
PROBLEM SET # 2 SOLUTIONS

CHAPTER 2: GROUPS AND ARITHMETIC

2.1 Groups.

1. Let G be a group and e and e′ two identity elements. Show that e = e′. (Hint:
Consider e · e′ and calculate it two ways.)

Solution. Since e is an identity element for G, we have e · g = g for every g ∈ G,
and so in particular e · e′ = e′. On the other hand, since e′ is an identity element
for G, we also have g · e = g for every g ∈ G, and in particular e · e′ = e. Thus,
e′ = e · e′ = e. �

2. Let G be a group with identity e and such that a2 = e for every element a in G.
Show that G is commutative, i.e., a · b = b · a for every two elements a and b in G.
(Hint: Consider (a · b)2.)

Solution. First notice that, since a2 = e for every a ∈ G, we must have a = a−1 for
every a ∈ G. It then follows that a · b = (a · b)−1 = b−1 · a−1 = b · a for every pair of
elements a, b ∈ G. �

9. Fix a positive integer n, and let nZ = {. . . ,−2n,−n, 0, n, 2n, . . .} be the set of all
integer multiples of n. Show that nZ is a subgroup of Z with respect to addition as
binary operation.

Solution. We need to check that nZ is closed under addition and inverse. So, sup-
pose a, b ∈ nZ, so that a = jn and b = kn for some integers j, k ∈ Z. Then
a + b = jn + kn = (j + k)n ∈ nZ and −a = −(jn) = (−j)n ∈ nZ, and hence nZ is
indeed closed under addition and inverse. �

2.2 Congruences.

1. Show that a positive integer m is divisible by 11 if and only if the alternating sum
of its digits is divisible by 11. (Hint: Notice that 10 ≡ −1 mod 11.)

Solution. If b0, . . . , bk are the decimal digits of m (from the ones digit up to the 10k-
digit), then

m = b0 + b1 · 10 + · · ·+ bk · 10k.
It follows that

m ≡ b0 + b1 · (10) + · · ·+ bk · (10)k mod 11

= b0 + b1 · (−1) + · · ·+ bk · (−1)k mod 11,
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and so m is congruent (modulo 11) to the alternating sum of its digits. Thus, m is
divisible by 11 if and only if the alternating sum of its digits is. �

2.3 Modular Arithmetic.

3. Write down the multiplication table for Z/11Z, the set of integers modulo 11. The
subset of invertible integers modulo 11 is denoted by (Z/11Z)×. Extract the multi-
plication table for (Z/11Z)×.

Solution. By a straightforward calculation, we find

· 0 1 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10
2 0 2 4 6 8 10 1 3 5 7 9
3 0 3 6 9 1 4 7 10 2 5 8
4 0 4 8 1 5 9 2 6 10 3 7
5 0 5 10 4 9 3 8 2 7 1 6
6 0 6 1 7 2 8 3 9 4 10 5
7 0 7 3 10 6 2 9 5 1 8 4
8 0 8 5 2 10 7 4 1 9 6 3
9 0 9 7 5 3 1 10 8 6 4 2

10 0 10 9 8 7 6 5 4 3 2 1

From this table, we see that all of the nonzero elements of Z/11Z are invertible,
and the multiplication table for (Z/11Z)× is

· 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 1 3 5 7 9
3 3 6 9 1 4 7 10 2 5 8
4 4 8 1 5 9 2 6 10 3 7
5 5 10 4 9 3 8 2 7 1 6
6 6 1 7 2 8 3 9 4 10 5
7 7 3 10 6 2 9 5 1 8 4
8 8 5 2 10 7 4 1 9 6 3
9 9 7 5 3 1 10 8 6 4 2

10 10 9 8 7 6 5 4 3 2 1

�

4. Write down the multiplication table for Z/10Z, the set of integers modulo 10. The
subset of invertible integers modulo 10 is denoted by (Z/10Z)×. Extract the multi-
plication table for (Z/10Z)×. How many invertible elements do we have here?

Solution. By a straightforward calculation, we find
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· 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 4 6 8 0 2 4 6 8
3 0 3 6 9 2 5 8 1 4 7
4 0 4 8 2 6 0 4 8 2 6
5 0 5 0 5 0 5 0 5 0 5
6 0 6 2 8 4 0 6 2 8 4
7 0 7 4 1 8 5 2 9 6 3
8 0 8 6 4 1 0 8 6 4 2
9 0 9 8 7 6 5 4 3 2 1

From this table, we see that the invertible elements of Z/10Z are 1, 3, 7, and 9, and
the the multiplication table for (Z/10Z)× is

· 1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

�

5. Write down the multiplication table for Z/12Z, the set of integers modulo 12. The
subset of invertible integers modulo 12 is denoted by (Z/12Z)×. Extract the multi-
plication table for (Z/12Z)×. How many invertible elements do we have here?

Solution. By a straightforward calculation, we find

· 0 1 2 3 4 5 6 7 8 9 10 11
0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11
2 0 2 4 6 8 10 0 2 4 6 8 10
3 0 3 6 9 0 3 6 9 0 3 6 9
4 0 4 8 0 4 8 0 4 8 0 4 8
5 0 5 10 3 8 1 6 11 4 9 2 7
6 0 6 0 6 0 6 0 6 0 6 0 6
7 0 7 2 9 4 11 6 1 8 3 10 5
8 0 8 4 0 8 4 0 8 4 0 8 4
9 0 9 6 3 0 9 6 3 0 9 6 3

10 0 10 8 6 4 2 0 10 8 6 4 2
11 0 11 10 9 8 7 6 5 4 3 2 1

From this table, we see that the invertible elements of Z/12Z are 1, 5, 7, and 11, and
that the multiplication table for (Z/12Z)× is
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· 1 5 7 11
1 1 5 7 11
5 5 1 11 7
7 7 11 1 5
11 11 7 5 1

�

6. Use the Euclidean algorithm to compute the multiplicative inverse of 131 modulo
1979.

Solution. We first run the Euclidean algorithm:

1979 = 15 · 131 + 4

131 = 9 · 14 + 5

14 = 2 · 5 + 4

5 = 1 · 4 + 1

4 = 4 · 1.

The second-to-last convergent in the continued fraction algorithm for 1979/131 is
therefore

15 +
1

9 + 1
2+ 1

1

=
423

28
.

Observe, then, that 1979 · 28 = 55412 and 131 · 423 = 55413, and so 1979 · (−28) +
131 · (423) = 1. Thus, the inverse of 131 modulo 1979 is 423. �

7. Use the Euclidean algorithm to compute the multiplicative inverse of 127 modulo
1091.

Solution. We first run the Euclidean algorithm:

1091 = 8 · 127 + 75

127 = 1 · 75 + 52

75 = 1 · 52 + 23

52 = 2 · 23 + 6

23 = 3 · 6 + 5

6 = 1 · 5 + 1

5 = 5 · 1.

The second-to-last convergent in the continued fraction algorithm for 1091/127 is
therefore

8 +
1

1 + 1
1+ 1

2+ 1

3+1
1

=
189

22
.

Observe, then, that 1091 · 22 = 24002 and 127 · 189 = 24003, and so 1091 · (−22) +
127 · (189) = 1. Thus, the inverse of 127 modulo 1091 is 189. �
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2.4 Theorem of Lagrange.

1. Let G be a group and g an element in G of order n. Let m be a positive integer such
that gm = e. Show that n divides m. (Hint: Write m = qn+ r with 0 ≤ r < n.)

Solution. Following the hint, we write m = qn + r with 0 ≤ r < n. Then observe
that

e = gm = gqn+r = (gn)q · gr = eq · gr = gr.

Since r < n and n is the order of g, we must therefore have r = 0. Thus m = qn,
and hence n divides m. �

2. Repeat the argument of Lagrange’s theorem with G = (Z/13Z)× and g = 5.

Solution. Following the proof, we first note that the order of g = 5 is 4. We then
compute e, g, g2, g3. We obtain

e g g2 g3

1 5 12 8

We see that x = 2 is missing from the list. We then compute x, xg, xg2, xg3, finding

x xg xg2 xg3

2 10 11 3

We see that y = 4 has yet to appear in either of the above lists, so we next compute
y, yg, yg2, yg4, finding

y yg yg2 yg3

4 7 9 6

Looking over the three lists of numbers, we see that we have now accounted for
every element of G exactly once, and that 12 = |G| = 3 · 4 = 3 · ord(g), i.e., org(g)
divides |G|. �

2.5 Chinese Remainder Theorem.

2. Put φ(1) = 1. Compute
∑
d|1000

φ(d).

Solution. Since 1000 = 23 ·33, the set of divisors of 1000 is {1, 2, 2 ·3, 2 ·32, 2 ·33, 22, 22 ·
3, 22 ·32, 22 ·33, 23, 23 ·3, 23 ·32, 23 ·33}. We therefore have (using our known properties
of φ)∑

d|1000

φ(d) = φ(1) + φ(2) + · · ·+ φ(2 · 33) + φ(22) + · · ·+ φ(22 · 33) + φ(23) + · · ·+ φ(23 · 33)

=
(
φ(1) + φ(2) + φ(22) + φ(23)

) (
φ(1) + φ(3) + φ(32) + φ(33)

)
=
(
1 + (2− 1) + (22 − 2) + (23 − 22)

) (
1 + (3− 1) + (32 − 3) + (33 − 32)

)
= 23 · 33

= 1000.

5



(Can you see how to prove the equality
∑
d|n

φ(d) = n in general?) �

3. Solve the system of congruences

x ≡ 5 mod 11

x ≡ 7 mod 13.

Solution. We follow the notation used in lecture. By a simple calculation, one can
easily check that y1 = 6 is the inverse of M1 = 13 modulo m1 = 11, and that y2 = 6
is the inverse of M2 = 11 modulo m2 = 13. The solution to the system of equations
is therefore

x ≡ 5 · 13 · 6 + 7 · 11 · 6 mod (11 · 13),
which simplifies to x ≡ 137 mod 143. �

4. Solve the system of congruences

x ≡ 11 mod 16

x ≡ 16 mod 27.

Solution. We follow the notation used in lecture. By a simple calculation, one can
easily check that y1 = 3 is the inverse of M1 = 27 modulo m1 = 16, and that y2 = 22
is the inverse of M2 = 16 modulo m2 = 27. The solution to the system of equations
is therefore

x ≡ 11 · 27 · 3 + 16 · 16 · 22 mod (16 · 27),
which simplifies to x ≡ 43 mod 432. �

5. Find the last two digits of 29999. Do not use a calculator.

Solution. Let x = 29999. We wish to compute the remainder of xmodulo 100 = 4·25.
We first observe that we obviously have x = 29999 ≡ 0 mod 4. Next observe that
210 ≡ −1 mod 25, and so

x = 29999 = (210)999 · 29 ≡ (−1)999 · (512) mod 25

≡ (−1) · (12) mod 25

≡ 13 mod 25.

We now wish to solve the system of equation

x ≡ 0 mod 4

x ≡ 13 mod 25.

By a simple calculation, we see that y1 = 1 is the inverse of M1 = 25 modulo
m1 = 4, and y2 = 19 is the inverse of M2 = 4 modulo m2 = 25. Thus, the solution
to this system of equations is

x ≡ 0 · 25 · 1 + 13 · 4 · 19 mod (4 · 25),
which simplifies to x ≡ 88 mod 100. Thus, the last two digits of x = 29999 are
88. �
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