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Introduction

The organisation of arithmetical facts in memory is often regarded as
fixed, at least in adults, whether in an array (e.g. Ashcraft & Battaglia,
1978) or in an associative network (e.g Campbell, 1995). Some authors,
following Seigler (1988), have proposed an ontogenetic dynamic that
shapes the final organisation by reducing the relative strength of
associative links between problems (e.g. 3 + 5) and erroneous solutions (7)
while strengthening the links to the correct answers (e.g. 8). In this study
we raise the possibility that links between problems and correct solutions
may in certain circumstances be relatively strengthened or relatively
weakened. That is to say, the organisation of facts in memory may be
reorganised so as to favour some representations of correct facts over
others. One obvious source of dynamic change is familiarity, or frequency
of occurrence, where the more frequently produced or encountered is
more strongly represented. But this isn't the only possible source of
dynamic change.

Consider addition and multiplication. Both are commutative: 3 + 5=5 + 3
and 3 x 5=5 x 3. Provided one understands this, one doesn't need to store
both forms of the commuted pair in memory (cp. Baroody, 1994). One
may come to privilege one member of the pair over the other. However,
we cannot argue for this on the basis of economy of storage, since the
storage capacity of human memory is not known. Nor can we argue on
for it on the basis of whether speed of retrieval would be better or worse
with one form or two: what you save on search time, you might lose on
transforming one form into the other. However, there is indirect evidence
that learning is more efficient when only one of the commutes is learned.
In China and in Iceland, children do not learn the complete
multiplication tables. They are taught only half. In China, for example,
they learn 3 x 2 as part of the Two Times table, but the Three Times
table starts at 3 x 3, so they are never taught the 2 x 3 explicitly. (They
also do not learn 1 x anything). There have been many studies
demonstrating that Chinese adults are superior on multiplication to
Westerners (LeFevre & Liu, 1997). Although studies have not explored
this potential causal factor in Chinese superiority, on general learning
principles, it strikes us as plausible.

In cases where children learn both of the commuted pairs, as in the rote
learning of multiplication tables in the US or in most European schools,
does this mean that both forms are stored? Even if both are represented in
memory, what determines whether there is privileged access to just one of
the forms. On general learning principles, the most practiced or perhaps
the first learned, is likely to be the more accessible. Normally, children
learn smaller tables before larger tables. Thus, in the US and the UK, 6 x
2 is learned before 2 x 6, since the former is part of the Two Times Table,
while the latter is part of the Six Times Table. On the other hand, if there
is a privileged form, and it turns out not to be the one favoured by
priority or amount of learning, but rather it is favoured by a principle that
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reflects the meaning of the terms, then this outcome will have a bearing
on one of the oldest debates in this whole area: the debate between drill
(as represented by Thorndike, 1922) and meaningful learning (Brownell,
1935). Baroody (1985) summarised the evidence as it stood in 1985 thus:
“Research tends to support the meaning theory” (p 85). The organization,
and, potentially, the re-organization, of these simple number facts is a
useful testbed for evaluating this issue again.

In this study we ask whether the form of the commuted pair retrieved
from memory is the form learned, or most learned. If not, is there a single
privileged form? If there is a privileged form, is it the first learned? We
will also ask whether the form retrieved changes in the course of
development.

Our measure will be the time taken to solve each form of the commuted
pair problem. That is, will it take longer to retrieve 2 x 6 or 6 x 2? We
assume that the form more quickly solved is the one more similar to the
stored representation. If they are solved equally quickly we infer that both
(or, conceivably, neither) forms are in memory.

In this study, our subjects are Italian children from the ages of 8 to 11.
Although their schools use rote learning of tables, like other Italian
schools, the tables are recited the other way to children in the US and
UK. They learn their tables with the table name in the second position:
“Once two is two, two twos are four, three twos are six”. For Italian
children, the table name is in first position. Thus the Two Times table
goes “due per uno ¢ due (“two times one is two”), due per due ¢ quattro,
due per tre ¢ sei, due per quattro ¢ otto,” and so forth. So although they
learn both 2 x 6 and 6 x 2, they learn 6 x 2 in the Six Times table many
months, often a year, after they have learned 2 x 6 as part of their Two
times table. Thus, on the basis of priority of learning and probably total
exposure, 2 x 6 should be privileged over 6 x 2.

However, in the present study, we directly tested the contrary hypothesis
that, as their arithmetic knowledge increases, both in terms of
strengthening of the associations between problems and correct answers
and in terms of appreciation of the commutativity law, children re-
organise their memory representations to favor problems with the larger
operand in first position, regardless of the actual chronological order in
which children are taught complements. The preferred problem form, i.e.,
Nxm (our convention is that Nxm means the larger operand is in the first
or left position, while mxN means that it is in the second or right
position), would partially result from the application of the repeated
addition strategies that, as informally observed by the teachers, in expert
children consists in adding the larger operand a number of time indicated
by the smaller operand, thus reducing the number of operations to be
computed. Previous chronometric studies of children’s multiplication
skills did not evaluate the extent to which commuted items are
differentially treated (e.g., Campbell and Graham, 1985; Siegler, 1988;
Svenson, 1985, for related issues in addition).
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Method

Primary-school Sample and teaching method

Twenty-eight third-grade children (mean age = 8 years 7 months ), thirty-
one four-grade children (mean age = 9 years and 5 months) and thirty
Fifth-grade children (mean age = 10 years and 6 months) participated in
the study. All children were recruited in a primary school in Northern
Italy; none of them was diagnosed as learning disabled and they were all
introduced and trained with simple multiplication following the same
teaching method.

Simple multiplication is only introduced when children are relatively
familiar with addition and subtraction, that is by the end of the First-
grade or beginning of the Second-grade. The teaching of multiplication
generally proceeds from providing children with concrete examples where
the computation is part of a familiar situations (e.g., dolls and dresses,
Figure 1) to the introduction of more abstract representations such as
visualising arrangement or grouping of objects (Figure 2), and then
grouping of points (Figure 3). The use of these different type of
representations should help the child first, to grasp the meaning of the
multiplication itself then to move from the ability to manipulate and
represent quantities of objects to the ability to manipulate and represent
numbers as abstract concepts. It is only towards the end of the second-
grade, beginning of the Third-grade that multiplication facts are
introduced starting from the tables of 1, 2 and 3. At this stage, the
commutative law is explicitly taught. The others tables are gradually
introduced and tested first, by repetition of the table sequence (e.g. 2 x 1,
2 x 2, 2 x 3), then by testing a single table in random order (e.g., 2 x 4, 2
x 7, 2 x 2) and finally by testing all problems. The testing for this study
took place in late January.

Notes on Figures 1, 2 and 3.

Ways of illustrating multiplication used in Italian primary schools. They
go from familiar concrete objects - girls and dresses in Figure 1 - to more
abstract dots in Figure 3.
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Material

Because we wished to assess the effects of the factors of age/grade as well
as position of the larger number, we selected just those problems that were
reasonably familiar to all three Groups. The results of a pilot study
indicated that large problems yielded high error rate and were often solved
via back-up strategies, rather than retrieval from memory. Thus, just the
multiplication problems between 2 x 2 and 6 x 5 were used as stimuli
(N=48). Problems were assigned randomly to two different lists, with the
only constrain that commuted items were never included in the same list
(e.g. 3 x 4 was put in list A, and 4 x 3 in list B) and that each list had half
of the problems with the larger operand in first position (e.g., 4 x 2) and
the other half with the larger operand in second position (e.g., 2 x 4). The
two lists were presented on different days.

Procedure

Each subject was tested individually at school. Stimuli were read aloud to
the children and latencies were hand-timed using a stop-watch from the
time the experimenter finished to read the problem till the subject began
to make a response. Any verbal comment or overt strategies used by the
child were recorded, but no attempts was made to distinguish trials where
subjects appeared to retrieve answers from memory from those where they
may have been using another solution strategy. Consecutive trials were
separated by an interval of a few seconds. Before the experiment began,
subjects were presented with training trials to familiarise them with the
task and the experimental setting. Children were asked to do the task the
best they could, but that their performance would not be graded for
school in any way.

Results

Within each grade, subjects were divided in high- and low-skilled, based
on their performance on the task. Individuals whose median reaction time
and error rates were below their age-group’s averages were classified as
high-skilled; all remaining subjects were classified as low-skilled.
Following this criterion, the third-grade included 13 high-skilled children
and 15 low-skilled children; the fourth-grade included 12 high-skilled and
19 low-skilled children and the fifth-grade 10 high-skilled and 20 low-
skilled children.

Because of marked heterogeneity of variance in the data, a reciprocal
transformation of reactions times and an arcsine transformation of error
proportions were performed prior to the statistical analyses of the results.
Harmonic means and error rates for the different set of problems are
reported in Table 1.
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N xm mx N Ties
Grade RTs Er RTs Er RTs Er
Third 3.40 13.5 3.47 13.1 215 7.3
Fourth 222 94 250 8.8 1.59 4.8
Fifth 1.90 4.5 2.06 6.1 1.45 0.0
Table 1.

Harmonic means (in sec) and error rates as a
function of Position of the Larger and of Grade level.

Reaction times analysis

Overall, we found a strong correlation between the magnitude of a
problem's result (e.g., 20 for 4 x 5) and the median RTs (Problem size
effect: Spearman rank correlation r=0.479; p < .01, r=0.773, p<.0001,
r=0.764, p<.0001 for Third-, Fourth- and Fifth-grade respectively).l
These findings are in line with previous studies on the development of
multiplication skills (e.g., Campbell and Graham, 1985).

Mean transformed correct RTs were submitted to a first repeated
measures ANOVA with grade (Third, Fourth, and Fifth) and skill (High
and Low) as between-subject factors and position of the larger operand
(Position of Larger: Left and Right) as a within-subject factors. The main
effect of grade (F[2, 85]=44.69; Mse=.776, p<.0001) was significant.
Post-hoc comparisons indicated that each grade differed from the others
(Newman-Keuls; all p<.05) with means of 3.43 sec, 2.37 sec and 1.81 sec
for Third, Fourth and Fifth grades respectively. Not surprisingly high-
skilled subjects were significantly faster than low-skilled subjects (2.10 sec
versus 2.74 sec; F[1, 85]=43.80; Mse=.760, p<.0001). More critically, the
main effect of Position of Larger was significant (F[1, 85]=30.63;
Mse=.049, p<.0001) as well as its interaction with grade (F[2, 85]=5.96;
Mse=.010, p<.005). In fact, problems with the larger operand in Left
position were answered faster than problems with the larger operand in
Right position (2.34 versus 2.55), though this effect was significant in
Fourth (2.22 versus 2.50; F[1, 30]=36.76, Mse=.051, p<0001) and Fifth
grade only (1.90 versus 2.06; F[1, 29]=13.84, Mse=.023, p<001; Third
grade, F[1, 25)<1) (Figure 5). No other interaction were significant.

1 These correlations were taken from data on responses to tables from Two through Nine, excludin
p g g
problems where both numbers are greater than 5.
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Figure 4 .
RT in seconds as a function of the
Position of the Larger operand and grade level.

Mean transformed correct RT's were then entered in a repeated measures
ANOVA with grade (Third, Fourth, and Fifth) and skill (High and Low)
as between-subject factors and Min (the smaller of the two operands and
Position of the Larger operand (Left and Right) as a within-subject
factors. The main effect of Grade was significant, F[2, 85]= 44.28;
Mse=2.89, p <.0001; post-hoc comparison showed that each grade
differed from the others (Newman-Keuls; all p<.05). High-skilled subjects
were significantly faster than low-skilled subjects (F[1, 85]=54.05, Mse=
3.53, p<.0001). The Min factor was significant, F[3, 255]=115.80,
Mse=1.319, p<.0001 indicating that overall, reaction time increased with
the size of the Min (with means of 1.92 sec, 2.73 sec and 3.35 sec for
Mins of Two, Three and Four respectively) with the exception of min
equal Five (2.69 sec). The MIn factor interacted significantly with grade
(F[6, 255]= 7.89, Mse=.090, p<. 0001). In fact, the effect of the Min was
greater in older children, though for all subjects the effect was highly
significant (all, p<.0001) (Figure 5)
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Figure 5.
Effect of Min (the smaller of the two
operands) at different grade levels.

The main effect of Position of Larger was highly significant (F[1,
85]=25.51; Mse= .145, p<.0001) as well as its interaction with grade (F[2,
85]=7.99; Mse= .046, p<.001) replicating the previous analysis. More
interestingly, there was a significant interaction of Min x Position of
Larger (F[3, 255]=5.86; Mse= .031, p<.005). Decomposition into
contrasts revealed that the advantage for the problems with the larger
operand in first position decrease with the size of the min. In other words,
this advantage was highly significant for problems with min equal two
(F[1, 85]=31.84; Mse= .197, p<.0001) and marginally significant for
problems with min equal three (F[1, 85]=3.63; Mse= .023, p=.05), but it
was negligible (F[1, 85]=2.87; Mse=.018, p=.09) and totally absent (F[1
85] <1) for min four and five respectively (Figure 6).

3.5 1
3
2.5

RT in sec
o
L

1.5+

14
2 3 4 5

Min B Nxm OmxN

Figure 6.
RT in seconds as a function of the Position of the
Larger operandand Min (the smaller operand).
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These results were replicated in a similar by item ANOVA with Min
(Two, Three, Four and Five) as between subjects factor and grade (Third,
Fourth and Fifth) and Position of Larger (Left and Right) as within
subjects factors. All main factors were significant: Min (F[3,18] = 11.10,
Mse= .286, p<.0005); Grade (F[2, 36] = 180.66, Mse= .434, p<.0001)
and Position of Larger (F[1,18]=22.93, Mse= .027, p<.0001. As
previously pointed out, the significant interaction between Min and
Grade (F[6. 36]=8.51, Mse= .020, p<.0001) indicated that the
relationship between latencies and Min was much steeper for older
children than for younger one (Figure 6). Moreover, the effect of the
relative order of the operands was again modulated by Grade (F[2,
36]=7.66, Mse= .006, p<.001) and min (F[3,18]=6.57, Mse= .008,
p<.005).

Error analysis

Parallel analyses were performed on arcsine transformed error
proportions. A first repeated measures ANOVA with grade (Third,
Fourth, and Fifth) and skill (High and Low) as between-subject factors
and Position of the Larger operand (Left and Right) as a within-subject
factors. The main effect of grade (F[2, 85]=11.40; Mse=.129, p<.0001)
was significant. Post-hoc comparisons indicated that each grade differ
significantly form the others (Newman-Keuls; all p<.05) with means error
rates of 13.3% , 9.1% and 5.3% for Third, Fourth and Fifth grades
respectively. High-skilled subjects were significantly more accurate than
low-skilled subjects (3.7% versus 12.6%; F[1, 85]=36.09; Mse=.407,
p<.0001). On the other hand, the relative position of the larger operand
did not have any effect on the error rate (F[1, 85]<1), nor did it interact
with any of the other effects.

A repeated measures ANOVA with grade (Third, Fourth, and Fifth) and
skill (High and Low) as between-subject factors and Min (Two, Three,
Four and Five) and position of the larger operand (Position of Larger: first
and second) as a within-subject factors. Both main effects of Grade F[2,
85]= 11.37; Mse=.615, p <.0001) and skill (F[1, 85]=36.79, Mse= 1.99,
p<.0001) was significant, replicating the previous analysis. The Min factor
was significant (F[3, 255]=23.53, Mse=.515, p<.0001) as well as its
interactions with grade (F[6, 255]= 3.67, Mse=.080, p<. 001) and skill
(F[3, 255]=11.47, Mse=.251, p<.0001). Though in all children the error
rate increased with the magnitude of the min and decreased for min equal
five, in Fifth-graders this effect was less pronounced and the error rate was
relatively similar across the problems (Figure 7). Similarly, the effect of
the min was magnified in low-skilled subjects (F[3, 153]=31.05,
Mse=.090, p<.0001) compared to high-skilled subjects (F[3, 96]=3.02,
Mse=.026, p<.05).
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Figure 7.
Error rates according to different
grade levels and Min (smaller operand).

Qualitative error analysis

Following previous studies (Campbell and Graham, 1985; Siegler, 1988;

McCloskey et al., 1991) errors were classified into four categories:
1. operand errors - any multiple of one of the operands (e.g., 5 x 4 = 24);

2. close miss errors - plus or minus ten percent of the correct result (e.g. 6

x 7= 38);

3. table errors - answer that belongs to a table different from either

operands (e.g., 3 x 4 = 25);

4. non-table errors - an answer not included in the any of the tables (e.g.,

3x4=17).

Errors that satisfied more than one of these criteria were assigned to just
one category in the above order. (e.g. 6 x 5=31 would have been assigned
to close miss not non-table). The distribution of error types is shown in

Table 2.
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Type of Errors
operand close-miss  table = non-table total

Grade

THIRD
high-skilled | 65.4 15.4 19.2 0 4.2
low-skilled /1.3 11.2 11.2 6.3 19.8
FOURTH
high-skilled 84.0 12.0 4.0 0 4.3
low-skilled 68.3 22.1 3.8 5.8 11.4

FIFTH
high-skilled 87.5 12.5 0 0 1.6
low-skilled 77.5 14.5 6.5 1.5 6.4

Table 2.

Error rates (%) according to grade level and skill.

The overall error rate decreased with the grade level, but the distribution
of error types did not change dramatically across the ages. In fact, for
Third-graders as for Fourth and Fifth-graders the most frequent errors
were operand errors, though the proportions of the other categories
seemed to differ across grades. For all grades, close-miss errors were
relatively frequent, but the probability of making a table errors and non-
table errors decreased with age and with experience. High-skilled subjects
were, at any age, more likely to produce an error that was plausible either
in terms of magnitude (i.e., close miss) or in terms of table-status (i.e.,
table vs. non table numbers) than lower- skilled subjects.

The corpus of operand errors was further analysed to disentangle any
systematic patterns in the production of an incorrect but related answers.
In fact, 62.1% of these errors consisted of correct answers for items that
not only shared an operand with the target items but were also close in
magnitude with respect to the other operand (e.g., 7 x 9=56, that is the
correct response for 7 x 8). This so-called operand distance effect has been
already reported both in normal subjects (Campbell and Graham, 1985;
Miller, Perlmutter and Keating, 1984) and patients (Sokol et al., 1991).
Table 3 illustrates the relative proportions of operand errors in terms of
the operand numerical distance between the target and actual responses.
Distance “0” refers to the operand errors corresponding to a multiple of
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both target operands (e.g., 3 x 6 = 12). Interestingly, the proportion of
close-operand errors increases with age as the probability of producing a
distant-operand error decreases.

Grade DISTANCE
0 Xzl X+2  X+3  X>X+3
THIRD 11.8 55.5 16.8 12.6 3.4
FOURTH 18.5 59.8 15.2 4.3 2.2
FIFTH 13.4 71.2 9.6 5.4 0.0
Table 3.

Percentage of Operand errors according to Grade and distance, where X is
the distance between target and error operand (e.g for 5x4=24, error
operand X+1 the target 5)

Furthermore, within the errors that could be unambiguously classified,
the relative proportion of the operand errors corresponding to a multiple
of the smaller or of the larger operand as well as of the first or of the
second operand was analyzed. Because the probability of producing a
multiple of one or other of the two operands is equal, a trend in a specific
direction may indicate a preferred order for retrieving the solution and/or
of applying a specific strategy (e.g., transforming a multiplication into a
repeated addition of the same addend -first/second or smaller/larger
operand).

Third-graders were more likely than chance to produce a multiple of the
smaller operand (64), X(1)=8.32, p<.01; they were also more likely than
chance to produce a multiple of the first operand (59.4), X=4.36, p<.05.
This pattern was only marginally significant in the Fourth-graders (First
and Smaller, both 60%, p=.07). In the Fifth grade, the observed operand
errors were equally likely to correspond to a multiple of either the first or
second factor as well as of either the smaller or the larger factor. These
results may be interpreted by assuming that younger children, being more
familiar with the 2-times and 3-times Tables are more likely to produce as
errors a multiple of the smaller operand, though, at the same time, they
tend to answer the problem as it is presented, i.e., by activating the table
of the first operand. As skills progress, however, children seem to be less
tied to the problem presentation format and the production of operand
errors is mainly characterized by the numerical closeness to the correct
answers.
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Discussion

The overall results indicate that children’s performance in simple
multiplication changes over the course of skill acquisition both
quantitatively and, more critically, qualitatively.

It is clear that children become faster and more accurate with increasing
skill levels, though from the very beginning both latencies and error
profiles are characterized by some standard effects. First, all groups
showed a significant problem-size effect: in general RTs increased with
the increase of the magnitude of the problem. However, the 5-times table
was faster than the problems’ numerical size would predict and,
interestingly, this was true for all groups. This is an extremely robust
effect and it has been so far interpreted by assuming that 5-problems are
solved by reference to the rule according to which any multiple of 5 may
only end by 5 or 0 (Baroody, 1983, 1984). This rule would constrain the
number of candidate answers to this set of problems, reducing the chance
to produce errors (Campbell and Graham, 1985). The fact that this rule is
appreciated so early in the acquisition process, though not explicitly
taught by the teachers, seems by itself to suggest that, the development of
arithmetical skill and, specifically, the acquisition of arithmetic tables does
not proceed as a rote and meaningless learning process but may benefit
and be facilitated by the appreciation of regularities and principles that
govern them.

The most critical finding, as predicted by our hypothesis, consists of the
effect of the relative order of the operands within a given problem. In
Italian schools, children always learn m x N (e.g. 2 x 6) before they learn
N x M (6 x 2) bacause the table name is in the first position (unlike the
US and UK) and smaller tables are learned before larger tables.
Nevertheless, despite earlier and longer exposure to the m x N form,
children showed a time advantage in answering the problems with the
larger operand in first position. However, this effect emerged only affer
the third-grade. Certainly, there is evidence that by the end of third-
grade, children perform as accurately as on unpracticed commuted pairs
as on their practiced counterparts (Baroody, forthcoming), and it would
be surprising if this understanding were not used to organise
multiplication knowledge.

A further result seems to favour the hypothesis of a principled
reorganization of memory representations. In fact, the order effect did not
hold for all problems to the same extent, but it was function of the size of
the min: the relative position of the operands was more critical when the
smaller operand was equal to 2 or to 3. These were the problems that were
learned earliest in school, and it precisely these that were the most
susceptible to reorganisation. These results, and in particular the
combined effects of the operand order and the magnitude of the
problems, may be considered only indicative given that we tested a subset
of problems (i.e., 2 x 2 to 6 x 5). Possibly, re-testing all single-digit
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combinations may disclose even more clear-cut results, in particular with
regards to the effect of the position of the operands in the most difficult
problems.

The qualitative analysis of the errors disclosed further intriguing patterns.
From the beginning, operand errors were the most frequent type of errors,
but their proportion increased as skills progress. (These findings are
consistent with those of Lemaire & Siegler, 1995, for changes over six-
month period). Interestingly, within the different groups, the absence of
non-table errors characterized the performance of high-skilled children,
even within the younger group. Thus, the gradual acquisition and
refinement of multiplication skills is not simply captured by a faster and
more accurate performance, but also by the occurrence of more plausible
errors both in terms of numerical closeness and in terms of arithmetical
relation, i.e. multiple of one of the two factors, to the correct result.

The child learning multiplication facts is not passive, simply building
associative connections between problems and solutions as they are
experienced in recitation or in problem presentation. Rather, the facts in
memory seem to be reorganised in a principled way that takes account of
a growing understanding of the commutativity, and perhaps other
properties of multiplication.
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