
28 Aug 2003 23:44 AR AR203-FL36-11.tex AR203-FL36-11.sgm LaTeX2e(2002/01/18) P1: IBD

Annu. Rev. Fluid Mech. 2004. 36:11.1–11.25
doi: 10.1146/annurev.fluid.36.050802.121926

Copyright c© 2004 by Annual Reviews. All rights reserved

SHAPE OPTIMIZATION IN FLUID MECHANICS

Bijan Mohammadi1 and Olivier Pironneau2
1Institut Universitaire de France and Université Montpellier II, 34000 Montpellier,
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� Abstract This paper is a short and nonexhaustive survey of some recent devel-
opments in optimal shape design (OSD) for fluids. OSD is an interesting field both
mathematically and for industrial applications. Existence, sensitivity, and compati-
bility of discretizations are important theoretical issues. Efficient algorithmic imple-
mentations with low complexity are also critical. In this paper we discuss topological
optimization, algorithmic differentiation, gradient smoothers, Computer Aided Design
(CAD)-free platforms and shock differentiation; all these are applied to a multicriterion
optimization for a supersonic business jet.

1. INTRODUCTION

The applications of optimal shape design (OSD) are uncountable. For systems
governed by partial differential equations, they range from structure mechanics to
electromagnetism and fluid mechanics and, more recently, to a combination of the
three. For instance, the design of a harbor that minimizes the incoming waves can be
done at little cost by standard optimization methods once the numerical simulation
of Helmholtz equation is mastered (Baron et al. 1993); microfluidic technologies,
large paper machines, etc., can also be optimized this way (Mohammadi et al. 2001,
Hamalainen et al. 1999), yet the biggest demand is still for airplane optimization,
for which even a small drag decrease means a lot of savings (Jameson 2003,
Alonso et al. 2002, Reuter et al. 1996), but multidisciplinary requirements grow.
Among the applications to fluids known to the authors are (a) weight reduction
and aeoracoustic design of engines, cars, airplanes, and even music instruments
(Becache et al. 2001); (b) electromagnetically optimal shapes, such as in stealth
objects with aerodynamic constraints; (c) wave cancelling in boat design (Lohner
2001, Jameson et al. 1998); and (d) drag reduction in air and water by static or
active mechanisms (Moin et al. 1992). In industry, optimum design is not a once
and for all solution tool because engineering design is made of compromises owing
to the multidisciplinary aspects of the problems (see Figure 1) and the necessity
of doing multipoint constrained design.
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Figure 1 Optimal design of an airfoil to minimize in a sector (angle between 180–225
degrees) the reflection of a monochromatic incident radar wave. The optimal shape on the
left is not admissible from the aerodynamic view point; a multidisciplinary optimization is
necessary and an almost as efficient result is obtained with a constraint on the lift. Computed
by A. Baron.

OSD is a branch of differentiable optimization and more precisely of optimal
control for distributed systems (Lions 1968); as such, gradient and Newton meth-
ods are natural numerical tools. Existence of solutions and differentiability of the
criteria with respect to shape deformation occupied most of the 1980s (Piron-
neau 1984, Delfour et al. 2001, Sokolowski et al. 1991, Haslinger et al. 2003). It
became clear (Tartar 1974) that oscillations of shapes could lead to nonphysical
solutions of the optimization problem in the limit, a phenomenon known as ho-
mogenization, which has also lead to a new class of problems called topological
optimization (for instance, are many pipes better than a single pipe to transport
fluids?).

Numerical algorithms developed in a number of ways (see Section 2) and an-
swered questions like (a) should optimization algorithms be applied to the con-
tinuous or to the discretized problem? The answer is: to the discrete problem if
the conjugate gradient method is used [unless combined with mesh refinement
(Lemarchand et al. 2002)] and to either if Newton’s method is used (Marrocco
et al. 1978, Kim et al. 1999). (b) Should one treat the partial differential equations
as constraints or add them to the cost function? One-shot methods (Arian et al.
1995) advocate the latter but these are rather unstable on problems involving the
full Navier-Stokes equations. (c) Should one optimize the position of all mesh
points, of boundary points only, or try a reduced representation of the surfaces by
splines or other? This last point is still a research area even though a number of
approaches have been proposed: parametrization via a surface response, as used
by experimentalists (Giunta 1997), hierarchical basis (Beux et al. 1993) as with
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multigrids, Computer Aided Design (CAD)-free parametrization (Mohammadi
et al. 2001), etc.

Real aeronautical applications began in the 1990s (Jameson 1988, Elliott et al.
1996); it is now possible to optimize an entire airplane for a criterion such as
drag, under geometric and aerodynamic constraints such as volume and lift. The
latest application is for the design of silent (with respect to sonic boom) supersonic
airplanes (Nadarajah et al. 2002, Mohammadi 2002); we discuss this problem in
the last section.

But OSD is still numerically difficult because it is computer intensive and
because in practice one has to make compromises between shapes that are good
with respect to more than one criteria. One approach is via Pareto optimality;
there is a mathematical theorem that says in simple situations Pareto optimal
points are minimizers of some convex combination of all the criteria, and the
converse is also true. The trouble is that such linear combinations lead to stiff
problems with many suboptima, requiring global optimization tools such as genetic
algorithms.

Genetic algorithms are simple but very slow and cannot be used presently with
more than a few parameters (Obayashi 1997, Makinen et al. 1999); the solution is
probably in a yet to be found combination of gradient and evolutionary methods
(Quagliarella et al. 1997, Peri 2003).

2. FORMULATIONS

Consider the academic problem of designing one boundary S of a wind tunnel �

with required properties (such as uniform flow) in some region of space D (see
Figure 2). This is a typical yet simple design problem which will serve our purpose
to introduce most of the tools of differentiable optimizations also used for more
complex industrial designs.

Assume that the flow is potential and two dimensional. With a stream function
formulation this would be

min
S∈Sd


 j(S) :=

∫
D

|ψ − ψd |2 : − �ψ = 0, in � ψ |S = 0 ψ |C = ψd


 , (1)

Figure 2 Inverse design for a wind tunnel with desired
properties ψd in D.
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where C = �\S and � = ∂�. It can be discretized by

min
Th


 jh :=

∫
D

|ψ − ψd |2 :
∫
�

∇ψh∇wh + 1

ε

∫
C

(ψh − ψd )wh = 0 ∀wh ∈ Vh


 ,

(2)

where Vh is the finite element space of piecewise linear continuous functions on
the triangulation Th of �; h denotes the average edge length in the triangulation.
If wi denotes the function of Vh , which is one at vertex qi and zero at all other
vertices, then with
 j := ψh(q j ),

ψh(x) = ψd (x) +
∑
i /∈�


iw
i (x)

and Equation 2 is of the form

min

q


T B(
q)
 : A(
q)
 = F(
q), (3)

where Ai j = (∇wi , ∇w j ), Bi j = (wi , w j ), and F is the discrete Laplacian of ψd .
It is clear that these depend on the position of all the vertices (stored here in the
vector 
q) and not just of the S vertices.

At first sight, Equation 3 looks like a large optimization problem and it is hard
to see any connection with standard optimal control theory, yet an optimal time
control problem on which the same discretization procedure is applied yields an
optimization problem of similar structure. Thus, many tools of control theory and
of the Calculus of Variations have been extended to Partial Differential Equa-
tions (PDE) and we shall use them to solve Equation 3 numerically (except the
Pontryagin principle, which plays no part here).

Before attempting any numerical simulation we can study the existence of
solutions. These are by no means impractical questions because many of these OSD
problems do not have solutions. For example, if ψd ∈ L2(�) but ψd /∈ H 1(�),
Equation 1 does not have a solution because ψ → ψd is possible and ψ = ψd is
not possible.

Existence can be studied in several ways and it is interesting that each way gives
rise to a different numerical method. The first possibility occurs by using continuity
results with respect to domain boundaries (Pironneau 1984, Delfour et al. 2001);
the unknown is an implicit or explicit parametrization of the boundary. Although
the set of admissible boundaries is not easily endowed with a vector space structure,
one can define boundary variations, which have a Hilbertian structure. For instance,
normal variations by α(x), x ∈ S around a reference boundary S of normal 
n(x)
would be

S(α) = {x + α(x)
n(x) : x ∈ S}. (4)

One can also map the unknown domain � from a fixed domain O and consider that
the unknown is the mapping T :O → �. Denote by T ′ its Jacobian matrix, let ψ̂d
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be ψd ◦ T with ψd extending the given boundary conditions and the requirement
in D (recall that ψd = 0 on S and is constant on the upper wall of the nozzle). Then
we can solve

min
T ∈Td

{ ∫
D̂

|ψ̂ − ψ̂d |2 : ∇ · [A∇ψ̂] = 0 in O

ψ̂ |∂ Ô = ψ̂d , A = T ′−1T

T ′−1det(T ′)

}
(5)

As for Equation 1, it is also possible to work with a local (tangent) variation tV (x)
and set

�(tV ) = {x + tV (x) : x ∈ �} t small and constant. (6)

The third way is to extend the operators by zero below S and take the characteristic
function of �, χ , for unknown

min
χ∈Xd




∫
D

|ψ − ψd |2 : −∇ · [χ∇ψ] = 0, ψ(1 − χ ) = 0, ψ |∂� = ψd


 . (7)

This last approach, suggested by Tartar (1974), has led to what is now called
topological optimization. It may be difficult to work with the function χ , then,
following Allaire et al. (2002), the function χ can be defined through a smooth
function η by χ (x) = bool(η(x) > 0) and in the algorithm we can work with a
smooth η as in the level-set methods where the shape is identified as being the
location in the space where a distance type functional vanishes.

Most existence results are obtained by considering minimizing sequences Sn ,
or T n , or χn and, in the case of our academic example, showing that ψn → ψ for
some ψ (resp T n → T or χn → χ), and that the PDE is satisfied at the limit.

Using regularity results with respect to the domain (Chesnais 1987) (see also
Neittaanmaki 1991 and Delfour et al. 2001) showed that in the class of all S
uniformly Lipschitz, Equation 1 has a solution. However, the solution could depend
on the Lipschitz constant. Similarly, working with Equation 5 showed that in the
class of T ∈ W 1,∞ uniformly, the solution exists (Murat et al. 1976).

However, working with Equation 7 generally leads to weaker results because if
χn → χ , χ may not be a characteristic function; this leads to a relaxed problem,
namely Equation 7 with

Xd = {χ : 0 ≤ χ (x) ≤ 1} instead of X̃ d = {χ : χ (x) = 0 or 1}. (8)

These relaxed problems usually have a solution and it is often possible to show
that if the solution is not in X̃d then it is the limit of composite domains made of
mixtures of smaller and smaller subdomains and holes (Murat et al. 1987).

In dimension two, and for Dirichlet problems like Equation 1, there is a very
elegant result due to Sverak (1992, 1993) that shows that either there is no solution
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Figure 3 Borwall & Petersson solved the problem of the cheapest (drag) transmission
of fluid from left to right for a given volume of pipe. Topological optimization was
used so as to handle topological changes such as seen here between the initial guess
and the computed solution (Borwall et al. 2001).

because the minimizing sequences converge to a composite domain or there is a
regular solution; more precisely, if a maximum number of connected components
for the complement of � is imposed as an inequality constraint for he set of
admissible domains then the solution exists.

For fluids it is hard to imagine that any minimal drag geometry would be
the limit of many small solids objects surrounded by fluids. Nevertheless, in
some cases the approach is quite powerful because it can answer topological
questions that are embarrassing for the formulations Equation 1 and Equation
5, such as: Is it better to have a long wing or two short wings for an airplane (see
Figure 3)?

2.1. Well-Posed Regularized Formulations

Another way to ensure well posedness is to regularize the problem by changing
the criterion and adding a “cost” to the control. For Equation 1,

J (�) =
∫
D

(ψ − ψd )2 + ε

∫
S

dx

ensures existence.
More generally, one may consider working with

J (�) =
∫
D

(ψ − ψd )2 + ε‖S‖2,

but the choice of norm is delicate. In general, for second-order problems anything
related to the second derivatives (i.e., radius of curvature) would likely work,
but it is not known if weaker norms would work also. For computer solutions,
regularization is easier than constraint on the smoothness of the unknowns.

Such “Tychonov regularizations” are extremely important in other fields (data
assimilation in meteorology, inverse imaging, etc.). Here the mathematical results
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justify the precise form of the regularization to use and make the problem well
posed. For applications, once the type of penalty is chosen through mathematical
analysis, the choice of the parameter ε remains a problem. One solution is to
consider ε as an additional (positive) control.

After existence, derivability must be studied because derivatives with respect
to shapes are needed to apply gradient or Newton methods (this is explained
in Section 3). One could say that derivatives are needed only for the discrete
system and that these are differentiable almost everywhere because there are finite
dimensional models. Automatic differentiation of computer programs (presented
briefly below) use that property, but it pushes the difficulty at the convergence level
when the mesh size vanishes.

3. SHAPE DERIVATIVES

It is wise to check differentiability analytically. For each formulation (Equations
1, 5, 7) there is a canonical method. For Equation 1 it occurs by using normal
variations around a reference shape (see Equation 4 and Figure 4). If Gateau
differentiability in L2(S) can be established, ζ ∈ L2(S) exists with

j(S(tα)) − j(S) = t
∫

S
ζα + o(t).

Frechet differentiability will hold if, in addition, o(t) is o(t |α|0), where |·|0 denotes
the norm of L2(S). Then ζ is the L2-gradient, denoted by gradα j(S) and we have

j(S(α)) − j(S) =
∫

S
gradα j(S)α ds + o(|α|0),

so gradα j(S) must be zero at the solution of Equation 1 and ᾱ = −gradα j(S) is a
direction of descent in the sense that if S is not the solution, j(S(t ᾱ)) < j(S) for a
small enough positive constant t. Following Cea (1980) and Delfour et al. (2001)
one may consider a velocity of deformation V (x) and define a time-dependent
shape

Figure 4 Normal variations on a reference shape (left). Topolog-
ical variation on the shape (right).
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�(t) = {x + V (x)t : x ∈ �}
and compute d J

dt , known as the material derivative of J.
Recently, the concept of topological derivative was introduced by Sokolowski

(Sokolowski et al. 1991) and also by Masmoudi (Garreau et al. 2001). One replaces
an area of fluid by a small solid disk of center x and radius ε in the domain and
studies the limit of 1

εm (ψε − ψ), for the right power m, where ψε is the solution of
the PDE with the disk and ψ the solution without the disk (see Figure 4).

3.1. Sensitivity: An Example

Consider the problem of finding the derivatives with respect to the domain para-
meter t ∈ IR of the solution of the Laplace equation with Dirichlet conditions

−�ψ tα = 0 in �tα ψ tα = ψd on �tα = {
x + tα
n : x ∈ �}, (9)

where �tα is the set of boundary �tα . The function α plays the role of a direction
of differentiation whereas t (which could have been ‖α‖) is the parameter that
tends to zero. The derivative with respect to t in the direction α is calculated by
assuming enough regularity so as to have

ψ tα = ψ + tψ ′ + t2

2
ψ ′′ + ... at t = 0.

By linearity, ψ ′ and ψ ′′ also satisfy the Laplace equation. By a Taylor expansion
in x,

ψ tα(x + tαn) = ψ tα(x) + tα
∂ψ tα

∂n
(x) + t2α2

2

∂2ψ tα

∂n2
(x) + ...

By definition, ψ tα(x + tαn) = 0 because x + tαn ∈ �tα; therefore

−�ψ ′ = −�ψ ′′ = 0 ψ ′|� = −α
∂ψ

∂n
ψ ′′|� = −2α

∂ψ ′

∂n
− α2 ∂2ψ

∂n2
.

Notice that ψ is not only Gateau-differentiable, as shown above, but also Frechet-
differentiable because ψ ′ is linear in α.

3.2. The Minimum Drag Problem for Viscous
Incompressible Flows

For an object in an incompressible fluid, minimizing the viscous drag can be
performed by minimizing the energy, so one may consider

min
�∈C

E(u, �) =
∫
�

1

2
|∇u|2dx subject to

u|∂� = u�, ∇ · (u ⊗ u) + ∇ p − ν�u = 0, ∇ · u = 0.
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Let S ⊂ � be an airfoil and u� = 0 on S. Sensitivity analysis by local normal
variations (Equation 4) is fairly straightforward when the Dirichlet conditions
are treated by penalty. Consider the space H of solenoidal functions with square
integrable first derivatives and the Navier-Stokes equations in varational form

NS(u, w) =
∫
�

(u ⊗ u : ∇w + ν∇u : ∇w) + 1

ε

∫
�

(u − u�)w = 0 ∀w ∈ H.

The notation A : B stands for the trace of the matrix product AB. The optimality
conditions, which characterize the solution S, are obtained by writing that the
Lagrangian L(u, w, S(t)) = NS + E is stationary in u and t:

∂τ L(u + τv, w, S)|τ=0 =
∫
�

(u ⊗ v + v ⊗ u) : ∇w

+
∫
�

(ν(∇v : ∇w + ∇w : ∇v) + 1

ε

∫
�

v · w ∀v ∈ H

∂t L(u, w, S(t)) =
∫
S

(ν∇u : ∇w)α + 1

ε

∫
S

α∂nu · w

+1

2

∫
S

α|∇u|2 ∀α ∈ IR

because u|S = 0, d S(t) = d S + o(|α|), and because (Pironneau 1984)

d

dt

∫
�(t)

f =
∫
S

f α
d

dt

∫
S(t)

g = d

dt

∫
S

g(x(s) + tα(s)n(s))ds =
∫
S

α∂ng.

The derivative of E is ∂t L(u, v, S(t)) at t = 0:

∂t E(S(t))|t=0 =
∫

S
α∂nu · ∂n

(
v + u

2

)
where (v, q) is the solution of

−∇ · (v ⊗ u + u ⊗ v) + ∇q − ν�v = �u ∇ · v = 0, v|� = 0. (10)

This “Calculus of Variations” can be justified mathematically (i.e., small functions
are indeed small) (Pironneau 1973).

In the next section, we analyze a frequent situation with fluids, which is math-
ematically difficult because shocks when differentiated yield Dirac functions.

3.3. Sensitivity in the Presence of Shocks

As Godlewski et al. (1998) pointed out in a pioneering paper, there are serious
difficulties of analysis with the Calculus of Variations when the solution of the
partial differential equation has a discontinuity. As analyzed below, optimizing
an airplane with respect to its sonic boom is precisely a problem in that class, so
these difficulties must be investigated. For illustration, we consider the Burgers
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equation and expose the problem and the results known so far. Suppose we seek
the minimum with respect to a parameter a (scalar for clarity) of j(u, a) with u
solution of

∂t u(x, t) + ∂x

(
u2

2

)
(x, t) = 0, u(x, 0) = u0(x, a), ∀(x, t) ∈ R × (0, T ).

(11)

Consider an initial data u0, with a discontinuity at x = 0 satisfying the entropy
condition u−(0) > u+(0); then u(x, t) has a discontinuity at x = s(t) which de-
pends on a, of course, and propagates at a velocity given by the Rankine-Hugoniot
condition ṡ = ū = (u+ + u−)/2, where u± denotes its values before and after the
shock.

Let H denote the Heavyside function and δ its derivative, the Dirac function;
let s ′ = ∂s

∂a and [u] = u+ − u− the jump of u across the shock. We have

u(x, t) = u−(x, t) + (u+(x, t) − u−(x, t))H (x − s(t))
⇒ u′ = u−′ − s ′(t)[u]δ(x − s(t)), (12)

where u−′ is the pointwise derivative of u− with respect to a.
One would like to write that Equation 11 implies

∂t u
′(x, t) + ∂x (uu′)(x, t) = 0, u′(x, 0) = u0′

(x, a). (13)

Unfortunately, uu′ in Equation 13 has no meaning at s(t) because it involves the
product of a Dirac function by a discontinuous function! The classical solution to
this riddle is to say that Equation 12 is valid at all points except at (t, s(t)), and
that the Rankine-Hugoniot condition, differentiated, gives the missing equation:

ṡ ′(t) = ū′(s(t), t) + s ′(t)∂x ū(t, s(t)). (14)

However such strategy would be difficult to generalize to complex systems such
as Euler’s equations. The question then is to embed these results into a variational
framework so as to compute the derivative of j as usual by using weak forms of
the PDEs and adjoint states. It turns out that Equation 13 is true even at the shock
(Bardos et al. 2002), but in the sense of distribution theory and with the convention
that whenever uu′ occurs it means ūu′ at the shock, where ū = (u+ + u−)/2.

Furthermore, Equation 13 in the sense of distribution contains a jump condition
which, of course, is Equation 14. This apparently technical result has a useful
corollary: Integrations by parts are valid and the calculus of variations can be
extended. For instance, the derivative of j = ∫

R×(0,T ) J (x, t, u, a) with respect
to a is j ′ = j ′

a + ∫
R×(0,T ) J ′

uu′ and when a is multidimensional, to transform∫
R×(0,T ) J ′

uu′ one may introduce an adjoint state v solution of

∂tv + u∂xv = J ′
u(x, t), v(x, T ) = 0 (15)
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and write that ∫
R×(0,T )

J ′
uu′ =

∫
R×(0,T )

(∂tv + ū∂xv)u′ = −
∫
R

u0′
v(0) dx . (16)

Notice that the adjoint state v has no shock because its time boundary condition
is continuous and the characteristics integrated backward never cross the shock.
Giles (2001) observed this fact in the more general context of the Euler equations
for perfect gas. He also showed that artificial viscosity is a valid method to handle
the problem numerically.

4. PRINCIPLES OF ALGORITHMIC DIFFERENTIATION

We would like to give a brief description of automatic or rather algorithmic differ-
entiation (AD) methods because of its practical importance. This technique should
be seen as complementary to the analytical approaches. It makes the computation
of shape derivatives automatic, for the discrete systems at least, but it has also its
own dangers.

When a function j(u) is given by a computer program each line of the pro-
gram can be differentiated automatically and exactly (with Maple, Mathemat-
ica, Reduce, etc.). Thus j ′

u can be computed by differentiating every line and
adding the result to the computer program above the original line. To illustrate the
idea, consider the problem of stabilizing near a given state zd (t) Lorenz’ (1963)
chaotic system x(t), y(t), z(t) by a control u(t). After an explicit discretization in
time the system is programmed as below (a, b, c, d, e, δt are numerical constants)
and any gradient or Newton method to find a un , which drives j to zero, would
require j ′

u .

Program for j(u) Lines to add

j = 0 x0 = a y0 = b z0 = d d j = 0 dx0 = 0 dy0 = 0 dz0 = 0

for(n = 0; n < N; n++){
xn+1 = xn + δte(xn − yn) dxn+1 = dxn + δte(dxn − dyn)

yn+1 = yn − δt(xnzn − yn) dyn+1 = dyn − δt(dxnzn + xndzn − dyn)

zn+1 = zn + δt(xn yn − zn − un) dzn+1 = dzn

+ δt(dxn yn + xndyn − dzn − dun)

j = j + δt
(
zn − zn

d

)2 }
d j = d j + 2δt

(
zn − zn

d

)
dzn

If this new program is run with u = u0, dun = δmn (Kronecker’s symbol) then
dj is the derivative of j with respect to um at u0. This is called the direct mode of
AD. The reverse mode of AD is similar to the continuous adjoint method and aims
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to provide the gradient with a cost independent of the number of optimization
variables in the program. In the reverse mode one builds the Lagrangian of the
program by associating a dual variable to each line of the program (each line of
a computer code is seen as an equality constraint and the final line as the cost
function) except the one associated with the criteria.

L =
∑

pn(−xn+1 + xn + δte(xn − yn)) + qn(−yn+1 + yn − δt(xnzn − yn))

+ rn(−zn+1 + zn + δt(xn yn − zn − un)) + j − δt
∑ (

zn − zn
d

)2

Stationarity of L with respect to the state variables should be written in reverse
order (zn, yn, xn, zn−1 . . .). For instance,

∂L

∂zn
= 0 ⇒ −δtqn xn − rn−1 + rn − δt − 2δt

(
zn − zn

d

)
.

This is a discrete form of the first adjoint equation, which gives rn−1 in terms of
rn . Then the stationarity of L with respect to u gives the derivative of j:

j ′
un = ∂L

∂un
= f δtrn.

The reverse mode is capable of computing all the derivatives j ′
un at once while in

the direct mode it is necessary to run the computer program n times with different
values of dun . However, the reverse mode is difficult to automatize because it
requires a symbolic manipulation of the lines of the program, a reversal of the
loops, etc. (Griewank 2000). A variant known as reverse accumulation is used in
the odyssee software; for each assignment y = y + f (x), the dual expression
is px = px + f ′ py with px and py the dual variables of x and y. Hence, if
initialized by (px = 0, py = 1) it gives px = f ′. This method is often used to
write directly (even by hand) the adjoint code. Our experience is that in many
cases it is even more efficient than deriving analytically the continuous adjoint and
discretizing it.

4.0.1. SOFTWARE However, differentiating each line by hand or by an external pro-
gram can be cumbersome. It can be done with tools such as adol-C (Griewank
2000), adifor (Bischof et al. 1992), and odyssee (Gilbert et al. 1991, Faure 1996,
Rostaing 1993), or even by any C++ compiler by overloading the arithmetic oper-
ators and the functions of the standard C-library. For instance the multiplication as
in x ∗ y will be overloaded to perform both x ∗ y and dx ∗ y + x ∗dy. This yields a
remarkably simple procedure as one needs only to replace the standard type float
(or double) by a new type dfloat and add the line #include dfloat.h to link
to this new class. This is extremely convenient for prototyping an applications,
however it does not use the reverse mode and so its efficiency decrease with the
number of parameters.
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5. INCOMPLETE SENSITIVITY

Another direction of research is to try to simplify the formulae for the gradients
and keep only the dominant terms. Generically, the design of a shape S, defined by
a set of parameters x usually involve intermediate parameters q(x) (mesh related
informations), state or flow variables U (q(x)), and a criterion or cost function for
optimization j:

j(x): x → q(x) → U (q(x)) → j(x, q(x), U (q(x))) (17)

The derivative of j with respect to x is

d j

dx
= ∂ j

∂x
+ ∂ j

∂q

∂q

∂x
+ ∂ j

∂U

∂U

∂x
. (18)

Most of the computing time to evaluate Equation 18 is spent on ∂U/∂x in the last
term.

We observed (no theoretical justification) that the last term is small when:

� (a) j is of the form j(x) = ∫
S f (x, q(x))g(U ),

� (b) the local curvature of S is not too large, and
� (c) f and g are such that formally we can verify 1

| f | | ∂ f
∂n | >> 1

|g| | ∂g
∂U |, where n

is the normal to S, while | ∂U
∂n | is of O(1).

If these requirements are met, then local variations about S, S′ = {x + tαn :
x ∈ S} give (Pironneau 1984)∫

S′

f g −
∫
S

f g = t
∫
S

α

(
∂ f g

∂n
− f g

R

)
+ o(t) ∼ t

∫
S

αg
∂ f

∂n
.

Our experience is that ∂g
∂U is small indeed, whereas geometrical quantities, such

as n, have much greater variations. An optimization method using an incomplete
sensitivity is a suboptimal gradient method and in that sense has limitations, but
the gain in computing time is so large (no adjoint state) that it is worth pursuing.

5.0.1. EXAMPLES Consider j = εmux (ε) as cost function (hence f = εn and
g = ux ) and the following Dirichlet problem

−uxx = 1, on ]ε, 1[, u(ε) = 0, u(1) = 0

as the state equation which has as a solution u(x) = −x2/2 + (ε + 1)x/2 − ε/2.
The gradient of j with respect to ε is

j ′
ε(ε) = εm−1(mux (ε) + εuxε(ε)) = εm−1

2
(−n(ε − 1) − ε).

Incomplete sensitivity gives
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j ′
ε ≈ mεm−1ux (ε) = εm−1

2
(−n(ε − 1)),

which is correct for large m. Note also that the sign of the gradient is always correct
and this will be true with any state equations giving ux (ε) < 0.

The next example concerns a Poiseuille flow in a channel driven by a constant
pressure gradient px . The walls are at y = ±a. The flow velocity satisfies

uyy = px

ν
, u(−a) = u(a) = 0. (19)

The analytical solution is u(a, y) = px

2ν
(y2 − a2). We are interested in the sensitivity

of the flow rate when the channel thickness changes. The flow rate is given by
j1(a) = ∫ a

−a u(a, y)dy, which is not in the domain of validity of incomplete
sensitivity. Indeed, the gradient is

d j1
da

=
a∫

−a

∂au(a, y)dy = −2a2 px

ν
,

whereas incomplete sensitivity gives zero.
Now consider the cost function j2(a) = am j1(a). Then

d j2
da

= mam−1 j1(a) + am d j1
da

= −4mam+2 px

6ν
− am+2 px

ν
.

The two contributions have the same sign and are of the same order, and for large
values of n incomplete sensitivity is correct.

Another interesting example leading to a functional reformulation concerns
shape optimization to improve blade efficiency involving the difference of pressure
between inlet and outlet boundaries�p. This is an important industrial problem; the
blade efficiency is defined by j = q�p

ωTR
with q the flow rate, ω the angular velocity,

and TR the torque. Hence, freezing q, �p, and ω and reducing the torque improves
the efficiency. But �p is not in the validity domain of incomplete sensitivities (it
is a function evaluated away from the unknown surface). From the momentum
equation, after integrating by part, we have∫

�

u(u.n) dσ +
∫

�

τn dσ = 0,

where τ is the Newtonian stress tensor and � the boundary of the domain. To sim-
plify the presentation, suppose ninlet/outlet = (±1, 0, 0), neglecting viscous terms on
the in and outlet boundaries and using periodicity on the other external boundaries
we have ∫

�i

(
p + u2

2

)
−

∫
�o

(
p + u2

2

)
=

∫
�w

(
−p + ν

∂u

∂n

)
= Cd .

Therefore, if the inlet and outlet are far enough so that u is constant, from ∇.u = 0
we have �p = Cd . We have linked the pressure variations away from the wall to



28 Aug 2003 23:44 AR AR203-FL36-11.tex AR203-FL36-11.sgm LaTeX2e(2002/01/18) P1: IBD

SHAPE OPTIMIZATION IN FLUID MECHANICS 11.15

the drag coefficient. In the general case, the analysis involves a combination of lift
and drag coefficients (Mohammadi et al. 2001).

5.0.2. REDUCED COMPLEXITY AND INCOMPLETE SENSITIVITIES Note that in a com-
puter implementation we can always try incomplete sensitivity, check that the cost
function decreases, and if it does not we can add the missing term. A middle path
is to use a reduced complexity formula that provides an inexpensive approxima-
tion of the missing term. Assume we have an approximation Ũ (x) ∼ U (x). For
example, if we are dealing with the Navier-Stokes equations, Ũ could come from
the Newton formula for the pressure combined with the Euler equations. In the
context of Equation 17 the following approximation can be used (see Equation 21)

d j

dx
≈ ∂ j

∂x
+ ∂ j

∂q

∂q

∂x
+ ∂ j

∂U

∂Ũ

∂x
. (20)

Ũ is an approximation of U used here only to simplify the computation of ∂Ũ/∂x .
Note that the reduced model needs to be valid only at points where it is used.

A further improvement is obtained by writing in place of Equation 17

x → q(x) → Ũ (q(x))

(
U (x)

Ũ (x)

)
.

d j

dx
≈ ∂ j(U )

∂x
+ ∂ j(U )

∂q

∂q

∂x
+ ∂ j(U )

∂U

∂Ũ

∂x

U (x)

Ũ (x)
. (21)

Fluid dynamics provides a wide range of reduced models: the Newton formula
for the pressure, the Poiseuille flow approximation, boundary-layer models, wall
functions for velocity, and temperature for laminar and turbulent flows, etc. Of
course, these have to be used only in their respective validity domains.

In our numerical tests we obtained considerable speed up by using Equation 21
with the following wall law in place of the full turbulence model:

∂

∂yw

(
∂

∂y

(
(ν + νt )

∂u

∂y

))
= ∂

∂y

(
∂

∂yw

(
(ν + νt )

∂u

∂y

))
= −2uτ

0.4(y − yw)3
, (22)

where y denotes the distance normal to the wall, yw the shape location, u is the
tangential velocity, ν and νt the kinematic flow and eddy viscosities. For simplicity
we have considered a wall function of the form u = uτ f (y+) with u2

τ = ν( ∂u
∂y )w

the local friction velocity, y+ = (y−yw)uτ

ν
and f (y+) = ln(y+)

0.4 + 5.

6. LINK WITH CAD

In industries, shapes are defined and stored in CAD systems (such as Catia) in
databases, as a set of Bezier, or other patches with infinite details for screws and
bolts irrelevant to a computer simulation of aerodynamics properties. Furthermore,
CAD data are usually proprietary and cannot leave the physical area of the industry.
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There is a large scientific literature on OSD with the design variables of the
CAD systems. However, our experience is that the mesh generation modules of
the CAD systems are usually not powerful enough for aerodynamics and certainly
not for mesh adaptation at this time. For accurate results, it is essential to abstract
the optimization from the CAD system so as to use advanced mesh generation and
mesh adaptation tools (George 1991).

In our industrial cooperation, we ask the engineer for any surface mesh, even
a bad one (but a conforming mesh, i.e., no holes or overlapping elements) to
define the initial design. The strategy is then what we call a CAD-free opti-
mization platform: it (a) generates any surface mesh from the CAD data, (b)
applies a visual-C1 (Farin 1987, Gopalsamy et al. 1989) reconstruction with edge
recognition to generate an appropriate surface mesh for CFD, (c) applies a 3D
volumic automatic mesh generator from the surface mesh [we use the modules
developed at INRIA (George 1991)], (d) performs the optimization with mesh
refinement using the same module as in (b) couples with the PDE solver (Mo-
hammadi et al. 2001), and (e) feeds the result back into the CAD system after
optimization.

6.1. CAD-Free Shape Parameterization

In this approach all the nodes of the surface mesh over the shape are control
parameters. One particularit aspect of this parameterization comes from the fact
that regularity requirements must be specified and handled by the user, unlike in a
CAD-based parameter space.

From a practical point of view, this inconvenience is compensated for by the
fact that a CAD-based parameter space might not be suitable for optimization. In
fact, our experience shows that optimization in the CAD-free framework helps
improve the CAD definition of the shape. The final shape has to be expressed
through CAD in all cases. Concerning mesh dependency of the optimization, the
same remark holds when using a CAD-based parameter space. It is obvious that the
optimization might converge to different shapes in different CAD-based parameter
spaces. Finally, new generations of CAD tools can fit CAD parameters into a
surface mesh if one knows the initial correspondence between CAD parameters
and surface mesh.

We discussed regularization mathematically in the first section; the practical
importance of a smoothing step can also be understood by the following argument.

Suppose � is a surface in a domain � ∈ R3 and we want shape variations
δx ∈ C1(�). From Sobolev inclusions, we know that in 2D H 5/2(�) ⊂ C1(�). In
the context of shape optimization, applying to a C1 shape a gradient method does
not necessarily produce a new C1(�) shape because the variation δx are in L2(�)
only (Mohammadi & Pironneau 2001) (see Figure 5) and therefore we need to
project δx into H 5/2(�), for instance.

A projection on H 2m(�) can be achieved by solving a PDE of order 2m on
�, such as (in 2D) δ̃m = δ x̃ . Analysis suggests using a fourth-order operator
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Figure 5 Sketch of a CAD-free deformation without and with the regularization
operator. The initial deformation is only C0(�) and to have a C1(�) variation, one
needs to project it, for instance, into H 5/2(�) if � is a surface in IR3.

(Mohammadi & Pironneau 2001). Numerically, a second-order elliptic system
with a discontinuity capturing operator for the definition of the viscosity gives
satisfactory results. Furthermore, it is a good idea to use an operator that leaves
unchanged regions where the deformation is already smooth enough.

6.2. Regularity and the Iterative Algorithms

Here we would like to point out some loss of regularity issues appearing at this
occasion and some available cures.

Here is a simple example to illustrate the loss of regularity in the construction
of minimizing sequences in infinite dimension. The loss of regularity is related to
the fact that the gradient of the functional has necessarily less regularity than the
parameter.

Suppose that the functional J (x) is a quadratic function of a parameter x J (x) =
|Ax − b|2 with x ∈ H 1

0 (�), b ∈ L2(�) and A : H 1
0 (�) → H−1(�), � ⊂ IRn .

The gradient gradx J = 2AT (Ax − b) ∈ H−1(�) has less regularity than
x; therefore, an iterative scheme like the method of descent with step size ρ,
xm+1 − xm = −ρgradx J = −2ρ AT (Ax − b) deteriorates the regularity of x. We
need to project or smooth the variation into H 1(�). This situation is similar to
what happens with the CAD-free parameterization where a surface is represented
by an infinite number of independent points.

Suppose the parameter belongs to a finite dimensional parameter space, for
instance with a polynomial definition of a surface. When considering the coefficient
of the polynomial as parameter, changes in the polynomial coefficients do not
change the regularity because the new parameter will always belong to the same
polynomial space. If the surface is parameterized by two (or several) polynomials, it
is necessary to add regularity conditions for the junctions between the polynomials.
We then recover the link introduced by the smoothing operator between parameter
coefficients. This is similar to what happens with a CAD-based parameterization
when the number of CAD parameters grows.

The smoothing can also be seen as a modification of the scalar product (., .)0

natural to Calculus of Variation [i.e., the scalar product of L2 by a more elaborate
one, such as (∇·, ∇·)0]. It has a preconditioning effect in that it dissipates localized
high frequencies. From this standpoint, at the discrete level, smoothing replaces a
descent algorithm such as
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j n+1 = j n − ρ(gradx j n, gradx j n)0

by

j n+1 = j n − ρ(gradx j n, gradx j n)M ,

where M is a positive definite preconditioning matrix.

6.2.1. SHAPE REGULARITY AND PENALIZATION Another way to treat the problem
reported above is to consider a regularized criterion. With the notation of Section
3 (dots denote the derivatives in the tangential direction)

jµ = j + µ

2

∫
S

α̇2,

jµ(S(t)) = jµ(S) + t
∫
S

α
(
∂nu · ∂n

(
v + u

2

)
− tµα̈

)
+ o(t |α|). (23)

Although it is a second-order term, αα̈ is kept to prevent numerical oscillations.
One starts with a smooth shape, moves it in its normal direction by

α = t
(
∂nu · ∂n

(
v + u

2

)
− tµα̈

)
and iterates. This gradient method will decrease jµ at each step, and the smoothness
of S is preserved by the last term. A similar and mathematically more correct result
is obtained by applying the gradient method on j in a different metric by using the
scalar product of the Sobolev space H 1(S) for α, i.e., find β such that

j(S(t)) = j(S) + t
∫
S

β̇α̇ + o(t‖α‖).

β is found by solving on S

−β̈ = ∂nu · ∂n

(
v + u

2

)
.

Then S is moved proportionally to β in its normal direction and j decreases.
Again, this differential equation on S acts as a smoother, an old idea for such

moving boundary problems where numerical oscillations develop if nothing is
there to kill them; but here we have a mathematical justification in that S is moved
by a quantity that has the same smoothness because β ∈ H 1(S), at least. If more
smoothness is required, the second derivative can be replaced by a 2m-th derivative.
There are also ways to replace the differential equation on the surface S by a system
of partial differential equations in �, which are much easier to implement (see
Lemarchand et al. 2002).
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7. AN EXAMPLE OF MULTICRITERIA SHAPE
OPTIMIZATION

We present a shape optimization problem under acoustic, aerodynamic, and ge-
ometric constraints using some of the ingredients presented above. The acoustic
concerns the sonic boom of an airplane (Whitham 1952). In shape design for
transonic aircraft in cruise conditions, multicriteria aspects mainly concern the
aerodynamic and elastic characteristics of the aircraft. For instance, the aim can
be to reduce the drag at given lift and with given maximum by-section thickness,
which would ensure structural realizability. Shape optimization for civil supersonic
transport includes another important objective: the control of the sonic boom. This
makes the problem harder than in the transonic case, as drag and sonic boom re-
ductions are naturally incompatible (in supersonic regime low-drag geometries are
sharp and have a high boom level because shocks are attached then).

In principle, supersonic civil transport in cruise condition only involves N-
waves. The N-wave is generated by steady flight conditions and its pressure wave
is shaped like the letter “N.” N-waves have a front shock with a positive peak
overpressure, which is followed by a linear decrease in pressure until the rear
shock returns to ambient pressure.

The flow in regions close to the aircraft, or the near field, is evaluated using
the Euler system for gas dynamics in conservation form. The solution method is
based on a finite volume Galerkin method (Mohammadi 1994). The variables at the
lower boundary of this computational domain are then used to define waveform
parameters, which are propagated to the ground using the waveform parameter
method (Thomas 1972) (see Figure 6).

7.1. Cost Function Definition

Consider the problem of drag Cd minimization with constraints on the lift Cl ,
volume V, maximum by-section thickness d defined for each node and smooth
pressure gradient on the ground to minimize the sonic boom. In our approach the
mesh is unstructured and the surface mesh is made of triangles. In the by-section
definition of the shape from its CAD-free definition, the number of sections is
arbitrary and depends on the complexity of the geometry. The sections are obtained
as intersections of vertical planes with the shape. The maximum airfoil thickness
d of each section is evaluated. Each node in the surface mesh is associated with
two sections and linear interpolation is used to define the maximum thickness
associated to this node. The cost function is given by

j(x) = Cd + (
C0

l − Cl
)
+ + (V0 − V)+

+
∫
S

(d − d0)2dγ +
∫

ground

(∇ pg.U∞)2dγ.
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Figure 6 Shock wave pattern and illustration of the near field computational do-
main and the initialization of the wave propagation method with the near-field
predictions.

Superscript 0 denotes initial shape values. (.)+ = maxr (0, .), where maxr is a
regularized max. U∞ is the projection of the flight direction on the ground. The
cost function prevents the volume and lift coefficient from decreasing.

In addition to the given lift constraint expressed in the cost function by penalty,
we use the inflow incidence to enforce the given lift constraint. We know that
in cruise condition (far from stall), the lift is linear with respect to the angle of
incidence. During optimization the incidence is given by (θn+1 = θn − 0.5(Cn

l −
C0

l ), θ0 = 0), where n is the optimization iteration.
However, a cost function involving pointwise values away from the shape is

not suitable for incomplete sensitivity evaluation. As the boom is defined on the
ground and not on the shape we propose reformulating the functional linking the
pressure signature on the ground to wall-based quantities.

Bow shocks introduce less pressure jump than attached shocks. Bow shocks are
usually associated with smooth geometries. Sharp leading edges lead to attached
shocks leading to high boom levels. On the other hand, shape optimization based
on drag reduction in supersonic regime leads to sharp leading edges. Therefore,
it is important to keep the leading edges of the aircraft smooth while doing drag
reduction. The requirements are as follows: (a) Specify that the wall has to remain
smooth near leading edges, and (b) ask for the local drag force Cloc

d due to leading
edges to remain unchanged or to increase while the drag decreases.
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Figure 7 Cross-section of the near-field pressure variations ( p−p∞
p∞

) in the symmetry plane
(left) and the corresponding ground pressure signatures (right) for the initial (dashed curves)
and optimized (continuous curves) shapes. We observe a nontrivial impact of the modification
of the near-field pressure distribution on the ground pressure: despite a rise in the initial shock
intensity the boom is lower.

The cost function is

j(x) = Cd + (
C0

l − Cl
)
+ + (V0 − V)+

+
∫
S

(d − d0)2dγ +
((

Cloc
d

)0 − Cloc
d

)
+

,

where Cloc
d is the drag force coming from regions where 
n.
u∞ < 0 (
n being the

local outward normal to the shape).
We consider a supersonic business jet geometry provided by Dassault Aviation

company. The cruise speed is Mach 1.8 at no incidence and the flight altitude
55,000 feet. The results show the performance of the optimization method in-
cluding the validity of the incomplete sensitivity approach and the reformulation
of the functional we use for this configuration. After optimization, the drag has
been reduced by 20%, the lift increased by 10%, Cloc

d is kept unchanged, and the
geometric constraint is satisfied. More details on this simulation are available in
(Mohammadi 2002). These results are compatible with those obtained in (Alonso
et al. 2002) using a full adjoint approach (see Figures 7 and 8).

8. CONCLUSIONS AND PERSPECTIVES

OSD is still a difficult and computer-intensive task, especially in three dimensions.
Even if the problem is well posed and the sensitivity is computed correctly (or
approximately but intentionally), success is not guaranteed. Creeping convergence,
local minima, and unphysical solutions can get in the way. Whenever possible,
second-order optimization methods (Newton or quasi-Newton for instance) should
be used because the problems are stiff. One should give great attention to the
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Figure 8 Iso-contours of normal deformation with respect to the original shape. Once
this is known in the CAD-free parameterization, it is easy to express it in the original
CAD parameters.

computing complexity and preferably use suboptimal approaches (for instance,
with incomplete gradients) to avoid computing an adjoint state. In that sense, the
industrial demand for cheap suboptimal methods (Anagnostou et al. 1992, Hirsh
et al. 2001) is important.

There are still many unsolved problems; shock sensitivity and shape optimiza-
tion for unsteady and turbulent flows are two examples. For unsteady flows, the
shape could also be unsteady, given then a variant of what is known as active con-
trol. Hence, incomplete sensitivity has been successful for unsteady flow control
by feedback (Mohammadi et al. 2001) applied for instance to drag reduction for a
cylinder and to buffeting control by injection/suction for a transonic turbulent flow
around an airfoil. Time dependent flows and optimized stationary shapes can be
dealt with as in the sonic boom problem but with some time averaged incomplete
gradient to define the shape deformation.

A simple time averaging has failed in an aerodynamic noise reduction prob-
lem (Marsden et al. 2001). The difference between the shape optimization case
for unsteady flows and the control problems by feedback is that the control being
active in time, its effect is seen by the incomplete sensitivity in time. In our opin-
ion, for these unsteady problems, involving large eddy simulation, a full adjoint
approach is out of reach and nongradient-based methods are only possible with a
few design parameters (Marsden et al. 2002)]. There is therefore a clear need for
low-complexity shape optimization approaches in this case.

Needs also exist in global optimization methods especially for multicrite-
ria optimizations for which response surfaces or neural networks, genetic al-
gorithms (Periaux et al. 1998, Hamda et al. 2000), and recursive optimization
(Mohammadi et al. 2002) could be very useful. Often the flow solver is avail-
able in binary format only (such would be the case when using a commerical
software) and differentiable optimization is then inefficient. However, genetic al-
gorithms are slow and the future lies probably in the coupling of both classes of
methods.
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