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Abstract

This study examined the extent to which instructional conditions influence the prediction of
academic success in nine undergraduate courses offered in a blended learning model (n = 4134).
The study illustrates the differences in predictive power and significant predictors between
course-specific models and generalized predictive models. The results suggest it is imperative for
learning analytics research to account for the diverse ways technology is adopted and applied in
course-specific contexts. The differences in technology use, especially those related to whether
and how learners use the learning management system, require consideration before the log-
data can be merged to create a generalized model for predicting academic success. A lack of
attention to instructional conditions can lead to an over or under estimation of the effects of LMS
features on students’ academic success. These findings have broader implications for institutions
seeking generalized and portable models for identifying students at risk of academic failure.

1 Introduction

The field of learning analytics has received much attention as a means for addressing institutional
teaching and learning problems linked to the early identification of students at-risk of attrition or
academic failure (Dawson, Gasevi¢, Siemens, & Joksimovic, 2014). Despite the broad interest and
implementation of learning analytics there remain numerous questions regarding the portability of any
developed predictive models across student sub-populations and pedagogical contexts within an
institution (Jayaprakash, Moody, Lauria, Regan, & Baron, 2014). This paper responds to this issue by
investigating the impact of instructional conditions on a predictive model of learner success. In so doing,
the paper aims to empirically demonstrate the importance for understanding the course and disciplinary
context as an essential step when developing and interpreting predictive models of academic success
and attrition (Lockyer, Heathcote, & Dawson, 2013).
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1.1 Learning Analytics and Predictive Modelling

The analysis of data collected by institutional student information systems (SIS), and from student
interactions with their Learning Management System (LMS) (e.g. Moodle, Sakai, or Desire2Learn) has
attracted much attention among researchers, teachers and managers for its potential to address some
of the major challenges confronting the education sector (Baer & Campbell, 2012; Macfadyen &
Dawson, 2010; Siemens & Long, 2011). Learning analytics approaches typically rely on data emanating
from a user’s interactions with Information and Communication Technologies (ICTs), such as LMS, SIS
and social media. For example, the trace data (also known as log data) recorded by LMS contains time-
stamped events about views of specific resources, attempts and completion of quizzes, or discussion
messages viewed or posted. Data mining techniques are commonly applied to identify patterns in these
trace data (Baker & Yacef, 2009). The interpretation of these patterns can be used to improve our
understanding of learning and teaching processes, predict the achievement of learning outcomes,
inform support interventions and aid decisions on resource allocation. This process has been described
as learning analytics (Siemens & Gasevic, 2012).

Research in learning analytics and its closely related field of educational data mining, has demonstrated
much potential for understanding and optimizing the learning process (Baker & Siemens, 2014). To date,
much of this research has focused on developing predictive models of academic success and retention
(Siemens, Dawson, & Lynch, 2014). Specifically, the prediction of students at risk of failing a course (i.e.,
the dependent variable is binary with two categories — fail and pass) and the prediction of students’
grades (i.e., the dependent variable is continuous representing a final percent mark) have been two
commonly reported tasks in the learning analytics and educational data mining literature (Dawson et al.,
2014). These two types of success predictions have been based on the following sources of data:

l. data stored in institutional student information systems, e.g., high school grades, socio-
economic status, citizenship and immigration status, parents’ education, and language skills
(Araque, Roldan, & Salguero, 2009; Kovacic, 2012);

Il. trace data recorded by LMSs and other online learning environments (Agudo-Peregrina, Iglesias-
Pradas, Conde-Gonzalez, & Hernandez-Garcia, 2014; Romero, Lépez, Luna, & Ventura, 2013;
Romero, Ventura, & Garcia, 2008; Zafra, Romero, & Ventura, 2011); and

[l combinations of data sources described under i) and ii) (Alstete & Beutell, 2004; Barber &
Sharkey, 2012; Jayaprakash et al., 2014).

Regardless of the data source, the prediction of student grades is generally determined by applying
logistic regression (Barber & Sharkey, 2012; Campbell, DeBlois, & Oblinger, 2007; Lauria, Baron,
Devireddy, Sundararaju, & Jayaprakash, 2012; Palmer, 2013). However, many authors, especially those
from educational data mining backgrounds, have also reported highly accurate predictions using
different classification algorithms such as C4.5, EM, Naive Bayes, and Support Vector Machines (SVM).

The underlying rationale of these studies is to uncover variables that are common in the undergraduate
environment that will either individually or in concert inform a generalized model of predictive risk that
acts independently of contextual factors such as institution, discipline, or learning design. These

omissions of contextual variables are also occasionally expressed as an overt objective. For example, the



large scale Open Academic Analytics Initiative (OAAI) (Jayaprakash, et al., 2014) had the explicit aim of
testing an open source risk identification solution that was applicable to most forms of US tertiary
education—from community colleges to private liberal arts universities—was impervious to institutional
variances, and thereby could prove suitable for “scaling...across all of higher education” (Jayaprakash, et
al., 2014, p. 7).

While this rationale suggests that pooling data across contexts to increase the sample size and
predictive utility is ideal, studies that employ this approach are the exception rather than the rule. Most
of the reported studies investigating the prediction of academic success have been based on trace data
extracted from a single, or small number, of courses within a particular discipline (Macfadyen & Dawson,
2010; Romero, Ldopez, Luna, & Ventura, 2013). The small sample sizes and disciplinary homogeneity adds
further complexity in interpreting the research findings, leaving open the possibility that disciplinary
context and course specific effects may be contributing factors.

Research in predictive analytics has an obvious and significant level of importance for contemporary
higher education institutions. The capacity for early identification of students at-risk of academic failure
or attrition allows for a proactive approach to implementing learning interventions and strategies that
target teaching quality and student retention. Thus, it is not surprising that the insights gleaned from
research on student academic risk are being so readily and eagerly adopted across the sector (Siemens
et al., 2014). Despite the encouraging progress in this research, a significant challenge remains. That is,
how best to interpret such findings in order to ascertain generalizability.

1.2 Need for Educational Theory Underpinning in Learning Analytics

Despite the titular reference to ‘learning’, learning analytics has only recently begun to draw on learning
theory, and there remains a significant absence of theory in the research literature that focuses on LMS
variables as key indicators of interaction and success (Lust, Juarez Collazo, Elen, & Clarebout, 2012).

Expectations of academic risk drawn from the learning theory literature are largely antithetical to the
universalist assumptions underpinning the practice of identifying student risk from pooled LMS data.
Most post-behaviourist learning theories would suggest the importance of elements of the specific
learning situation and student and teacher intentions. For example, contemporary process theories
would emphasise the dialectic between instruction and learning (Engestrom, 2014), while motivational
approaches focus (in part) on the beliefs that students hold regarding their capabilities with respect to
specific content (Zimmerman & Schunk, 2011), and constructivist theories investigate the interplay of
instructional design and student internal conditions (Winne, 2006; Winne & Hadwin, 1998). All therefore
acknowledge the contextual conditions that shape student learning, and so posit that learning is
fundamentally situated (Lave & Wenger, 1991), suggesting there are potentially important differences
between disciplines and courses. Furthermore, there is a long history of research on the particular
characteristics of students within disciplines and courses suggesting that, for example, self-regulation of
learning may be course specific (Black & Deci, 2000), and that self-efficacy (Chung, Schwager, & Turner,
2002) and information seeking behavior (Whitmire, 2002) can vary by courses and discipline. Altogether



the preponderance of evidence indicates that disciplines and courses are not cut from the same cloth
and that their respective student constituents may not be of one kind.

Yet, to our knowledge, only a study by Finnegan et al. (2009) examined the possibility of a mediating
role for contextual variables. Finnegan et al. (2009) found disciplinary differences in the effects of trace
data to predict grades on 22 courses from English and Communication; Social Sciences; and
Mathematics, Science, and Technology. Not only did the authors report on the differences in the
explained variability of the final grades by multiple regression models (from 26% to 36%), but they also
noted there was no single significant predictor shared across all three disciplines. Although some
variables (e.g., time spent on content pages) were identified as significant predictors of academic
success in regression models for individual disciplines, the same effect was not apparent when data
from all three disciplines were combined. Similarly, the multiple linear regression model of the three
disciplines combined showed no significant effects and/or the overestimated/underestimated
importance of some variables (e.g., time spent on follow-up posts and time spent on reading
discussions) compared to the regression models performed for individual disciplines.

The under-explored role of contextual variables may help explain the mixed findings in the field, with
even large scale studies reporting differences in their results in relation to the overall predictive power
of the same individual LMS variables. For example, where Macfadyen & Dawson (2012) identified a
strong correlation between student discussion forum activity and overall academic grades at a large
research intensive Canadian university (N=52,917), Lauria et al. (2012) found only weak correlations
(ranging from 0.098 to 0.233) between students grades and LMS activity, including discussions read and
posted, at a private liberal arts college in the USA (N=18,968). Although the approaches adopted were
similar, the observed results markedly differed. Plainly, if the hypothesis that LMS tool use is predictive
of student risk is valid, then there are contextual differences at work here, and plausibly these are
located in the distinctive elements of the courses that comprised the studies.

There are several advantages in leveraging existing learning theory to investigate the nature of these
contextual factors, discussed at length elsewhere in the literature (Gasevi¢, Dawson, & Siemens, 2015;
Rogers, Gasevi¢, & Dawson, in press). Briefly, studies designed with clear theoretical frameworks will a)
connect learning analytics research with decades of previous research in education and b) make clear
what is contended by research designs, and so make explicit what the research outcomes mean in
relation to existing models and previous findings. Rather than an empirically flat, atheoretical ‘clicks and
consequences’ approach to LMS data, a theoretically driven approach leads to an ontologically deep
engagement with intentions and causes, and the validation of models of learning, learning contexts, and
learner behavior. This allows for the cumulative advancement of our understanding while maximizing
the potential for findings to be disconfirmed, leading to adjustments to existing theory or the positing of
new theoretical positions.

1.3 Theoretical Grounding of the Current Study

Here we suggest as theoretical grounding the constructivist, metacognitive approach to self-regulated
learning expounded by Winne and Hadwin (Winne, 2006; Winne & Hadwin, 1998). According to this



approach learners construct their knowledge by using tools (e.g., cognitive, physical, and digital) to
operate on raw information (e.g., readings given by the course instructor or found on the web) to
construct products of their learning (e.g., recall information from the course readings) (Winne &
Hadwin, 1998). Learning products are evaluated with respect to internal (e.g., time budgeted to study)
and external (e.g., rubrics used for grading answers) standards. As agents, learners make decisions about
their learning in terms of choices of study tactics (i.e., tools) they will use and standards they will apply
to evaluate their learning products against (Winne, 1996). Decisions made about learning are influenced
by conditions, which can be internal (e.g., motivation and prior knowledge) and external (e.g.,
instructional scaffolds or learning task grading policy) (Winne, 2011; Winne & Hadwin, 1998). We posit
that learning analytics must account for conditions in order to make any meaningful interpretation of
learning success prediction.

For the purposes of this paper, we focus on one aspect of the Winne and Hadwin model, instructional
conditions, as an important component of external conditions, in the interpretation of the results
predicting learning success (Lockyer et al., 2013). The impact of instructional conditions on learners’
decision making process is well evidenced across numerous studies (Azevedo, Moos, Greene, Winters, &
Cromley, 2008; Cho & Kim, 2013; Garrison & Cleveland-Innes, 2005; Trigwell, Prosser, & Waterhouse,
1999). For example, Trigwell, Prosser, & Waterhouse (1999) investigated the association between
students’ approaches to learning and the instructional methods of teaching. The authors found that
students had a strong tendency to follow surface approaches to learning in classes where teachers had
adopted a more central and information transmission instructional strategy. In contrast, students had a
strong tendency to follow deep approaches to learning in classes where the teachers had implemented
a more student-focused instructional approach. Similarly, Garrison and Cleveland-Innes (2005) showed
that students took a deep approach to learning when online courses had: i) a sound instructional
scaffolding for online discussions embedded in the course design; and ii) a high level of direct facilitation
and leadership of online discussions by course teachers.

Specifically, in this study, we make several predictions based on the existing educational research. First,
we can predict that that the students will have a tendency to interact more extensively with tools that
are directly recommended for use according to the instructional conditions of the courses they are
enrolled in (Cho & Kim, 2013; Garrison & Cleveland-Innes, 2005; Palmer, Holt, & Bray, 2008; Trigwell et
al., 1999). We further predict that the students’ levels of interaction will be positively associated with
the instructional conditions of the course — e.g., use of discussion forums for question and answers or
for knowledge construction and peer feedback. Variables describing the frequency of interaction with
these tools® will likely then have high effects on the students’ learning outcomes set in specific courses,
thus yielding high predictive power for academic achievement. Finally, as educational research shows
that central tendency prevails (Winne, 2006), the models that aggregate variables about student
interaction with tools used in different courses may lead to over- and under-estimation of the effects of

2 A similar prediction can be made for the variables describing the quality of the use of learning tools as shown by
Joksimovi¢, Gasevi¢, Kovanovié, Riecke, & Hatala (in press) for the quality of the use of discussion boards. However,
assessment of effects of the quality of use of learning tools recommended by the instructional conditions, although
very important, goes beyond the scope of the current study.



some variables in the predictive models of academic achievement. As a consequence, such aggregated
predictive models of academic achievement may miss to identify variables of direct relevance for
instructional practice on the level of individual courses.

1.4 Research Questions

This paper reports on the findings of a study investigating the extent to which instructional conditions
influence the prediction of academic success in undergraduate courses offered in a blended learning
model. More specifically, the study investigated the following research questions:

1) What is the level of similarity in student characteristics and LMS usage across different courses
in a blended mode of study?

2) What is the portability of a general model — e.g., as suggested in OAAI (Jayaprakash et al., 2014)
— for predicting academic success across courses?

3) To what extent does the predictive power of individual variables derived from trace data differ
in the prediction of academic success across courses?

4) How does the predictive power of variables derived from trace data compare to variables
derived from information stored in institutional student information systems (e.g., age, gender,
citizenship status, and language skills) in the prediction of academic success in different
courses?

2 Methods

2.1 Study Design and Setting

The study followed a correlational (non-experimental) design (Field & Hole, 2003), as it investigated the
effects of the variables derived from the trace data and the data from the institutional student
information system on the prediction of students’ academic success. The data for the study were
extracted from a public research-intensive university in Australia. The institution consists of four
divisions (convergence of multiple faculties): Health Sciences; Education, Arts and Social Sciences;
Information Technology, Engineering and the Environment; and Business. The data were collected from
nine first-year courses that were included in the institutional retention initiative — Enhancing Student
Academic Potential (ESAP) coordinated by the central learning and teaching unit. A course is defined as
a discrete unit of study constituting a part of a program. The ESAP initiative was established to provide
support for transitioning first-year students identified as displaying learning behaviors that lead to
disengagement and a lack of academic success. Eligibility for participation in ESAP was principally based
on a consistently low level of program retention into the following year (set at less than 80% for
Business and Education, Arts and Social Sciences; and at less than 85% for Health Sciences and
Information Technology, Engineering and the Environment) and course success (set at less than 80% i.e.
more than 20% of students must have failed). In addition, courses needed to have >150 students. Five
years of data were then extracted from the institutional student information system to ensure the
courses showed a consistent pattern of low success. The data examined here includes all students (n =
4134) from the nine courses finally selected, which were offered in the first semester of the 2012



academic year. In accordance with the institution’s privacy and ethics process, all students enrolled in
the courses were informed, via email, of their involvement in the ESAP initiative including its aims and
that the course interaction data (LMS) would be collected for better understanding student online
behavior in order to provide insights into the learning experience and improve course quality. Access to
LMS data logs was provided through direct queries to the Moodle database. The data were de-identified
before the analyses were performed.

The nine ESAP courses represented a diversity of disciplines and included one each from accounting
(ACCT), communications (COMM), computer science (COMP), economics ECON), graphic design (GRAP),
marketing (MARK), and mathematics (MATH), and two from biology (called here ‘biology 1’ and ‘biology
2’) (BIOL1, BIOL2). All courses were offered as a blended learning approach (Graham, 2006), where face-
to-face instruction was complemented by online materials located in the institutional LMS - Moodle.
That is, all courses used Moodle to share learning resources with students and build an online space for
social interaction. Table 1 illustrates the differences in the use of Moodle by the students enrolled in the
above mentioned nine courses. Only three Moodle features, course login, resource, and forum were
consistent across all nine courses. The observed differences in LMS usage across the courses resulted
from the disciplinary and course-specific needs as well as differences in instructional intentions for the
use of the LMS tools as shown in Table 2. For example, the two biology courses embedded quizzes in the
instructional design whereby the completion of quizzes contributed to the final mark 20% and 15%,
respectively. The example of a non-embedded LMS feature, but explicitly communicated as useful tool
to be incorporated into the course instructional design, was Turnitin (commercial software that detects
plagiarism and can be integrated with Moodle). Turnitin was used by students in the accounting,
communications, computer science, economics, marketing, and mathematics courses.

==== Please, insert Table 1 here ====

==== Please, insert Table 2 here ====

2.2 Outcome Variables

For the study outcomes, two measures of students’ academic success were evaluated. The first was
percent mark, a continuous variable ranging from 0% to 100%. The second measure was academic
status. A nominal variable that included three categories: 1) pass (or succeeded), representing students
whose percent mark was 50% or more and who passed the course; 2) fail, a category of students who
did not achieve 50% mark and who failed the course; and 3) withdraw; students who withdrew from the
course. Given the small number of students who withdrew from the courses (n = 88), ‘academic status’
outcome variable was used as a dichotomous variable (pass/fail) in regression analyses.



2.3 Student Characteristics and Trace Data

The student characteristics data extracted from the institutional student information system (SIS) was
based on similar previous studies (Alstete & Beutell, 2004; Barber & Sharkey, 2012; Lauria et al., 2012;
Palmer, 2013) and accessibility to the research team. The characteristics included: age (a continuous
variable ranging from 17 to 66); gender (male/female); international student (yes/no); language spoken
at home (English/language other than English); home remoteness (urban/non-urban (rural or isolated
areas)); term access (full-time/part-time student); and previous enrollment in the same course (yes/no).
The variable course start access (early access/did not access the course/late access) was derived from
the user-trace data in the LMS. This variable was included among the student characteristics data as it
was not indicative of any specific tool use and merely represented the time and date when the student
first engaged with the LMS in comparison with the formal course commencement date. Prior research
by Palmer (2013) has demonstrated the importance of the course start access as a predictor of academic
success.

Variables derived from the LMS trace data include information about the usage of the following Moodle
tools/features: forums, course logins, resources, Turnitin file submission, assighments, book, quizzes,
feedback, map, virtual classroom, lessons, and chat. The trace data were initially collected as continuous
variables and represented the number of times students used a particular feature by aggregating
individual operations such as page or discussion views, addition of discussion posts, and course logins.
Compared to forums, course logins, resources, and assignments, the features such as quizzes, feedback,
map, virtual classroom, lessons and chat were not accessed by a substantial number of students. These
were, therefore, dichotomized into the accessed and did not access categories. Turnit in and book
features were accessed by more students and there was a greater variability in access. However, these
variables were highly skewed, and application of data transformations such as log, square root or
reciprocal transformation did not correct the skewness. Therefore, these features were transformed
into categorical variables and the cut-offs were decided arbitrarily to best represent the data. For
example, 14% of students did not access the Turnitin feature, 43% accessed the feature 1-2 times, while
the remaining 43% of students accessed this feature 3 times or more (out of which 36 % were students
who accessed Turnitin feature 3-4 times). Therefore, we divided this feature in the categories ‘did not
log’, ‘logged 1-2 times’, and ‘logged 3 or more times’ to facilitate data analyses.

2.4 Statistical analysis

Continuous data are presented as mean + standard deviation if normally distributed or as median (25%,
75%) if skewed. Categorical data are presented as counts and percentages. Differences in continuous
and categorical variables among course subjects are explored by the analysis of variance (ANOVA) and
Chi-square test, respectively. Multiple linear regression models performed on a total sample and for
each course were used to explore the association between student online interactions and student
percent mark. Model 1 contained student characteristics described in Section 2.3. Model 2 included
student characteristics from Model 1 and variables derived from trace data. A change in R square was
calculated to present the percentage of variability in student percent mark explained by online
interaction features offered within a course over and above student characteristics. Only continuous



variables that were not normally distributed, including percent mark, access to forum, course logins, and
access to resources and assignments, were transformed using the natural logarithm before carrying
regression analyses (Keene, 1995). Linear regression models were explored for multicollinearity.
Variance inflation factors were well below 10, indicating no multicollinearity in the data (Myers, 1990).

Two logistic regression models, performed on a sample as a whole and for each course separately, were
used to explore the association between students’ use of the LMS features and students’ performance
status (pass or fail). Model 1 contained student characteristics (see Section 2.3. for detailed description),
while model 2 included student characteristics and variables derived from trace data. Using a receiver
operating characteristic (ROC) curve analysis, we calculated the area under the ROC curve (AUC) that
corresponded to the c statistic from logistic regression models 1 and 2. As a measure of discrimination,
AUC of <0.5, 0.55AUC<0.7, 0.7<AUC<0.8, 0.8<AUC<0.9, and 20.9 represents no discrimination, poor,
acceptable, excellent, and outstanding discrimination, respectively (Hosmer & Lemeshow, 2000). A step
statistic was used to explore the improvement of the predictive power of model 2 compared to model 1.
All analyses were performed using the Statistical Package for Social Sciences (SPSS) version 19. P values
of £0.05 were considered statistically significant.

3 Results

3.1 Student Characteristics across Courses

Of the total participant student population (n=4134), 18% were enrolled in the accounting course, 5.3%
in biology 1, 15.9% in biology 2, 12.1% in communications, 5.9% in computing science, 16% in
economics, 4.6% in graphic design, 17.5% in marketing, and 4.7% in the mathematics courses. Significant
differences were observed in the examined student characteristics across the courses (Table 3). For
instance, students in the biology 2 course were on average older and had a higher representation of
female students compared with other courses. Furthermore, within the accounting, economics, and
marketing courses there was a higher percentage of international students and students who reported
that “a language other than English” was spoken at their home than among students in the remaining
set of courses. Students who reported living in rural or isolated areas are most prevalent in biology 2,
graphic design and mathematics courses. Moreover, students from accounting, biology 2, and
economics were more likely to report being a part-time student, while the greatest prevalence of
students who have previously enrolled in a course was among students taking accounting, economics,
and marketing. In addition, the prevalence of students who did not access a respective course or who
accessed it late was higher for accounting, communications, computing science, economics, and
marketing than for the other offered courses.

* The natural logarithm transformation was used to correct the skewedness of not normally distributed variables in
order to work with parametric statistical tests. Compared to other data transformations employed (log10, square
root and reciprocal transformation), the natural logarithm best corrected the skewedness of the variables.
Furthermore, we prefer the use of natural logs (that is, logarithms base e), as the coefficients on the natural-log
scale are directly interpretable as approximate proportional differences; for e.g. with a coefficient of 0.05, a
difference of 1 unit in x corresponds to an approximate 5% difference in y (Gelman & Hill, 2006, pp. 60-61).



==== Please, insert Table 3 here ====

3.2 Student Performance and Trace Data-based Variables across Courses

With respect to student performance, significant differences were observed across courses (Table 4).
Post hoc tests (Bonferroni) revealed that the percent mark of students taking the accounting course was
significantly lower compared to their counterparts taking biology 2 (p = 0.011), computing science (p =
0.004), graphic design (p = 0.001), and marketing (p<0.001). The lowest percentage of students who
failed the course was observed for graphic design, while a notably higher percentage of students who
failed the course was noted for the accounting and mathematics courses.

Table 4 also includes the variables derived from LMS trace data. Not all trace data-based variables are
present within each course, as shown in Table 1. However, for the subset of variables consistently
adopted across the courses, there was a significant difference in student use for these LMS features.
Namely, the discussion forums were most frequently accessed by the biology 1 and communications
students and least frequently or not at all accessed by the biology 2, computing science and graphic
design students. Furthermore, biology 1, biology 2, and mathematics students were the most frequent
users based on number of course logins. With respect to access to the assignments and the Turnitin tool,
the least frequent access was observed among the accounting students, while communications and
economics students were the ones who accessed these two features most frequently. More than 35% of
the biology 2 students did not access the book feature during the course, while that percentage was
lower for the accounting and economics students (approximately 20%). More than half of the computing
science students did not access the course quizzes. In contrast, less than 2% of accounting students did
not access the quiz tool. In addition, the usage of some features was unique for certain courses such as
the light box in accounting; feedback, map and virtual classroom in biology 2; lessons in computing
science; and chat in marketing.

==== Please, insert Table 4 here ====

3.3 Prediction of Student Percent Mark

Results of the multiple linear regression models featuring the association between students’ use of the
LMS features and student percent marks, after adjusting for student characteristics, are presented in
Table 5. In the overall study sample (students from all courses taken together), approximately 5% of the
variability in the student percent mark was explained by the student characteristics. The addition of the
online interaction variables consistently adopted for all courses (e.g. access to forums and resources,
and course logins) explained about 16% of the variability in the student percent marks (R> change =
0.162, p<0.001).

==== Please, insert Table 5 here ====

Given that the student characteristics, student performance, and the variables derived from trace data
significantly differed among courses, separate multiple linear regression analyses were performed for

each course. In essence, we wanted to explore whether variability in student percent marks explained

by student characteristics and the variables derived from trace data varied across courses or if it was



similar to that obtained from the regression model performed on the overall study sample. As
demonstrated in Table 5, there are significant differences in the association between student
characteristics and trace data variables and student percent marks among courses. Variability in percent
mark explained by student characteristics varied across courses and ranged from 2.9% for marketing to
14.8% for biology 2. Similarly, variability in student percent marks explained by the variables derived
from trace data differed across courses and ranged from 2% for graphic design to 70.3% for
communications. Interestingly, for the courses with the same number of the variables derived from
trace data, there was a notable difference in the variability in percent marks explained by the variables
derived from trace data. For example, variability in student percent marks explained by the five LMS
features offered in courses biology 1, communications, and mathematics was 5.9%, 70.3%, and 19%,
respectively. Additionally, the higher the number of LMS features offered within the course did not
result in a greater percent variability in the student percent marks explained by these features. For
example, the percent variability in student percent marks explained by the five features offered by the
communications course and eight features from biology 2 was 70.3% and 24.2%, respectively.

When considering the associations between separate LMS features and student percent marks after the
adjustment for potential student characteristics (potential contributing factors), we have observed
notable differences between the results of the analyses performed on the sample as a whole and those
across courses. For example, after the adjustment for student characteristics, the results of the multiple
linear regression analyses performed on the total sample of students (from all courses together) indicate
that the course logins variable was a significant predictor of student percent marks whereby one
percent increase in course logins results in about 0.5 percent increase in student percent marks (B
(95%Cl) = 0.446 (0.365, 0.527), p < 0.001) (Table 5). However, when the analyses, adjusted for student
characteristics, were performed across the individual courses, course logins showed no association with
student percent marks for courses communications, biology 1, biology 2, economics, graphic design,
marketing and mathematics. Similarly, access to resources was a significant predictor of student percent
marks for the total sample population. However, for the separate course analysis, access to the
resources variable showed no association with the outcome for courses communications, computing
science, biology 1, graphic design and mathematics. These results indicate that the analyses performed
on the total sample may either underestimate or overestimate the effect of certain variables derived
from trace data in a particular course. Across the total sample of students and adjusting for student
characteristics, a 10% increase in access to resources is associated with around a 2% increase in student
percent mark (B (95%Cl) = 0.223 (0.157, 0.290), p < 0.001). This certainly overestimates the effect of
access to the resources variable in courses where this variable was found to be not significantly
associated with student percent marks; and it underestimates the effect of this learning interaction
variable for the courses where this effect was twice as large, such as biology 2 (B (95%Cl) = 0.498 (0.298,
0.699).

On a course level, while the expectation was that students’ use of the LMS features would have a

positive effect on student performance, there were some contrasting results (Table 5, columns 5-7; all
analyses adjusted for student characteristics). Access to the LMS feature “book” consistently showed a
negative association with student percent marks. Namely, percent marks of students from accounting



and economics who frequently accessed the “book” tool were on average 0.3% lower than those of their
counterparts who did not access this learning interaction course feature (accounting, B (95%Cl) = -0.302
(-0.467, -0.085), p = 0.009; economics, B (95%Cl) = -0.266 (-0.390, -0.177), p = 0.001). Although online
access to a “book” was also offered by biology 2, we observed no significant association between access
to a “book” and student percent marks. Access to chat, an LMS feature that was unique for marketing,
was negatively associated with student percent marks (B (95%Cl) = -0.143 (-0.257, -0.010), p = 0.036).
Similarly, a negative association was found for student access to assignments and percent marks for
mathematics (B (95%Cl) = -0.229 (-0.425, -0.034), p = 0.022), while access to assignment had a positive
effect on student performance in accounting (B (95%Cl) = 0.195 (0.052, 0.339), p = 0.008),
communications (B (95%Cl) = 0.127 (0.009, 0.246), p = 0.035), and marketing (B (95%Cl) = 0.296 (0.132,
0.461), p < 0.001).

The effect of the use of LMS features on student performance again varied significantly across courses.
No association was identified between frequent (3 or more times) access to the Turnitin feature and
student percent marks for accounting and mathematics courses. However, when compared to students
who did not access feature, the percent marks of the students who did frequently access Turnitin were
about 60% (B (95%Cl) = 59.264 (37.978, 89.107), p < 0.001), 6.6% (B (95%Cl) = 6.629 (3.527, 11.858), <
0.001), and 5.8% higher (B (95%Cl) = 5.814 (3.522, 9.268)) for communications, computing science, and
economics, respectively. Similarly, while access to quizzes showed no effect on student performance for
the courses biology 1 and computing science; the percent marks of the students enrolled in biology 2
and economics and accessing quizzes were about 0.7% higher than those of their counterparts not
accessing quizzes (biology 2: B (95%Cl) = 0.737 (0.376, 1.192), p < 0.001; economics: B (95%Cl) = 0.685
(0.411, 1.013), p < 0.001).

3.4 Prediction of Course Performance Status (pass/fail)

For the entire sample population and the separate course analyses, the addition of the variables derived
from trace data to the model with student characteristics significantly improved the overall accuracy of
the model to discriminate between students who passed and failed the course. The exception to this
finding was the course graphic design (see Table 6, columns 1-4). However, the improvement in the
overall model followed by the addition of the variables derived from trace data was not uniform across
all courses. With the addition of the trace data-based variables, according to the AUC, the power of the
model to discriminate between students who passed and those who failed the course increased from
poor to acceptable for accounting and marketing; from acceptable to excellent for biology 1, biology 2,
computing science, and economics; while the largest improvement of the model was observed for
mathematics where the discriminatory power of the model increased with the addition of the variables
derived from trace data from poor to excellent, and for communications from poor to outstanding.

==== Please, insert Table 6 here ====

After adjusting for student characteristics (potential contributing factors), the results of the analyses
performed on the total population sample indicate that each additional course login and additional
access to resources decreased the odds of failing a course by 1.4% (OR (95%Cl) = 0.986 (0.983, 0.990), p



< 0.001) and 0.5% (OR (95%Cl) = 0.995 (0.991, 0.999), p = 0.012), respectively (Table 5, columns 5-7).
However, the analyses performed for each course separately reveal no significant association of course
logins and access to resources with student performance status for accounting, biology 1, biology 2,
communications, economics, graphic design, and mathematics. Moreover, similar to the analyses run on
the overall sample, after the adjustment for student characteristics, the course logins variable showed a
negative association with failing the course among the students taking computing science (OR (95%Cl) =
0.980 (0.965, 0.994), p = 0.007); however, no association was found between the access to resources
and failing this course. The opposite pattern was found among students taking marketing where access
to resources was found to be a significant predictor of failing a course. In this instance, each additional
access to resources was associated with a decrease in odds of failing the course by 1.8% (OR (95%Cl) =
0.982 (0.966, 0.999), p = 0.037). No significant association was recorded between course logins and
student performance status. After adjusting for student characteristics, no variable derived from the
trace data showed a significant association with student performance status among the students taking
communications and mathematics. While access to Turnitin demonstrated no effect on student
performance status for the communications, marketing and mathematics students, odds of failing the
course were significantly lower among the accounting, computing science, and economics students who
frequently accessed the Turnitin (3 or more times) when compared with their course peers who did not
access the feature (Table 6). Interestingly, frequent access to a “book” and to “assignments” were
associated with an increase in odds of failing the course among students taking accounting (OR (95%Cl)
=2.160 (1.207, 3.865), p = 0.009) and economics (OR (95%Cl) = 1.028 (1.010, 1.047), p = 0.002),
respectively. In addition, the odds of failing the course were significantly lower among biology 2 (OR
(95%Cl) = 0.122 (0.064, 0.231), p < 0.001) and economics (OR (95%Cl) = 0.280 (0.141, 0.558), p < 0.001)
students who accessed compared to those who did not access the quizzes.

4 Discussion

4.1 Discussion of the Results with respect to the Research Questions

The results reported in Sections 3.1 and 3.2 revealed significant differences in student characteristics
and the level of use of individual LMS features across the nine courses, as investigated in research
qguestion 1. Not only did the students use different LMS features across the nine courses (see Table 1),
but significant differences in how and the extent to which the tools were utilized were also observed.
For example, students enrolled in biology 1 and communications had a significantly higher use of the
LMS discussion forums than the students in other courses examined in the study. The observed
differences in the level of student use of the various LMS features, conceivably has two primary
implications. First, there is a need to create models for academic success prediction for individual
courses, incorporating instructional conditions into the analysis model. Second, there must be careful
consideration in any interpretation of any predictive model of academic success, if these models do not
incorporate instructional conditions. In such cases, several threats to the validity of the results may
emerge such as overestimation or underestimation of certain predictors.

Significant differences in student characteristics were also observed across all the variables analyzed in
the study. Such differences can have different implications on academic success and the use of the LMS.



For example, in the present study, the courses that had high enrollments of part-time students (e.g.,
accounting, biology 2, and marketing) also had significantly higher numbers of students with late or no
access to the LMS. This finding suggests that particular courses, which may have similar technology use,
may warrant separate models for academic success prediction due to the individual differences in the
enrolled student cohort.

The accuracy of aggregated and course-specific models differed significantly in academic success
prediction for both percent marks and course completion (pass/fail) — investigated in research question
2. The results of the analysis showed that, in both aggregate and course-specific models, the addition of
the variables derived from trace data improved the accuracy in predicting course performance (Table 5).
However, while the general logistic regression model had an acceptable accuracy to discriminate
between students who passed and failed the course, the accuracy of the majority of course-specific
models was excellent or outstanding based on Hosmer & Lemeshow’s (2000) interpretation of the AUC
values. The exception to this finding was the graphic design course, where accuracy of the model with
both student characteristics and variables derived from trace data had a marginal increase as compared
to the accuracy of the model containing only student characteristics. A plausible explanation for this
finding may lie in the specific instructional requirements for technology use linked to this course. The
graphic design courses requested that students use social media tools other than those provided by
university IT support unit as part of the standard university process. Indeed, although graphic design had
a Moodle course site, the course instructor confirmed that the students were not requested to perform
all their learning activities in the LMS. Rather, they were guided to incorporate public social media tools,
such as Twitter and Facebook. As such, while the course had an active online component, the majority
of this activity occurred beyond the boundaries of the institutional LMS. Consequently, the lack of LMS
based activity resulted in a non-significant contribution of the variables derived from traced data in the
prediction of student percent marks. This example offers an important insight for learning analytics
research: the importance of understanding and taking account of instructional conditions in learning
activities.

Our results also revealed different patterns in the effect of individual variables, derived from trace data,
on academic success (research question 3), which could be divided in to the following five categories.
First, the variables derived from trace data were not significant predictors of academic success for some
courses (e.g. graphic design, as already discussed). Second, while some variables were found significant
in the general model, they were not found to be significant in the course specific models (e.g., course
logins and resource views were not significant predictors in seven out of the nine courses). A highly
plausible reason for the only variables found significant in the generalized model is that the variables
represented those features which were common (but not necessarily important) across all courses.
Third, conversely, while some variables were not found to be significant in the overall model, they were
significant in the course-specific models (e.g., book in accounting and economics, quiz in economics, and
Turnitin in communications, computing science, economics, marketing, and mathematics). Fourth, some
LMS features had a significant association with percent marks in some courses (e.g., book was negatively
associated with the student percent marks in accounting and economics), while the use of the same
features had no significant association with the percent marks in the other courses (e.g., book in biology



2). Fifth, the use of the same LMS feature had a positive effect on academic success in one course, and
resulted in a negative association within another. For instance, there was a positive association of
assignments in marketing and a negative association in mathematics for the same LMS feature. From
these five categories, we draw two important conclusions: a) generalized models of academic success
prediction can overestimate or underestimate effects of individual predictors derived from trace data;
and b) use of a specific LMS feature by the students within a course does not necessarily mean that the
feature would have a significant effect on the students’ academic success; rather, instructional
conditions need to be considered in order to understand if, and why, some variables were significant in
order to inform the research and practice of learning and teaching.

The level of variability associated with predicting academic success is largely attributed to the trace data
in comparison with the variables associated the student characteristics data (research question 4). This
is well evidenced in the observed large effect size for the trace data in the majority of the courses in our
sample (i.e., in those with the change in R* greater than 25%) — based on Cohen’s (1992) interpretation
of R as an effect size measure (0.1 — small; 0.3 — medium; and 0.5 — large). Notable examples of the
effects of trace data on the prediction of academic success were located in communications, computing
science, and economics. On the other hand, the variability explained by the variables derived from trace
data was smaller than that of the variables explained by student characteristics in biology 1 and graphic
design. The reasons why course-specific models for these two courses had low predictive power
warrants further research. A possible explanation —that needs to be studied and validated in the future
research — is that these courses either i) had a low degree of instructional guidance requiring students to
use the LMS features or ii) students required some other scaffolds for more effective use of the tools
(Gasevi¢, Mirriahi, & Dawson, 2014). This in turn can suggest that not only will course instructional
conditions determine the use of LMS features and therefore their predictive utility, but also that the
relative predictive value of trace data vis-a-vis student characteristics data is dependent on course
instructional decisions, and hence overall course design. This is especially important in blended learning
conditions where online and face-to-face components of instruction need to be seamlessly integrated if
online tools are to be perceived as useful in order to be adopted by students (Bliuc, Ellis, Goodyear, &
Piggott, 2010; Clarebout, Elen, Collazo, Lust, & Jiang, 2013).

Subtle differences in instructional intentions guiding the use of tools, as shown in Table 2, are an added
plausible explanation for the observed differences in the predictive power of variables derived from
trace data. We unpack this explanation further by drawing on the examples of the use of quizzes. For
example, both biology 1 and 2 required students to complete assessment quizzes as part of the suite of
learning activities integrated into the overall course instructional design. However, biology 1 exclusively
used these quizzes for summative assessment and grading. In contrast, biology 2 provided students with
the opportunity to undertake a quiz multiple times with the student’s best score recorded as the final
grade for that particular task (quiz). In this instructional design context it is likely that biology 2
promoted students’ engagement in self-testing (Bjork, Dunlosky, & Kornell, 2013) by allowing for
reflection on their level of understanding after completion of the particular quiz. Ideally, after
completing a series of these quizzes, students are presumably more likely to have identified gaps in their
knowledge and be seeking additional guidance and learning support. Thus, the use of the specific LMS



tools in biology 2 has likely played a higher role in promoting student self —reflection than in biology 1.
This may in part, reflect the higher explanatory power in the regression model in academic success for
biology 2. This interpretation requires further research in understanding the study strategies employed
and the results interrogated over an extended period of time and across different courses to better
understand the effects of different instructional intentions as outlined in Table 2.

4.2 Implications for Research

The findings of the present study suggest that it is imperative for learning analytics research to take into
account instructional conditions when developing predictive models. The differences in instructional
conditions, especially those related to whether and how to use LMS features need to be determined
before data are merged to create one generalized model for academic success prediction. A failure to
consider instructional conditions is likely to lead to an over-estimation or under-estimation of the effects
of specific LMS features on students’ academic success. However, technology use even within a single
course can also change as a result of the evaluation of course effectiveness (Swan, Matthews, Bogle,
Boles, & Day, 2012). Thus, instructional conditions define the level of instructional guidance regarding
how and when an individual uses the various LMS features. Not only can new LMS features be
introduced, but also the use of existing LMS features may change as a result of course revisions e.g.,
discussions and quizzes in LMS are changed to a graded format and may be compared to a former non-
graded approach that operated in previous course versions. Learning analytics must, and can, account
for the fluid nature of technology use within a course offering rather than assume that the trace data of
different offerings of the same course can be aggregated to create a single joint predictive model for
academic success and retention.

The findings of this study expand on the results of Finnegan et al.’s (2009) study and imply that the
differences in predicting academic success are affected by disciplinary differences and to a greater
extent, technology use within individual courses. For example, in our study, we had nine courses that
from four different divisions of the university, where each division represents approximately four
disparate disciplines. However, our results revealed no identical predictors of academic success, derived
from the trace data, even within the same discipline (e.g., science — biology 1 and biology 2 and business
— accounting, economics, and marketing). While future research should advance the understanding of
the effects of the LMS use in specific disciplinary contexts, our findings indicate that trace data in
different courses should not be aggregated based on disciplinary assumptions alone. Technology use
within individual courses also needs to be accounted for prior to making generalizations at a disciplinary
level. If not, similar threats to validity can arise as encountered in this study with the use of general
models for academic success prediction. An understanding of the pedagogical intent and disciplinary
context in developing predictive models may increase the generalizability and accuracy of such models.

The findings of this study confirm the conclusions drawn from Lust et al.’s (2012) systematic literature
survey on the importance of theoretical grounding of studies that investigate effects of technology use
on learning. In this paper, we have presented evidence on the need to consider instructional conditions
in order to increase the validity of learning analytics findings. A possible reason of the differences in
technology use across courses lies in differences in instructional conditions and that requires further



investigation. However, it is likely that instructional conditions are not the only factor that affects
course-specific technology use and academic success. According to Winne & Hadwin (1998),
instructional conditions are a component of external conditions. As suggested by Winne (1982, 2006),
when external conditions are considered only, studies in instructional science often end with contrasting
results. Reasons for such contrasting results often lie in individual differences of the students involved in
studies (Winne, 1996). Both Perkins (1985) and Winne (1996) posited that this is due to the individual
differences related to the internal conditions of metacognition and motivation. The results of recent
studies have also confirmed the importance of internal conditions for increasing the validity of learning
analytics research by showing that the distinct profiles of learners, reflective of different student
motivations, conceptions of instruction, and approaches to learning, can be identified based on the use
of learning tools (Clarebout et al., 2013; Lust, Elen, & Clarebout, 2013; Lust, Vandewaetere, Ceulemans,
Elen, & Clarebout, 2011; Wise, Speer, Marbouti, & Hsiao, 2013). Therefore, future studies should
consider the effects of interactions of internal and external conditions in order to increase the validity of
learning analytics results and better inform the research and practice of learning and teaching.

The quality of integration of online and face-to-face learning components is a tangential factor that can
affect educational experience and thus, courses-specific technology use in blended instructional learning
models. Future research in the field of learning analytics and digital learning more broadly, should
evaluate the effects of factors associated with the quality of blended learning experience. These factors
are typically about educational experience and collected by self-reports (Bliuc et al., 2010; Ginns & Ellis,
2007); and could be incorporated as covariates into models of academic success prediction. To enhance
interpretation of academic success prediction, it appears important to investigate the association of the
quality of blended learning experience and individual differences, especially metacognitive and
motivational factors related to the use of particular study tools/tactics (Clarebout et al., 2013; Winne,
2006).

This study highlights that as we are moving from generic models to course-specific models, we should be
also transition from the crude measure of academic success to focus on the measurement of learning,
learning processes, and learning outcomes. This would require i) connecting trace data-based predictors
with learning outcomes, ii) collecting more granular data indicative of learning processes; and iii)
discriminating which types of trace data are more reflective of learning and types of learning (factual vs.
conceptual) compared to the types of data that are more indicative of other individual differences such
as academic goal-orientation, self-management of learning, or sense of responsibility. For example, for
quizzes, we would need to know for each question item the type of knowledge it measures (e.g., factual
vs. application vs. transfer) and for online discussions, we would need to apply content analysis and look
for traces of constructs such as Garrison’s and associates’ cognitive presence (Garrison, Anderson, &
Archer, 1999). To achieve this, additional meta-data should be entered by course instructors and
collected by LMSs. Furthermore, additional techniques for analysis of learning processes and products
(e.g., process and text mining) should be applied (Kovanovic¢, Joksimovié, Gasevié, & Hatala, 2014;
Reimann, Markauskaite, & Bannert, 2014). Adoption of these processes for collecting finer-grained data
may facilitate the maturation of the field of learning analytics to move past the “urban myth” that the



greater use of technology results in better learning outcomes without explanation or contextual
evidence.

Disciplinary differences, characteristics of the instructors and materials could have affected our findings.
Future research should focus on more accurate ways to compare courses that have the equivalent
characteristics of instructors and content within the same subject domains, changing only the students
and the technology use for educational purposes. This would allow for investigating the extent to which
instructional conditions, guiding students how to use technology, affected the results of the regression
analyses reported in the paper.

4.3 Implication for Practice

The results of the study indicate that translating findings obtained by generalized models for academic
success prediction pose a threat to the potential of learning analytics to improve the quality of teaching
and learning practice. Conversely, findings derived from more granular course-specific models can
provide instructors with better insight into the factors that affect the academic success of students, so
that the findings can be i) interpreted with respect to instructional conditions, and ii) directly used to
improve teaching practice. In cases of exclusive use of generalized models, numerous patterns of direct
importance for the practice of learning and teaching could remain undetected. For example, some LMS
features had a significant effect on academic success in the course-specific models, but they had no
effect in the model based on the sample of all the courses. These features were sometimes unique to
individual courses and may offer important insights or suggest avenues for further investigation. The
interpretation of such findings should account for course-specific requirements and instructional intent
about technology use embedded in the design of courses. Although this study did not investigate the
effects of instructional intent and learning design on technology use, possible implications for practices
could be still be drawn. For example, the negative association between chat and student success in
marketing may indicate that students tried to reach out to their peers for some help, but the peers were
unable to assist them. Unexpected mismatches between LMS features and outcomes may also be
salutary for curriculum design. For example, the negative association of assignments with grades in
mathematics could be an indicator of a) inadequate alignment of assignments with the course
expectations or b) weaknesses in integration between the face-to-face and online components of the
course. In contrast, a positive association between the use of assignments and marketing grades could
be an indicator of good assignment-course expectations alignment and used to identify students lagging
behind the course expectations.

The course specific models of academic success can offer valuable insights for instructors regarding how
to improve their instructional practice. The models may also be complemented with findings established
within educational psychology to better inform teaching and learning practice. Our study illustrates that
instructors often incorporate specific tools within the LMS without envisioning learners’ activity in the
context of their overall instructional designs®. As highlighted in Table 2, the adoption of the chat tool

* This indicates that teaching practice does not often recognize the importance of guiding and scaffolding students’
use of a particular technology or tool to support their learning endeavours. This is well documented by Winne’s
(2006) four conditions— metacognitive awareness of the tool value, mediation to find the tool useful for a task at



had no instructionally defined purpose and no single reference as to how students would use the chat
tool in any of the courses. While the MARK course offered chat the only difference — compared to all
other eight courses — was that the chat tool was made available and highly visible on the home page of
the course in the LMS. This likely attracted the attention of the students (23.4%) for experimentation
purposes. However, as our regression analysis demonstrated the use of chats had a negative effect on
the students’ academic success in this course. This may suggest that students who were struggling with
the course material were seeking additional methods for learning support. As the use of chats was not
pedagogically crafted into the instructional conditions and only offered as an added feature, it was
unlikely that the tool was used for learning, but more as a tool for seeking added support or
experimentation. In the case of learning support, specific additional support measures for students
adopting this tool were also required. Regardless, the fact that the use of chat was a significant negative
predictor of academic success is relevant feedback for the instructors. In the given course, instructors
could design learning activities or learning support through the use of the chat tool. Furthermore, in the
case of student support through the use of synchronous chat a simple dashboard indicating the use of
chats could act as a relevant indicator for instructors to readily identify students seeking instructional
assistance.

There are important considerations that arise from these findings for both the field of learning analytics
and education institutions that hope to benefit from its insights. For the field, our findings strongly
suggest that learning analytics cannot be decoupled from actual, situated learning and teaching practice.
Learning analytics will not be of practical value or widely adopted if it cannot offer insights that are
useful for both learners and teachers (Ali, Asadi, Gasevi¢, Jovanovi¢, & Hatala, 2013; Clarebout et al.,
2013; Swan, 2012). There are potential unintended consequences when embarking on wholesale
adoption of generalized models of student success. Efforts in the field of learning analytics should be
directed towards the development of actionable recommendations, and this will only be possible if the
understanding of practical needs in specific instructional and learning contexts is the primary driver for
the development and deployment of learning analytics methods.

The comparison of the results between course-specific and general models points to a significant
tension in the field that must be resolved. On the one hand generalized models may be inaccurate in
many cases, but represent a cost effective and organizationally efficient approach to identifying student
risk. On the other hand, boutique models that vary by course, or even each offering of the course, may
be unwieldy to implement, despite being more accurate. One approach to resolving this dilemma would
be to seek generic capabilities at the software application level rather than the variable identification
level, with instructors able to tap into simplified model generation programs that can analyze previous
course offerings and suggest key risk variables given their instructional aims, specific student tool-use
requirements and (where available) the outcomes of previous student cohorts. Even so, this does
represent a fundamental adjustment to the underlying assumptions of learning analytics as applied to
risk prediction. In the generic variable-based model the academics are passive consumers of a product

hand, metacognitive skills to use the tool effectively, and motivation to use the tool —the use of tools has
metacognitive and motivational aspects with respect to tools use that need to be accounted for when creating
instructional designs.



that predicts student risk, whereas in the model generation approach suggested here they would be
engaged as producers. In this scenario, the direct involvement of the learning analytics benefactors, and
assisting the benefactors to build their skills in translating learning analytics results into their practice
and decision making, could be a stepping stone for the field of learning analytics to make a significant
impact on educational practice.

For institutions, there are implications for strategic policy and implementation. In spite of having access
to volumes of data with direct relevance to improving their performance, higher education institutions
are not mature data-informed organizations (Macfadyen & Dawson, 2012; Macfadyen, Dawson, Pardo,
& Gasevic, 2014; Manyika et al., 2012). A predominance of institutions have poorly developed capacity
and competencies in learning analytics (Siemens et al., 2014). In recognizing this gap institutions are
seeking to establish partnerships with commercial vendors to fast track adoption for a perceived
competitive advantage. However, a threat of such an approach could be that the choices made on the
data to be accessed and how it will be analyzed will be too “far removed from the specific learning
context and learner to be able to provide an organization with any direct actionable recommendations”
(Siemens et al., 2014, p. 7). In particular, where the commercial exigencies of vendors create pressures
to design generic products and algorithms to be applied at scale, these will clearly be antagonistic to the
development of situated solutions grounded in an analysis of the specific instructional and learning
contexts. But only the latter, on the findings and analysis presented here, are likely to generate
actionable knowledge and engage benefactors. Based on the results of this study, higher education
institutions should proceed cautiously when outsourcing capacity building in learning analytics to ensure
their strategic priorities for the ongoing development of the practice, quality, and socio-cultural aspects
of learning and teaching are not compromised.
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es of trace data recorded by the LMS (Moodle) across the nine courses included in the study.

Z/Mood'e ACCT BIOL1 BIOL2 COMM COMP ECON GRAP MARK MATH
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3ox Gallery X
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| Classroom X
intentions for the use of the LMS tools used across the nine courses included in the study.
BIOL 1 BIOL 2 COMM COMP ECON GRAP MARK MATH
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Course Course Course Course .
Course . . . . assignments
. assignments assignments assignments assignments
assignments ) . . . were
were were available were available  were available were available available
available hosted in the hosted in the hosted in the hosted in the hosted in the
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information information
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Table 3: Characteristics of study participants across course subject

N =4134 ACCT BIOL 1 BIOL 2 COMM COomP ECON GRAP MARK MATH p value
n=746 n=220 n =657 n =499 n=242 n=661 n=192 n=723 n=194

Age (years) 22.7+48 | 21.9+53 | 26.8+9.1 | 21.5+40 | 229+6.2 | 23.8+5.6 | 21.5+3.6 | 22.6+4.2 | 22.0t4.7 | <0.001

Females 381 143 568 320 38 328 105 420 13 <0.001
(51.1%) (65.0%) (86.5%) (64.1%) (15.7%) (49.6%) (54.7%) (58.1%) (6.7%)

International 255 13 57 15 15 262 9 256 35 <0.001

students (34.2%) (5.9%) (8.7%) (3.0%) (6.2%) (39.6%) (4.7%) (35.4%) (18.0%)

Other 294 50 127 29 39 312 21 289 63 <0.001

language (39.6%) (22.7%) (19.3%) (5.8%) (16.1%) (47.9%) (10.9%) (40.3%) (32.5%)

than English

spoken at

home

Living in non- 64 27 128 60 30 48 31 60 26 <0.001

urban (rural (11.9%) (12.9%) (20.8%) (12.3%) (12.9%) (10.5%) (16.6%) (11.5%) (15.6%)

or isolated)

areas

Part time 82 18 103 28 16 92 8 60 13 <0.001

student (11.0%) (8.2%) (15.7%) (5.6%) (6.6%) (13.9%) (4.2%) (8.3%) (6.7%)

Previously 257 19 62 28 31 327 11 226 22 <0.001

enrolled to a (34.5%) (8.6%) (9.4%) (5.6%) (12.8%) (49.5%) (5.7%) (31.3%) (11.3%)

course

Course start <0.001




N=4134 ACCT BIOL 1 BIOL 2 COMM COMP ECON GRAP MARK MATH p value
n=746 n=220 n =657 n =499 n=242 n=661 n=192 n=723 n=194

access

Early access 184 145 479 140 97 218 72 175 75
(25.0%) (66.5%) (73.1%) (28.3%) (40.2%) (35.7%) (53.3%) (37.1%) (61.0%)

Did not 97 25 43 75 16 99 18 88 14

access (13.1%) (11.5%) (6.6%) (15.2%) (6.6%) (16.2%) (13.4%) (18.6%) (11.4%)

Late access 456 48 133 279 128 293 45 209 34
(61.9%) (22.0%) (20.3%) (56.5%) (53.1%) (48.0%) (33.3%) (44.3%) (27.6%)

Age presented as mean * standard deviation. The rest of the variables presented as counts and percentages. The difference in age across

courses was explored by ANOVA. The differences in the rest of the variables across courses were explored by the Chi-square test.




Table 4: Student performance and learning interaction variables across course subject

N = 4134* ACCT BIOL1 BIOL 2 COMM COMP ECON GRAP MARK MATH Overall
n=746 n=220 n=657 n =499 n=242 n=661 n=192 n=723 n=194 p value
Percent 39 (36,42) | 40(35,46) | 46 (42,50) | 43 (39,50) | 52 (45,59) | 46 (42,50) | 53 (46, 62) | 52 (48,56) | 45(39,51) | <0.001
mal’k** 4,6,7,14
Academic <0.001
Status
513 170 526 376 179 507 173 566 138
Pass (68.8%) (77.3%) (80.1%) (75.4%) (74.0%) (76.7%) (90.1%) (78.3%) (71.1%)
215 47 120 108 57 138 17 144 52
Fail (28.8%) (21.3%) (18.2%) (21.6%) (23.5%) (20.9%) (8.9%) (19.9%) (26.8%)
18 3 11 15 6 16 2 13 4
Withdraw (2.4%) (1.4%) (1.7%) (3.0%) (2.5%) (2.4%) (1.0%) (1.8%) (2.1%)
Forum 17 (6, 53) 44 6 (1, 60) 32 (8,97) 0(0,0) 27 (8, 79) 0(0,0) 21 (6, 54) 12 (3,26) | <0.001
(18, 115) 16,89,
11-20, 22,
24-27, 29-
36
Course logins | 45 (26, 74) 117 109 51 (28, 79) | 62 (44, 90) 65 8(4,15) | 48(32,76) 94 <0.001
(71,165) | (69, 176) (39, 111) (60,130) | v**&®
10-14, 16-
20, 22-24,
26, 28-36
Resources 35(20, 57) | 64 (46, 93) 123 21(14,32) | 0(0,1) |49(32,72) | 7(2,16) | 51(36,67) 89 <0.001
(78, 180) (51,126) | "3
33-36
Turnitin <0.001
Did not log 267 N/A N/A 26 (5.2%) | 25(10.3%) | 26 (3.9%) N/A 16 (2.2%) | 94 (48.5%)




N = 4134* ACCT BIOL 1 BIOL 2 COMM COMP ECON GRAP MARK MATH Overall
n=746 n=220 n=657 n =499 n=242 n=661 n=192 n=723 n=194 p value
(35.8%)
Logged 1-2 442 72 (14.4%) 143 159 399 79 (40.7%)
times (59.2%) (59.1%) (24.1%) (55.2%)
Logged 3 or 37 401 74 (30.6%) 476 308 21 (10.8%)
more times (5.0%) (80.4%) (72.0%) (42.6%)
Assignments 7(3,13) | 20(13, 30) N/A 33(22,48) | 13(8,20) | 36(25,51) N/A 27 (19,37) | 26(17,38) | <0.001
1,3-5,7,8,
10-12, 14,
15, 22, 26,
27, 29, 30,
32,33
Book <0.001
Did not log 164 N/A 233 N/A N/A 143 N/A N/A N/A
(22.0%) (35.5%) (21.6%)
Logged 1-2 184 108 267
times (24.6%) (16.4%) (40.4%)
Logged 3 or 398 316 251
more times (53.4%) (48.1%) (38.0%)
Quiz <0.001
Did not N/A 4 123 N/A 134 235 N/A N/A N/A
access (1.8%) (18.7%) (55.4%) (35.6%)
Accessed 216 534 108 426
once or more (98.2%) (81.3%) (44.6%) (64.4%)

times




N = 4134* ACCT BIOL 1 BIOL 2 COMM COMP ECON GRAP MARK MATH Overall
n=746 n=220 n=657 n =499 n=242 n=661 n=192 n=723 n=194 p value

Light box 306 N/A N/A N/A N/A N/A N/A N/A N/A

Accessed by (41.0%)

Feedback N/A N/A 432 N/A N/A N/A N/A N/A N/A

Accessed by (65.8%)

Map N/A N/A 156 N/A N/A N/A N/A N/A N/A

Accessed by (23.7%)

Virtual N/A N/A 336 N/A N/A N/A N/A N/A N/A

classroom (51.1%)

Accessed by

Lesson N/A N/A N/A N/A 42 (17.4%) N/A N/A N/A N/A

Accessed by

Chat N/A N/A N/A N/A N/A N/A N/A 169 N/A

Accessed by (23.4%)

Continuous variables presented as median (25%, 75%), and the differences across courses were explored by ANOVA. Categorical variables

presented as counts and percentages (n (%)), and the differences across courses were explored by Chi-square test. *Students who withdrew

from the course were excluded (n = 88); ** Percent mark presented as geometric mean (95% Cl); N/A: not available in the course. Post-hoc tests
(all significant at p<0.05): * ACCT vs. BIOL1, > ACCT vs. BIOL2, > ACCT vs. COMM, * ACCT vs. COMP, ®> ACCT vs. ECON, ® ACCT vs. GRAPH, ’ ACCT vs.
MARK, ® ACCT vs. MATH, ° BIOL1 vs. BIOL2, '° BIOL1 vs. COMM, *! BIOL1 vs. COMP, *2 BIOL1 vs. ECON, ** BIOL1 vs. GRAPH, * BIOL1 vs. MARK, **
BIOL1 vs. MATH, *® BIOL2 vs. COMM, *” BIOL2 vs. COMP, *® BIOL2 vs. ECON, *° BIOL2 vs. GRAPH, % BIOL2 vs. MARK, ** BIOL2 vs. MATH, 2 COMM
vs. COMP, ** COMM vs. ECON, ** COMM vs. GRAPH, > COMM vs. MARK, *® COMM vs. MATH, ? COMP vs. ECON, *® COMP vs. GRAPH, * COMP
vs. MARK, ** COMP vs. MATH, *! ECON vs. GRAP, *> ECON vs. MARK, ** ECON vs. MATH, ** GRAP vs. MARK, ** GRAP vs. MATH, ** MARK vs. MATH




Table 5: The association between the variables of students’ use of the LMS features and In student percent marks: results of multiple linear
regression models

Course Model 1 Moodle trace (Model 1 + Moodle interaction B (95% Cl) Significance
R?x 100* | data-based Moodle trace | variables ¥ (p)
variables R? data-based)
change x 100 R2 x 100***
(p value)**
In forums -0.014 0.317
(-0.041, 0.013)
Overall sample (all 16.2% In course logins 0.446 <0.001
courses together) 4.9% (p <0.001) 21.1% (0.365, 0.527)
In resources 0.223 <0.001
(0.157, 0.290)
In course logins 0.334 0.010
(0.079, 0.589)
In resources 0.217 0.017
(0.038, 0.395)
In assignments 0.195 0.008
(0.052, 0.339)
Logged to a book 1- -0.132 0.338

2 times vs. did not (-0.350, 0.160)
log to a bookT

22.4%
ACCT 4.4% (p < 0.001) 26.8% | | ogged to a book 3 -0.302 0.009
or more times vs. (-0.467, -0.085)
did not log*
In forum -0.007 0.888
(-0.097, 0.084)
Logged to light box 0.003 0.976
vs. did not log to (-0.176, 0.221)

light boxt




Course Model 1 Moodle trace (Model 1 + Moodle interaction B (95% Cl) Significance
R2x 100* | data-based Moodle trace | variables ¥ (p)
variables R? data-based)
change x 100 R2 x 100***
(p value)**
Logged to Turnitin- 0.283 0.117
in 1-2 times vs. did (-0.060, 0.751)
not log*
Logged to Turnitin- -0.113 0.673
in 3 or more times (-0.494, 0.553)
vs. did not log*
In forum 0.058 0.575
(-0.146, 0.263)
In course logins 0.321 0.268
(-0.249, 0.890)
5.9% In resources -0.100 0.602
BIOL1 7.3% (b =0.027) 13.2% (-0.478, 0.278)
’ In assignments 0.220 -0.165
(-0.165, 0.605)
Logged to quizzes 0.560 0.715
vs. did not log to (-0.880, 16.219)
quizzest
In resources 0.498 <0.001
(0.298, 0.699)
Logged to quizzes 0.737 <0.001
vs. did not log to (0.376, 1.192)
quizzest
BIOL 2 14.8% (p2<462(;)/(;l) 39%
' In forum -0.011 0.679
(-0.060, 0.039)
In course logins 0.065 0.574

(-0.162, 0.293)




Course Model 1 Moodle trace (Model 1 + Moodle interaction B (95% Cl) Significance
R2x 100* | data-based Moodle trace | variables ¥ (p)

variables R? data-based)

change x 100 RZ x 100***

(p value)**
Logged to a book 1- 0.066 0.568
2 times vs. did not (-0.145, 0.331)
log to a bookT
Logged to a book 3 -0.070 0.440
or more times vs. (-0.229, 0.120)
did not logt
Logged to feedback 0.183 0.062
vs. did not log to (-0.009, 0.411)
feedbackt
Logged to map vs. 0.079 0.440
did not log to mapt | (-0.111, 0.310)
Logged to virtual -0.094 0.295
class vs. not logged (-0.248, 0.091)
to virtual classt
Logged to Turnitin- 16.904 <0.001
in 1-2 times vs. did | (11.073, 25.523)
not logt

70.3% Logged to Turnitin- 59.264 <0.001
o) ()
COMM 3.5% (p <0.001) 73.8% in 3 or more times | (37.978, 89.107)

vs. did not logt
In assignments 0.127 0.035

(0.009, 0.246)




Course Model 1 Moodle trace (Model 1 + Moodle interaction B (95% Cl) Significance
R2x 100* | data-based Moodle trace | variables ¥ (p)
variables R? data-based)
change x 100 R2 x 100***
(p value)**
In forum 0.010 0.680
(-0.036, 0.055)
In course logins 0.038 0.600
(-0.105, 0.181)
In resources 0.036 0.530
(-0.077, 0.150)
In course logins 0.408 <0.001
(0.248, 0.568)
Logged to Turnitin- 5.883 <0.001
in 1-2 times vs. did (3.464, 9.602)
not logt
Logged to Turnitin- 6.629 <0.001
in 3 or more times (3.527,11.858)
vs. did not logt
58 6% In forum -0.022 0.933
CcomP 7.7% (p<0.001) 66.3% (-0.537, 0.493)
In resources 0.018 0.771
(-0.106, 0.142)
In assignments 0.079 0.347
(-0.086, 0.244)
Logged to quizzes 0.063 0.496
vs. did not log to (-0.110, 0.270)
quizzest
Logged on to -0.185 0.084

lessons vs. did not
log to lessonst

(-0.355, 0.028)




Course Model 1 Moodle trace (Model 1 + Moodle interaction B (95% Cl) Significance
R2x 100* | data-based Moodle trace | variables ¥ (p)
variables R? data-based)
change x 100 R2 x 100***
(p value)**
In resources 0.215 0.007
(0.058, 0.372)
Logged to Turnitin- 3.632 <0.001
in 1-2 times vs. did (2.139, 5.835)
not logt
Logged to Turnitin- 5.814 <0.001
in 3 or more times (3.522, 9.268)
vs. did not logt
Logged to a book -0.201 0.009
1-2 times vs. did (-0.325, -0.054)
not log to a bookt
47.1%
ECON 3.3% (p <0.001) 50.4% Logged to a book 3 -0.266 0.001
or more times vs. (-0.390, -0.117)
did not logt
Logged to quizzes 0.685 <0.001
vs. did not log to (0.411, 1.013)
quizzest
In forum 0.028 0.401
(-0.037, 0.094)
In course logins 0.121 0.198
(-0.064, 0.306)
In assignments 0.058 0.516
(-0.118, 0.235)
GRAP 7.3% 2.0% 9.3% In forum 0.006 0.961




Course Model 1 Moodle trace (Model 1 + Moodle interaction B (95% Cl) Significance
R2x 100* | data-based Moodle trace | variables ¥ (p)
variables R? data-based)
change x 100 R2 x 100***
(p value)**
(p=0.472) (-0.228, 0.239)
In course logins 0.131 0.454
(-0.214, 0.476)
In resources -0.164 0.133
(-0.378, 0.050)
In resources 0.358 <0.001
(0.193, 0.522)
Logged to Turnitin- 12.144 <0.001
in 1-2 times vs. did | (4.119, 32.717)
not logt
Logged to Turnitin- 13.895 <0.001
in 3 or more times | (4.680, 38.095)
vs. did not logt
0,
MARK 2.9% (0 '12(')00/2)1) 34.9% In assignments 0.296 <0.001
’ (0.132, 0.461)
Logged on to chat -0.143 0.036
vs. did not log on (-0.257, -0.010)
to chatt
In forum -0.033 0.312
(-0.096, 0.031)
In course logins 0.064 0.478
(-0.114, 0.242)
19.0% Logged to Turnitin- 0.292 0.032
MATH 13.4% (p =0.001) 32.4% in 1-2 times vs. did (0.022, 0.631)

not log*




Course Model 1 Moodle trace (Model 1 + Moodle interaction B (95% Cl) Significance
R2x 100* | data-based Moodle trace | variables ¥ (p)
variables R? data-based)
change x 100 R2 x 100***
(p value)**
Logged to Turnitin- 0.358 0.105
in-file 3 or more (-0.063, 0.968)
times vs. did not
logt
In assignments -0.229 0.022
(-0.425, -0.034)
In forum 0.041 0.375
(-0.050, 0.132)
In course logins 0.281 0.123
(-0.078, 0.640)
In resources 0.136 0.375
(-0.167, 0.439)

*Model 1: student characteristics: start access to a course (did not access, early access, late access), age, gender, being an international student,
home spoken language, term access code (full time/part time student), previous enrollment, home remoteness; R? x 100: percent variability
observed in student percent marks that can be explained by Model 1. **Percent variability in student percent marks additionally explained by
the Moodle online interaction variables. ***Percent variability in student percent marks explained by the overall model (Model 1 + Moodle
online interaction variables). ¥ All models adjusted for start access to a course (did not access, early access, late access), age, gender, being an
international student, home spoken language, term access code (full time/part time student), previous enrollment, and home remoteness. TBeta
coefficients presented as e’-1 and interpreted as percent change in the outcome (percent mark) for one unit difference in a Moodle interaction
variable. The rest of the Moodle interaction variables interpreted as a percent change in the outcome (percent mark) for one percent increase in

a Moodle engagement variable.



Table 6: The association between students’ use of the LMS features and their performance status (pass or fail): the results of binary logistic

regression analysis

Course Model 1 Model 2 Step statistics Moodle interaction Odds Ratio (95%Cl) Significance
discrimination discrimination | Chi-square (p variables per course*** (p)
Overall C Overall C value)**
(95%Cl)* (95%Cl)*
Forum 0.999 (0.997, 1.001) 0.235
23:?!:3221‘;2?;' ©. 63?56?68 y 0_7;'37‘(‘377 o) | 259934 (p<0.001) | Courselogins 0.986 (0.983, 0.990) <0.001
! ! Resources$ 0.995 (0.991, 0.999) 0.012
Logged to light box vs. 0.851(0.543, 1.134) 0.483
did not log to light box
Forum 0.995 (0.990, 1.000) 0.076
Course logins 0.992 (0.982, 1.003) 0.166
Resource 0.998 (0.989, 1.006) 0.555
Logged to Turnitin-in 1- | 0.388 (0.232, 0.649) <0.001
2 times vs. did not log
L to Turnitin-in .177 (0.036, 0. .032
ACCT 0.674 0.765 64.874 (p<0.001) ocr,gng\f):‘le f:imL;S vs. did ’ ’ (0:036,0.863) o
(0.625,0.724) | (0.721,0.809)
not log
Assignments 1.001 (0.970, 1.033) 0.934
Logged to a book 1-2 1.377 (0.721, 2.628) 0.322
times vs. did not log to a
book
Logged to a book 3 or 2.160 (1.207, 3.865) 0.009
more times vs. did not
log
Forum 0.985 (0.972, 0.999) 0.031
Course logins 0.988 (0.973, 1.004) 0.148
0.705 0.816 Resources 1.008 (0.994, 1.023) 0.278
BIOL 1 (0.623, 0.787) (0.750, 0.883) 31.448 (p<0.001) Assignments 0.997 (0.956, 1.040) 0.893
Logged to quizzes vs. did | 0.001 (0.000, 0.001) 0.999
not log to quizzes
BIOL 2 0.714 0.845 121.849 (p<0.001) | Forum 1.000 (0.996, 1.003) 0.948




Course Model 1 Model 2 Step statistics Moodle interaction Odds Ratio (95%Cl) Significance
discrimination discrimination | Chi-square (p variables per course*** (p)
Overall C Overall C value)**

(95%Cl)* (95%ClI)*
(0.657,0.771) | (0.801, 0.889) Course logins 0.997 (0.990, 1.004) 0.411
Resources 0.998 (0.991, 1.004) 0.472
Logged to a book 1-2 0.689 (0.321, 1.479) 0.339
times vs. did not logto a
book
Logged to a book 3 or 0.954 (0.494, 1.844) 0.889
more times vs. did not
log
Logged to quizzes vs. 0.122 (0.064, 0.231) <0.001
did not log to quizzes
Logged to feedback vs. 0.457 (0.254, 0.822) 0.009
did not log to feedback
Logged to map vs. did 0.931(0.429, 2.021) 0.856
not log to map
Logged to virtual class 1.688 (0.918, 3.105) 0.092
vs. not logged to virtual
class
Forum 0.996 (0.989, 1.003) 0.213
Course logins 0.997 (0.979, 1.014) 0.696
Resources 1.031 (0.996, 1.068) 0.085
Logged to Turnitin-in 1-2 | 0.001 (0.000, 0.001 0.999
COMM 0 5((5)6632684 0 8;)69(1)5949 227.091 (p<0.001) tin%gs vs. did not log ( ’ )
(0.560,0.684) (0.880, 0.949) Logged to Turnitin-in 3 0.001 (0.000, 0.001) 0.998
or more times vs. did
not log
Assignments 0.983 (0.960, 1.007) 0.163
Forum 0.001 (0.000, 0.001) 0.999
0.640 0.827 Course logins 0.980 (0.965, 0.994) 0.007
comPp (0.558, 0.723) (0.758, 0.896) 61.224 (p<0.001) Resources 0.986 (0.585, 1.661) 0.958
Logged to Turnitin-in 1- | 0.061 (0.009, 0.439) 0.005




Course Model 1 Model 2 Step statistics Moodle interaction Odds Ratio (95%Cl) Significance
discrimination discrimination | Chi-square (p variables per course*** (p)
Overall C Overall C value)**
(95%Cl)* (95%ClI)*
2 times vs. did not log
Logged to Turnitin-in 3 0.035 (0.003, 0.352) 0.004
or more times vs. did
not log
Assignments 0.973(0.915, 1.035) 0.384
Logged to quizzes vs. did | 1.609 (0.683, 3.792) 0.276
not log to quizzes
Logged to lessons vs. did | 2.584 (0.849, 7.859) 0.094
not log to lessons
Forum 0.999 (0.992, 1.005) 0.719
Course logins 0.990(0.977, 1.002) 0.111
Resources 0.983 (0.966, 1.000) 0.053
Logged to Turnitin-in 1-2 | 0.345 (0.070, 1.698) 0.190
times vs. did not log
Logged to Turnitin-in 3 0.041 (0.008, 0.216) <0.001
or more times vs. did
not log
ECON 0 526';6‘(;7709) 0 8;)58%6909) 128.459 (p<0.001) | Assignments 1.028 (1.010, 1.047) 0.002
R R Logged to a book 1-2 1.551 (0.723, 3.325) 0.259
times vs. did not logto a
book
Logged to a book 3 or 1.358 (0.565, 3.264) 0.494
more times vs. did not
log
Logged to quizzes vs. 0.280 (0.141, 0.558) <0.001
did not log to quizzes
0.830 0.863 Forum ‘ 0.564 (0.192, 1.659) 0.298
GRAP (0.748, 0.912) (0.792, 0.934) 3.943 (p=0.268) | Course logins 0.884 (0.747, 1.045) 0.148
a R Resources 1.105 (0.991, 1.233) 0.072
MARK 0.616 0.774 43.409 (p<0.001) | Forum 1.006 (0.997, 1.015) 0.186




Course Model 1 Model 2 Step statistics Moodle interaction Odds Ratio (95%Cl) Significance
discrimination discrimination | Chi-square (p variables per course*** (p)
Overall C Overall C value)**

(95%Cl)* (95%ClI)*

(0.541,0.691) | (0.711,0.837) Course logins 0.989 (0.975, 1.003) 0.130
Resources 0.982 (0.966, 0.999) 0.037
Logged to Turnitin-in 1-2 | 0.001 (0.000, 0.001) 0.999
times vs. did not log
Logged to Turnitin-in 3 0.001 (0.000, 0.001) 0.999
or more times vs. did
not log
Assignments 0.976 (0.946, 1.006) 0.121
Logged to chat vs. did 1.439 (0.707, 2.928) 0.315
not log to chat
Forum 0.999 (0.969, 1.029) 0.924
Course logins 0.986 (0.964, 1.009) 0.223
Resources 0.985 (0.965, 1.005) 0.136
Logged to Turnitin-in 1-2 | 0.555(0.179, 1.719 0.307

MATH 0 5?;39759 0 7;828910 20.995 (p=0.002) tinfgs vs. did not log ( )

(0.518,0.759) (0.727,0.910) Logged to Turnitin-in 3 0.518 (0.059, 4.540) 0.553
or more times vs. did
not log
Assignments 1.035 (0.989, 1.083) 0.140

Model 1: student characteristics: start access to a course (did not access, early access, late access), age, gender, being an international student,

home spoken language, term access code (full time/part time student), previous enrollment, home remoteness. Model 2: Model 1 + features

derived from trace data. * Results of ROC curve analysis where the AUC corresponded to the c statistic from the regression models; ** The

improvement in the predictive power of model 2 with the use of LMS features since model 1 (the difference in the log-likelihood between model

1 and model 2); ***variables in bold are significantly associated (p<0.05) with the outcome (pass/fail); ¥ the LMS features present in all courses







