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Chapter 1

Introduction

The Open Dynamics Engine (ODE) is a free, industrial quality library for simulating articulated rigid body
dynamics. For example, it is good for simulating ground vehicles, legged creatures, and moving objects
in VR environments. It is fast, flexible and robust, and it has built-in collision detection. ODE is being
developed byRussell Smith1 with help from severalcontributors2.

If “rigid body simulation” does not make much sense to you, check outWhat is a Physics SDK?3.
This is the user guide for ODE version 0.5. Despite the low version number, ODE is reasonably mature

and stable.

1.1 Features

ODE is good for simulatingarticulatedrigid body structures. An articulated structure is created when rigid
bodies of various shapes are connected together with joints of various kinds. Examples are ground vehicles
(where the wheels are connected to the chassis), legged creatures (where the legs are connected to the body),
or stacks of objects.

ODE is designed to be used in interactive or real-time simulation. It is particularly good for simulating
moving objects in changeable virtual reality environments. This is because it is fast, robust and stable, and
the user has complete freedom to change the structure of the system even while the simulation is running.

ODE uses a highly stable integrator, so that the simulation errors should not grow out of control. The
physical meaning of this is that the simulated system should not ”explode” for no reason (believe me, this
happens a lot with other simulators if you are not careful). ODE emphasizes speed and stability over physical
accuracy.

ODE hashard contacts. This means that a special non-penetration constraint is used whenever two
bodies collide. The alternative, used in many other simulators, is to use virtual springs to represent contacts.
This is difficult to do right and extremely error-prone.

ODE has a built-in collision detection system. However you can ignore it and do your own collision
detection if you want to. The current collision primitives are sphere, box, capped cylinder, plane, ray, and
triangular mesh - more collision objects will come later. ODE’s collision system provides fast identification
of potentially intersecting objects, through the concept of “spaces”.

Here are the features:

• Rigid bodies with arbitrary mass distribution.

1http://www.q12.org
2http://opende.sourceforge.net/community.html
3http://opende.sourceforge.net/slides/slides.html
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2 CHAPTER 1. INTRODUCTION

• Joint types: ball-and-socket, hinge, slider (prismatic), hinge-2, fixed, angular motor, universal.

• Collision primitives: sphere, box, capped cylinder, plane, ray, and triangular mesh.

• Collision spaces: Quad tree, hash space, and simple.

• Simulation method: The equations of motion are derived from a Lagrange multiplier velocity based
model due to Trinkle/Stewart and Anitescu/Potra.

• A first order integrator is being used. It’s fast, but not accurate enough for quantitative engineering
yet. Higher order integrators will come later.

• Choice of time stepping methods: either the standard “big matrix” method or the newer iterative
QuickStep method can be used.

• Contact and friction model: This is based on the Dantzig LCP solver described by Baraff, although
ODE implements a faster approximation to the Coloumb friction model.

• Has a native C interface (even though ODE is mostly written in C++).

• Has a C++ interface built on top of the C one.

• Many unit tests, and more being written all the time.

• Platform specific optimizations.

• Other stuff I forgot to mention...

1.2 ODE’s License

ODE is Copyright c© 2001-2004 Russell L. Smith. All rights reserved.
This library is free software; you can redistribute it and/or modify it under the terms of EITHER:

1. TheGNU Lesser General Public License4 as published by the Free Software Foundation; either ver-
sion 2.1 of the License, or (at your option) any later version. The text of the GNU Lesser General
Public License is included with this library in the fileLICENSE.TXT .

2. TheBSD-style license5 that is included with this library in the fileLICENSE-BSD.TXT .

This library is distributed in the hope that it will be useful, butWITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
filesLICENSE.TXT andLICENSE-BSD.TXT for more details.

1.3 The ODE Community

Do you have questions or comments about ODE? Think you can help? Pleasewrite to the ODE mailing
list6.

4http://www.opensource.org/licenses/lgpl-license.html
5http://opende.sourceforge.net/ode-license.html
6http://q12.org/mailman/listinfo/ode

http://www.opensource.org/licenses/lgpl-license.html
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Chapter 2

How to Install and Use ODE

2.1 Installing ODE

Step 1: Unpack the ODE archive.
Steps 2-4 (alternate):If you’re on windows and using MSVC, you can use the workspace and project

files in the VC6 subdirectory of the distribution.
Step 2: Get the GNUmake tool. Many Unix platforms come with this, although sometimes it is called

gmake. A version of GNU make for windows is availablehere1.
Step 3: Edit the settings in the fileconfig/user-settings . The list of supported platforms is

given in that file.
Step 4:Run GNUmake to configure and build ODE and the graphical test programs. The configuration

process creates the fileinclude/ode/config.h .
Step 5: To install the ODE library onto your system you should copy thelib/ andinclude/ direc-

tories to a suitable place, e.g. on Unix:

• include/ode/ --> /usr/local/include/ode/

• lib/libode.a --> /usr/local/lib/libode.a

2.1.1 Building and Running ODE Tests on MacOS X

ODE uses XWindows and OpenGL to render the scene being simulated. In order to build the example you
will need to install Apple X11 server and the X11SDK (as well as the normal developer tools).

These are available from Apple. As of writing this can be found at:http://www.apple.com/macosx/x112.
NOTE: there is a tiny link at the bottom right of the page for the SDK

Once the software is installed follow the normal build instructions.
Since ODE uses X11 you need to run the X11 server (which you should have installed, it’s in the

Applications Folder).
If you run the test app in the XTerm that the X11 server opens by default then they should run fine.

If however you run them from a MacOS X Terminal then you need to define the environment variable
DISPLAY. If DISPLAY is not defined then you will get a message saying: ”cannot open X11 display”.

For example to run the boxstack test you would type

1http://q12.org/ode/bin/make.exe
2http://www.apple.com/macosx/x11
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4 CHAPTER 2. HOW TO INSTALL AND USE ODE

cd ode/test
DISPLAY=:0.0 ./test_boxstack.exe

You can define this environment variable in your shell startup scripts (for example in∼/.bashrc if you are
using bash)

2.2 Using ODE

The best way to understand how to use ODE is to look at the test/example programs that come with it. Note
the following things:

• Source files that use ODE only need to include a single header file:

#include <ode/ode.h>

Theode directory in this statement is actually theinclude/ode directory of the ODE distribution.
This header file will include others in theode directory, so you need to set the include path of your
compiler, e.g. in linux

gcc -c -I /home/username/ode/include myprogram.cpp

• When ODE is used with thedWorldStep()function, heavy use is made of the stack for storing tem-
porary values. For very large systems several megabytes of stack can be used. If you experience
unexplained out-of-memory errors or data corruption, especially on Windows, try increasing the stack
size, or switching todWorldQuickStep().



Chapter 3

Concepts

3.1 Background

[Here is where I will write some background information about rigid body dynamics and simulation. But in
the meantime, please refer to Baraff’s excellentSIGGRAPH tutorial1].

3.2 Rigid bodies

A rigid body has various properties from the point of view of the simulation. Some properties change over
time:

• Position vector (x,y,z) of the body’s point of reference. Currently the point of reference must corre-
spond to the body’s center of mass.

• Linear velocity of the point of reference, a vector (vx,vy,vz).

• Orientation of a body, represented by a quaternion (qs,qx,qy,qz) or a 3x3 rotation matrix.

• Angular velocity vector (wx,wy,wz) which describes how the orientation changes over time.

Other body properties are usually constant over time:

• Mass of the body.

• Position of the center of mass with respect to the point of reference. In the current implementation the
center of mass and the point of reference must coincide.

• Inertia matrix. This is a 3x3 matrix that describes how the body’s mass is distributed around the center
of mass.

Conceptually each body has an x-y-z coordinate frame embedded in it, that moves and rotates with the body,
as shown inFigure 3.1.

The origin of this coordinate frame is the body’s point of reference. Some values in ODE (vectors,
matrices etc) are relative to the body coordinate frame, and others are relative to the global coordinate
frame.

Note that theshapeof a rigid body is not a dynamical property (except insofar as it influences the various
mass properties). It is onlycollision detectionthat cares about the detailed shape of the body.

1http://www.cs.cmu.edu/ ∼baraff/sigcourse/index.html
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Figure 3.1: The body coordinate frame.

3.2.1 Islands and Disabled Bodies

Bodies are connected to each other with joints. An “island” of bodies is a group that can not be pulled apart
- in other words each body is connected somehow to every other body in the island.

Each island in the world is treated separately when the simulation step is taken. This is useful to know:
if there areN similar islands in the simulation then the step computation time will beO(N).

Each body can be enabled or disabled. Disabled bodies are effectively “turned off” and are not updated
during a simulation step. Disabling bodies is an effective way to save computation time when it is known
that the bodies are motionless or otherwise irrelevant to the simulation.

If there are any enabled bodies in an island then every body in the island will be enabled at the next
simulation step. Thus to effectively disable an island of bodies,everybody in the island must be disabled.
If a disabled island is touched by another enabled body then the entire island will be enabled, as a contact
joint will join the enabled body to the island.

3.3 Integration

The process of simulating the rigid body system through time is called integration. Each integration step
advances the current time by a given step size, adjusting the state of all the rigid bodies for the new time
value. There are two main issues to consider when working with any integrator:

• How accurate is it? That is, how closely does the behavior of the simulated system match what would
happen in real life?

• How stable is it? That is, will calculation errors ever cause completely non-physical behavior of the
simulated system? (e.g. causing the system to ”explode” for no reason).

ODE’s current integrator is very stable, but not particularly accurate unless the step size is small. For
most uses of ODE this is not a problem – ODE’s behavior still looks perfectly physical in almost all cases.
However ODE should not be used for quantitative engineering until this accuracy issue has been addressed
in a future release.

3.4 Force accumulators

Between each integrator step the user can call functions to apply forces to the rigid body. These forces are
added to ”force accumulators” in the rigid body object. When the next integrator step happens, the sum of
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Figure 3.2: Three different constraint types.

all the applied forces will be used to push the body around. The forces accumulators are set to zero after
each integrator step.

3.5 Joints and constraints

In real life a joint is something like a hinge, that is used to connect two objects. In ODE a joint is very
similar: It is a relationship that is enforced between two bodies so that they can only have certain positions
and orientations relative to each other. This relationship is called aconstraint– the wordsjoint andconstraint
are often used interchangeably.Figure 3.2shows three different constraint types.

The first is a ball and socket joint that constraints the “ball” of one body to be in the same location as
the “socket” of another body. The second is a hinge joint that constraints the two parts of the hinge to be in
the same location and to line up along the hinge axle. The third is a slider joint that constraints the “piston”
and “socket” to line up, and additionally constraints the two bodies to have the same orientation.

Each time the integrator takes a step all the joints are allowed to applyconstraint forcesto the bodies
they affect. These forces are calculated such that the bodies move in such a way to preserve all the joint
relationships.

Each joint has a number of parameters controlling its geometry. An example is the position of the ball-
and-socket point for a ball-and-socket joint. The functions to set joint parameters all takeglobalcoordinates,
not body-relative coordinates. A consequence of this is that the rigid bodies that a joint connects must be
positioned correctlybeforethe joint is attached.

3.6 Joint groups

A joint group is a special container that holds joints in a world. Joints can be added to a group, and then
when those joints are no longer needed the entire group of joints can be very quickly destroyed with one
function call. However, individual joints in a group can not be destroyed before the entire group is emptied.

This is most useful with contact joints, which are added and remove from the world in groups every time
step.

3.7 Joint error and the error reduction parameter (ERP)

When a joint attaches two bodies, those bodies are required to have certain positions and orientations relative
to each other. However, it is possible for the bodies to be in positions where the joint constraints are not met.
This “joint error” can happen in two ways:

1. If the user sets the position/orientation of one body without correctly setting the position/orientation
of the other body.
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Figure 3.3: An example of error in a ball and socket joint.

2. During the simulation, errors can creep in that result in the bodies drifting away from their required
positions.

Figure 3.3shows an example of error in a ball and socket joint (where the ball and socket do not line up).

There is a mechanism to reduce joint error: during each simulation step each joint applies a special force
to bring its bodies back into correct alignment. This force is controlled by theerror reduction parameter
(ERP), which has a value between 0 and 1.

The ERP specifies what proportion of the joint error will be fixed during the next simulation step. If
ERP=0 then no correcting force is applied and the bodies will eventually drift apart as the simulation pro-
ceeds. If ERP=1 then the simulation will attempt to fix all joint error during the next time step. However,
setting ERP=1 is not recommended, as the joint error will not be completely fixed due to various internal
approximations. A value of ERP=0.1 to 0.8 is recommended (0.2 is the default).

A global ERP value can be set that affects most joints in the simulation. However some joints have local
ERP values that control various aspects of the joint.

3.8 Soft constraint and constraint force mixing (CFM)

Most constraints are by nature “hard”. This means that the constraints represent conditions that are never
violated. For example, the ball must always be in the socket, and the two parts of the hinge must always be
lined up. In practice constraints can be violated by unintentional introduction of errors into the system, but
the error reduction parameter can be set to correct these errors.

Not all constraints are hard. Some “soft” constraints are designed to be violated. For example, the
contact constraint that prevents colliding objects from penetrating is hard by default, so it acts as though the
colliding surfaces are made of steel. But it can be made into a soft constraint to simulate softer materials,
thereby allowing some natural penetration of the two objects when they are forced together.

There are two parameters that control the distinction between hard and soft constraints. The first is the
error reduction parameter (ERP) that has already been introduced. The second is the constraint force mixing
(CFM) value, that is described below.
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3.8.1 Constraint Force Mixing (CFM)

What follows is a somewhat technical description of the meaning of CFM. If you just want to know how it
is used in practice then skip to the next section.

Traditionally the constraint equation for every joint has the form

J ∗ v = c (3.1)

wherev is a velocity vector for the bodies involved,J is a “Jacobian” matrix with one row for every
degree of freedom the joint removes from the system, andc is a right hand side vector. At the next time step,
a vectorlambda is calculated (of the same size asc) such that the forces applied to the bodies to preserve
the joint constraint are

force = JT ∗ λ (3.2)

ODE adds a new twist. ODE’s constraint equation has the form

J ∗ v = c + CFM ∗ λ (3.3)

whereCFM is a square diagonal matrix.CFM mixes the resulting constraint force in with the con-
straint that produces it. A nonzero (positive) value ofCFM allows the original constraint equation to
be violated by an amount proportional to CFM times the restoring forceλ that is needed to enforce the
constraint. Solving forλ gives

(JM−1JT + CFM/h)λ = c/h (3.4)

ThusCFM simply adds to the diagonal of the original system matrix. Using a positive value ofCFM
has the additional benefit of taking the system away from any singularity and thus improving the factorizer
accuracy.

3.8.2 How To Use ERP and CFM

ERP and CFM can be independently set in many joints. They can be set in contact joints, in joint limits and
various other places, to control the spongyness and springyness of the joint (or joint limit).

If CFM is set to zero, the constraint will be hard. If CFM is set to a positive value, it will be possible to
violate the constraint by “pushing on it” (for example, for contact constraints by forcing the two contacting
objects together). In other words the constraint will be soft, and the softness will increase as CFM increases.
What is actually happening here is that the constraint is allowed to be violated by an amount proportional to
CFM times the restoring force that is needed to enforce the constraint. Note that setting CFM to a negative
value can have undesirable bad effects, such as instability. Don’t do it.

By adjusting the values of ERP and CFM, you can achieve various effects. For example you can simulate
springy constraints, where the two bodies oscillate as though connected by springs. Or you can simulate
more spongy constraints, without the oscillation. In fact, ERP and CFM can be selected to have the same
effect as any desired spring and damper constants. If you have a spring constantkp and damping constant
kd, then the corresponding ODE constants are:
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ERP = hkp/(hkp + kd) (3.5)

CFM = 1/(hkp + kd) (3.6)

whereh is the stepsize. These values will give the same effect as a spring-and-damper system simulated
with implicit first order integration.

Increasing CFM, especially the global CFM, can reduce the numerical errors in the simulation. If the
system is near-singular, then this can markedly increase stability. In fact, if the system is mis-behaving, one
of the first things to try is to increase the global CFM.

3.9 Collision handling

[There is a lot that needs to be written about collision handling.]
Collisions between bodies or between bodies and the static environment are handled as follows:

1. Before each simulation step, the user calls collision detection functions to determine what is touching
what. These functions return a list of contact points. Each contact point specifies a position in space,
a surface normal vector, and a penetration depth.

2. A special contact joint is created for each contact point. The contact joint is given extra information
about the contact, for example the friction present at the contact surface, how bouncy or soft it is, and
various other properties.

3. The contact joints are put in a joint ”group”, which allows them to be added to and removed from the
system very quickly. The simulation speed goes down as the number of contacts goes up, so various
strategies can be used to limit the number of contact points.

4. A simulation step is taken.

5. All contact joints are removed from the system.

Note that the built-in collision functions do not have to be used - other collision detection libraries can be
used as long as they provide the right kinds of contact point information.

3.10 Typical simulation code

A typical simulation will proceed like this:

1. Create a dynamics world.

2. Create bodies in the dynamics world.

3. Set the state (position etc) of all bodies.

4. Create joints in the dynamics world.

5. Attach the joints to the bodies.

6. Set the parameters of all joints.
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7. Create a collision world and collision geometry objects, as necessary.

8. Create a joint group to hold the contact joints.

9. Loop:

(a) Apply forces to the bodies as necessary.

(b) Adjust the joint parameters as necessary.

(c) Call collision detection.

(d) Create a contact joint for every collision point, and put it in the contact joint group.

(e) Take a simulation step.

(f) Remove all joints in the contact joint group.

10. Destroy the dynamics and collision worlds.

3.11 Physics model

The various methods and approximations that are used in ODE are discussed here.

3.11.1 Friction Approximation

[We really need more pictures here.]
The Coulomb friction model is a simple, but effective way to model friction at contact points. It is a

simple relationship between the normal and tangential forces present at a contact point (see the contact joint
section for a description of these forces). The rule is:

|fT | <= µ ∗ |fN | (3.7)

wherefN andfT are the normal and tangential force vectors respectively, andµ is the friction coefficient
(typically a number around 1.0). This equation defines a ”friction cone” - imagine a cone withfN as the
axis and the contact point as the vertex. If the total friction force vector is within the cone then the contact
is in ”sticking mode”, and the friction force is enough to prevent the contacting surfaces from moving with
respect to each other. If the force vector is on the surface of the cone then the contact is in ”sliding mode”,
and the friction force is typically not large enough to prevent the contacting surfaces from sliding. The
parameterµ thus specifies the maximum ratio of tangential to normal force.

ODE’s friction models are approximations to the friction cone, for reasons of efficiency. There are
currently two approximations to chose from:

1. The meaning ofµ is changed so that it specifies the maximum friction (tangential) force that can be
present at a contact, in either of the tangential friction directions. This is rather non physical because
it is independent of the normal force, but it can be useful and it is the computationally cheapest option.
Note that in this caseµ is a force limit an must be chosen appropriate to the simulation.

2. The friction cone is approximated by a friction pyramid aligned with the first and second friction
directions [I really need a picture here]. A further approximation is made: first ODE computes the
normal forces assuming that all the contacts are frictionless. Then it computes the maximum limits
fm for the friction (tangential) forces from
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fm = µ ∗ |fN | (3.8)

and then proceeds to solve for the entire system with these fixed limits (in a manner similar to ap-
proximation 1 above). This differs from a true friction pyramid in that the ”effective”µ is not quite
fixed. This approximation is easier to use asµ is a unit-less ratio the same as the normal Coloumb
friction coefficient, and thus can be set to a constant value around 1.0 without regard for the specific
simulation.
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Data Types and Conventions

4.1 The basic data types

The ODE library can be built to use either single or double precision floating point numbers. Single precision
is faster and uses less memory, but the simulation will have more numerical error that can result in visible
problems. You will get less accuracy and stability with single precision.

[must describe what factors influence accuracy and stability].
The floating point data type isdReal . Other commonly used types aredVector3 , dVector4 ,

dMatrix3 , dMatrix4 , dQuaternion .

4.2 Objects and IDs

There are various kinds of object that can be created:

• dWorld - a dynamics world.

• dSpace - a collision space.

• dBody - a rigid body.

• dGeom - geometry (for collision).

• dJoint - a joint

• dJointGroup - a group of joints.

Functions that deal with these objects take and return object IDs. The object ID types aredWorldID ,
dBodyID , etc.

4.3 Argument conventions

All 3-vectors (x,y,z) supplied to “set” functions are given as individual x,y,z arguments.
All 3-vector result arguments to get() function are pointers to arrays ofdReal .
Larger vectors are always supplied and returned as pointers to arrays ofdReal .
All coordinates are in the global frame except where otherwise specified.

13
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4.4 C versus C++

The ODE library is written in C++, but its public interface is made of simple C functions, not classes. Why
is this?

• Using a C interface only is simpler - the features of C++ features do not help much for ODE.

• It prevents C++ mangling and runtime-support problems across multiple compilers.

• The user doesn’t have to be familiar with C++ quirks to use ODE.

4.5 Debugging

The ODE library can be compiled in ”debugging” or ”release” mode. Debugging mode is slower, but
function arguments are checked and many run-time tests are done to ensure internal consistency. Release
mode is faster, but no checking is done.
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World

The world object is a container for rigid bodies and joints. Objects in different worlds can not interact, for
example rigid bodies from two different worlds can not collide.

All the objects in a world exist at the same point in time, thus one reason to use separate worlds is to
simulate systems at different rates.

Most applications will only need one world.

dWorldID dWorldCreate();

Create a new, empty world and return its ID number.

void dWorldDestroy (dWorldID);

Destroy a world and everything in it. This includes all bodies, and all joints that are not part of a joint
group. Joints that are part of a joint group will be deactivated, and can be destroyed by calling, for
example,dJointGroupEmpty().

void dWorldSetGravity (dWorldID, dReal x, dReal y, dReal z);
void dWorldGetGravity (dWorldID, dVector3 gravity);

Set and get the world’s global gravity vector. The units are m/s/s, so Earth’s gravity vector would be
(0,0,-9.81), assuming that +z is up. The default is no gravity, i.e. (0,0,0).

void dWorldSetERP (dWorldID, dReal erp);
dReal dWorldGetERP (dWorldID);

Set and get the global ERP value, that controls how much error correction is performed in each time
step. Typical values are in the range 0.1–0.8. The default is 0.2.

void dWorldSetCFM (dWorldID, dReal cfm);
dReal dWorldGetCFM (dWorldID);

15
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Set and get the global CFM (constraint force mixing) value. Typical values are in the range10−9 – 1.
The default is10−5 if single precision is being used, or10−10 if double precision is being used.

void dWorldSetAutoDisableFlag (dWorldID, int do_auto_disable);
int dWorldGetAutoDisableFlag (dWorldID);
void dWorldSetAutoDisableLinearThreshold (dWorldID, dReal linear_threshold);
dReal dWorldGetAutoDisableLinearThreshold (dWorldID);
void dWorldSetAutoDisableAngularThreshold (dWorldID, dReal angular_threshold);
dReal dWorldGetAutoDisableAngularThreshold (dWorldID);
void dWorldSetAutoDisableSteps (dWorldID, int steps);
int dWorldGetAutoDisableSteps (dWorldID);
void dWorldSetAutoDisableTime (dWorldID, dReal time);
dReal dWorldGetAutoDisableTime (dWorldID);

Set and get the default auto-disable parameters for newly created bodies. See section6.5for a descrip-
tion of the auto-disable feature. The default parameters are:

• AutoDisableFlag = disabled

• AutoDisableLinearThreshold = 0.01

• AutoDisableAngularThreshold = 0.01

• AutoDisableSteps = 10

• AutoDisableTime = 0

void dWorldImpulseToForce (dWorldID, dReal stepsize,
dReal ix, dReal iy, dReal iz, dVector3 force);

If you want to apply a linear or angular impulse to a rigid body, instead of a force or a torque, then
you can use this function to convert the desired impulse into a force/torque vector before calling the
dBodyAdd... function.

This function is given the desired impulse as (ix ,iy ,iz ) and puts the force vector inforce . The
current algorithm simply scales the impulse by 1/stepsize , wherestepsize is the step size for
thenextstep that will be taken.

This function is given adWorldID because, in the future, the force computation may depend on
integrator parameters that are set as properties of the world.

void dCloseODE();

This deallocates some extra memory used by ODE that can not be deallocated using the normal destroy
functions, e.g.dWorldDestroy(). You can use this function at the end of your application to prevent
memory leak checkers from complaining about ODE.
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5.1 Stepping Functions

void dWorldStep (dWorldID, dReal stepsize);

Step the world. This uses a ”big matrix” method that takes time on the order ofm3 and memory on the
order ofm2, wherem is the total number of constraint rows.

For large systems this will use a lot of memory and can be very slow, but this is currently the most
accurate method.

void dWorldQuickStep (dWorldID, dReal stepsize);

Step the world. This uses an iterative method that takes time on the order ofm ∗N and memory on the
order ofm, wherem is the total number of constraint rows andN is the number of iterations.

For large systems this is a lot faster thandWorldStep(), but it is less accurate.

QuickStep is great for stacks of objects especially when the auto-disable feature is used as well. How-
ever, it has poor accuracy for near-singular systems. Near-singular systems can occur when using
high-friction contacts, motors, or certain articulated structures. For example, a robot with multiple legs
sitting on the ground may be near-singular.

There are ways to help overcome QuickStep’s inaccuracy problems:

• Increase CFM.

• Reduce the number of contacts in your system (e.g. use the minimum number of contacts for the
feet of a robot or creature).

• Don’t use excessive friction in the contacts.

• Use contact slip if appropriate

• Avoid kinematic loops (however, kinematic loops are inevitable in legged creatures).

• Don’t use excessive motor strength.

• Use force-based motors instead of velocity-based motors.

Increasing the number of QuickStep iterations may help a little bit, but it is not going to help much if
your system is really near singular.

void dWorldSetQuickStepNumIterations (dWorldID, int num);
int dWorldGetQuickStepNumIterations (dWorldID);

Set and get the number of iterations that the QuickStep method performs per step. More iterations will
give a more accurate solution, but will take longer to compute. The default is 20 iterations.

5.2 Contact Parameters

void dWorldSetContactMaxCorrectingVel (dWorldID, dReal vel);
dReal dWorldGetContactMaxCorrectingVel (dWorldID);
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Set and get the maximum correcting velocity that contacts are allowed to generate. The default value
is infinity (i.e. no limit). Reducing this value can help prevent ”popping” of deeply embedded objects.

void dWorldSetContactSurfaceLayer (dWorldID, dReal depth);
dReal dWorldGetContactSurfaceLayer (dWorldID);

Set and get the depth of the surface layer around all geometry objects. Contacts are allowed to sink into
the surface layer up to the given depth before coming to rest. The default value is zero. Increasing this
to some small value (e.g. 0.001) can help prevent jittering problems due to contacts being repeatedly
made and broken.
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Rigid Body Functions

6.1 Creating and Destroying Bodies

dBodyID dBodyCreate (dWorldID);

Create a body in the given world with default mass parameters at position (0,0,0). Return its ID.

void dBodyDestroy (dBodyID);

Destroy a body. All joints that are attached to this body will be put into limbo (i.e. unattached and not
affecting the simulation, but they will NOT be deleted).

6.2 Position and orientation

void dBodySetPosition (dBodyID, dReal x, dReal y, dReal z);
void dBodySetRotation (dBodyID, const dMatrix3 R);
void dBodySetQuaternion (dBodyID, const dQuaternion q);
void dBodySetLinearVel (dBodyID, dReal x, dReal y, dReal z);
void dBodySetAngularVel (dBodyID, dReal x, dReal y, dReal z);
const dReal * dBodyGetPosition (dBodyID);
const dReal * dBodyGetRotation (dBodyID);
const dReal * dBodyGetQuaternion (dBodyID);
const dReal * dBodyGetLinearVel (dBodyID);
const dReal * dBodyGetAngularVel (dBodyID);

These functions set and get the position, rotation, linear and angular velocity of the body. After setting
a group of bodies, the outcome of the simulation is undefined if the new configuration is inconsistent
with the joints/constraints that are present. When getting, the returned values are pointers to internal
data structures, so the vectors are valid until any changes are made to the rigid body system structure.

Hmmm.dBodyGetRotation returns a 4x3 rotation matrix.

19
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6.3 Mass and force

void dBodySetMass (dBodyID, const dMass *mass);
void dBodyGetMass (dBodyID, dMass *mass);

Set/get the mass of the body (see the mass functions).

void dBodyAddForce (dBodyID, dReal fx, dReal fy, dReal fz);
void dBodyAddTorque (dBodyID, dReal fx, dReal fy, dReal fz);
void dBodyAddRelForce (dBodyID, dReal fx, dReal fy, dReal fz);
void dBodyAddRelTorque (dBodyID, dReal fx, dReal fy, dReal fz);
void dBodyAddForceAtPos (dBodyID, dReal fx, dReal fy, dReal fz,

dReal px, dReal py, dReal pz);
void dBodyAddForceAtRelPos (dBodyID, dReal fx, dReal fy, dReal fz,

dReal px, dReal py, dReal pz);
void dBodyAddRelForceAtPos (dBodyID, dReal fx, dReal fy, dReal fz,

dReal px, dReal py, dReal pz);
void dBodyAddRelForceAtRelPos (dBodyID, dReal fx, dReal fy, dReal fz,

dReal px, dReal py, dReal pz);

Add forces to bodies (absolute or relative coordinates). The forces are accumulated on to each body,
and the accumulators are zeroed after each time step.

The ...RelForce and ...RelTorque functions take force vectors that are relative to the body’s own
frame of reference.

The ...ForceAtPos and ...ForceAtRelPos functions take an extra position vector (in global or
body-relative coordinates respectively) that specifies the point at which the force is applied. All other
functions apply the force at the center of mass.

const dReal * dBodyGetForce (dBodyID);
const dReal * dBodyGetTorque (dBodyID);

Return the current accumulated force and torque vector. The returned pointers point to an array of 3
dReal s. The returned values are pointers to internal data structures, so the vectors are only valid until
any changes are made to the rigid body system.

void dBodySetForce (dBodyID b, dReal x, dReal y, dReal z);
void dBodySetTorque (dBodyID b, dReal x, dReal y, dReal z);

Set the body force and torque accumulation vectors. This is mostly useful to zero the force and torque
for deactivated bodies before they are reactivated, in the case where the force-adding functions were
called on them while they were deactivated.
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6.4 Utility

void dBodyGetRelPointPos (dBodyID, dReal px, dReal py, dReal pz,
dVector3 result);

void dBodyGetRelPointVel (dBodyID, dReal px, dReal py, dReal pz,
dVector3 result);

void dBodyGetPointVel (dBodyID, dReal px, dReal py, dReal pz,
dVector3 result);

Utility functions that take a point on a body (px ,py ,pz ) and return that point’s position or velocity
in global coordinates (inresult ). ThedBodyGetRelPointXXX functions are given the point in
body relative coordinates, and thedBodyGetPointVel function is given the point in global coordi-
nates.

void dBodyGetPosRelPoint (dBodyID, dReal px, dReal py, dReal pz,
dVector3 result);

This is the inverse ofdBodyGetRelPointPos(). It takes a point in global coordinates (x ,y ,z ) and returns
the point’s position in body-relative coordinates (result ).

void dBodyVectorToWorld (dBodyID, dReal px, dReal py, dReal pz,
dVector3 result);

void dBodyVectorFromWorld (dBodyID, dReal px, dReal py, dReal pz,
dVector3 result);

Given a vector expressed in the body (or world) coordinate system (x ,y ,z ), rotate it to the world (or
body) coordinate system (result ).

6.5 Automatic Enabling and Disabling

Every body can be enabled or disabled. Enabled bodies participate in the simulation, while disabled bodies
are turned off and do not get updated during a simulation step. New bodies are always created in the enabled
state.

A disabled body that is connected through a joint to an enabled body will be automatically re-enabled at
the next simulation step.

Disabled bodies do not consume CPU time, therefore to speed up the simulation bodies should be
disabled when they come to rest. This can be done automatically with the auto-disable feature.

If a body has its auto-disable flag turned on, it will automatically disable itself when

1. It has been idle for a given number of simulation steps.

2. It has also been idle for a given amount of simulation time.

A body is considered to be idle when the magnitudes of both its linear velocity and angular velocity are
below given thresholds.

Thus, every body has five auto-disable parameters: an enabled flag, a idle step count, an idle time, and
linear/angular velocity thresholds. Newly created bodies get these parameters from world.

The following functions set and get the enable/disable parameters of a body.
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void dBodyEnable (dBodyID);
void dBodyDisable (dBodyID);

Manually enable and disable a body. Note that a disabled body that is connected through a joint to an
enabled body will be automatically re-enabled at the next simulation step.

int dBodyIsEnabled (dBodyID);

Return 1 if a body is currently enabled or 0 if it is disabled.

void dBodySetAutoDisableFlag (dBodyID, int do_auto_disable);
int dBodyGetAutoDisableFlag (dBodyID);

Set and get the auto-disable flag of a body. If thedo auto disable is nonzero the body will be
automatically disabled when it has been idle for long enough.

void dBodySetAutoDisableLinearThreshold (dBodyID, dReal linear_threshold);
dReal dBodyGetAutoDisableLinearThreshold (dBodyID);

Set and get a body’s linear velocity threshold for automatic disabling. The body’s linear velocity
magnitude must be less than this threshold for it to be considered idle. Set the threshold todInfinity
to prevent the linear velocity from being considered.

void dBodySetAutoDisableAngularThreshold (dBodyID, dReal angular_threshold);
dReal dBodyGetAutoDisableAngularThreshold (dBodyID);

Set and get a body’s angular velocity threshold for automatic disabling. The body’s linear angular
magnitude must be less than this threshold for it to be considered idle. Set the threshold todInfinity
to prevent the angular velocity from being considered.

void dBodySetAutoDisableSteps (dBodyID, int steps);
int dBodyGetAutoDisableSteps (dBodyID);

Set and get the number of simulation steps that a body must be idle before it is automatically disabled.
Set this to zero to disable consideration of the number of steps.

void dBodySetAutoDisableTime (dBodyID, dReal time);
dReal dBodyGetAutoDisableTime (dBodyID);

Set and get the amount of simulation time that a body must be idle before it is automatically disabled.
Set this to zero to disable consideration of the amount of simulation time.

void dBodySetAutoDisableDefaults (dBodyID);

Set the auto-disable parameters of the body to the default parameters that have been set on the world.
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6.6 Miscellaneous Body Functions

void dBodySetData (dBodyID, void *data);
void *dBodyGetData (dBodyID);

Get and set the body’s user-data pointer.

void dBodySetFiniteRotationMode (dBodyID, int mode);

This function controls the way a body’s orientation is updated at each time step. Themode argument
can be:

• 0: An “infinitesimal” orientation update is used. This is fast to compute, but it can occasionally
cause inaccuracies for bodies that are rotating at high speed, especially when those bodies are
joined to other bodies. This is the default for every new body that is created.

• 1: A “finite” orientation update is used. This is more costly to compute, but will be more accurate
for high speed rotations. Note however that high speed rotations can result in many types of error
in a simulation, and this mode will only fix one of those sources of error.

int dBodyGetFiniteRotationMode (dBodyID);

Return the current finite rotation mode of a body (0 or 1).

void dBodySetFiniteRotationAxis (dBodyID, dReal x, dReal y, dReal z);

This sets the finite rotation axis for a body. This is axis only has meaning when the finite rotation mode
is set (seedBodySetFiniteRotationMode()).

If this axis is zero (0,0,0), full finite rotations are performed on the body.

If this axis is nonzero, the body is rotated by performing a partial finite rotation along the axis direction
followed by an infinitesimal rotation along an orthogonal direction.

This can be useful to alleviate certain sources of error caused by quickly spinning bodies. For example,
if a car wheel is rotating at high speed you can call this function with the wheel’s hinge axis as the
argument to try and improve its behavior.

void dBodyGetFiniteRotationAxis (dBodyID, dVector3 result);

Return the current finite rotation axis of a body.

int dBodyGetNumJoints (dBodyID b);

Return the number of joints that are attached to this body.

dJointID dBodyGetJoint (dBodyID, int index);
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Return a joint attached to this body, given byindex . Valid indexes are 0 ton− 1 wheren is the value
returned bydBodyGetNumJoints().

void dBodySetGravityMode (dBodyID b, int mode);
int dBodyGetGravityMode (dBodyID b);

Set/get whether the body is influenced by the world’s gravity or not. Ifmode is nonzero it is, ifmode
is zero, it isn’t. Newly created bodies are always influenced by the world’s gravity.



Chapter 7

Joint Types and Joint Functions

7.1 Creating and Destroying Joints

dJointID dJointCreateBall (dWorldID, dJointGroupID);
dJointID dJointCreateHinge (dWorldID, dJointGroupID);
dJointID dJointCreateSlider (dWorldID, dJointGroupID);
dJointID dJointCreateContact (dWorldID, dJointGroupID,

const dContact *);
dJointID dJointCreateUniversal (dWorldID, dJointGroupID);
dJointID dJointCreateHinge2 (dWorldID, dJointGroupID);
dJointID dJointCreateFixed (dWorldID, dJointGroupID);
dJointID dJointCreateAMotor (dWorldID, dJointGroupID);

Create a new joint of a given type. The joint is initially in ”limbo” (i.e. it has no effect on the simulation)
because it does not connect to any bodies. The joint group ID is 0 to allocate the joint normally. If it
is nonzero the joint is allocated in the given joint group. The contact joint will be initialized with the
givendContact structure.

void dJointDestroy (dJointID);

Destroy a joint, disconnecting it from its attached bodies and removing it from the world. However, if
the joint is a member of a group then this function has no effect - to destroy that joint the group must
be emptied or destroyed.

dJointGroupID dJointGroupCreate (int max_size);

Create a joint group. Themax size argument is now unused and should be set to 0. It is kept for
backwards compatibility.

void dJointGroupDestroy (dJointGroupID);

Destroy a joint group. All joints in the joint group will be destroyed.

void dJointGroupEmpty (dJointGroupID);

Empty a joint group. All joints in the joint group will be destroyed, but the joint group itself will not
be destroyed.

25
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7.2 Miscellaneous Joint Functions

void dJointAttach (dJointID, dBodyID body1, dBodyID body2);

Attach the joint to some new bodies. If the joint is already attached, it will be detached from the old
bodies first. To attach this joint to only one body, set body1 or body2 to zero - a zero body refers to the
static environment. Setting both bodies to zero puts the joint into ”limbo”, i.e. it will have no effect on
the simulation.

Some joints, like hinge-2 need to be attached to two bodies to work.

void dJointSetData (dJointID, void *data);
void *dJointGetData (dJointID);

Get and set the joint’s user-data pointer.

int dJointGetType (dJointID);

Get the joint’s type. One of the following constants will be returned:

dJointTypeBall A ball-and-socket joint.
dJointTypeHinge A hinge joint.
dJointTypeSlider A slider joint.
dJointTypeContact A contact joint.
dJointTypeUniversal A universal joint.
dJointTypeHinge2 A hinge-2 joint.
dJointTypeFixed A fixed joint.
dJointTypeAMotor An angular motor joint.

dBodyID dJointGetBody (dJointID, int index);

Return the bodies that this joint connects. Ifindex is 0 the “first” body will be returned, correspond-
ing to thebody1 argument ofdJointAttach(). If index is 1 the “second” body will be returned,
corresponding to thebody2 argument ofdJointAttach().

If one of these returned body IDs is zero, the joint connects the other body to the static environment. If
both body IDs are zero, the joint is in “limbo” and has no effect on the simulation.

void dJointSetFeedback (dJointID, dJointFeedback *);
dJointFeedback *dJointGetFeedback (dJointID);

During the world time step, the forces that are applied by each joint are computed. These forces are
added directly to the joined bodies, and the user normally has no way of telling which joint contributed
how much force.

If this information is desired then the user can allocate adJointFeedback structure and pass its
pointer to thedJointSetFeedback() function. The feedback information structure is defined as
follows:
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typedef struct dJointFeedback {
dVector3 f1; // force that joint applies to body 1
dVector3 t1; // torque that joint applies to body 1
dVector3 f2; // force that joint applies to body 2
dVector3 t2; // torque that joint applies to body 2

} dJointFeedback;

During the time step any feedback structures that are attached to joints will be filled in with the joint’s
force and torque information. ThedJointGetFeedback() function returns the current feedback
structure pointer, or 0 if none is used (this is the default).dJointSetFeedback() can be passed 0
to disable feedback for that joint.

Now for some API design notes. It might seem strange to require that users perform the allocation of
these structures. Why not just store the data statically in each joint? The reason is that not all users will
use the feedback information, and even when it is used not all joints will need it. It will waste memory
to store it statically, especially as this structure could grow to store a lot of extra information in the
future.

Why not have ODE allocate the structure itself, at the user’s request? The reason is that contact joints
(which are created and destroyed every time step) would require a lot of time to be spent in memory
allocation if feedback is required. Letting the user do the allocation means that a better allocation
strategy can be provided, e.g simply allocating them out of a fixed array.

The alternative to this API is to have a joint-force callback. This would work of course, but it has a few
problems. First, callbacks tend to pollute APIs and sometimes require the user to go through unnatural
contortions to get the data to the right place. Second, this would expose ODE to being changed in the
middle of a step (which would have bad consequences), and there would have to be some kind of guard
against this or a debugging check for it - which would complicate things.

int dAreConnected (dBodyID, dBodyID);

Utility function: return 1 if the two bodies are connected together by a joint, otherwise return 0.

int dAreConnectedExcluding (dBodyID, dBodyID, int joint_type);

Utility function: return 1 if the two bodies are connected together by a joint that does not have type
joint type , otherwise return 0.joint type is a dJointTypeXXX constant. This is useful
for deciding whether to add contact joints between two bodies: if they are already connected by non-
contact joints then it may not be appropriate to add contacts, however it is okay to add more contact
between- bodies that already have contacts.

7.3 Joint parameter setting functions

7.3.1 Ball and Socket

A ball and socket joint is shown inFigure 7.1.

void dJointSetBallAnchor (dJointID, dReal x, dReal y, dReal z);
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Figure 7.1: A ball and socket joint.

Set the joint anchor point. The joint will try to keep this point on each body together. The input is
specified in world coordinates.

void dJointGetBallAnchor (dJointID, dVector3 result);

Get the joint anchor point, in world coordinates. This returns the point on body 1. If the joint is
perfectly satisfied, this will be the same as the point on body 2.

void dJointGetBallAnchor2 (dJointID, dVector3 result);

Get the joint anchor point, in world coordinates. This returns the point on body 2. You can think of a
ball and socket joint as trying to keep the result of dJointGetBallAnchor() and dJointGetBallAnchor2()
the same. If the joint is perfectly satisfied, this function will return the same value asdJointGetBallAn-
chor() to within roundoff errors.dJointGetBallAnchor2()can be used, along withdJointGetBallAn-
chor(), to see how far the joint has come apart.

7.3.2 Hinge

A hinge joint is shown inFigure 7.2.

void dJointSetHingeAnchor (dJointID, dReal x, dReal y, dReal z);
void dJointSetHingeAxis (dJointID, dReal x, dReal y, dReal z);

Set hinge anchor and axis parameters.

void dJointGetHingeAnchor (dJointID, dVector3 result);

Get the joint anchor point, in world coordinates. This returns the point on body 1. If the joint is
perfectly satisfied, this will be the same as the point on body 2.
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Figure 7.2: A hinge joint.

void dJointGetHingeAnchor2 (dJointID, dVector3 result);

Get the joint anchor point, in world coordinates. This returns the point on body 2. If the joint is
perfectly satisfied, this will return the same value asdJointGetHingeAnchor(). If not, this value will be
slightly different. This can be used, for example, to see how far the joint has come apart.

void dJointGetHingeAxis (dJointID, dVector3 result);

Get hinge axis parameter.

dReal dJointGetHingeAngle (dJointID);
dReal dJointGetHingeAngleRate (dJointID);

Get the hinge angle and the time derivative of this value. The angle is measured between the two
bodies, or between the body and the static environment. The angle will be between -pi..pi.

When the hinge anchor or axis is set, the current position of the attached bodies is examined and that
position will be the zero angle.

7.3.3 Slider

A slider joint is shown inFigure 7.3.

void dJointSetSliderAxis (dJointID, dReal x, dReal y, dReal z);

Set the slider axis parameter.

void dJointGetSliderAxis (dJointID, dVector3 result);

Get the slider axis parameter.
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Figure 7.3: A slider joint.

Figure 7.4: A universal joint.

dReal dJointGetSliderPosition (dJointID);
dReal dJointGetSliderPositionRate (dJointID);

Get the slider linear position (i.e. the slider’s “extension”) and the time derivative of this value.

When the axis is set, the current position of the attached bodies is examined and that position will be
the zero position.

7.3.4 Universal

A universal joint is shown inFigure 7.4.
A universal joint is like a ball and socket joint that constrains an extra degree of rotational freedom.

Given axis 1 on body 1, and axis 2 on body 2 that is perpendicular to axis 1, it keeps them perpendicular. In
other words, rotation of the two bodies about the direction perpendicular to the two axes will be equal.

In the picture, the two bodies are joined together by a cross. Axis 1 is attached to body 1, and axis 2 is
attached to body 2. The cross keeps these axes at 90 degrees, so if you grab body 1 and twist it, body 2 will
twist as well.
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A Universal joint is equivalent to a hinge-2 joint where the hinge-2’s axes are perpendicular to each
other, and with a perfectly rigid connection in place of the suspension.

Universal joints show up in cars, where the engine causes a shaft, the drive shaft, to rotate along its own
axis. At some point you’d like to change the direction of the shaft. The problem is, if you just bend the
shaft, then the part after the bend won’t rotate about its own axis. So if you cut it at the bend location and
insert a universal joint, you can use the constraint to force the second shaft to rotate about the same angle as
the first shaft.

Another use of this joint is to attach the arms of a simple virtual creature to its body. Imagine a person
holding their arms straight out. You may want the arm to be able to move up and down, and forward and
back, but not to rotate about its own axis.

Here are the universal joint functions:

void dJointSetUniversalAnchor (dJointID, dReal x, dReal y, dReal z);
void dJointSetUniversalAxis1 (dJointID, dReal x, dReal y, dReal z);
void dJointSetUniversalAxis2 (dJointID, dReal x, dReal y, dReal z);

Set universal anchor and axis parameters. Axis 1 and axis 2 should be perpendicular to each other.

void dJointGetUniversalAnchor (dJointID, dVector3 result);

Get the joint anchor point, in world coordinates. This returns the point on body 1. If the joint is
perfectly satisfied, this will be the same as the point on body 2.

void dJointGetUniversalAnchor2 (dJointID, dVector3 result);

Get the joint anchor point, in world coordinates. This returns the point on body 2. You can think of
the ball and socket part of a universal joint as trying to keep the result of dJointGetBallAnchor() and
dJointGetBallAnchor2() the same. If the joint is perfectly satisfied, this function will return the same
value asdJointGetUniversalAnchor()to within roundoff errors.dJointGetUniversalAnchor2()can be
used, along withdJointGetUniversalAnchor(), to see how far the joint has come apart.

void dJointGetUniversalAxis1 (dJointID, dVector3 result);
void dJointGetUniversalAxis2 (dJointID, dVector3 result);

Get univeral axis parameters.

dReal dJointGetUniversalAngle1 (dJointID);
dReal dJointGetUniversalAngle2 (dJointID);
dReal dJointGetUniversalAngleRate1 (dJointID);
dReal dJointGetUniversalAngleRate2 (dJointID);

Get the universal angles and the time derivatives of these values. The angle is measured between a
body and the cross, or between the static environment and the cross. The angle will be between -pi..pi.

When the universal anchor or axis is set, the current position of the attached bodies is examined and
that position will be the zero angle.
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Figure 7.5: A hinge-2 joint.

7.3.5 Hinge-2

A hinge-2 joint is shown inFigure 7.5.
The hinge-2 joint is the same as two hinges connected in series, with different hinge axes. An example,

shown in the above picture is the steering wheel of a car, where one axis allows the wheel to be steered and
the other axis allows the wheel to rotate.

The hinge-2 joint has an anchor point and two hinge axes. Axis 1 is specified relative to body 1 (this
would be the steering axis if body 1 is the chassis). Axis 2 is specified relative to body 2 (this would be the
wheel axis if body 2 is the wheel).

Axis 1 can have joint limits and a motor, axis 2 can only have a motor.
Axis 1 can function as a suspension axis, i.e. the constraint can be compressible along that axis.
The hinge-2 joint where axis1 is perpendicular to axis 2 is equivalent to a universal joint with added

suspension.

void dJointSetHinge2Anchor (dJointID, dReal x, dReal y, dReal z);
void dJointSetHinge2Axis1 (dJointID, dReal x, dReal y, dReal z);
void dJointSetHinge2Axis2 (dJointID, dReal x, dReal y, dReal z);

Set hinge-2 anchor and axis parameters. Axis 1 and axis 2 must not lie along the same line.

void dJointGetHinge2Anchor (dJointID, dVector3 result);

Get the joint anchor point, in world coordinates. This returns the point on body 1. If the joint is
perfectly satisfied, this will be the same as the point on body 2.

void dJointGetHinge2Anchor2 (dJointID, dVector3 result);

Get the joint anchor point, in world coordinates. This returns the point on body 2. If the joint is
perfectly satisfied, this will return the same value asdJointGetHinge2Anchor(). If not, this value will
be slightly different. This can be used, for example, to see how far the joint has come apart.
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Figure 7.6: A contact joint.

void dJointGetHinge2Axis1 (dJointID, dVector3 result);
void dJointGetHinge2Axis2 (dJointID, dVector3 result);

Get hinge-2 axis parameters.

dReal dJointGetHinge2Angle1 (dJointID);
dReal dJointGetHinge2Angle1Rate (dJointID);
dReal dJointGetHinge2Angle2Rate (dJointID);

Get the hinge-2 angles (around axis 1 and axis 2) and the time derivatives of these values.

When the anchor or axis is set, the current position of the attached bodies is examined and that position
will be the zero angle.

7.3.6 Fixed

The fixed joint maintains a fixed relative position and orientation between two bodies, or between a body
and the static environment. Using this joint is almost never a good idea in practice, except when debugging.
If you need two bodies to be glued together it is better to represent that as a single body.

void dJointSetFixed (dJointID);

Call this on the fixed joint after it has been attached to remember the current desired relative offset and
desired relative rotation between the bodies.

7.3.7 Contact

A contact joint is shown inFigure 7.6.
The contact joint prevents body 1 and body 2 from inter-penetrating at the contact point. It does this by

only allowing the bodies to have an “outgoing” velocity in the direction of the contact normal. Contact joints
typically have a lifetime of one time step. They are created and deleted in response to collision detection.
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Contact joints can simulate friction at the contact by applying special forces in the two friction directions
that are perpendicular to the normal.

When a contact joint is created, adContact structure must be supplied. This has the following defini-
tion:

struct dContact {
dSurfaceParameters surface;
dContactGeom geom;
dVector3 fdir1;

};

geom is a substructure that is set by the collision functions. It is described in the collision section.
fdir1 is a ”first friction direction” vector that defines a direction along which frictional force is applied.

It must be of unit length and perpendicular to the contact normal (so it is typically tangential to the contact
surface). It should only be defined if the dContactFDir1 flag is set insurface.mode . The ”second friction
direction” is a vector computed to be perpendicular to both the contact normal andfdir1 .

surface is a substructure that is set by the user. Its members define the properties of the colliding
surfaces. It has the following members:

• int mode - Contact flags. This must always be set. This is a combination of one or more of the
following flags:

dContactMu2 If not set, usemu for both friction directions. If set, usemu for
friction direction 1, usemu2 for friction direction 2.

dContactFDir1 If set, takefdir1 as friction direction 1, otherwise automatically
compute friction direction 1 to be perpendicular to the contact nor-
mal (in which case its resulting orientation is unpredictable).

dContactBounce If set, the contact surface is bouncy, in other words the bodies will
bounce off each other. The exact amount of bouncyness is con-
trolled by thebounce parameter.

dContactSoftERP If set, the error reduction parameter of the contact normal can be
set with thesoft erp parameter. This is useful to make surfaces
soft.

dContactSoftCFM If set, the constraint force mixing parameter of the contact normal
can be set with thesoft cfm parameter. This is useful to make
surfaces soft.

dContactMotion1 If set, the contact surface is assumed to be moving independently
of the motion of the bodies. This is kind of like a conveyor belt
running over the surface. When this flag is set,motion1 defines
the surface velocity in friction direction 1.

dContactMotion2 The same thing as above, but for friction direction 2.
dContactSlip1 Force-dependent-slip (FDS) in friction direction 1.
dContactSlip2 Force-dependent-slip (FDS) in friction direction 2.
dContactApprox1 1 Use the friction pyramid approximation for friction direction 1. If

this is not specified then the constant-force-limit approximation is
used (andmuis a force limit).
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dContactApprox1 2 Use the friction pyramid approximation for friction direction 2. If
this is not specified then the constant-force-limit approximation is
used (andmuis a force limit).

dContactApprox1 Equivalent to both dContactApprox1 1 and
dContactApprox1 2.

• dReal mu : Coulomb friction coefficient. This must be in the range 0 todInfinity . 0 results
in a frictionless contact, anddInfinity results in a contact that never slips. Note that frictionless
contacts are less time consuming to compute than ones with friction, and infinite friction contacts can
be cheaper than contacts with finite friction. This must always be set.

• dReal mu2 : Optional Coulomb friction coefficient for friction direction 2 (0..dInfinity ). This
is only set if the corresponding flag is set inmode.

• dReal bounce : Restitution parameter (0..1). 0 means the surfaces are not bouncy at all, 1 is
maximum bouncyness. This is only set if the corresponding flag is set inmode.

• dReal bounce vel : The minimum incoming velocity necessary for bounce. Incoming velocities
below this will effectively have a bounce parameter of 0. This is only set if the corresponding flag is
set inmode.

• dReal soft erp : Contact normal “softness” parameter. This is only set if the corresponding flag
is set inmode.

• dReal soft cfm : Contact normal “softness” parameter. This is only set if the corresponding flag
is set inmode.

• dReal motion1,motion2 : Surface velocity in friction directions 1 and 2. These are only set if
the corresponding flags are set inmode.

• dReal slip1,slip2 : The coefficients of force-dependent-slip (FDS) for friction directions 1
and 2. These are only set if the corresponding flags are set inmode.

FDS is an effect that causes the contacting surfaces to side past each other with a velocity that is
proportional to the force that is being applied tangentially to that surface.

Consider a contact point where the coefficient of frictionµ is infinite. Normally, if a forcef is
applied to the two contacting surfaces, to try and get them to slide past each other, they will not move.
However, if the FDS coefficient is set to a positive valuek then the surfaces will slide past each other,
building up to a steady velocity ofk ∗ f relative to each other.

Note that this is quite different from normal frictional effects: the force does not cause a constant
accelerationof the surfaces relative to each other - it causes a brief acceleration to achieve the steady
velocity.

This is useful for modeling some situations, in particular tires. For example consider a car at rest on
a road. Pushing the car in its direction of travel will cause it to start moving (i.e. the tires will start
rolling). Pushing the car in the perpendicular direction will have no effect, as the tires do not roll in
that direction. However - if the car is moving at a velocityv, applying a forcef in the perpendicular
direction will cause the tires to slip on the road with a velocity proportional tof ∗ v (Yes, this really
happens).
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Figure 7.7: An AMotor joint with euler angles.

To model this in ODE set the tire-road contact parameters as follows: set friction direction 1 in the
direction that the tire is rolling in, and set the FDS slip coefficient in friction direction 2 tok∗v, where
v is the tire rolling velocity andk is a tire parameter that you can chose based on experimentation.

Note that FDS is quite separate from the sticking/slipping effects of Coulomb friction - both modes
can be used together at a single contact point.

7.3.8 Angular Motor

An angular motor (AMotor) allows the relative angular velocities of two bodies to be controlled. The angular
velocity can be controlled on up to three axes, allowing torque motors and stops to be set for rotation about
those axes (see the “Stops and motor parameters” section below). This is mainly useful in conjunction will
ball joints (which do not constrain the angular degrees of freedom at all), but it can be used in any situation
where angular control is needed. To use an AMotor with a ball joint, simply attach it to the same two bodies
that the ball joint is attached to.

The AMotor can be used in different modes. IndAMotorUser mode, the user directly sets the axes
that the AMotor controls. IndAMotorEuler mode, AMotor computes theeuler anglescorresponding to
the relative rotation, allowing euler angle torque motors and stops to be set. An AMotor joint with euler
angles is shown inFigure 7.7.

In this diagram,a0, a1 anda2 are the three axes along which angular motion is controlled. The green
axes (includinga0) are anchored to body 1. The blue axes (includinga2) are anchored to body 2. To get the
body 2 axes from the body 1 axes the following sequence of rotations is performed:

• Rotate byθ0 abouta0.

• Rotate byθ1 abouta1 (a1 has been rotated from its original position).

• Rotate byθ2 abouta2 (a2 has been rotated twice from its original position).

There is an important restriction when using euler angles: theθ1 angle must not be allowed to get outside
the range−π/2...π/2. If this happens then the AMotor joint will become unstable (there is a singularity at
+/− π/2). Thus you must set the appropriate stops on axis number 1.

void dJointSetAMotorMode (dJointID, int mode);
int dJointGetAMotorMode (dJointID);
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Set (and get) the angular motor mode. Themode parameter must be one of the following constants:

dAMotorUser The AMotor axes and joint angle settings are entirely controlled
by the user. This is the default mode.

dAMotorEuler Euler angles are automatically computed. The axisa1 is also auto-
matically computed. The AMotor axes must be set correctly when
in this mode, as described below. When this mode is initially set
the current relative orientations of the bodies will correspond to all
euler angles at zero.

void dJointSetAMotorNumAxes (dJointID, int num);
int dJointGetAMotorNumAxes (dJointID);

Set (and get) the number of angular axes that will be controlled by the AMotor. The argumentnum
can range from 0 (which effectively deactivates the joint) to 3. This is automatically set to 3 in
dAMotorEuler mode.

void dJointSetAMotorAxis (dJointID, int anum, int rel,
dReal x, dReal y, dReal z);

void dJointGetAMotorAxis (dJointID, int anum, dVector3 result);
int dJointGetAMotorAxisRel (dJointID, int anum);

Set (and get) the AMotor axes. Theanumargument selects the axis to change (0,1 or 2). Each axis can
have one of three “relative orientation” modes, selected byrel :

• 0: The axis is anchored to the global frame.

• 1: The axis is anchored to the first body.

• 2: The axis is anchored to the second body.

The axis vector (x ,y ,z ) is always specified in global coordinates regardless of the setting ofrel . There
are twoGetAMotorAxis functions, one to return the axis and one to return the relative mode.

For dAMotorEuler mode:

• Only axes 0 and 2 need to be set. Axis 1 will be determined automatically at each time step.

• Axes 0 and 2 must be perpendicular to each other.

• Axis 0 must be anchored to the first body, axis 2 must be anchored to the second body.

void dJointSetAMotorAngle (dJointID, int anum, dReal angle);

Tell the AMotor what the current angle is along axisanum. This function should only be called in
dAMotorUser mode, because in this mode the AMotor has no other way of knowing the joint angles.
The angle information is needed if stops have been set along the axis, but it is not needed for axis
motors.

dReal dJointGetAMotorAngle (dJointID, int anum);
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Return the current angle for axisanum. In dAMotorUser mode this is simply the value that was set
with dJointSetAMotorAngle(). In dAMotorEuler mode this is the corresponding euler angle.

dReal dJointGetAMotorAngleRate (dJointID, int anum);

Return the current angle rate for axisanum. In dAMotorUser mode this is always zero, as not enough
information is available. IndAMotorEuler mode this is the corresponding euler angle rate.

7.4 General

The joint geometry parameter setting functions should only be called after the joint has been attached to
bodies, and those bodies have been correctly positioned, otherwise the joint may not be initialized correctly.
If the joint is not already attached, these functions will do nothing.

For the parameter getting functions, if the system is out of alignment (i.e. there is some joint error) then
the anchor/axis values will be correct with respect to body 1 only (or body 2 if you specified body 1 as zero
in thedJointAttach()function).

The default anchor for all joints is (0,0,0). The default axis for all joints is (1,0,0).
When an axis is set it will be normalized to unit length. The adjusted axis is what the axis getting

functions will return.
When measuring a joint angle or position, a value of zero corresponds to the initial position of the bodies

relative to each other.
Note that there are no functions to set joint angles or positions (or their rates) directly, instead you must

set the corresponding body positions and velocities.

7.5 Stop and motor parameters

When a joint is first created there is nothing to prevent it from moving through its entire range of motion.
For example a hinge will be able to move through its entire angle, and a slider will slide to any length.

This range of motion can be limited by setting stops on the joint. The joint angle (or position) will be
prevented from going below the low stop value, or from going above the high stop value. Note that a joint
angle (or position) of zero corresponds to the initial body positions.

As well as stops, many joint types can have motors. A motor applies a torque (or force) to a joint’s
degree(s) of freedom to get it to pivot (or slide) at a desired speed. Motors have force limits, which means
they can apply no more than a given maximum force/torque to the joint.

Motors have two parameters: a desired speed, and the maximum force that is available to reach that
speed. This is a very simple model of real life motors, engines or servos. However, is it quite useful when
modeling a motor (or engine or servo) that is geared down with a gearbox before being connected to the
joint. Such devices are often controlled by setting a desired speed, and can only generate a maximum amount
of power to achieve that speed (which corresponds to a certain amount of force available at the joint).

Motors can also be used to accurately model dry (or Coulomb) friction in joints. Simply set the desired
velocity to zero and set the maximum force to some constant value - then all joint motion will be impeded
by that force.

The alternative to using joint stops and motors is to simply apply forces to the affected bodies yourself.
Applying motor forces is easy, and joint stops can be emulated with restraining spring forces. However
applying forces directly is often not a good approach and can lead to severe stability problems if it is not
done carefully.
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Consider the case of applying a force to a body to achieve a desired velocity. To calculate this force you
use information about the current velocity, something like this:

force = k ∗ (desiredspeed− currentspeed) (7.1)

This has several problems. First, the parameterk must be tuned by hand. If it is too low the body will
take a long time to come up to speed. If it is too high the simulation will become unstable. Second, even if
k is chosen well the body will still take a few time steps to come up to speed. Third, if any other “external”
forces are being applied to the body, the desired velocity may never even be reached (a more complicated
force equation would be needed, which would have extra parameters and its own problems).

Joint motors solve all these problems: they bring the body up to speed in one time step, provided that
does not take more force than is allowed. Joint motors need no extra parameters because they are actually
implemented as constraints. They can effectively see one time step into the future to work out the correct
force. This makes joint motors more computationally expensive than computing the forces yourself, but
they are much more robust and stable, and far less time consuming to design with. This is especially true
with larger rigid body systems.

Similar arguments apply to joint stops.

7.5.1 Parameter Functions

Here are the functions that set stop and motor parameters (as well as other kinds of parameters) on a joint:

void dJointSetHingeParam (dJointID, int parameter, dReal value);
void dJointSetSliderParam (dJointID, int parameter, dReal value);
void dJointSetHinge2Param (dJointID, int parameter, dReal value);
void dJointSetUniversalParam (dJointID, int parameter, dReal value);
void dJointSetAMotorParam (dJointID, int parameter, dReal value);
dReal dJointGetHingeParam (dJointID, int parameter);
dReal dJointGetSliderParam (dJointID, int parameter);
dReal dJointGetHinge2Param (dJointID, int parameter);
dReal dJointGetUniversalParam (dJointID, int parameter);
dReal dJointGetAMotorParam (dJointID, int parameter);

Set/get limit/motor parameters for each joint type. The parameter numbers are:

dParamLoStop Low stop angle or position. Setting this to-dInfinity (the
default value) turns off the low stop. For rotational joints, this stop
must be greater than−π to be effective.

dParamHiStop High stop angle or position. Setting this todInfinity (the de-
fault value) turns off the high stop. For rotational joints, this stop
must be less thanπ to be effective. If the high stop is less than the
low stop then both stops will be ineffective.

dParamVel Desired motor velocity (this will be an angular or linear velocity).
dParamFMax The maximum force or torque that the motor will use to achieve

the desired velocity. This must always be greater than or equal to
zero. Setting this to zero (the default value) turns off the motor.
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dParamFudgeFactor The current joint stop/motor implementation has a small problem:
when the joint is at one stop and the motor is set to move it away
from the stop, too much force may be applied for one time step,
causing a “jumping” motion. This fudge factor is used to scale
this excess force. It should have a value between zero and one (the
default value). If the jumping motion is too visible in a joint, the
value can be reduced. Making this value too small can prevent the
motor from being able to move the joint away from a stop.

dParamBounce The bouncyness of the stops. This is a restitution parameter in
the range 0..1. 0 means the stops are not bouncy at all, 1 means
maximum bouncyness.

dParamCFM The constraint force mixing (CFM) value used when not at a stop.
dParamStopERP The error reduction parameter (ERP) used by the stops.
dParamStopCFM The constraint force mixing (CFM) value used by the stops. To-

gether with the ERP value this can be used to get spongy or soft
stops. Note that this is intended for unpowered joints, it does not
really work as expected when a powered joint reaches its limit.

dParamSuspensionERP Suspension error reduction parameter (ERP). Currently this is only
implemented on the hinge-2 joint.

dParamSuspensionCFM Suspension constraint force mixing (CFM) value. Currently this is
only implemented on the hinge-2 joint.

If a particular parameter is not implemented by a given joint, setting it will have no effect.

These parameter names can be optionally followed by a digit (2 or 3) to indicate the second or third
set of parameters, e.g. for the second axis in a hinge-2 joint, or the third axis in an AMotor joint.
A constantdParamGroup is also defined such that:dParamXi = dParamX + dParamGroup *
(i− 1)

7.6 Setting Joint Torques/Forces Directly

Motors (see above) allow you to set joint velocities directly. However, you may instead wish to set the torque
or force at a joint instead. These functions do just that. Note that they don’t affect the motor, but simply call
dBodyAddForce()/dBodyAddTorque()on the bodies attached to it.

dJointAddHingeTorque(dJointID joint, dReal torque)

Applies the torque about the hinge axis. That is, it applies a torque with magnitudetorque , in the
direction of the hinge axis, to body 1, and with the same magnitude but in opposite direction to body 2.
This function is just a wrapper fordBodyAddTorque()

dJointAddUniversalTorques(dJointID joint, dReal torque1, dReal torque2)

Applies torque1 about the universal’s axis 1, andtorque2 about the universal’s axis 2. This
function is just a wrapper fordBodyAddTorque().

dJointAddSliderForce(dJointID joint, dReal force)
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Applies the given force in the slider’s direction. That is, it applies a force with magnitudeforce , in
the direction slider’s axis, to body1, and with the same magnitude but opposite direction to body2. This
function is just a wrapper fordBodyAddForce().

dJointAddHinge2Torques(dJointID joint, dReal torque1, dReal torque2)

Applies torque1 about the hinge2’s axis 1, andtorque2 about the hinge2’s axis 2. This function
is just a wrapper fordBodyAddTorque().

dJointAddAMotorTorques(dJointID joint, dReal torque0, dReal torque1,
dReal torque2)

Applies torque0 about the AMotor’s axis 0,torque1 about the AMotor’s axis 1, andtorque2
about the AMotor’s axis 2. If the motor has fewer than three axes, the higher torques are ignored. This
function is just a wrapper fordBodyAddTorque().
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Chapter 8

StepFast

NOTE: The StepFast algorithm has been superseded by the QuickStep algorithm: see thedWorldQuick-
Step() function. However, much of the following discussion also applies to QuickStep, except for the
details of the method used.

ODE’s dWorldStep()function currently uses a ”big matrix” method to step the system. For some large
systems this can be slow and can require a lot of memory. The StepFast1 algorithm provides an alternative
way to step the system, that sacrifices some accuracy for a big gain in speed and memory. To use it, you
simply calldWorldStepFast1()instead ofdWorldStep().

The chart inFigure 8.1illustrates this speed advantage over the standarddWorldStep()algorithm.
The graph relates the number of Degrees Of Freedom (DOFs) removed from a system to the running

time of the step. You may be able to tell that thedWorldStep()algorithm’s running time is proportional
to the cube of the number of DOF’s removed. The StepFast1 algorithm, however, is roughly linear. So as
islands increase in size (for example, when there is a large pile-up of cars, a pile of ”ragdoll corpses”, or a
wall of bricks) the StepFast1 algorithm scales better thandWorldStep(). All this means that your application
is more likely to keep a steady framerate, even in the worst case scenario.

The graph of DOFs removed to memory looks quite similar (seeFigure 8.2).
dWorldStep()requires memory proportional only to the square of the number of DOF’s removed. Step-

Fast1, though, is still linear, but it has nothing to do with the number of iterations per step. So this means
the dreaded ”There was a big pile-up and ODE crashed without an error message” problems (usually stack
overflows) won’t happen with StepFast1. Or at least that you’ll be rendering at a minute per frame or slower
before they do.

8.1 When to use StepFast1

As shown above, StepFast1 is quite good when it comes to speed and memory usage. All this power doesn’t
come for free, though; all optimizations are a trade-off of one kind or another. I’ve already mentioned that
StepFast1 trades off accuracy for it’s speed and memory advantages. You actually get to choose just how
much accuracy you give away though, at the cost of speed, by adjusting the number of iterations per step.
Though you may never reach the accuracy ofdWorldStep()(or you may surpass it, depending on the type of
inaccuracy), you can be almost certain that a larger number of iterations will give you more accurate results
(more slowly). So StepFast1 can be used in a good variety of situations.

The general answer to this question then, is: use StepFast1 when you don’t mind having a few more
parameters to play with to get the system stable, and you want to take advantage of it’s speed or memory
advantages. If you find yourself running into situations in your simulation where large numbers of bodies
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Figure 8.1: Speed advantage of StepFast.

Figure 8.2: Memory advantage of StepFast.
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come in contact, anddWorldStep()becomes too slow, try switching to StepFast1. Many systems will work
just fine with nothing more than changing thedWorldStep()function call todWorldStepFast1(). Others will
require a little tweaking to get them to work well with StepFast1, usually in the masses of the bodies. When
a joint connects two bodies with a large mass ratio (i.e. one body has several times the mass of the other
body) StepFast1 may have trouble solving it.

Another prospect for StepFast1 is designing for it from the ground up. If you know you are going to build
large worlds with many physically based objects in them, then go ahead and plan to use StepFast1. Noting
the mass ratio problem above, you might want to consider making the mass of every body in your system
equal to 1.0. Or in a very small range, for example between 0.5 and 1.5. Most of the other suggestions
for speed and stability apply to StepFast1, except that the object is no longer to remove as many joints as
possible from the equation. It can likely be shown that you will get a better performance to stability ratio by
spreading out mass among several bodies connected by fixed joints rather than trying to implement it as one
massive body, especially if that one massive body means you have to switch back todWorldStep()to keep
things stable.

A final prospect for StepFast1 is to use it only when you need to. Since StepFast1 uses the body and
world structures in exactly the same way asdWorldStep(), you can actually switch back and forth between
the two solvers at will. A good heuristic for when to make this switch is to simply count contact joints while
you are running the collision detection. Since collision detection is normally called before the step, using
this method will ensure that the large island that would slow you down is never sent to thedWorldStep()
solver (as opposed to waiting until after you’ve already taken a step at 1 fps...). The only better solution
would be a hybrid island creation function, that sends small islands todWorldStep(), and large islands to
dWorldStepFast1(). This may make it in the source at some point in the future.

8.2 When NOT to use StepFast1

Though there are several specific situations when it as advisable not to use StepFast1, I believe they can all
be summed up in a single statement: Don’t use StepFast1 when accuracy is more important than speed or
memory to you. You may still want to evaluate it in this case and see if the inaccuracies are even noticeable,
perhaps with a relatively large number of iterations (20+).

8.3 How it works

For any interested parties out there, here’s a quick rundown of how the StepFast1 algorithm works. The
general problem that ODE tries to solve is a system of linear (in)equalities in (m = constraints) unknowns,
where one constraint constrains 1 Degree of Freedom in one joint. For large islands of bodies with many
joints between them, this can take a rather largeO(m2) array, which takesO(m3) time to solve. StepFast1
completely avoids creating the large matrix by making an assumption: at relatively small timesteps, the
effect of any given joint is so localized that it can be calculated without respect to any other joint in the
system, and any conflicting joints will cancel each other out before the body actually moves. So StepFast1
uses the same solution method (LCP) to solve the same problem, only localized to a single joint (where
m ¡= 6). It gets away with this by sub-dividing the timestep and repeating the process over really small
timesteps (i = maxiterations) times. So the running time of StepFast1 is ”roughly”O(mi). It’s really closer
to O(ji(m/j)3) = O(mi(m/j)2), wherej = joints, but(m/j) is never ¿ 6, so(m/j)2 is factored out as a
constant.
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8.4 Experimental Utilities included with StepFast1

Several experimental functions have been added to ODE as part of the StepFast1 flow of code, at least until
they are validated. Most have to do with the automatic disabling and enabling of bodies as yet another bit of
optimization. Here’s the general idea:

• The body is considered a candidate for disabling when it falls below a certain speed (linear and angu-
lar), called the AutoDisableThreshold. In the interest of speedy execution, the actual speed measured
is the square of the speed of the body. So you may need to set a lower value than you expected. 0.003
works well in testcrash, and is the default.

• When the body has remained a disable candidate for a certain number of steps (AutoDisableSteps), it
is disabled. This is almost completely for boxes, which like to land and bounce up on two points, and
teeter motionless for a few steps before falling back down. Round items generally need a much lower
(like 1) AutoDisableSteps than boxes do (10+), 10 is the default.

• AutoDisabling is disabled by default, use dBodySetAutoDisableSF1(body, true) to enable it.

• A body is automatically re-enabled when it comes in contact with another enabled body.

• Enabled bodies only enable bodies within (AutoEnableDepth) bodies of them each step. This, in
conjunction with AutoDisabling, causes a rim of bodies that are enabled and disabled each step to
form, containing the enabled bodies to the smallest area allowed by the AutoDisable parameters.
Setting AutoEnableDepth to a really large number will retain the current functionality. Setting it to 0
will give you a new functionality: disabled bodies will never be automatically re-enabled, acting like
geoms only. 3 seems to be a good value for the wall in testcrash, but 1000 is the default to retain
standard functionality.

Note that the functions pertaining to auto-disabling are not yet implemented!

8.5 API

void dWorldStepFast1(dWorldID, dReal stepsize, int maxiterations);

Step the world bystepsize seconds using the StepFast1 algorithm. The number of iterations to
perform is given bymaxiterations .

void dWorldSetAutoEnableDepthSF1(dWorldID, int autoEnableDepth);
int dWorldGetAutoEnableDepthSF1(dWorldID);

Set and get the AutoEnableDepth parameter used by the StepFast1 algorithm.

void dBodySetAutoDisableThresholdSF1(dBodyID, dReal autoDisableThreshold);
dReal dBodyGetAutoDisableThresholdSF1(dBodyID);

Set and get the per-body AutoDisableThreshold parameter used by the StepFast1 algorithm.
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void dBodySetAutoDisableStepsSF1(dBodyID, int AutoDisableSteps);
int dBodyGetAutoDisableStepsSF1(dBodyID);

Set and get the per-body AutoDisableSteps parameter used by the StepFast1 algorithm.

void dBodySetAutoDisableSF1(dBodyID, int doAutoDisable);
int dBodyGetAutoDisableSF1(dBodyID);

Set and get the per-body AutoDisable flag used by the StepFast1 algorithm. IfdoAutoDisable is
nonzero, auto-disabling is enabled. IfdoAutoDisable is zero, auto-disabling is disabled.
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Support Functions

9.1 Rotation functions

Rigid body orientations are represented with quaternions. A quaternion is four numbers[cos(θ/2), sin(θ/2)∗
u] whereθ is a rotation angle andu is a unit length rotation axis.

Every rigid body also has a 3x3 rotation matrix that is derived from the quaternion. The rotation matrix
and the quaternion always match.

Some information about quaternions:

• q and -q represent the same rotation.

• The inverse of a quaternion is[q[0]− q[1]− q[2]− q[3]].

The following are utility functions for dealing with rotation matrices and quaternions.

void dRSetIdentity (dMatrix3 R);

SetR to the identity matrix (i.e. no rotation).

void dRFromAxisAndAngle (dMatrix3 R,
dReal ax, dReal ay, dReal az, dReal angle);

Compute the rotation matrixRas a rotation ofangle radians along the axis (ax ,ay ,az ).

void dRFromEulerAngles (dMatrix3 R,
dReal phi, dReal theta, dReal psi);

Compute the rotation matrixR from the three Euler rotation angles.

void dRFrom2Axes (dMatrix3 R, dReal ax, dReal ay, dReal az,
dReal bx, dReal by, dReal bz);

Compute the rotation matrixR from the two vectors ‘a’ (ax ,ay ,az ) and ‘b’ (bx ,by ,bz ). ‘a’ and ‘b’
are the desired x and y axes of the rotated coordinate system. If necessary, ‘a’ and ‘b’ will be made
unit length, and ‘b’ will be projected so that it is perpendicular to ‘a’. The desired z axis is the cross
product of ‘a’ and ‘b’.
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void dQSetIdentity (dQuaternion q);

Setq to the identity rotation (i.e. no rotation).

void dQFromAxisAndAngle (dQuaternion q, dReal ax, dReal ay, dReal az,
dReal angle);

Computeq as a rotation ofangle radians along the axis (ax ,ay ,az ).

void dQMultiply0 (dQuaternion qa,
const dQuaternion qb, const dQuaternion qc);

void dQMultiply1 (dQuaternion qa,
const dQuaternion qb, const dQuaternion qc);

void dQMultiply2 (dQuaternion qa,
const dQuaternion qb, const dQuaternion qc);

void dQMultiply3 (dQuaternion qa,
const dQuaternion qb, const dQuaternion qc);

Setqa = qb*qc . This is that same asqa = rotationqc followed by rotationqb . The 0/1/2 versions are
analogous to the multiply functions, i.e. 1 uses the inverse ofqb , and 2 uses the inverse ofqc . Option
3 uses the inverse of both.

void dQtoR (const dQuaternion q, dMatrix3 R);

Convert quaternionq to rotation matrixR.

void dRtoQ (const dMatrix3 R, dQuaternion q);

Convert rotation matrixR to quaternionq.

void dWtoDQ (const dVector3 w, const dQuaternion q, dVector4 dq);

Given an existing orientationq and an angular velocity vectorw, return indq the resulting dq/dt.

9.2 Mass functions

The mass parameters of a rigid body are described by adMass structure:

typedef struct dMass {
dReal mass; // total mass of the rigid body
dVector4 c; // center of gravity position in body frame (x,y,z)
dMatrix3 I; // 3x3 inertia tensor in body frame, about POR

} dMass;

The following functions operate on this structure:
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void dMassSetZero (dMass *);

Set all the mass parameters to zero.

void dMassSetParameters (dMass *, dReal themass,
dReal cgx, dReal cgy, dReal cgz,
dReal I11, dReal I22, dReal I33,
dReal I12, dReal I13, dReal I23);

Set the mass parameters to the given values.themass is the mass of the body. (cx ,cy ,cz ) is the
center of gravity position in the body frame. TheIxx values are the elements of the inertia matrix:

[ I11 I12 I13 ]
[ I12 I22 I23 ]
[ I13 I23 I33 ]

void dMassSetSphere (dMass *, dReal density, dReal radius);
void dMassSetSphereTotal (dMass *, dReal total_mass, dReal radius);

Set the mass parameters to represent a sphere of the given radius and density, with the center of mass
at (0,0,0) relative to the body. The first function accepts the density of the sphere, the second accepts
the total mass of the sphere.

void dMassSetCappedCylinder (dMass *, dReal density, int direction,
dReal radius, dReal length);

void dMassSetCappedCylinderTotal (dMass *, dReal total_mass,
int direction, dReal radius, dReal length);

Set the mass parameters to represent a capped cylinder of the given parameters and density, with the
center of mass at (0,0,0) relative to the body. The radius of the cylinder (and the spherical cap) is
radius . The length of the cylinder (not counting the spherical cap) islength . The cylinder’s long
axis is oriented along the body’s x, y or z axis according to the value ofdirection (1=x, 2=y, 3=z).
The first function accepts the density of the object, the second accepts its total mass.

void dMassSetCylinder (dMass *, dReal density, int direction,
dReal radius, dReal length);

void dMassSetCylinderTotal (dMass *, dReal total_mass, int direction,
dReal radius, dReal length);

Set the mass parameters to represent a flat-ended cylinder of the given parameters and density, with
the center of mass at (0,0,0) relative to the body. The radius of the cylinder isradius . The length of
the cylinder islength . The cylinder’s long axis is oriented along the body’s x, y or z axis according
to the value ofdirection (1=x, 2=y, 3=z). The first function accepts the density of the object, the
second accepts its total mass.
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void dMassSetBox (dMass *, dReal density,
dReal lx, dReal ly, dReal lz);

void dMassSetBoxTotal (dMass *, dReal total_mass,
dReal lx, dReal ly, dReal lz);

Set the mass parameters to represent a box of the given dimensions and density, with the center of mass
at (0,0,0) relative to the body. The side lengths of the box along the x, y and z axes arelx , ly andlz .
The first function accepts the density of the object, the second accepts its total mass.

void dMassAdjust (dMass *, dReal newmass);

Given mass parameters for some object, adjust them so the total mass is nownewmass. This is useful
when using the above functions to set the mass parameters for certain objects - they take the object
density, not the total mass.

void dMassTranslate (dMass *, dReal x, dReal y, dReal z);

Given mass parameters for some object, adjust them to represent the object displaced by (x ,y ,z ) relative
to the body frame.

void dMassRotate (dMass *, const dMatrix3 R);

Given mass parameters for some object, adjust them to represent the object rotated byR relative to the
body frame.

void dMassAdd (dMass *a, const dMass *b);

Add the massb to the massa.

9.3 Math functions

[There are quite a lot of these, but they’re not standardized enough to document yet].

9.4 Error and memory functions

[Document these later].
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Collision Detection

ODE has two main components: a dynamics simulation engine and a collision detection engine. The colli-
sion engine is given information about theshapeof each body. At each time step it figures out which bodies
touch each other and passes the resulting contact point information to the user. The user in turn creates
contact joints between bodies.

Using ODE’s collision detection is optional - an alternative collision detection system can be used as
long as it can supply the right kinds of contact information.

10.1 Contact points

If two bodies touch, or if a body touches a static feature in its environment, the contact is represented by one
or more ”contact points”. Each contact point has a correspondingdContactGeom structure:

struct dContactGeom {
dVector3 pos; // contact position
dVector3 normal; // normal vector
dReal depth; // penetration depth
dGeomID g1,g2; // the colliding geoms

};

pos records the contact position, in global coordinates.
depth is the depth to which the two bodies inter-penetrate each other. If the depth is zero then the

two bodies have a grazing contact, i.e. they ”only just” touch. However, this is rare - the simulation is not
perfectly accurate and will often step the bodies too far so that the depth is nonzero.

normal is a unit length vector that is, generally speaking, perpendicular to the contact surface.
g1 andg2 are the geometry objects that collided.
The convention is that if body 1 is moved along thenormal vector by a distancedepth (or equivalently

if body 2 is moved the same distance in the opposite direction) then the contact depth will be reduced to
zero. This means that the normal vector points ”in” to body 1.

In real life, contact between two bodies is a complex thing. Representing contacts by contact points is
only an approximation. Contact ”patches” or ”surfaces” might be more physically accurate, but representing
these things in high speed simulation software is a challenge.

Each extra contact point added to the simulation will slow it down some more, so sometimes we are
forced to ignore contact points in the interests of speed. For example, when two boxes collide many contact
points may be needed to properly represent the geometry of the situation, but we may choose to keep only
the best three. Thus we are piling approximation on top of approximation.

53



54 CHAPTER 10. COLLISION DETECTION

10.2 Geoms

Geometry objects (or “geoms” for short) are the fundamental objects in the collision system. A geom can
represents a single rigid shape (such as a sphere or box), or it can represents a group of other geoms - this is
a special kind of geom called a “space”.

Any geom can be collided against any other geom to yield zero or more contact points. Spaces have the
extra capability of being able to collide their contained geoms together to yield internal contact points.

Geoms can be placeable or non-placeable. A placeable geom has a position vector and a 3*3 rotation
matrix, just like a rigid body, that can be changed during the simulation. A non-placeable geom does not
have this capability - for example, it may represent some static feature of the environment that can not be
moved. Spaces are non-placeable geoms, because each contained geom may have its own position and
orientation but it does not make sense for the space itself to have a position and orientation.

To use the collision engine in a rigid body simulation, placeable geoms are associated with rigid body
objects. This allows the collision engine to get the position and orientation of the geoms from the bodies.
Note that geoms are distinct from rigid bodies in that a geom has geometrical properties (size, shape, position
and orientation) but no dynamical properties (such as velocity or mass). A body and a geom together
represent all the properties of the simulated object.

Every geom is an instance of aclass, such as sphere, plane, or box. There are a number of built-in
classes, described below, and you can define your own classes as well.

The point of reference of a placeable geoms is the point that is controlled by its position vector. The point
of reference for the standard classes usually corresponds to the geom’s center of mass. This feature allows
the standard classes to be easily connected to dynamics bodies. If other points of reference are required, a
transformation object can be used to encapsulate a geom.

The concepts and functions that apply to all geoms will be described below, followed by the various
geometry classes and the functions that manipulate them.

10.3 Spaces

A space is a non-placeable geom that can contain other geoms. It is similar to the rigid body concept of the
“world”, except that it applies to collision instead of dynamics.

Space objects exist to make collision detection go faster. Without spaces, you might generate contacts
in your simulation by callingdCollide() to get contact points for every single pair of geoms. For N geoms
this isO(N2) tests, which is too computationally expensive if your environment has many objects.

A better approach is to insert the geoms into a space and calldSpaceCollide(). The space will then
perform collision culling, which means that it will quickly identify which pairs of geoms arepotentially
intersecting. Those pairs will be passed to a callback function, which can in turn calldCollide()on them.
This saves a lot of time that would have been spent in uselessdCollide() tests, because the number of pairs
passed to the callback function will be a small fraction of every possible object-object pair.

Spaces can contain other spaces. This is useful for dividing a collision environment into several hierar-
chies to further optimize collision detection speed. This will be described in more detail below.

10.4 General geom functions

The following functions can be applied to any geom.

void dGeomDestroy (dGeomID);
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Destroy a geom, removing it from any space it is in first. This one function destroys a geom of any
type, but to create a geom you must call a creation function for that type.

When a space is destroyed, if its cleanup mode is 1 (the default) then all the geoms in that space are
automatically destroyed as well.

void dGeomSetData (dGeomID, void *);
void *dGeomGetData (dGeomID);

These functions set and get the user-defined data pointer stored in the geom.

void dGeomSetBody (dGeomID, dBodyID);
dBodyID dGeomGetBody (dGeomID);

These functions set and get the body associated with a placeable geom. Setting a body on a geom
automatically combines the position vector and rotation matrix of the body and geom, so that setting
the position or orientation of one will set the value for both objects.

Setting a body ID of zero gives the geom its own position and rotation, independent from any body. If
the geom was previously connected to a body then its new independent position/rotation is set to the
current position/rotation of the body.

Calling these functions on a non-placeable geom results in a runtime error in the debug build of ODE.

void dGeomSetPosition (dGeomID, dReal x, dReal y, dReal z);
void dGeomSetRotation (dGeomID, const dMatrix3 R);
void dGeomSetQuaternion (dGeomID, const dQuaternion);

Set the position vector, rotation matrix or quaternion of a placeable geom. These functions are analo-
gous todBodySetPosition(), dBodySetRotation()anddBodySetQuaternion(). If the geom is attached
to a body, the body’s position / rotation / quaternion will also be changed.

Calling these functions on a non-placeable geom results in a runtime error in the debug build of ODE.

const dReal * dGeomGetPosition (dGeomID);
const dReal * dGeomGetRotation (dGeomID);
void dGeomGetQuaternion (dGeomID, dQuaternion result);

The first two return pointers to the geom’s position vector and rotation matrix. The returned values are
pointers to internal data structures, so the vectors are valid until any changes are made to the geom. If
the geom is attached to a body, the body’s position / rotation pointers will be returned, i.e. the result
will be identical to callingdBodyGetPosition()or dBodyGetRotation().

dGeomGetQuaternion()copies the geom’s quaternion into the space provided. If the geom is attached
to a body, the body’s quaternion will be returned, i.e. the resulting quaternion will be the same as the
result of callingdBodyGetQuaternion().

Calling these functions on a non-placeable geom results in a runtime error in the debug build of ODE.

void dGeomGetAABB (dGeomID, dReal aabb[6]);
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Return inaabb an axis aligned bounding box that surrounds the given geom. Theaabb array has
elements(minx, maxx, miny,maxy,minz,maxz). If the geom is a space, a bounding box that
surrounds all contained geoms is returned.

This function may return a pre-computed cached bounding box, if it can determine that the geom has
not moved since the last time the bounding box was computed.

int dGeomIsSpace (dGeomID);

Return 1 if the given geom is a space, or 0 if not.

dSpaceID dGeomGetSpace (dGeomID);

Return the space that the given geometry is contained in, or return 0 if it is not contained in any space.

int dGeomGetClass (dGeomID);

Given a geom, this returns its class number. The standard class numbers are:

dSphereClass Sphere
dBoxClass Box
dCCylinderClass Capped cylinder
dCylinderClass Regular flat-ended cylinder
dPlaneClass Infinite plane (non-placeable)
dGeomTransformClass Geometry transform
dRayClass Ray
dTriMeshClass Triangle mesh
dSimpleSpaceClass Simple space
dHashSpaceClass Hash table based space

User defined classes will return their own numbers.

void dGeomSetCategoryBits (dGeomID, unsigned long bits);
void dGeomSetCollideBits (dGeomID, unsigned long bits);
unsigned long dGeomGetCategoryBits (dGeomID);
unsigned long dGeomGetCollideBits (dGeomID);

Set and get the “category” and “collide” bitfields for the given geom. These bitfields are use by spaces
to govern which geoms will interact with each other. The bit fields are guaranteed to be at least 32 bits
wide. The default category and collide values for newly created geoms have all bits set.

void dGeomEnable (dGeomID);
void dGeomDisable (dGeomID);
int dGeomIsEnabled (dGeomID);

Enable and disable a geom. Disabled geoms are completely ignored bydSpaceCollide()anddSpaceCol-
lide2(), although they can still be members of a space.

dGeomIsEnabled() returns 1 if a geom is enabled or 0 if it is disabled. New geoms are created in
the enabled state.
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10.5 Collision detection

A collision detection “world” is created by making a space and then adding geoms to that space. At every
time step we want to generate a list of contacts for all the geoms that intersect each other. Three functions
are used to do this:

• dCollide()intersects two geoms and generates contact points.

• dSpaceCollide()determines which pairs of geoms in a space may potentially intersect, and calls a
callback function with each candidate pair. This does not generate contact points directly, because
the user may want to handle some pairs specially - for example by ignoring them or using different
contact generating strategies. Such decisions are made in the callback function, which can choose
whether or not to calldCollide()for each pair.

• dSpaceCollide2()determines which geoms from one space may potentially intersect with geoms from
another space, and calls a callback function with each candidate pair. It can also test a single non-
space geom against a space. This function is useful when there is a collision hierarchy, i.e. when there
are spaces that contain other spaces.

The collision system has been designed to give the user maximum flexibility to decide which objects
will be tested against each other. This is why are there are three collision functions instead of, for example,
one function that just generates all the contact points.

Spaces may contain other spaces. These sub-spaces will typically represent a collection of geoms (or
other spaces) that are located near each other. This is useful for gaining extra collision performance by
dividing the collision world into hierarchies. Here is an example of where this is useful:

Suppose you have two cars driving over some terrain. Each car is made up of many geoms. If all these
geoms were inserted into the same space, the collision computation time between the two cars would always
be proportional to the total number of geoms (or even to the square of this number, depending on which
space type is used).

To speed up collision a separate space is created to represent each car. The car geoms are inserted into
the car-spaces, and the car-spaces are inserted into the top level space. At each time stepdSpaceCollide()is
called for the top level space. This will do a single intersection test between the car-spaces (actually between
their bounding boxes) and call the callback if they touch. The callback can then test the geoms in the car-
spaces against each other usingdSpaceCollide2(). If the cars are not near each other then the callback is not
called and no time is wasted performing unnecessary tests.

If space hierarchies are being used then the callback function may be called recursively, e.g. ifdSpaceCol-
lide() calls the callback which in turn callsdSpaceCollide()with the same callback function. In this case the
user must make sure that the callback function is properly reentrant.

Here is a sample callback function that traverses through all spaces and sub-spaces, generating all pos-
sible contact points for all intersecting geoms:

void nearCallback (void *data, dGeomID o1, dGeomID o2)
{

if (dGeomIsSpace (o1) || dGeomIsSpace (o2)) {
// colliding a space with something
dSpaceCollide2 (o1,o2,data,&nearCallback);
// collide all geoms internal to the space(s)
if (dGeomIsSpace (o1)) dSpaceCollide (o1,data,&nearCallback);
if (dGeomIsSpace (o2)) dSpaceCollide (o2,data,&nearCallback);

}
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else {
// colliding two non-space geoms, so generate contact
// points between o1 and o2
int num_contact = dCollide (o1,o2,max_contacts,contact_array,skip);
// add these contact points to the simulation
...

}
}

...

// collide all objects together
dSpaceCollide (top_level_space,0,&nearCallback);

A space callback function is not allowed to modify a space while that space is being processed with
dSpaceCollide()or dSpaceCollide2(). For example, you can not add or remove geoms from a space, and
you can not reposition the geoms within a space. Doing so will trigger a runtime error in the debug build of
ODE.

10.5.1 Category and Collide Bitfields

Each geom has a “category” and “collide” bitfield that can be used to assist the space algorithms in deter-
mining which geoms should interact and which should not. Use of this feature is optional - by default geoms
are considered to be capable of colliding with any other geom.

Each bit position in the bitfield represents a different category of object. The actual meaning of these
categories (if any) is user defined. The category bitfield indicates which categories a geom is a member of.
The collide bitfield indicates which categories the geom will collide with during collision detection.

A pair of geoms will be considered bydSpaceCollide()anddSpaceCollide2()for passing to the callback
only if one of them has a collide bit set that corresponds to a category bit in the other. The exact test is as
follows:

// test if geom o1 and geom o2 can collide
cat1 = dGeomGetCategoryBits (o1);
cat2 = dGeomGetCategoryBits (o2);
col1 = dGeomGetCollideBits (o1);
col2 = dGeomGetCollideBits (o2);
if ((cat1 & col2) || (cat2 & col1)) {

// call the callback with o1 and o2
}
else {

// do nothing, o1 and o2 do not collide
}

Note that onlydSpaceCollide()anddSpaceCollide2()use these bitfields, they are ignored bydCollide().
Typically a geom will belong only to a single category, so only one bit will be set in the category bitfield.

The bitfields are guaranteed to be at least 32 bits wide, so the user is able to specify an arbitrary pattern of
interactions for up to 32 objects. If there are more than 32 objects then some of them will obviously have to
have the same category.
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Sometimes the category field will contain multiple bits set, e.g. if the geom is a space them you may
want to set the category to the union of all the geom categories that are contained.

Design note: Why don’t we just have a single category bitfield and use the test(cat1 & cat2) ?
This is simpler, but a single field requires more bits to represent some patterns of interaction. For example,
if 32 geoms have an interaction pattern that is a 5 dimensional hypercube, 80 bit are required in the simpler
scheme. The simpler scheme also makes it harder to determine what the categories should be for some
situations.

10.5.2 Collision Detection Functions

int dCollide (dGeomID o1, dGeomID o2, int flags,
dContactGeom *contact, int skip);

Given two geomso1 ando2 that potentially intersect, generate contact information for them. Inter-
nally, this just calls the correct class-specific collision functions foro1 ando2 .

flags specifies how contacts should be generated if the geoms touch. The lower 16 bits offlags is
an integer that specifies the maximum number of contact points to generate. Note that if this number
is zero, this function just pretends that it is one - in other words you can not ask for zero contacts. All
other bits inflags must be zero. In the future the other bits may be used to select from different
contact generation strategies.

contact points to an array ofdContactGeom structures. The array must be able to hold at least
the maximum number of contacts. ThesedContactGeom structures may be embedded within larger
structures in the array - theskip parameter is the byte offset from onedContactGeom to the next in
the array. Ifskip is sizeof(dContactGeom) thencontact points to a normal (C-style) array.
It is an error forskip to be smaller thansizeof(dContactGeom) .

If the geoms intersect, this function returns the number of contact points generated (and updates the
contact array), otherwise it returns 0 (and thecontact array is not touched).

If a space is passed aso1 or o2 then this function will collide all objects contained ino1 with all
objects contained ino2 , and return the resulting contact points. This method for colliding spaces with
geoms (or spaces with spaces) provides no user control over the individual collisions. To get that
control, usedSpaceCollide()or dSpaceCollide2()instead.

If o1 ando2 are the same geom then this function will do nothing and return 0. Technically speaking
an object intersects with itself, but it is not useful to find contact points in this case.

This function does not care ifo1 ando2 are in the same space or not (or indeed if they are in any space
at all).

void dSpaceCollide (dSpaceID space,
void *data, dNearCallback *callback);

This determines which pairs of geoms in a space may potentially intersect, and calls the callback
function with each candidate pair. Thecallback function is of typedNearCallback , which is
defined as:

typedef void dNearCallback (void *data, dGeomID o1, dGeomID o2);



60 CHAPTER 10. COLLISION DETECTION

Thedata argument is passed fromdSpaceCollide()directly to the callback function. Its meaning is
user defined. Theo1 ando2 arguments are the geoms that may be near each other.

The callback function can calldCollide()on o1 ando2 to generate contact points between each pair.
Then these contact points may be added to the simulation as contact joints. The user’s callback function
can of course chose not to calldCollide() for any pair, e.g. if the user decides that those pairs should
not interact.

Other spaces that are contained within the colliding space are not treated specially, i.e. they are not
recursed into. The callback function may be passed these contained spaces as one or both geom argu-
ments.

dSpaceCollide() is guaranteed to pass all intersecting geom pairs to the callback function, but it
may also make mistakes and pass non-intersecting pairs. The number of mistaken calls depends on the
internal algorithms used by the space. Thus you should not expect thatdCollide()will return contacts
for every pair passed to the callback.

void dSpaceCollide2 (dGeomID o1, dGeomID o2,
void *data, dNearCallback *callback);

This function is similar todSpaceCollide(), except that it is passed two geoms (or spaces) as arguments.
It calls the callback for all potentially intersecting pairs that contain one geom fromo1 and one geom
from o2 .

The exact behavior depends on the types ofo1 ando2 :

• If one argument is a non-space geom and the other is a space, the callback is called with all
potential intersections between the geom and the objects in the space.

• If both o1 ando2 are spaces then this calls the callback for all potentially intersecting pairs that
contain one geom fromo1 and one geom fromo2 . The algorithm that is used depends on what
kinds of spaces are being collided. If no optimized algorithm can be selected then this function
will resort to one of the following two strategies:

1. All the geoms ino1 are tested one-by-one againsto2 .

2. All the geoms ino2 are tested one-by-one againsto1 .

The strategy used may depends on a number of rules, but in general the space with less objects
has its geoms examined one-by-one.

• If both arguments are the same space, this is equivalent to callingdSpaceCollide()on that space.

• If both arguments are non-space geoms, this simply calls the callback once with these arguments.

If this function is given a space and an geom X in that same space, this case is not treated specially. In
this case the callback will always be called with the pair (X,X), because an objects always intersects
with itself. The user may either test for this case and ignore it, or just pass the pair (X,X) todCollide()
(which will be guaranteed to return 0).

10.6 Space functions

There are several kinds of spaces. Each kind uses different internal data structures to store the geoms, and
different algorithms to perform the collision culling:
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• Simple space. This does not do any collision culling - it simply checks every possible pair of geoms
for intersection, and reports the pairs whose AABBs overlap. The time required to do intersection
testing forn objects isO(n2). This should not be used for large numbers of objects, but it can be
the preferred algorithm for a small number of objects. This is also useful for debugging potential
problems with the collision system.

• Multi-resolution hash table space. This uses an internal data structure that records how each geom
overlaps cells in one of several three dimensional grids. Each grid has cubical cells of side lengths
2i, wherei is an integer that ranges from a minimum to a maximum value. The time required to
do intersection testing forn objects isO(n) (as long as those objects are not clustered together too
closely), as each object can be quickly paired with the objects around it.

• Quadtree space. This uses a pre-allocated hierarchical grid-based AABB tree to quickly cull colli-
sion checks. It’s exceptionally quick for large amounts of objects in landscape-shaped worlds. The
amount of memory used is 4.̂depth * 32 bytes. CurrentlydSpaceGetGeom()is not implemented for
the quadtree space.

Here are the functions used for spaces:

dSpaceID dSimpleSpaceCreate (dSpaceID space);
dSpaceID dHashSpaceCreate (dSpaceID space);

Create a space, either of the simple or multi-resolution hash table kind. Ifspace is nonzero, insert the
new space into that space.

dSpaceID dQuadTreeSpaceCreate (dSpaceID space, dVector3 Center,
dVector3 Extents, int Depth);

Creates a quadtree space.center andextents define the size of the root block.depth sets the
depth of the tree - the number of blocks that are created is 4.̂depth.

void dSpaceDestroy (dSpaceID);

This destroys a space. It functions exactly likedGeomDestroy()except that it takes adSpaceID
argument. When a space is destroyed, if its cleanup mode is 1 (the default) then all the geoms in that
space are automatically destroyed as well.

void dHashSpaceSetLevels (dSpaceID space, int minlevel, int maxlevel);
void dHashSpaceGetLevels (dSpaceID space, int *minlevel, int *maxlevel);

Sets and get some parameters for a multi-resolution hash table space. The smallest and largest cell
sizes used in the hash table will be 2.̂minlevel and 2̂.maxlevel respectively.minlevel must be
less than or equal tomaxlevel .

In dHashSpaceGetLevels()the minimum and maximum levels are returned through pointers. If a
pointer is zero then it is ignored and no argument is returned.
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void dSpaceSetCleanup (dSpaceID space, int mode);
int dSpaceGetCleanup (dSpaceID space);

Set and get the clean-up mode of the space. If the clean-up mode is 1, then the contained geoms will
be destroyed when the space is destroyed. If the clean-up mode is 0 this does not happen. The default
clean-up mode for new spaces is 1.

void dSpaceAdd (dSpaceID, dGeomID);

Add a geom to a space. This does nothing if the geom is already in the space. This function can be
called automatically if aspace argument is given to a geom creation function.

void dSpaceRemove (dSpaceID, dGeomID);

Remove a geom from a space. This does nothing if the geom is not actually in the space. This function
is called automatically bydGeomDestroy()if the geom is in a space.

int dSpaceQuery (dSpaceID, dGeomID);

Return 1 if the given geom is in the given space, or return 0 if it is not.

int dSpaceGetNumGeoms (dSpaceID);

Return the number of geoms contained within a space.

dGeomID dSpaceGetGeom (dSpaceID, int i);

Return thei ’th geom contained within the space.i must range from 0 todSpaceGetNumGeoms() -
1.

If any change is made to the space (including adding and deleting geoms) then no guarantee can be
made about how the index number of any particular geom will change. Thus no space changes should
be made while enumerating the geoms.

This function is guaranteed to be fastest when the geoms are accessed in the order 0,1,2,etc. Other
non-sequential orders may result in slower access, depending on the internal implementation.

10.7 Geometry Classes

10.7.1 Sphere Class

dGeomID dCreateSphere (dSpaceID space, dReal radius);

Create a sphere geom of the givenradius , and return its ID. Ifspace is nonzero, insert it into that
space. The point of reference for a sphere is its center.
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void dGeomSphereSetRadius (dGeomID sphere, dReal radius);

Set the radius of the given sphere.

dReal dGeomSphereGetRadius (dGeomID sphere);

Return the radius of the given sphere.

dReal dGeomSpherePointDepth (dGeomID sphere, dReal x, dReal y, dReal z);

Return the depth of the point (x ,y ,z ) in the given sphere. Points inside the geom will have positive
depth, points outside it will have negative depth, and points on the surface will have zero depth.

10.7.2 Box Class

dGeomID dCreateBox (dSpaceID space, dReal lx, dReal ly, dReal lz);

Create a box geom of the given x/y/z side lengths (lx ,ly ,lz ), and return its ID. Ifspace is nonzero,
insert it into that space. The point of reference for a box is its center.

void dGeomBoxSetLengths (dGeomID box, dReal lx, dReal ly, dReal lz);

Set the side lengths of the givenbox .

void dGeomBoxGetLengths (dGeomID box, dVector3 result);

Return inresult the side lengths of the givenbox .

dReal dGeomBoxPointDepth (dGeomID box, dReal x, dReal y, dReal z);

Return the depth of the point (x ,y ,z ) in the given box. Points inside the geom will have positive depth,
points outside it will have negative depth, and points on the surface will have zero depth.

10.7.3 Plane Class

dGeomID dCreatePlane (dSpaceID space,
dReal a, dReal b, dReal c, dReal d);

Create a plane geom of the given parameters, and return its ID. Ifspace is nonzero, insert it into that
space. The plane equation is

a ∗ x + b ∗ y + c ∗ z = d (10.1)

The plane’s normal vector is(a, b, c), and it must have length 1. Planes are non-placeable geoms. This
means that, unlike placeable geoms, planes do not have an assigned position and rotation. This means
that the parameters (a,b,c,d) are always in global coordinates. In other words it is assumed that the
plane is always part of the static environment and not tied to any movable object.
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void dGeomPlaneSetParams (dGeomID plane, dReal a, dReal b, dReal c, dReal d);

Set the parameters of the givenplane .

void dGeomPlaneGetParams (dGeomID plane, dVector4 result);

Return inresult the parameters of the givenplane .

dReal dGeomPlanePointDepth (dGeomID plane, dReal x, dReal y, dReal z);

Return the depth of the point (x ,y ,z ) in the given plane. Points inside the geom will have positive
depth, points outside it will have negative depth, and points on the surface will have zero depth.

10.7.4 Capped Cylinder Class

dGeomID dCreateCCylinder (dSpaceID space, dReal radius, dReal length);

Create a capped cylinder geom of the given parameters, and return its ID. Ifspace is nonzero, insert
it into that space.

A capped cylinder is like a normal cylinder except it has half-sphere caps at its ends. This feature
makes the internal collision detection code particularly fast and accurate. The cylinder’s length, not
counting the caps, is given bylength . The cylinder is aligned along the geom’s local Z axis. The
radius of the caps, and of the cylinder itself, is given byradius .

void dGeomCCylinderSetParams (dGeomID ccylinder,
dReal radius, dReal length);

Set the parameters of the given capped cylinder.

void dGeomCCylinderGetParams (dGeomID ccylinder,
dReal *radius, dReal *length);

Return inradius andlength the parameters of the given capped cylinder.

dReal dGeomCCylinderPointDepth (dGeomID ccylinder,
dReal x, dReal y, dReal z);

Return the depth of the point (x ,y ,z ) in the given capped cylinder. Points inside the geom will have
positive depth, points outside it will have negative depth, and points on the surface will have zero depth.
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10.7.5 Ray Class

A ray is different from all the other geom classes in that it does not represent a solid object. It is an infinitely
thin line that starts from the geom’s position and extends in the direction of the geom’s local Z-axis.

Calling dCollide()between a ray and another geom will result in at most one contact point. Rays have
their own conventions for the contact information in thedContactGeom structure (thus it is not useful to
create contact joints from this information):

• pos - This is the point at which the ray intersects the surface of the other geom, regardless of whether
the ray starts from inside or outside the geom.

• normal - This is the surface normal of the other geom at the contact point. ifdCollide() is passed
the ray as its first geom then the normal will be oriented correctly for ray reflection from that surface
(otherwise it will have the opposite sign).

• depth - This is the distance from the start of the ray to the contact point.

Rays are useful for things like visibility testing, determining the path of projectiles or light rays, and for
object placement.

dGeomID dCreateRay (dSpaceID space, dReal length);

Create a ray geom of the given length, and return its ID. Ifspace is nonzero, insert it into that space.

void dGeomRaySetLength (dGeomID ray, dReal length);

Set the length of the givenray .

dReal dGeomRayGetLength (dGeomID ray);

Get the length of the givenray .

void dGeomRaySet (dGeomID ray, dReal px, dReal py, dReal pz,
dReal dx, dReal dy, dReal dz);

Set the starting position (px ,py ,pz ) and direction (dx ,dy ,dz ) of the givenray . The ray’s rotation
matrix will be adjusted so that the local Z-axis is aligned with the direction. Note that this does not
adjust the ray’s length.

void dGeomRayGet (dGeomID ray, dVector3 start, dVector3 dir);

Get the starting position (start ) and direction (dir ) of the ray. The returned direction will be a unit
length vector.
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10.7.6 Triangle Mesh Class

A triangle mesh (TriMesh) represents an arbitrary collection of triangles. The triangle mesh collision system
has the following features:

• Any triangle “soup” can be represented — i.e. the triangles are not required to have any particular
strip, fan or grid structure.

• Triangle meshes can interact with spheres, boxes, rays and other triangle meshes.

• It works well for relatively large triangles.

• It uses temporal coherence to speed up collision tests. When a geom has its collision checked with
a trimesh once, data is stored inside the trimesh. This data can be cleared with thedGeomTriMesh-
ClearTCCache()function. In the future it will be possible to disable this functionality.

Trimesh/Trimesh collisions, perform quite well, but there are three minor caveats:

• The stepsize you use will, in general, have to be reduced for accurate collision resolution. Non-convex
shape collision is much more dependent on the collision geometry than primitive collisions. Further,
the local contact geometry will change more rapidly (and in a more complex fashion) for non-convex
polytopes than it does for simple, convex polytopes such as spheres and cubes.

• In order to efficiently resolve collisions, dCollideTTL needs the positions of the colliding trimeshes
in the previous timestep. This is used to calculate an estimated velocity of each colliding triangle,
which is used to find the direction of impact, contact normals, etc. This requires the user to update
these variables at every timestep. This update is performed outside of ODE, so it is not included in
ODE itself. The code to do this looks something like this:

const double *DoubleArrayPtr =
Bodies[BodyIndex].TransformationMatrix->GetArray();

dGeomTriMeshDataSet( TriMeshData,
TRIMESH_LAST_TRANSFORMATION,
(void *) DoubleArrayPtr );

The transformation matrix is the standard 4x4 homogeneous transform matrix, and the ”DoubleArray”
is the standard flattened array of the 16 matrix values.

NOTE: The triangle mesh class is not final, so in the future API changes might be expected.

dTriMeshDataID dGeomTriMeshDataCreate();
void dGeomTriMeshDataDestroy (dTriMeshDataID g);

Creates and destroys a dTriMeshData object which is used to store mesh data.

void dGeomTriMeshDataBuild (dTriMeshDataID g, const void* Vertices,
int VertexStride, int VertexCount,
const void* Indices, int IndexCount,
int TriStride, const void* Normals);
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Used for filling adTriMeshData object with data. No data is copied here, so the pointers passed
into this function must remain valid. This is how the strided data works:

struct StridedVertex {
dVector3 Vertex; // 4th component can be left out, reducing memory usage
// Userdata

};
int VertexStride = sizeof (StridedVertex);

struct StridedTri {
int Indices[3];
// Userdata

};
int TriStride = sizeof (StridedTri);

TheNormals argument is optional: the normals of the faces of each trimesh object. For example,

dTriMeshDataID TriMeshData;
TriMeshData = dGeomTriMeshGetTriMeshDataID (

Bodies[BodyIndex].GeomID);

// as long as dReal == floats
dGeomTriMeshDataBuildSingle (TriMeshData,

// Vertices
Bodies[BodyIndex].VertexPositions,
3*sizeof(dReal), (int) numVertices,
// Faces
Bodies[BodyIndex].TriangleIndices,
(int) NumTriangles, 3*sizeof(unsigned int),
// Normals
Bodies[BodyIndex].FaceNormals);

This pre-calculation saves some time during evaluation of the contacts, but isn’t necessary. If you don’t
want to calculate the face normals before construction (or if you have enormous trimeshes and know
that only very few faces will be touching and want to save time), just pass a ”NULL” for theNormals
argument, and dCollideTTL will take care of the normal calculations itself.

void dGeomTriMeshDataBuildSimple (dTriMeshDataID g, const dVector3*Vertices,
int VertexCount, const int* Indices,
int IndexCount);

Simple build function provided for convenience.

typedef int dTriCallback (dGeomID TriMesh, dGeomID RefObject, int TriangleIndex);
void dGeomTriMeshSetCallback (dGeomID g, dTriCallback *Callback);
dTriCallback* dGeomTriMeshGetCallback (dGeomID g);
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Optional per triangle callback. Allows the user to say if collision with a particular triangle is wanted.
If the return value is zero no contact will be generated.

typedef void dTriArrayCallback (dGeomID TriMesh, dGeomID RefObject,
const int* TriIndices, int TriCount);

void dGeomTriMeshSetArrayCallback (dGeomID g, dTriArrayCallback* ArrayCallback);
dTriArrayCallback *dGeomTriMeshGetArrayCallback (dGeomID g);

Optional per geom callback. Allows the user to get the list of all intersecting triangles in one shot.

typedef int dTriRayCallback (dGeomID TriMesh, dGeomID Ray, int TriangleIndex,
dReal u, dReal v);

void dGeomTriMeshSetRayCallback (dGeomID g, dTriRayCallback* Callback);
dTriRayCallback *dGeomTriMeshGetRayCallback (dGeomID g);

Optional Ray callback. Allows the user to determine if a ray collides with a triangle based on the
barycentric coordinates of an intersection. The user can for example sample a bitmap to determine if a
collision should occur.

dGeomID dCreateTriMesh (dSpaceID space, dTriMeshDataID Data,
dTriCallback *Callback,
dTriArrayCallback * ArrayCallback,
dTriRayCallback* RayCallback);

Constructor. TheData member defines the vertex data the newly created triangle mesh will use.

void dGeomTriMeshSetData (dGeomID g, dTriMeshDataID Data);

Replaces the current data.

void dGeomTriMeshClearTCCache (dGeomID g);

Clears the internal temporal coherence caches.

void dGeomTriMeshGetTriangle (dGeomID g, int Index, dVector3 *v0,
dVector3 *v1, dVector3 *v2);

Retrieves a triangle in object space. Thev0 , v1 andv2 arguments are optional.

void dGeomTriMeshGetPoint (dGeomID g, int Index, dReal u, dReal v,
dVector3 Out);

Retrieves a position in object space based on the incoming data.
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void dGeomTriMeshEnableTC(dGeomID g, int geomClass, int enable);
int dGeomTriMeshIsTCEnabled(dGeomID g, int geomClass);

These functions can be used to enable/disable the use of temporal coherence during tri-mesh collision
checks. Temporal coherence can be enabled/disabled per tri-mesh instance/geom class pair, currently
it works for spheres and boxes. The default for spheres and boxes is ’false’.

The ’enable’ param should be 1 for true, 0 for false.

Temporal coherence is optional because allowing it can cause subtle efficiency problems in situations
where a tri-mesh may collide with many different geoms during its lifespan. If you enable temporal
coherence on a tri-mesh then these problems can be eased by intermittently callingdGeomTriMesh-
ClearTCCache()for it.

10.7.7 Geometry Transform Class

A geometry transform ‘T’ is a geom that encapsulates another geom ‘E’, allowing E to be positioned and
rotated arbitrarily with respect to its point of reference.

Most placeable geoms (like the sphere and box) have their point of reference corresponding to their
center of mass, allowing them to be easily connected to dynamics objects. Transform objects give you more
flexibility - for example, you can offset the center of a sphere, or rotate a cylinder so that its axis is something
other than the default.

T mimics the object E that it encapsulates: T is inserted into a space and attached to a body as though
it was E. E itself mustnot be inserted into a space or attached to a body. E’s position and rotation are set
to constant values that say how it is transformedrelative to T. If E’s position and rotation are left at their
default values, T will behave exactly like E would have if you had used it directly.

dGeomID dCreateGeomTransform (dSpaceID space);

Create a new geometry transform object, and return its ID. Ifspace is nonzero, insert it into that
space. On creation the encapsulated geometry is set to 0.

void dGeomTransformSetGeom (dGeomID g, dGeomID obj);

Set the geom that the geometry transformg encapsulates. The objectobj must not be inserted into
any space, and must not be associated with any body.

If g has its clean-up mode turned on, and it already encapsulates an object, the old object will be
destroyed before it is replaced with the new one.

dGeomID dGeomTransformGetGeom (dGeomID g);

Get the geom that the geometry transformg encapsulates.

void dGeomTransformSetCleanup (dGeomID g, int mode);
int dGeomTransformGetCleanup (dGeomID g);
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Set and get the clean-up mode of geometry transformg. If the clean-up mode is 1, then the encapsulated
object will be destroyed when the geometry transform is destroyed. If the clean-up mode is 0 this does
not happen. The default clean-up mode is 0.

void dGeomTransformSetInfo (dGeomID g, int mode);
int dGeomTransformGetInfo (dGeomID g);

Set and get the ”information” mode of geometry transformg. The mode can be 0 or 1. The default
mode is 0.

With mode 0, when a transform object is collided with another object (usingdCollide (tx geom,other geom,...) ),
theg1 field of thedContactGeom structure is set to the geom that isencapsulatedby the transform
object. This value ofg1 allows the caller to interrogate the type of the geom that is transformed, but it
does not allow the caller to determine the position in global coordinates or the associated body, as both
of these properties are used differently for encapsulated geoms.

With mode 1, theg1 field of thedContactGeom structure is set to the transform object itself. This
makes the object appear just like any other kind of geom, asdGeomGetBody()will return the attached
body, anddGeomGetPosition()will return the global position. To get the actual type of the encapsulated
geom in this case,dGeomTransformGetGeom()must be used.

10.8 User defined classes

ODE’s geometry classes are implemented internally as C++ classes. If you want to define your own geom-
etry classes you can do this in two ways:

1. Use the C functions in this section. This has the advantage of providing a clean separation between
your code and ODE.

2. Add the classes directly to ODE’s source code. This has the advantage that you can use C++ so the
implementation will potentially be a bit cleaner. This is also the preferred method if your collision
class is generally useful and you want to contribute it to the public source base.

What follows is the C API for user defined geometry classes.
Every user defined geometry class has a unique integer number. A new geometry class (call it ‘X’) must

provide the following to ODE:

1. Functions that will handle collision detection and contact generation between X and one or more other
classes. These functions must be of typedColliderFn , which is defined as

typedef int dColliderFn (dGeomID o1, dGeomID o2, int flags,
dContactGeom *contact, int skip);

This has exactly the same interface asdCollide(). Each function will handle a specific collision case,
whereo1 has type X ando2 has some other known type.

2. A ”selector” function, of typedGetColliderFnFn , which is defined as

typedef dColliderFn * dGetColliderFnFn (int num);
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This function takes a class number (num), and returns the collider function that can handle colliding
X with classnum. It should return 0 if X does not know how to collide with classnum. Note that if
classes X and Y are to collide, onlyoneneeds to provide a function to collide with the other.

This function is called infrequently - the return values are cached and reused.

3. A function that will compute the axis aligned bounding box (AABB) of instances of this class. This
function must be of typedGetAABBFn, which is defined as

typedef void dGetAABBFn (dGeomID g, dReal aabb[6]);

This function is giveng, which has type X, and returns the axis-aligned bounding box forg. The
aabb array has elements(minx, maxx, miny,maxy,minz,maxz). If you don’t want to compute
tight bounds for the AABB, you can just supply a pointer todInfiniteAABB(), which returns +/-
infinity in each direction.

4. The number of bytes of ”class data” that instances of this class need. For example a sphere stores its
radius in the class data area, and a box stores its side lengths there.

The following things are optional for a geometry class:

1. A function that will destroy the class data. Most classes will not need this function, but some will want
to deallocate heap memory or release other resources. This function must be of typedGeomDtorFn ,
which is defined as

typedef void dGeomDtorFn (dGeomID o);

The argumento has type X.

2. A function that will test whether a given AABB intersects with an instance of X. This is used as an
early-exit test in the space collision functions. This function must be of typedAABBTestFn , which
is defined as

typedef int dAABBTestFn (dGeomID o1, dGeomID o2, dReal aabb2[6]);

The argumento1 has type X. If this function is provided it is called bydSpaceCollide()wheno1
intersects geomo2 , which has an AABB given byaabb2 . It returns 1 ifaabb2 intersectso1 , or 0
if it does not.

This is useful, for example, for large terrains. Terrains typically have very large AABBs, which are
not very useful to test intersections with other objects. This function can test another object’s AABB
against the terrain without going to the computational trouble of calling the specific collision function.
This has an especially big savings when testing against GeomGroup objects.

Here are the functions used to manage custom classes:

int dCreateGeomClass (const dGeomClass *classptr);

Register a new geometry class, defined byclassptr . The number of the new class is returned. The
convention used in ODE is to assign the class number to a global variable with the namedXxxClass
where Xxx is the class name (e.g.dSphereClass ).

Here is the definition of thedGeomClass structure:
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struct dGeomClass {
int bytes; // bytes of custom data needed
dGetColliderFnFn *collider; // collider function
dGetAABBFn *aabb; // bounding box function
dAABBTestFn *aabb_test; // aabb tester, can be 0 for none
dGeomDtorFn *dtor; // destructor, can be 0 for none

};

void * dGeomGetClassData (dGeomID);

Given a geom, return a pointer to the class’s custom data (this will be a block of the required number
of bytes).

dGeomID dCreateGeom (int classnum);

Create a geom of the given class number. The custom data block will initially be set to 0. This object
can be added to a space usingdSpaceAdd().

When you implement a new class you will usually write a function that does the following:

1. If the class has not yet been created, create it. You should be careful to only ever create the class once.

2. Call dCreateGeom()to make an instance of the class.

3. Set up the custom data area.

10.9 Composite objects

Consider the following objects:

• A table that is made out of a box for the top and a box for each leg.

• A branch of a tree that is modeled from several cylinders joined together.

• A molecule that has spheres representing each atom.

If these objects are meant to berigid then it is necessary to use a single rigid body to represent each of them.
But it might seem that performing collision detection is a problem, because there is no single geometry class
that can represent a complex shape like a table or a molecule. The solution is to use acompositecollision
object that is a combination of several geoms.

No extra functions are needed to manage composite objects: simply create each component geom and
attach it to the same body. To move and rotate the separate geoms with respect to each other in the same
object, geometry transforms can be used to encapsulate them. That’s all there is to it!

However there is onecaveat: You should never create a composite object that will result in collision
points being generated very close together. For example, consider a table that is made up of a box for the top
and four boxes for the legs. If the legs are flush with the top, and the table is lying on the ground on its side,
then the contact points generated for the boxes may coincide where the legs join to the top. ODE does not
currently optimize away coincident contact points, so this situation can lead to numerical errors and strange
behavior.

In this example the table geometry should be adjusted so that the legs are not flush with the sides, making
it much more unlikely that coincident contact points will be generated. In general, avoid having different
contact surfaces that overlap, or that line up along their edges.
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10.10 Utility functions

void dClosestLineSegmentPoints (const dVector3 a1, const dVector3 a2,
const dVector3 b1, const dVector3 b2,
dVector3 cp1, dVector3 cp2);

Given two line segments A and B with endpointsa1-a2 andb1-b2 , return the points on A and B
that are closest to each other (incp1 andcp2 ). In the case of parallel lines where there are multiple
solutions, a solution involving the endpoint of at least one line will be returned. This will work correctly
for zero length lines, e.g. ifa1==a2 and/orb1==b2 .

int dBoxTouchesBox (const dVector3 _p1, const dMatrix3 R1,
const dVector3 side1, const dVector3 _p2,
const dMatrix3 R2, const dVector3 side2);

Given boxes (p1 ,R1,side1 ) and (p2 ,R2,side2 ), return 1 if they intersect or 0 if not.p is the center
of the box,R is the rotation matrix for the box, andside is a vector of x/y/z side lengths.

void dInfiniteAABB (dGeomID geom, dReal aabb[6]);

This function can be used as the AABB-getting function in a geometry class, if you don’t want to
compute tight bounds for the AABB. It returns +/- infinity in each direction.

10.11 Implementation notes

10.11.1 Large Environments

Often the collision world will contain many objects that are part of the static environment, that are not
associated with rigid bodies. ODE’s collision detection is optimized to detect geoms that do not move and
to precompute as much information as possible about these objects to save time. For example, bounding
boxes and internal collision data structures are precomputed.

10.11.2 Using a Different Collision Library

Using ODE’s collision detection is optional - an alternative collision library can be used as long as it can
supplydContactGeom structures to initialize contact joints.

The dynamics core of ODE is mostly independent of the collision library that is used, except for four
points:

1. ThedGeomID type must be defined, as each body can store a pointer to the first geometry object that
it is associated with.

2. ThedGeomMoved() function must be defined, with the following prototype:

void dGeomMoved (dGeomID);

This function is called by the dynamics code whenever a body moves: it indicates that the geometry
object associated with the body is now in a new position.
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3. ThedGeomGetBodyNext() function must be defined, with the following prototype:

dGeomID dGeomGetBodyNext (dGeomID);

This function is called by the dynamics code to traverse the list of geoms that are associated with each
body. Given a geom attached to a body, it returns the next geom attached to that body, or 0 if there are
no more geoms.

4. ThedGeomSetBody() function must be defined, with the following prototype:

void dGeomSetBody (dGeomID, dBodyID);

This function is called in the body destructor code (with the second argument set to 0) to remove all
references from the geom to the body.

If you want an alternative collision library to get body-movement notifications from ODE, you should define
these types and functions appropriately.



Chapter 11

How To Make Good Simulations

[just notes for now]

11.1 Integrator accuracy and stability

• integrator will not give exact solution

• what is stabilty

• integrator types (exp & imp, order)

• tradeoff between accuracy, stability and work

11.2 Behavior may depend on step size

• smaller step = more accurate, more stable

• 10*0.1 not the same as 5*0.2

• tweak at final frame rate

11.3 Making things go faster

What factors does execution speed depend on? Each joint removes a number of degrees of freedom (DOFs)
from the system. For example the ball and socket removes three, and the hinge removes five. For each
separate group of bodies connected by joints, where:

• m1 is the number of joints in the group,

• m2 is the total number of DOFs removed by those joints, and

• n is the number of bodies in the group,

then the computing time per step for the group is proportional to:

k1O(m1) + k2O(m3
2) + k2O(n) (11.1)
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ODE currently relies on factorization of a “system” matrix that has one row/column for each DOF
removed (this is where theO(m3

2) comes from). In a 10 body chain that uses ball and socket joints, roughly
30-40% of the time is spent filling in this matrix, and 30-40% of the time is spent factorizing it.

Thus, to speed up your simulation you might consider:

• Using less joints - often small bodies and their associated joints can be replaced by purely kinematic
“fakes” without harming physical realism.

• Replacing multiple joints with simpler alternatives. This will become easier as more specialized joint
types are defined.

• Using less contacts.

• Preferring frictionless or viscous friction contacts (that remove one DOF) over Coulomb friction con-
tacts (that remove three DOFs) where possible.

In the future ODE will implement techniques that scale better with the number of joints.

11.4 Making things stable

• stiff springs / stiff forces are bad.

• hard constraints are good.

• dependence on integration timestep.

• Use powered joint, joint limits, built-in springs as much as possible, avoid explicit forces.

• mass ratios - e.g. a whip. Joints that connect large and small masses together will have a harder time
keeping their error low.

• if bodies move faster than is reasonable for the timestep

• inertias with long axes

Increasing the global CFM will make the system more numerically robust and less susceptible to stability
problems. It will also make the system look more “spongy”, so a tradeoff has to be found.

Redundant constraints (two or more constraints that “try and do the same job”) will fight each other
and cause stability problems. The numerical cause of this problem is singularity in the system matrix. One
example of this is if two contacts joints connect the same pair of bodies at the same point. Another example
is if a virtual hinge joint is created between two bodies by connecting them with two ball joints, spaced apart
along the hinge axis (this is bad because the two ball joints try to remove six degrees of freedom from the
system, but a real hinge joint would only remove five).

Redundant constraints fight each other and generate strange forces in the system that can swamp the
normal forces. For example, an affected body might fly around as though it has a life of its own, with
complete disregard for gravity.

11.5 Using constraint force mixing (CFM)

• allow singular configurations

• effects: jitter or strange forces due to error amplification, LCP solver may go slow

• allow compliant joints (this may be unwanted also)
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11.6 Avoiding singularities

• Singularity occurs when there are more joints than needed to constrain the bodies motions.

• Multiple (incompatible) joints between bodies, esp joint + contact (don’t collide objects that are joined
together).

• increasing CFM

• unintentional - box chain on floor, other assemblies

• use minimum joints for correct behavior. use correct joints for desired behavior

• adding global CFM usually helps

11.7 Other stuff

• contact jitter when pushed out too far - soln: use softness

• keep lengths and masses around 1

• LCP solver takes a variable number of iterations (only non-deterministic part). if it takes too long,
increase global CFM, prevent multiple contacts (or similar), and limit high ratio of force magnitudes
(tree grabbing problem)

• hinge limits outside +/- pi
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Chapter 12

FAQ

This chapter has some common questions and their answers. For further information, you can check out the
ODE Wiki1, a community-supported website.

12.1 How do I connect a body to the static environment with a joint?

UsedJointAttach()with arguments(body,0) or (0,body) .

12.2 Does ODE need or use graphics library X ?

No. ODE is a computational engine, and is completely independent of any graphics library. However the
examples that come with ODE use OpenGL, and most interesting uses of ODE will need some graphics
library to make the simulation visible to the user. But that’s your problem.

12.3 Why do my rigid bodies bounce or penetrate on collision? My restitu-
tion is zero!

Sometimes when rigid bodies collide without restitution, they appear to inter-penetrate slightly and then get
pushed apart so that they only just touch. The problem gets worse as the time step gets larger. What is going
on?

The contact joint constraint is only applied after the collision is detected. If a fixed time step is being
used, it is likely that the bodies have already penetrated when this happens. The error reduction mechanism
will push the bodies apart, but this can take a few time steps (depending on the value of the ERP parameter).

This penetration and pushing apart sometimes makes the bodies look like they are bouncing, although it
is completely independent of whether restitution is on or not.

Some other simulators have individual rigid bodies take variable sized timesteps to make sure bodies
never penetrate much. However ODE takes fixed size steps, as automatically choosing a non-penetrating
step size is problematic for an articulated rigid body simulator (the entire ARB structure must be stepped to
account for the first penetration, which may result in very small steps).

There are three fixes for this problem:

• Take smaller time steps.

1http://q12.org/cgi-bin/wiki.pl?ODE Wiki Area
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• Increase ERP to make the problem less visible.

• Do your own variable sized time stepping somehow.

12.4 How can an immovable body be created?

In other words, how can you create a body that doesn’t move, but that interacts with other bodies? The
answer is to create a geom only, without the corresponding rigid body object. The geom is associated with
a rigid body ID of zero. Then in the contact callback when you detect a collision between two geoms with
a nonzero body ID and a zero body ID, you can simply pass those two IDs to thedJointAttach()function as
normal. This will create a contact between the rigid body and the static environment.

Don’t try to get the same effect by setting a very high mass/inertia on the “motionless” body and then
resetting it’s position/orientation on each time step. This can cause unexpected simulation errors.

12.5 Why would you ever want to set ERP less than one?

From the definition of the ERP value, it seems than setting it to one is the best approach, because then all
joint errors will be fully corrected at each time step. However, ODE uses various approximations in its
integrator, so ERP=1 will not usually fix 100% of the joint error. ERP=1 can work in some cases, but it can
also result in instability in some systems. In these cases you have the option of reducing ERP to get a better
behaving system.

12.6 Is it advisable to set body velocities directly, instead of applying a force
or torque?

You should only set body velocities directly if you are setting the system to some initial configuration. If you
are setting body velocities every time step (for example from motion capture data) then you are probably
abusing your physical model, i.e. forcing the system to do what you want rather than letting it happen
naturally.

The preferred method of setting body velocities during the simulation is to use joint motors. They can
set body velocities to a desired value in one time step, provided that the force/torque limit is high enough.

12.7 Why, when I set a body’s velocity directly, does it come up to speed
slower when joined to other bodies?

What is likely happening is that you are setting the velocity of one body without also setting the velocity of
the bodies that it is joined to. When you do this, you cause error in the system in subsequent time steps as
the bodies come apart at their joints. The error reduction mechanism will eventually correct for this and pull
the other bodies along, but it may take a few time steps and it will cause a noticeable ”drag” on the original
body.

Setting the velocity of a body will affect that body alone. If it is joined to other bodies, you must set the
velocity of each one separately (and correctly) to prevent this behavior.
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12.8 Should I scale my units to be around 1.0 ?

Say you need to simulate some behavior on the scale of a few millimeters and a few grams. These small
lengths and masses will usually work in ODE with no problem. However occasionally you may experience
stability problems that are caused by lack of precision in the factorizer. If this is the case, you can try
scaling the lengths and masses in your system to be around 0.1..10. The time step should also be be scaled
accordingly. The same guideline applies when large lengths and masses are being used.

In general, length and mass values around 0.1..1.0 are better as the factorizer may not lose so much
precision. This guideline is especially helpful when single precision is being used.

12.9 I’ve made a car, but the wheels don’t stay on properly!

If you are building a car simulation, typically you create a chassis body and attach four wheel bodies.
However, you may discover that when you drive it around the wheels rotate in incorrect directions, as
though the joint was somehow becoming ineffective. The problem is observed when the car is moving fast
(so the wheels are rotating fast), and the car tries to turn a corner. The wheels appear to rotate off their
proper constraints as though the “axles” had become bent. If the wheels are rotating slowly, or the turn is
made slowly, the problem is less apparent.

The problem is that numerical errors are being caused by the high rotation speed of the wheels. Two
functions are provided to fix this problem:dBodySetFiniteRotationMode()anddBodySetFiniteRotation-
Axis(). The wheel bodies should have their finite rotation mode set, and the wheel’s finite rotation axes
should be set every time step to match their hinge axes. This will hopefully fix most of the problem.

12.10 How do I make “one way” collision interaction

Suppose you need to have two bodies (A and B) collide. The motion of A should affect the motion of B
as usual, but B should not influence A at all. This might be necessary, for example, if B is a physically
simulated camera in a VR environment. The camera needs collision response so that it doesn’t enter into
any scene objects by mistake, but the motion of the camera should not affect the simulation. How can this
be achieved?

Here is a good solution: when the collision is detected, don’t create a contact joint between A and B
as you normally would. Instead, attach the contact joint between B and 0 (the static environment). That
way the body A will appear to B as though it is static and unmovable. This approach may result in some
penetration between A and B, but this will not be a problem in many applications.

12.11 The Windows version of ODE crashes with large systems

ODE withdWorldStep()requires stack space roughly on the order ofO(n)+O(m2), wheren is the number
of bodies andm is the sum of all the joint constraint dimensions. Ifm is large, this can be a lot of space!

Unix-like operating systems typically allocate stack space as it is needed, with an upper limit that might
be in the hundreds of Mb. Windows compilers normally allocate a much smaller stack. If you experience
crashes when running large systems, try increasing the stack size. For example, the MS VC++ command
line compiler accepts the/Stack:num flag to set the upper limit.

Another option is to switch todWorldQuickStep().
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12.12 My simple rotating bodies are unstable!

If you have a box whose sides have different lengths, and you start it rotating in free space, you should
observe that it just tumbles at the same speed forever. But sometimes in ODE the box will gain speed by
itself, spinning faster and faster until it “explodes” (disappears off to infinity). Here is the explanation:

ODE uses a first order semi-implicit integrator. The “semi implicit” means that some forces are calcu-
lated as though an implicit integrator is being used, and other forces are calculated as though the integrator
is explicit. The constraint forces (applied to bodies to keep the constraints together) are implicit, and the
”external” forces (applied by the user, and due to rotational effects) are explicit. Now, inaccuracy in im-
plicit integrators is manifested as a reduction in energy - in other words the integrator damps the system for
you. Inaccuracy in explicit integrators has the opposite effect - it increases the system energy. This is why
systems simulated with explicit first order integrators can explode.

So, a single body tumbling in space is effectively explicitly integrated. If the body’s moments of inertia
were equal (e.g. if it is a sphere) then the rotation axis will remain constant, and the integrator error will
be small. If the body’s moments of inertia are unequal then the rotation axis wobbles as momentum is
transferred between different rotation directions. This is the correct physical behavior, but it results in
higher integrator error. The integrator in this case is explicit so the error increases the energy, which causes
faster and faster rotation, causing more and more error - leading to the explosion. The problem is particularly
evident with long thin objects, where the 3 moments of inertia are highly unequal.

To prevent this, do one or more of the following:

• Make sure freely rotating bodies are dynamically symmetric (i.e. all moments of inertia are the same
- the inertia matrix is a constant times the identity matrix). Note that you can still render and collide
with a long thin box even though it has the inertia of a sphere.

• Make sure freely rotating bodies don’t spin too fast (e.g. don’t apply large torques, or supply extra
damping forces).

• Add extra damping elements to the environment, e.g. don’t use bouncy collisions that can reflect
energy.

• Use smaller timesteps. This is bad for two reasons: it’s slower, and ODE currently only has a first
order integrator so the added accuracy is minimal.

• Use a higher order integrator. This is not yet an option in ODE.

In the future I may add a feature to ODE to modify the rotational dynamics of selected bodies so that
they exhibit no rotational error with ODEs integrator.

12.13 My rolling bodies (e.g. wheels) sometimes get stuck between geoms

Consider a system where rolling bodies roll over an environment made up of multiple geometry objects. For
example, this might be a car driving over a terrain (the rolling bodies are the wheels). If you find that the
rolling bodies mysteriously come to a stop when they roll from one geometry object to another, or when they
receive multiple contact points, then you may need to use a different contact friction model. This section
explains the problem and the solution.
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Figure 12.1: A problem with rolling contact.

12.13.1 The Problem

An example of such a system is shown inFigure 12.1, which shows a ball that has just rolled down a ramp
and touched the ground.

Normally, the ball should continue rolling along the ground, towards the right. However, if ODE’s
default contact friction mode is being used then the ball will come to a complete stop when it hits the
ground. Why?

ODE has two ways to approximate friction: the default way (called the constant-force-limit approxima-
tion, or “box friction”) and an improved way (called “friction pyramid approximation 1”) which is obtained
by setting thedContactApprox1 flag in the contact joint’s surface mode field.

Consider the above picture. There are two contact points, one between the ball and the ramp, the other
between the ball and the ground. If the box friction mode is used in both contacts and themuparameter is
set todInfinity then the ball can not slip against the ramp or ground at either contact.

If no slip is possible at a ball contact point, then the center of the ballmustmove along a path that is an
arc around the contact point. Thus the center of the ball is required to simultaneously move along the path
“Arc 1” and “Arc 2”. The only way to satisfy both paths at once is for the ball to stop moving altogether.

This is not a bug in ODE - so what is going on here? Objects in real life do not get stuck like this.
The problem is that, in the simple “box” approximation of friction the tangential force available at a contact
constraint to stop it slipping isindependentof the normal force that prevents penetration. This is not real-life
physics, so we should not be surprised that non-real-life motion results.

Note that this problem does not occur ifmu is set to zero, but this is not a helpful solution because we
need some amount of friction to model the real world.

12.13.2 The Solution

The solution is to use thedContactApprox1 flag in the contact’s surface mode field, and setmuto some
appropriate value between 0 and infinity. This mode ensures that there will only be a tangential anti-slipping
force at the contact point if the contact normal force is nonzero. In the above example it turns out that
contact-1 will have a zero normal force, so there will be no force applied at contact-1 at all, and the problem
is solved! (the ball will roll along the ground properly.)

ThedContactApprox1 mode may not be appropriate in all situations, which is why it is optional. It
is important to remember that, although it is a better friction approximation, it is not true Coulomb friction.
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Thus it is still possible that you may encounter some examples of non-physical behavior.



Chapter 13

Known Issues

• When assigning a mass to a rigid body, the center of mass must be (0,0,0) relative to the body’s
position. But in fact this limitation has been in ODE from the start, so we can now regard it as a
“feature” :)
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Chapter 14

ODE Internals

[only notes for now]

• Internally, all 6x1 spatial velocities and accelerations are split into 3x1 position and angular compo-
nents, which are stored as contiguous 4x1 vectors.

• Lagrange multiplier velocity based model due to Trinkle and Stewart.

• Friction due to Baraff.

• Stability over accuracy.

• Talk about the different methods possible. Say how realtime constraints make the problem much more
difficult.

• Factorizer.

• LCP solver.

• Equations of motion.

• Friction model and approximations.

Why don’t I implement a proper friction pyramid or friction cone (e.g. Baraff’s version) ? Because I
have to factor non-symmetric (and possibly indefinite) matrices, for either static or dynamic friction. Speed
was considered more important - the current friction approximation only needs a symmetric factorization,
which is twice as fast.

14.1 Matrix storage conventions

Matrix operations like factorization are expensive, so we must store the data in a way that is most useful
to the matrix code. I want to do 4-way SIMD optimizations later, so the format is this: store the matrix by
rows, and each row is rounded up to a multiple of 4 elements. The extra ”padding” elements at the end of
each row/column must be set to 0. This is called the ”standard format”. Hopefully this decision will remain
good in the future, as more and more processors have 4-way SIMD (especially for fast 3D graphics).

The exception: matrices that have only one column or row (vectors), are always stored as consecutive
elements in standard row format, i.e. there is no interior padding, only padding at the end.

Thus: all 3x1 floating point vectors are stored as 4x1 vectors: (x,x,x,0).
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14.2 Internals FAQ

14.2.1 Why do some structures have adx prefix and some have ad prefix?

Thedx prefix is used for internal structures that should never be visible externally. Thed prefix is used for
structures that are part of the public interface.

14.2.2 Returned Vectors

There seem to be 2 ways of returning vectors in ODE, e.g.:

const dReal* dBodyGetPosition (dxBodyID);
void dWorldGetGravity (dxWorldID, dVector3);

Why? The second way is the ’official’ way. The first way returns pointers to volatile internal data structures
and is less clean API-wise. For a stable API I feel that filling in vectors is cleaner than returning pointers to
vectors, for two reasons:

1. The returned vector values may have to be calculated somehow, so there is no internal “cache” to
return a pointer to.

2. The internal data structures may be moved, which is a problem if the user keeps the returned pointer
and uses it later.

As it happens these two cases don’t currently happen in ODE - most returned vector data is cached and
always at the same address. But having the freedom to change things in the future is useful. The current API
shouldn’t slow you down because the cases where you need to be fast (i.e. getting body transforms) return
pointers anyway - breaking my own rule.
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