensional situations.

Often, an applied force acts at a pin joining two or more members, or a support or connection m
exist at a joint between two or more members. In these cases, a choice should be made of a 
member at the joint on which to assume the external force to be acting. This decision should be stated
in the analysis. The following comprehensive procedure is recommended.

Three independent equations of equilibrium are available for each member or combination of membe
in two-dimensional loading; for example, ∑Fx = 0, ∑Fy = 0, ∑MA = 0, where A is an arbitrary point of
reference.

1. Determine the support reactions if necessary.
2. Determine all two-force members.

FIGURE 1.2.24 Method of sections in analyzing a truss.
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3. Draw the free-body diagram of the first member on which the unknown forces act assumin
the unknown forces are tensions.

4. Draw the free-body diagrams of the other members or groups of members using Newton’
law (action and reaction) consistently with respect to the first diagram. Proceed until the n
of equilibrium equations available is no longer exceeded by the total number of unknowns

5. Write the equilibrium equations for the members or combinations of members and solve 
Positive answers indicate that the assumed directions for unknown forces were correct, an
versa.

Distributed Forces

The most common distributed forces acting on a body are parallel force systems, such as the 
gravity. These can be represented by one or more concentrated forces to facilitate the required a
Several basic cases of distributed forces are presented here. The important topic of stress an
covered in mechanics of materials.

Center of Gravity

The center of gravity of a body is the point where the equivalent resultant force caused by gra
acting. Its coordinates are defined for an arbitrary set of axes as

(1.2.14)

where x, y, z are the coordinates of an element of weight dW, and W is the total weight of the body. In
the general case dW = γ dV, and W = ∫γ dV, where γ = specific weight of the material and dV = elemental
volume.

Centroids

If γ is a constant, the center of gravity coincides with the centroid, which is a geometrical prope
a body. Centroids of lines L, areas A, and volumes V are defined analogously to the coordinates of t
center of gravity,

For example, an area A consists of discrete parts A1, A2, A3, where the centroids x1, x2, x3 of the three
parts are located by inspection. The x coordinate of the centroid of the whole area A is  obtained from

 = A1x1 + A2x2 + A3x3.
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Surfaces of Revolution. The surface areas and volumes of bodies of revolution can be calculated using
the concepts of centroids by the theorems of Pappus (see texts on Statics).

Distributed Loads on Beams

The distributed load on a member may be its own weight and/or some other loading such as from 
or wind. The external and internal reactions to the loading may be determined using the conditi
equilibrium.

External Reactions. Replace the whole distributed load with a concentrated force equal in magnitude
the area under the load distribution curve and applied at the centroid of that area parallel to the orig
force system.

Internal Reactions. For a beam under a distributed load w(x), where x is distance along the beam, th
shear force V and bending moment M are related according to Figure 1.2.25 as

(1.2.18)

Other useful expressions for any two cross sections A and B of a beam are

(1.2.19)

Example 7 (Figure 1.2.26)

Distributed Loads on Flexible Cables

The basic assumptions of simple analyses of cables are that there is no resistance to bending
the internal force at any point is tangent to the cable at that point. The loading is denoted by w(x), a

FIGURE 1.2.25 Internal reactions in a beam under distributed loading.

FIGURE 1.2.26 Shear force and bending moment diagrams for a cantilever beam.
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continuous but possibly variable load, in terms of force per unit length. The differential equation of a
cable is

(1.2.20)

where To = constant = horizontal component of the tension T in the cable.
Two special cases are common.

Parabolic Cables. The cable supports a load w which is uniformly distributed horizontally. The shape
of the cable is a parabola given by

(1.2.21)

In a symmetric cable the tension is .

Catenary Cables. When the load w is uniformly distributed along the cable, the cable’s shape is given by

(1.2.22)

The tension in the cable is T = To + wy.

Friction

A friction force F (or ^, in typical other notation) acts between contacting bodies when they slide
relative to one another, or when sliding tends to occur. This force is tangential to each body at the poi
of contact, and its magnitude depends on the normal force N pressing the bodies together and on t
material and condition of the contacting surfaces. The material and surface properties are lumped togethe
and represented by the coefficient of friction µ. The friction force opposes the force that tends to cau
motion, as illustrated for two simple cases in Figure 1.2.27.

The friction forces F may vary from zero to a maximum value,

(1.2.23)

depending on the applied force that tends to cause relative motion of the bodies. The coefficient of
kinetic friction µk (during sliding) is lower than the coefficient of static friction µ or µs; µk depends on
the speed of sliding and is not easily quantified.

FIGURE 1.2.27 Models showing friction forces.
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Angle of Repose

The critical angle θc at which motion is impending is the angle of repose, where the friction force 
its maximum for a given block on an incline.

(1.2.24)

So θc is measured to obtain µs. Note that, even in the case of static, dry friction, µs depends on temperature
humidity, dust and other contaminants, oxide films, surface finish, and chemical reactions. The c
area and the normal force affect µs only when significant deformations of one or both bodies occur

Classifications and Procedures for Solving Friction Problems

The directions of unknown friction forces are often, but not always, determined by inspection
magnitude of the friction force is obtained from Fmax = µsN when it is known that motion is impending
Note that F may be less than Fmax. The major steps in solving problems of dry friction are organized
three categories as follows.

Wedges and Screws

A wedge may be used to raise or lower a body. Thus, two directions of motion must be conside
each situation, with the friction forces always opposing the impending or actual motion. The self-lo

A. Given: Bodies, forces, or coefficients of friction are known. Impending motion
not assured: F ≠ µsN.

Procedure: To determine if equilibrium is possible:
1. Construct the free-body diagram.
2. Assume that the system is in equilibrium.
3. Determine the friction and normal forces necessary for equilibrium
4. Results: (a) F < µsN, the body is at rest.

(b) F > µsN, motion is occurring, static equilibrium is no
possible. Since there is motion, F = µkN. Complete
solution requires principles of dynamics.

B. Given: Bodies, forces, or coefficients of friction are given. Impending motion
specified. F = µsN is valid.

Procedure: To determine the unknowns:
1. Construct the free-body diagram.
2. Write F = µsN for all surfaces where motion is impending.
3. Determine µs or the required forces from the equation of equilibrium

C. Given: Bodies, forces, coefficients of friction are known. Impending motion
specified, but the exact motion is not given. The possible motions ma
sliding, tipping or rolling, or relative motion if two or more bodies a
involved. Alternatively, the forces or coefficients of friction may have to 
determined to produce a particular motion from several possible motio

Procedure: To determine the exact motion that may occur, or unknown quan
required:
1. Construct the free-body diagram.
2. Assume that motion is impending in one of the two or more poss

ways. Repeat this for each possible motion and write the equatio
equilibrium.

3. Compare the results for the possible motions and select the likely e
Determine the required unknowns for any preferred motion.

tanθ µc s

F

N
= =
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aspect of a wedge may be of interest. The analysis is straightforward using interrelated fre
diagrams and equilibrium equations.

Screw threads are special applications of the concept of wedges. Square threads are the e
model and analyze. The magnitude M of the moment of a couple required to move a square-threa
screw against an axial load P is

(1.2.25)

where r = radius of the screw
α = tan–1 (L/2πr) = tan–1 (np/2πr)
L = lead = advancement per revolution
n = multiplicity of threads
p = pitch = distance between similar points on adjacent threads
φ = tan–1µ

The relative values of α and φ control whether a screw is self-locking; φ > α is required for a screw to
support an axial load without unwinding.

Disk Friction

Flat surfaces in relative rotary motion generate a friction moment M opposing the motion. For a hollow
member with radii Ro and Ri, under an axial force P,

(1.2.26)

The friction moment tends to decrease (down to about 75% of its original value) as the surface
Use the appropriate µs or µk value.

Axle Friction

The friction moment M of a rotating axle in a journal bearing (sliding bearing) is approximated (if µ is
low) as

(1.2.27)

where P = transverse load on the axle
r = radius of the axle

Use the appropriate µs or µk value.

Rolling Resistance

Rolling wheels and balls have relatively low resistance to motion compared to sliding. This resis
is caused by internal friction of the materials in contact, and it may be difficult to predict or mea

A coefficient of rolling resistance a is defined with units of length,

(1.2.28)

where r = radius of a wheel rolling on a flat surface
F = minimum horizontal force to maintain constant speed of rolling
P = load on wheel

Values of a range upward from a low of about 0.005 mm for hardened steel elements.

M = +( )Pr tan α φ

M P
R R

R R
o i

o i
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Belt Friction

The tensions T1 and T2 of a belt, rope, or wire on a pulley or drum are related as

(1.2.29)

where β = total angle of belt contact, radians (β = 2πn for a member wrapped around a drum n times).
Use µs for impending slipping and µk for slipping.

For a V belt of belt angle 2φ,

Work and Potential Energy

Work is a scalar quantity. It is the product of a force and the corresponding displacement. Po
energy is the capacity of a system to do work on another system. These concepts are advanta
the analysis of equilibrium of complex systems, in dynamics, and in mechanics of materials.

Work of a Force

The work U of a constant force F is

(1.2.30)

where s = displacement of a body in the direction of the vector F.
For a displacement along an arbitrary path from point 1 to 2, with dr  tangent to the path,

In theory, there is no work when:

1. A force is acting on a fixed, rigid body (dr = 0, dU = 0).
2. A force acts perpendicular to the displacement (F · dr  = 0).

Work of a Couple

A couple of magnitude M does work

(1.2.31)

where θ = angular displacement (radians) in the same plane in which the couple is acting.
In a rotation from angular position α to β,

Virtual Work

The concept of virtual work (through imaginary, infinitesimal displacements within the constraints
system) is useful to analyze the equilibrium of complex systems. The virtual work of a force F or moment
M  is expressed as

T T e T T2 1 2 1= >( )µβ

T T e2 1= µβ φsin

U Fs=

U d F dx F dy F dzx y z= ⋅ = + +( )∫ ∫1

2

1

2

F r

U M= θ

U d M d M d M dx x y y z z= ⋅ = + +( )∫ ∫α

β

α

β

θ θ θ θM
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There is equilibrium if

(1.2.32)

where the subscripts refer to individual forces or couples and the corresponding displacements, i
frictional effects.

Mechanical Efficiency of Real Systems

Real mechanical systems operate with frictional losses, so

The mechanical efficiency η of a machine is

Gravitational Work and Potential Energy

The potential of a body of weight W to do work because of its relative height h with respect to an
arbitrary level is defined as its potential energy. If h is the vertical (y) distance between level 1 and 
lower level 2, the work of weight W in descending is

The work of weight W in rising from level 2 to level 1 is

Elastic Potential Energy

The potential energy of elastic members is another common form of potential energy in engin
mechanics. For a linearly deforming helical spring, the axial force F and displacement x are related by
the spring constant k,

The work U of a force F on an initially undeformed spring is

(1.2.33)
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= ⋅
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In the general case, deforming the spring from position x1 to x2,

Notation for Potential Energy

The change in the potential energy V of a system is

Note that negative work is done by a system while its own potential energy is increased by the action
of an external force or moment. The external agent does positive work at the same time since it acts i
the same direction as the resulting displacement.

Potential Energy at Equilibrium

For equilibrium of a system,

where q = an independent coordinate along which there is possibility of displacement.
For a system with n degrees of freedom,

Equilibrium is stable if (d2V/dq2) > 0.
Equilibrium is unstable if (d2V/dq2) < 0.

Equilibrium is neutral only if all derivatives of V are zero. In cases of complex configurations, evaluate
derivatives of higher order as well.

Moments of Inertia

The topics of inertia are related to the methods of first moments. They are traditionally presented in
statics in preparation for application in dynamics or mechanics of materials.

Moments of Inertia of a Mass

The moment of inertia dIx of an elemental mass dM about the x axis (Figure 1.2.28) is defined as

where r is the nearest distance from dM to the x axis. The moments of inertia of a body about the thr
coordinate axes are

U k x x= −( )1
2 2

2
1
2

U V= −∆

dV

dq
= 0

  

∂
∂

V

q
i n

i

= =0 1 2, , , ,K

dI r dM y z dMx = = +( )2 2 2
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(1.2.34)

Radius of Gyration. The radius of gyration rg is defined by and similarly for any other
axis. It is based on the concept of the body of mass M being replaced by a point mass M (same mass)
at a distance rg from a given axis. A thin strip or shell with all mass essentially at a constant dista
rg from the axis of reference is equivalent to a point mass for some analyses.

Moment of Inertia of an Area

The moment of inertia of an elemental area dA about the x axis (Figure 1.2.29) is defined as

where y is the nearest distance from dA to the x axis. The moments of inertia (second moments) of th
area A about the x and y axes (because A is in the xy plane) are

(1.2.35)

The radius of gyration of an area is defined the same way as it is for a mass: etc.

Polar Moment of Inertia of an Area

The polar moment of inertia is defined with respect to an axis perpendicular to the area considere
Figure 1.2.29 this may be the z axis. The polar moment of inertia in this case is

(1.2.36)

Parallel-Axis Transformations of Moments of Inertia

It is often convenient to first calculate the moment of inertia about a centroidal axis and then tran
this with respect to a parallel axis. The formulas for the transformations are

FIGURE 1.2.28 Mass element dM in xyz coordinates.

FIGURE 1.2.29 Area A in the xy plane.
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(1.2.37)

where I or JO = moment of inertia of M or A about any line ,
IC or JC = moment of inertia of M or A about a line through the mass center or centroid

and parallel to ,
d = nearest distance between the parallel lines

Note that one of the two axes in each equation must be a centroidal axis.

Products of Inertia

The products of inertia for areas and masses and the corresponding parallel-axis formulas are
in similar patterns. Using notations in accordance with the preceding formulas, products of inert

(1.2.38)

Parallel-axis formulas are

(1.2.39)

Notes: The moment of inertia is always positive. The product of inertia may be positive, negativ
zero; it is zero if x or y (or both) is an axis of symmetry of the area. Transformations of known mom
and product of inertia to axes that are inclined to the original set of axes are possible but not c
here. These transformations are useful for determining the principal (maximum and minimum) mo
of inertia and the principal axes when the area or body has no symmetry. The principal mome
inertia for objects of simple shape are available in many texts.
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1.3 Dynamics

Stephen M. Birn and Bela I. Sandor

There are two major categories in dynamics, kinematics and kinetics. Kinematics involves the time-
and geometry-dependent motion of a particle, rigid body, deformable body, or a fluid without considering
the forces that cause the motion. It relates position, velocity, acceleration, and time. Kinetics combines
the concepts of kinematics and the forces that cause the motion.

Kinematics of Particles

Scalar Method

The scalar method of particle kinematics is adequate for one-dimensional analysis. A particle is a body
whose dimensions can be neglected (in some analyses, very large bodies are considered particles). The
equations described here are easily adapted and applied to two and three dimensions.

Average and Instantaneous Velocity

The average velocity of a particle is the change in distance divided by the change in time. The
instantaneous velocity is the particle’s velocity at a particular instant.

(1.3.1)

Average and Instantaneous Acceleration

The average acceleration is the change in velocity divided by the change in time. The instantaneous
acceleration is the particle’s acceleration at a particular instant.

(1.3.2)

Displacement, velocity, acceleration, and time are related to one another. For example, if velocity is
given as a function of time, the displacement and acceleration can be determined through integration
and differentiation, respectively. The following example illustrates this concept.

Example 8

A particle moves with a velocity v(t) = 3t2 – 8t. Determine x(t) and a(t), if x(0) = 5.

Solution.

1. Determine x(t) by integration

v
x

t
v

x

t

dx

dt
xave inst t

= = = =
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∆
∆

∆
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= = = = =
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∆
∆

∆
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v dt dx
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− =∫ ∫3 82
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2. Determine a(t) by differentiation

There are four key points to be seen from these graphs (Figure 1.3.1).

1. v = 0 at the local maximum or minimum of the x-t curve.
2. a = 0 at the local maximum or minimum of the v-t curve.
3. The area under the v-t curve in a specific time interval is equal to the net displacement chan

in that interval.
4. The area under the a-t curve in a specific time interval is equal to the net velocity change in that

interval.

FIGURE 1.3.1 Plots of a particle’s kinematics.
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Useful Expressions Based on Acceleration

Equations for nonconstant acceleration:

(1.3.3)

(1.3.4)

Equations for constant acceleration (projectile motion; free fall):

(1.3.5)

These equations are only to be used when the acceleration is known to be a constant. There are other
expressions available depending on how a variable acceleration is given as a function of time, velocity,
or displacement.

Scalar Relative Motion Equations

The concept of relative motion can be used to determine the displacement, velocity, and acceleration
between two particles that travel along the same line. Equation 1.3.6 provides the mathematical basis
for this method. These equations can also be used when analyzing two points on the same body that ar
not attached rigidly to each other (Figure 1.3.2).

(1.3.6)

The notation B/A represents the displacement, velocity, or acceleration of particle B as seen from
particle A. Relative motion can be used to analyze many different degrees-of-freedom systems. A degree
of freedom of a mechanical system is the number of independent coordinate systems needed tfine
the position of a particle.

Vector Method

The vector method facilitates the analysis of two- and three-dimensional problems. In general, curviline
motion occurs and is analyzed using a convenient coordinate system.

Vector Notation in Rectangular (Cartesian) Coordinates

Figure 1.3.3 illustrates the vector method.

FIGURE 1.3.2 Relative motion of two particles along
a straight line.
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The mathematical method is based on determining v and a as functions of the position vector r. Note
that the time derivatives of unit vectors are zero when the xyz coordinate system is fixed. The scalar
components  can be determined from the appropriate scalar equations previously presented
that only include the quantities relevant to the coordinate direction considered.

(1.3.7)

There are a few key points to remember when considering curvilinear motion. First, the instantan
velocity vector is always tangent to the path of the particle. Second, the speed of the particle i
magnitude of the velocity vector. Third, the acceleration vector is not tangent to the path of the particle
and not collinear with v in curvilinear motion.

Tangential and Normal Components

Tangential and normal components are useful in analyzing velocity and acceleration. Figure 1.3.4
illustrates the method and Equation 1.3.8 is the governing equations for it.

v = vnt

(1.3.8)

FIGURE 1.3.3 Vector method for a particle.

FIGURE 1.3.4 Tangential and normal components. C
is the center of curvature.
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The osculating plane contains the unit vectors nt and nn, thus defining a plane. When using normal

and tangential components, it is common to forget to include the component of normal acceleratio
especially if the particle travels at a constant speed along a curved path.

For a particle that moves in circular motion,

(1.3.9)

Motion of a Particle in Polar Coordinates

Sometimes it may be best to analyze particle motion by using polar coordinates as follows (Figure 1.3.5):

(1.3.10)

For a particle that moves in circular motion the equations simplify to

(1.3.11)

Motion of a Particle in Cylindrical Coordinates

Cylindrical coordinates provide a means of describing three-dimensional motion as illustrated in Figure
1.3.6.

(1.3.12)

FIGURE 1.3.5 Motion of a particle in polar coordinates.
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Motion of a Particle in Spherical Coordinates

Spherical coordinates are useful in a few special cases but are difficult to apply to practical problems.
The governing equations for them are available in many texts.

Relative Motion of Particles in Two and Three Dimensions

Figure 1.3.7 shows relative motion in two and three dimensions. This can be used in analyzing th
translation of coordinate axes. Note that the unit vectors of the coordinate systems are the sam
Subscripts are arbitrary but must be used consistently since rB/A = –rA/B etc.

(1.3.13)

Kinetics of Particles

Kinetics combines the methods of kinematics and the forces that cause the motion. There are several
useful methods of analysis based on Newton’s second law.

Newton’s Second Law

The magnitude of the acceleration of a particle is directly proportional to the magnitude of the resultant
force acting on it, and inversely proportional to its mass. The direction of the acceleration is the sam
as the direction of the resultant force.

(1.3.14)

where m is the particle’s mass. There are three key points to remember when applying this equation

1. F is the resultant force.
2. a is the acceleration of a single particle (use aC for the center of mass for a system of particles
3. The motion is in a nonaccelerating reference frame.

FIGURE 1.3.6 Motion of a particle in cylindrical coordinates.

FIGURE 1.3.7 Relative motion using translating coordinates.

r r r
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 forces
Equations of Motion

The equations of motion for vector and scalar notations in rectangular coordinates are

(1.3.15)

The equations of motion for tangential and normal components are

(1.3.16)

The equations of motion in a polar coordinate system (radial and transverse components) are

(1.3.17)

Procedure for Solving Problems

1. Draw a free-body diagram of the particle showing all forces. (The free-body diagram will look
unbalanced since the particle is not in static equilibrium.)

2. Choose a convenient nonaccelerating reference frame.
3. Apply the appropriate equations of motion for the reference frame chosen to calculate the

or accelerations applied to the particle.
4. Use kinematics equations to determine velocities and/or displacements if needed.

Work and Energy Methods

Newton’s second law is not always the most convenient method for solving a problem. Work and energy
methods are useful in problems involving changes in displacement and velocity, if there is no need to
calculate accelerations.

Work of a Force

The total work of a force F in displacing a particle P from position 1 to position 2 along any path is

(1.3.18)

Potential and Kinetic Energies

Gravitational potential energy:  where W = weight and h = vertical elevation
difference.

Elastic potential energy:  where k = spring constant.

Kinetic energy of a particle: T = 1/2mv2,
 
where m = mass and v = magnitude of velocity.

Kinetic energy can be related to work by the principle of work and energy,
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(1.3.19)

where U12 is the work of a force on the particle moving it from position 1 to position 2, T1 is the kinetic
energy of the particle at position 1 (initial kinetic energy), and T2 is the kinetic energy of the particle a
position 2 (final kinetic energy).

Power

Power is defined as work done in a given time.

(1.3.20)

where v is velocity.
Important units and conversions of power are

Advantages and Disadvantages of the Energy Method

There are four advantages to using the energy method in engineering problems:

1. Accelerations do not need to be determined.
2. Modifications of problems are easy to make in the analysis.
3. Scalar quantities are summed, even if the path of motion is complex.
4. Forces that do not do work are ignored.

The main disadvantage of the energy method is that quantities of work or energy cannot be 
determine accelerations or forces that do no work. In these instances, Newton’s second law has to

Conservative Systems and Potential Functions

Sometimes it is useful to assume a conservative system where friction does not oppose the m
the particle. The work in a conservative system is independent of the path of the particle, and p
energy is defined as

A special case is where the particle moves in a closed path. One trip around the path is called cycle.

(1.3.21)

In advanced analysis differential changes in the potential energy function (V) are calculated by the
use of partial derivatives,
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Conservation of Mechanical Energy

Conservation of mechanical energy is assumed if kinetic energy (T) and potential energy (V) change
back and forth in a conservative system (the dissipation of energy is considered negligible). Equation
1.3.22 formalizes such a situation, where position 1 is the initial state and position 2 is the final state.
The reference (datum) should be chosen to reduce the number of terms in the equation.

(1.3.22)

Linear and Angular Momentum Methods

The concept of linear momentum is useful in engineering when the accelerations of particles a
known but the velocities are. The linear momentum is derived from Newton’s second law,

(1.3.23)

The time rate of change of linear momentum is equal to force. When mv is constant, the conservation
of momentum equation results,

(1.3.24)

The method of angular momentum is based on the momentum of a particle about a fixed point, using
the vector product in the general case (Figure 1.3.8).

(1.3.25)

The angular momentum equation can be solved using a scalar method if the motion of the partic
remains in a plane,

If the particle does not remain in a plane, then the general space motion equations apply. They are
derived from the cross-product r  × mv,

FIGURE 1.3.8 Definition of angular momentum for a particle.
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Time Rate of Change of Angular Momentum

In general, a force acting on a particle changes its angular momentum: the time rate of change of angula
momentum of a particle is equal to the sum of the moments of the forces acting on the particle.

A special case is when the sum of the moments about point O is zero. This is the conservation o
angular momentum. In this case (motion under a central force), if the distance r increases, the velocity
must decrease, and vice versa.

Impulse and Momentum

Impulse and momentum are important in considering the motion of particles in impact. The 
impulse and momentum equation is

(1.3.28)

Conservation of Total Momentum of Particles

Conservation of total momentum occurs when the initial momentum of n particles is equal to the fin
momentum of those same n particles,

(1.3.29)

When considering the response of two deformable bodies to direct central impact, the coeffic
restitution is used. This coefficient e relates the initial velocities of the particles to the final velocitie

(1.3.30)
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For real materials, 0 < e < 1. If both bodies are perfectly elastic, e = 1, and if either body is perfectly
plastic, e = 0.

Kinetics of Systems of Particles

There are three distinct types of systems of particles: discrete particles, continuous particles in
and continuous particles in rigid or deformable bodies. This section considers methods for d
particles that have relevance to the mechanics of solids. Methods involving particles in rigid bodie
be discussed in later sections.

Newton’s Second Law Applied to a System of Particles

Newton’s second law can be extended to systems of particles,

(1.3.31)

Motion of the Center of Mass

The center of mass of a system of particles moves under the action of internal and external forc
the total mass of the system and all the external forces were at the center of mass. Equation 1.3.32
defines the position, velocity, and acceleration of the center of mass of a system of particles.

(1.3.32)

Work and Energy Methods for a System of Particles

Gravitational Potential Energy. The gravitational potential energy of a system of particles is the sum
the potential energies of the individual particles of the system.

(1.3.33)

where g = acceleration of gravity
yC = vertical position of center of mass with respect to a reference level

Kinetic Energy. The kinetic energy of a system of particles is the sum of the kinetic energies o
individual particles of the system with respect to a fixed reference frame,

(1.3.34)

A translating reference frame located at the mass center C of a system of particles can be use
advantageously, with

(1.3.35)
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Work and Energy

The work and energy equation for a system of particles is similar to the equation stated for a
particle.

(1.3.36)

Momentum Methods for a System of Particles

Moments of Forces on a System of Particles. The moments of external forces on a system of partic
about a point O are given by

(1.3.37)

Linear and Angular Momenta of a System of Particles. The resultant of the external forces on a syste
of particles equals the time rate of change of linear momentum of that system.

(1.3.38)

The angular momentum equation for a system of particles about a fixed point O is

(1.3.39)

The last equation means that the resultant of the moments of the external forces on a system of par
equals the time rate of change of angular momentum of that system.

Angular Momentum about the Center of Mass

The above equations work well for reference frames that are stationary, but sometimes a special a
may be useful, noting that the angular momentum of a system of particles about its center of mass
the same whether it is observed from a fixed frame at point O or from the centroidal frame whic
be translating but not rotating. In this case

(1.3.40)

Conservation of Momentum

The conservation of momentum equations for a system of particles is analogous to that for a
particle.
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Impulse and Momentum of a System of Particles

The linear impulse momentum for a system of particles is

(1.3.41)

The angular impulse momentum for a system of particles is

(1.3.42)

Kinematics of Rigid Bodies

Rigid body kinematics is used when the methods of particle kinematics are inadequate to solve a problem.
A rigid body is defined as one in which the particles are rigidly connected. This assumption allows for
some similarities to particle kinematics. There are two kinds of rigid body motion, translation and
rotation. These motions may occur separately or in combination.

Translation

Figure 1.3.9 models the translational motion of a rigid body.

(1.3.43)

These equations represent an important fact: when a rigid body is in translation, the motion of 
single point completely specifies the motion of the whole body.

Rotation about a Fixed Axis

Figure 1.3.10 models a point P in a rigid body rotating about a fixed axis with an angular velocity ω.
The velocity v of point P is determined assuming that the magnitude of r  is constant,

(1.3.44)

FIGURE 1.3.9 Translational motion of a rigid body.
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The acceleration a of point P is determined conveniently by using normal and tangential componen

(1.3.45)

Note that the angular acceleration α and angular velocity ω are valid for any line perpendicular to
the axis of rotation of the rigid body at a given instant.

Kinematics Equations for Rigid Bodies Rotating in a Plane

For rotational motion with or without a fixed axis, if displacement is measured by an angle θ,

For a constant angular speed ω,

For a constant angular acceleration α,

Velocities in General Plane Motion

General plane motion of a rigid body is defined by simultaneous translation and rotation in a pla
Figure 1.3.11 illustrates how the velocity of a point A can be determined using Equation 1.3.46, whi
is based on relative motion of particles.

(1.3.46)

FIGURE 1.3.10 Rigid body rotating about a fixed axis.
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There are five important points to remember when solving general plane motion problems, inclu
those of interconnected rigid bodies.

1. The angular velocity of a rigid body in plane motion is independent of the reference point.
2. The common point of two or more pin-jointed members must have the same absolute velocity

even though the individual members may have different angular velocities.
3. The points of contact in members that are in temporary contact may or may not have the same

absolute velocity. If there is sliding between the members, the points in contact have different
absolute velocities. The absolute velocities of the contacting particles are always the same if there
is no sliding.

4. If the angular velocity of a member is not known, but some points of the member move along
defined paths (i.e., the end points of a piston rod), these paths define the directions of the velocity
vectors and are useful in the solution.

5. The geometric center of a wheel rolling on a flat surface moves in rectilinear motion. If there is
no slipping at the point of contact, the linear distance the center point travels is equal to that
portion of the rim circumference that has rolled along the flat surface.

Instantaneous Center of Rotation

The method of instantaneous center of rotation is a geometric method of determining the angular velocity
when two velocity vectors are known for a given rigid body. Figure 1.3.12 illustrates the method. This
procedure can also be used to determine velocities that are parallel to one of the given velocities, by
similar triangles.

Velocities vA and vB are given; thus the body is rotating about point I at that instant. Point I has zero
velocity at that instant, but generally has an acceleration. This method does not work for the determination
of angular accelerations.

Acceleration in General Plane Motion

Figure 1.3.13 illustrates a method of determining accelerations of points of a rigid body. This is similar
to (but more difficult than) the procedure of determining velocities.

FIGURE 1.3.11 Analysis of velocities in general plane motion.

FIGURE 1.3.12 Schematic for instantaneous center of rotation.
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(1.3.47)

There are six key points to consider when solving this kind of a problem.

1. The angular velocity and acceleration of a rigid body in plane motion are independent of
reference point.

2. The common points of pin-jointed members must have the same absolute acceleration even though
the individual members may have different angular velocities and angular accelerations.

3. The points of contact in members that are in temporary contact may or may not have the same
absolute acceleration. Even when there is no sliding between the members, only the tange
accelerations of the points in contact are the same, while the normal accelerations are fre
different in magnitude and direction.

4. The instantaneous center of zero velocity in general has an acceleration and should not be used
as a reference point for accelerations unless its acceleration is known and included in the analysis

5. If the angular acceleration of a member is not known, but some points of the member move along
defined paths, the geometric constraints of motion define the directions of normal and tangentia
acceleration vectors and are useful in the solution.

6. The geometric center of a wheel rolling on a flat surface moves in rectilinear motion. If there is
no slipping at the point of contact, the linear acceleration of the center point is parallel to thflat
surface and equal to rα for a wheel of radius r and angular acceleration α.

General Motion of a Rigid Body

Figure 1.3.14 illustrates the complex general motion (three-dimensional) of a rigid body. It is important
to note that here the angular velocity and angular acceleration vectors are not necessarily in the sam
direction as they are in general plane motion.

Equations 1.3.48 give the velocity and acceleration of a point on the rigid body. These equations are
the same as those presented for plane motion.

FIGURE 1.3.13 Accelerations in general plane motion.
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The most difficult part of solving a general motion problem is determining the angular acceler
vector. There are three cases for the determination of the angular acceleration.

1. The direction of ω is constant. This is plane motion and α =  can be used in scalar solution
of problems.

2. The magnitude of ω is constant but its direction changes. An example of this is a wheel which
travels at a constant speed on a curved path.

3. Both the magnitude and direction of ω change. This is space motion since all or some points of
the rigid body have three-dimensional paths. An example of this is a wheel which accelerates o
a curved path.

A useful expression can be obtained from item 2 and Figure 1.3.15. The rigid body is fixed at point
O and ω has a constant magnitude. Let ω rotate about the Y axis with angular velocity Ω. The angular
acceleration is determined from Equation 1.3.49.

(1.3.49)

For space motion it is essential to combine the results of items 1 and 2, which provide components
of α for the change in magnitude and the change in direction. The following example illustrates the
procedure.

Example 9

The rotor shaft of an alternator in a car is in the horizontal plane. It rotates at a constant angula
of 1500 rpm while the car travels at v = 60 ft/sec on a horizontal road of 400 ft radius (Figure 1.3.16).
Determine the angular acceleration of the rotor shaft if v increases at the rate of 8 ft/sec2.

FIGURE 1.3.14 General motion of a rigid body.

FIGURE 1.3.15 Rigid body fixed at point O.
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Solution. There are two components of α. One is the change in the direction of the rotor shaft’s ωx, and
the other is the change in magnitude from the acceleration of the car.

1. Component from the change in direction. Determine ωc of the car.

Use Equation 1.3.49:

2. Component from the acceleration of the car. Use Equation 1.3.9:

The angular acceleration of the rotor shaft is

This problem could also be solved using the method in the next section.

Time Derivative of a Vector Using a Rotating Frame

The basis of determining time derivatives of a vector using a rotating frame is illustrated in Figure 1.3.17.

FIGURE 1.3.16 Schematic of shaft’s motion.

FIGURE 1.3.17 Time derivative of a vector using a
rotating reference frame.
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Analysis of Velocities and Accelerations Using Rotating and Translating Frames

With the concept of general motion understood, an advantageous method of determining velocities and
accelerations is available by the method of rotating reference frames. There are two cases in which this
method can be used.

For a common origin of XYZ and xyz, with r  being a position vector to a point P,

(1.3.50)

For the origin A of xyz translating with respect XYZ:

(1.3.51)

where Ω is the angular velocity of the xyz frame with respect to XYZ. 2Ω × vxyz is the Coriolis acceleration.

Kinetics of Rigid Bodies in Plane Motion

Equation of Translational Motion

The fundamental equation for rigid body translation is based on Newton’s second law. In Equation
1.3.52, a is the acceleration of the center of mass of the rigid body, no matter where the resultant forc
acts on the body. The sum of the external forces is equal to the mass of the rigid body times 
acceleration of the mass center of the rigid body, independent of any rotation of the body.

(1.3.52)

Equation of Rotational Motion

Equation 1.3.53 states that the sum of the external moments on the rigid body is equal to the mo
of inertia about an axis times the angular acceleration of the body about that axis. The angular
acceleration α is for the rigid body rotating about an axis. This equation is independent of rigid bod
translation.

(1.3.53)

where  An application is illustrated in Color Plate 2.

Applications of Equations of Motion

It is important to use the equations of motion properly. For plane motion, three scalar equations are us
to define the motion in a plane.

(1.3.54)
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If a rigid body undergoes only translation,

(1.3.55)

If the rigid body undergoes pure rotation about the center of mass,

(1.3.56)

Rigid body motions are categorized according to the constraints of the motion:

1. Unconstrained Motion: Equations 1.3.54 are directly applied with all three equations indepen
of one another.

2. Constrained Motion: Equations 1.3.54 are not independent of one another. Generally, a kinematics
analysis has to be made to determine how the motion is constrained in the plane. There are two
special cases:
a. Point constraint: the body has a fixed axis.
b. Line constraint: the body moves along a fixed line or plane.

When considering systems of rigid bodies, it is important to remember that at most only three eq
of motion are available from each free-body diagram for plane motion to solve for three unknowns. The
motion of interconnected bodies must be analyzed using related free-body diagrams.

Rotation about a Fixed Axis Not Through the Center of Mass

The methods presented above are essential in analyzing rigid bodies that rotate about a fixed axis, which
is common in machines (shafts, wheels, gears, linkages). The mass of the rotating body may b
nonuniformly distributed as modeled in Figure 1.3.18.

Note that rC is the nearest distance between the fixed axis O and the mass center C. The figure also
defines the normal and tangential coordinate system used in Equations 1.3.57, which are the
equations of motion using normal and tangential components. The sum of the forces must include a
reaction forces on the rigid body at the axis of rotation.

(1.3.57)

General Plane Motion

A body that is translating and rotating is in general plane motion. The scalar equations of motion ar
given by Equation 1.3.54. If an arbitrary axis A is used to find the resultant moment,

(1.3.58)

FIGURE 1.3.18 Rotation of a rigid body about a fixed axis.
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where C is the center of mass. It is a common error to forget to include the cross-product term in th
analysis.

There are two special cases in general plane motion, rolling and sliding.
Figure 1.3.19 shows pure rolling of a wheel without slipping with the center of mass C at the geometric

center of the wheel. This is called pure rolling of a balanced wheel.

From this figure the scalar equation of motion results,

(1.3.59)

For balanced wheels either sliding or not sliding, the following schematic is helpful.

If slipping is not certain, assume there is no slipping and check whether ^ ≤ µsN. If ^ > µsN (not
possible; there is sliding), start the solution over using ̂  = µkN but not using = rα, which is not
valid here.

For the problem involving unbalanced wheels (the mass center and geometric center do not coin
Equations 1.3.60 result.

(1.3.60)

Energy and Momentum Methods for Rigid Bodies in Plane Motion

Newton’s second law in determining kinetics relationships is not always the most efficient, although it
always works. As for particles, energy and momentum methods are often useful to analyze rigid bo
in plane motion.

Work of a Force on a Rigid Body

The work of a force acting on a rigid body moving from position 1 to 2 is

(1.3.61)

FIGURE 1.3.19 Pure rolling of a wheel.
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Work of a Moment

The work of a moment has a similar form, for angular positions θ,

(1.3.62)

In the common case where the moment vector M  is perpendicular to the plane of motion, M  · dθ =
M dθ.

It is important to note those forces that do no work:

1. Forces that act at fixed points on the body do not do work. For example, the reaction at a
frictionless pin does no work on the body that rotates about that pin.

2. A force which is always perpendicular to the direction of the motion does no work.
3. The weight of a body does no work when the body’s center of gravity moves in a horizontal 
4. The friction force ̂  at a point of contact on a body that rolls without slipping does no wo

This is because the point of contact is the instantaneous center of zero velocity.

Kinetic Energy of a Rigid Body

The kinetic energy of a particle only consists of the energy associated with its translational motio
kinetic energy of a rigid body also includes a term for the rotational energy of the body,

(1.3.63)

where C is the center of mass of the rigid body.
The kinetic energy of a rigid body rotating about an arbitrary axis at point O is

Principle of Work and Energy

The principle of work and energy for a rigid body is the same as used for particles with the addi
the rotational energy terms.

(1.3.64)

where T1 = initial kinetic energy of the body
T2 = final kinetic energy of the body

U12 = work of all external forces and moments acting on the body moving from position 1

This method is advantageous when displacements and velocities are the desired quantities.

Conservation of Energy

The conservation of energy in a conservative rigid body system is

(1.3.65)

where T = kinetic energy
V = total potential energy (gravitational and elastic)

Power

The net power supplied to or required of the system is

U d12
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2

= ⋅∫θ

θ

θM

T T T mv Itrans rot C C= + = +1
2

1
2

2 2ω

T IO= 1
2

2ω

T T U2 1 12= +

T V T V1 1 2 2+ = +



Mechanics of Solids 1-53

otion

utual
(1.3.66)

This can be calculated by taking time derivatives of the kinetic and potential energy terms. Each term
is considered positive when it represents the power supplied to the system and negative when power is
taken from the system.

Impulse and Momentum of a Rigid Body

Impulse and momentum methods are particularly useful when time and velocities are of interest. Figure
1.3.20 shows how rigid bodies are to be considered for this kind of analysis. Notice that rotational m
of the rigid body must be included in the modeling.

The impulse of the external forces in the given interval is

(1.3.67)

where t is time, C is the center of mass, and ∑F includes all external forces.
The impulse of the external moments in the given interval is

(1.3.68)

For plane motion, if ∑M  is parallel to ω, the scalar expressions are

(1.3.69)

Impulse and Momentum of a System of Rigid Bodies

A system of rigid bodies can be analyzed using one of the two following procedures, illustrated in Figure
1.3.21.

1. Apply the principle of impulse and momentum to each rigid member separately. The mutual
forces acting between members must be included in the formulation of the solution.

2. Apply the principle of impulse and momentum to the entire system of bodies, ignoring the m
forces between members.

FIGURE 1.3.20 Impulse and momentum for rigid bodies.
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Conservation of Momentum

The principle of conservation of linear and angular momentum of particles can be extended to rigid
bodies that have no external forces or moments acting on them. The conservation of linear momentum
means that the center of mass C moves at a constant speed in a constant direction,

(1.3.70)

Likewise, for conservation of angular momentum of rigid bodies,

(1.3.71)

For a system of rigid bodies, use the same fixed reference point O for all parts of the system. Thus,
for plane motion,

(1.3.72)

There are two important points to remember when using these equations. First, ∆HC = 0 does not
imply that ∆HO = 0, or vice versa. Second, conservation of momentum does not require the simultaneo
conservation of both angular and linear momenta (for example, there may be an angular impulse wh
linear momentum is conserved).

Kinetics of Rigid Bodies in Three Dimensions

The concepts of plane rigid body motion can be extended to the more complicated problems in thr
dimensions, such as of gyroscopes and jet engines. This section briefly covers some fundamental topics
There are many additional topics and useful methods that are included in the technical literature.

Angular Momentum in Three Dimensions

For analyzing three-dimensional angular momentum, three special definitions are used. These can be
visualized by considering a spinning top (Figure 1.3.22).

Precession — rotation of the angular velocity vector about the y axis.
Space Cone — locus of the absolute positions of the instantaneous axis of rotation.
Body Cone — locus of the positions of the instantaneous axis relative to the body. The body cone

appears to roll on the space cone (not shown here).

FIGURE 1.3.21 System of rigid bodies.
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Equations 1.3.73 provide the scalar components of the total angular momentum.

(1.3.73)

Impulse and Momentum of a Rigid Body in Three-Dimensional Motion

The extension of the planar motion equations of impulse and momentum to three dimensions is s
forward.

(1.3.74)

where G and H have different units. The principle of impulse and momentum is applied for the pe
of time t1 to t2,

(1.3.75)

Kinetic Energy of a Rigid Body in Three-Dimensional Motion

The total kinetic energy of a rigid body in three dimensions is

(1.3.76)

For a rigid body that has a fixed point O,

(1.3.77)

FIGURE 1.3.22 Motion of an inclined, spinning top.
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Equations of Motion in Three Dimensions

The equations of motion for a rigid body in three dimensions are extensions of the equations pre
stated.

(1.3.78)

where aC = acceleration of mass center
HC = angular momentum of the body about its mass center
xyz = frame fixed in the body with origin at the mass center
Ω = angular velocity of the xyz frame with respect to a fixed XYZ frame

Note that an arbitrary fixed point O may be used for reference if done consistently.

Euler’s Equations of Motion

Euler’s equations of motion result from the simplification of allowing the xyz axes to coincide with the
principal axes of inertia of the body.

(1.3.79)

where all quantities must be evaluated with respect to the appropriate principal axes.

Solution of Problems in Three-Dimensional Motion

In order to solve a three-dimensional problem it is necessary to apply the six independent scalar eq

(1.3.80)

These equations are valid in general. Some common cases are briefly stated.

Unconstrained motion. The six governing equations should be used with xyz axes attached at the
center of mass of the body.

Motion of a body about a fixed point. The governing equations are valid for a body rotating abou
noncentroidal fixed point O. The reference axes xyz must pass through the fixed point to allow
using a set of moment equations that do not involve the unknown reactions at O.

Motion of a body about a fixed axis. This is the generalized form of plane motion of an arbitrary rig
body. The analysis of unbalanced wheels and shafts and corresponding bearing reactions
this category.
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1.4 Vibrations

Bela I. Sandor with assistance by Stephen M. Birn

Vibrations in machines and structures should be analyzed and controlled if they have undesirable effects
such as noise, unpleasant motions, or fatigue damage with potentially catastrophic consequences. C
versely, vibrations are sometimes employed to useful purposes, such as for compacting materials.

Undamped Free and Forced Vibrations

The simplest vibrating system has motion of one degree of freedom (DOF) described by the coordina
x in Figure 1.4.1. (An analogous approach is used for torsional vibrations, with similar results.)

Assuming that the spring has no mass and that there is no damping in the system, the equ
motion for free vibration (motion under internal forces only; F = 0) is

(1.4.1)

where ω = = natural circular frequency in rad/sec.
The displacement x as a function of time t is

(1.4.2)

where C1 and C2 are constants depending on the initial conditions of the motion. Alternatively,

where C1 = Acosφ, C2 = Asinφ, and φ is the phase angle, another constant. A complete cycle of the
motion occurs in time τ, the period of simple harmonic motion,

The frequency in units of cycles per second (cps) or hertz (Hz) is f = 1/τ.
The simplest case of forced vibration is modeled in Figure 1.4.1, with the force F included. Using

typical simplifying assumptions as above, the equation of motion for a harmonic force of forcin
frequency Ω,

(1.4.3)

FIGURE 1.4.1 Model of a simple vibrating system.
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The vibrations of a mass m may also be induced by the displacement d = dosinΩt of a foundation or
another mass M to which m is attached by a spring k. Using the same reference point and axis for bo
x and d, the equation of motion for m is

(1.4.4)

where do is the amplitude of vibration of the moving support M, and Ω is its frequency of motion.
The general solution of the forced vibration in the steady state (after the initial, transient behavior) is

(1.4.5)

where Ω is the forcing frequency and ω is the natural circular frequency of the system of m and k.

Resonance. The amplitude of the oscillations in forced vibrations depends on the frequency ratio Ω/ω.
Without damping or physical constraints, the amplitude would become infinite at Ω = ω, the condition
of resonance. Dangerously large amplitudes may occur at resonance and at other frequency ratios near
the resonant frequency. A magnification factor is defined as

(1.4.6)

Several special cases of this are noted:

1. Static loading: Ω = 0, or Ω ! ω; MF . 1.
2. Resonance: Ω = ω; MF = ∞.
3. High-frequency excitation: Ω @ ω; MF . 0.
4. Phase relationships: The vibration is in phase for Ω < ω, and it is 180° out of phase for Ω > ω.

Damped Free and Forced Vibrations

A vibrating system of one degree of freedom and damping is modeled in Figure 1.4.2. The equation of
motion for damped free vibrations (F = 0) is

(1.4.7)

The displacement x as a function of time t is

FIGURE 1.4.2 Model of a damped vibrating system.
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(1.4.8)

The value of the coefficient of viscous damping c that makes the radical zero is the critical damping
coefficient cc = 2m = 2mω. Three special cases of damped free vibrations are noted:

1. Overdamped system: c > cc; the motion is nonvibratory or aperiodic.
2. Critically damped system: c = cc; this motion is also nonvibratory; x decreases at the fastest ra

possible without oscillation of the mass.
3. Underdamped system: c < cc; the roots λ1,2 are complex numbers; the displacement is

where A and φ are constants depending on the initial conditions, and the damped natural frequency
is

The ratio c/cc is the damping factor ζ. The damping in a system is determined by measuring 
rate of decay of free oscillations. This is expressed by the logarithmic decrement δ, involving
any two successive amplitudes xi and xi+ 1,

The simplifying approximation for δ is valid for up to about 20% damping (ζ . 0.2).

The period of the damped vibration is τd = 2π/ωd. It is a constant, but always larger than the peri
of the same system without damping. In many real systems the damping is relatively small (ζ < 0.2),
where τd . τ and ωd . ω can be used.

The equation of motion for damped forced vibrations (Figure 1.4.2; F ≠ 0) is

(1.4.9)

The solution for steady-state vibration of the system is

(1.4.10)
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The magnification factor for the amplitude of the oscillations is

(1.4.11)

This quantity is sketched as a function of the frequency ratio Ω/ω for several damping factors in Figure
1.4.3. Note that the amplitude of vibration is reduced at all values of Ω/ω if the coefficient of damping
c is increased in a particular system.

Vibration Control

Vibration Isolation

It is often desirable to reduce the forces transmitted, or the noise and motions inside or in the ner-
hood of vibrating machines and structures. This can be done to some extent within the constraints of
space and additional weight and cost by the use of isolators, such as rubber engine mounts an
suspension systems in cars. Many kinds of isolating materials and systems are available commercially.

The effectiveness of vibration isolation is expressed by the transmissibility TR, the ratio of the force
transmitted FT to the disturbing force Fo. A simple isolation system is modeled as a spring and a das
in parallel, for which the transmissibility is given by Equation 1.4.12 and sketched in Figure 1.4.4.

(1.4.12)

FIGURE 1.4.3 Magnification factor in damped forced vibration.

FIGURE 1.4.4 Transmissibility patterns of a vibration isolator.
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When damping is negligible,

Note from the figure that

1. Vibration isolation occurs at Ω/ω > .
2. Isolation efficiency increases with decreasing stiffness of the isolation mounts.
3. Damping reduces isolation efficiency. However, some damping is normally required if resonan

may occur in a system even for short periods.
4. The response curves are essentially independent of damping when Ω/ω is large  and damping

is low  Here TR . 1/[(Ω/ω)2 – 1].
5. For a system with more than one excitation frequency, the lowest excitation frequency is of

primary importance.

The efficiency of an isolating system is defined by the reduction R in transmissibility,

R = 1– TR

If a certain reduction R in transmissibility is desired, the appropriate stiffness k of an isolation system
is obtained from ω = and

A small magnitude of stiffness k makes the reduction R in transmissibility large. It is difficult to achieve
isolation for very low excitation frequencies because of the required large static deflections. To obtain
highly efficient isolation at low excitation frequencies, a large supporting mass M may be utilized, with
the value of .

Vibration Absorption

In some cases a vibratory force is purposely generated in a system by a secondary spring-mas
to oppose a primary disturbing force and thereby reduce or eliminate the undesirable net effect. An
interesting example of this is the “tuned-mass damper” in a few skyscrapers, designed to counter th
oscillatory motions caused by wind. The secondary spring-mass system has disadvantages of its own,
such as extra weight, complexity, and effectiveness limited to a single frequency.

Balancing of Rotating Components

The conditions of static or dynamic unbalance of rotating bodies have long been recognized. These can
be analyzed by the methods of elementary mechanics, simple tests can be performed in many cases, and
adequate corrections can be made routinely to achieve balance, such as for the wheels of automotive
vehicles. Three categories of increasing complexity are distinguished.

1. Static unbalance. The distributed or lumped masses causing unbalance are in a single axial 
and all on the same side of the axis of rotation (Figure 1.4.5). Thin disks are also in this category.
Static unbalance is detected in a static test since the center of gravity of the body is not on the
axis, and correction is made by adding or removing mass at a convenient radial distance from
the axis.

2. Static balance with dynamic unbalance. This may be the case when the masses causing unbal
are in a single axial plane but on opposite sides of the axis of rotation (Figure 1.4.6a). Static
balance is achieved if the center of gravity of the body is on the axis, but dynamic unbalance
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results from the couple of the unbalance forces (mω2r) during rotation, causing a shaking of th
axle.

3. Static and dynamic unbalance. This is the general case of unbalance, which can be visualize
letting m1 and m2 and the axis of rotation not all lie in the same plane (Figure 1.4.6b).

The magnitude and angular position of a body’s unbalance can be determined using a dynam
balancing machine. Here the shaking forces are measured by electronically sensing the small osc
of the bearings that can be correlated with the position of the body.

Critical Speed of Rotating Shafts

A rotating shaft may become dangerously unstable and whirl with large lateral amplitudes of displace
ment at a critical speed of rotation. The critical speed, in revolutions per second, corresponds with th
natural frequency of lateral vibration of the system. Thus, it can be analytically predicted fairly well
and can be safely measured in a real but nonrotating machine with high precision.

If unavoidable, as at startup, the critical speed should be passed over rapidly. Other ways of minimizing
the problems of whirling shafts include the proper balancing of rotors and the replacing of bent 
and worn bearings.

Random Vibrations. Shock Excitation

Many structures are subjected to nonharmonic excitations and respond with transient vibrations rath
than steady-state motions. Random vibration is often caused by shock excitation, which implies that the
loading occurs suddenly, in a short time with respect to the natural period of vibration of the syst
Such a loading, typically caused by impact conditions, may be highly irregular in terms of amplitude,
waveform, and repetition (Figure 1.4.7), but normally it is possible to extract practically uniform critical
events from the loading history for purposes of future design and life prediction.

For most practical purposes, this plot represents aperiodic motion, where the important quanti
the maximum and average large amplitudes and the projected total repetitions (in this case, at the
of about 1000 per day) over the design life of the structure. The small-amplitude transient vibrations

FIGURE 1.4.5 Schematic of static unbalance.

FIGURE 1.4.6 Schematic of two cases of dynamic unbalance.
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associated with the large events are likely to be negligible here in terms of both dynamic behavior and
fatigue damage, although the relatively large number of small oscillations may cause one to be concer
in some cases.

Random vibrations are difficult to deal with analytically. Numerical methods involving computers are
advantageous to obtain response (or shock) spectrums of a system, assuming key parameters and simple
models of nonharmonic excitations such as impulsive forces and force step functions. Since the maxim
transient response is relatively insensitive to damping, an undamped system is useful in model
response spectrums. Experimental techniques are needed to verify the analytical predictions, especially
when the behavior of a multiple-degree-of-freedom system is determined from the response spec
of a single-degree-of-freedom system.

Multiple-Degree-of-Freedom Systems. Modal Analysis

The analysis of a system with more than one degree of freedom requires an independent coordinate
each degree of freedom to describe the configurations. Thus, an n-degree-of-freedom system has n natural
frequencies and n normal modes of vibration. Complex systems can be classified as (1) discrete a
lumped-parameter systems with finite numbers of degrees of freedom or (2) continuous elastic bodi
of distributed mass with infinite number of degrees of freedom (in theory). A common example of the
latter is a vibrating beam, with the first two modes of vibration shown in Figure 1.4.8. Each nodal point
is a point of zero deflection. Usually the fundamental natural frequency (the lowest) is the most important,
and only the lowest few frequencies are considered in practice.

FIGURE 1.4.7 Strain-time history at one strain-gage location on a steel bridge caused by two trucks moving in
opposite directions. (A) Garbage truck in the near lane; (B) tractor trailer in the far lane. Weights unknown. (Data
courtesy Mark J. Fleming, University of Wisconsin-Madison.)

FIGURE 1.4.8 Simply supported beam in two modes of vibration.



1-64 Section 1

n

ly

m
l

with

ctric
A system’s harmonic vibrations are its principal modes. There are also many ways in which the system
can vibrate nonharmonically. Periodic motion of complex wave form can be analyzed as a combinatio
of principal-mode vibrations.

The classical method of mathematical solution and the experimental techniques become increasing
cumbersome and sometimes inaccurate for a system of more than a few degrees of freedom. The recent
emergence of sophisticated numerical (finite element; Figure 1.4.9) and experimental (electro-optics)
techniques has resulted in significant progress in this area. The synergistic aspects of several new methods
are especially remarkable. For example, damage caused by vibrations can significantly affect a system’s
own modal behavior and, consequently, the rate of damage evolution. Such nonlinear changes of a syste
can now be investigated and eventually predicted by the hybrid applications of computerized numerica
methods, fatigue and fracture mechanics (Section 1.6), and high-speed, noncontacting, full-field vibration
and stress imaging (Sections 1.4, “Vibration-Measuring Instruments,” and 1.5, “Experimental Stress
Analysis and Mechanical Testing”). These enhance the already powerful modern methods of modal
analysis for accurately describing the response of multiple-degree-of-freedom systems.

Vibration-Measuring Instruments

There are many kinds of instruments for the experimental investigation of vibrating systems. They range
from simple, inexpensive devices to sophisticated electro-optics with lasers or infrared detectors, 
the list still expanding in many areas.

The basic quantities of interest regarding a vibrating system are the displacement, velocity, acceler-
ation, and frequency. A typical sensor (or pickup or transducer) for determining these is the piezoele
accelerometer, which is attached to the vibrating machine or structure to be analyzed. The complete
setup normally includes amplifiers, frequency analyzer, oscilloscope, and recorders. An instrumented

FIGURE 1.4.9 Modal analysis of a vibrating plate. (Photo courtesy David T. Corr, University of Wisconsin-
Madison.)
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impact hammer may be used to provide well-defined impulse excitation to determine the natural fre
quencies of structures. The frequency analyzer can display the accelerometer output in either the t
or the frequency domain.

Other kinds of devices used for vibration sensing include seismic spring-mass systems, elec
resistance strain gages, and electromagnetic transducers.

Care must be exercised in matching a transducer to the task at hand, since reliable data can be o
only if the transducer has a “flat-response” frequency region for the measurements of interest. For
example, electromagnetic vibrometers (or seismometers) are low-frequency transducers that have low
natural frequency compared to the frequency of the motion to be measured. At the other extreme,
piezoelectric accelerometers are designed to have higher natural frequency than the frequency to be
measured.

It is also important to use transducers of negligible mass compared to the mass of the vibrating syst
being measured. Very small, light-weight accelerometers are available to satisfy this condition in many
cases. There are situations, however, where only noncontacting means of motion measurement provide
satisfactory results. Optical techniques are prominent in this area, offering several advantages besides
the noncontacting measurement capability. They can be full-field techniques, which means that data m
be obtained rapidly from many points on a body using one instrument. They have excellent resolution
and precision, and some of them are easy to use. Three kinds of optical instruments are distinguishe
here for vibratory system analysis, depending on the primary quantity measured:

1. Displacement measurement. Holography and speckle pattern imaging have excellent resolution,
but they are adversely affected by unstable measuring conditions. They are most useful in
laboratory applications.

2. Velocity measurement. Laser Doppler systems provide time-resolved, accelerometer-like measure-
ments. They are relatively unaffected by measuring conditions, and are simple and rugged eno
to use either in the laboratory or in the field. Several important capabilities of such a vibratio
pattern imaging system are worth mentioning (Color Plates 3 to 7):

• Noncontacting; the structure’s response is not affected by the instrumentation; applicable i
some hazardous environments (hot structures etc.), and short or long range (over 200 m) on
natural surfaces

• Single-point or full-field data acquisition at high resolution from areas of 0.5 × 0.5 mm to 8 ×
8 m; up to 500 individual points can be programmed

• Wide frequency range; 0 to 100 kHz (for example, Figure 1.4.10)
• Sensitivity to a wide range of vibration velocities; 0.005 to 1000 mm/sec
• Large depth of focus; ±3 m at 10-m working distance
• Node spacing down to a few millimeters can be resolved
• Resolution of small displacements, down to the wavelength of the laser source (typically, ≈1 Å)
• Safe, class II laser system; <1 mW output
• Conventional signal processing is used to give multipoint modal parameters in familiar format

for analytical comparisons

3. Dynamic stress measurement. Differential thermography via dynamic thermoelasticity (Figure
1.4.11) has recently become a powerful technique for measuring the modal response of vibrat
structures and, uniquely, for directly assessing the structural integrity and durability aspects of
the situation. This approach uses high-speed infrared electro-optics and has predictive capability
because it can be quantitatively combined with modern fatigue and fracture mechanics method
For example, it can effectively relate vibration modes to complex fracture modes and damag
evolution rates of a real component even under arbitrary and unknown loading with unknown
boundary conditions. See Section 1.5, “Experimental Stress Analysis and Mechanical Testing,”
for more on the dynamic thermoelasticity technique.
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FIGURE 1.4.10 Laser-based, noncontacting vibration analysis of a point on a car door. (Data courtesy of Ometron
Inc., Sterling, VA.)

FIGURE 1.4.11 Schematic of modal analysis of a jet engine turbine blade by thermal imaging of the stresfield
caused by complex vibration. For sample data, see Color Plate 8.
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1.5 Mechanics of Materials

Bela I. Sandor

Mechanics of materials, also called strength of materials, provides quantitative methods to determine
stresses (the intensity of forces) and strains (the severity of deformations), or overall deformations or
load-carrying abilities of components and structures. The stress-strain behavior of materials under a wide
range of service conditions must be considered in many designs. It is also crucial to base the analys
on correct modeling of component geometries and external loads. This can be difficult in the case of
multiaxial loading, and even more so if time- or temperature-dependent material behaviors must be
considered.

Proper modeling involves free-body diagrams and equations of equilibrium. However, it is important
to remember that the equilibrium equations of statics are valid only for forces or for moments of forces,
and not for stresses.

Stress

The intensity of a force is called stress and is defined as the force acting on an infinitesimal area. A
normal stress σ is defined as

(1.5.1)

where dF is a differential normal force acting on a differential area dA. It is often useful to calculate
the average normal stress σ = P/A, where P is the resultant force on an area A. A shear stress τ caused
by a shearing force V is defined likewise,

(1.5.2)

An average shear stress is obtained from V/A.
It is helpful to consider the general cases of stresses using rectangular elements in two and three

dimensions, while ignoring the deformations caused by the stresses.

Plane Stress

There are relatively simple cases where all stress vectors lie in the same plane. This is represented by
a two-dimensional element in Figure 1.5.1, where σx and/or σy may be either tensile (pulling on the
element as shown) or compressive (pushing on the element; not shown). Normal stresses are easy t
visualize and set up correctly.

Shear stresses need to be discussed here in a little detail. The notation means that τxy, for example, is
a shear stress acting in the y direction, on a face that is perpendicular to the x axis. It follows that τyx is
acting in the x direction, on a face that is perpendicular to the y axis. The four shear stress vectors are

FIGURE 1.5.1 Generalized plane stress.

σ =
→

lim
dA

dF

dA0

τ =
→

lim
dA

dV

dA0
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pointed as they are because of the requirement that the element be in equilibrium: the net force
moments of forces on it must be zero. Thus, reversing the direction of all four τ’s in Figure 1.5.1 is
possible, but reversing less than four is not realistic.

Three-Dimensional State of Stress

The concept of plane stress can be generalized for a three-dimensional element as shown in Figure 1.5.2,
working with the three primary faces of the cube and not showing stresses on the hidden faces, for clarity.

Again, the normal stresses are easy to set up, while the shear stresses may require cons
attention. The complex cases of stresses result from multiaxial loading, such as combined axial, ben
and torsional loading. Note that even in complex situations simplifications are possible. For example, if
the right face in Figure 1.5.2 is a free surface, σx = τxz = τxy = 0. This leaves a plane stress state wit
σy, σz, and τyz, at most.

Stress Transformation

A free-body element with known stresses on it allows the calculation of stresses in directions other th
the given xyz coordinates. This is useful when potentially critical welded or glued joints, or fibers of a
composite, are along other axes. The stress transformations are simplest in the case of plane stres
can be done in several ways. In any case, at a given point in a material there is only one state of stre
at a particular instant. At the same time, the components of the stresses depend on the orientation
chosen coordinate system.

The stress transformation equations depend on the chosen coordinate system and the sign convention
adopted. A common arrangement is shown in Figure 1.5.3, where (a) is the known set of stresses and
(b) is the unknown set, denoted by primes.

In the present sign convention an outward normal stress is positive, and an upward shear stress on
the right-hand face of the element is positive. The transformation equations are

FIGURE 1.5.2 Three-dimensional general state of stress.

FIGURE 1.5.3 Elements for stress transformation.
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(1.5.3)

If a result is negative, it means that the actual direction of the stress is opposite to the assumed dir

Principal Stresses

It is often important to determine the maximum and minimum values of the stress at a point and th
orientations of the planes of these stresses. For plane stress, the maximum and minimum normal stres
called principal stresses, are obtained from

(1.5.4)

There is no shear stress acting on the principal planes on which the principal stresses are acting. However,
there are shear stresses on other planes. The maximum shear stress is calculated from

(1.5.5)

This stress acts on planes oriented 45° from the planes of principal stress. There is a normal stress on
these planes of τmax, the average of σx and σy,

(1.5.6)

Mohr’s Circle for Plane Stress

The equations for plane stress transformation have a graphical solution, called Mohr’s circle, which is
convenient to use in engineering practice, including “back-of-the-envelope” calculations. Mohr’s circle
is plotted on a σ – τ coordinate system as in Figure 1.5.4, with the center C of the circle always on the
σ axis at σave = (σx + σy)/2 and its radius  The positive τ axis is downward
for convenience, to make θ on the element and the corresponding 2θ on the circle agree in sense (bot
counterclockwise here).

The following aspects of Mohr’s circle should be noted:

1. The center C of the circle is always on the σ axis, but it may move left and right in a dynamic
loading situation. This should be considered in failure prevention.

2. The radius R of the circle is τmax, and it may change, even pulsate, in dynamic loading. This is
also relevant in failure prevention.

3. Working back and forth between the rectangular element and the circle should be done ca
and consistently. An angle θ on the element should be represented by 2θ in the corresponding
circle. If τ is positive downward for the circle, the sense of rotation is identical in the elem
and the circle.
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4. The principal stresses σ1 and σ2 are on the σ axis (τ = 0).
5. The planes on which σ1 and σ2 act are oriented at 2θp from the planes of σx and σy (respectively)

in the circle and at θp in the element.
6. The stresses on an arbitrary plane can be determined by their σ and τ coordinates from the circle.

These coordinates give magnitudes and signs of the stresses. The physical meaning of +τ vs. –τ
regarding material response is normally not as distinct as +σ vs. –σ (tension vs. compression).

7. To plot the circle, either use the calculated center C coordinate and the radius R, or directly plot
the stress coordinates for two mutually perpendicular planes and draw the circle through the two
points (A and B in Figure 1.5.4) which must be diametrically opposite on the circle.

Special Cases of Mohr’s Circles for Plane Stress

See Figures 1.5.5 to 1.5.9

FIGURE 1.5.4 Mohr’s circle.

FIGURE 1.5.5 Uniaxial tension.

FIGURE 1.5.6 Uniaxial compression.

FIGURE 1.5.7 Biaxial tension: σx = σy (and similarly for biaxial compression: –σx = –σy ).

FIGURE 1.5.8 Pure shear.
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Absolute Maximum Shear Stress

In the case of a general three-dimensional state of stress, the transformations to arbitrary pla
complex and beyond the scope of this book. It is useful to note, however, that in general there are thre
principal stresses at any point in a material. (Plane stress is a special case with one of these st
being zero.) If the three principal stresses are known, it is easy to determine the absolute maximu
shear stress, which is valuable in assessing a material’s performance in service. The idea is to view the
element as three separate two-dimensional elements, each time from a different principal direction, and
plot the Mohr’s circles for them in the same diagram. This is illustrated schematically in Figure 1.5.10
for an element with three tensile principal stresses, of a maximum, a minimum, and an intermediatevalue.

The Mohr’s circles are interrelated since the three views of the element have common principal stresses
associated with them. The absolute maximum shear stress is

(1.5.7)

Note that in calculating the absolute maximum shear stress for a state of plane stress, the act
principal stress of σ3 = 0 may be significant if that is the minimum stress, and should be used in Equ
1.5.7 instead of a larger intermediate stress. For example, assume σx = 200 ksi and σy = 100 ksi in a
case of plane stress. Using these as σmax and σmin, τmax = (200 – 100)/2 = 50 ksi. However, the fact that
σz = 0 is important here. Thus, correctly, τabs max = (200 – 0)/2 = 100 ksi. There is an important lesson
here: apparently negligible quantities cannot always be ignored in mechanics of materials.

Strain

Solid materials deform when forces are acting on them. Large deformations are possible in som
materials. Extremely small deformations are difficult to measure, but they still may be significant in
critical geometry change or gradual damage evolution. Deformations are normally nonuniform even in
apparently uniform components of machines and structures. The severity of deformation is called strain,
which is separately defined for volumetric change and angular distortion of a body.

FIGURE 1.5.9 Biaxial tension-compression: |σx| = |σy| (similar to the case of pure shear).

FIGURE 1.5.10 Principal stresses of three-dimensional element.
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Normal Strain

The elongation or shortening of a line segment of unit length is called normal strain or axial strain. To
define this quantitatively, consider a uniform bar of length Lo, and call this original length the gage
length. Assume the bar elongates by an amount e to a new length L1 under the action of a force F
(Figure 1.5.11) or by thermal expansion. The normal strain ε is defined, with the gage length approachin
zero in the limit, as

(1.5.8)

The strain calculated this way is called engineering strain, which is useful and fairly accurate for small
deformations. Elongation is considered positive.

Normal strain is a dimensionless quantity, but it is customary to label it in a way that indicates strain,
such as in./in., or m/m, or %, or µ in./in., or µε (microstrain), depending on the system of units and 
numerical representation.

True Strain

A difficulty of proper definition arises if the deformation e is not infinitesimal, because in a sense t
gage length itself is increasing. The correct definition in such a case is based on the instantaneous l
L and infinitesimal changes dL in that length. Thus, the total true strain in a member axially deformin
from length Lo to a final length Lf by an amount e is

(1.5.9)

True strain is practically identical to engineering strain up to a few percent of engineering strain. The
approximate final length Lf of an axially deformed, short line segment of original length Lo is sometimes
expressed as

(1.5.10)

Shear Strain

Angular distortions are called shear strains. More precisely, shear strain γ is the change in angle of two
originally perpendicular (θ = π/2) line segments. For consistency, assume that a decreasing ang
represents positive shear strain, and an increasing angle is from negative shear strain. The angle γ is
measured in radians. A useful way to show shear strain is given in Figure 1.5.12.

FIGURE 1.5.11 Model for calculating axial or normal strain.

FIGURE 1.5.12 Shear strain in two dimensions.
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Strain Transformation

The method of transforming strain at a point is similar to that for stress. In general, there are
components of normal strain, εx, εy, and εz, and three components of shear strain, γxy, γxz, and γyz.
Transformations of plane strain components are the simplest.

For a consistent approach, assume that strain transformation is desired from an xy coordinate system
to an x′y′ set of axes, where the latter is rotated counterclockwise (+θ) from the xy system. The
transformation equations for plane strain are

(1.5.11)

Note the similarity between the strain and stress transformation equations, as well as the differe

Principal Strains

For isotropic materials only, principal strains (with no shear strain) occur along the principal ax
stress. In plane strain the principal strains ε1 and ε2 are expressed as

(1.5.12)

The angular position θp of the principal axes (measured positive counterclockwise) with respect to
given xy system is determined from

(1.5.13)

Like in the case of stress, the maximum in-plane shear strain is

(1.5.14)

which occurs along axes at 45° from the principal axes, determined from

(1.5.15)

The corresponding average normal strain is

(1.5.16)

ε
ε ε ε ε

θ
γ

θ

ε
ε ε ε ε

θ
γ

θ

γ ε ε
θ

γ
θ

′

′

′ ′

=
+

+
−

+

=
+

−
−

−

= −
−

+

x
x y x y xy

y
x y x y xy

x y x y xy

2 2
2

2
2

2 2
2

2
2

2 2
2

2
2

cos sin

cos sin

sin cos

ε
ε ε ε ε γ

1 2

2 2

2 2 2, /=
+

+ −
−





−






x y x y xy

tan2θ
γ

ε εp
xy

x y

=
−

γ ε ε γ′ ′ =
−





+






x y x y xymax

2 2 2

2 2

tan2θ
ε ε

γ
= −

−x y

xy

ε
ε ε

ave
x y=

+
2



1-74 Section 1

f

ometr

ommon
.

ng on

4).
ne
Mohr’s Circle for Plane Strain

As in the case of stress, there is a graphical overview by Mohr’s circle of the directional dependence o
the normal and shear strain components at a point in a material. This circle has a center C at εave = (εx

+ εy)/2 which is always on the ε axis, but is shifting left and right in a dynamic loading situation. The
radius R of the circle is

(1.5.17)

Note the proper labeling (ε vs. γ/2) and preferred orientation of the strain axes as shown in Figure 1.5.13.
This sets up a favorable uniformity of angular displacement between the element (+θ counterclockwise)
and the circle (+2θ counterclockwise).

Mechanical Behaviors and Properties of Materials

The stress-strain response of a material depends on its chemical composition, microstructure, gey,
the magnitude and rate of change of stress or strain applied, and environmental factors. Numerous
quantitative mechanical properties are used in engineering. Some of the basic properties and c
variations of them are described here because they are essential in mechanics of materials analyses

Stress-Strain Diagrams

There are several distinctive shapes of uniaxial tension or compression stress-strain plots, dependi
the material, test conditions, and the quantities plotted. The chosen representative schematic diagram
here is a true stress vs. true strain curve for a ductile, nonferrous metal tested in tension (Figure 1.5.1
The important mechanical properties listed in Table 1.5.1 are obtained from such a test or a similar o
in pure shear (not all are shown in Figure 1.5.14). 

FIGURE 1.5.13 Mohr’s circle for plane strain.

FIGURE 1.5.14 True stress vs. true strain for a ductile, nonferrous metal.

R x y  xy=
−





+






ε ε  γ
2 2

2 2



Mechanics of Solids 1-75

emical

hermal

lly 
Another useful mechanical property (not measured from the σ – ε plot) is hardness. This is a flow
property, with some qualitative correlations to the other properties.

It is important to appreciate that the mechanical properties of a material depend on its ch
composition and its history of thermal treatment and plastic deformations (cold work; cyclic plasticity).
For example, consider the wide ranges of monotonic and cyclic stress-strain curves for 1045 steel (a
given chemical composition) at room temperature, as functions of its hardness resulting from t
treatment (Figure 1.5.15). See Section 1.6, “Fatigue,” for more on cycle-dependent material behaviors.

Generalized Stress-Strain Expressions. Hooke’s Law

An important special case of stress-strain responses is when the material acts entirely elastica(εp =
0, εt = εe). In this case, for uniaxial loading, the basic Hooke’s law σ = Eε can be used, and similarly
for unidirectional shear, τ = Gγ. For multiaxial loading (Color Plate 9), the generalized Hooke’s law is
applicable,

Table 1.5.1 Basic Mechanical Properties

Symbol Definition Remarks

E Modulus of elasticity; Young’s modulus; E = σ/εe Hooke’s law; T and εp effects small

G Shear modulus of elasticity; T and εp effects small

v Poisson’s ratio; T and εp effects small

σPL Proportional limit; at onset of noticeable yielding 
(or at onset of nonlinear elastic behavior)

Flow property; inaccurate; T and εp 
effects large

σy 0.2% offset yield strength (but yielding can occur at 
σ < σy if σPL < σy)

Flow property; accurate; T and εp 
effects large

σf True fracture strength; 
Fracture property; T and εp effects 
medium

εf True fracture ductility; Max. εp; fracture property; T and εp 
effects medium

% RA Percent reduction of area; 
Fracture property; T and εp effects 
medium

n Strain hardening exponent; Flow property; T and εp effects small 
to large

Toughness Area under σ vs. εp curve True toughness or intrinsic 
toughness; T and εp effects large

σu Ultimate strength; 
Fracture property; T and εp effects 
medium

Mr Modulus of resilience; 
Area under original elastic portion 
of σ – ε curve

Notes: T is temperature; εp refers to prior plastic strain, especially cyclic plastic strain (fatigue) (these are 
qualitative indicators here; exceptions are possible)
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(1.5.18)

Other useful expressions for ideally elastic behavior are as follows. Relating the axial and shear m

(1.5.19)

The change in volume per unit volume is the volumetric strain or dilatation,

(1.5.20)

The bulk modulus k is the ratio of a uniform stress (hydrostatic) to the dilatation,

(1.5.21)

For most metals, v ≈ 1/3 and k ≈ E.

Uniaxial Elastic Deformations

The total elastic deformation δ of axially loaded bars, columns, and wires is calculated with the aid
basic expressions. Using σ = Eε and σ = P(x)/A(x),where P(x) and A(x) are, respectively, the interna
force and cross-sectional area of a bar at a distance x from one end,

(1.5.22)

where L is the total length considered.
In most cases, A(x) is a constant; P(x) may also be a constant, except where several different a

forces are applied, and occasionally for vertical bars and columns, where the member’s own weig
cause P(x) to vary significantly along the length. If A(x), P(x), and E are constants,

FIGURE 1.5.15 Influence of hardness and deformatio
history on the stress-strain response of SAE 1045 ste
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(1.5.23)

Thermally Induced Deformations

Thermal expansion or contraction is a linearly dependent, recoverable deformation like purely elastic
deformations are. For a homogeneous and isotropic material, the thermally induced deformation 
the original length L is calculated from

(1.5.24)

where α is the linear coefficient of thermal expansion (strain per degree of temperature, a materia
property), and ∆T is the change in temperature.

The thermal strain can be prevented or reduced by constraining a member. In that case the stresse
and strains can be calculated using the methods pertaining to statically indeterminate members

Stresses in Beams

To calculate stresses in beams, one must first model the beam correctly in terms of its supports a
loading (such as simply supported, with distributed loading), determine the appropriate unknown external
reactions, and establish the corresponding shear and moment diagrams using a consistent sign convention.
Both normal and shear stresses may have to be calculated, but typically the normal stresses are the mo
significant.

Flexure Formula

The normal stresses at a particular cross section in a beam are caused by the bending moment
at that cross section, and are distributed by magnitude and sign (both tension and compression) so
the beam is in equilibrium. The basic concept for calculating the stresses is that there is a neutra
n-n of ε = σ = 0 in the beam, and that the longitudinal normal strain varies linearly with distance y from
the neutral axis.

If the beam is behaving entirely elastically, the stress distribution is also linear, as in Figure 1.5.16.
In this case, the stress at a distance y from the neutral axis is calculated from M = ∫σ(y)y dA and results in

(1.5.25)

where I = moment of inertia of the cross-sectional area about the neutral axis.
The maximum stress, with the appropriate sign, is

(1.5.26)

There are several special cases of bending that require additional considerations and analysis as o
below.

FIGURE 1.5.16 Internal normal stresses in a beam caused by bending.
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Inelastic Bending

A beam may plastically deform under an increasing moment, yielding first in its outer layers and
ultimately throughout its depth. Such a beam is analyzed by assuming that the normal strains 
linearly varying from zero at the neutral axis to maximum values at the outer layers. Thus, the stress
distributions depend on the stress-strain curve of the material. With the stress distribution established,
the neutral axis can be determined from ∫σ(y) dA = 0, and the resultant moment from M = ∫yσ(y) dA.

A fully plastic beam of rectangular cross section and flat-top yielding supports 50% more bendin
moment than its maximum elastic moment.

Neutral Axis of Semisymmetric Area

If the cross-sectional area is semisymmetric, such as a T-shape, and the loading is in a centroidal pla
of symmetry, the neutral axis for elastic deformations is at the centroid C of the area as shown in Figure
1.5.17, and Equation 1.5.25 can be used. Note that the magnitudes of the maximum tensile an
pressive stresses are not the same in this case.

Unsymmetric Bending

In the general case, the cross-sectional area has an arbitrary shape and the loading is arbitrarily
The problem of an arbitrary area is handled by choosing the centroidal xy coordinate system such tha
the axes are principal axes of inertia for the area. The principal axes can be determined by using inert
transformation equations or Mohr’s circle of inertia. Having an axis of symmetry is a simple specia
case because the principal axes are the axis of symmetry and the axis perpendicular to it.

The flexure formula can be applied directly if the principal axes of inertia are known, and the bending
moment is applied about one of these centroidal principal axes. A more complex case is if the moment
is not about a principal axis as shown in Figure 1.5.18.

Different texts may present different formulas for calculating the bending stresses in such situati
depending on the choice of a coordinate system and the sign convention adopted. It is better not to rely
on a cookbook formula, but to break down the problem into simple, easily visualized parts, and th
reason out an algebraic superposition of the stress components. To illustrate this approach schematically,
consider the stresses at points A and B in Figure 1.5.18. Instead of working directly with the applied
moment M , resolve M  into its components Mx and My. Mx causes a tensile stress at A and a
compressive stress at B. My causes tensile stresses at both A and B, and .  The magnitudes
of these stress components are readily calculated from the flexure formula with the appropriate dimen
sions and inertias for each. The resultant stresses are

FIGURE 1.5.17 Neutral axis of a semisymmetric area

FIGURE 1.5.18 Schematic of arbitrary bending moment.
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The neutral axis at angle α in the general case is not coincident with the direction of M  (Figure
1.5.18). In the present case α is defined by

(1.5.27)

Composite Beams

Nonhomogeneous beams are often designed to take advantage of the properties of two different materials.
The approach for analyzing these is to imagine a transformation of the beam’s cross section to an
equivalent cross section of a different shape but of a single material, so that the flexure formula is usable.
This is illustrated for a beam A with reinforcing plates B, as in Figure 1.5.19.

The transformation factor n is obtained from

(1.5.28)

Note that in a composite beam the strains vary linearly with distance from the neutral axis, but the
stresses do not, because of the different elastic moduli of the components. The actual stress σ in the
transformed area is determined by first calculating the “pretend” stress σ′ for the uniform transformed
area and then multiplying it by n,

(1.5.29)

Nonsymmetric composite beams (such as having only one reinforcing plate B in Figure 1.5.19) are
analyzed similarly, but first require the location of the neutral axis.

Reinforced concrete beams are important special cases of composite beams. The stress analysis of
these is influenced by the fact that concrete is much weaker in tension than in compression. Empirica
approaches are particularly useful in this area.

Curved Beams

The stress analysis of curved beams requires some additional considerations. For example, the flexure
formula is about 7% in error (the calculated stresses are too low) when the beam’s radius of curvature
is five times its depth (hooks, chain links). The curved-beam formula provides realistic values in such
cases.

FIGURE 1.5.19 Equivalent area method for a symmetric composite beam.
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Shear Stresses in Beams

Transverse loads on beams are common, and they cause transverse and complementary longitudina
shear stresses in the beams. Schematically, the transverse shear stresses are distributed on a rectangular
cross section as shown in Figure 1.5.20. The shear stress is zero at free surfaces by definition.

The internal shear stress is calculated according to Figure 1.5.20 from

(1.5.30)

where τ = shear stress value at any point on the line , – , at a distance y′ from the neutral axis
V = total shear force on cross-sectional area A
Q = A′ = area above line , – ,;  = distance from neutral axis to centroid of A′
I = moment of inertia of entire area A about neutral axis
t = width of cross section where τ is to be determined

This shear formula gives τmax = 1.5 V/A if t is constant for the whole section (rectangle).
Note that the magnitude of the shear stress distribution changes sharply where there is an abru

change in width t, such as in an I-beam, Figure 1.5.21.

Shear Flow

In the analysis of built-up members, such as welded, bolted, nailed, or glued box beams and cha
a useful quantity is the shear flow q measured in force per unit length along the beam,

(1.5.31)

FIGURE 1.5.20 Transverse shear stress distribution.

FIGURE 1.5.21 Shear stress distribution for I-beam.
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where all quantities are defined as for Equation 1.5.30. Care must be taken to use the appropriate value
for Q. For example, consider a channel section of three flat pieces glued together as in Figure 1.5.22.
There are two critical joint regions B here, and the area A′ is between them. The shear flow is carried
by the two joints together, so the actual force per unit length on one joint is q/2 here.

Shear Flow in Thin-Walled Beams

The shear-flow distribution over the cross section of a thin-walled member is governed by equilibrium
requirements. Schematic examples of this are given in Figure 1.5.23. Note the special case of unsym
metrical loading in part (c), which causes a bending and a twisting of the beam. The twisting is prevented
if the vertical force V is applied at the shear center C, defined by the quantity e,

(1.5.32)

where d is the centroidal distance between the two horizontal flanges and H is the shear force in the
flanges (qave times width of flange).

Deflections of Beams

Small deflections of beams can be determined relatively easily. The first step is to assess a beam’s loading
and support conditions and sketch an exaggerated elastic deflection curve as in Figure 1.5.24.

FIGURE 1.5.22 Critical joint regions of a built-up beam.

FIGURE 1.5.23 Shear flow distributions.

FIGURE 1.5.24 Exaggerated elastic curve of a beam in bending.
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The boundary conditions at the supports are useful in the solution for the whole beam. Here
fixed end A there is no vertical displacement and no rotation, while at the roller support B there is no
vertical displacement but rotation of the continuous beam occurs. The boundary and continuity conditions
can be determined by inspection in simple cases.

Moment vs. Curvature

For a homogeneous and elastic beam,

(1.5.33)

where ρ = radius of curvature at a specific point on the elastic curve; 1/ρ is the curvature. The product
EI is called the flexural rigidity; it is often a constant along the whole beam.

Integration Method for Slope and Displacement

For small displacements, 1/ρ = d2y/dx2. In the general case, a distributed external loading w(x) should
be included in the modeling of the problem. A set of expressions is available to solve for the deflections
in rectangular coordinates:

(1.5.34)

The deflection y of the elastic curve is obtained by successive integrations, using appropriate constan
of integration to satisfy the boundary and continuity conditions. In general, several functions must be
written for the moment M(x), one for each distinct region of the beam, between loading discontinuitie
For example, these regions in Figure 1.5.24 are AC, CB, and BD. Considerable care is required to se
up a solution with a consistent sign convention and selection of coordinates for simple and efficient
forms of M(x).

In practice, even relatively complex problems of beam deflections are solved using the principle of
superposition and handbook values of slopes and deflections for subsets of basic loadings and sup
The literature contains a large variety of such subsets. A sampling of these is given in Table 1.5.2.

Deflection Caused by Shear

The transverse shear acting on a beam causes a displacement that tends to be significant compared to
bending deflections only in very short beams. The shear deflection over a length L is approximated by

(1.5.35)

Torsion

The simplest torsion members have circular cross sections. The main assumptions in their analysis a
that cross-sectional circles remain plane circles during twisting of a shaft and that radial lines ony
cross section remain straight and rotate through the same angle. The length and diameter of the sha
are unchanged in small angular displacements. It is useful in the analysis that shear strain γ varies linearly
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r
along any radial line, from zero at the centerline of a solid or tubular shaft to a maximum at the oute
surface,

(1.5.36)

where ρ = radial distance to any element in the shaft
r = radius of the shaft

Using τ = Gγ for an elastically deforming material (Figure 1.5.25),

(1.5.37)

The torsion formula relating shear stress to the applied torque T is from T = 2π∫τρ2 dρ,

(1.5.38)

TABLE 1.5.2

γ ρ γ=
r max

τ ρ τ=
r max

τ τ ρ
max = =Tr
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where J = the polar moment of inertia of the cross-sectional area; for a solid circle, J = πr4/2; for a tube,
.

Power Transmission

The power P transmitted by a shaft under torque T and rotating at angular velocity ω is

P = Tω (1.5.39)

where ω = 2πf; f = frequency of rotation or number of revolutions per second.

Angle of Twist

For a homogeneous shaft of constant area and G over a length L, under a torque T, the angular
displacement of one end relative to the other is

(1.5.40)

For a shaft consisting of segments with various material and/or geometric properties, under several
different torques in each, the net angular displacement is calculated from the vector sum of the individual
twists,

(1.5.41)

The right-hand rule is used for a sign convention for torques and angles: both T and φ are positive, with
the thumb pointing outward from a shaft and the fingers curling in the direction of torque and/or rotatio
as in Figure 1.5.26. Note that regardless of the number of torques applied to a shaft at various places
along its length, there is only one torque at a given cross section, and this torque is a constant in t
segment of the shaft (until another external torque is encountered, requiring a different free-body
diagram).

Inelastic Torsion

A shaft may plastically deform under an increasing torque, yielding first in its outer layers and ultimately
throughout the cross section. Such a shaft is analyzed by assuming that the shear strains are stil

FIGURE 1.5.25 Shear stress distributions in a shaft.

FIGURE 1.5.26 Right-hand rule for positive torque and angle.
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varying from zero at the centerline to a maximum at the outer layers. Thus, the shear stress distribution
depends on the shear stress-strain curve of the material. For example, an elastic, elastic-plastic, and full
plastic solid circular shaft is modeled in Figure 1.5.25, assuming flat-top yielding at τy. The torque T in
any case is obtained by integrating the shear stresses over the whole area,

(1.5.42)

The fully plastic torque in this case is 33% greater than the maximum elastic torque.

Noncircular Shafts

The analysis of solid noncircular members, such as rectangles and triangles, is beyond the scope of this
book. The reason for the difficulty is that plane sections do not remain plane, but warp. It can be noted
here, however, that a circular shaft utilizes material the most efficiently since it has a smaller maximum
shear stress and a smaller angle of twist than a noncircular shaft of the same weight per uni
under the same torque.

Noncircular tubes with thin walls can be analyzed using the concept of shear flow that must be
continuous and constant on the closed path of the cross-sectional area. The shear stress under a torqu
T is essentially constant over a uniformly thin wall (from inside to outside), and is given by

(1.5.43)

where t = thickness of the tube
Am = mean area within the centerline of the wall thickness

The angle of twist for an elastically deforming thin-walled tube of length L and constant thickness t is

(1.5.44)

where the line integral represents the total length of the wall’s centerline boundary in the cross section (for

circular tube, this becomes ≈2πr). For a tube with variable thickness t, the integrand becomes 

Statically Indeterminate Members

Members that have more supports or constraints than the minimum required for static equilibrium
called statically indeterminate. They can be analyzed if a sufficient number of additional relationships
are available. These are fundamentally similar to one another in terms of compatibility for displacem
and are described separately for special cases.

Statically Indeterminate Axially Loaded Members

Several subsets of these are common; three are shown schematically in Figure 1.5.27.

1. From a free-body diagram of part (a), assuming upward forces FA and FB at ends A and B,
respectively, the force equilibrium equation is

T d
A

= ∫2 2π τρ ρ

τ = T

tAm2

φ = ∫TL

A Gt
ds

m4 2

ds t/ .∫

F F PA B+ − = 0
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The displacement compatibility condition is that both ends are fixed, so

Then

Alternatively, first assume that FB = 0, and calculate the total downward displacement (tens
of the free end B. Then calculate the required force FB to compressively deform the rod upwar
so that after the superposition there is no net displacement of end B. The results are the same a
above for elastically deforming members.

2. Constrained thermal expansion or contraction of part (b) is handled as above, using the exp
for thermally induced deformation,

(1.5.45)

where α  = linear coefficient of thermal expansion
∆T  = change in temperature

3. The force equilibrium equation of part (c) is

Here the two different component materials are deforming together by the same amount, 

providing two equations with two unknowns, FA and FB. Note that rigid supports are not necessar
realistic to assume in all cases.

Statically Indeterminate Beams

As for axially loaded members, the redundant reactions of beams are determined from the
conditions of geometry (the displacement compatibility conditions). There are various approach
solving problems of statically indeterminate beams, using the methods of integration, moment-ar

FIGURE 1.5.27 Statically indeterminate axially loaded members.
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superposition. Handbook formulas for the slopes and deflections of beams are especially useful, notin
that the boundary conditions must be well defined in any case. The method of superposition is illustrate
in Figure 1.5.28.

Choosing the reaction at C as the redundant support reaction (otherwise, the moment at A could be
taken as redundant), and first removing the unknown reaction Cy, the statically determinate and stabl
primary beam is obtained in Figure 1.5.28b. Here the slope and deflection at A are both zero. The slopes
at B and C are the same because segment BC is straight. Next the external load P is removed, and a
cantilever beam fixed at A and with load Cy is considered in Figure 1.5.28c. From the original bounda
conditions at C, –y1 + y2 = 0, and the problem can be solved easily using any appropriate method.

Statically Indeterminate Torsion Members

Torsion members with redundant supports are analyzed essentially the same way as other kinds of
statically indeterminate members. The unknown torques, for example, are determined by setting up 
solution to satisfy the requirements of equilibrium (∑T = 0), angular displacement compatibility, and
torque-displacement (angle = TL/JG) relationships. Again, the boundary conditions must be reasonab
well defined.

Buckling

The elastic buckling of relatively long and slender members under axial compressive loading could result
in sudden and catastrophic large displacements. The critical buckling load is the smallest for a given
ideal column when it is pin-supported at both ends; the critical load is larger than this for other kinds
of supports. An ideal column is made of homogeneous material, is perfectly straight prior to loa
and is loaded only axially through the centroid of its cross-sectional area.

Critical Load. Euler’s Equation

The buckling equation (Euler’s equation) for a pin-supported column gives the critical or maximum
axial load Pcr as

(1.5.46)

where E = modulus of elasticity
I = smallest moment of inertia of the cross-sectional area
L = unsupported length of the pinned column

A useful form of this equation gives the critical average stress prior to any yielding, for arbitrary end
conditions,

(1.5.47)

FIGURE 1.5.28 A statically indeterminate beam.
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where r =  = radius of gyration of cross-sectional area A
L/r = slenderness ratio

k = effective-length factor; constant, dependent on the end constraints
kL/r = effective-slenderness ratio

The slenderness ratio indicates, for a given material, the tendency for elastic buckling or failure by
yielding (where the Euler formula is not applicable). For example, buckling is expected in mild steel if
L/r is approximately 90 or larger, and in an aluminum alloy if L/r > 60. Yielding would occur first at
smaller values of L/r. Ratios of 200 or higher indicate very slender members that cannot support large
compressive loads.

Several common end conditions of slender columns are shown schematically in Figure 1.5.29.

Secant Formula

Real columns are not perfectly straight and homogeneous and are likely to be loaded eccentrically. Such
columns first bend and deflect laterally, rather than buckle suddenly. The maximum elastic compressive
stress in this case is caused by the axial and bending loads and is calculated for small deflections from
the secant formula,

(1.5.48)

where e is the eccentricity of the load P (distance from the neutral axis of area A) and c is measured
from the neutral axis to the outer layer of the column where σmax occurs.

The load and stress are nonlinearly related; if there are several loads on a column, the loads shou
be properly combined first before using the secant formula, rather than linearly superposing everal
individually determined stresses. Similarly, factors of safety should be applied to the resultant load.

Inelastic Buckling

For columns that may yield before buckling elastically, the generalized Euler equation, also called t
Engesser equation, is appropriate. This involves substituting the tangent modulus ET (tangent to the
stress-strain curve) for the elastic modulus E in the Euler equation,

(1.5.49)

FIGURE 1.5.29 Common end conditions of slender columns.
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Note that ET must be valid for the stress σcr, but ET is dependent on stress when the deformations 
not entirely elastic. Thermal or plastic-strain events may even alter the stress-strain curve of the material,
thereby further changing ET. Thus, Equation 1.5.49 should be used with caution in a trial-and-e
procedure.

Impact Loading

A mass impacting another object causes deformations that depend on the relative velocity between them.
The simplest model for such an event is a mass falling on a spring. The maximum dynamic deformation
d of a linearly responding spring is related to the static deformation dst (the deformation caused by a
weight W applied slowly) by a factor that depends on h, the height of free fall from a static position.

(1.5.50)

The dynamic and static stresses are related in a similar way,

(1.5.51)

The quantity in parentheses is called the impact factor, which shows the magnification of deflection or
stress in impacts involving free fall. Note that the real impact factor is somewhat smaller than what is
indicated here, because some energy is always dissipated by friction during the fall and deceleration of
the body. This includes internal friction during plastic flow at the points of contact between the bodie
Other small errors may result from neglecting the mass and possible inelasticity of the spring.

A special value of the impact factor is worth remembering. When the load is applied suddenly withou
a prior free fall, h = 0, and

This means that the minimum impact factor is about two, and it is likely to be larger than two, causing
perhaps a “bottoming out” of the spring, or permanent damage somewhere in the structure or the payloa
supported by the spring.

Combined Stresses

Combinations of different kinds of loads on a member are common. The resultant states of stress a
various points of interest can be determined by superposition if the material does not yield. The three-
dimensional visualization and correct modeling of such a problem is typically the most difficult part of
the solution, followed by routine calculations of the stress components and resultants. No new methods
of analysis are needed here.

The approach is to sketch an infinitesimal cube at each critical point in the member and determ
the individual stresses (magnitudes and signs) acting on that element, generally caused by axiar,
bending, torsion, and internal pressure loading. This is illustrated in Figure 1.5.30, for a case of medium
complexity.

Consider a solid circular rod of radius R, fixed at z = 0 (in the xy plane), and loaded by two forces
at point B of a rigid arm. Set up the stress analysis at point A (–R, 0, 0), assuming there is no stres
concentration at the wall fixture of the rod (Figure 1.5.30a).

First the equivalent loading at the origin 0 is determined (Figure 1.5.30b). This can be done most
accurately in vector form. The individual stresses at point A are set up in the subdiagram (c). Check th
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each stress even in symbolic form has the proper units of force per area. The net normal force in this
case is σ1 + σ2, and the net shear stress is τ1 + τ2.

The state of stress is different at other points in the member. Note that some of the stresses at a po
could have different signs, reducing the resultant stress at that location. Such is the case at a pt C
diametrically opposite to point A in the present example (R, 0, 0), where the axial load F and M y generate
normal stresses of opposite signs. This shows the importance of proper modeling and setting up a prob
of combined loads before doing the numerical solution.

Pressure Vessels

Maan H. Jawad and Bela I. Sandor

Pressure vessels are made in different shapes and sizes (Figure 1.5.31 and Color Plate 10) and are used
in diverse applications. The applications range from air receivers in gasoline stations to nuclear reacto
in submarines to heat exchangers in refineries. The required thicknesses for some commonly encounte
pressure vessel components depend on the geometry as follows.

Cylindrical Shells

The force per unit length in the hoop (tangential) direction, Nt, required to contain a given pressure p
in a cylindrical shell is obtained by taking a free-body diagram (Figure 1.5.32a) of the cross section.
Assuming the thickness t to be much smaller than the radius R and summing forces in the vertical
direction gives

or

(1.5.52)

FIGURE 1.5.30 Illustration of stress analysis for combined axial, shear, bending, and torsion loading.
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The corresponding hoop stress is σt = pR/t.

The longitudinal force per unit length, Nx, in the cylinder due to pressure is obtained by summin
forces in the axial direction (Figure 1.5.32b),

(a)

(b)

FIGURE 1.5.31 Various pressure vessels. (Photos courtesy Nooter Corp., St. Louis, MO.)
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or

(1.5.53)

The corresponding axial stress is σx = pR/2t. It is seen that the magnitude of Nt (and σt) is twice that of
Nx (and σx). If S is the allowable stress and t is the required minimum thickness,

(1.5.54)

Spherical Shells

A free-body diagram of the spherical cross section is shown in Figure 1.5.33. Summation of forces gives

(1.5.55)

Example 10

Determine the required thickness of the shell and heads of the air receiver shown in Figure 1.5.34 if p
= 100 psi and S = 15,000 psi.

Solution. From Equation 1.5.54, the required thickness for the cylindrical shell is

The required head thickness from Equation 1.5.55 is

FIGURE 1.5.32 Analysis of cylindrical pressure vessels.

FIGURE 1.5.33 Analysis of spherical pressure vessels

FIGURE 1.5.34 Sketch of a pressure vessel.

2 2π πRN R px =
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Conical Shells

The governing equations for the longitudinal and circumferential forces in a conical shell (Figure 1.5.35a)
due to internal pressure are similar to Equations 1.5.52 and 1.5.53 for cylindrical shells, with the radius
taken normal to the surface. Thus,

(1.5.56)

(1.5.57)

where α is half the apex angle of the cone.

The junction between a conical and cylindrical shell, Figure 1.5.35b, is subjected to an additiona
force, H, in the horizontal direction due to internal pressure. The magnitude of this additional force pe
unit length can be obtained by taking a free-body diagram as shown in Figure 1.5.35b,

(1.5.58)

A ring is usually provided at the cone-to-cylinder junction to carry the horizontal force H. The required
area A of the ring is obtained from Figure 1.5.35c as

or

(1.5.59)

The stress in the ring is compressive at the large end of the cone and tensile at the small end of 
cone due to internal pressure. This stress may reverse in direction due to other loading conditions su
as weight of contents and end loads on the cone due to wind and earthquake loads.

Example 11

Determine the required thickness of the two cylindrical shells and cone shown in Figure 1.5.36a due to
an internal pressure of 200 psi. Calculate the area of the rings required at the junctions. Assume the
allowable stress to be 20 ksi in tension and 10 ksi in compression.

FIGURE 1.5.35 Analysis of conical shells.

t = × ×  =100 18 2 15 000 0 06, .  in.

N prt = cosα

N prx = 2cosα

H Nx= sinα
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Solution. From Equation 1.5.54, the thickness of the large cylinder is

The thickness of the small cylinder is

The thickness of the cone is obtained from Equation 1.5.56 as

The required area of the ring at the large end of the cone is obtained from Equation 1.5.59 using 
allowable compressive stress of 10 ksi.

The required area of the ring at the small end of the cone is obtained from Equation 1.5.59 us
allowable tensile stress of 20 ksi.

The rings at the junction are incorporated in a number of ways such as those shown in Figure 1.5.36b.

Nozzle Reinforcement

Reinforcements around openings in pressure vessels are needed to minimize the local stress in the 
of the opening. The calculation for the needed reinforcement around an opening is based on the c
that pressure in a given area of a vessel is contained by the material in the vessel wall surrounding the
pressure. Thus in Figure 1.5.37, if we take an infinitesimal length dL along the cylinder, the force caused
by the pressure within this length is given by the quantity pR dL. The force in the corresponding vessel
wall is given by St dL. Equating these two quantities results in the expression t = pR/S which is given
earlier as Equation 1.5.54. Similarly for the nozzle in Figure 1.5.37, T = pr/S. The intersection of the
nozzle with the cylinder results in an opening where the pressure in area ABCD is not contained by any
material. Accordingly, an additional area must be supplied in the vicinity of the opening to prevent
overstress of the vessel. The required area A is determined from Figure 1.5.37 as

FIGURE 1.5.36 Cylindrical shells with cone connection.

t = ×  =200 60 20 000 0 60, .  in.

t = ×  =200 30 20 000 0 30, .  in.

t = ×  × °( ) =200 60 20 000 30 0 69, cos .  in.

A =  in.200 60 30 2 10 000 30 20 782 2× × ° ×  × °( ) =sin , cos .

A =  in.200 30 30 2 20 000 30 2 602 2× × ° ×  × °( ) =sin , cos .
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Substituting Equation 1.5.54 into this expression gives

A = tr (1.5.60)

This equation indicates that the needed additional area is equal to the removed area of the ves

Creep-Fatigue of Boilers and Pressure Vessels

See Figure 1.6.27 in Section 1.6, “Fatigue.”

Composite Materials for Pressure Vessels

Ian K. Glasgow

Some pressure vessels can be made of fibrous composite materials with high strength-to-weigh
The advantages of using such a material are remarkable in the case of a tubular vessel, where 
stress is twice the longitudinal stress, if the fiber quantities and orientations are optimally desig
resist the applied load caused by internal pressure. Simplistically (since a basic element of a co
is strong along the fibers and weak perpendicular to the fibers), this requires twice as many fibers o
circumferentially as axially. In practice, fibers are commonly laid at ± (a winding angle) at which the
hoop and axial stress components are equal, to efficiently create an optimized configuration.

Example 12

Determine the minimum weight of the tube portion of a thin-walled cylindrical pressure vessel or =
8 in. (20 mm), , = 10 ft (3.05 m), p = 8 ksi (55 MPa); t = ? Assume using a typical graphite/epox
composite of 60% fibers by volume with allowable tensile stress σy = 300 ksi (207 MPa) at 0.058 lb/in.3

(1600 kg/m3). For comparison, consider a steel of σy = 200 ksi (138 MPa) at 0.285 lb/in.3 (7890 kg/m3).

Solution.
Composite:σy = pr/t, t = 0.213 in. (5.41 mm) for circumferential plies

σy = pr/2t, t = 0.107 in. (2.72 mm) for axial plies

Total minimum wall thickness: 0.32 in. (8.13 mm)
Total material in tube: 112 lb (50.8 kg)
Steel: σy = pr/t, t = 0.32 in. (8.13 mm)
Total material in tube: 550 lb (249 kg) = 4.9 (composite material)
Note that there are additional considerations in practice, such as cost and potential problems in 
adequate connections to the tube.

FIGURE 1.5.37 Nozzle reinforcement.
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Experimental Stress Analysis and Mechanical Testing

Michael L. Brown and Bela I. Sandor

Experimental stress analysis is based mostly on the measurement of strains, which may be tran
into stresses. A variety of techniques are available to measure strains. A few of these are described here

Properties of Strain-Measuring Systems

Strain-measuring systems are based on a variety of sensors, including mechanical, optical, and electri
devices. Each has some special advantages but can usually be adapted for other needs as well. No 
system is entirely satisfactory for all practical requirements, so it is necessary to optimize the gage
system to each problem according to a set of desirable characteristics. Some of the common chr-
istics used to evaluate the system’s adequacy for a typical application are

1. The calibration constant for the gage should be stable; it should not vary with either time,
temperature, or other environmental factors.

2. The gage should be able to measure strains with an accuracy of ±1 µε over a strain range of ±10%.
3. The gage size, i.e., the gage length l0 and width w0, should be small so that strain at a point 

approximated with small error.
4. The response of the gage, largely controlled by its inertia, should be sufficient to permit recording

of dynamic strains with frequency components exceeding 100 kHz.
5. The gage system should permit on-location or remote readout.
6. Both the gage and the associated auxiliary equipment should be inexpensive.
7. The gage system should be easy to install and operate.
8. The gage should exhibit a linear response to strain over a wide range.

Three of these basic characteristics deserve further mention here: the gage length l0, the gage sensitivity,
and the range of the strain gage. The gage length is often the most important because in nonlinear s
fields the error will depend on the gage length.

Sensitivity is the smallest value of strain that can be read on the scale associated with the straingage
and should not be mistaken for accuracy or precision. The sensitivity chosen should not be higher tha
necessary because it needlessly increases the complexity of the measuring method and introduces new
problems.

The range of the strain gage refers to the maximum value of strain that can be recorded. Since t
range and sensitivity of the gage are interrelated, it is often necessary to compromise between thwo
for optimal performance of both. Various compromises have resulted in the two main kinds of strain
gages, extensometers and electrical strain gages. There are numerous electrical strain gage systems, but
only electrical-resistance strain gages will be considered here.

Extensometers

Various extensometers involving mechanical, electrical, magnetic, or optical devices are used in materia
test systems. A typical extensometer (Figure 1.5.38) is used in the conventional tensile test where the
stress-strain diagram is recorded. This kind of extensometer is attached to the specimen by knife ed
and spring clips. Electrical-resistance strain gages are attached to the cross-flexural member and provide
the strain output. The main advantage of extensometers is that they can be reused and recalibrated aft
each test. The disadvantages are that they are much larger and more expensive than electrical-resistance
strain gages.

Electrical-Resistance Strain Gages

The electrical-resistance strain gage fulfills most of the requirements of an optimum system and is wid
used for experimental stress analysis. The electrical-resistance strain gage consists of a metal-foil grid
bonded to a polymer backing (Figure 1.5.39). A Wheatstone bridge is often used in this system 
enhance the ability to measure changes in resistance. As a specimen is deformed the strain is transmitt
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to the grid, which has a current applied to it. The change in resistance of the grid is converte
voltage signal output of the Wheatstone bridge. The basic equation used with this system is

(1.5.61)

where R is the resistance of the gage, ε is the applied strain, and SA is the sensitivity, or gage factor, o
the metallic alloy used in the conductor. The most commonly used alloy is a copper-nickel alloy 
Advance, for which the sensitivity is 2.1.

Electrical-Resistance Strain Gage Mounting Methods

For precision strain measurements, both the correct adhesive and proper mounting procedures 
employed. The adhesive serves a vital function in the strain-measuring system; it must transmit th
from the specimen to the sensing element without distortion. Bonding a strain gage to a speci
one of the most critical steps in the entire process of measuring strain with an electric-resistanc
gage. When mounting a strain gage, it is important to carefully prepare the surface of the com
where the gage is to be located. This includes sanding, degreasing, etching, cleaning, and
neutralizing the surface where the gage is to be mounted. Next, the surface is marked to allow a
orientation of the strain gage. The gage is then put in place and held with tape while the adhe
allowed to dry. Several of the adhesive systems commonly used for this are epoxy cements, cyano
cement, polyester adhesives, and ceramic adhesives. Once the adhesive has been placed, t
process becomes vitally important, as it can cause residual stresses in the grid work of the gag
could influence the output. After allowing the adhesive to dry, the cure must be tested to ensure co
drying. Failure to do so will affect the stability of the gage and the accuracy of the output. The
state of the adhesive can be tested by various resistance tests. Also, the bonded surface is ins
determine if any voids are present between the gage and the specimen due to bubbling of the a

After the bonding process is complete, the lead wires are attached from the soldering tabs of t
to an anchor terminal, which is also bonded to the test specimen. This anchoring terminal is u
protect the fragile metal-foil gages. Finally, wires are soldered from this anchor terminal to the i
mentation being used to monitor the resistance changes.

FIGURE 1.5.38 Extensometer attached to a tensil
specimen.

FIGURE 1.5.39 Model of metal-foil strain gages.

∆R

R
SA= ε
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Gage Sensitivities and Gage Factor

The electrical-resistance strain gage has a sensitivity to both axial and transverse strain. The magnitude
of the transverse strain transmitted to the grid depends on a number of factors, including the thickness
and elastic modulus of the adhesive, the carrier material, the grid material, and the width-to-thickn
ratio of the axial segments of the grid. Sometimes it is necessary to calculate the true value of strain
that includes all contributions, from

(1.5.62)

where εa is the normal strain along the axial direction of the gage, εt is the normal strain along the
transverse direction of the gage, v0 = 0.285 is Poisson’s ratio for the calibration beam, and Kt is the
transverse-sensitivity factor of the gage. The strain gage sensitivity factor, Sg, is a calibration constant
provided by the manufacturer. By using Equations 1.5.61 and 1.5.62 the percent error involved in
neglecting the transverse sensitivity can be calculated. These errors can be significant for large values
of both Kt and εt /εa, so it may be necessary to correct for the transverse sensitivity of the gage (Figure
1.5.40).

Strain Analysis Methods

Electrical-resistance strain gages are normally employed on the free surface of a specimen to establis
the stress at a particular point on this surface. In general it is necessary to measure three strains
point to completely define either the stress or the strain field. For this general case, where nothing 
known about the stress field or its directions before experimental analysis, three-element rosettes a
required to establish the stress field. This is accomplished by using the three-element gage with orien-
tations at arbitrary angles, as shown in Figure 1.5.41. Using this setup, the strains εx, εy, and γxy can be
determined. These values can be used to determine the principal strains and principal directions,

(1.5.63)

where φ is the angle between the principal axis (σ1) and the x axis. The principal stresses can be compute
using the principal strains,

FIGURE 1.5.40 Error as a function of transverse-sensitivity factor with the biaxial strain ratio as a parameter.
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(1.5.64)

These expressions give the complete state of stress since the principal directions are known from E
1.5.63.

Optical Methods of Strain Analysis

Moiré Method of Strain Analysis. The moiré technique depends on an optical phenomenon of frin
caused by relative displacement of two sets of arrays of lines. The arrays used to produce the
may be a series of straight parallel lines, a series of radial lines emanating from a point, a se
concentric circles, or a pattern of dots. The straight parallel line “grids” are used most often for 
analysis work and consist of equal width lines with opaque spacing of the same width between
These straight parallel lines are spaced in a “grating” scheme of typically 50 to 1000 lines per in
moiré work. In the cross-grid system of two perpendicular line arrays, the grid placed on the spe
is referred to as the model grid. The second grid is referred to as the reference grid and is ove
top of the model grid. Often a thin layer of oil or some other low-friction substance is placed be
the model grid and the reference grid to keep them in contact while attempting to minimiz
transmission of strains from the model to the reference grid.

To obtain a moiré fringe pattern the grids are first aligned on the unloaded model so that no 
is present. The model is loaded and light is transmitted through the two grids. Strain displacem
observed in the model grid while the reference grid remains unchanged. A moiré fringe pattern is 
each time the model grating undergoes a deformation in the primary direction equal to the pitcp of
the reference grating. For a unit gage length, ∆L = np, where ∆L is the change in length per unit length
p is the pitch of the reference grating and n is the number of fringes in the unit gage length. In ord
to calculate εx, εy, and γxy, two sets of gratings must be applied in perpendicular directions. T
displacements u and v (displacements in the x and y directions, respectively) can be established and 
Cartesian strain components can be calculated from slopes of the displacement surfaces: εxx = ∂u/∂x, εyy

= ∂v/∂y, and γxy = ∂v/∂x + ∂u/∂y. The displacement gradients in the z direction, ∂w/∂x and ∂w/∂y, have
been neglected here because they are not considered in moiré analysis of in-plane deformation

Photoelasticity. The method of photoelasticity is based on the physical behavior of transparent, no
talline, optically isotropic materials that exhibit optically anisotropic characteristics, referred t
temporary double refraction, while they are stressed. To observe and analyze these fringe pa
device called a polariscope is used. Two kinds of polariscope are common, the plane polarisco
the circular polariscope.

FIGURE 1.5.41 Three gage elements placed at arbitra
angles relative to the x and y axes.
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The plane polariscope (Figure 1.5.42) consists of a light source, two polarizing elements, and the
model. The axes of the two polarizing elements are oriented at a 90° angle from each other. If the
specimen is not stressed, no light passes through the analyzer and a dark field is observed. If the model
is stressed, two sets of fringes, isoclinics and isochromatics, will be obtained. Black isoclinic fri
patterns are the loci of points where the principal-stress directions coincide with the axis of the por.
These fringe patterns are used to determine the principal stress directions at all points of a phot
model. When the principal stress difference is zero (n = 0) or sufficient to produce an integral number
of wavelengths of retardation (n = 1, 2, 3, ...), the intensity of light emerging from the analyzer is zero.
This condition for extinction gives a second fringe pattern, called isochromatics, where the fringe
the loci of points exhibiting the same order of extinction (n = 0, 1, 2, 3, …).

(1.5.65)

where N is the isochromatic fringe order. The order of extinction n depends on the principal stres
difference (σ1 – σ2), the thickness h of the model, and the material fringe value fσ. When monochromatic
light is used, the isochromatic fringes appear as dark bands. When white light is used, the isochromati
fringes appear as a series of colored bands. Black fringes appear in this case only where the p
stress difference is zero.

A circular polariscope is a plane polariscope with two additional polarizing plates, called quarter-
wave plates, added between the model and the original polarizing plates (Figure 1.5.43). The two quarter-
wave plates are made of a permanently doubly refracting material. The circular polariscope is used to
eliminate the isoclinic fringes while maintaining the isochromatic fringes. To accomplish this, mono-
chromatic light must be used since the quarter-wave plates are designed for a specific wavelength of
light. For the dark-field arrangement shown, no light is passed through the polariscope when the mo
is unstressed. A light-field arrangement is achieved by rotating the analyzer 90°. The advantage of using

FIGURE 1.5.42 Schematic of a stressed photoelastic model in a plane polariscope.
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both light- and dark-field analysis is that twice as much data is obtained for the whole-field determi
of σ1 – σ2. If a dark-field arrangement is used, n and N still coincide, as in Equation 1.5.65. If a light
field arrangement is used, they are not coincident. In this case Equation 1.5.65 becomes

(1.5.66)

By determining both the isoclinic fringes and the isochromatic fringes, the principal-stress dire
and the principal-stress difference can be obtained. In order to obtain the individual principal st
a stress separation technique would need to be employed.

The advantages of the photoelastic method are that it allows a full-field stress analysis and it
it possible to determine both the magnitude and direction of the principal stresses. The disadv
are that it requires a plastic model of the actual component and it takes a considerable effort to s
the principal stresses.

Thermoelastic Stress Analysis. Modern thermoelastic stress analysis (TSA) employs advanced differe
thermography (or AC thermography) methods based on dynamic thermoelasticity and focal-plane
infrared equipment capable of rapidly measuring small temperature changes (down to 0.001°C) caused
by destructive or nondestructive alternating stresses. Stress resolutions comparable to those 
gages can be achieved in a large variety of materials. The digitally stored data can be processed
real time to determine the gradient stress fields and related important quantities (such as combine
stress intensity factors) in complex components and structures, with no upper limit in temperatur
efficient, user-friendly methods can be applied in the laboratory and in the field, in vehicles, and stru
such as bicycles, automobiles, aircraft, surgical implants, welded bridges, and microelectronics. Op

FIGURE 1.5.43 Schematic of a stressed photoelastic model in a circular polariscope.
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design, rapid prototyping, failure analysis, life prediction, and rationally accelerated testing can
facilitated with the new TSA methods (Color Plates 8 and 11 to 14).

Brittle Coatings. If a coating is applied to a specimen that is thin in comparison with the thickne
the specimen, then the strains developed at the surface of the specimen are transmitted without significant
change to the coating. This is the basis of the brittle coating method of stress analysis. The two kinds
of coatings available are resin-based and ceramic-based coatings. The ceramic-based coatings are seldo
used due to the high application temperatures (950 to 1100°F) required. The coatings are sprayed on
the component until a layer approximately 0.003 to 0.010 in. thick has accumulated. It is also nec
to spray calibration bars with the coating at the same time in order to obtain the threshold strain a
the coating will crack. These calibration bars are tested in a cantilever apparatus and the threshold stra
is calculated using the flexure formula and Hooke’s law. Once the threshold strain is known and the
actual specimen has been tested, the principal stress perpendicular to the crack can be determ
using Hooke’s law. The procedure is to load the component, apply the coating, and then quickly re
the loading in steps to observe any cracks.

The main advantages of this method are that both the magnitude and direction of the principal s
can be quickly obtained and that the coating is applied directly to the component. This also allows a
quick analysis of where the maximum stress regions are located so that a better method can be use
obtain more accurate results. The main disadvantage is that the coatings are very sensitive to ambient
temperature and might not have sufficiently uniform thickness.

Mechanical Testing

Standards. Many engineering societies have adopted mechanical testing standards; the most wid
accepted are the standards published by the American Society for Testing and Materials. Standards fo
many engineering materials and mechanical tests (tension, compression, fatigue, plane strain fracture
toughness, etc.) are available in the Annual Book of ASTM Standards.

Open-Loop Testing Machines. In an open-loop mechanical testing system there is no feedback to
control mechanism that would allow for continuous adjustment of the controlled parameter. Instead, the
chosen parameter is “controlled” by the preset factory adjustments of the control mechanism. It is n
possible for such a machine to continually adjust its operation to achieve a chosen (constant or no
constant) displacement rate or loading rate.

A human operator can be added to the control loop in some systems in an attempt to mainta
parameter, such as a loading rate, at a constant level. This is a poor means of obtaining improved
equipment response and is prone to error.

Closed-Loop Testing Machines. In a closed-loop, most commonly electrohydraulic, testing system, a
servo controller is used to continuously control the chosen parameter. When there is a small difference
between the desired value that has been programmed in and the actual value that is being measured, th
servo controller adjusts the flow of hydraulic fluid to the actuator to reduce the difference (the error).
This correction occurs at a rate much faster than any human operator could achieve. A standard system
makes 10,000 adjustments per second automatically.

A typical closed-loop system (Color Plates 9, 11, 15) allows the operator to control load, strain, o
displacement as a function of time and can be adjusted to control other parameters as well. This makes
it possible to perform many different kinds of tests, such as tension, compression, torsion, creep, 
relaxation, fatigue, and fracture.

Impact Testing. The most common impact testing machines utilize either a pendulum hammer
dropped weight. In the pendulum system a hammer is released from a known height and strikes a small
notched specimen, causing it to fracture. The hammer proceeds to some final height. The difference
between the initial and final heights of the hammer is directly proportional to the energy absorbed by
the specimen. For the Charpy test the specimen is mounted horizontally with the ends supported so
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the pendulum will strike the specimen in midspan, opposite the notch. In the Izod test the spe
bottom is mounted in a vertical cantilever support so that the pendulum will strike the specime
specific distance above the notch, near the unsupported top end.

A large variety of the drop-weight tests are also available to investigate the behaviors of ma
and packages during impact.

Hardness Testing. The major hardness tests are the Brinell, Rockwell, Vickers, and Shore sclero
tests.

The Brinell hardness test uses a hardened steel ball indenter that is pushed into the material
specified force. The diameter of the indentation left in the surface of the material is measured
Brinell hardness number is calculated from this diameter.

The Rockwell hardness test differs from the Brinell test in that it uses a 120° diamond cone with a
spherical tip for hard metals and a 1/16-in. steel ball for soft metals. The Rockwell tester gives a
readout of the hardness number. The Rockwell scale consists of a number of different letter desi
(B, C, etc.) based on the depth of penetration into the test material.

The Vickers hardness test uses a small pyramidal diamond indenter and a specified load. The d
length of the indentation is measured and used to obtain the Vickers hardness number.

The Shore scleroscope uses a weight that is dropped on the specimen to determine the hardn
hardness number is determined from the rebound height of the weight.
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1.6 Structural Integrity and Durability

Bela I. Sandor

The engineer is often concerned about the long-term behavior and durability of machines and structure
Designs based just on statics, dynamics, and basic mechanics of materials are typically able to
only minimal performance and reliability requirements. For realistic service conditions, there may b
numerous degradations to consider. A simple and common approach is to use safety factors based on
experience and judgment. The degradations could become severe and require sophisticated analyses
unfavorable interactions occur. For example, fatigue with corrosion or high temperatures is difficult to
predict accurately, and much more so when corrosion is occurring at a high temperature.

There are many kinds of degradations and interactions between them, and a large (and still growing)
technical literature is available in most of these areas. The present coverage cannot possibly do justice
to the magnitude of the most serious problems and the available resources to deal with them. Instea
the material here is to highlight some common problems and provide fundamental concepts to prepar
for more serious efforts. The reader is encouraged to study the technical literature (including tha
technical societies such as ASM, ASME, ASNT, ASTM, SAE), attend specialized short courses, a
seek consulting advice (ASM, ASTM, Teltech) as necessary.

Finite Element Analysis. Stress Concentrations

The most common problem in creating a machine or structure with good strength-to-weight rati
identify its critical locations and the corresponding maximum stresses or strains and to adjust the
optimally. This is difficult if a member’s geometry, including the geometry and time-dependence of t
loading, is complex. The modern analytical tool for addressing such problems is finite element analysis
(FEA) or finite element modeling (FEM).

Finite Element Analysis

The finite element (FE) method was developed by engineers using physical insight. In all applications
the analyst seeks to calculate a field quantity: in stress analysis it is the displacement field or the stress
field; in thermal analysis it is the temperature field or the heat flux; and so on. Results of the great
interest are usually peak values of either the field quantity or its gradients. The FE method is a way of
getting a numerical solution to a specific problem. An FEA does not produce a formula as a solutio
nor does it solve a class of problems. Also, the solution is approximate unless the problem is so sim
that a convenient exact formula is already available. Furthermore, it is important to validate the numerical
solution instead of trusting it blindly.

The power of the FE method is its versatility. The structure analyzed may have arbitrary shape,
arbitrary supports, and arbitrary loads. Such generality does not exist in classical analytical methods
For example, temperature-induced stresses are usually difficult to analyze with classical methods, even
when the structure geometry and the temperature field are both simple. The FE method treats therma
stresses as readily as stresses induced by mechanical load, and the temperature distribution itself can be
calculated by FE. However, it is easy to make mistakes in describing a problem to the computer progra
Therefore it is essential that the user have a good understanding of the problem and the modeling so
that errors in computed results can be detected by judgment.

Stress Concentrations

Geometric discontinuities cause localized stress increases above the average or far-field stress. A stress
raiser’s effect can be determined quantitatively in several ways, but not always readily. The simplest
method, if applicable, is to use a known theoretical stress concentration factor, Kt, to calculate the
peak stress from the nominal, or average, value,

(1.6.1)σ σmax = Kt ave
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This is illustrated in Figure 1.6.1. The area under the true stress distribution always equals the area unde
the nominal stress level,

(1.6.2)

The factor Kt depends mainly on the geometry of the notch, not on the material, except when the material
deforms severely under load. Kt values are normally obtained from plots such as in Figure 1.6.2 and are
strictly valid only for ideally elastic, stiff members. Kt values can also be determined by FEA or b
several experimental techniques. There are no Kt values readily available for sharp notches and crack
but one can always assume that such discontinuities produce the highest stress concentrations, som
factors of tens. This is the reason for brittle, high-strength materials being extremely sensitive even to
minor scratches. In fatigue, for example, invisible toolmarks may lead to premature, unexpected failures
in strong steels.

FIGURE 1.6.1 Stress distribution (simplistic) in a
notched member under uniaxial load.

FIGURE 1.6.2 Samples of elastic stress concentration factors. (Condensed from Figures 10.1 and 10.2, Dowling,
N. E. 1993. Mechanical Behavior of Materials. Prentice-Hall, Englewood Cliffs, NJ. With permission.)
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There are many other factors that may seem similar to Kt, but they should be carefully distinguished
The first is the true stress concentration factor Kσ , defined as

(1.6.3)

which means that Kσ = Kt (by Equation 1.6.1) for ideally elastic materials. Kσ is most useful in the case
of ductile materials that yield at the notch tip and lower the stress level from that indicated by Kt.

Similarly, a true strain concentration factor, Kε, is defined as

(1.6.4)

where εave = σave/E.
Furthermore, a large number of stress intensity factors are used in fracture mechanics, and the

(such as K, Kc, KI, etc.) are easily confused with Kt and Kσ , but their definitions and uses are different
as seen in the next section.

Fracture Mechanics

Notches and other geometric discontinuities are common in solid materials, and they tend to facilitate
the formation of cracks, which are in turn more severe stress raisers. Sharp cracks and their furt
growth are seldom simple to analyze and predict, because the actual stresses and strains at a 
are not known with the required accuracy. In fact, this is the reason the classical failure theories (maximum
normal stress, or Rankine, theory; maximum shear stress, or Tresca, theory; distortion energy, or von
Mises or octahedral shear stress, theory), elegantly simple as they are, are not sufficiently useful in
dealing with notched members. A powerful modern methodology in this area is fracture mechan
which was originated by A. A. Griffith**  in 1920 and has grown in depth and breadth enormously i
recent decades. The space here is not adequate to even list all of the significant references in this sti
expanding area. The purpose here is to raise the engineer’s awareness to a quantitative, practically useful
approach in dealing with stress concentrations as they affect structural integrity and durability.

Brittle and Ductile Behaviors. Embrittlements

Brittleness and ductility are often the first aspects of fracture considerations, but they often require some
qualifications. Simplistically, a material that fractures in a tension test with 0% reduction of area (
is perfectly brittle (and very susceptible to fracture at stress raisers), while one with 100% RA is perf
ductile (and quite tolerant of discontinuities). Between these extremes fall most engineering materials
with the added complication that embrittlement is often made possible by several mechanisms or
environmental conditions. For example, temperature, microstructure, chemical environment, internal
gases, and certain geometries are common factors in embrittlement. A few of these will be discussed later.

**  The Griffith criterion of fracture states that a crack may propagate when the decrease in elastic strainrgy
is at least equal to the energy required to create the new crack surfaces.  The available elastic strain energy must
also be adequate to convert into other forms of energy associated with the fracture process (heat from plas
deformation, kinetic energy, etc.).  The critical nominal stress for fracture according to the Griffith theory is

proportional to  This is significant since crack length, even inside a member, is easier to measure

nondestructively than stresses at a crack tip.  Modern, practical methods of fracture analysis are sophis
engineering tools on a common physical and mathematical basis with the Griffith theory.
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Linear-Elastic Fracture Mechanics (LEFM)

A major special case of fracture mechanics is when little or no plastic deformations occur at the 
locations of notches and cracks. It is important that even intrinsically ductile materials may satisfy thi
condition in common circumstances.

Modes of Deformation. Three basic modes of deformation (or crack surface displacement) of cracked
members are defined as illustrated schematically in Figure 1.6.3. Each of these modes is very common,
but Mode I is the easiest to deal with both analytically and experimentally, so most data available are
for Mode I.

Stress Intensity Factors. The stresses on an infinitesimal element near a crack tip under Mode I loa
are obtained from the theory of linear elasticity. Referring to Figure 1.6.4,

(1.6.5)

There are two special cases of σz:

σz = 0 for plane stress (thin members)
σz = v(σx + σy) for plane strain, with εz = 0 (thick members)

The factor K in these and similar expressions characterizes the intensity or magnitude of the st
field near the crack tip. It is thus called the stress intensity factor, which represents a very useful concept,
but different from that of the well-known stress concentration factor. KI is a measure of the severity of
a crack, and most conveniently it is expressed as

FIGURE 1.6.3 Modes of deformation.

FIGURE 1.6.4 Coordinates for fracture analysis.
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(1.6.6)

where a is the crack length and f is a function of the geometry of the member and of the load
(typically, f ≅  1 ± 0.25). Sometimes f includes many terms, but all stress intensity factors have the same
essential features and units of stress  In any case, expressions of K for many common situations
are available in the literature, and numerical methods are presented for calculating special K values.
Differential thermography via dynamic thermoelasticity is a powerful, efficient modern method for the
measurement of actual stress intensity factors under a variety of complex conditions (Section 1.6,
“Experimental Stress Analysis and Mechanical Testing”; Figure 1.6.12; Color Plates 8 and 11 to 14).

Fracture Toughness of Notched Members

The stress intensity factor, simply K for now, is analogous to a stress-strain curve, as in Figure 1.6.5. K
increases almost linearly from 0 at σ = 0, to a value Kc at a critical (fracture) event. Kc is called the
fracture toughness of a particular member tested. It does depend on the material, but it is not a reliable
material property because it depends on the size of the member too much. This is illustrated in Figure
1.6.6 for plates of the same material but different thicknesses.

At very small thickness, Kc tends to drop. More significantly, Kc approaches a lower limiting value
at large thickness (>A). This worst-case value of Kc is called KIc, the plane strain fracture toughness in
Mode I. It may be considered a pseudomaterial property since it is independent of geometry a
over a range of thicknesses. It is important to remember that the thickness effect can be rather severe.
An intrinsically ductile metal may fracture in an apparently brittle fashion if it is thick enough and has
a notch.

Fracture Toughness Data. Certain criteria about crack sharpness and specimen dimensions mu
satisfied in order to obtain reliable basic KIc data (see ASTM Standards). KIc data for many engineering
materials are available in the technical literature. A schematic overview of various materials’ KIc values
is given in Figure 1.6.7. Note that particular expected values are not necessarily attained in practic
Poor material production or manufacturing shortcomings and errors could result in severely lowered
toughness. On the other hand, special treatments or combinations of different but favorably matched
materials (as in composites) could substantially raise the toughness.

Besides the thickness effect, there are a number of major influences on a given material’s toughness,
and they may occur in favorable or unfavorable combinations. Several of these are described her
schematically, showing general trends. Note that some of the actual behavior patterns are not necessaril
as simple or well defined as indicated.

FIGURE 1.6.5 Kc = fracture toughness of a particular member.

FIGURE 1.6.6 KIc = plane strain fracture toughness o
material.

K a fI = ( )σ π  geometry

length.
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Yield Strength. High yield strength results in a low fracture toughness (Figure 1.6.8), and therefore it
should be chosen carefully, understanding the consequences.

Temperature. Two kinds of temperature effect on toughness should be mentioned here. They both may
appear, at least for part of the data, as in Figure 1.6.9, with high temperature causing increased toughne
One temperature effect is by the increased ductility at higher temperature. This tends to lower the yield
strength (except in low-carbon steels that strain-age at moderately elevated temperatures, about 100 t
500°C), increase the plastic zone at the notch tip, and effectively blunt the stress concentration. Another
effect, the distinct temperature-transition behavior in low-carbon steels (BCC metals, in general; eas
shown in Charpy tests), is caused by microstructural changes in the metal and is relatively complex in
mechanism.

Loading Rate. The higher the rate of loading, the lower the fracture toughness in most cases. Note t
toughness results obtained in notch-impact or explosion tests are most relevant to applications where
the rate of loading is high.

Microstructural Aspects. In some cases apparently negligible variations in chemical composition or
manufacturing processes may have a large effect on a material’s fracture toughness. For example, carbon,
sulfur, and hydrogen contents may be significant in several embrittling mechanisms. Also, the common
mechanical processing of cold or hot working (rolling, extruding, forging) influences the grain structure
(grain size and texture) and the corresponding toughness. Neutron radiation also tends to cause 
scopic defects, increasing the yield strength and consequently lowering the ductility and toughness o
the material.

Overview of Toughness Degradations. There is a multitude of mechanisms and situations that mus
considered singly and in realistic combinations, as illustrated schematically in Figure 1.6.10 (review
Figure 1.6.6 for relevant toughness definitions).

FIGURE 1.6.7 Plane strain fracture toughness ranges (approximate).

FIGURE 1.6.8 Yield strength effect on toughness.

FIGURE 1.6.9 Temperature effect on toughness.



1-110 Section 1

racks

al area.
Crack Propagation

Crack growth may be classified as either stable (subcritical) or unstable (critical). Often stable c
become unstable in time, although the opposite behavior, cracks decelerating and even stopping, is
sometimes possible. Unstable cracks under load control are extremely dangerous because they propagate
at speeds nearly 40% of the speed of sound in that particular solid. This means, for example in steels,
a crack growth speed of about 1 mi/sec. Thus, warnings and even electronically activated, automated
countermeasures during the unstable propagation are useless. The only reasonable course is to provide,
by design and proper manufacture, preventive measures such as ductile regions in a structure where
cracks become stable and slow to grow, allowing for inspection and repair.

There are three kinds of stable crack growth, each important in its own right, with interactions between
them possible. Under steady loads, environmentally assisted crack growth (also called stress corrosion
cracking) and creep crack growth are commonly found. Under cyclic loading fatigue crack growth is
likely to occur. In each case the rate of crack growth tends to accelerate in time or with progressive
cycles of load if the loads are maintained while the cracks reduce the load-bearing cross-section
This common situation, caused by increasing true stresses, is illustrated schematically in Figure 1.6.11,
where a0 is an initial flaw’s size, da/dN and da/dt are the fatigue and creep crack growth rates, respectively,
and ac is the critical crack size. The rate of stable crack growth is controlled by the stress intensity factor.
This will be discussed later.

Design and Failure Analysis Using Stress Intensity Concepts

The concept of stress intensity of cracked members is highly useful and practical. Three major possi-
bilities are outlined here with respect to the essential framework of

(1.6.7)

FIGURE 1.6.10 Trends of toughness degradations.

Degrading factors

Some chemical compositions
Sharper notch
Greater thickness
Faster loading
Lower temperature
Higher yield strength
Hostile chemical environment
Liquid metal embrittlement
Tensile residual stress
Neutron irradiation
Microstructural features
Moisture
Gases in solid solution
Surface hardening

Note: The toughness can drop essentially to 
zero in some cases.

K ∝ stress crack length
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Here K may be either an operating stress intensity factor or a KIc value, a material property (the units
are the same). In design, the idea is to fix one or two quantities by some initial constraints of the cas
then work with the results according to Equation 1.6.7.

1. Operating stress and material (KIc) are predetermined. This forces one to measure crack leng
and set the maximum allowable size of cracks.

2. Operating stress and detectable crack size are predetermined. This forces one to choose an
appropriate material with the required KIc value.

3. The material (KIc value) and the detectable crack size are predetermined. This forces one to limit
the operating stress accordingly.

Similar thinking can be used in failure analysis and corresponding design iteration. For example, the
critical crack size at the end of the stable propagation (and start of the unstable, high-speed growth) can
often be determined by looking at the broken parts. The material property, KIc, can also be estimated
from the parts at hand, and thus the stress that caused the failure can be calculated. It can be determin
if the stress was within normal bounds or was an overload from misuse of the equipment. These are
powerful, quantitative methods that are useful in improving designs and manufacturing.

Special Methods

There are many other important and useful methods in fracture mechanics that cannot even be listed
here. For example, there are several methods in the area of elastic-plastic fracture mechanics. Within
this area, mainly applicable to thin members of ductile materials, the J-integral approach alone has bee
covered in a large number of books and journal articles.

Nondestructive Evaluation

Since all of fracture mechanics is based on knowing the crack size and its location and orientatio
nondestructive evaluation (NDE) is a major part of quantitative, predictive work in this area. Many
techniques of NDE are available, and some are still rapidly evolving. Two major categories of NDE
methods are defined here:

1. Geometry-based methods. At best, the size, shape, location, and orientation of a flaw are measured.
Considerable additional effort is needed to estimate the effect of the flaw on structural integrity
and durability. Common methods involve acoustic, magnetic, microwave, optical (including ther-
mal), or X-ray instruments.

2. Stress-based methods. A flaw’s effect on the stress-strain field is directly measured, which is often
much more important than just finding that flaw (a flaw of a given geometry may be benign o
malignant, depending on the stress field of the neighborhood). Only a few optical methods are
readily available for stress-based NDE; the most effective one for laboratory and field application
is thermoelastic stress analysis by infrared means (Figure 1.6.12; Color Plates 8, 11 to 14; Section
1.5, “Experimental Stress Analysis and Mechanical Testing”).

FIGURE 1.6.11 Crack growth rates under constant load.
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Creep and Stress Relaxation

Creep and stress relaxation are related time- and temperature-dependent phenomena, with creep 
under load control and stress relaxation under deformation control. In both cases the material’s temper-
ature is a governing factor regarding what happens. Specifically, for most metals, the creep and relaxatio
regimes are defined as high homologous (relative, dimensionless) temperatures, normally those above
half the melting point in absolute temperature for each metal. Thus, solder at room temperature cree
significantly under load, while steel and aluminum do not. However, some creep and relaxation ma
occur even at low homologous temperatures, and they are not always negligible. For polymers, the creep
regime is above the glass transition temperature. This is typically not far from room temperature. Figures
1.6.13 and 1.6.14 show trends of creep and stress relaxation in the large-scale phenomenon region.

Stress vs. rupture life curves for creep may be nearly linear when plotted on log-log coordin
(Figure 1.6.15).

FIGURE 1.6.12 Practical fracture mechanics with NDE: nearly instantaneous measurement of crack size and the
actual stress intensity factor via advanced thermoelastic stress analysis. The member’s loading (including boundary
conditions) need not be known to obtain reliable data using this method.

FIGURE 1.6.13 Creep under constant load. dε/dt = A(σ)n. A and n are material parameters.

FIGURE 1.6.14 Stress relaxation under constant deformation. σ = σ0e–Et/η. E and η are material parameters.
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Mechanical Models of Viscoelastic Behaviors

Creep and stress relaxation appear to be combinations of behaviors of viscous liquids and elastic solids
The so-called viscoelastic phenomena are commonly modeled by simple mechanical components
and dashpots, as in Figure 1.6.16. The Maxwell model and related others are based on such eleme

The Maxwell model for creep under constant stress σ0 is

(1.6.8)

For relaxation, ε = constant and σ varies, so

(1.6.9)

Time-Temperature Parameters. Life Estimation

It is often necessary to extrapolate from laboratory creep test data, which are limited in time (from d
to years), to real service lives, which tend to be from years to several decades. Time-temperature
parameters are useful for this purpose. Three common parameters are outlined here. Note that no s
parameter is entirely reliable in all cases. They are best if used consistently in direct comparisons
materials.

FIGURE 1.6.15 Approximate stress vs. rupture lives of S-590 alloy as functions of temperature. (After Figure 15
Dowling, N. E. 1993. Mechanical Behavior of Materials. Prentice-Hall, Englewood Cliffs, NJ. With permission.)

FIGURE 1.6.16 Viscoelastic elements.
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Sherby-Dorn Parameter (PSD)

(1.6.10)

where, for steady-state creep,
θr = temperature-compensated time to rupture
tr = rupture time, hours
Q = activation energy = constant
T = temperature, K

Stress-life data at high T and low tr are needed to plot PSD vs. stress, in order to predict a longer tr at a
lower T.

Larson-Miller Parameter (PLM)

This approach is analogous to the Sherby-Dorn approach, but is based on different assumptio
equations.

(1.6.11)

where C = –logθr ≅  20 for steels. For using temperature in degrees Fahrenheit (as in most of the

(1.6.12)

Manson-Haferd Parameter (PMH)

(1.6.13)

where Ta and ta are temperature and time constants representing a point of convergence for a fam
data points. As above, for different temperature scales,

(1.6.14)

Overview. The greater the extrapolation using any parameter, the greater the likelihood of error. A
of ten or less extrapolation in life is often reasonable. At very large extrapolations there may be di
damage mechanisms from that of the tests, as well as unpredictable service loading and enviro
conditions.

Fatigue

Fatigue is a process of damage evolving in a material due to repeated loads, also called cycli
This is a common degradation that affects virtually all solid materials, and thus it is often the ma
a contributing) factor in the failure of vehicles, machinery, structures, appliances, toys, electronic d
and surgical implants. Many apparently well-designed and -fabricated items that fail inexplicably
problems rooted in the fatigue area.

Nearly two centuries of fatigue studies and engineering efforts have resulted in a huge, an
expanding, technical literature. This brief review can cover only a few major topics, some old but va
items of wisdom, and practical modern methods. Three important approaches are presented: th
based (useful for long lives), strain-based (useful for short lives), and fracture mechanics metho
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Definitions

Constant-amplitude, stress- or strain-controlled cycling is common in testing and some service situatio
Figure 1.6.17 shows the stress (σ) quantities in such cycling. Similar notations are used for strains. I
completely reversed stress σm = 0 and R = –1. Zero-to-tension (a special case of pulsating tension) 
σmin = 0 and R = 0.

Material Properties in Cyclic Loading

The mechanical properties of some materials are gradually changed by cyclic plastic strains. The changes
that occur are largest early in the fatigue life and become negligible beyond about 20 to 50% of the life.
The most important material properties that could change significantly this way are the flow properties
(yield strength, proportional limit, strain hardening exponent), while the modulus of elasticity is little
affected. For metals, three initial conditions can be defined using the strain hardening exponent n as a
key parameter. The concept of a cyclic stress-strain curve, as opposed to that in monotonic (stati
loading, is also used to distinguish possible material behaviors in fatigue, as follows.

• Stable: 0.15 < n < 0.2 (approx.)

The monotonic and cyclic stress-strain curves are the same for most practical purposes (thou
seldom coincident).

Examples: 7075-T6 Al; 4142 steel (550 BHN)

• Cycle-Dependent Softening: n < 0.15 (approx.) (means initially hard, cold-worked material)

The cyclic stress-strain curve falls significantly below the monotonic curve, which means a
gradually decreasing deformation resistance as cyclic loading progresses. The cyclic yield strength
may be less than half the tensile yield strength in some cases.

Examples: 4340 steel (350 BHN); 4142 steel (400 BHN)

• Cycle-Dependent Hardening: n > 0.2 (approx.) (means initially soft, annealed material)

The cyclic stress-strain curve is significantly above the monotonic curve, which means a gradually
increasing deformation resistance as cyclic loading progresses.

Examples: 2024-T4 Al; 4142 steel (670 BHN)

Note that the hardest steels tend to further harden in cyclic loading. Thus, a given steel (such as 4142
may be stable, softening, or hardening, depending on its initial hardness.

In the technical literature, primes are normally used to denote cyclic material properties. For example,
 is the yield strength obtained from a cyclic stress-strain curve.

Stress vs. Life (S-N) Curves

The most common and historical fatigue life plots present data of stress amplitude (simplistically, S or
Sa) on a linear scale vs. cycles to failure (N or Nf) on a logarithmic scale as in Figure 1.6.18.

FIGURE 1.6.17 Notation for constant-amplitude stress cycling.
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Many steels (plain carbon or low alloy) appear to have a distinct fatigue limit. For other metals that
do not have such a limit (aluminum, for example), an arbitrary fatigue limit is defined as a stress amplitud
corresponding to a specified life, typically 107 or 108 cycles.

Trends in S-N Curves

There are many influences on the shape and position of a material’s fatigue life curve as briefly discussed
below.

Ultimate Strength. It is widely believed that, at least for steels, the fatigue limit σe is about one half of
the ultimate strength σu. In fact, this is a gross oversimplification, with actual values being lower or
higher than that in many cases.

Mean Stress, Residual Stress. Several main points are worth remembering: residual stresses (also cal
self-stresses) are common, and they are to be treated as mean stresses (by sign and magnitude) in fatigue;
a tensile mean stress lowers the life while a compressive one increases it. Simplistically, a tensile mean
stress lowers the allowable cyclic stress amplitude according to Figure 1.6.19 where

For example, if σm = 0.7σu, then the maximum alternating stress for one cycle is 0.3σu. This kind of
graphical relationship is called a Goodman diagram. There are several special expressions for dealing
with the detrimental effects of tensile mean stresses. For example, the modified Goodman equation is

(1.6.15)

where σe is the fatigue limit for fully reversed loading.
Sometimes curved lines represent real behavior better than the linear theory shown in Figure 1.6.19.

In that case the Gerber parabola may be appropriate, in the form of

FIGURE 1.6.18 Schematic of S-N curves.

FIGURE 1.6.19 Schematic of tensile mean stress effect.
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Another approach worth mentioning is the Morrow expression, a mechanistically elegant and sensible
one, which will be presented later.

Note that tensile mean stresses are generally detrimental and that many approaches have been proposed
to deal with them, yet no single method is capable of good predictions in all cases. In practice it
to use a particular method that has a good track record for the material and situation at hand. C
life diagrams are useful, elaborate derivatives of the Goodman approach, if they include a broad data
base (Figure 1.6.20).

Notch Effects. Stress raisers can be extremely detrimental in fatigue, except when they help create
localized compressive residual stresses in ductile metals, delaying crack formation and growth. These
are discussed in connection with the strain-based approach.

Microstructure. Large grain size (annealed metals) lowers the fatigue strength, and small grain size (b
cold working) increases it, especially at long lives, under load control.

Surface Effects. The condition of a material’s surface may influence the fatigue behavior in many ways,
typically in combinations.

Toolmarks are common detrimental features, especially since often they are aligned perpendicular
to the principal tensile stress in axial or bending loading. An example is a shaft cut in a lathe. Note tha
in the case of high-strength, hard materials even invisible scratches from grinding and buffing may be
stress raisers. Machining also tends to create tensile or compressive residual stresses in surface layers.

Surface treatments such as carburizing or nitriding of steels affect the fatigue life by changes in
chemical composition, microstructure, hardness, or residual stress. Shot peening, surface rolling, or
burnishing is done to introduce compressive residual stresses, which delay cracking in long-life servi
Plating (chromium, nickel) tends to create layers of poor fatigue resistance and harmful tensile residu
stresses. Shot peening after plating is a beneficial step.

Environment. Hostile chemical environments can severely reduce most materials’ fatigue resistance.
Common causes of problems are salt water, salt in the air, salt on the road, moisture, and even pollutants
in the air. For example, sulfur in the air results in aggressive sulfuric acid on machines and structure

Statistical Scatter. There is always statistical scatter in a material’s fatigue life at any given stress level,
especially at long lives. The scatter band may cover several orders of magnitude in life at a single stre

FIGURE 1.6.20 Constant-life diagram.
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level. Because of the scatter, there is no unique fatigue life curve for any material — the curve depends
not only on physical factors such as environment, but also on the number of tests done. It is not sufficient
to do a handful of tests and draw a curve somewhere through the data points. As a simple rule, to have
a high level of confidence (>99%) in a fatigue life curve, at least six identical tests are needed to obt
a mean value at each of several levels of stresses in the general life range of interest. A curve through
these mean values is fairly representative of the average life curve (50% probability of failure), but still
may not be adequate to deal with scatter. Note that the minimum number of test specimens accord
to the ASTM Standard E 739 is 6 to 12 for preliminary, exploratory work, or for research and development
and component testing, and 12 to 24 for design allowables or reliability assessment.

Ideally, additional analysis is done, using Gaussian (normal) statistical distribution or some other
model, such as the Weibull distribution. The latter is particularly informative in determining the proba-
bility of fatigue failure. The practical problem is that engineers may require very low probabilities of
failure (less than 1%), but neither the necessary mathematical methods nor the data bases are available
for that. A family of fatigue life curves for various probabilities of failure and other relevant considerations
for one material are shown schematically in Figures 1.6.21 to 1.6.23.  

Variable Amplitude Loading

Many machines, vehicles, and structures experience random or blockwise changing loading. They can
be simplistically modeled for life prediction using the Palmgren-Miner rule, illustrated in Figure 1.6.24

There are two major assumptions for this rule for completely reversed loading:

1. Every cycle at a given level of stress amplitude causes the same amount of damage, wheth
cycle is early or late in the life.

 2. The percentage of damage caused by a cycle of load at any level of stress is equivalent to the same
percentage of damage at any other level of stress.

FIGURE 1.6.21 Schematic S-N curves with various probabilities of failure.

FIGURE 1.6.22 Probability aspects of fatigue depending on stress level.
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Thus, since 100% of the life Nfi is exhausted at failure at any single stress amplitude σi, in multilevel
loading the life fractions sum to unity, as mathematically formulated here and illustrated in Figure 1.6.24,

(1.6.17)

where Ni is the actual number of cycles at σi and Nfi is the life at σi.
In practice, summations of about 0.8 to 1.2 can be accepted, saying that the Palmgren-Miner rule is

valid in that case. Gross deviations from summations of 1 are common, especially when the mean s
is not zero. There are modified versions of the basic rule for such cases, but they should be used with
caution.

Cycle Counting. Highly irregular loading requires the use of special cycle counting methods, such a
level crossing, range counting, or rainflow cycle counting. The latter is the best modern method, lendin
itself to efficient field data acquisition and computer work (ASTM Standard E1049; SAE Fatigue Design
Handbook).

FIGURE 1.6.23 Probability aspects of fatigue depending on applied stress and product strength.

FIGURE 1.6.24 Schematic for Palmgren-Miner rule.
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Multiaxial Fatigue

Complex states of stress are common in engineering components, and in fatigue analysis they may cause
serious difficulties. There are many methods available, but none of them are adequate for all cases. The
simplest situations that might be handled reasonably well involve fully reversed loading by in-phase o
180° out-of-phase proportional stresses at the same frequency. Multiaxial fatigue testing is difficult and
expensive, so it is often desired to use uniaxial test data for predicting the multiaxial behavior. A typical
approach for this is based on computing an effective stress amplitude σe from the amplitudes of the
principal stresses σ1a, σ2a, σ3a. With the concept of the octahedral shear yield criterion,

(1.6.18)

where in-phase stresses are positive and 180° out-of-phase stresses are negative.
The life is estimated by entering σe on the appropriate S-N curve. Note that mean stresses, localize

or general yielding, creep, and random frequencies of loading further complicate the problem and 
more sophisticated methods than outlined here.

Strain vs. Life (ε-N) Curves

A strain-based approach is necessary in fatigue when measurable inelastic strains occur. In general, total
strain consists of elastic, plastic, and creep strains, with the latter two being in the category of inelastic
strains,

(1.6.19)

When εp or/and εc are dominant, the life is relatively short and the situation is called low-cycle fatigue
(LCF), as opposed to high-cycle fatigue (HCF), where εe is dominant. The mechanics of LCF can be
understood by first considering hysteresis loops of elastic and plastic strains as defined in Figure 1.6.25.

Simplistically, HCF means a thin loop (a straight line at very long life) and LCF means a fat loop.
Strain-life plots are especially useful in the LCF regime where material properties (εf , σf) obtained in
monotonic tension tests are directly useful in fatigue life prediction as shown in Figure 1.6.26. Most
commonly the total strain amplitude εa is plotted vs. the life 2Nf , with a corresponding equation (calle
Coffin-Manson equation) for fully reversed loading,

(1.6.20)

FIGURE 1.6.25 Hysteresis loop.
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It is remarkable that all metals are similar to one another in their values of the exponents b (≈ –0.1)
and c (≈ –0.6), differing only in fracture strength σf and fracture ductility εf . These allow a simplistic
fatigue life prediction if at least σf and εf are known.

If there is a mean stress, its effect is equivalent to an altered fracture strength. Using the M
approach in a simplified version,

(1.6.21)

where σm is positive for tensile and negative for compressive mean stress.

Notch Effects

The localized plastic strains of notched members complicate the fatigue analysis considerably. It
be noted, first of all, that the theoretical stress concentration factor Kt is not entirely relevant to such
members, because yielding lowers the actual peak stresses from those predicted. This lead
definitions of the true stress and strain concentration factors,

(1.6.22)

According to Neuber’s rule,

(1.6.23)

which is useful for notch analysis in fatigue. This expression is strictly true for ideally elastic beh
and is qualitatively evident for elastic-plastic deformations.

Residual Stresses at Notches. An extremely important, and somewhat surprising, phenomenon can o
in notched members if they yield locally under variable-amplitude loading. If a large load (calle
overload) causes yielding at a notch and is followed only by smaller loads, a residual stress
opposite sign to the overload’s sign is generated at the root of the notch. Thus, a tensile overloa
as at one side of a shaft in a straightening operation) creates a compressive residual stress, 
versa. These stresses may remain in the member for a long time or be relaxed by other plast
events or by annealing. Of course, such stresses are effective mean stresses and can alter the lif

FIGURE 1.6.26 Schematic of strain vs. life curves.
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Creep-Fatigue Interactions

Inelastic strains (plastic and creep strains) are the basic causes of time- and cycle-dependent damage
processes. When both kinds of strains occur during the life of a particular component, complex damage
interactions may arise. The simplest and most elegant approach in such a case is to sum both of 
different damages linearly (as in the Palmgren-Miner summation for pure fatigue), assuming that they
are equivalent to one another. In other words, assume that X percentage of creep life exhausted is
equivalent to the same X percentage of fatigue life exhausted. Thus, a linear expression involving time
and cycle fractions can be stated,

(1.6.24)

where ti = actual time spent at stress level i in creep, tri = total time to rupture at stress level i, nj = actual
number of cycles at stress level j, and Nfj = cycles to failure at stress level j.

This idealized linear expression is plotted as a dashed line in Figure 1.6.27; in contrast, a more realistic
ASME code and possible severe degradations are also plotted.

There are many other methods (such as damage rate equations; strain-range partitioning) to de
creep-fatigue problems, but none of them are adequate for all situations. The difficulty is mainly because
of the need to account for important, complex details of the loading cycle (frequency, hold times,
temperature, and deformation wave shape).

Fracture Mechanics Method in Fatigue

Cyclic loading can cause crack growth with or without the presence of a hostile chemical environment.
The rate of crack growth depends on the stress intensity factor .  Investigations of this
dependence have led to the development of powerful techniques in design and failure analysis. The
fatigue crack growth behavior is quantified by the Paris equation,

(1.6.25)

where da/dN = crack growth rate
C, m = material constants

∆K = Kmax –Kmin = stress intensity factor range
Kmax ∝  σmax 
Kmin ∝  σmin 

FIGURE 1.6.27 Schematic of creep-fatigue interac
tions. The bilinear damage rule is recommended in th
ASME Boiler and Pressure Vessel Code, Section III,
Code Case N47.
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Typical data for a wide range of crack growth rates have patterns as in Figure 1.6.28, where ∆Kth is
a threshold value akin to a fatigue limit. The linear part of the curve is useful for life prediction and
failure analysis.

Abridged Example of a Modern Fatigue Analysis

Many of the concepts mentioned above are applied in Sandia National Laboratories’ “User’s Manual
for FAROW: Fatigue and Reliability of Wind Turbine Components,” SAND94-2460, November 1994.
FAROW is a computer program for the probabilistic analysis of large wind turbines, using structura
reliability techniques to calculate the mean time to failure, probability of failure before a target lifetime,
relative importance of each of the random inputs, and the sensitivity of the reliability to all input
parameters. The method is useful whether extensive data are available or not (showing how much can
be gained by reducing the uncertainty in each input). It helps one understand the fatigue reliability of a
component and indicates how to improve the reliability. The sample figures (Figures 1.6.29 to 1.6.32)
illustrate some of the key data and results for the machines and materials considered.

Note especially a large discrepancy between mean lifetime and probability of failure in a few years.
A mean lifetime of 600 years was calculated for a critical component, using the median values for all
the random variables considered and using the constant values for all the other input parameters. However,
the probability of the component failing in less than 5 years is estimated at 7.6% (Figure 1.6.32). This
shows the uncertainty even in sophisticated fatigue life calculations because of reasonable uncerta
in the inputs and the sensitivity of fatigue life to parameter variation.

FIGURE 1.6.28 Schematic of fatigue crack propagatio
data.

FIGURE 1.6.29 Relative importance factors as fractions of the total influence on the probability of failure. (Cou
Sandia National Laboratories, Albuquerque, NM.)
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FIGURE 1.6.30 Fatigue life data for 6063 Al. (Courtesy Sandia National Laboratories, Albuquerque, NM.)

FIGURE 1.6.31 Fatigue life data for uniaxial fiberglass composite. (Courtesy Sandia National Laboratories, 
querque, NM.)

FIGURE 1.6.32 Example FAROW results for probability of premature failure as a function of target lifeti
(Courtesy Sandia National Laboratories, Albuquerque, NM.)



Mechanics of Solids 1-125

round

grams.
1.7 Comprehensive Example of Using Mechanics of Solids 
Methods

Richard C. Duveneck, David A. Jahnke, Christopher J. Watson, and 
Bela I. Sandor

A concise overview of an engineering project is presented to illustrate the relevance and coordinated
application of several concepts and methods in this chapter. The sketchy outline is limited in breadth
and depth, emphasizes modern methods, and is not aiming for completeness in any particular area.

The Project

Analyze the currently used A-shaped arm of the suspension system of a small, special-purpose g
vehicle. The goal is to redesign the component to save weight and, more importantly, reduce the cost
of manufacturing, while assuring the product’s reliability over its expected service life.

Concepts and Methods

Statics

Vectors
Free-body diagrams. Equilibrium
Two-force member: shock absorber
Frame components
Beams. Bending moments
Moments of inertia
Center of mass

Dynamics

Velocity, acceleration
Rigid-body dynamics
General plane motion
Relative motion

Vibrations

Natural frequency
Damping. Logarithmic decrement

Mechanics of Materials

Stress and strain. Transformation equations. Principal stresses. Maximum shear stress
Material properties. Material selection
Bending stresses. Beam optimization
Strain gages. Mechanical testing with closed-loop equipment

Durability

Stress concentrations. Finite element analysis
Cumulative fatigue damage. Cycle counting in random loading. Mean stresses. Goodman dia

Life prediction
Thermoelastic stress analysis

Illustrations

A few aspects of the project are graphically illustrated in Color Plate 16 and Figures 1.7.1 to 1.7.3.  
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Defining Terms

STATICS

Equilibrium : A concept used to determine unknown forces and moments. A rigid body is in equilibrium
when the equivalent force-couple system of the external forces acting on it is zero. The general
conditions of equilibrium are expressed in vector form (∑F = 0, ∑MO = ∑[r  × F] = 0) or scalar
form (∑Fx = 0, ∑Fy = 0, ∑Fz = 0, ∑Mx = 0, ∑My = 0, ∑Mz = 0).

Equivalent force-couple system: Any system of forces and moments acting on a rigid body can
reduced to a resultant force and a resultant moment. Transformations of a force-couple system
involving chosen points of reference are easy to make. These are useful for determining unknown
forces and moments and the critical locations in structural members.

Free-body diagram: A method of modeling and simplifying a problem for the efficient use of the
equilibrium equations to determine unknown forces and moments. A body or group of bodies is
imagined to be isolated from all other bodies, and all significant external forces and moments
(known or unknown) are shown to act on the free-body model.

FIGURE 1.7.1 Accelerometer data from front suspension system of vehicle. Logarithmic decrement  ∂ = ln(x1/x2);
damping ratio ζ = 0.16.
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DYNAMICS

Equations of motion: Expressions of the acceleration of a body related to the forces acting on the
The basic equation of motion for a particle of mass m is ∑F = ma. Many other equations of motion
may be stated, depending on the dimensions of the body and its motion (such as two- or
dimensional motion) and the coordinate system chosen.

Kinematics: The analysis of motion based on geometry and time-dependent aspects. Forces may
not be associated with the motion, but the analysis does not involve considerations of force
parameters of interest in kinematics are position, displacement, velocity, acceleration, and

Kinetics: The analysis of motion based on kinematics and the effects of forces on masses.

VIBRATIONS

Forced vibration: Involves an exciting force applied periodically during the motion. A forced vibrat
may also be described in terms of the displacement of a foundation or primary mass that s
the vibrating system.

Free vibration: Occurs when only two kinds of forces are acting on a mass: (a) the elastic res
force within the system and (b) the force of gravity or other constant forces that cau
displacement from the equilibrium configuration of the system.

FIGURE 1.7.2 Axial stress and force vs. time in shock absorber shaft.
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Resonance: A critical aspect of forced vibrations; it occurs when the forcing frequency equals
system’s natural frequency. In this condition the amplitude of the displacements becomes i
in theory, or dangerously large in practice when the damping is small. Near-resonance con
may also be undesirable.

MECHANICS OF MATERIALS

Flexure formula: Used to calculate the bending stresses in beams. Must be applied with modific
if there are inelastic deformations, unsymmetric bending, or for composite beams and c
beams.

Hooke’s law: Applicable for calculating uniaxial or multiaxial stress-strain responses when the ma
acts entirely elastically. Involves the modulus of elasticity E and Poisson’s ratio v.

Principal stresses: The maximum and minimum normal stresses at a point, on an infinitesimal elem
An important related quantity is the absolute maximum shear stress. These quantities 
determined (given an arbitrary state of applied stress) from stress transformation equations 
their graphical solution, Mohr’s circle. Principal strains are determined in a similar way.

Stress-strain diagram: Shows the stress-strain response and many important mechanical propert
a material. These properties depend greatly on the material’s chemical composition and 
other factors of fabrication and service conditions. Monotonic (tension or compression) and 
loading conditions may result in grossly different mechanical behaviors even for a given ma

FIGURE 1.7.3 Stresses σx, σy, and τxy measured at one point of the A-arm by strain gages as the vehicle tra
over bumps.
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STRUCTURAL INTEGRITY AND DURABILITY

Rate of crack growth: A measure of damage evolution and remaining life of a member. In fatigue
crack propagation rate da/dN depends on the stress intensity factor range ∆K and material properties.
This relationship is the basis of the powerful, well-established damage-tolerant design method.
Stress concentration factor: The localized stress-raising effect of a geometric discontinuity. There
many, potentially confusing, forms of quantifying this effect. The most prominent factors are d
guished concisely:

a. Theoretical stress concentration factor, Kt = σmax/σave

Depends on geometry of notch, not on material
Has no engineering units

b. True stress concentration factor, Kσ = σmax/σave

Depends on geometry of notch and material; Kσ = Kt for perfectly elastic material, Kσ < Kt for
ductile material 
Has no engineering units

c. True strain concentration factor, Kε = εmax/εave, εave = σave/E
Depends on geometry of notch and material; Kε = Kt for perfectly elastic material, Kε > Kt for
ductile material 
Has no engineering units

Stress intensity factor: A measure of the severity of a crack, or the intensity of the stress field nea
crack tip. There are many, potentially confusing, forms of this factor, having identical engineering
of stress but a variety of definitions and applications. A few are listed concisely:

a. Opening-mode stress intensity factor, KI

Depends on geometry of a crack and applied stress, not on material
Units of stress

b. Plane strain fracture toughness, KIC

Depends on material but not on geometry above a certain thickness, and not on applied s
Units of stress

c. Stress intensity factor range, ∆K = Kmax – Kmin

Depends on geometry of a crack and applied cyclic stress, not on material
Units of stress
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Further Information

Many technical societies are active in various areas of mechanics of solids, and they are excellent
sources of long-accepted and new information, some of which is available within hours. The
organize committee work, conferences, symposia, short courses, and workshops; establish co
standards; and publish books, papers, journals, and proceedings, covering the latest developm
numerous specialties. A short list of societies is given here; note that they tend to have intern
breadth, regardless of the name. It is wise to belong to several relevant societies and at least s
announcements.

ASM International (formerly American Society for Metals) (800-336-5152)
ASME — American Society for Mechanical Engineers (800-843-2763)
ASNT — American Society for Nondestructive Testing (800-222-2768)
ASTM — American Society for Testing and Materials (215-299-5585)
SAE — Society of Automotive Engineers (412-776-4841)
SEM — Society for Experimental Mechanics (203-790-6373)
SES — Standards Engineering Society (513-223-2410)

As a hint of the scope and magnitude of what is available from the large technical societies, h
selected offerings of ASTM:

• ASTM Staff Access/Tel: 215-299-5585; Fax: 215-977-9679; E-mail: infoctr@local.astm.org

• ASTM Standardization News, a monthly magazine; regularly presents information on “the dev
opment of voluntary full consensus standards for materials, products, systems and servic
the promotion of related knowledge… the research, testing and new activities of the A
standards-writing committees… the legal, governmental and international events impacti
the standards development process” (quotes from the masthead).

• Over 50 volumes of ASTM Standards 

Samples of standards:

Friction, wear, and abrasion (B611 on wear resistance of carbides; G77 on ranking of ma
in sliding wear)

Fracture mechanics (E399 on fracture toughness testing of metals)

Fatigue (E466 on axial fatigue tests of metals; D671 on flexural fatigue of plastics)

• Training courses for ASTM Standards (215-299-5480)
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• ASTM International Directory of Testing Laboratories

• ASTM Directory of Scientific & Technical Consultants & Expert Witnesses

• ASTM Special Technical Publications (STP) are books of peer-reviewed papers on recent re
and developments

Samples of STPs:

STP 1198 — Nondestructive Testing of Pavements and Backcalculation of Moduli, Second
Volume; 1995

STP 1231 — Automation in Fatigue and Fracture: Testing and Analysis; 1995.
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PLATE 1 Flat-Trac® Roadway Simulator, R&D 100 Award-winning system in 1993. (Photo courtesy MTS Systems
Corp., Minneapolis, MN.)

PLATE 2 Spinning torque transducer with on-board preamplifier. An angular accelerometer is attached at the center
of the torque cell. (Photo courtesy MTS Systems Corp., Minneapolis, MN.)
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PLATE 3 Vibration screening of a circuit board using an electromagnetic shaker and a laser doppler vibration pat-
tern imager. (Photo courtesy Ometron Inc., Sterling, VA.)

PLATE 4 Vibration patterns of a computer hard disc reader head at 4540 Hz. (Photo courtesy Ometron Inc., Ster-
ling, VA.)
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PLATE 5 Vibration patterns of a car door at 40 Hz and 300 Hz. (Photos courtesy Ometron Inc., Sterling, VA.)

PLATE 6 Changes in the vibration patterns of a car door caused by the addition of damping material. (Photos cour-
tesy Ometron Inc., Sterling, VA.)
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PLATE 7 Detection of delaminations in a foam-and-steel composite plate using vibration pattern imaging. (Photo
courtesy Ometron Inc., Sterling, VA.)

PLATE 8 Modal analysis of a vibrating turbine blade using Thermoelastic Stress Analysis. (Photo courtesy Stress
Photonics Inc., Madison, WI.)
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PLATE 9 Biaxial test setup. (Photo courtesy MTS Systems Corp., Minneapolis, MN.)

PLATE 10 Pressure vessel. (Photo courtesy Nooter Corp., St. Louis, MO.)



©1999 by CRC Press LLC

PLATE 11 Delta Therm 1000 Stress Imaging System with principal inventor Jon R. Lesniak. R&D 100 Award-win-
ning instrument in 1994. (Photo courtesy Stress Photonics Inc., Madison, WI.)

PLATE 12 TSA stress images and samples of data processing by Delta Therm instrument (Color Plate 11). (Photo
courtesy Stress Photonics Inc., Madison, WI.)
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PLATE 13 TSA stress images showing damage evolution at a weld. Top: beginning of fatigue testing; yellow shows
stress concentration at weld toe (no crack); dark blue spots represent lower stress at weld splatter. Bottom: gross and
uneven stress redistribution to tips of crack (≈ 0.5 in. long) after 1 million cycles. (Photos courtesy Mark J. Fleming,
University of Wisconsin-Madison.)

PLATE 14 Direct measurement of crack length and stress intensity factors by TSA stress imaging. Top: crack at
41,000 cycles. Bottom: crack at 94,000 cycles; light shows through the crack; blues show stress relief at crack faces and
nearby. (Photos courtesy Mark J. Fleming, University of Wisconsin-Madison.)
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PLATE 16 Strain-gauging of a vehicle’s suspension system in progress.

PLATE 15 Closed-loop, electro-hydraulic mechanical testing systems. (Photo courtesy MTS Systems Corp., Minne-
apolis, MN.)
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