PROBLEM SET # 2 SOLUTIONS

CHAPTER 2: GROUPS AND ARITHMETIC

2.1 Groups.

1. Let G be a group and e and e' two identity elements. Show that e = e'. (*Hint*: Consider $e \cdot e'$ and calculate it two ways.)

Solution. Since e is an identity element for G, we have $e \cdot g = g$ for every $g \in G$, and so in particular $e \cdot e' = e'$. On the other hand, since e' is an identity element for G, we also have $g \cdot e = g$ for every $g \in G$, and in particular $e \cdot e' = e$. Thus, $e' = e \cdot e' = e$.

2. Let G be a group with identity e and such that $a^2 = e$ for every element a in G. Show that G is commutative, i.e., $a \cdot b = b \cdot a$ for every two elements a and b in G. (*Hint*: Consider $(a \cdot b)^2$.)

Solution. First notice that, since $a^2 = e$ for every $a \in G$, we must have $a = a^{-1}$ for every $a \in G$. It then follows that $a \cdot b = (a \cdot b)^{-1} = b^{-1} \cdot a^{-1} = b \cdot a$ for every pair of elements $a, b \in G$.

9. Fix a positive integer n, and let $n\mathbf{Z} = \{\dots, -2n, -n, 0, n, 2n, \dots\}$ be the set of all integer multiples of n. Show that $n\mathbf{Z}$ is a subgroup of \mathbf{Z} with respect to addition as binary operation.

Solution. We need to check that $n\mathbf{Z}$ is closed under addition and inverse. So, suppose $a,b \in n\mathbf{Z}$, so that a=jn and b=kn for some integers $j,k \in \mathbf{Z}$. Then $a+b=jn+kn=(j+k)n \in n\mathbf{Z}$ and $-a=-(jn)=(-j)n \in n\mathbf{Z}$, and hence $n\mathbf{Z}$ is indeed closed under addition and inverse.

2.2 Congruences.

1. Show that a positive integer m is divisible by 11 if and only if the alternating sum of its digits is divisible by 11. (*Hint*: Notice that $10 \equiv -1 \mod 11$.)

Solution. If b_0, \ldots, b_k are the decimal digits of m (from the ones digit up to the 10^k -digit), then

$$m = b_0 + b_1 \cdot 10 + \dots + b_k \cdot 10^k$$
.

It follows that

$$m \equiv b_0 + b_1 \cdot (10) + \dots + b_k \cdot (10)^k \mod 11$$

= $b_0 + b_1 \cdot (-1) + \dots + b_k \cdot (-1)^k \mod 11$,

and so m is congruent (modulo 11) to the alternating sum of its digits. Thus, m is divisible by 11 if and only if the alternating sum of its digits is.

2.3 Modular Arithmetic.

3. Write down the multiplication table for $\mathbf{Z}/11\mathbf{Z}$, the set of integers modulo 11. The subset of invertible integers modulo 11 is denoted by $(\mathbf{Z}/11\mathbf{Z})^{\times}$. Extract the multiplication table for $(\mathbf{Z}/11\mathbf{Z})^{\times}$.

Solution. By a straightforward calculation, we find

	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10
2	0	2	4	6	8	10	1	3	5	7	9
3	0	3	6	9	1	4	7	10	2	5	8
4	0	4	8	1	5	9	2	6	10	3	7
5	0	5	10	4	9	3	8	2	7	1	6
6	0	6	1	7	2	8	3	9	4	10	5
7	0	7	3	10	6	2	9	5	1	8	4
8	0	8	5	2	10	7	4	1	9	6	3
9	0	9	7	5	3	1	10	8	6	4	2
10	0	10	9	8	7	6	5	4	3	2	1

From this table, we see that all of the nonzero elements of $\mathbf{Z}/11\mathbf{Z}$ are invertible, and the multiplication table for $(\mathbf{Z}/11\mathbf{Z})^{\times}$ is

•	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	1	3	5	7	9
3	3	6	9	1	4	7	10	2	5	8
4	4	8	1	5	9	2	6	10	3	7
5	5	10	4	9	3	8	2	7	1	6
6	6	1	7	2	8	3	9	4	10	5
7	7	3	10	6	2	9	5	1	8	4
8	8	5	2	10	7	4	1	9	6	3
9	9	7	5	3	1	10	8	6	4	2
10	10	9	8	7	6	5	4	3	2	1

4. Write down the multiplication table for $\mathbf{Z}/10\mathbf{Z}$, the set of integers modulo 10. The subset of invertible integers modulo 10 is denoted by $(\mathbf{Z}/10\mathbf{Z})^{\times}$. Extract the multiplication table for $(\mathbf{Z}/10\mathbf{Z})^{\times}$. How many invertible elements do we have here?

Solution. By a straightforward calculation, we find

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	1	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

From this table, we see that the invertible elements of $\mathbf{Z}/10\mathbf{Z}$ are 1, 3, 7, and 9, and the the multiplication table for $(\mathbf{Z}/10\mathbf{Z})^{\times}$ is

	1	3	7	9
1	1	3	7	9
3	3	9	1	7
7	7	1	9	3
9	9	7	3	1

5. Write down the multiplication table for $\mathbb{Z}/12\mathbb{Z}$, the set of integers modulo 12. The subset of invertible integers modulo 12 is denoted by $(\mathbb{Z}/12\mathbb{Z})^{\times}$. Extract the multiplication table for $(\mathbb{Z}/12\mathbb{Z})^{\times}$. How many invertible elements do we have here?

Solution. By a straightforward calculation, we find

	0	1	2	3	4	5	6	7	8	9	10	11
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11
2	0	2	4	6	8	10	0	2	4	6	8	10
3	0	3	6	9	0	3	6	9	0	3	6	9
4	0	4	8	0	4	8	0	4	8	0	4	8
5	0	5	10	3	8	1	6	11	4	9	2	7
6	0	6	0	6	0	6	0	6	0	6	0	6
7	0	7	2	9	4	11	6	1	8	3	10	5
8	0	8	4	0	8	4	0	8	4	0	8	4
9	0	9	6	3	0	9	6	3	0	9	6	3
10	0	10	8	6	4	2	0	10	8	6	4	2
11	0	11	10	9	8	7	6	5	4	3	2	1

From this table, we see that the invertible elements of $\mathbf{Z}/12\mathbf{Z}$ are 1, 5, 7, and 11, and that the multiplication table for $(\mathbf{Z}/12\mathbf{Z})^{\times}$ is

	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

6. Use the Euclidean algorithm to compute the multiplicative inverse of 131 modulo 1979.

Solution. We first run the Euclidean algorithm:

$$1979 = 15 \cdot 131 + 4$$

$$131 = 9 \cdot 14 + 5$$

$$14 = 2 \cdot 5 + 4$$

$$5 = 1 \cdot 4 + 1$$

$$4 = 4 \cdot 1$$

The second-to-last convergent in the continued fraction algorithm for 1979/131 is therefore

$$15 + \frac{1}{9 + \frac{1}{2 + \frac{1}{1}}} = \frac{423}{28}.$$

Observe, then, that $1979 \cdot 28 = 55412$ and $131 \cdot 423 = 55413$, and so $1979 \cdot (-28) + 131 \cdot (423) = 1$. Thus, the inverse of 131 modulo 1979 is 423.

7. Use the Euclidean algorithm to compute the multiplicative inverse of 127 modulo 1091.

Solution. We first run the Euclidean algorithm:

$$1091 = 8 \cdot 127 + 75$$

$$127 = 1 \cdot 75 + 52$$

$$75 = 1 \cdot 52 + 23$$

$$52 = 2 \cdot 23 + 6$$

$$23 = 3 \cdot 6 + 5$$

$$6 = 1 \cdot 5 + 1$$

$$5 = 5 \cdot 1$$

The second-to-last convergent in the continued fraction algorithm for 1091/127 is therefore

$$8 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2 + \frac{1}{3 + \frac{1}{7}}}}} = \frac{189}{22}.$$

Observe, then, that $1091 \cdot 22 = 24002$ and $127 \cdot 189 = 24003$, and so $1091 \cdot (-22) + 127 \cdot (189) = 1$. Thus, the inverse of 127 modulo 1091 is 189.

2.4 Theorem of Lagrange.

1. Let G be a group and g an element in G of order n. Let m be a positive integer such that $g^m = e$. Show that n divides m. (Hint: Write m = qn + r with $0 \le r < n$.)

Solution. Following the hint, we write m = qn + r with $0 \le r < n$. Then observe that

$$e = g^m = g^{qn+r} = (g^n)^q \cdot g^r = e^q \cdot g^r = g^r.$$

Since r < n and n is the order of g, we must therefore have r = 0. Thus m = qn, and hence n divides m.

2. Repeat the argument of Lagrange's theorem with $G = (\mathbf{Z}/13\mathbf{Z})^{\times}$ and g = 5.

Solution. Following the proof, we first note that the order of g=5 is 4. We then compute e,g,g^2,g^3 . We obtain

$$\begin{array}{c|c|c|c} e & g & g^2 & g^3 \\ \hline 1 & 5 & 12 & 8 \\ \end{array}$$

We see that x=2 is missing from the list. We then compute x, xg, xg^2, xg^3 , finding

$$\begin{array}{c|ccccc} x & xg & xg^2 & xg^3 \\ \hline 2 & 10 & 11 & 3 \\ \end{array}$$

We see that y = 4 has yet to appear in either of the above lists, so we next compute y, yg, yg^2, yg^4 , finding

$$\begin{array}{c|cccc} y & yg & yg^2 & yg^3 \\ \hline 4 & 7 & 9 & 6 \end{array}$$

Looking over the three lists of numbers, we see that we have now accounted for every element of G exactly once, and that $12 = |G| = 3 \cdot 4 = 3 \cdot \operatorname{ord}(g)$, i.e., $\operatorname{org}(g)$ divides |G|.

2.5 Chinese Remainder Theorem.

2. Put $\phi(1) = 1$. Compute $\sum_{d|1000} \phi(d)$.

Solution. Since $1000 = 2^3 \cdot 3^3$, the set of divisors of 1000 is $\{1, 2, 2 \cdot 3, 2 \cdot 3^2, 2 \cdot 3^3, 2^2, 2^2 \cdot 3, 2^2 \cdot 3^2, 2^3 \cdot 3, 2^3 \cdot 3, 2^3 \cdot 3^2, 2^3 \cdot 3^2, 2^3 \cdot 3^3\}$. We therefore have (using our known properties of ϕ)

$$\sum_{d|1000} \phi(d) = \phi(1) + \phi(2) + \dots + \phi(2 \cdot 3^3) + \phi(2^2) + \dots + \phi(2^2 \cdot 3^3) + \phi(2^3) + \dots + \phi(2^3 \cdot 3^3)$$

$$= \left(\phi(1) + \phi(2) + \phi(2^2) + \phi(2^3)\right) \left(\phi(1) + \phi(3) + \phi(3^2) + \phi(3^3)\right)$$

$$= \left(1 + (2 - 1) + (2^2 - 2) + (2^3 - 2^2)\right) \left(1 + (3 - 1) + (3^2 - 3) + (3^3 - 3^2)\right)$$

$$= 2^3 \cdot 3^3$$

$$= 1000.$$

(Can you see how to prove the equality
$$\sum_{d|n} \phi(d) = n$$
 in general?)

3. Solve the system of congruences

$$x \equiv 5 \mod 11$$

 $x \equiv 7 \mod 13$.

Solution. We follow the notation used in lecture. By a simple calculation, one can easily check that $y_1 = 6$ is the inverse of $M_1 = 13$ modulo $m_1 = 11$, and that $y_2 = 6$ is the inverse of $M_2 = 11$ modulo $m_2 = 13$. The solution to the system of equations is therefore

$$x \equiv 5 \cdot 13 \cdot 6 + 7 \cdot 11 \cdot 6 \mod (11 \cdot 13),$$

which simplifies to $x \equiv 137 \mod 143$.

4. Solve the system of congruences

$$x \equiv 11 \mod 16$$

 $x \equiv 16 \mod 27$.

Solution. We follow the notation used in lecture. By a simple calculation, one can easily check that $y_1 = 3$ is the inverse of $M_1 = 27$ modulo $m_1 = 16$, and that $y_2 = 22$ is the inverse of $M_2 = 16$ modulo $m_2 = 27$. The solution to the system of equations is therefore

$$x \equiv 11 \cdot 27 \cdot 3 + 16 \cdot 16 \cdot 22 \mod (16 \cdot 27),$$

which simplifies to $x \equiv 43 \mod 432$.

5. Find the last two digits of 2^{9999} . Do not use a calculator.

Solution. Let $x=2^{9999}$. We wish to compute the remainder of x modulo $100=4\cdot 25$. We first observe that we obviously have $x=2^{9999}\equiv 0 \mod 4$. Next observe that $2^{10}\equiv -1 \mod 25$, and so

$$x = 2^{9999} = (2^{10})^{999} \cdot 2^9 \equiv (-1)^{999} \cdot (512) \mod 25$$

 $\equiv (-1) \cdot (12) \mod 25$
 $\equiv 13 \mod 25$.

We now wish to solve the system of equation

$$x \equiv 0 \mod 4$$
$$x \equiv 13 \mod 25.$$

By a simple calculation, we see that $y_1 = 1$ is the inverse of $M_1 = 25$ modulo $m_1 = 4$, and $y_2 = 19$ is the inverse of $M_2 = 4$ modulo $m_2 = 25$. Thus, the solution to this system of equations is

$$x \equiv 0 \cdot 25 \cdot 1 + 13 \cdot 4 \cdot 19 \mod (4 \cdot 25),$$

which simplifies to $x \equiv 88 \mod 100$. Thus, the last two digits of $x = 2^{9999}$ are 88.