
Computational simulation, in conjunc-
tion with laboratory experiment, can
provide valuable insight into complex
biological systems that involve the in-

teraction of an elastic structure with a viscous, in-
compressible fluid. This biological fluid dynam-
ics setting presents several more challenges than
those traditionally faced in computational fluid
dynamics—specifically, dynamic flow situations
dominate, and capturing time-dependent geome-
tries with large structural deformations is neces-
sary. In addition, the shape of the elastic struc-
tures is not preset: fluid dynamics determines it.

The Reynolds number of a flow is a dimension-
less parameter that measures the relative significance
of inertial forces to viscous forces. Due to the small
length scales, the swimming of microorganisms cor-

responds to very small Reynolds numbers (10–6 –
10–2). Faster and larger organisms such as fish and
eels swim at high Reynolds numbers (102 – 105), but
organisms such as nematodes and tadpoles experi-
ence inertial forces comparable to viscous forces:
they swim at Reynolds numbers of order one. 

Modern methods in computational fluid dynam-
ics can help create a controlled environment in
which we can measure and visualize the fluid dy-
namics of swimming organisms. Accordingly, we
designed a unified computational approach, based
on an immersed boundary framework,1 that couples
internal force-generation mechanisms of organisms
and cells with an external, viscous, incompressible
fluid. This approach can be applied to model low,
moderate, and high Reynolds number flow regimes.

Analyzing the fluid dynamics of a flexible, swim-
ming organism is very difficult, even when the or-
ganism’s waveform is assumed in advance.2,3 In the
case of microorganism motility, the low Reynolds
number simplifies mathematical analysis because the
equations of fluid mechanics in this regime are lin-
ear. However, even at low Reynolds numbers, a mi-
croorganism’s waveform is an emergent property of
the coupled nonlinear system, which consists of the
organism’s force-generation mechanisms, its passive
elastic structure, and external fluid dynamics. In the
immersed boundary framework, the force-generat-
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ing organism is accounted for by suitable contribu-
tions to a force term in the fluid-dynamics equations.
The force of an organism on the fluid is a Dirac
delta-function layer of force supported only by the
region of fluid that coincides with the organism’s ma-
terial points; away from these points, this force is
zero. After including this force distribution on the
fluid, we can solve the fluid equations by using either
a finite-difference grid-based method or the regular-
ized Stokeslets grid-free method developed specifically
for zero Reynolds number regimes.4

This article presents our recent progress on cou-
pling the internal molecular motor mechanisms of
beating cilia and flagella with an external fluid, as
well as the three-dimensional (3D) undulatory
swimming of nematodes and leeches. We expect
these computational models to provide a testbed
for examining different theories of internal force-
generation mechanisms.

Immersed Boundary Framework
Charles Peskin1 introduced the immersed bound-
ary method to model blood flow in the heart. Since
then, many researchers have advanced this method
to study other biologic fluid dynamics problems,
including platelet aggregation, 3D blood flow in
the heart, inner-ear dynamics, blood flow in the
kidneys, limb development, and deformation of red
blood cells; a recent overview appears elsewhere.1

For this article’s purposes, we describe the im-
mersed boundary method in the context of swim-
ming organisms. We regard the fluid as viscous and
incompressible, and the filaments that comprise the
organisms as elastic boundaries immersed in this
fluid. In our 3D simulations—Figure 1 shows a typ-
ical example—many filaments join to form the or-
ganism. The nematode, tapered at both ends, is built
out of three families of filaments: circular, longitu-
dinal, and right- and left-handed helical filaments.

We assume that the flow is governed by the in-
compressible Navier-Stokes equations (conserva-
tion of momentum and conservation of mass):

= –∇p + µ∇u + F(x, t)

∇ • u = 0.

Here, ρ is fluid density, µ is dynamic viscosity, u is
fluid velocity, p denotes pressure, and F is the force
per unit volume the organism exerts on the fluid—
this force is split into the contributions from each
of the filaments comprising the organism. The
forces Fk due to the kth filament include elastic

forces from individual filament structures and pas-
sive elastic forces caused by links between fila-
ments; they also may include active forces due to
muscle contractions (in the case of nematode or
leech swimming) or active forces caused by the ac-
tion of dynein molecular motors (in the case of cil-
iary and flagellar beating). F is a δ-function layer of
force supported only by the region of fluid that co-
incides with the filaments’ material points; away
from these points, the force is zero.

Let Xk(s, t) denote the kth filament as a function
of a Lagrangian parameter s and time t, and let fk(s,
t) denote the boundary force per unit length along
the kth filament. The boundary force depends on
the biological system being modeled; we’ll discuss
the general form later. We assume the elastic
boundary has the same density as the surrounding
fluid, and that its mass is attributed to the mass of
the fluid in which it sits, thus the forces are trans-
mitted directly to the fluid. The force field Fk from
the filament Xk(s, t) is therefore
Fk(x, t) = ∫ fk(s, t) δ (x – Xk(s, t))ds.
Here, the integration is over the kth one-dimen-
sional filament comprising an immersed boundary,
and δ is the 3D Dirac delta-function. The total
force F(x, t) is calculated by adding the forces from
each filament.

Each filament of the immersed boundary is ap-
proximated by a discrete collection of points. This
boundary exerts elastic forces on the fluid near each
of these points. We imagine that between each pair
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Figure 1. Three-dimensional nematode. (a) An immersed boundary
nematode, and (b) a snapshot of a swimming nematode suppressing all
but the “circular” filaments. Notice that these filaments are elastic and
deform in response to the viscous fluid.
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of successive points on a filament, an elastic spring
or link generates forces to push the link’s length to-
ward a specified resting length. The force arising
from the spring on a short filament segment of
length ds is the product of a stiffness constant and
the deviation from rest length. This force is ap-
proximated by the force density at a single point in
the segment multiplied by ds. In addition to the
forces caused by springs along individual filaments,
forces due to passive or active interactions between
filaments contribute to force density. Each spring
may have a time-dependent rest length as well as a
time-dependent stiffness. Our coupled fluid-im-
mersed boundary system is closed because it re-
quires the velocity of a filament’s material point to
be equal to the fluid velocity evaluated at that point. 

In the next two sections, we provide brief de-
scriptions of two numerical methods used in the sim-
ulation of immersed boundary motion in flows cor-
responding to a wide range of Reynolds numbers. 

Grid-Based Immersed Boundary Algorithm
We can summarize the immersed boundary algo-
rithm as follows: Suppose that at the end of time
step n, we have fluid velocity field un on a grid and
the configuration of the immersed boundary points
on the filaments comprising the organism (Xk)n. To
advance the system by one time step, we must

1. Calculate the force densities fk from the

boundary configuration.
2. Spread the force densities to the grid to de-

termine the forces Fk on the fluid.
3. Solve the Navier-Stokes equations for un+1.
4. Interpolate the fluid velocity field to each im-

mersed boundary point (Xk)n and move the
point at this local fluid velocity.

The Navier-Stokes equations are solved on a reg-
ular grid with simple boundary conditions in Step 3;
Steps 2 and 4 involve the use of a discrete delta-func-
tion that communicates information between the
grid and the immersed boundary points.1 This algo-
rithm’s crucial feature is that the immersed boundary
is not the computational boundary in the Navier-
Stokes solver—rather, it is a dynamic force field that
influences fluid motion via the force term in the fluid
equations. This modular approach lets us choose a
fluid solver best suited to the problem’s Reynolds
number. Furthermore, we can base whatever solver
we choose on a variety of formulations, including fi-
nite-difference and finite-element methods. 

Grid-Free Method of Regularized Stokeslets
At the low Reynolds number regime of swimming
microorganisms, we can describe the fluid dynam-
ics via the quasi-steady Stokes equations:

µ∆u = ∇p – F(x, t)
∇ ⋅ u = 0.

A fundamental solution of these equations is called
a Stokeslet, which represents the velocity due to a
concentrated force acting on the fluid at a single
point in an infinite domain of fluid.3 In fact, F(x, t)
is the sum of such point forces. Ricardo Cortez con-
sidered the smoothed case in which the concentrated
force is applied not at a single point, but over a small
ball of radius ε centered at the immersed boundary
point.4 We can compute a regularized fundamental
solution—or regularized Stokeslet—analytically.
The method of regularized Stokeslets is a La-
grangian method in which the trajectories of fluid
particles are tracked throughout the simulation.
This method is particularly useful when the forces
driving the fluid motion are placed along the surface
of a swimming organism that deforms because of its
interaction with the fluid. The forces on the surface
are given by regularized delta-functions, and the re-
sulting velocity represents the exact solution of
Stokes equations for the given forces.

Because the incompressible Stokes equations are
linear, we can use direct summation to compute the
velocity at each immersed boundary point to ad-
vance a time step. This method of regularized
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Figure 2. A bacterium swimming because of a helical wave’s
propagation. Fluid velocity vectors are shown on two planes
perpendicular to the swimming axis. The simulation demonstrates the
grid-free method of regularized Stokeslets.
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Stokeslets is related to boundary integral methods,
but it has the advantage that forces may be applied
at any discrete collection of points—these points
need not approximate a smooth interface.

We have successfully implemented this algo-
rithm for ciliary beating in two dimensions and he-
lical swimming in three. Figure 2 shows a snapshot
of a helical swimmer with fluid velocity fields com-
puted along two planes perpendicular to the axis of
the helix.

Undulatory Swimming
Nematodes are unsegmented roundworms with
elongated bodies tapered at both ends. The most fa-
mous nematode is C. Elegans, a model organism for
genetic, developmental, and neurobiological stud-
ies. Nematodes possess a fluid-filled cavity, longi-
tudinal muscles, and a flexible outer cuticle com-
posed of left- and right-handed helical filaments, yet
they still maintain a circular cross-section. The al-
ternate contractions of their dorsal and ventral lon-
gitudinal muscles cause these worms to swim with
an eel-like, undulatory pattern.5 A typical nematode
is roughly 0.5 to 1 millimeter long, undulating with
a wave speed between 0.8 and 4 millimeters per sec-
ond. Therefore, in water, a Reynolds number (based
on wavelength and wave speed) between 0.4 and 4
governs nematode swimming.

We chose the filaments comprising our computa-
tional organism to reflect the nematode’s anatomy,
including the longitudinal muscle fibers and the he-
lical filaments of its cuticle. The stiffness constants
of the “springs” making up these filaments reflect
the tissue’s elastic properties. In the simulation de-
picted in Figure 1, sinusoidal undulatory waves are
passed along the body of the immersed organism by
imposing appropriate muscle contractions along its
longitudinal and helical filaments. Figure 3 shows a
3D perspective of the worm along with the velocity
field of the fluid depicted in the plane that contains
the worm’s centerline. (Here, we used a grid-based
immersed boundary algorithm.) The flow field
shows vortices with alternating directions supported
along the length of the organism. A previous study
experimentally observed this characteristic flow pat-
tern for the nematode Turbatrix.5 We computed the
swimming speed of our simulated nematode, whose
amplitude of oscillation we chose to be about one
half of that reported for Turbatrix, to be 5 percent of
the propulsive wave speed along its body. These cal-
culations compare very well with the experimentally
observed swimming speed of 20 percent of wave
speed reported for Turbatrix;5 swimming speed is
proportional to the square of the wave’s amplitude.2

We now turn to modeling another undulatory

swimmer—the leech. Leeches are larger and faster
than nematodes, and have an elliptical rather than
circular cross-section. We focus on 2-centimeter
long juvenile leeches, with propulsive wave speeds
of approximately 5 centimeters per second undu-
lating in water. In this case, the Reynolds number
based on wavelength and wave speed is about
1,000; inertial effects are significantly more im-
portant than viscous effects.6

Using the same immersed boundary construct as
we did for the nematodes (longitudinal muscle fila-
ments and right- and left-helical filaments), but re-
placing the circular filaments with elliptical cross-
sectional filaments, we examine the leech’s
undulatory swimming in a 3D fluid. Figure 4 shows
four snapshots of the leech as viewed from the side,
along with fluid markers for flow visualization. Each
of the four snapshots depicts the leech at the same
phase in its undulation, during successive periods.
A wave passes over the body from left to right—
note the forward swimming progression and the
wake that is left behind. We initially placed the red
fluid markers in the foreground far enough from the
side of the leech that they don’t get carried along
with the organism. Figure 5 shows four snapshots
of the leech from a different perspective—note the
complex 3D particle mixing that occurs.

For our simulated leech, we used experimental
data on waveform and wave speed originally re-
ported by Chris Jordan.6 Because of accuracy con-
straints that require enough grid points within a
cross-section of the leech, the aspect ratio of the
simulated leech’s elliptical cross-section is 2:1, not

Figure 3. Snapshot of a swimming nematode shown within the
rectangular computational domain.  The velocity field is depicted in the
plane that contains the worm’s centerline.
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the actual 5:1 Jordan reported.6 We believe that
this difference causes the simulated leech to swim
about five times slower than the real leech.

Cilia and Flagella
Cilia and flagella are the prominent organelles as-
sociated with microorganism motility. Although
the patterns of flagellar movement are distinct from
those of ciliary movement, and flagella are typically
much longer than cilia, their basic ultrastructure is
identical. A core—called the axoneme—produces
the bending of cilia and flagella. The typical ax-
oneme consists of a central pair of single micro-
tubules surrounded by nine outer doublet micro-
tubules and encased by the cell membrane.7,8

Radial spokes attach to the peripheral doublet mi-
crotubules and span the space toward the central
pair of microtubules. The outer doublets are con-
nected by nexin links between adjacent pairs of
doublets. Two rows of dynein arms extend from the
A-tubule of an outer doublet toward the B-tubule
of an adjacent doublet at regularly spaced intervals.
The bending of the axoneme is caused by sliding
between pairs of outer doublets, which in turn is
due to the unidirectional adenosine triphosphate
(ATP)-induced force generation of the dynein mol-
ecular motors. The precise nature of the spatial and
temporal control mechanisms regulating the vari-
ous waveforms of cilia and flagella is still unknown.

Considerable interest has focused on the develop-
ment of mathematical models for the hydrodynam-
ics of individual as well as rows of cilia and on indi-
vidual flagellated organisms. Gray and Hancock’s9

resistive-force theory and Sir James Lighthill’s slen-
der body theory3 are particularly noteworthy. More
detailed hydrodynamic analysis, such as refined slen-
der body theory and boundary element methods,
have produced excellent simulations of both two- and
three-dimensional flagellar propulsion and ciliary
beating in an infinite fluid domain or in a domain
with a fixed wall. In all these fluid dynamical models,
researchers take the shape of the ciliary or flagellar
beat as given. More recent work by Shay Gueron and
Konstantin Levit-Gurevich includes a model that ad-
dresses the internal force generation in a cilium10 but
does not explicitly model the individual microtubule-
dynein interactions.

Our model for an individual cilium or flagellum in-
corporates discrete representations of the dynein
arms, passive elastic structures of the axoneme in-
cluding the microtubules and nexin links, and the
surrounding fluid. This model couples the internal
force generation of the molecular motors through
the passive elastic structure with external fluid me-
chanics. Detailed geometric information may be kept
track of in this computational model, such as the
spacing and shear between the microtubules, the lo-
cal curvature of individual microtubules, and the

Figure 4. Snapshots of leech and surrounding fluid markers at the same phase in its undulation during successive temporal
periods. The actual organism is mostly obscured in the first panel by the fluid markers placed around it.
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stretching of the nexin links. In addition, the explicit
representation of the dynein motors gives us the flex-
ibility to incorporate a variety of activation theories.
The ciliary beat or flagellar waveform is not preset,
but it is an emergent property of the interacting com-
ponents of the coupled fluid-axoneme system.

In other articles,11,12 we present a model of a
simplified axoneme consisting of two microtubules,
with dynein motors being dynamic, diagonal elas-
tic links between the two microtubules. To achieve
beating in the simplified two-microtubule model,
we allow two sets of dyneins to act between the mi-
crotubules—one set is permanently attached to
fixed nodes on the left microtubule, the other to
fixed nodes on the right. Contraction of the dynein
generates sliding between the two microtubules; in
either configuration, one end of a dynein can at-
tach, detach, and reattach to attachment sites on
the microtubule. As the microtubules slide, a
dynein link’s endpoint can jump, or “ratchet,” from

one node of the microtubule to another.
We model each microtubule as a pair of fila-

ments with diagonal cross-links. The diagonal
cross-links’ elastic properties govern the resistance
to microtubule bending. Linear elastic springs rep-
resenting the nexin and/or radial links of the ax-
oneme interconnect adjacent pairs of microtubules.
In the case of ciliary beating, the axoneme is teth-
ered to fixed points in space via strong elastic
springs at the base. The entire structure is embed-
ded in a viscous incompressible fluid.

Figure 6 shows a cilium during the power stroke
(note the two microtubules) and a ciliary waveform
showing a single filament at equally spaced time in-
tervals. This waveform was not preset—it resulted
from the actions of individual dynein motors. In par-
ticular, the cilium’s local curvature determined the ac-
tivation cycle of each dynein motor along the cilium.
Figure 7 shows the swimming of a model sperm cell
whose waveform is also the result of a curvature con-

Figure 5. Snapshots of leech and surrounding fluid markers. From this perspective, the wave is moving back over the body, and
the swimming progression is toward the viewer. Note the complex 3D fluid mixing depicted by the evolution of the fluid markers.
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trol model. The beating cilium does indeed result in
a net displacement of fluid in the direction of the
power stroke, and the sperm cell does indeed swim in
the direction opposite that of the wave. We have
shown elsewhere12 that making different assumptions
about the internal dynein activation mechanisms does
results in different swimming behavior. In particular,
when we altered the curvature control model to
change the effective time scale of dynein kinetics, the
time of a single beat changes significantly, along with

the entire waveform of the flagellum.

Computational fluid dynamics along
with biological modeling provides a
powerful means for studying the in-
ternal force-generation mechanisms

of a swimming organism. The integrative ap-
proach presented here lets us use computer sim-
ulations to examine theories of physiological

(a) (b)

Figure 6. Cilium. (a) A two-microtubule cilium nearing the end of its power stroke. Asterisks denote fluid markers, which we
initially placed initially directly above the base of the cilium in a rectangular array. The displacement to the right is the result of
the net fluid flow induced by the beating cilium. (b) A ciliary waveform showing a single filament at equally spaced time intervals.

Figure 7. A sequence of a two-microtubule sperm cell swimming upwards as a wave passes from base to tip. The red (blue) color
indicates that the right (left) family of dyneins is activated at that position of the flagellum. Asterisks denote fluid markers.
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processes such as dynein activation in a beating
cilium and muscle dynamics in invertebrates.
The success of these models depends both on
the continued development of robust and accu-
rate numerical methods, and the interdiscipli-
nary collaboration of computational scientists
and biologists. We expect that this work will
have an impact on understanding biomedical
systems such as sperm motility in the reproduc-
tive tract and mucus-ciliary transport in both
healthy and diseased respiratory tracts, as well as
the complex coupling of electrophysiology, mus-
cle mechanics, and fluid dynamics in aquatic an-
imal locomotion.
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