
APPENDIX C

Group Theory in Spectroscopy

The group theory in this textbook will be treated in a practical way, as one of many useful tools
rather than as a field of abstract mathematics.1

Quite a lot of what we will be discussing in this appendix was
invented by Evariste Galois. He was only 21, when he died in a
duel. Galois spent his last night writing down his group theory.

Evariste Galois (1811–1832), a French mathematician,
created also many fundamental ideas in the theory of algebraic
equations

Our goal will be to predict the selection rules in the ultraviolet (UV), visual (VIS), and
infrared (IR) molecular spectra.

We will try to be concise, but examples need explanations, and there are few amateurs of dry
formulas.

Group

Imagine a set of elements R̂i , i = 1, 2, . . . g. We say that they form a group G of the order2 g,
if the following four conditions are satisfied:

1 Symmetry may be viewed either as beautiful or primitive. It seems that from the psychological point of view, the
symmetry stresses people’s longing for simplicity, order, and understanding. On the other hand, symmetry means
less information and hence often a kind of wearingly dull stimuli. Possibly an interplay of these two opposite
features leads us to consider as beautiful what has a broken symmetry. The trees and the leaves exhibit broken
symmetry and look beautiful. Ancient architects knew the secrets of creating beautiful buildings, which relied on
symmetry breaking, which is substantial but almost invisible from distance.

2 g may be finite or infinite. In practical applications in this Appendix, g will be always finite.

Ideas of Quantum Chemistry, Second Edition. http://dx.doi.org/10.1016/B978-0-444-59436-5.00023-4
© 2014 Elsevier B.V. All rights reserved. e17

http://dx.doi.org/10.1016/B978-0-444-59436-5.00023-4


e18 Appendix C

1. There exists an operation called multiplication, R̂i · R̂ j , which associates with every pair of

the elements of G another element of G; i.e., R̂i · R̂ j = R̂k . Hereafter, the multiplication
R̂i · R̂ j will be denoted simply as R̂i R̂ j . Thus, the elements can be multiplied by each other,
and the result always belongs to the group.

2. The multiplication is associative3; i.e., for any three elements of G, we have R̂i (R̂ j R̂k) =
(R̂i R̂ j )R̂k .

3. Among R̂i ∈ G, there exists an identity element, denoted by Ê , which has a handy property:

R̂i Ê = R̂i and Ê R̂i = R̂i for any i .
4. To each R̂i we can find such an element of G (denoted as R̂−1

i , called the inverse element

with respect to R̂i ), that R̂i R̂−1
i = Ê ; also R̂−1

i R̂i = Ê .

Example 1. A Four-Element Group
The elements 1,−1, i,−i , with the operation chosen as the ordinary multiplication of num-

bers, form a group of order 4. Indeed, any product of these numbers gives one of them. Here is
the corresponding multiplication table

Second in the product
1 −1 i −i

First in the product 1 1 −1 i −i
−1 −1 1 −i i

i i −i −1 1
−i −i i 1 −1

Note the following:

Abelian Group:
The table is symmetric with respect to the diagonal. A group with symmetric multiplication
table is called Abelian.

The associativity requirement is, of course, satisfied. The unit element is 1. You can always
find an inverse element. Indeed, for 1, it is 1; for −1, it is −1; for i , it is −i ; and for −i , it is i .
Thus, all conditions are fulfilled, and g = 4.

Example 2. Group of Integers
Let us take G as the set of integers with the “multiplication” being the regular addition of

numbers. Let us check. The sum of two integers is an integer, so the requirement 1 is satisfied.
The operation is associative, because the addition is. The unit element is, of course, 0. The
inverse element to an integer means the opposite number. Thus, G is a group of order g = ∞.

3 Thanks to that, the expressions similar to R̂i R̂ j R̂k have an unambiguous meaning.
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Example 3. Group of Non-singular Matrices
All non-singular n × n matrices4 with matrix multiplication as the operation form a group.

Let us look at this now. Multiplication of a non-singular matrix A (i.e., det A �= 0) by a non-
singular matrix B gives a non-singular matrix C = AB, because det C = det A det B �= 0.
The unit element is the unit matrix 1, and the inverse element exists (this is why we needed
the non-singularity) and is equal to A−1. Also, from the matrix multiplication rule, we have(
AB
)

C = A
(
BC
)
. This is a group of the order ∞.

Example 4. Group of Unitary Matrices U(n)
In particular, all the unitary n × n matrices form a group with matrix multiplication as the

group multiplication operation. Let us take a look at this. Any such multiplication is feasible, and
the product represents a unitary matrix (if matrices U1 and U2 are unitary–i.e., U†

1 = U−1
1 and

U†
2 = U−1

2 –then U = U1U2 is also unitary because U−1 = U−1
2 U−1

1 = U†
2U†

1 = (U1U2
)† =

U†), matrix multiplication is associative, the identity element means the n × n unit matrix, and
the inverse matrix is U−1 = U† ≡ (UT

)∗
always exists. In physics, this group is called U(n).

Example 5. SU(n) Group
The group SU(n) for n ≥ 2, which is famous in physics, is defined as the subset of U(n)

of such matrices U that det U = 1 with the same multiplication operation.5 Indeed, since
det
(
U1U2
) = det U1 det U2, then multiplication of any two elements of the SU(n) gives an

element of SU(n). Also of great importance in physics is the SO(n) group, which is the SU(n)
group with real (i.e., orthogonal) matrices.

Unitary Versus Symmetry Operation

Let us take the so-called SO(3) group of all rotations of the coordinate system in 3-D (the Carte-
sian 3-D Euclidean space; see Appendix B available atbooksite.elsevier.com/978-0-444-59436-5,
p. e7). The rotation operators acting in this space will be denoted by R̂ and defined as follows:
the operator R̂ acting on a vector r produces the vector R̂r :

R̂r = Rr , (C.1)

where6 R represents an orthogonal matrix of dimension 3. The orthogonality guarantees that the
transformation preserves the vector dot (or scalar) products (and therefore their lengths as well).

4 See Appendix A available at booksite.elsevier.com/978-0-444-59436-5.
5 Recall (see Appendix A available at booksite.elsevier.com/978-0-444-59436-5) that for a unitary matrix U, one

has det U = exp
(
iφ
)
. For orthogonal matrices (i.e., the unitary ones with all the elements real), det U = ±1. This

does not mean that the SU(n) is composed of the orthogonal matrices only. For instance, all the four 2×2 matrices:{
1 0
0 1

}
,

{−1 0
0 −1

}
,

{
0 i
i 0

}
,

{
0 −i

−i 0

}

have determinants that are equal to 1 and belong to SU(2), while only the first two belong to SO(2).

6 The point in 3-D space is indicated by the vector r =
⎛
⎝ x

y
z

⎞
⎠.

http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
http://booksite.elsevier.com/978-0-444-59436-5
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Let us take an arbitrary function f (r) of the position r. Now, for each of the operators R̂, let us
construct the corresponding operator R̂ that moves in space the function without its deformation.
Generally, we obtain another function, which means that R̂ operates in the Hilbert space. The
construction of the operator R̂ is based on the following prescription:

R̂ f (r) = f (R̂−1r). (C.2)

This means that displacement in space of the function f (r) is equivalent simply to leaving
the function intact, but performing instead the inverse displacement of the coordinate system.7

The operators R̂ rotate functions without their deformation; therefore, they preserve the
scalar products in the Hilbert space and are unitary. They form a group isomorphic with the
group of operators R̂, because they have the same multiplication table as the operators R̂: if
R̂ = R̂1 R̂2. Then R̂ = R̂1R̂2, where R̂1 f (r) = f (R̂−1

1 r) and R̂2 f (r) = f (R̂−1
2 r). Indeed,8

R̂ f = (R̂1R̂2) f (r) = f (R̂−1
2 R̂−1

1 r) = f (R̂−1r).

Unitary Versus Symmetry Operation
A unitary operation is a symmetry operation of the function f (r), when R̂ f (r) = f (r).

Example 6. Rotation of a Point
The operator R̂

(
α; z
)

of rotation of the point with the coordinates x, y, z by angle α about
the axis z gives the point with the coordinates x ′, y′, z′ (Fig. C.1a):

x ′ = r cos
(
φ + α
) = r cosφ cosα − r sin φ sin α = x cosα − y sin α,

y′ = r sin
(
φ + α
) = r sin φ cosα + r cosφ sin α = x sin α + y cosα,

z′ = z,

7 Motion is relative. Let us concentrate on a rotation by angleα. The result is the same if either of the following is true:

• The coordinate system stays still, but the point rotates by angle α.
• The point does not move, while the coordinate system rotates by angle −α.

What if function f (r1, r2, . . .rN ) is to be rotated? Then we will do the following: R̂ f (r1, r2, . . .rN ) =
f (R̂−1r1, R̂−1r2, . . .R̂

−1rN ).
8 This result is correct, but the routine of notation works here in a misleading way when suggesting that (R̂1R̂2) f (r)

and f (R̂−1
1 R̂−1

2 r)means the same. The correct result is derived in the following way. First, from the definition, we

have R̂2 f (r) = f
(

R−1
2 r
)

≡ g2(r). Then, we get (R̂1R̂2) f (r) = R̂1[R̂2 f (r)] = R̂1g2(r) = g2

(
R−1

1 r
)

=
R̂2 f
(

R−1
1 r
)

= f
(

R−1
2 R−1

1 r
)

.
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(a) (b)

(c) (d)

Fig. C.1. Examples of an isometric operation. (a) Unitary operation: rotation of a point by angle α about the axis z . The old
position of the point is indicated by the vector r, the new position by r′ (of the same length). (b) Unitary operation: rotation of
the function f (r − r0) by the angle α about the axis z. As a result, we have the function f (r − Ur0), which in general represents
a function that differs from f (r − r0). (c) The unitary operation that represents a symmetry operation: rotation by the angle

α = 120◦ of the function f (r) = exp
[
− |r − rA|2

]
+ exp
[
− |r − rB |2

]
+ exp
[
− |r − rC |2

]
, where the vectors rA, rB , rC are of

the same length and form the mercedes trademark (the angle 120◦). The new function is identical to the old one. (d) Translational

operator by the vector r1 : R̂ (r1
)

applied to the Gaussian function f (r) = exp
[
− |r − r0|2

]
gives R̂ (r1

)
f (r) = f (R̂−1r) =

exp

[
−
∣∣∣R̂−1r − r0

∣∣∣2] = exp
[
− |r − r1 − r0|2

]
= exp
[
− |r − (r1 + r0)|2

]
= f
(
r − r1
)
; i.e., the function shifted in space by

the vector r1 with respect to the original function.

the corresponding transformation matrix of the old to the new coordinates, therefore, is

U =
⎡
⎣ cosα − sin α 0

sin α cosα 0
0 0 1

⎤
⎦ .
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We obtain the same new coordinates, if the point stays still, while the coordinate system
rotates in the opposite direction (i.e., by the angle −α).

Example 7. Rotation of an Atomic Orbital
Let us construct a single spherically symmetric Gaussian orbital f (r) = exp

[− |r − r0|2
]

in
the Hilbert space for one electron. Let the atomic orbital be centered in the point indicated by
the vector r0. The operator R̂

(
α; z
)

has to carry out rotation of a function9 by the angle α about
the axis z (Fig. C.1b), which corresponds to a rotation in the Hilbert space.10 According to the

definition of a rotation, what we need is R̂ f (r) = f
(

R̂−1r
)

. Since the operator R̂ corresponds

to the matrix U, then R̂−1 corresponds to U−1. The last matrix is simply

U−1 = UT =
⎡
⎣ cosα sin α 0

− sin α cosα 0
0 0 1

⎤
⎦ .

We obtain the following chain of transformations

f (R̂−1r) = exp

[
−
∣∣∣R̂−1r − r0

∣∣∣2]

= exp

[
−
∣∣∣R̂−1r − R̂−1 R̂r0

∣∣∣2]

= exp
[
−
〈
R̂−1r − R̂−1 R̂r0|R̂−1r − R̂−1 R̂r0

〉]
= exp
[
−
〈
R̂ R̂−1r − R̂ R̂−1 R̂r0|r − R̂r0

〉]
= exp
[
−
〈
r − R̂r0|r − R̂r0

〉]
= exp

[
−
∣∣∣r − R̂r0

∣∣∣2] .
Thus, the center of the orbital underwent the rotation and therefore R̂ f (r) represents indeed

the spherically symmetric orbital11 displaced by angle α.

9 This orbital represents our object to rotate by α. The coordinate system rests unchanged, while the object moves.
The job will be done by the operator R̂ (α; z

)
.

10 We will obtain another function because it is centered differently.
11 The definition R̂ f (r) = f (R̂−1r) can transform anything: from the spherically symmetric Gaussian orbital

through a molecular orbital (recall that it can be represented by the LCAO expansion) until the Statue of Liberty!
Indeed, do you want to rotate the Statue of Liberty? Then leave the Statue in peace, but transform (in the opposite
way) your Cartesian coordinate system!
More general transformations, allowing deformation of objects, also could be described by the formula R̂ f (r) =
f (R̂−1r), but the operator R̂ would be non-unitary.
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Since in general for any value of angle α, function exp
[− |r − Ur0|2

]
is not equal to

exp
[− |r − r0|2

]
, unitary operation R̂ is not a symmetry operation of the object.

If, however, α = 2πn, n = 0,±1,±2, . . ., then R̂ f (r) = f (r) and R̂
(
2πn; z
)

is12 a
symmetry operation.

Example 8. Rotation of a Particular Sum of Atomic Orbitals
Let us take an example of a sum of three spherically symmetric Gaussian orbitals:

f (r) = exp
[− |r − rA|2]+ exp

[− |r − rB |2]+ exp
[− |r − rC |2] ,

where vectors rA, rB, rC are of the same length and form the mercedes sign (angles equal to
120◦); see Fig. C.1c. Let us take operator R̂

(
α = 120◦; z

)
corresponding to the matrix U of

rotation by 120◦. Application of R̂ to function f (r) is equivalent to13

f (R̂−1r) = exp

[
−
∣∣∣R̂−1r − rA

∣∣∣2]+ exp

[
−
∣∣∣R̂−1r − rB

∣∣∣2]+ exp

[
−
∣∣∣R̂−1r − rC

∣∣∣2]

= exp

[
−
∣∣∣r − R̂rA

∣∣∣2]+ exp

[
−
∣∣∣r − R̂rB

∣∣∣2]+ exp

[
−
∣∣∣r − R̂rC

∣∣∣2] .
From the figure (or from the matrix), we have R̂rA = rB; R̂rB = rC ; R̂rC = rA. This gives

R̂ f (r) = exp
[− |r − rB |2]+ exp

[− |r − rC |2]+ exp
[− |r − rA|2] = f (r).

We have obtained our old function. R̂
(
α = 120◦; z

)
is therefore the symmetry operation14

f (r).

R̂
(
α = 120◦; z

)
represents a symmetry operation, not only for the function f , but also for

other objects, that would have the symmetry of the equilateral triangle.

Example 9. Rotation of a Many-Electron Wave Function
If in the last example we took a three-electronic function as a product of the Gaussian orbitals

f (r1, r2, r3) = exp
[− |r1 − rA|2] · exp

[− |r2 − rB |2] · exp
[− |r3 − rC |2], then after applying

R̂
(
α = 120◦; z

)
to f , we would obtain using an almost identical procedure

12 The transformed and non-transformed orbitals coincide.
13 We use the result from the last example.
14 Note, that e.g., if one of the 1s orbitals had the opposite sign, then the function f (r)would not have the symmetry of

the equilateral triangle, although it would be invariant too with respect to some of the operations of the equilateral
triangle.
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R̂ f (r1, r2, r3) = f (R̂−1r1, R̂−1r2, R̂−1r3) = exp
[− |r1 − rB |2] · exp

[− |r2 − rC |2] ·
exp
[− |r3 − rA|2], which represents a completely different function than the original one

f (r1, r2, r3). Thus, R̂ does not represent any symmetry operation for f (r1, r2, r3). If, however,
we took a symmetrized function [e.g., f̃ (r1, r2, r3) = ∑P P̂ f (r1, r2, r3), where P̂ permutes
the centers A, B, C, and the summation goes over all permutations] we would obtain f̃ , which
would turn out to be symmetric with respect to R̂

(
α = 120◦; z

)
.

Example 10. Translation
Translation cannot be represented as a matrix transformation (C.1). It is however an isometric

operation; i.e., it preserves the distances among the points of the transformed object. This is
sufficient for us. Let us enlarge the set of the allowed operations in the 3-D Euclidean space by
isometry. Similarly, as in the case of rotations, let us define a shift of the function f (r). A shift of
the function f (r) by vector r1 is such a transformation R̂

(
r1
)

(in the Hilbert space), that the new
function f̃ (r) = f (r−r1). As an example, let us take the function f (r) = exp

[− |r − r0|2
]

and

shift it by the vector r1. Translations obey the known relation (C.2): R̂
(
r1
)

f (r) = f (R̂−1r) =
exp

[
−
∣∣∣R̂−1r − r0

∣∣∣2] = exp
[− |r − r1 − r0|2

] = exp
[− |r − (r1 + r0)|2

] = f
(
r − r1
)
. The

function f (r) had been concentrated around the point r0, while the new function R̂
(
r1
)

f (r) is
concentrated around the point indicated by the vector r1 + r0, i.e., the function has been shifted
by r1 (Fig. C.1d). This transformation is (similar to the case of rotations) a unitary one because
the scalar product between two functions f1 and f2 shifted by the same operation is preserved:
〈 f1(r)| f2(r)〉 = 〈 f1

(
r − r1
) | f2
(
r − r1
)〉

.

Symmetry Group of the Ammonia Molecule

Imagine a model of the NH3 molecule (trigonal pyramide), as shown in Fig. C.2. A student
sitting at the table plays with the model. We look at the model, then close our eyes for a second,
and open them again. We see that the coordinate system, the model, and its position with respect
to the coordinate system look exactly the same as before. Could the student change the model
position? Yes, he could. He could, for example, rotate the model about the z-axis (perpendicular
to the table) by 120◦, he might exchange two NH bonds in the model, he may also do nothing.
Whatever the student could do is called a symmetry operation.

Let us make a list of all the symmetry operations allowed for the ammonia molecule. To
this end, let us label the vortices of the triangle by a, b, c and locate it in such a way as to
coincide the triangle center with the origin of the coordinate system, and the y axis indicated the
vortex a.

Now, let us check whether the operations given in Table C.1 form a group. Four conditions
have to be satisfied. The first condition requires the existence of a “multiplication” in the group,
and that the product of any two elements gives an element of the group: R̂i R̂ j = R̂k . The
elements will be the symmetry operations of the equilateral triangle. The product R̂i R̂ j = R̂k
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Fig. C.2. The equilateral triangle and the coordinate system. Positions a, b, and c are occupied by hydrogen atoms, and the
nitrogen atom is (symmetrically) above the plane.

Table C.1. Symmetry operations of the ammonia molecule (the reflections pertain to the mirror planes perpendic-
ular to the triangle shown in Fig. C.2, and going through the center of the triangle).

Symbol Description Symbolic Explanation

Ê Do nothing Ê

[
a

c b

]
=
[

a
c b

]

Â Reflection in the plane going through point a shown in Fig. C.2 Â

[
a

c b

]
=
[

a
b c

]

B̂ Reflection in the plane going through point b shown in Fig. C.2 B̂

[
a

c b

]
=
[

c
a b

]

Ĉ Reflection in the plane going through point c shown in Fig. C.2 Ĉ

[
a

c b

]
=
[

b
c a

]

D̂ Rotation by 120◦ clockwise D̂

[
a

c b

]
=
[

c
b a

]

F̂ Rotation by −120◦ counterclockwise F̂

[
a

c b

]
=
[

b
a c

]

means that the operation R̂k gives the same result as applying the operation R̂ j to the triangle
first, and then the result is subject to the operation R̂i . In this way, the “multiplication table”
shown in Table C.2 can be obtained.
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Table C.2. Group multiplication table.

R̂j Ê Â B̂ Ĉ D̂ F̂

R̂i

Ê Ê Â B̂ Ĉ D̂ F̂

Â Â Ê D̂ F̂ B̂ Ĉ

B̂ B̂ F̂ Ê D̂ Ĉ Â

Ĉ Ĉ D̂ F̂ Ê Â B̂

D̂ D̂ Ĉ Â B̂ F̂ Ê

F̂ F̂ B̂ Ĉ Â Ê D̂

First in the product

Second in the product

Further, using Table C.2, we may check whether the operation is associative. E.g., we check
whether Â(B̂Ĉ) = ( Â B̂)Ĉ . The left side gives Â(B̂Ĉ) = ÂD̂ = B̂. The right-hand side gives
( Â B̂)Ĉ = D̂Ĉ = B̂. It agrees, and it will agree for all the other entries in the table.

The unit operation is Ê , as it is seen from the table, because multiplying by Ê does not change
anything: Ê R̂i = R̂i Ê = R̂i . Also, using the table again, we can find the inverse element of
any of the elements. Indeed, Ê−1 = Ê , because Ê times just Ê equals Ê . Further, Â−1 = Â
because Â times Â equals Ê , etc., B̂−1 = B̂, Ĉ−1 = Ĉ, D̂−1 = F̂, and F̂−1 = D̂.

Thus, all the requirements are fulfilled and all these operations form a group of order g = 6.
Note that in this group, the operations do not necessarily commute; e.g., Ĉ D̂ = Â, but D̂Ĉ = B̂
(the group is not Abelian).

Classes

The group elements can be all divided into disjoint sets called classes. A class (to put it first in
a simple way) represents a set of the operations that are similar in a common sense; e.g., three
reflection operations Â, B̂ and Ĉ constitute one class, the rotations D̂ and F̂ form the second
class, and the third class is simply the element Ê . Now, let us look at the precise definition.

Class
A class is the set of elements that are conjugate one to another. An element R̂i is conjugate
with R̂ j , if we can find in the group G such an element (let us denote it by X̂ ), that
X̂−1 R̂ j X̂ = R̂i .

Then, of course, the element R̂ j is a conjugate to R̂i as well. We check that by multiplying R̂i

from the left by X̂ = Ŷ −1, and from the right by X̂−1 = Ŷ (what yields Ŷ −1 R̂i Ŷ = X̂ R̂i X̂−1 =
X̂ X̂−1 R̂ j X̂ X̂−1 = Ê R̂ j Ê = R̂ j ).
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Let us make a little exercise using our Table C.2. We have X̂−1 Ê X̂ = X̂−1 X̂ Ê = Ê Ê = Ê
for each X̂ ∈ G; i.e., Ê represents only a class. Further, making X̂−1 Â X̂ for all possible X̂
gives:

Ê−1 ÂÊ = Ê ÂÊ = ÂÊ = Â

Â−1 Â Â = Â Â Â = Ê Â = Â

B̂−1 Â B̂ = B̂ Â B̂ = F̂ B̂ = Ĉ

Ĉ−1 ÂĈ = Ĉ ÂĈ = D̂Ĉ = B̂

D̂−1 ÂD̂ = F̂ ÂD̂ = B̂ D̂ = Ĉ

F̂−1 ÂF̂ = D̂ ÂF̂ = B̂ F̂ = Ĉ .

This means that Â belongs to the same class together with B̂ and Ĉ . Now, we will create
some conjugate elements to D̂ and F̂ :

Â−1 D̂ Â = ÂD̂ Â = B̂ Â = F̂

B̂−1 D̂ B̂ = B̂ D̂ B̂ = Ĉ B̂ = F̂

Ĉ−1 D̂Ĉ = Ĉ D̂Ĉ = ÂĈ = F̂

etc. Thus, D̂ and F̂ make a class. Therefore, the group under consideration consists of the
following classes: {Ê}{ Â, B̂, Ĉ}{D̂, F̂}.

It is always so: the group is a sum of the disjoint classes.

Representations

A representation of the group is a g–element sequence of the square matrices (of the same
dimension; each element of the group is associated to a matrix), such that the matrices have
the multiplication table consistent with the multiplication table of the group.

By “consistency,” we mean the following. To each element of the group, one assigns a square
matrix (of the same dimension for all elements). If the multiplication table for the group says
that R̂i R̂ j = R̂k , then the matrix corresponding to R̂i times the matrix that corresponds to R̂ j

is the matrix that corresponds to R̂k . If this agrees for all R̂, then we say that the matrices form
a representation.15

We may create many group representations; see Table C.3.

15 More formally, a representation is a homomorphism of the group into the above set of matrices.
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Table C.3. Several representations of the equilateral triangle symmetry group.

Repr. Group Elements

Ê Â B̂ Ĉ D̂ F̂

�1 1 1 1 1 1 1
�2 1 −1 −1 −1 1 1

�3

[
1 0
0 1

] [−1 0
0 1

] [
1
2 −

√
3

2

−
√

3
2 − 1

2

] [
1
2

√
3

2√
3

2 − 1
2

] [
− 1

2

√
3

2

−
√

3
2 − 1

2

] [
− 1

2 −
√

3
2√

3
2 − 1

2

]

�4

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

⎡
⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦

⎡
⎢⎣

−1 0 0

0 1
2 −

√
3

2

0 −
√

3
2 − 1

2

⎤
⎥⎦

⎡
⎢⎣

−1 0 0

0 1
2

√
3

2

0
√

3
2 − 1

2

⎤
⎥⎦

⎡
⎢⎣

1 0 0

0 − 1
2

√
3

2

0 −
√

3
2 − 1

2

⎤
⎥⎦

⎡
⎢⎣

1 0 0

0 − 1
2 −

√
3

2

0
√

3
2 − 1

2

⎤
⎥⎦
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The easiest thing is to see that�1 satisfies the criterion of being a representation (the matrices
have dimension 1; i.e., they are numbers). After looking at �2 for a while, we will say the same.
Multiplying the corresponding matrices, we will prove that for �3 and �4. For example, for �3,
the product of the matrices B̂ and Ĉ gives the matrix corresponding to the operation D̂:

[
1
2 −

√
3

2

−
√

3
2 −1

2

][
1
2

√
3

2√
3

2 −1
2

]
=
[

−1
2

√
3

2

−
√

3
2 −1

2

]
;

i.e., the same as for the operations themselves. If we had more patience, we would show that
equally easily for the whole multiplication table of the group. Note that

there are many representations of a group.

There is also another interesting thing to note. Let us take a point with the coordinates (x, y, 0)
and see what will happen to it when the symmetry operations are applied (the coordinate
system rests, while the point itself moves). The identity operation Ê leads to the following
transformation matrix: [

x ′
y′
]

=
[

1 0
0 1

] [
x
y

]
.

The results of the other operations are characterized by the following transformation matrices
(you may check that step by step):

Â :
[−1 0

0 1

]
B̂ :
⎡
⎢⎣

1
2 −

√
3

2

−
√

3
2 −1

2

⎤
⎥⎦ Ĉ :
[

1
2

√
3

2√
3

2 −1
2

]

D̂ :
[

−1
2

√
3

2

−
√

3
2 −1

2

]
F̂ :
[

−1
2 −

√
3

2√
3

2 −1
2

]
.

Note, that the matrices obtained are identical to those of the representation �3. Thus, by
transforming the coordinates of a point, we have generated a representation of the symmetry.

By transforming anything (coordinates of a point, vectors, functions) using the symmetry
operations and collecting the results in the form of matrices, we always obtain a represen-
tation of the group.
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Characters of Representation

For any representation �, we may define the vector χ (�) of dimension g, having as elements
the traces of the representation matrices �(R̂i ):

Tr� =
∑

i

�i i (C.3)

χ (�) ≡

⎡
⎢⎢⎢⎢⎢⎣

Tr�
(

R̂1

)
Tr�
(

R̂2

)
. . .

Tr�
(

R̂g

)

⎤
⎥⎥⎥⎥⎥⎦ ≡

⎡
⎢⎢⎢⎢⎢⎣

χ(�)
(

R̂1

)
χ(�)
(

R̂2

)
. . .

χ(�)
(

R̂g

)

⎤
⎥⎥⎥⎥⎥⎦ . (C.4)

The number χ(�)
(

R̂i

)
is called the character of the representation � that corresponds to

the operation R̂i . The characters of representations will play the most important role in
application of the group theory to spectroscopy.

Irreducible Representations

To tell what an irreducible representation is, let us define first what are called reducible repre-
sentations.

A representation is called reducible if its matrices can be transformed into the so-called
block form by using the transformation P−1�(R̂i )P for every matrix �(R̂i ), where P is a
non-singular matrix.

In a block form, the nonzero elements can be only in the square blocks located on the diagonal
(see Fig. C.3).

If using the same P, we can transform each of the matrices �(R̂i ) and obtain the same block
form, then the representation is called reducible.

If we do not find such a matrix (because it does not exist), then the representation is
irreducible. If we carry out the transformation P−1�(R̂i )P (similarity transformation) for
i = 1, 2, . . ., g of a representation, the new matrices also form a representation �′ called
equivalent to �.



Group Theory in Spectroscopy e31

Fig. C.3. Reducible representation, block form, and irreducible representation. In the first row, the matrices �(R̂i ) are displayed
that form a reducible representation (each matrix corresponds to the symmetry operation R̂i ); the matrix elements are in general
nonzero. The central row shows a representation�′ equivalent to the first one; i.e., related by a similarity transformation (with matrix
P). The new representation exhibits a block form; i.e., in this particular case each matrix has two blocks of zeros that are identical
in all matrices. The last row shows an equivalent representation �′′ that corresponds to the smallest square blocks (of nonzeros);
i.e., the maximum number of the blocks, of the form identical in all the matrices. Not only �,�′, and �′′ are representations of
the group, but also any sequence of individual blocks (as that shadowed) is a representation. Thus, �′′ is decomposed into the four
irreducible representations.

This is easy to show. Indeed, the group operations R̂i and R̂ j correspond to the matrices
�(R̂i ) and �(R̂ j ) in the original representation and to �′(R̂i ) = P−1�(R̂i )P and �′(R̂ j ) =
P−1�(R̂ j )P in the equivalent representation (we will check in a moment whether this is indeed a
representation). The product �′(R̂i )�

′(R̂ j ) equals P−1�(R̂i )PP−1�(R̂ j )P = P−1�(R̂i )�(R̂ j )

P; i.e., the matrix �(R̂i )�(R̂ j ) transformed by a similarity transformation, so everything goes
with the same multiplication table. Thus, the matrices �′(R̂i ) form also a representation (�′).
This means that we can create as many representations as we wish, it is sufficient to change the
matrix P, and this is easy (since what we want is its singularity, i.e., the P−1 matrix has to exist).

The blocks are square matrices. It turns out the set of the first blocks �1(R̂1), �1(R̂2), . . .

�1(R̂g) (each block for one operation) is a representation, the set of the second blocks
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�2(R̂1), �2(R̂2), . . . �2(R̂g) forms a representation as well, etc. So it is sufficient to see what
happens when we multiply two matrices in the same block form. The matrix product has the
same block form and a particular block results from multiplication of the corresponding blocks
of the matrices that are being multiplied. This is sufficient to treat each set of the blocks as a
representation.16

In particular, the maximum decomposition into blocks leads, of course, to the blocks that
are not decomposable anymore, and represent therefore the irreducible representations.

Properties of the Irreducible Representations

For two irreducible representations α and β, the following group orthogonality theorem is
satisfied17: ∑

i

[�(α)(R̂i )]mn[�(β)(R̂i )]∗m′n′ = g

nα
δαβδmm′δnn′, (C.5)

where �(α)(R̂) and �(β)(R̂) denote the matrices that correspond to the group element R̂(m, n
and m′, n′ determine the elements of the matrices), the summation goes over all the group
elements, and nα is the dimension of the irreducible representation α; i.e., the dimension of
the matrices that form the representation. The symbol ∗ means the complex conjugation18. The

16 Let us explain this with an example. We have two square matrices of dimension 4: A and B, both having the block
form:

A =
[

A1 0
0 A2

]
, B =

[
B1 0
0 B2

]
with

A1 =
[

3 1
1 2

]
, A2 =

[
2 2
2 3

]
, B1 =

[
1 3
3 2

]
, B2 =

[
2 1
1 2

]
.

Let us check that C = AB has the same block form:

C =
[

C1 0
0 C2

]

and that (what is particularly important for us) C1 = A1B1 and C2 = A2B2. Indeed, multiplying AB, we have

C =

⎡
⎢⎢⎣

6 11 0 0
7 7 0 0
0 0 6 6
0 0 7 8

⎤
⎥⎥⎦ i.e.,

[
6 11
7 7

]
= C1,

[
6 6
7 8

]
= C2.

Hence, indeed C1 = A1B1 and C2 = A2B2
17 For the proof, see H. Eyring, J. Walter, and G.E. Kimball, Quantum Chemistry, (New York, Wiley: 1944).
18 This is important only for the complex representations �.
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symbols δ denote the Kronecker deltas; i.e., δαβ = 1, if α = β and δαβ = 0 , if α �= β. The word
orthogonality in the name of the theorem is related to the following observation. We create two
g –dimensional vectors: one composed of the components [�(α)(R̂i )]mn , the other vector from
[�(β)(R̂i )]∗m′n′, i = 1, 2, . . ., g. The group orthogonality theorem says the following:

• If α �= β, then the vectors are orthogonal.
• If m �= m′ or n �= n′, the two vectors are orthogonal as well. The formula kills every-

thing, except the two irreducible representations are identical and we choose as the vector
components the same elements.

Characters of Irreducible Representations

The most important consequence of the group orthogonality theorem is the equation∑
i

χ(α)(R̂i )χ
(β)(R̂i )

∗ = gδαβ, (C.6)

where χ(α)(R̂i ) is a character of the irreducible representation α corresponding to the symmetry
operation R̂i . Equation (C.6) in view of Eq. (C.3) may be rewritten as a scalar product in a unitary
space (see Appendix B available at booksite.elsevier.com/978-0-444-59436-5)

〈
χ (β)|χ (α)

〉
= gδαβ. (C.7)

Equation (C.7) can be obtained from the group orthogonality theorem after setting m = n
and m′ = n′, and then summing up over m and m′:

〈
χ (β)|χ (α)

〉
=
∑

i

∑
m

∑
m′

[�(α)(R̂i )]mm[�(β)(R̂i )]∗m′m′

= g

nα
δαβ
∑

m

∑
m′
(δmm′)2 = g

nα
δαβnα = gδαβ.

Decomposing Reducible Representation into Irreducible Ones

It is important that

equivalent representations have identical characters

http://booksite.elsevier.com/978-0-444-59436-5
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because the trace of a matrix is invariant with respect to any similarity transformation. Indeed,
for two equivalent representations � and �′ for any R̂i , we have �′(R̂i ) = P−1�(R̂i )P, which
gives

χ(�
′)(R̂i ) =

∑
m

(P−1�(R̂i )P)mm =
∑
mkl

P−1
mk �kl Plm =

∑
kl

�kl

∑
m

Plm P−1
mk

=
∑

kl

�kl(PP−1)lk =
∑

kl

�klδlk =
∑

k

�kk = χ(�)(R̂i ).

In particular, the character of a representation is the same as its block form (with the maximum
number of blocks that correspond to the irreducible representations):

χ(R̂i ) =
∑
α

a(α)χ(α)(R̂i ), (C.8)

or, in other words,
χ =
∑
α

a(α)χ (α), (C.9)

where a(α) is a natural number telling us how many times the irreducible representation α
appears in the block form. The above formula comes from the very definition of the trace (a
sum of the diagonal elements).

We will need another property of the characters. Namely,

the characters corresponding to the elements of a class are equal.

Indeed, two elements of the group R̂i and R̂ j that belong to the same class are related to
one another by the relation R̂i = X−1 R̂ j X , where X is an element of the group. The same
multiplication table is valid for the representations (from the definition of the representation);
thus

�(R̂i ) = �(X−1)�(R̂ j )�(X) = [�(X)]−1�(R̂ j )�(X). (C.10)

This concludes the proof because in such a case, the matrices �(R̂i ) and �(R̂ j ) are related
by a similarity transformation and therefore have identical characters. From now on, we can
write χ(C) instead of χ(R̂), where C denotes a class to which operation R̂i belongs.

Equation (C.8) can be now modified appropriately. It can be rewritten as〈
χ (β)|χ (α)

〉
=
∑

C

nCχ
α(C)χβ(C)∗ =

∑
C

[√nCχ
(α)(C)][√nCχ

(β)(C)∗] = gδαβ, (C.11)

where C stands for the class, and nC tells us how many operations belong to the class. Such a
notation reminds us that the numbers [√nCχ

(α)(C)] for a fixed α and changing class C may
be treated as the components of a vector (its dimension is equal to the number of classes) and,
that the vectors that correspond to different irreducible representations are orthogonal. The
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dimension of the vectors is equal to the number of classes – say, k. Since the number of the
orthogonal vectors, each of dimension k, cannot exceed k, then the number of the different
irreducible representations is equal to the number of the classes.

In future applications, it will be of key importance to find a natural number a(α) that
tells us how many times the irreducible representation α is encountered in a reducible
representation. The formula for a(α) is the following:

a(α) = 1

g

∑
C

nCχ(C)χ
(α)(C)∗. (C.12)

The proof is simple. From the scalar product of both sides of Eq. (C.9) with the vector χ (β)

after using Eq. (C.7), one obtains
〈
χ (β)|χ 〉 = ∑α a(α)

〈
χ (β)|χ (α)〉 = ∑α a(α)gδαβ = a(β)g

or a(α) = 1
g

〈
χ (α)|χ 〉. This is the formula sought because the characters are the same for all

operations of the same class.
Note that

to find a(α), it is sufficient to know the characters of the representations, the representations
themselves are not necessary.

Tables of Characters of the Irreducible Representations

Any textbook on application of group theory in molecular spectroscopy contains tables of
characters of irreducible representations, which correspond to various symmetry groups of
molecules.19

Before we can apply the group theory to a particular molecule, we have to find the above
mentioned table of characters. To this end, note the following:

• The Born–Oppenheimer approximation is used, so the positions of the nuclei are fixed in
space (geometry).

• Looking at the geometry, we make a list of all the symmetry operations that transform it
into itself.

• We identify the corresponding symmetry group.20

19 The tables have been constructed by considering possible symmetries (symmetry groups), creating suitable matrix
representations, using similarity transformations to find the irreducible representations, summing up the diagonal
elements we end up with the character tables in question.

20 This may be done by using a flowchart; e.g., what is given in P.W. Atkins, Physical Chemistry, 6th ed., Oxford
University Press, Oxford (1998).
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Table C.4. Examples of the symmetry
group for a few molecules in their ground-
state optimum geometry.

Molecule Group

H2O C2v
NH3 C3v
CH4 Td
Benzene D6h
Naphthalene D2h

In order to find the proper table, we may use Schoenflies notation for the symmetry21 (there
are also some other notations):

Ê Means a symbol of the identity operation (i.e., do nothing).
Ĉn Rotation by angle 2π

n about the n - fold symmetry axis.
Ĉm

n Rotation by 2πm
n about the n-fold symmetry axis

σ̂v Reflection in the plane going through the axis of the highest symmetry
σ̂h Reflection in the plane perpendicular to the axis of the highest symmetry
ı̂ Inversion with respect to the center of symmetry
Ŝn Rotation by angle 2π

n about the n-fold symmetry axis with subsequent reflection in
the plane perpendicular to it

Ŝm
n Rotation by angle 2πm

n about the n-fold symmetry axis with subsequent reflection in
the plane perpendicular to it.

The set of the symmetry operations forms the symmetry group. The symmetry groups also
have their special symbols. In Table C.4 the Schoenflies notation of the symmetry groups of
some simple molecules is given (in their geometry corresponding to the energy minimum).

A molecule may be much more complicated, but often its symmetry is identical to that of a
simple molecule (e.g., one of those reported in the table).

When we finally identify the table of characters suitable for the molecule under consideration,
it is time to look at it carefully. For example, for the ammonia molecule, we find the table of
characters shown in Table C.5.

In the upper-left corner, the name of the group is displayed (C3v). In the same row, the
symmetry operations are listed (in this case Ê , σ̂v, Ĉ3).22 The operations are collected in classes,
and the number of such operations in the class is given: the identity operation (Ê) forms the

21 Artur Moritz Schoenflies (1853–1928), German mathematician and professor at the universities in Göttingen,
Königsberg, and Frankfurt am Main. Schoenflies proved (independent of J.S. Fiodorow and W. Barlow) the
existence of the complete set of 230 space groups of crystals.

22 These are the same symmetry operations as discussed on p. e23.
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Table C.5. C3v group table of characters.

C3v Ê 3σ̂v 2Ĉ3

A1 1 1 1 z x2 + y2, z2

A2 1 −1 1 Rz
E 2 0 −1 (x, y)(Rx ,Ry ) (x2 − y2, xy)(xz, yz)

first class, the three reflection operations (hence 3σ̂v , before called Â, B̂, Ĉ) corresponding to
the planes that contain the threefold symmetry axis, two rotation operations (hence, 2Ĉ3, called
before D̂ and F̂) about the threefold symmetry axis (by 120◦ and by 240◦, or −120◦, the rotation
by 360◦ is identical to Ê).

In the second and later rows, we have information about the irreducible representations, with
one row for each representation. The number of the irreducible representations is equal to the
number of classes (three in our case); i.e., the table of characters is square. On the left side,
we have the symbol of the representation informing us about its dimension (if the symbol is
A, then the dimension is 1; if it is E, then the dimension is 2; and if T, then it is 3). Thus,
the letter E unfortunately plays a double role in the table: as the identity operation Ê , and as
E, the symbol of an irreducible representation. In a given row (irreducible representation), the
number below the symbol of class is the corresponding character. For the identity operation Ê ,
the corresponding matrices are unit matrices, the calculated character is therefore equal to the
dimension of the irreducible representation.

Of great importance is the simplest representation possible: just all the characters equal to
1 (in our case, A1). It will be called the fully symmetric representation.

Example 11. Decomposition of a Reducible Representation
Let us find how the reducible representation �4 from p. e28 may be decomposed into

the irreducible representations. First of all, we see from Eq. (C.12) that what one needs are
characters rather than the representations themselves. The characters χ

(
�4
)

are calculated
by summing up the diagonals of the matrix representations for the corresponding classes,
χ
(
�4
)

: 3 (class Ê), −1 (class σ̂v), 0 (class Ĉ3). Let us first ask how many times (aA1) the
irreducible representation A1 is encountered in �4. The characters of A1 (Table C.5) are
1, 1, 1 for the corresponding classes. The number of the operations in the classes is respec-
tively nC : 1, 3, 2. From Eq. (C.12), we find a

(
A1
) = 1

6

(
1 · 3 · 1 + 3 · (−1) · 1 + 2 · 0 · 1

) =
0. Similarly, we find a

(
A2
) = 1

6

(
1 · 3 · 1 + 3 · (−1)· (−1

)+ 2 · 0 · 1
) = 1 and a

(
E
) =

1
6

(
1 · 3 · 2 + 3 · (−1) · 0 + 2 · 0 · (−1

)) = 1. Thus, we may write that �4 = A2 + E. This
exercise will be of great help when the selection rules in spectroscopy will be considered.
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Projection Operator on an Irreducible Representation

Soon we will need information on whether a particular function exhibits certain symmetry prop-
erties of the system under consideration. To this end, we will need certain projection operators:

P̂(α) = nα
g

∑
i

χ(α)∗
(

R̂i

)
R̂i (C.13)

represents the projection operator that projects on the space of such functions that transform
according to the irreducible representation �(α).

This means that either P̂(α) f transforms according to the irreducible representation �(α) or
we obtain zero. In order to be a projection operator, P̂(α) has to satisfy23

P̂(α) P̂(β) = δαβ P̂(α). (C.14)

We can also prove that

∑
α

P̂(α) = 1, (C.15)

where the summation goes over all irreducible representations of the group.

23 This means that two functions that transform according to different irreducible representations are orthogonal, and
that a projection of an already projected function changes nothing. Here is the proof. After noting that R̂ Ŝ = Q̂,
or Ŝ = R̂−1 Q̂, we have

P̂(α) P̂(β) = nαnβ
g2

∑
R̂,S

χ(α)∗(R̂)χ(β)∗(Ŝ)R̂ Ŝ

= nαnβ
g2

∑
Q

Q̂
∑
R̂,

χ(α)∗(R̂)χ(β)∗
(

R̂−1 Q̂
)
.

Note, that

χ(β)∗
(

R̂−1 Q̂
)

=
∑

k

�
(β)∗
kk

(
R̂−1 Q̂
)

=
∑

k

∑
l

�
(β)∗
kl

(
R̂−1
)
�
(β)∗
lk (Q̂).

After inserting this result, we have

P̂(α) P̂(β) = nαnβ
g2

∑
Q

Q̂
∑

R̂

∑
m
�
(α)∗
mm (R̂)

∑
k

∑
l

�
(β)∗
kl

(
R̂−1
)
�
(β)∗
lk (Q̂)

= nαnβ
g2

∑
Q

Q̂
∑

R̂

∑
k,l,m

�
(α)∗
mm (R̂)�(β)lk (R̂)�(β)∗lk (Q̂)

= nαnβ
g2

∑
Q

Q̂
∑

k,l,m

�
(β)∗
lk (Q̂)

∑
R̂

[�(α)∗mm (R̂)�(β)lk (R̂)],
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Transformation of a Function According to Irreducible Representation

The right part of the character table such as Table (C.5) contains the symbols x, y, z, (x2−y2, xy)
Rx ,Ry,Rz . These symbols will be needed to establish the selection rules in spectroscopy (UV-
VIS, IR, Raman). They pertain to the coordinate system (the z-axis coincides with the axis of
the highest symmetry). Let us leave the symbols Rx ,Ry,Rz alone for the moment.

We have some polynomials in the rows of the table. The polynomials transform according
to the irreducible representation that corresponds to the row.24 If a polynomial (displayed in a
row of the table of characters) is subject to the projection P̂(α), then the following is true:

• If α does not correspond to the row, then we obtain 0.
• Ifα corresponds to the row, then we obtain either the polynomial itself (if the irreducible rep-

resentation has dimension 1), or, if the dimension of the irreducible representation is greater
than 1, a linear combination of the polynomials given in the same row (in parentheses).

If function f transforms according to a 1-D irreducible representation, the function is an
eigenfunction of all the symmetry operators R̂, with the corresponding eigenvalues χ(α)(R̂).

Let us come back to Rx ,Ry,Rz . Imagine Rx ,Ry,Rz as oriented circles perpendicular to
a rotation axis (i.e., x, y, or z) that symbolize rotations about these axes. For instance, the
operation Ê and the two rotations Ĉ3 leave the circle Rz unchanged, while the operations σ̂v
change its orientation to the opposite one; hence Rz transforms according to the irreducible
representation A2. It turns out that Rx and Ry transform under the symmetry operations into
their linear combinations and therefore correspond to a 2-D irreducible representation (E).

Group Theory and Quantum Mechanics

Representation Basis

If in a molecule we have two equivalent25 nuclei, then this always results from a molecular
symmetry; i.e., at least one symmetry operation exchanges the positions of these two nuclei.

because from the unitary character of the representation matrices�(β)
(

R̂−1
)

and�(β)(R̂), we have�(β)∗kl

(
R̂−1
)

=
�
(β)
lk (R̂). From the group theorem of orthogonality (Eq. (C.5)), we have

P̂(α) P̂(β) = nαnβ
g2

g

nα

∑
Q

Q̂
∑

k,l,m

�
(β)∗
lk (Q̂)δmlδmkδαβ

= δαβ
nα
g

∑
Q

Q̂
∑
m
�
(α)∗
mm (Q̂)

= δαβ
nα
g

∑
Q

χ(α)∗(Q̂)Q̂ = δαβ P̂(α),

which we wanted to show; see Eq. (C.13).
24 Recall the definition of the symmetry operation given on p. e20: R̂ f (r) = f (r), where R̂ f (r) = f (R̂−1r).
25 That is, they are equivalent with respect to physical and chemical properties.
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There is no reason at all that electrons like one of such nuclei more than the other one.26 Let us
focus on molecular orbitals calculated for a fully symmetric Fock operator.27 Therefore,

each molecular orbital has to be such that when making a square of it, the electron density
is the same on the equivalent nuclei.

What will happen, however, with the molecular orbital itself ? Squaring it removes informa-
tion about its sign. The signs at both atoms may be the same (symmetric orbital), but they may
also be opposite28 (antisymmetric orbital). For example, the bonding orbital for the hydrogen
molecule is symmetric with respect to reflection in the plane perpendicular to the internuclear
axis29 and going through its center, while the antibonding orbital is antisymmetric with respect
to the operation.

We know how to apply the symmetry operations on molecular orbitals (p. e20) and trans-
forming them to other functions.

26 This may not be true for non-stationary states. The reason is simple. Imagine a long polymer molecule with two
equivalent atoms at its ends. If one of them is touched by the tip of the tunnel microscope and one electron is
transferred to the polymer, a non-stationary asymmetric electron state is created.

27 Limiting ourselves to molecular orbitals is not essential in this case.
28 This pertains to non-degenerate orbital levels. For a degenerate level, any linear combination of the eigenfunctions

(associated to the same level) is also an eigenfunction as good as those that entered the linear combination. A
symmetry operation acting on an orbital gives another orbital corresponding to the same energy. In such a case,
the squares of both orbitals in general do not exhibit the symmetry of the molecule. However, we can find a linear
combination of both, such that its square preserves the symmetry.

29 Let us see what it really means in a very formal way (it may help us in more complicated cases). The coordinate
system is located in the middle of the internuclear distance (on the x-axis, the internuclei distance equal to 2A).
The bonding orbital ϕ1 = N1(a + b) and the antibonding orbital ϕ2 = N2(a − b), where N are the normalization
constants, the 1s atomic orbitals have the following form:

a ≡ 1√
π

exp
[−|r − A|] = 1√

π
exp

[
−
√(

x − A
)2 + y2 + z2

]
,

b ≡ 1√
π

exp
[−|r + A|] = 1√

π
exp

[
−
√(

x + A
)2 + y2 + z2

]
,

A = (A, 0, 0).

The operator σ̂ of the reflection in the plane x = 0 corresponds to the following unitary transformation matrix of

the coordinates U =
⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠. Therefore, the inverse matrix U−1 =

⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠ ; i.e., the transformation

U−1r means x → −x, y → y, z → z, what transforms a → b and b → a. Hence,

σ̂ (a + b) = (b + a) = (a + b)

σ̂ (a − b) = (b − a) = −(a − b).

In both cases, the molecular orbital represents an eigenfunction of the symmetry operator with the eigenvalue +1
and −1, respectively.
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Under such a symmetry operation, the orbital either remains unchanged (as the abovemen-
tioned bonding one), or changes the sign (as the antibonding one),

or, if the orbital level is degenerate, we may obtain another function. This function corresponds to
the same energy because when applying any symmetry operation, we only exchange equivalent
nuclei, which otherwise are on equal footing in the Hamiltonian.

If we obtain another orbital (ϕ2), then we may begin to play with it by applying all the
symmetry operations. Some operations will lead to the same (new) orbital (sometimes with
the opposite sign) after some other operations, we obtain the old orbital ϕ1 (sometimes with the
opposite sign) and sometimes these operations will lead to the third orbital ϕ3. Then, we apply
the symmetry operations to the third orbital, etc. until a final set of orbitals is obtained, whose
orbitals transform into themselves when subjected to the symmetry operations. The set of such
linearly independent orbitals ϕi , i = 1, . . ., n we may treat as the basis set in a vector space.

All the results of applying the operation R̂i on the orbitals are collected in a transformation

matrix Ri , where ϕ =
⎡
⎣ ϕ1

. . .

ϕn

⎤
⎦:

R̂iϕ = RT
i ϕ. (C.16)

The matrices Ri , i = 1, 2, . . ., g form the n−dimensional representation (in general
reducible) of the symmetry group of the molecule.

Indeed, let us see what happens if we apply the operation T̂ = R̂1R̂2 to the function ϕi :

(R̂1R̂2)ϕi = R̂1RT
2 ϕ = RT

2 R̂1ϕ = RT
2 RT

1 ϕ = (R1R2)
T ϕ.

This means that all the matrices Ri form a representation.

Basis of a Representation
A set of the linearly independent functions ϕi , that served to create the representation forms
a basis of the representation.

The basis need not have been composed of the orbitals; it could be expressions like x, y, z
or x2, y2, z2, xy, xz, yz or any linearly independent functions, provided they transform into
themselves under symmetry operations. We may begin from an atomic orbital, and after applying
the symmetry operations soon will obtain a basis set that contains this orbital and all the other
equivalent ones.
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Decomposition of a Function into Irreducible Representation Components

Let us take a function f belonging to a Hilbert space. Since
∑
α P̂(α) = 1 [see Eq. (C.15)],

where α goes over all the irreducible representations of the group, then f can be written as a
sum of its components f (α), with each component (belonging to the corresponding subspace
of the Hilbert space) transforming according to the irreducible representation α:

f = 1 · f =
∑
α

P̂(α) f =
∑
α

f (α). (C.17)

In view of Eq. (C.14), the components f (α) and f (β) are automatically orthogonal if α �= β.

Example 12. Decomposition of a Function
Let us take three hydrogen atoms in the configuration of equilateral triangle, and assume that

we are in the simplest version of the molecular orbitals in the LCAO MO approximation; i.e.,
the atomic basis set is composed of the three 1s orbitals a, b, and c centered on the three nuclei.
Let us check whether the following functions:

u1 = a + b + c

u2 = b − c

u3 = a − c,

form a basis to a (reducible) representation. If the symmetry operations are applied to a, b, and c,
then they transform into each other (cf. Fig. C.2), and the results obtained are easily shown as
linear combinations of the functions u1, u2, and u3 (with RT

i as transformation matrices). For
example, Âu1 = a + b + c = u1, Âu2 = −b + c = −u2, Âu3 = a − b = −u2 + u3. Hence,

AT =
⎡
⎣1 0 0

0 −1 0
0 −1 1

⎤
⎦ . (C.18)

In this way [see Eq. (C.16)] we obtain Ri as

E =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ ; A =

⎡
⎣1 0 0

0 −1 −1
0 0 1

⎤
⎦ ; B =

⎡
⎣1 0 0

0 1 0
0 −1 −1

⎤
⎦ ; (C.19)

C =
⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦ ; D =

⎡
⎣1 0 0

0 0 1
0 −1 −1

⎤
⎦ ; F =

⎡
⎣1 0 0

0 −1 −1
0 1 0

⎤
⎦ . (C.20)

Let us check that DF = E and AD = B; i.e., exactly as for the operations: D̂ F̂ = Ê, ÂD̂ = B̂,
and so on. Thus, this is a representation–moreover, this is a representation that is already in a
block form because u1 transforms always in itself, while u2 and u3 mix among themselves. It
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can be shown that this mixing cannot be avoided by any choice of u. Hence, u1 alone represents
a basis of a 1-D irreducible representation (A1, which is seen from the characters corresponding
to the first block 1 × 1), while u2 and u3 form a basis of a 2-D irreducible representation (E).
Note that from the mathematical form of the functions u, it follows that u2 and u3 have to
correspond to the same energy and this energy is different from that corresponding to u1. The
conclusion is that a, b, and c form a basis for a reducible representation, while their linear com-
binations u1 and {u2, u3} form the basis sets of two irreducible representations: A1 and E. Any
function that is a linear combination of a, b, and c can be represented as a linear combination
of u1, u2, and u3 as well.

The same symmetry orbitals can be obtained by using the projection operators of Eq. (C.13).
Let us take any one of the functions a, b, or c (the result does not depend on this choice);
e.g., function a. In view of a beautiful equilateral triangle, such a function is no doubt a really
deformed object that does not take care of making the three vortices of the triangle equiva-
lent. Let us see whether such a function has any component that transforms according to the
irreducible representation A1. To this end, let us use the projection operator P̂

(
A1
)

[Eq. (C.13)
and the table of characters on p. e37]: P̂

(
A1
)
a = 1

6

(
a + b + c + a + b + c

) = 1
3

(
a + b + c

)
.

Thus, there is a fully symmetric component30 in a. Now, let us use the same orbital a to
obtain: P̂

(
A2
)
a = 1

6

(
a + b + c − a − b − c

) = 0 . This means that a does not contain
anything that transforms according to A2. Now is the turn of the irreducible representation
E : P̂(E)a = 2

6

(
2a − b − c + 0 · a + 0 · b + 0 · c

) = 1
3

[
2
(
a − c
)− (b − c

)]
. We obtain a

linear combination of u2 and u3.
If the projections were made for the function b, then we would obtain a trivial repeti-

tion31 of the irreducible representations A1 and A2 and a non-trivial result for the irreducible
representation E : P̂(E)b = 2

6

(
2b − a − c + 0 · a + 0 · b + 0 · c

) = 1
3

[
2
(
b − c
)− (a − c

)]
.

This is just another linear combination of u2 and u3. These two functions are therefore insepa-
rable and form a basis for a 2-D irreducible representation.

Decomposition into Irreducible Representations
Any function that is a linear combination of the basis functions of a reducible representation
can be decomposed into a linear combination of the basis functions of those irreducible
representations that form the reducible representation.

30 This sentence carries a simple message: that by mixing symmetric objects, we may obtain an asymmetric one;
e.g., the asymmetric function a + 2b can be represented by a linear combination u1 + u2, with both functions
transforming according to irreducible representation of the symmetry group.

31 P̂
(

A1
)
b = 1

3

(
a + b + c

)
and P̂

(
A2
)
b = 0.
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The Most Important Point

The Most Important Point so Far
The wave functions corresponding to an energy level have the following characteristics:
– They form a basis of an irreducible representation of the symmetry group of the molecule,

or in other words, they transform according to this irreducible representation.
– The dimension of the representation is equal to the degeneracy of the energy level.

This is how it should be, because if a symmetry operation acts on an eigenfunction of the
Hamiltonian, we will have only two possibilities: (1) we obtain the same function to the accuracy
of the sign (which in the case of a 1-D representation is by definition irreducible); (2) another
function corresponding to the same energy (because of the same physical situation). Acting
on the function obtained and repeating the whole procedure we will arrive finally to a set of n
linearly independent functions that correspond to the same energy (a basis of a n-dimensional
irreducible representation).

This means (see Fig. C.4) that

the energy levels may be labeled by tags, each tag corresponds to a single irreducible repre-
sentation. This will be of fundamental importance when the selection rules in spectroscopy
will be considered.

We usually have plenty of the energy levels, while the number of the irreducible representation
is small. Thus, there will be in general a lot of levels with the same labels. This result was first
obtained by Eugene Wigner. The group theory will not tell us about how many levels correspond
to a particular irreducible representation, or what energy they correspond to.

Integrals Important in Spectroscopy

Direct Product of Irreducible Representations

We are approaching the application of group theory in optical transitions in spectroscopy. The
most important issue will be a decision whether an integral is zero or nonzero. If the integral
is zero, then the transition is forbidden, while if it is nonzero, then it is allowed. To make such
a decision, we have to use what is known as the direct product of irreducible representations.
Imagine basis functions {ϕi } and {ψ j } that correspond to irreducible representations α and β of



Group Theory in Spectroscopy e45

Fig. C.4. Each energy level corresponds to an irreducible representation of the symmetry group of the Hamiltonian. Its linearly
independent eigenfunctions that correspond to a given level form a basis of the irreducible representation, or in other words,
transform according to this representation. The number of the basis functions is equal to the degeneracy of the level.

the symmetry group of a molecule. Let us make a set {ϕiψ j } of all possible products of them
(i.e., the Cartesian product).

Direct Product
The products {ϕiψ j } when subject to symmetry operations lead (as usual) to a representa-
tion, we call it the direct product �α × �β of the irreducible representations �α and �β .

The functions {ϕiψ j } form a basis set of the representation (reducible in general). We obtain
the matrices of the representations as usual by applying symmetry operations:

R̂
[
ϕi (r)ψ j (r)

] = ϕi

(
R̂−1r
)
ψ j

(
R̂−1r
)

=
∑

k

U (α)
ik ϕk

∑
l

U (β)
jl ψl =

∑
kl

U (α)
ik U (β)

jl ϕkψl

=
∑

kl

Zi j,klϕkψl,
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where U (γ )

ik are the matrix elements of the irreducible representation γ, Zi j,kl = U (α)
ik U (β)

jl . Of
course,

the dimension of this representation is the product of the dimensions of the representations
α i β, because this is the number of the functions ϕkψl .

The characters of the representation can be easily obtained from the characters of the irre-
ducible ones, just we have to multiply the latter ones:

χ(α×β)(R̂) = χ(α)(R̂)χ(β)(R̂). (C.21)

Indeed, the formula is justified by

χ(R̂) =
∑

kl

Zkl,kl =
∑

kl

U (α)
kk U (β)

ll =
(∑

k

U (α)
kk

)(∑
l

U (β)
ll

)

= χ(α)(R̂)χ(β)(R̂). (C.22)

This rule can be naturally generalized for a larger number of the irreducible representations
in the direct product (just multiply the characters of the irreducible representations). We will
have a product of three irreducible representations shortly.

When Is an Integral Bound to Be Zero?

Everybody knows how to calculate the integral

∫ +1

−1
xdx =

[
x2

2

]+1

−1
= 1

2
− 1

2
= 0.

Note, however, that we can tell what the value of the integral is without calculating, just by
looking at the integrand. Indeed, the integrand is odd with respect to the transformation x → −x ;
i.e., the plot of the integral is an antisymmetric function with respect to the reflection in the
plane perpendicular to x at x = 0. The integration limits are symmetric with respect to that
point. An integral means the surface under the plot; therefore, what we gain for x > 0, we lose
for x < 0, and the integral will be exactly zero.

The force of the group theory relies on the fact that even having a complicated integrand,
we are able to tell immediately whether the integral is equal to zero. This will allow us to
predict whether an optical transition is allowed or forbidden.
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We have to stress that these conclusions will be valid independent of the approximations used
to compute the molecular wave functions. The reason is that they follow from the symmetry,
which is identical for the exact and approximate wave functions.

The previous example can be generalized. Let us take the integral∫
fα fβ fγ · · · dτ, (C.23)

where fα, fβ, fγ , . . . transform according the irreducible representations �(α), �(β), �(γ ), . . .,
respectively, of a symmetry group, and the integration is over the whole space.

When does the Integral Equal Zero?
If a representation (which in general is reducible), being the direct product of the irreducible
representations �(α), �(β), �(γ ) . . ., does not contain the fully symmetric representation
(that one with all its characters equal 1), then the integral equals zero.

We have been working so hard with symmetry groups, operations, characters, etc. This result
is precisely what we wanted to accomplish in this appendix. The essence of the theorem is very
simple. The product fα fβ fγ . . . transforms according to the (in general reducible) represen-
tation, which is the direct product of the irreducible representations �(α), �(β), �(γ ) . . .. This
means that according to Eq. (C.17), the integrand fα fβ fγ . . . can be represented as a linear
combination of the basis functions of all the irreducible representations: fα fβ fγ . . . =∑μ gμ,

where gμ transforms according to the irreducible representation �(μ) . Therefore, the integral
[Eq. (C.23)] is a sum of the integrals∫

fα fβ fγ . . .dτ =
∑
μ

∫
gμ dτ, (C.24)

each with the integrand transforming to an irreducible representation �(μ). Let us take one of
these integrals:

∫
gμ dτ . Note that the integration is over the whole space (i.e., the integration

limits are symmetric). If the integrand gμ were antisymmetric with respect to one or more
symmetry operations, the integral would automatically equal zero (the same argument as for∫

xdx). From this, it follows that all integrals in the sum would be zero except that single one
that contains the integrand transforming according to the fully symmetric representation.32

There are two special cases of this theorem that are important to this discussion.

32 Only for the fully symmetric representation are all the characters equal to 1, and therefore the corresponding
function does not change under symmetry operations.



e48 Appendix C

Two Special Cases

∫
fα fβdτ = δαβ A; i.e., in order to have the integral not vanish, we have to have

�(α) = �(β).

The proof is very simple and relies on the fact that the characters of the fully symmetric
irreducible representation equal 1. We can calculate the number of times, a(A), that the fully
symmetric representation A is present in the direct product �(α) × �(β) from the following
formula:

a(A) = 1

g

∑
i

χ(α×β)(R̂i )χ
(A)(R̂i )

∗

= 1

g

∑
i

χ(α×β)(R̂i ) = 1

g

∑
i

χ(α)(R̂i )χ
(β)(R̂i )

∗ = δαβ. (C.25)

This means that the fully symmetric representation is always present in�(α)×�(α), and therefore
the integral does not vanish.33

Let us take the integral ∫
fαfβfγ dτ, (C.26)

where fα, fβ, fγ transform according to the irreducible representations α, β, γ . In order
to have the non-vanishing integral, the direct product �(α) × �(β) must contain the repre-
sentation �(γ ).

This means that in order to have Eq. (C.26) not vanish, the function fα fβ decomposes
[Eq. (C.17)] in such a way that there is a nonzero component belonging to �(γ ). If this happens,
according to the previous case, a component of the integrand will transform according to the
fully symmetric representation, what will keep the expression (C.26) from vanishing.

Selection Rules for Electronic Transitions (UV-VIS)

The selection rules will be shown taking an example of pyrazine and its monoprotonated- and
diprotonated ions (Fig. C.5).

33 It is easy to understand. What transforms according to �(α) × �(α) is a product of two (in general different)
functions, each belonging to �(α). This means that the function behaves in a very special way (typical for �(α))
under the symmetry operations (e.g., changes sign under R̂1), while other operations leave it unchanged. If we
have a product of two such functions, then this means that the product does not change at all under R̂1 (and, of
course, the other operations); i.e., transforms according to the fully symmetric operation. This is why the fully
symmetric representation is always present in �(α) × �(α).
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(a) (b)

(c)

Fig. C.5. The pyrazine (a) and its monoprotonated- (b) and diprotonated (c) derivatives. The x-axis is perpendicular to the ring
plane, the y-axis is in the ring plane perpendicular to the NN axis, and the z-axis means the NN axis.

A glimpse on the chemical formulas is sufficient to tell, that the monocation of the pyrazine
has the same symmetry as H2O that corresponds to the symmetry group C2v (see Table C.4),
while the pyrazine and its diprotonated derivative have the symmetry identical with that of the
naphthalene; i.e., D2h . Let us focus first on the last case.

Example 13. Pyrazine and Its Diprotonated Derivative
Every book on group theory contains the table of characters of the symmetry group D2h (see

Table C.6; the x-axis perpendicular to the plane of the molecule, and z goes through the nitrogen
atoms).

From Table C.6, we see34 that what we call irreducible representations represent distinct
rhythms of pluses and minuses, which after making the square, give the fully symmetric behavior.

34 Note that all the irreducible representations of the symmetry group of the molecules under consideration are 1-D,
so their energy levels are non-degenerate.
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Table C.6. D2h group table of characters.

D2h Ê Ĉ2(z) Ĉ2(y) Ĉ2(x) ı̂ σ̂ (xy) σ̂ (xz) σ̂ (yz)

Ag 1 1 1 1 1 1 1 1 x2, y2, z2

B1g 1 1 −1 −1 1 1 −1 −1 Rz xy
B2g 1 −1 1 −1 1 −1 1 −1 Ry xz
B3g 1 −1 −1 1 1 −1 −1 1 Rx yz
Au 1 1 1 1 −1 −1 −1 −1
B1u 1 1 −1 −1 −1 −1 1 1 z
B2u 1 −1 1 −1 −1 1 −1 1 y
B3u 1 −1 −1 1 −1 1 1 −1 x

All the electronic states of the pyrazine and its diprotonated derivative can be labeled by the
irreducible representation labels: Ag,B1g,B2g,B3g,Au,B1u,B2u,B3u .

We may ask at this point, what are the selection rules for the state-to-state optical transitions?
Are all the transitions allowed, or are some of them forbidden? From the theory of the electro-
magnetic field (cf. Chapters 2 and 12), it follows that the probability of the transition between
the states k and l is proportional to |μkl(x)|2, to |μkl(y)|2, or to |μkl(z)|2, respectively,35 with

μkl(x) =
∫
ψ∗

k μ̂xψldτ

μkl(y) =
∫
ψ∗

k μ̂yψldτ

μkl(z) =
∫
ψ∗

k μ̂zψldτ,

(C.27)

where ψ stand for the electronic states k and l; μ̂x , μ̂y, μ̂z are the operators of the molecular
dipole moment components36 (e.g., μ̂z =∑i qi zi ); and, qi is the electric charge of the particle
(electron or nucleus) having its z component equal to zi . Since we will decide, by using group
theory, whether this integral37 vanishes or not, what will count is that μx transforms exactly the
same way that the coordinate x does. The integrand ψ∗

k μ̂xψl transforms as the direct product
of the three irreducible representations: that of ψk , that of μ̂x and that of ψl .

35 Depending on the electromagnetic wave polarization along axes x or y or z axes. From the equality |μkl (x)|2 =
|μlk(x)|2, and similarly for y and z, it follows that the optical excitation and the corresponding deexcitation have
the same probability.

36 This may look alarming because the operator depends on the choice of the coordinate system (cf. see Appendix
X available at booksite.elsevier.com/978-0-444-59436-5). Do not worry, though–everything is all right. Even if
the dipole moment depends on such a choice, any two choices give the dipole moments that differ by a constant
vector. This vector, being a constant, can be shifted outside the integral and the integral itself will become zero,
because ψk and ψl are orthogonal. Thus, to our delight, light absorption does not depend on the choice of the
coordinate system.

37 The integration goes over all the electronic coordinates.

http://booksite.elsevier.com/978-0-444-59436-5
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Excitations from the Ground State

Suppose we do the following:

• Have a molecule in its ground state ψk (thus, belonging to the fully symmetric irreducible
representation Ag)

• Immobilize the molecule in space (say, in crystal),
• Introduce the coordinate system in the way described above,
• Irradiate the molecule with a light polarized along the x-axis

Then, we ask to which states the molecule can be excited. The direct product of Ag and the
irreducible representation to which x belongs decomposes into some irreducible representations.
For the allowed optical transition, we have to find among them the irreducible representation
to which ψl belongs (just recall that

∫
fα fβ dτ = δαβ A). Only then will the integrand contain

something that has a chance to be transformed according to the fully symmetric representation.
The x-coordinate belongs to the representation B3u (see the last column of Table C.6). Therefore,
let us see what represents the direct product Ag × B3u . We have Eq. (C.12) for the integer a(α)
that is a number of the irreducible representations α in a given reducible representation. Let us
compute this number for the (in general reducible) representation being the direct product and
all the irreducible representations α. In this particular case, the direct product is38 Ag × B3u .
We have

a(Ag) = 1

8
[1 × 1 + 1 × (−1)+ 1 × (−1)+ 1 × 1 + 1 × (−1)+ 1 × 1

+ 1 × 1 + 1 × (−1)] = 0

a(B1g) = 1

8
[1 × 1 + 1 × (−1)+ (−1)× (−1)+ (−1)× 1

+ 1 × (−1)+ 1 × 1 + (−1)× 1

+ (−1)× (−1)] = 0

etc., all equaling zero, and finally

a(B3u) = 1

8
(1 × 1 + (−1)× (−1)+ (−1)× (−1)+ 1 × 1 + (−1)× (−1)+ 1 × 1

+ 1 × 1 + (−1)× (−1)] = 1,

38 The characters of Ag × B3u are as follows (in the order of the symmetry operations in the table of characters):
1 −1 −1 1 −1 1 1 −1;
i.e., they are identical to those of the (it turned out …irreducible) representation B3u . Such a product is a 100
percent banality to make. Just in the table of characters, one finger goes horizontally over the characters of Ag
(all they are equal to . . .1), while the second finger moves similarly over the characters of B3u ; and we multiply
what the first finger shows by that, which indicates the second one. The result is the character of the direct product
Ag × B3u , which in this case turns out to be exactly the character of B3u . This is why we may expect that a(α)
will all be zero except a(B3u) = 1.
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exactly as we have expected. Thus, we can write39

Ag × B3u = B3u .

Now only those ψl are allowed in optical transitions (from the ground state Ag) that are
labeled by B3u , because only the direct product B3u × B3u may contain the fully symmetric
irreducible representation Ag. Thus, the transitions Ag ⇒ B3u as well as B3u ⇒ Ag are allowed,
if the light is polarized along x ; i.e., perpendicularly to the ring of the molecule.

Now, let us take the light polarized along y; i.e., within the molecular plane, perpendicularly
to the N-N line. This time, we are interested in the irreducible representations that arise from
Ag × B2u , because y transforms according to B2u . Very similar to before [by analyzing a(α)],
we find that

Ag × B2u = B2u .

This means that now the allowed states are of the B2u type.
Similarly, for the polarization along z(z belongs to B1u), i.e., along the nitrogen-nitrogen

direction, we have
Ag × B1u = B1u .

Thus, for polarization parallel to the NN axis of the molecule, the absorption may occur from
the ground state to any state of the B1u type (and vice versa).

Nothing more can be said when basing solely on the group theory. One will not get any
information about the energies of the transitions, as well as about the corresponding intensities.
In order to get this additional (and important) information, we have to take pains and work
hard to solve the Schrödinger equation, rather than count on some easy profits obtained by
primitive multiplication of integers (as in the group theory). To obtain the intensities, we have to
calculate the transition moment integralsμkl . However, the group theory, just by excluding from
the spectrum a lot of transitions (forbidden ones), provides a lot of important information on
the symmetry of the molecule. Table C.7 collects the calculated light frequencies40 (ν̄ in wave
numbers, or cm−1, ν = cν̄, where ν is the usual frequency), the so-called oscillator strengths
fkl (in a.u.) are as follows:

fkl = 4πc

3
ν|μkl |2, (C.28)

as well as the polarization of light for excitations from the electronic ground state for the
pyrazine and the pyrazine monocation. It is seen that the left side of Table C.7 is consistent
with the selection rules derived above. Indeed, a large fkl corresponds only to those transitions
from the ground state of the pyrazine that have been predicted as allowed (B1u,B2u and B3u).
Also the predicted polarization agrees with the observed ones.

39 We may say that the fully symmetric representation plays a role of unity in the multiplication of irreducible
representations.

40 J. Koput, unpublished results.
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Table C.7. Wave numbers (ν̄, in cm−1), oscillator strengths ( fkl ) and light polarization (in parentheses).

Pyrazine Pyrazine Monocation

Excited State ν̄ fkl Excited State ν̄ fkl

B3u 28960 0.015(x) B1 27440 0.007(x)
B2u 36890 0.194(y) B2 34130 0.280(y)
B2g 38890 0.0 A2 45100 0.0
Au 41710 0.0 A1 49720 0.126(z)
B1u 49800 0.183(z) B1 57380 0.012(x)
B1g 57070 0.0 A2 57710 0.0
B1u 57420 0.426(z) A1 58210 0.625(z)
Au 60170 0.0 A2 59830 0.0
B2g 60970 0.0 B2 60370 0.010(y)

Excitations from an Excited State

Calculations for the absorption from the ground state were particularly simple. Now, let us see
whether anything will be more complicated for the transitions from an excited state of the B2g

type of symmetry. We are going to calculate a(α) (for every α) for the following representations:

for polarization along x : B2g × B3u

for polarization along y: B2g × B2u

for polarization along z: B2g × B1u .

The characters of the representation B2g × B3u are the following (Table C.6, the first finger
goes along B2g, the second – along B3u , etc.)

1 −1 −1 −1 −1 1 1

and are identical with the characters of B1u . Hence, even without any calculation of a(α), we
have B2g ×B3u = B1u . Thus, the transitions (for the polarization along x) are allowed only to the
states labeled by B1u , because otherwise there is no chance to obtain a fully symmetric integrand.
Similarly, by multiplying B2g and B2u , we obtain the following characters of B2g × B2u :

1 1 1 1 −1 −1 −1 −1

and this is identical to the characters of Au , so B2g × B2u = Au . If the polarization of the light
is along y, then the only excitations (or deexcitations) possible are to the states belonging to Au .
Finally, for the polarization along z, we find the characters of B2g × B1u :

1 −1 −1 1 −1 1 1 −1

that turn out to be those of B3u . This means that B2g × B1u = B3u and that the transitions are
possible only to the states belonging to B3u .
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Table C.8. C2v group characters.

C2v E C2 σv(xz) σv(yz)

A1 1 1 1 1 z x2, y2, z2

A2 1 1 −1 −1 Rz xy
B1 1 −1 1 −1 x, Ry xz
B2 1 −1 −1 1 y, Rx yz

Example 14. Pyrazine Monocation
As to the selection rules, nothing was said so far about the pyrazine monocation. We will

be interested in excitations from the electronic ground state (as in Table C.7). The pyrazine
monocation corresponds to the symmetry group C2v (shown in Table C.8).

The ground state belongs to the fully symmetric irreducible representation A1. Since (as
before) we begin by excitations from the ground state, then let us see which irreducible rep-
resentations arise from A1 × B1 (for the x polarization of light, see Table C.8; x transforms
according to B1), A1 × B2 (for the y polarization) and A1 × A1 (for the z polarization). We
calculate the characters of A1 × B1 by multiplying 1 by

1 −1 1 −1,

and checking in Table C.8 that these correspond to B1 (it has to be like that because the characters
of A1 all equal 1); i.e., A1 × B1 = B1. Similarly, even without immediate checking, we see
that A1 × B2 = B2 and A1 × A1 = A1. In this way, the following allowed transitions from the
ground state (A1) have been predicted:

for polarization along x : A1 → B1;
for polarization along y: A1 → B2;
for polarization along z: A1 → A1.

Now we are able to compare the spectrum for the pyrazine and for its monocation, as shown
in Table C.7. Attaching a proton to the pyrazine (creating its monocation) does not look like
something that would ruin the UV-VIS spectrum. We might expect that the frequencies of the
bands, and even their intensities, should be somehow similar in both molecules. As we can
see from the Table C.7, the frequencies are similar indeed, although in the middle of the table,
the deviations are quite significant. For both molecules, there are forbidden ( fkl = 0) and
allowed ( fkl �= 0) transitions. Note that what is allowed for the pyrazine is also allowed for
its cation; the light polarization coincides; and even the values of fkl are similar (we took into
account that the transition to B1u in pyrazine with the frequency 49800 cm−1 corresponds to the
transition to A1 in the monocation with the frequency 49720 cm−1). In the monocation, there
are some additional transitions allowed: to B1 and to B2g. This is quite understandable because
the number of symmetry operations for the monocation is smaller, and forbidding results from
molecular symmetry. If a molecule had no symmetry operations at all (except of course the
identity symmetry), all transitions would be allowed.
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Thus, with practically no effort, we find the selection rules in UV-VIS for any molecule we
want.

Selection Rules in IR and Raman Spectra

The selection rules derived above pertained to electronic transitions, where the positions of
the nuclei were fixed in space. Now a change of the vibrational states of the molecule will be
considered, while the electronic state is assumed to be unchanged. The vibrations of a molecule
are related to its vibrational levels (each of them corresponding to an irreducible representation)
and the corresponding vibrational wave functions, and the IR spectrum results from transitions
between such levels. Fig. C.6 shows the energy levels of three normal modes.

In the harmonic approximation, the problem of small amplitude vibrations (discussed in
Chapters 6 and 7) reduces to the 3N − 6 normal modes (N is the number of atoms in the
molecule). Each of the normal modes may be treated as an independent harmonic oscillator. A
normal mode moves all the atoms with a certain frequency about their equilibrium positions

Fig. C.6. Small amplitude harmonic vibrations of a molecule (N atoms) are described by 3N −6 independent harmonic oscillators
(normal modes). Each normal mode is characterized by an irreducible representation. A scheme of the vibrational energy levels
of three normal modes corresponding to the irreducible representations �1, �2, �3. The modes have different frequencies, so the
interlevel separations are different for all of them (but equal for a given mode due to the harmonic potential). On the right side, all
these levels are shown together.
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in a concerted motion (the same phase). The relative deviations (i.e., the ratios of the ampli-
tudes) of the vibrating atoms from the equilibrium are characteristic for the mode, while the
deviation itself is obtained from them by multiplication by the corresponding normal mode
coordinate Q ∈ (−∞,∞). The value Q = 0 corresponds to the equilibrium positions of all
the atoms, Q and −Q correspond to two opposite deviations of any atom from its equilibrium
position.

Each normal mode belongs to an irreducible representation of the symmetry group of the
molecule. What does it really mean? In any mode, the displacements of the equivalent atoms
from the equilibrium have the same absolute value, although they may differ by sign.

We assume that small atomic deviations satisfy the symmetry requirements of the sym-
metry group the molecule (valid for all atoms in the equilibrium positions) and transform
according to the irreducible representation, to which the normal mode belongs. Squaring
the deviations destroys information about their signs; i.e., the absolute values of the devi-
ations of the equivalent atoms are the same. This means that the squares of deviations
transform according to the fully symmetric representation of the group.

To establish the vibrational selection rules let us define first the vibrational states of 3N − 6
harmonic oscillators (normal modes). The ground state of the system is no doubt the state, in
which every normal mode i is in its ground state, ψi,0. The ground-state wave function of the
i th normal mode reads as (p. 186)

ψi,0 = N0 exp (−ai Q2
i ), (C.29)

where ai > 0 is a constant, and Qi is the normal mode coordinate. Whatever this normal mode
is, the wave function contains the square of Qi ; i.e., the sign of the deviations of the equivalent
atoms is irrelevant.

The squares of the deviations and therefore functionψi,0 itself transform independently of i .

Let us denote this fully symmetric irreducible representation by A1. The wave function of
the first excited state of a normal mode has the form

ψi,1 = N1 Qi exp (−ai Q2
i ), (C.30)

and we see that ψi,1 transforms exactly as the coordinate Qi does; i.e., according to that irre-
ducible representation to which the normal mode belongs (because Q2

i in the exponent and
therefore the exponent itself both belong to the fully symmetric representation). In the har-
monic approximation, the total vibrational wave function of the system of 3N − 6 normal (i.e.,
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independent) oscillators can be written as

ψosc
0 = ψ1,0ψ2,0ψ3,0 . . . ψ3N−6,0, (C.31)

the zeros in the indices mean that all the modes are in their ground states. This means that ψosc
0

transforms according to the representation being the direct product A1 ×A1 ×A1 ×· · · A1 = A1

(a banality, all the characters of A1 are equal 1). Now, let us focus on the excited states of the
3N − 6 vibrational modes. The excited states may be quite complex, but the most important
(and the simplest) ones are those with all the normal modes in their ground states except a
single mode that is in its first excited state. A transition from the many-oscillator ground state
to such an excited state is called a fundamental transition. The intensities of the fundamental
transitions are at least by one order of magnitude larger than others. This is why we will focus
on the selection rules for such transitions. Let us take one of these singly excited states (with
the first mode excited):

ψosc
1 = ψ1,1ψ2,0ψ3,0 . . . ψ3N−6,0. (C.32)

The function ψ1,1 corresponding to the first excited state transforms according to the irre-
ducible representation�, to which the normal mode 1 belongs. Thus,ψosc

1 transforms according
to �×A1 ×A1 ×A1 ×· · · A1 = �; i.e., it belongs to the same irreducible representation asψ1,1

does. Of course, if the only excited mode were the i th one, then the many-oscillator wavefunc-
tion would belong to the same irreducible representation as the wavefunction of the particular
oscillator does. We will need this result soon.

IR Selection Rules

Let us consider a molecule having a fixed position in a Cartesian coordinate system. To excite
the molecule, the IR light (because the separation of the vibrational levels corresponds to the
infrared region) is used that is polarized along the x-axis. The electromagnetic theory says that
what decides the intensity of the absorption is the square of the transition integral41

∫
ψosc

0 μ̂xψ
osc
1 dτ, (C.33)

where μ̂x stands for the dipole moment component x . The selection rules mean to establish
which integrals of that kind will be zero for symmetry reasons. To this end, what we need is
information about the irreducible representations to whichψosc

0 , μ̂x , ψ
osc
1 belong.42 Sinceψosc

0
transforms according to A1, the integral to survive the function ψosc

1 has to belong to the same
irreducible representation as μ̂x (and therefore x itself). It was shown that ψosc

1 belongs to the
same irreducible representation to which the normal mode 1 belongs. In other words, the rule
is as follows:
41 The integration goes over the coordinates of the nuclei.
42 We are going to analyze the direct product of these three representations. If it contains the fully symmetric

representation, then the integral is not zero.
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Selection Rule in IR
the transition from the ground state is allowed for those normal modes that transform as
x , where x is the direction of the light polarization. It also will be similar for the light
polarization along y and z.

Raman Selection Rules

The physics of the Raman spectra43 is different: rather than direct absorption, this is a light
scattering (in the UV-VIS region) on molecules. It turns out that besides the light the source is
emitting, we detect also quanta of the energy lower or higher by hν, where ν is a vibrational
frequency of the molecule. For the Raman scattering to be nonzero, at least one of the following
integrals should be nonzero: ∫

ψosc
0 α̂qq ′ψosc

1 dτ, (C.34)

where α̂qq ′ with q, q ′ = x, y, z is a component of the polarizability tensor, that transforms
as one of the following [cf., Eq. (12.42), p. 744]: qq ′ = x2, y2, z2, xy, xz, yz or their linear
combinations (this information is available in the tables of characters). An identical reasoning
as before leads to the conclusion that

the normal mode excited in a fundamental transition has to belong to the same irreducible
representation as the product qq ′.

It remains to be seen to which irreducible representations the normal modes belong. The
procedure consists of two stages.

Stage 1. The global Cartesian coordinate system is chosen. In this system, we draw the equilib-
rium configuration of the molecule, with the atoms numbered. On each atom, a local Cartesian
coordinate system is located with the axes parallel to those of the global one. For each atom
we draw the arrows of its displacements along x, y and z oriented toward the positive values
(3N displacements all together), assuming that the displacements of equivalent atoms have
to be the same. When symmetry operations are applied, these displacements transform into
themselves44 and therefore form a basis set of a (reducible) representation � of the symmetry

43 Chandrasekhar Venkata Raman (1888–1970), was an Indian physicist and professor at the University of Calcutta
and at the Indian Scientific Institute in Bangalore. Raman discovered in 1928 light scattering that has been
accompanied by a change of frequency (by frequency of molecular vibrations). In 1930, Raman received the
Nobel Prize “for his work on the scattering of light and for the discovery of the effect named after him.”

44 For example, a displacement of an atom along x under a symmetry operation turns out to be a displacement of
another atom.
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Fig. C.7. The carbonate anion CO2−
3 , the coordinate system used, and the versors describing the displacements of the atoms.

group of the molecule (in its equilibrium position). This representation will be decomposed
into the irreducible representations.
Stage 2. The reducible representation describes the genuine (internal) vibrations as well as
the six apparent vibrations (three translations and three rotations). The apparent vibrations
can be easily eliminated by throwing away (from the total reducible representation) those
irreducible representations that correspond to x, y, z (translations) and Rx ,Ry,Rz (rotations).
What the latter ones are, we know from the corresponding table of characters. To summarize,
the abovementioned reducible representation has to be decomposed into the irreducible ones.
The decomposition yields � = a(�1)�1 + a(�2)�2 + a(�3)�3. . . From this decomposition, we
have to subtract (in order to eliminate the apparent vibrations) all the irreducible representations
the x, y, z,Rx ,Ry and Rz belong to.

After the two stages, we are left with a number of the irreducible representations that pertain
to the genuine vibrations.45 Only after that can we establish the vibrational selection rules
according to the same procedure that has been used before. All this will be shown in a simple
example of the carbonate anion CO2−

3 that in its equilibrium configuration corresponds to the
D3h symmetry group (see Fig. C.7).

Example 15. IR and Raman Spectra of the Carbonate Anion
In order to decompose a reducible representation into the irrreducible representations, we

do not need the reducible representation be given in details. It is sufficient to know its char-
acters (p. e35). These characters are easy to deduce just by considering what happens to the
displacement vectors along xi , yi , and zi (for atom i) under all the symmetry operations. What

45 These are internal motions. Note that some of these genuine vibrations may correspond to rotations of the functional
groups in the molecule.
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will simplify greatly our task is that only the diagonal elements of the matrices of the reducible
representation contribute to the characters. This is how it looks in practice.

Class The character of the corresponding matrix

E χ(E) = 12
Justification: Each versor transforms into itself. Hence, each diagonal element equals 1, and the
number of them equals 3 times the number of atoms = 12.

2C3 χ(C3) = 0
Justification: 0 from the oxygens, because they transform into other oxygens. For the carbon:
+1(from z4)+ cos 120◦(from x4)+ cos 120◦(from y4) = 0.

3C2 χ(C2) = −2
Justification: It is sufficient to consider only one of the operations of the class; other ones will have
the same character. Let us take the rotation about the C2 axis going through O1 and C. Then the
only versors that transform into themselves (eventually changing sign, then the contribution to
the character is −1) are those related to O1 and C. We have
χ(C2) = −1(from z4)+(−1)(from z1)−1(from x1)−1(from x4)+1(from y1)+1(from y4) = −2.

σh χ(σh) = 4
Justification: The contribution from each atom will be the same; i.e., χ will be equal to 4 times the
contribution from a single atom, the latter one equals −1(from z)+ 1(from x)+ 1(from y) = 1.

2S3 χ(S3) = −2
Justification: Only C gives a contribution, which is equal to
−1(from z4)− 1

2 (from x4)− 1
2 (from y4) = −2.

3σv χ(σv) = 2
Justification: Let us take only a single operation from the class–this one, which represents the
reflection in the plane going through O1 and C4. Then the contributions to χ are the same for
both these atoms, and one of them gives −1(from x)+ 1(from z)+ 1(from y) = 1.

Thus, the characters of the reducible representation have been found. In order to decompose
the representation, we have to know the table of characters for the D3h symmetry group, shown
in Table C.9.

Let us write down (in the same order as in Table C.9) the characters of the reducible repre-
sentation just found:

12 0 − 2 4 − 2 2.

Now, let us find (p. e35), how many times [a(α)] the irreducible representation α is present
in the reducible representation (a sum over classes: the number of operations in the class × the
calculated character × the character of the irreducible representation):

a(A′
1) = 1

12
[1×12×1+2×0×1+3× (−2)×1+1×4×1+2× (−2)×1+3×2×1] = 1

Similarly, we find (knowing only how to multiply such numbers as 1, 2, 3) that

a(A′
2) = 1, a(E′) = 3, a(A′′

1) = 0, a(A′′
2) = 2, a(E′′) = 1.

This means that the reducible representation in question decomposes into

� = A′
1 + A′

2 + 3E′ + 2A′′
2 + E′′. (C.35)
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Table C.9. Characters of the irreducible representations of the symmetry group D3h .

D3h Ê 2Ĉ3 3Ĉ2 σ̂h 2Ŝ3 3σ̂v

A′
1 1 1 1 1 1 1 x2 + y2, z2

A′
2 1 1 −1 1 1 −1 Rz

E′ 2 −1 0 2 −1 0 x, y x2 − y2, xy

A′′
1 1 1 1 −1 −1 −1

A′′
2 1 1 −1 −1 −1 1 z

E′′ 2 −1 0 −2 1 0 Rx , Ry xz, yz

From the table of characters, we see that the apparent vibrations (see the irreducible represen-
tations corresponding to x, y, z, Rx , Ry, and Rz) belong to A′′

2,E′,A′
2,E′′. After subtracting

them from�, we obtain the irreducible representations that correspond to the genuine vibrations:

A′
1,A′′

2, 2E′;

i.e., one vibration of symmetry A′
1 (and a certain frequency ν1), two vibrations (each doubly

degenerate) of symmetry E′ (they differ by frequency, ν3 �= ν4), and one vibration of A′′
2

symmetry (corresponding to frequency ν2).

Selection Rules for IR Spectra:
Therefore, we expect the following selection rules for the fundamental transitions in the
IR spectrum for the CO2−

3 anion:

• x and y belong to representation E′, so frequencies ν3 and ν4 are active in IR.
• z belongs to representation A′′

2, so frequency ν2 is active in IR.

Selection Rules for Raman Spectra
For the Raman spectra, we expect the following selection rules. Vibrations with the fol-
lowing frequency will be active:

• ν1, because x2 + y2 and z2 belong to A′
1

• ν3 and ν4, because x2 − y2 and xy belong to E′,
while the vibration of the frequency ν2 will be inactive in the Raman spectroscopy because
none of the polarizability components (symbolized by x2, y2, etc.) belongs to A′′

2.

The results are collected in Table C.10 (sign “+” = active vibration, sign “–” = inactive
vibration, the polarization of the light is shown in parentheses).
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Table C.10. Transitions in CO2−
3 that are active (+) in the IR and in the Raman spectra.

Representation ν IR (Polarization) Raman

A′
1 ν1 − +

A′′
2 ν2 + (z) −

E′ ν3 + (circular) +
E′ ν4 + (circular) +

As seen from Table C.10, in the case of the carbonate anion, the vibration ν1 is inactive in
IR, but active in the Raman spectroscopy, while the opposite is true for ν2. The vibrations with
the frequencies ν3 and ν4 are active both in IR and Raman spectra.

Exclusion Rule
If the molecule under study has the center of symmetry, then the exclusion rule is valid;
i.e., the vibrations that are active in IR are inactive in the Raman spectrum, and vice versa.

This follows from the fact that in that case, x, y, and z belong to different irreducible
representations than x2, y2, z2, xy, xz, and yz. Indeed, the x, y, and z are antisymmetric with
respect to the inversion operation, whereas x2, y2, z2, xy, xz, yz, or their combinations are
symmetric with respect to inversion. This guarantees that they belong to different irreducible
representations for a molecule, with the center of inversion the vibrations active in IR are inactive
in Raman spectra and vice versa.

When the Selection Rules Fail?

When deriving the selection rules, the following assumptions have been made:

• The molecule is isolated.
• Elements are represented by the same isotope.
• The molecule is in a stationary state.
• The vibrations have small amplitudes.
• The vibrations are harmonic.
• The electromagnetic field interacts with the molecule only through the electric field–

molecule interaction.
• In the interaction of the molecule with the electromagnetic field, only the dipole transitions

are involved.46

46 That is, the electric field of the electromagnetic wave within the molecule is assumed to be uniform. Then, the only
term in the Hamiltonian related to the light-molecule interaction is −μ̂E , where μ̂ stands for the dipole moment
operator of the molecule and E is the electric field intensity.
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However, in practice, the molecule is never isolated. In particular, the interactions it undergoes
in liquid or solid state are sufficiently strong to deform the molecule. As a result, we have to deal
with a population of molecules (especially in a liquid), each in a different geometry, which are
usually devoid of any particular symmetry (for a single molecule, this means a non-stationary
state), although the molecule is not far from the perfect symmetry (“broken symmetry”).

Suppose that the molecule under consideration is indeed isolated. In a substance, we have
usually several isotopomers, with different distributions of the isotopes in the molecules. In
most cases, this also means a broken symmetry. A broken symmetry means that the selection
rules in principle are not applicable.

In practice, a broken symmetry means that the selection rules cause only a small intensity
of the forbidden transitions with respect to the allowed ones.

When considering electronic transitions, we assumed that the molecule stays in its equilibrium
geometry, often with high symmetry. This may be the most probable configuration,47 but the
vibrations and rotations deform it. An electronic excitation is fast and usually undergoes a
molecular geometry that differs slightly from the most probable and most symmetric one. This
will cause a transition that is forbidden for the perfectly symmetric geometry, to have a non-
negligible intensity.

Deriving the selection rules for the IR and Raman spectra, we assumed that the equivalent
atoms can differ only by the sign of the deviation from the equilibrium position, but its absolute
value is the same. This is how it would be for a harmonic oscillator. An anharmonicity introduces,
therefore, another reason why a (harmonically) forbidden transition will have a non-negligible
intensity.

The electromagnetic field has its electric and magnetic components. The selection rules
that we have derived did not take into account the presence of the magnetic field. Taking into
account the magnetic field introduces some additional selection rules. Also, the wavelength
of an electromagnetic wave in the UV-VIS region is of the order of thousands of angstroms,
whereas the length of the molecule is usually of the order of a few angstroms. This means that
the assumption that the electric field of the electromagnetic wave is uniform looks good, but the
field is not perfectly uniform. The deviations will be small but nonzero. Taking this into account
by including further terms besides −μ̂E , we obtain the interaction of the electric field gradient
with the quadrupole moment of the molecule, as well as further terms. This also weakens the
selection rules found.

47 The maximum of the ground-state probability density for the harmonic oscillator corresponds indeed just to the
equilibrium geometry. This is why the selection rules work at all (although in an approximate way).
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Despite these complications, the group theory allows for understanding the basic features of
the molecular spectra. It works sometimes even if the molecule under study has no symmetry
at all because of a substituent that breaks it. Some electronic or vibrational excitations are of
a local spatial character and pertain to a portion of the molecule that is (nearly) symmetric.
Due to that, some optical transitions that are allowed, because the molecule as a whole does
not have any symmetry,48 will still have a very low intensity.

48 But they would be forbidden if the portion in question represented a separate molecule and were symmetric.
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