PROBLEM SET # 2 SOLUTIONS

CHAPTER 2: GROUPS AND ARITHMETIC

2.1 Groups.

1. Let G be a group and e and ¢’ two identity elements. Show that e = ¢'. (Hint:
Consider e - ¢’ and calculate it two ways.)

Solution. Since e is an identity element for GG, we have e - g = g for every g € G,
and so in particular e - ¢ = €’. On the other hand, since ¢’ is an identity element
for G, we also have g - e = g for every g € G, and in particular e - ¢/ = e. Thus,
d=e-c=e. 0

2. Let G be a group with identity e and such that a*> = e for every element a in G.
Show that G is commutative, i.e.,, a - b = b - a for every two elements ¢ and b in G.
(Hint: Consider (a - b)%.)

Solution. First notice that, since a? = e for every a € G, we must have a = ™! for
every a € G. It then follows thata - b= (a-b) ' =b~'-a~' = b a for every pair of
elements a,b € G. d

9. Fix a positive integer n, and let nZ = {..., —2n,—n,0,n,2n,...} be the set of all
integer multiples of n. Show that nZ is a subgroup of Z with respect to addition as
binary operation.

Solution. We need to check that nZ is closed under addition and inverse. So, sup-
pose a,b € nZ, so that a = jn and b = kn for some integers j,k € Z. Then
a+b=jn+kn=(j+k)n€nZand —a = —(jn) = (—j)n € nZ, and hence nZ is
indeed closed under addition and inverse. O

2.2 Congruences.

1. Show that a positive integer m is divisible by 11 if and only if the alternating sum
of its digits is divisible by 11. (Hint: Notice that 10 = —1 mod 11.)

Solution. If by, . . ., by, are the decimal digits of m (from the ones digit up to the 10*-
digit), then
m=by+by-10+ -+ by - 10"
It follows that
m = by + by - (10) + -+ + by - (10)*  mod 11
:bo+b1'(—1)+"'+bk~(—1)k mod 11,
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and so m is congruent (modulo 11) to the alternating sum of its digits. Thus, m is
divisible by 11 if and only if the alternating sum of its digits is. O

2.3 Modular Arithmetic.

3. Write down the multiplication table for Z/11Z, the set of integers modulo 11. The
subset of invertible integers modulo 11 is denoted by (Z/11Z)*. Extract the multi-
plication table for (Z/11Z)*.

Solution. By a straightforward calculation, we find

-10/112|3|4|5][6|7|8|9]|10
0/0{0}0}]0[0]O0OJO0OO0J0]0]O0
1/10/1]2(3]4|5,6]7|8|9|10
2/0(2|4|6|8[10/1|3 5|79
3/10/3|69|1(4,|7,10/2|5]|38
4104|8159 ]2|6|10/3 |7
50/ 5/10/ 4|9 (3|82 7|16
6 0617|2839 (4|10|5
71071310/ 6|2|9|5|1|8]|4
808521074, 1,9|6]|3
91097531108 |6|4]|2
10/0{10{ 9|8 |7 6|5 4|3 |21

From this table, we see that all of the nonzero elements of Z/11Z are invertible,
and the multiplication table for (Z/117Z)* is

1/2/3/4,5|/6|7|8|9]10
111234 ,/5|6|7|8]9]10
212|468 (101 (35|79
3113|6914 |7 (10 2|58
4148|159 /2|6|10]3]|7
55110049382 |7]1]6
6 6/ 1|7|2|8[3]9|4]10]5
7171311016295 |1]|8)4
88|52 (10{7|4|1,9]6 )3
9197|513 |1]|10{8|6|4]2
10(10{9 (8|7 |6 |54 |3 |2|1

O

4. Write down the multiplication table for Z/10Z, the set of integers modulo 10. The
subset of invertible integers modulo 10 is denoted by (Z/10Z)*. Extract the multi-
plication table for (Z/10Z)*. How many invertible elements do we have here?

Solution. By a straightforward calculation, we find
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0/1/2/3|/4(5/6(7|8|9
0/{0|0(0|0[0|0O[0O|0O|0O]O
1/0/1(2/3/4|5/6|7]8]|9
2/0(2/4|/6[8/0(2/4|6|8
3/0(3[6/9(2|5|8|1(4]|7
410(4(8(2/6/0(4/8|2|6
5(0/5/0/5/0|5]0[5]0]|5
6(0/6(2|/8(4|0(6(2|8/|4
710(714]1|8/5/2(9|6|3
8/0/8/6/4/1(0(8|6|4|2
9/019(8|7(6|5(4(3(2]|1

From this table, we see that the invertible elements of Z/10Z are 1, 3,7, and 9, and
the the multiplication table for (Z/10Z)* is

11379
1/1(3|7/|9
313|917
71711193
91917131

O

5. Write down the multiplication table for Z/12Z, the set of integers modulo 12. The
subset of invertible integers modulo 12 is denoted by (Z/12Z)*. Extract the multi-
plication table for (Z/12Z)*. How many invertible elements do we have here?

Solution. By a straightforward calculation, we find

- 10| 1|2(3/4|(5|6|78[9/10|11
0/0/0]0(0[0[O0(0O[0O0|0l0]O0 O
1/0/1]2(3|4/5|6[7|8/9/10]11
2/0/2|4|6/8{10{0]2 4|68 |10
3/0(3[6]9/0/3]6[/9(0(3]6]|9
4 /10/4|8/0{4,8(0[48|0]4]8
5/0/5(10/3|8|1(|6|11|(4|/9|2 |7
6 /06 0](6/0]6|0]6|0(6]0]6
71007]12(9/4|11|6|1 |8[3[10|5
810, 8[4(0(8[{4|0[84/0]8|4
910/9]16(3/0[{9|6/3/0/9]/6 |3
10/ 0(10| 8 (6|42 |0]10|8|6] 4 | 2
11/0(11(10(9({8| 7 |65 |43 2|1

From this table, we see that the invertible elements of Z/12Z are 1,5, 7, and 11, and
that the multiplication table for (Z/127Z)* is
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157 |11
1157 |11
551|117
7171115
11|11 7|5 |1

O

. Use the Euclidean algorithm to compute the multiplicative inverse of 131 modulo
1979.

Solution. We first run the Euclidean algorithm:

1979 =15-131 +4

131=9-14+5
14=2-544
o=1-4+1
4=4-1.

The second-to-last convergent in the continued fraction algorithm for 1979/131 is
therefore

1 42
N )
9+ ;1 28
Observe, then, that 1979 - 28 = 55412 and 131 - 423 = 55413, and so 1979 - (—28) +
131 - (423) = 1. Thus, the inverse of 131 modulo 1979 is 423. O

. Use the Euclidean algorithm to compute the multiplicative inverse of 127 modulo
1091.

Solution. We first run the Euclidean algorithm:

1091 =8 - 127+ 75
127 =1-754 52

7D =1-52+23
92=2-234+6
23=3-6+5

6=1-5+1

5=05-1

The second-to-last convergent in the continued fraction algorithm for 1091/127 is
therefore

- 1 189

T+ —— 227
Observe, then, that 1091 - 22 = 24002 and 127 - 189 = 24003, and so 1091 - (—22) +
127 - (189) = 1. Thus, the inverse of 127 modulo 1091 is 189. O
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2.4 Theorem of Lagrange.

1. Let G be a group and g an element in G of order n. Let m be a positive integer such
that ¢ = e. Show that n divides m. (Hint: Write m = qn +r with 0 < r < n.)

Solution. Following the hint, we write m = ¢gn + r with 0 < r < n. Then observe
that

e=g"=g""=(g")-g" =e"-g" =4g"
Since r < n and n is the order of g, we must therefore have » = 0. Thus m = ¢n,
and hence n divides m. ]

2. Repeat the argument of Lagrange’s theorem with G = (Z/13Z)* and g = 5.

Solution. Following the proof, we first note that the order of g = 5 is 4. We then
compute e, g, g%, g°. We obtain

2 3

Q1|

218

clglg®|g
1]5]12]
We see that z = 2 is missing from the list. We then compute z, zg, x¢?, zg?, finding

:L“xg‘xgz‘xg?’

2[10[ 11 | 3

We see that y = 4 has yet to appear in either of the above lists, so we next compute

v,v9,y9%, yg*, finding
y|yg|vs® | vg®
17796

Looking over the three lists of numbers, we see that we have now accounted for
every element of G exactly once, and that 12 = |G| = 3 -4 = 3 - ord(g), i.e., org(g)
divides |G|. O

2.5 Chinese Remainder Theorem.

2. Put ¢(1) = 1. Compute Z o(d).

d|1000

Solution. Since 1000 = 2333, the set of divisors of 1000is {1,2,2-3,2-32,2-33,22 22.
3,2%.3%22.33,23 23.3,23.32 23.33}. We therefore have (using our known properties
of ¢)
D d(d) = (1) +$(2) + -+ + (2 3%) + $(2°) + -+ + $(27 - 37) + ¢(2°) + - -+ + $(2° - 37)
d|1000
= (6(1) + ¢(2) + 6(2) + 6(2°)) (¢(1) + &(3) + &(3%) + ¢(3%))
=(1+2-1D)+(2°=-2)+(2°-2%)) (1+(3—1)+ (32 = 3) + (3° — 3%))
=93.33
= 1000.



(Can you see how to prove the equality Z ¢(d) = n in general?) O

dln
. Solve the system of congruences
r=5 mod 11
x =7 mod 13.

Solution. We follow the notation used in lecture. By a simple calculation, one can
easily check that y; = 6 is the inverse of M; = 13 modulo m; = 11, and that y» = 6
is the inverse of M, = 11 modulo my = 13. The solution to the system of equations
is therefore

2=5-13-6+7-11-6 mod (11-13),
which simplifies to z = 137 mod 143. O

. Solve the system of congruences
x =11 mod 16
x =16 mod 27.

Solution. We follow the notation used in lecture. By a simple calculation, one can
easily check that y; = 3 is the inverse of M; = 27 modulo m; = 16, and that y, = 22
is the inverse of M, = 16 modulo my = 27. The solution to the system of equations
is therefore

r=11-27-3+4+16-16-22 mod (16 -27),
which simplifies to z = 43 mod 432. O

. Find the last two digits of 2%?°. Do not use a calculator.

Solution. Let x = 299%. We wish to compute the remainder of z modulo 100 = 4-25.
We first observe that we obviously have z = 2% = 0 mod 4. Next observe that
219 = —1 mod 25, and so

r =299 = (219)999. 99 = (—1)"9.(512) mod 25
=(—1)-(12) mod 25
=13 mod 25.
We now wish to solve the system of equation
r=0 mod 4
r =13 mod 25.

By a simple calculation, we see that y; = 1 is the inverse of M; = 25 modulo
my = 4, and y, = 19 is the inverse of M, = 4 modulo m, = 25. Thus, the solution
to this system of equations is

2=0-25-14+13-4-19 mod (4-25),

which simplifies to # = 88 mod 100. Thus, the last two digits of 2 = 2%% are
88. O



