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Arthur Cayley 1821-1895

Distinguished student at Cambridge. Graduated 1842. Barrister in
London 1849-1863. Sadleirian Professor of Pure Mathematics at
Cambridge 1863. Collected works in 13 volumes contain over 900
papers, including . . .
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The First Paper on Abstract Group Theory

ON THE THEORY OF GROUPS, AS DEPENDING UPON THE SYMBOLIC

EQUATION θn = 1

Arthur Cayley

Philosophical Magazine, VOL. VII (1854)
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Cayley’s Definition of an Abstract Finite Group
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Cayley’s Definition of a Group

Notes and hidden assumptions

“product” refers to the result of some operation, which need
not be multiplication

The set is understood to be finite.

Cayley is saying for any symbols (=elements) x, y in the set, x y
is also in the set. We call that closure.

1 is meant to be an identity for the operation, meaning
1y = y = y1 for any element y .
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Cayley’s Definition of a Group

Notes and hidden assumptions (continued)

In the preamble, Cayley makes it clear that the operation is
meant to be associative, that is, for all elements x, y , z in the
set, (x y)z = x(y z).

Cayley also requires cancelation: “. . . if θ =φ, then, whatever
the symbols α,β may be, αθβ=αφβ, and conversely.” From
which it follows that there are inverses, that is, for any element
x, there exists an element x ′ such that xx ′ = 1 = x ′x.
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Cayley’s Definition of a Group

Notes and hidden assumptions (continued)

In the preamble, Cayley makes it clear that the operation is
meant to be associative, that is, for all elements x, y , z in the
set, (x y)z = x(y z).

Cayley also requires cancelation: “. . . if θ =φ, then, whatever
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Cayley continues . . .



Cayley-Sudoku Tables

The table thus described by Cayley is now called the Cayley
Table of the group.

Cayley claims that it has 2/3 of the properties of a Sudoku-like
table, that is, each symbol occurs (exactly) once in each row
and exactly once in each column. Such a table is called a Latin
Square.

The convention nowadays is to have the row label as on the left
(“further factor”) and the column label on the right (“nearer
factor”).

1 α β . . .

1 1 α β . . .
α α α2 αβ . . .
β β βα β2 . . .
...

...
...

...
...
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Summary

1 A group is a set with an operation. The operation must be
closed and associative. There must be an identity. Each
element must have an inverse.

2 Each group has a Cayley table in which each element occurs
exactly once in each row and once in each column.
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An Example of a Group

Set: Z9 := {1,2,3,4,5,6,7,8,9}

Operation: Addition mod 9, denoted +9

For every x, y ∈Z9,
x +9 y := x + y mod 9 := mod (x + y ,9)

:= the remainder when x + y is divided by 9 Exception! Today
only, write 9 when the remainder is 0.

Examples:

3+9 8 := 3+8 mod 9 := mod (3+8,9) = 2
3+9 6 = 9

For kids, it’s “clock arithmetic” on a clock with 9 hours.

Closure is clear. 9 is the identity. Inverses are easy to spot.
Trust me on associativity. ∴ it is a group.
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Cayley Table of Z9 with operation +9

9 3 6 1 4 7 2 5 8

9
1
2
3 9 2
4
5
6
7
8
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(Unorthodox) Cayley Table ofZ9 with operation +9

9 3 6 1 4 7 2 5 8

9 9 3 6 1 4 7 2 5 8
1 1 4 7 2 5 8 3 6 9
2 2 5 8 3 6 9 4 7 1
3 3 6 9 4 7 1 5 8 2
4 4 7 1 5 8 2 6 9 3
5 5 8 2 6 9 3 7 1 4
6 6 9 3 7 1 4 8 2 5
7 7 1 4 8 2 5 9 3 6
8 8 2 5 9 3 6 1 4 7

Hold that thought . . .
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Whence Sudoku?

According to Ed Pegg, Jr. (MAA website),

In the May 1979 issue of Dell Pencil Puzzles & Word
Games (issue #16), page 6, something amazing appeared:
Number Place. Here are the original instructions: “In this
puzzle, your job is to place a number into every empty box
so that each row across, each column down, and each
small 9-box square within the large square (there are 9 of
these) will contain each number from 1 through 9.
Remember that no number may appear more than once in
any row across, any column down, or within any small
9-box square; this will help you solve the puzzle . . .
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Whence Sudoku?

. . . The numbers in circles below the diagram will give
you a head start–each of these four numbers goes into one
of the circle boxes in the diagram (not necessarily in the
order given)."

The first Number Place puzzles. (Dell Pencil Puzzles & Word Games #16, page 6, 1979-05)
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Whence Sudoku?

Pegg cites personal communication with Will Shortz (NY Times
crossword puzzle editor and “star” of the movie Wordplay),
who found the puzzle was invented by 74 year old architect
Howard Garns (circa 1905-1989).

The speaker first saw a Sudoku puzzle in the possession of
Professor Sam Hall, Willamette U, July 2005.
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Drum roll, please.

Divide the Cayley table of Z9 into nine 3 by 3 blocks, like a Sudoku
puzzle.

9 3 6 1 4 7 2 5 8

9 9 3 6 1 4 7 2 5 8
1 1 4 7 2 5 8 3 6 9
2 2 5 8 3 6 9 4 7 1
3 3 6 9 4 7 1 5 8 2
4 4 7 1 5 8 2 6 9 3
5 5 8 2 6 9 3 7 1 4
6 6 9 3 7 1 4 8 2 5
7 7 1 4 8 2 5 9 3 6
8 8 2 5 9 3 6 1 4 7
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Tah-dah! A Cayley-Sudoku Table

9 3 6 1 4 7 2 5 8

9 9 3 6 1 4 7 2 5 8
1 1 4 7 2 5 8 3 6 9
2 2 5 8 3 6 9 4 7 1
3 3 6 9 4 7 1 5 8 2
4 4 7 1 5 8 2 6 9 3
5 5 8 2 6 9 3 7 1 4
6 6 9 3 7 1 4 8 2 5
7 7 1 4 8 2 5 9 3 6
8 8 2 5 9 3 6 1 4 7

It is a Cayley table (so every group element appears exactly once in
each row and in each column) and it is also a Sudoku table because
it is divided into blocks in which each group element appears
exactly once.
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Every Cayley table has two of the three of the properties of a Sudoku
table; only the subdivision of the table into blocks that contain each
element exactly once is in doubt. When and how can a Cayley table
be arranged in such a way as to satisfy the additional requirements
of being a Sudoku table?

Examine our Cayley-Sudoku table of Z9 for clues.
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Column Labels

9 3 6 1 4 7 2 5 8

9 9 3 6 1 4 7 2 5 8
1 1 4 7 2 5 8 3 6 9
2 2 5 8 3 6 9 4 7 1
3 3 6 9 4 7 1 5 8 2
4 4 7 1 5 8 2 6 9 3
5 5 8 2 6 9 3 7 1 4
6 6 9 3 7 1 4 8 2 5
7 7 1 4 8 2 5 9 3 6
8 8 2 5 9 3 6 1 4 7

The set of the first three column labels {9,3,6} is also a group
under +9. That makes it a subgroup of Z9.
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Column Labels

9 3 6 1 4 7 2 5 8

9 9 3 6 1 4 7 2 5 8
1 1 4 7 2 5 8 3 6 9
2 2 5 8 3 6 9 4 7 1
3 3 6 9 4 7 1 5 8 2
4 4 7 1 5 8 2 6 9 3
5 5 8 2 6 9 3 7 1 4
6 6 9 3 7 1 4 8 2 5
7 7 1 4 8 2 5 9 3 6
8 8 2 5 9 3 6 1 4 7

Add 1 to each of the elements of the subgroup: 9+9 1 = 1, 3+9 1 = 4,
6+9 1 = 7, those are the next three column labels. The resulting set
is called a right coset of the subgroup, it is denoted {9,3,6}+9 1 .
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Column Labels

9 3 6 1 4 7 2 5 8

9 9 3 6 1 4 7 2 5 8
1 1 4 7 2 5 8 3 6 9
2 2 5 8 3 6 9 4 7 1
3 3 6 9 4 7 1 5 8 2
4 4 7 1 5 8 2 6 9 3
5 5 8 2 6 9 3 7 1 4
6 6 9 3 7 1 4 8 2 5
7 7 1 4 8 2 5 9 3 6
8 8 2 5 9 3 6 1 4 7

Now consider the right coset
{9,3,6}+9 2 = {9+9 2,3+9 2,6+9 2} = {2,5,8} . The elements of that

coset are the final three column labels.
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Column Labels

9 3 6 1 4 7 2 5 8

9 9 3 6 1 4 7 2 5 8
1 1 4 7 2 5 8 3 6 9
2 2 5 8 3 6 9 4 7 1
3 3 6 9 4 7 1 5 8 2
4 4 7 1 5 8 2 6 9 3
5 5 8 2 6 9 3 7 1 4
6 6 9 3 7 1 4 8 2 5
7 7 1 4 8 2 5 9 3 6
8 8 2 5 9 3 6 1 4 7

Observation 1: The columns in each block of the Cayley-Sudoku
table are labeled with elements of the right cosets of a subgroup.
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Row Labels

Left cosets of the subgroup are also of interest.

9+9 {9,3,6} = {9+9 9,9+9 3,9+9 6} = {9,3,6}

1+9 {9,3,6} = {1+9 9,1+9 3,1+9 6} = {1,4,7}

2+9 {9,3,6} = {2+9 9,2+9 3,2+9 6} = {2,5,8}

Notice that left and right cosets partition the group into disjoint
subsets.
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Row Labels

9 3 6 1 4 7 2 5 8

9 9 3 6 1 4 7 2 5 8
1 1 4 7 2 5 8 3 6 9
2 2 5 8 3 6 9 4 7 1
3 3 6 9 4 7 1 5 8 2
4 4 7 1 5 8 2 6 9 3
5 5 8 2 6 9 3 7 1 4
6 6 9 3 7 1 4 8 2 5
7 7 1 4 8 2 5 9 3 6
8 8 2 5 9 3 6 1 4 7

9+9 {9,3,6} = {9+9 9,9+9 3,9+9 6} = {9,3,6}

1+9 {9,3,6} = {1+9 9,1+9 3,1+9 6} = {1,4,7}

2+9 {9,3,6} = {2+9 9,2+9 3,2+9 6} = {2,5,8}
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Row Labels

9 3 6 1 4 7 2 5 8

9 9 3 6 1 4 7 2 5 8
1 1 4 7 2 5 8 3 6 9
2 2 5 8 3 6 9 4 7 1
3 3 6 9 4 7 1 5 8 2
4 4 7 1 5 8 2 6 9 3
5 5 8 2 6 9 3 7 1 4
6 6 9 3 7 1 4 8 2 5
7 7 1 4 8 2 5 9 3 6
8 8 2 5 9 3 6 1 4 7

Observation 2: The rows in each block of the Cayley-Sudoku table
are each labeled with a complete set of left coset representatives,
that is, a left transversal.



Cayley-Sudoku Tables

Keith’s Construction of a Cayley-Sudoku Table

Let G with operation ? be a finite group. Assume H is a subgroup of G
having order k and the number of distinct cosets is n (so that |G| = nk1). If
H ? g1, H ? g2, . . . , H ? gn are the n distinct right cosets of H in G , then
arranging the Cayley table of G with columns labeled by the cosets
H ? g1, H ? g2, . . . , H ? gn and the rows labeled by sets T1,T2, . . . ,Tk (as in
the table) yields a Cayley-Sudoku table of G with blocks of dimension
n ×k if and only if T1,T2, . . . ,Tk partition G into complete sets of left coset
representatives of H in G .

H ? g1 H ? g2 . . . H ? gn

T1

T2
...

Tk

1Lagrange’s Theorem!
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Another Example of a Group

D4 = the set of symmetries of a square under the operation of
composition of functions.

Eight Symmetries

Rotations about the center (counterclockwise):
R0,R90,R180,R270

Reflections across lines through the center: H (horizontal), V
(vertical), D and F (diagonal)
(Yikes! H here is a reflection not a subgroup.)
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Right cosets of the subgroup {R0, H } will label the columns.

1 {R0, H }◦R0 := {R0 ◦R0, H ◦R0} = {R0, H }

2 {R0, H }◦R90 := {R0 ◦R90, H ◦R90} = {R90,D}

3 {R0, H }◦R180 := {R0 ◦R180, H ◦R180} = {R180,V }

4 {R0, H }◦R270 := {R0 ◦R270, H ◦R270} = {R270,F }

Complete sets of left coset representatives of {R0, H } will label the
rows.

1 R0 ◦ {R0, H } := {R0 ◦R0,R0 ◦H } = {R0, H }

2 R90 ◦ {R0, H } := {R90 ◦R0,R90 ◦H } = {R90,F }

3 R180 ◦ {R0, H } := {R180 ◦R0,R180 ◦H } = {R180,V }

4 R270 ◦ {R0, H } := {R270 ◦R0,R270 ◦H } = {R270,D}

These sets do the trick:
T1 := {R0,R90,R180,R270} and T2 := {H ,D ,V ,F }

(Notice the left and right cosets are not the same.)
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Keith’s Construction Applied to D4

R0 H R90 D R180 V R270 F

R0 R0 H R90 D R180 V R270 F
R90 R90 F R180 H R270 D R0 V
R180 R180 V R270 F R0 H R90 D
R270 R270 D R0 V R90 F R180 H

H H R0 D R90 V R180 F R270

V V R180 F R270 H R0 D R90

D D R270 V R0 F R90 H R180

F F R90 H R180 D R270 V R0
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Why Keith’s Construction Works

Look at one block in our Z9 Cayley-Sudoku Table.

9 3 6 1 4 7 2 5 8

3 4 7 1
4 5 8 2
5 6 9 3

Why is each group element in it exactly once?
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Why Keith’s Construction Works

Deconstruct the block. Recall the column label set {1,4,7} is the

right coset {9,3,6}+9 1 := {9+9 1,3+9 1,6+9 1} .

9 3 6 9+9 1 3+9 1 6+9 1 2 5 8

3 3+9 (9+9 1) 3+9 (3+9 1) 3+9 (6+9 1)
4 4+9 (9+9 1) 4+9 (3+9 1) 4+9 (6+9 1)
5 5+9 (9+9 1) 5+9 (3+9 1) 4+9 (6+9 1)
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Apply the associative property.

9 3 6 9+9 1 3+9 1 6+9 1 2 5 8

3 (3+9 9)+9 1 (3+9 3)+9 1 (3+9 6)+9 1
4 (4+9 9)+9 1 (4+9 3)+9 1 (4+9 6)+9 1
5 (5+9 9)+9 1 (5+9 3)+9 1 (4+9 6)+9 1
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Recall row labels = complete set of left coset reps.

9 3 6 9+9 1 3+9 1 6+9 1 2 5 8

3 (3+9 9) +91 (3+9 3) +91 (3+9 6) +91

4 (4+9 9) +91 (4+9 3) +91 (4+9 6) +91

5 (5+9 9) +91 (5+9 3) +91 (5+9 6) +91

3+9 {9,3,6} = {3+9 9,3+9 3,3+9 6} = {3,6,9}

4+9 {9,3,6} = {4+9 9,4+9 3,4+9 6} = {4,7,1}

5+9 {9,3,6} = {5+9 9,5+9 3,5+9 6} = {5,8,2}
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Substitute.

9 3 6 9+9 1 3+9 1 6+9 1 2 5 8

3 3 +91 6 +91 9 +91
4 4 +91 7 +91 1 +91
5 5 +91 8 +91 2 +91

Cayley tells us that adding 1 to the group elements gives the group
elements back. Elegant!
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“Christmas Eve” Construction of a Cayley-Sudoku Table

t1?H t2?H . . . tn ?H

L1

L2
...

Lk

In order for the above to be a Cayley-Sudoku table, the sets
L1,L2, . . . ,Lk labeling the rows must be complete sets of left coset
representatives for H and (usually) several other subgroups at once!

(Namely, for the subgroups g−1?H ? g for all g ∈G , where
g−1?H ? g := {g−1?h? g : h ∈ H }.)
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Use the subgroup {R0, H }.
Left cosets of {R0, H } will label the columns.

1 R0 ◦ {R0, H } := {R0 ◦R0,R0 ◦H } = {R0, H }

2 R90 ◦ {R0, H } := {R90 ◦R0,R90 ◦H } = {R90,F }

3 R180 ◦ {R0, H } := {R180 ◦R0,R180 ◦H } = {R180,V }

4 R270 ◦ {R0, H } := {R270 ◦R0,R270 ◦H } = {R270,D}

Rows must be labeled with complete sets of left coset
representatives for {R0, H } and for the subgroup {R0,V } (i.e.
R−1

90 ◦ {R0,V }◦R90).

1 R0 ◦ {R0,V } := {R0 ◦R0,R0 ◦ v} = {R0,V }

2 R90 ◦ {R0,V } := {R90 ◦R0,R90 ◦V } = {R90,D}

3 R180 ◦ {R0,V } := {R180 ◦R0,R180 ◦V } = {R180, H }

4 R270 ◦ {R0,V } := {R270 ◦R0,R270 ◦V } = {R270,F }

These sets do the trick:
L1 := {R0,R90,R180,R270} and L2 := {H ,V ,D ,F }
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Christmas Eve Construction Applied to D4

R0 H R90 F R180 V R270 D

R0 R0 H R90 F R180 V R270 D
R90 R90 F R180 V R270 D R0 H
R180 R180 V R270 D R0 H R90 F
R270 R270 D R0 H R90 F R180 V

H H R0 D R270 V R180 F R90

V V R180 F R90 H R0 D R270

D D R270 V R180 F R90 H R0

F F R90 H R0 D R270 V R180



Cayley-Sudoku Tables

Question: Under what conditions on H can G be partitioned into
complete sets of left coset representatives of all the required
subgroups (i.e. of g−1?H ? g for all g ∈G)?

From group theory

Only one subgroup–Easy, but it’s just Keith’s Construction (H a
normal subgroup in this case)

Can be done whenever H has a complement
(i.e. ∃ a subgroup T of G such that
G = T H := {t ?h : t ∈ T ,h ∈ H } and T ∩H = identity).
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From combinatorics

Two subgroups (as in the example)–Can be done as a corollary
to a general combinatorial theorem (“Arranged Marriage
Theorem” = Hall’s Marriage Theorem for two families)

Three or more subgroups–No general combinatorial theorem?
In general, NP-complete?
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Cayley-Sudoku Puzzles

Given a partially completed Cayley-Sudoku Table of an unknown
group (and not assuming it was made by one of the given
constructions), complete the table so that each group element
appears exactly once in each row, in each column, and in each
designated block.

Hints

The usual Sudoku techniques.

Look for the identity.

If you find x · y = identity, then you also know x · y = identity.

In the given puzzle, the group is not Z8. The puzzle can be
done without knowing the actual group.
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Concluding Remarks

1 For another construction (extending a Cayley-Sudoku table of
a subgroup to a table for the big group) and more open
questions see Cosets and Cayley-Sudoku Tables, Mathematics
Magazine Vol. 83, April 2010, pp. 130-139.

2 THANK YOU!!
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Appendix: Keith’s Construction Applied to A4

The columns in each 6×2 block are labeled with the elements of the
subgroup {(1), (12)(34)} in A4, the group of even permutations on
four symbols. The rows in each block are labeled with complete sets
of left coset representatives.
In this case the right and left cosets are not the same.
Example: {(1), (12)(34)}(123) = {(123), (243)} while
(123){(1), (12)(34)} = {(123), (134)}.
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Appendix 1 Partial Proof of K’s Construction

An arbitrary block of the table, indexed by Th = {t1, t2, . . . , tn} and
H ? gi , is the given the following table.

H ? gi

t1 t1?H ? gi

t2 t2?H ? gi
...

...
tn tn ?H ? gi

1 Elements in the block:
B := (t1?H ? gi )∪ (t2?H ? gi )∪ . . .∪ (tn ?H ? gi )

2 Easy to show using associativity:
B = (t1?H ∪ t2?H ∪ . . .∪ tn ?H)? gi

3 When Th is a complete set of left coset representatives, then
t1?H ∪ t2?H ∪ . . .∪ tn ?H =G .

4 By Cayley, B =G? gi =G .



Cayley-Sudoku Tables

Appendix 1 Partial Proof of K’s Construction

An arbitrary block of the table, indexed by Th = {t1, t2, . . . , tn} and
H ? gi , is the given the following table.

H ? gi

t1 t1?H ? gi

t2 t2?H ? gi
...

...
tn tn ?H ? gi

1 Elements in the block:
B := (t1?H ? gi )∪ (t2?H ? gi )∪ . . .∪ (tn ?H ? gi )

2 Easy to show using associativity:
B = (t1?H ∪ t2?H ∪ . . .∪ tn ?H)? gi

3 When Th is a complete set of left coset representatives, then
t1?H ∪ t2?H ∪ . . .∪ tn ?H =G .

4 By Cayley, B =G? gi =G .



Cayley-Sudoku Tables

Appendix 1 Partial Proof of K’s Construction

An arbitrary block of the table, indexed by Th = {t1, t2, . . . , tn} and
H ? gi , is the given the following table.

H ? gi

t1 t1?H ? gi

t2 t2?H ? gi
...

...
tn tn ?H ? gi

1 Elements in the block:
B := (t1?H ? gi )∪ (t2?H ? gi )∪ . . .∪ (tn ?H ? gi )

2 Easy to show using associativity:
B = (t1?H ∪ t2?H ∪ . . .∪ tn ?H)? gi

3 When Th is a complete set of left coset representatives, then
t1?H ∪ t2?H ∪ . . .∪ tn ?H =G .

4 By Cayley, B =G? gi =G .



Cayley-Sudoku Tables

Appendix 1 Partial Proof of K’s Construction

An arbitrary block of the table, indexed by Th = {t1, t2, . . . , tn} and
H ? gi , is the given the following table.

H ? gi

t1 t1?H ? gi

t2 t2?H ? gi
...

...
tn tn ?H ? gi

1 Elements in the block:
B := (t1?H ? gi )∪ (t2?H ? gi )∪ . . .∪ (tn ?H ? gi )

2 Easy to show using associativity:
B = (t1?H ∪ t2?H ∪ . . .∪ tn ?H)? gi

3 When Th is a complete set of left coset representatives, then
t1?H ∪ t2?H ∪ . . .∪ tn ?H =G .

4 By Cayley, B =G? gi =G .



Cayley-Sudoku Tables

H ? gi

t1 t1?H ? gi

t2 t2?H ? gi
...

...
tn tn ?H ? gi

We just saw that each element of the group is in the above block.

1 Number of entries in block B ≡ number of elements in G

2 ∴ every element of G appears exactly once.
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