

Bar-Ilan University

School of Engineering

VLSI Lab

USB2.0 Protocol Engine

Razi Hershenhoren Omer Reznik
razi136@gmail.com omer.big@gmail.com

Final Project – Forth Year

Computer Engineering

Team Instructor: Mr. Moshe Doron

Academic Supervisor: Prof. Wimer

October 2010

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

2

Table of Contents

Table of Contents ..2

Project Summary ..5

Project’s Motivation ..6

Technical Background..7

Introduction... 7

Device’s Endpoints.. 9

Descriptor Tables .. 10

Token Packets ... 12

Data Packets... 13

Handshake Packets... 13

Setup Packet... 14

Enumeration Process .. 16

USB Communications Flow .. 16

Transaction Types... 18

Data Toggle Synchronization... 19

Protocol Engine Algorithms ...20

Development tools ...22

Modelsim... 22

Quartus... 22

Simvision... 22

Altera DE3 FPGA Board.. 23

System Level Introduction..24

The Protocol Engine... 26

UTMI Interface Signals.. 26

DMA Interface Signals ... 28

Device Description...29

Top Level Blocks.. 29

Enumeration FSM.. 30

Configured FSM.. Error!

Bookmark not defined.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

3

Receive Data Packet ... 37

Send Data to DMA.. 38

Receive Data from DMA ... 39

SRAM ... 40

EP buffer OUT.. 41

EP Buffer IN.. 42

CRC5... 43

CRC16.. 43

Detailed Functionality Description...44

OUT transaction ... 44

IN Transaction .. 47

Simulation ...50

OUT transaction ... 50

IN transaction.. 51

Verification..53

Hurdles and Obstacles..54

High-Z pins ... 54

FPGA chip .. 54

USB Checker... 55

Alternative Solution ..56

Conclusion and Summary..57

A Look into the Future..59

ASIC implementation: ... 59

USB 3.0.. 59

Protocol Engine with DMA Controller... 59

Bibliography ...60

Appendix ..62

Standard Device Descriptor Table .. 62

Configuration Descriptor Table.. 63

Interface Descriptor Table.. Error!

Bookmark not defined.

Endpoint Descriptor Table ... 63

PID Codes Table ... 65

Altera DE3 Stratix III FPGA board Top view .. 66

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

4

Pin mapping table for verification and demonstration... 67

Schematic diagram of the 7-segment displays.. 68

Hexadecimal to 7-seg translation table .. 69

Bulk Interrupt IN Transfer state machine... 70

Isochronous IN Transfer state machine ... 71

Bulk OUT Transfer state machine ... 72

Interrupt OUT Transfer state machine ... 73

Isochronous OUT Transfer state machine... 74

Device Enumeration state machine.. 75

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

5

Project Summary

The Protocol Engine is a High Speed USB2.0 Communication Core, used for

development and production of USB Classic and Vendor Specific Devices by

processing USB2.0 packet-level Link-Layer Protocol tasks in hardware, thus

offloading communication tasks from the µController.

The protocol engine performs, CRC check and generation, packet identifier decoding

and verification, address recognition and handshake evaluation and response.

Acting on a received token and analyzing the token’s PID, address and endpoint

number fields, the protocol engine can handle USB packets and transactions based

on data sequencing and state machine logic.

Protocol Engine compiles with High Speed USB 2.0 specification with a transfer rate

of 480Mbps. The protocol engine also meets UTMI specification, generating control

signals for UTMI transceiver interface according to the FSM states.

USB 2.0 is an industry-wide, host oriented protocol, utilizing physical serial bus.

Protocol Engine performs transaction to/from host and Computational Cores End-

Points, by managing a DMAC. Protocol Engine supports four types of transactions:

Control - used by the USB System Software to configure devices.

Bulk – a reliable transfer that includes the handshake phase.

Isochronous – real-time, saves overhead by excluding handshake phase.

Interrupt – a limited-latency transfer to or from a device.

The Protocol Engine is partitioned into several major blocks:

1. Enumeration FSM – handles the enumeration stages of the USB protocol.

2. Configured FSM –handles all IN/OUT transfers from end to end.

3. Receive Data Packet – handles data packets analysis & acceptance from UTMI.

4. Send Data to DMA - handles handshake with DMA interface in OUT transaction.

5. Receive Data DMA - handles handshake with DMA interface in IN transaction.

6. EP Buffer OUT - 8 bits width FIFO holds data packet received from the UTMI.

7. EP Buffer IN - 8 bits width FIFO holds data transferred from the DMA.

8. CRC16/CRC5 – cyclic redundancy check generator.

The Protocol Engine project was downloaded into Altera DE3 FPGA development

board for simulation and verification.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

6

Project’s Motivation

Recent motivation for a separate USB 2.0 protocol engine stems from the fact that

PCs have increasingly higher performance and are capable of processing vast

amounts of data. At the same time, PC peripherals have added more performance

and functionality. User applications such as multimedia applications demand a high

performance connection between the PC and these highly sophisticated peripherals.

The separate Protocol Engine addresses this need by working in parallel with the

USB µController hence releasing the microprocessor from the burden of dealing

with basic data transfer assignments such as token encoding and decoding, CRC

check etc. This architecture will increase the parallel work of the USB device and

increase its overall speed.

Today’s High speed USB 2.0 compliant protocol engines are mostly firmware based

and are not hardware based. In general firmware based solutions have much slower

response rate and are less efficient than hardware based solutions, however in our

case, since a high speed USB2.0 is required to deliver packets at a maximum speed

rate of only 480Mbps this is not much of an issue. With an 8-bit bus, the protocol

engine will have 16.66 ms to handle each word of data, which could be translated

into a 60 Hz clock. Today's devices have clock rates of more than 100K times that.

In our case, the main motivation to use the hardware based solution is to reduce the

power requirements for the device. This is a consideration especially for battery

powered devices that consume more than 5V and cannot use the USB built in power

supply.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

7

Technical Background

Introduction

The Universal Serial Bus (USB) is a specification developed by Compaq, Intel,

Microsoft and NEC, joined later by Hewlett-Packard, Lucent and Philips. These

companies formed the USB Implementers Forum, incorporated as a non-profit

corporation to publish the specifications and organize further development in USB.

The USB is specified to be an industry-standard extension to the PC architecture

with a focus on PC peripherals that enable consumer and business applications.

Main goal of the USB protocol was to replace the over growing number of different

ports of PC connectivity. For example, parallel, ps/2 ports and serial could now be

replaced by one simple connection. The USB will do the same role of all the replaced

ports and suitable for all applications and peripherals.

USB 2.0 is an Industry-wide, host oriented protocol, employing serial bus,

supporting up to 127 devices and hot insertion.

Several criteria were applied in defining the architecture for the USB: Ease-of-use

for PC peripheral expansion. USB 2.0 represents a great advance in speed while

keeping a low-cost solution that supports transfer rates of up to 480 Mbps. With full

support for real-time data, voice, audio, and video it is the chosen protocol for most

PC peripherals today. Comprehension of various PC configurations and form factors

make the USB a multifunctional protocol capable of servicing various solutions.

The USB is a generic protocol making its interface capable of quick diffusion into

product. Augment the PC’s capability by enabling new classes of devices giving the

USB a capability to be implemented in new developed devices, advancing with

technology. Fully backward compatibility of USB 2.0 for devices built to previous

versions of the USB specification.

Robustness

The key advantage of the USB protocol is its robustness. The USB has signal

integrity which enables it to use differential drivers, receivers, and shielding. CRC

protection over control and data fields. Detection of attach and detach and system-

level configuration of resources. Self-recovery in protocol, using timeouts for lost or

corrupted packets. Flow control for streaming data to ensure isochrony and

hardware buffer management. Data and control pipe constructs for ensuring

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

8

independence from adverse interactions between Functions.

Error Detection

The core bit error rate of the USB medium is expected to be close to that of a

backplane and any glitches will very likely be transient in nature. To provide

protection against such transients, each packet includes error protection fields.

When data integrity is required, such as with lossless data devices, an error

recovery procedure may be invoked in hardware or software.

The protocol includes separate CRCs for control and data fields of each packet. A

failed CRC is considered to indicate a corrupted packet. The CRC gives 100%

coverage on single- and double-bit errors.

Error Handling

The protocol allows for error handling in hardware or software. Hardware error

handling includes reporting and retry of failed transfers. A USB Host Controller will

try a transmission that encounters errors up to three times before informing the

client software of the failure. The client software can recover in an implementation-

specific way.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

9

Data Speeds:

The USB specification defines three data speeds:

Name Speed Applications Attributes

Low speed 1.5 Mbit/s
Mouse, Keyboard,

Joysticks.

Lowest cost

Ease of use

Dynamic attach-detach

Multiple peripherals

Full speed 12 Mbit/s
POTS, Audio,

Broadband.

Lower cost

Ease of use

Dynamic attach- detach

Multiple peripherals

Guaranteed bandwidth

Guaranteed latency

High speed 480 Mbit/s

Video, Storage,

Imaging,

Broadband.

Lower cost

Ease of use

Dynamic attach- detach

Multiple peripherals

Guaranteed bandwidth

Guaranteed latency

High bandwidth

Table 1 – USB data speeds

Low Speed

This was intended for cheap, low data rate devices like mice. The low speed captive

cable is thinner and more flexible than that required for full and high speed.

Full Speed

This was originally specified for all other devices.

High Speed

The high speed additions to the specification were introduced in USB 2.0 as a

response to the high speed of Firewire.

Device’s Endpoints

An endpoint is a uniquely identifiable portion of a USB device that is the final stop of

a communication flow between the host and device. Each USB logical device is

composed of up to 30 independent endpoints and a control endpoint. To reach an

endpoint the host must send a packet to the correct device address assigned by the

system at device attachment time, and the correct endpoint number given at the

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

10

design time. Each endpoint has a device-determined direction of data flow, up to 15

IN and 15 OUT endpoints are available and an additional control endpoint which is

always referred to as endpoint zero. The combination of the device address,

endpoint number, and direction allows each endpoint to be uniquely referenced.

Descriptor Tables

USB devices report their attributes using descriptors. A descriptor is a data

structure with a defined format. Each descriptor begins with a byte-wide field that

contains the total number of bytes in the descriptor followed by a byte-wide field

that identifies the descriptor type.

Using descriptors allows concise storage of the attributes of individual

configurations because each configuration may reuse descriptors or portions of

descriptors from other configurations that have the same characteristics. In this

manner, the descriptors resemble individual data records in a relational database.

Device Descriptor Table

A device descriptor describes general information about a USB device. It includes

information that applies globally to the device and all of the device’s configurations.

A USB device has only one device descriptor.

All USB devices have a Default Control Pipe. The maximum packet size of a device’s

Default Control Pipe is described in the device descriptor. Endpoints specific to a

configuration and its interface(s) are described in the configuration descriptor. A

configuration and its interface(s) do not include an endpoint descriptor for the

Default Control Pipe. Other than the maximum packet size, the characteristics of the

Host Controller

Device

Endpoints

Figure 1– Each endpoint supports data flow in one direction:

either input (from device to host) or output (from host to device).

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

11

Default Control Pipe are defined by this specification and are the same for all USB

devices.

Table 10 in the Appendix section shows the Standard Device Descriptor Table.

Configuration Descriptor Table

The configuration descriptor describes information about a specific device

configuration. The descriptor contains a bConfigurationValue field with a value that,

when used as a parameter to the SetConfiguration() request, causes the device to

assume the described configuration. The descriptor bNumInterfaces field describes

the number of interfaces provided by the configuration. Each interface may operate

independently. For example, an ISDN device might be configured with two

interfaces, each providing 64 Kb/s bi-directional channels that have separate data

sources or sinks on the host. Another configuration might present the ISDN device

as a single interface, bonding the two channels into one 128 Kb/s bi-directional

channel. When the host requests the configuration descriptor, all related interface

and endpoint descriptors are returned.

A USB device has one or more configuration descriptors. Each configuration has one

or more interfaces and each interface has zero or more endpoints. An endpoint is

not shared among interfaces within a single configuration unless the endpoint is

used by alternate settings of the same interface. Endpoints may be shared among

interfaces that are part of different configurations without this restriction.

Table 11 – Configuration Descriptor Table in the Appendix section shows the

Configuration Descriptor Table.

Interface Descriptor Table

The interface descriptor describes a specific interface within a configuration. A

configuration provides up to four interfaces, each with zero or more endpoint

descriptors describing a unique set of endpoints within the configuration. When a

configuration supports more than one interface, the endpoint descriptors for a

particular interface follow the interface descriptor in the data returned by the

GetConfiguration() request. The descriptor contains a bInterfaceNumber field that

specifies the number of the interface.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

12

An interface descriptor is always returned as part of a configuration descriptor.

Interface descriptors cannot be directly accessed with a GetDescriptor() or

SetDescriptor() request.

Error! Reference source not found. in the Appendix section shows the Interface

Descriptor Table.

Endpoint Descriptor Table

Each endpoint used for an interface has its own descriptor. This descriptor contains

the information required by the host to determine the bandwidth requirements of

each endpoint. The descriptor contains a bEndpointAddress field that specifies the

direction and endpoint number. bmAttributes field is used to determine the

endpoint type (i.e Bulk, Isochronous, Control or Interrupt). wMaxPacketSize field

contains the value of the Maximum packet size this endpoint is capable of sending or

receiving. For isochronous endpoints, this value is used to reserve the bus time in

the schedule, required for the per-microframe data payloads. An endpoint

descriptor is always returned as part of the configuration information returned by a

GetDescriptor(Configuration) request. There is never an endpoint descriptor for

endpoint zero.

Table 13 in the Appendix section shows the Endpoint Descriptor Table.

Token Packets

Field PID ADDR ENDP CRC5

Bits 8 7 4 5

Table 2 – Token packet bit distribution

A token packet consists of a PID, ADDR and ENDP fields. Table 2 shows the field

formats and their respective number of bits. Packet ID specifies either IN, OUT or

SETUP packet type. PID codes table is available in Table 14 in the Appendix. For

OUT and SETUP transactions, the address and endpoint fields uniquely identify the

endpoint that will receive the subsequent Data packet. For IN transactions, these

fields uniquely identify which endpoint from a unique addressed device should

transmit a Data packet. Only the host can issue token packets. An IN PID defines a

data transaction from a function to the host. OUT and SETUP PIDs define data

transactions from the host to a function.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

13

The token’s correctness is assured by the combination of two mechanisms. The 4

bits representing the PID field are duplicated and negated to become 8 bits long.

The ADDR and ENPD fields are protected by the CRC5 field.

Data Packets

Field PID Data CRC16

Bits 8 0-8192 16

Table 3 – Data packet bit distribution.

A data packet consists of a PID, data field containing zero or more bytes of data, and

a CRC16 as shown in Table 4. There are four types of data packets, identified by

different PIDs: DATA0, DATA1, DATA2 and MDATA. DATA0 and DATA1 are defined

to support data toggle synchronization in bulk, setup and interrupt transactions. All

four data PIDs are used in data PID sequencing for high bandwidth high-speed

isochronous endpoints. Data must always be sent in integral even number of bytes.

Similar to the token packet, the data CRC16 is computed over only the data field in

the packet and does not include the PID, which has its own check field.

Handshake Packets

Field PID

Bits 8

Table 4 – Data packet bit distribution.

Handshake packets, as shown in Error! Reference source not found., consist of

only a PID. Handshake packets are used to report the status of a data transaction.

Assuming successful token decode, a device, upon receiving a data packet, may

return any one of the three handshake types:

• If the data packet was corrupted, the function returns no handshake.

• If the data packet was received error-free and the function’s receiving

endpoint is halted, the function returns STALL.

• If the transaction is maintaining sequence bit synchronization and a

mismatch is detected, then the function returns ACK and discards the data.

• If the function can accept the data and has received the data error-free, it

returns ACK.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

14

• If the function cannot accept the data packet due to flow control reasons like

out of space, it returns NAK.

Upon receiving a SETUP token, a device must accept the data. A device may not

respond to a SETUP token with either STALL or NAK, and the receiving device must

accept the data packet that follows the SETUP token. If a non-control endpoint

receives a SETUP token, it must ignore the transaction and return no response.

Isochronous transactions have a token and data phase, but no handshake phase. The

host issues an OUT token followed by the data phase in which the host transmits

data. Isochronous transactions do not support a handshake phase or retry

capability.

Setup Packet

Every USB device must respond to requests from the host on the device’s endpoint

zero. The setup packets are used for detection and configuration of the device and

carry out common functions such as setting the USB device’s address, requesting a

device descriptor or checking the status of an endpoint. These requests are made

using control transfers which will be discussed later on. The request and the

request’s parameters are sent to the device in the Setup packet. Every Setup packet

has eight bytes with the following fields:

bmRequestType – One byte field which identifies the characteristics of the specific

request. In particular, this field identifies the direction of data transfer in the second

phase of the control transfer. The state of the Direction bit is ignored if the wLength

field is zero, signifying there is no Data stage. The bitmap of bmRequestType field is

specified in the table below.

Bits 7 6..5 4..0

Description
Data Phase

Transfer Direction
Type Recipient

Value
0 = Host to Device

1 = Device to Host

0 = Standard

1 = Class

2 = Vendor

3 = Reserved

0 = Device

1 = Interface

2 = Endpoint

3 = Other

4..31 = Reserved

Table 5 – bmRequest bitmap

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

15

bRequest – This 8 bit field specifies the particular request based on the Table 6 –

bRequest codes below.

bRequest Value

GET_STATUS 0

CLEAR_FEATURE 1

Reserved 2

SET_FEATURE 3

Reserved 4

SET_ADDRESS 5

GET_DESCRIPTOR 6

SET_DESCRIPTOR 7

GET_CONFIGURATION 8

SET_CONFIGURATION 9

GET_INTERFACE 10

SET_INTERFACE 11

SYNCH_FRAME 12

Table 6 – bRequest codes

wValue – Two byte field with variable content according to the request. It is used to

pass a parameter to the device, specific to the request.

wIndex – Two byte field with variable content according to the request. It is used to

pass a parameter to the device, specific to the request. The wIndex field is often used

in requests to specify an endpoint or an interface.

wLength - Two byte field which specifies the length of the data transferred during

the second phase of the control transfer. The direction of data transfer (host-to-

device or device-to-host) is indicated by the Direction bit of the bmRequestType

field. If this field is zero, there is no data transfer phase.

Offset Field Size Value Description

0 bmRequestType 1 Bit-Map See Table 5

1 bRequest 1 Value Request

2 wValue 2 Value Value

4 wIndex 2 Index or Offset Index

6 wLength 2 Count
Number of bytes to transfer if there is a
data phase

Table 7 – Format of setup data

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

16

Enumeration Process

After a device is powered on it must follow the enumeration process to receive an

address from the host and configuration. When in powered state it must not respond

to any bus transactions until it has received a reset from the bus. After receiving a

reset, the device is then addressable at the default address. Then the system enters

the High Speed Handshake Detection protocol which includes the detection of a

series of at least six J-K-J-K-J-K chirps terminated by SE0 as described in Figure 2.

The device then enters high speed mode and switch to a Default State.

Figure 2 – High speed detection state machine

The device then waits for a setup token which precedes the setup packet for the

SET_ADDRESS request. After the setup token has been received correctly, the host

will send a setup packet to endpoint zero, with address zero and with packet ID

DATA0. The setup packet contains the SET_ADDRESS request which contains the

device new address assigned by the host. The new address is saved in the wValue

field of the setup packet (see Table 7 for wValue description). After the device

changes its address it enters the Addressed state.

The device will enter its final state called Configured State which starts once the

device receives the SET_CONFIGURATION request with a non-zero wValue field.

USB Communications Flow

All communications on the USB bus are initiated by the host. This means, for

example, that there can be no communication directly between USB devices. A

device cannot initiate a transfer, but must wait to be asked to transfer data by the

host. In any USB system there is only one host and up to 127 peripherals.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

17

The attached peripherals share USB bandwidth through a host scheduled, token-

based protocol.

Figure 3 - The logical connection of a USB.

The USB is a polled bus. Each transaction begins when the host controller, on a

scheduled basis, sends a USB packet describing the type and direction of

transaction, the USB device address, and the endpoint number. This packet is

referred to as the token packet. The USB device that is addressed selects itself by

decoding the appropriate address fields from the token packet. In a given

transaction, data is transferred either from the host to the device or from the device

to the host. The source of the transaction then sends a data packet. If transfer was

successful the destination, excluding isochronous type of transactions, responds

with a handshake packet indicating the transfer was successful.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

18

Figure 4 - A typical USB transaction involves a token packet followed by a data packet and ends with a

handshake packet

Transaction Types

The USB architecture comprehends four basic types of data transfers:

1. Control Transfers - Control data is used by the USB System Software to configure

devices when they are first attached. Mandatory using Endpoint 0 OUT and

Endpoint 0 IN.

2. Bulk Transfers - Bulk data typically consists of larger amounts of data, such as

that used for printers or scanners. Bulk data is sequential. Reliable exchange of

data is ensured. Bulk transfers are designed to transfer large amounts of data

with error-free delivery, but with no guarantee of bandwidth. The host will

schedule bulk transfers after the other transfer types have been allocated.

3. Interrupt Transfers - A limited-latency transfer to or from a device is referred to

as interrupt data. Such data may be presented for transfer by a device at any

time and is delivered by the USB at a rate no slower than is specified by the

device

4. Isochronous Transfers – Isochronous data is continuous and real-time in

creation, delivery, and consumption. Timing-related information is implied by

the steady rate at which isochronous data is received and transferred.

Host Device

IN Token

Data

ACK

OUT Token

ACK

Data

IN

OUT

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

19

Isochronous data must be delivered at the rate received to maintain its timing. A

typical example of isochronous data is voice. The timely delivery of isochronous

data is ensured at the expense of potential transient losses in the data stream,

where it is important to maintain the data flow, but not so important if some

data gets missed or corrupted. In other words, any error in electrical

transmission is not corrected by hardware mechanisms such as retries.

Data Toggle Synchronization

The USB provides a mechanism to guarantee data sequence synchronization

between data transmitter and receiver across multiple transactions. This

mechanism provides a means of guaranteeing that the handshake phase of a

transaction was interpreted correctly by both the transmitter and receiver.

Synchronization is achieved via use of the DATA0 and DATA1 PIDs and separate

data toggle sequence bits for the data transmitter and receiver. Receiver sequence

bits toggle only when the receiver is able to accept data and receives an error-free

data packet with the correct data PID. Transmitter sequence bits toggle only when

the data transmitter receives a valid ACK handshake. The data transmitter and

receiver must have their sequence bits synchronized at the start of a transaction.

The synchronization mechanism used varies with the transaction type. Data toggle

synchronization is not supported for isochronous transfers.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

20

 Protocol Engine Algorithms

When the device is first powered on enumeration stage is initialized. When the

enumeration stage is complete the device enters a standby mode and is ready to

receive packets from the host. When a packet is received from the host, the device

reacts to the received packet, and interacts with the device via the corresponding

endpoint.

Figure 5 – Device Top level

Figure 6 describes the algorithm for the Configured device state. First, a token

packet is received. The packet is checked for correct PID, CRC5 and, if the checks

succeed, the device checks if the token is addressed to our device. If the token is

addressed to our device the endpoint field is checked. If the endpoint is zero and the

endpoint state is stall, then a stall handshake is sent back to the host.

At this point, the module analyzes the PID to determine if it is of type IN, OUT or

PING. The device will act upon the transfer type set by the PID.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

21

Wait for

Token

RXvalid

EP#
DIR(IN/OUT)

IN

Receive Token

CRC5

?
PID

?

!RXvalid

y

nTreq = 0nTreq = 0

OUT

Ping
Wait for

Data

y

Receive Data

To EP_Buffer_out

// Extracts last 16 bits from
EP_Buffer_out to CRC_Buffer.

Change EP buffer counter
accordingly. Check CRC16 with

CRC_Buffer

Dev_Do_INTO Dev_HS_Bulk Dev_Do_IsochO

IRQCTRL[7] = 0

IRQCTRL[7] = 0

n

//IRQCTRL[7] start of frame

EP_STAT0[2‐3] = 00
IRQCTRL[7] = 0

y n

Reset

EP_Buffer_out

Token

Type

?

Device

Status

?

Issue Nak Issue StallIssue Ack

Space not available

HaltSpace Available

Dev_Do_BCINTI

Dev_Do_IsochI

IRQCTRL[7] = 0

Isochronous

Dev_HS_Control

Setup

Wait for
Packet

n

Receive ACK

PID =
ACK

y

n

//Issue STALL

PHY_DATA[0:3] = 1110

PHY_DATA[4:7] = 0001

Send Handshake

ADDR

?

OK
?

n

EP = 0

&
EP0_Stall = 1

y

n

PID

?

Transfer Type?
(BmAttribute)

Receive data packet SOF

Transfer Type?
(BmAttribute)

iso_trans_flag = 0

OK
?

CRC16

?

PID

?

IRQCTRL[7]

Figure 6 – Configured Final State Machine

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

22

Development tools

We used several development tools for compiling, simulations, debugging and

verifications:

Modelsim

Modelsim is an integrated development environment (IDE) used by electronic

designers to develop, debug, simulate and test electronic designs. We used

Modelsim for comprehensive simulating and debugging the Protocol Engine.

Quartus

Quartus II version 9.0 software offers a seamless development flow for the design of

digital hardware, allowing you to enter, compile, and simulate a design.

Quatrtus II provides all the necessary steps for downloading our design into the

FPGA board, starting with analysis and synthesis through fitter and Assembler and

ending with timing analysis.

MegaWizard Plug-in Manager was used to create a ROM element which was part of

our demonstration. The ROM element contained the packet and data that will be

sent through the PHY and DMA bus during our demonstration. Using the

MegaWizard Plug-in Manager we could set the values of the ROM to the content of a

pre written mif binary file.

Simvision

Simvision is Development software for simulation and debugging a HDL design. This

tool was rarely used due to the often network problems that prevented us from

using this tool.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

23

Altera DE3 FPGA Board

Figure 7 – Altera DE3 FPGA development board

The Altera DE3 FPGA development board is a powerful Programmable Gate Array.

Using the DE3 FPGA board we could download the Protocol Engine project into

hardware for simulation and verification of the design in Real Time conditions. For

the simulation and verification of the Protocol Engine we used all the available

board's switches and 7-seg displays and some of the LEDs and push buttons.

DE3 board possess the EP3SL340 Stratix III FPGA has 338K logic elements,

compared to the 68K logic elements of the EP2C70F896C6 Cyclone II FPGA that can

be found on the DE2-70 board. Although the DE2-70 has more leds, 7-seg displays

and switches we could not use it. Since the complexity of the USB 2.0 protocol

required many logic elements for implementation, then the design of the Protocol

Engine resulted in using more logic elements. EP2C70F896C6 Cyclone II FPGA on

the DE2-70 board cannot supply so many elements.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

24

System Level Introduction

The USB 2.0 Protocol Engine will be integrated into a USB 2.0 device as a peripheral

device, thus offloading communication tasks from the µController, by processing

USB 2.0 packet-level Link-Layer Protocol tasks in Hardware.

The protocol engine interacts with the Transceiver chip (PHY) and with the DMAC.

Data received through the USB cable will enter the device via the USB connector and

will then be transferred to the PHY chip which serves as a Serializer-Deserializer

(SERDES), bit stuffer/un-stuffer and the NRZI encoder/decoder, which also handles

the low level USB protocol and the signaling task. The system will use a commercial

mixed-signal USB 2.0 Transceiver chip (PHY).

The PHY's output is sent to the Protocol Engine. The interface between the USB 2.0

Transceiver chip (PHY) and the Protocol Engine, is defined by the UTMI (USB2.0

Transceiver Macrocell Interface) Standard. Both Transceiver chip and Protocol

Engine support high-speed (480 Mbps) signaling bit rates.

The Protocol Engine's output is connected to the device system bus. The system bus

is controlled by the µController and the DMAC. USB protocol-aware DMA engine

maximizes data throughput while minimizing demands on the system bus. DMAC

has the priority in getting access (via arbitration) to the bus. The DMAC performs

communication data packet transfers between the Protocol Engine packet buffers

and Device Endpoints, responding to Protocol Engine requests.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

25

Figure 8 - µController-based Device Controller Block Diagram

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

26

The Protocol Engine

The protocol engine performs CRC check/generation, packet identifier (PID)

decoding and verification, address recognition and handshake evaluation/response.

The protocol engine also meets UTMI specification. It generates control signals for

UTMI transceiver interface according to the FSM states. Control signals are sent to

the DMA interface and Function Core

Acting on its USB PID and address recognition logic, and other sequencing and state

machine logic, the protocol engine can handle USB packets and transactions.

Protocol Engine supports up to 15 IN & 15 OUT Isochronous, Bulk, or Interrupt

physical endpoints, and control endpoint 0. Information is sent to the endpoints via

a DMAC and the System Bus.

UTMI Interface Signals

Figure 9 – UTMI Interface Block diagram.

The protocol engine and UTMI work closely together. The UTMI serves as a

Serializer-Deserializer (SERDES), bit stuffer/un-stuffer and the NRZI

encoder/decoder, which also handles the low level USB protocol and the signaling

task.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

27

Name Direction
Active

Level
Description

clk Input
Rising-

Edge
Clock. This output is used for clocking receive and transmit

parallel data.

nrst Output Low
Reset. Reset all state machines in the PHY. Same pin as

Device nrst.

XcvrSelect Output N/A

Transceiver Select. This signal selects between the FS and
HS transceivers:

0: HS transceiver enabled

1: FS transceiver enabled

TermSelect Output N/A

Termination Select. This signal selects between the FS and

HS terminations:

0: HS termination enabled
1: FS termination enabled

This signal is set to 0 during enumeration.

LineState[1:0] Input N/A

Line State. These signals reflect the current state of the

single ended receivers. They are combinatorial until a

"usable" CLK is available then they are synchronized to CLK.

They directly reflect the current state of the DP

(LineState[0]) and DM (LineState[1]) signals:
DM DP Description DP - USB data pin Data+

0 0 0: SE0 DM - USB data pin Data–

0 1 1: 'J' State

1 0 2: 'K' State

1 1 3: SE1

OpMode[1:0] Output N/A

Operational Mode. These signals select between various
operational modes:

[1][0] Description

0 0 0: Normal Operation

0 1 1: Non-Driving

1 0 2: Disable Bit Stuffing & NRZI encoding

1 1 3: Reserved

RXValid Input High

Receive Data Valid. Indicates that the Data bus has valid
data. The PHY RX Data Holding Register is full and ready to

be unloaded. The PE is expected to latch the Data bus on the

clock edge.

RXActive Input High
Receive Active. Indicates that the PHY detected SYNC and is

active. RXActive is negated after a Bit Stuff Error or an EOP

is detected.

RXError Input High

Receive Error.
0 - Indicates no error.

1 - Indicates that a receive error has been detected.

This input is clocked with the same timing as the Data out

lines and can occur at any time during a transfer. If asserted,

it will force the negation of RXValid on the next rising edge

of CLK.

TXReady

(Wait Signal)
Input High

Transmit Data Ready. If TXValid is asserted, the PE must

always have data available for clocking in to the PHY TX

Holding Register on the rising edge of CLK. TXReady is an

acknowledgement to the PE that the PHY has clocked the

data from the bus and is ready for the next transfer on the

bus. If TXValid is negated, TXReady can be ignored by the

PE.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

28

TXValid Output High

Transmit Valid. Indicates that the Data bus is valid for

transmit. The assertion of TXValid initiates PHY-generated
SYNC transmission the USB. The negation of TXValid

initiates PHY-generated EOP on the USB.

Control inputs (OpMode[1:0], TermSelect,XcvrSelect) must

not be changed on the de-assertion or assertion of TXValid.

The PHY must be in a quiescent state when these inputs are

changed.

ValidH
Bi-

directional
N/A

If ValidH = 0, PHY_DATA is 8 bits.
If ValidH = 1, PHY_DATA is 16 bits.

In our system this bit is always set to 0.

DataBus16_8 Output High
Data Bus 16 - 8. Selects between 8 and 16 bit data transfers.

This bit is always set to 0 since our device supports an 8 bit

PHY transfer.

PHY_DATA[15:0]
Bi-

directional
N/A

PHY bus. These pins serve as the input and output data bus
for the PHY device.

Table 8 – UTMI Interface Signals

DMA Interface Signals

Figure 10 – DMA Interface Block diagram.

Name Direction Active Level Description

nPreq Output Low
Packet Request. Data is ready to be sent or to be

received.

nTreq Output Low Transfer Request. Bus grant request.

nDack Input Low
DMA Acknowledge. Signal from DMA. DMA indicates

that System Bus has been granted to him and data
transfer begins.

nEOT Input Low
End Of Transfer Indication. DMA reports to PE that

data transfer to the specific Endpoint, has been

completed.

epn[3:0] Output N/A Endpoint number. (0-15) for requested data transfer.

npbwr Input Low Packet buffer write. Write signal to EP Buffer IN

npbrd Input Low Packet buffer read. Read signal to EP Buffer OUT

ep_dir Output N/A
Endpoint Direction. IN (1) or OUT (0) for requested

data transfer.

Ifn Output N/A
Interface Number. Selects the number of the current

interface

Table 9 – DMA Interface Signals

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

29

Device Description

Top Level Blocks

The Protocol Engine is partitioned into several modules is described below and

shown on the block diagram in Figure 11 – Top Level Block diagram.

d
b

u
s

top

EP Buffer IN

clknrst

rd

wr

clr

st_rd_ptr

two_left

crc5
clk nrst

crc5_out

5

16

dbus

Configured

FSM

TXR eady

recieve_data_packet_done

P
H

Y
_

D
A

T
A

Data_out

8

nPreq

nDack

ep_dir

ifn

epn

npbwr

nTreq

npbrd

4

2

dbus

Data_in_L Data_in_H

rest_rd_ptr

ep_buffer_in_rd

ep_buffer_in_two_left

recieve_data_packet_en

recieve_data_packet_err

11

epn_n_addr

pid_in8

sram

sram_wra

sram_addra

sram_dataa

sram_rdb

sram_addrb

sram_wrb

sram_datab
clk

dev_addr 7

Send data to

DMA

clknrst

e
n

send_data_to_dma_ en

nDack

Receive

data

from DMA

clk

nrst

en

nDack

empty_buf_out

Enumeration

FSM

RXValid

RXActive

RXError

TXReady

sram_addra

sram_dataa

sram_rdb

sram_addrb

sram_datab

XcvrSelect

TermSelect

LineState[1:0]

~npbrd

EP Buffer

OUT

clk

w
r

clr

st
_r

d
_p

tr

re
st

_
rd

_
p

tr

ge
tC

R
C

1
6

e
m

p
ty

fu
ll

receive

data

packet

clknrst en

RXAcitev

R XVal id

RXError

w
r_

b
u

f_
o

u
t

e
m

p
ty

_
b

u
f_

o
u

t

fu
ll

_b
u

f_
o

u
t

done

Data_out_L

Data_out_H

CRC16

clk

crc16_resul t

ge
tC

R
C

16
_

b
u

f_
o

u
t

rd

re
st

_
rd

_
p

tr
_

b
u

f_
o

u
t

st
_r

d
_p

tr
_b

u
f_

o
u

t

err

en_crc16

nrst

8 Data

_in

pid_new

nTreq

ep_buff_out_high

ep_buff_out_low

8

8

receive_data_from_dma_ en

send_to_dma_nFinishTrans

n
Fi

n
is

h
T

ra
n

s

nF inishTrans

cl
r_

b
u

f_
in

~npbwr

receive_from_dma_nFinishTrans

nEO T

nEOT

~npbwr

c rc16_result

crc5_result

wMaxPacketSize

w
M

ax
Pa

ck
e

tS
iz

e

npbrd

2

dev_addr

dev_state

cr
c5

_
re

su
lt

receive

setup data

RXValid

RXAct ive

RXError

recieve_data_packet_crc16_errcrc16_error

ep_buffer_out_cl r

nPreq

ep_dir

epn

4

2

nEO T

nDack

EP0_stall

active_interface_in

crc16_out

clk

crc16_result

clr_crc16

crc 16_en

crc16_data_out

data_regs [15:0]

regs_select [1:0]

Receive

token

clk

nrst

en

crc5_result [4:0]

crc5_clr

crc5_en

crc5_data_out[10:0]

done

err

expected_pid[3:0] PHY_DATA

epn_n_addr[10:0]

2

7

clr

cl r

P
H

Y
_

D
A

T
A

8

crc16_result

8

8

PHY_DATA

8

clr_crc5

en

cr
c5

_
cl

r

configured_FSM_en

sel
0

en

1

sel

crc5_en

crc5_en

data_in

1 0

crc5_data_out

sel

clr_crc16

cl r

11 00/0110

sel[0]

sel[1]

cl
r_

cr
c1

6

cl
r_

cr
c1

6

en
11

00/01

10

se
l[0

]

se
l[1

]

data_in

11

00/01

10

crc16_en

crc16_data_out

16

1 0
sel

rd
_

b
u

f_
o

u
t

T
X

V
a

lid

TXValid

nPreq
1

0

nPreq

nPreq

se
l

se
l[0

]

se
l[1

]

RXValid

RXActive

RXError

clk

nrst

en

done

err

clr

PHY_DATA

0 1

XcvrSelect

RXValid

RXActive

TermSelect

LineState 2

RXError

TXReady

PHY_DATA

8

ValidH

2

Data_bus_16_8

Vcc

OpMode

TXValid
1

0

se
l

D
M

A
 I

N
T

E
R

F
A

C
E

U
T

M
I

IN
T

E
R

FA
C

E

Figure 11 – Top Level Block diagram.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

30

Enumeration FSM

Enumeration

FSM

RXValid

RXActive

RXError

TXReady

XcvrSelect

TermSelect

LineState[1:0]2

dev_state

receive

setup data

RXValid

RXActive

RXError

clk

crc16_result

clr_crc16

crc16_en

crc16_data_out

data_regs [15:0]

regs_select[1:0]

Receive token

clk

nrst

en

crc5_result[4:0]

crc5_clr

crc5_en

crc5_data_out[10:0]

done

err

expected_pid[3:0] PHY_DATA

epn_n_addr[10:0]

2

clr

8

configured_FSM_en

crc5_en

crc 5_ data_out

clr_crc16

crc16_en

crc 16_ data_out

TXValid

RXValid

RXActive

RXError

clk

nrst

en

done

err

clr

PHY_DATA

Figure 12 –Enumeration FSM block diagram.

The enumeration FSM module is in charge of the enumeration stages of the USB

protocol as it is described in the technical background chapter. Once the device is

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

31

powered, this module is enabled and starts waiting for the reset signaling process.

The reset process is composed from the following time constraints actions:

LineState should be logic '0' for at least 2.5 ms, followed by that the module will

assert Chirp K on the bus for at least 1 ms and not more than 7 ms after the reset.

The XcvrSelect is then asserted which signals the high speed mode. The host will

then send a series of at least six J-K-J-K-J-K chirps terminated by SE0, if the process

ends successfully the TermSelect signal is asserted. The device will then change state

to default state.

Figure 13 – High speed detection state machine

Default State - At this point the state machine waits for a setup token that precedes

the SET_ADDRESS request. The token's address field should be zero. After a valid

setup token is accepted, the state machine waits for a setup packet with PID DATA0,

wValue contains the new device address, and the remaining fields should be zero.

The data is saved and checked for CRC16 errors. The state machine then waits for an

IN token so it could respond with zero length data packet indicating the previous

request was accepted successfully. The state machine will wait for an ACK response

from the host. Only after the ACK has been received the device address will change

and the device state will switch to addressed state.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

32

Figure 14 – Set Address state machine

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

33

Addressed State - at this point the state machine waits for another setup token that

precedes the SET_CONFIGURATION request. After a valid setup token is accepted,

the state machine waits for a setup packet with PID DATA0, wValue contains the

device configuration number, the remaining fields should be zero. Since our device

has only one configuration, it will only accept configuration requests that have their

wValue field set to '1' and will ignore configuration requests which have any other

value in the wValue field. The data is saved and checked for CRC16 errors. The state

machine then waits for an IN token so it could respond with zero length data packet

indicating the previous request was accepted successfully. The state machine will

wait for an ACK response from the host. Finally after the SET_CONFIGURATION

request the device state will change to configured state.

Figure 15 – Set Configuration state machine

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

34

Configured State - once the device is in configured state, the enumeration FSM

raises the enable signal in the configured FSM module and enters an idle state. The

enumeration FSM will wake up from its idle state only if a SET_CONFIGURATION

request with configuration value set to zero will be received.

Enumeration FSM contains the sub modules receive setup data and receive token,

which handle the UTMI handshake process, PID checks, CRC checks, and address

check for received packets and tokens.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

35

Configured FSM

Figure 16 –Configured FSM block diagram.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

36

The configured FSM module is the heart of the system while in configured state. It

handles all transfers from end to end starting with the token stage through the data

stage and ending with the handshake stage if required. It controls the following

modules: receive data packet, send data to DMA, receive data from DMA and the

SRAM.

configured FSM has access to the UTMI interface which enables it to receive tokens.

Received tokens are checked for errors in PID, CRC5 (with the help of the crc5

module) and having the device's address. Tokens with an error or of a different

address are discarded. Valid tokens are analyzed for PID type. The PID determines

the type of transfer the host requires: OUT, IN, SETUP or PING:

PING - The device will issue a handshake depending on its current state. If the

endpoint which was addressed by the token is in a halt state (due to a previous

request that was sent by the host) the device will issue a Stall handshake. If the

device buffer is full, then a NAK handshake will be sent and if the device is ready to

receive packets it will send ACK handshake.

SETUP - This feature is not yet supported in PE.

OUT - If an OUT PID is detected, configured FSM will enable the receive data packet

module. It will than wait until its operation will finish and the data packet along

with the CRC16 field will be received into EP buffer OUT. It will check the toggle

synchronization bit and if its valid the send to DMA module will be enabled and

configured FSM will wait for the send_to_dma_nFinishTrans signal to rise. Once the

send to DMA finished successfully an ACK handshake will be sent.

IN - If and IN PID is detected, configured FSM will enable the receive data from DMA

module. It will wait until its operation will finish and the data packet will be

received into EP buffer IN. It will than operate its interface with the UTMI to send

the data in the buffer with PID at the head and it's CRC16 at its tail.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

37

Receive Data Packet

Figure 17 – Receive Data Packet block diagram.

This module contains a state machine which handles the acceptance of new data

packets from the UTMI. When in initial state the block waits for RXActive signal to

assert which signals beginning of the synchronization process between the host and

the device and data is about to be sent from the host.

PE then waits for the RXValid signal to assert which signals that valid data is ready

for reading from the PHY_DATA bus. The new received data is then stored in the EP

Buffer out FIFO. The data packet transfer stage ends once the RXValid signal is

deasserted.

After the data packet has been received, Receive Data Packet module will check the

packet ID (PID) and toggle synchronization bit. If PID is valid, the module will assert

the st_rd_ptr_buf_out signal which signals the EP Buffer out FIFO to store the current

value of its read pointer. The state machine will then signal the EP buffer OUT to

output the CRC16 field from the end of the FIFO and will save it for the CRC16

calculation check later on.

The state machine will then enable the CRC16 module and assert the rd_buf_out

signal, starting the data flow from the EP buffer OUT to the CRC16 module. The

CRC16 module reads the data from the FIFO and calculates the checksum. The

output is then compared with the CRC16 field sent with the data packet. In the same

time, the Receive Data Packet signals the FIFO to reset its read pointer to its

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

38

previous position so it would be ready for the DMA when it’s time for it to read the

data.

Send Data to DMA

Figure 18 – Send Data to DMA block diagram.

This module handles the handshake process with the DMA in an OUT transaction.

The handshake process starts when the PE asks the µCotroller for a grant to use the

bus by asserting the nTreq signal. The request is granted when the nDack is asserted

by the µCotroller. Then, the PE asserts the nPreq to signal that the data is ready to be

read. When the empty signal in EP Buffer OUT is asserted, the nPreq signal is

deasserted, signaling the end of the packet transfer. If the amount of data is of zero

length or less than the maximum packet size mentioned in the specific endpoint

descriptor table (wMaxPacketSize), then not only the packet transfer has ended

rather the entire transaction to that endpoint has finished.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

39

Receive Data from DMA

cl
r_

b
u

f_
in

cl
r_

cr
c1

6

Figure 19 – Receive Data from DMA block diagram.

After an IN token, data has to be received from the DMA. This module uses the same

signals as the send to DMA module to handle the handshake procedure in an IN

transaction. Similarly to the sending process, the nTreq signal has to be asserted to

request bus grant from µCotroller. When the nDack signal is asserted bus is granted.

The DMA will then wait for nPreq from the PE indicating the PE is ready to receive

data. The packet transfer will end once the nDack is deasserted, if in addition the

EOT is asserted then not only the packet transfer has ended rather the entire

transaction to that endpoint has finished.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

40

SRAM

Figure 20 – SRAM block diagram.

The 16 bit width SRAM with 512 addresses holds the device’s descriptor tables. The

SRAM has two outputs which gives it the ability to read two different memory spots

in a single clock cycle. The descriptor tables hold information such as endpoint’s

type (bulk, isochronous or interrupt), maximum packet size allowed etc. Once the

chip is ready for production the SRAM will be replaced with a ROM memory and will

be hard coded into the board in production.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

41

EP buffer OUT

Figure 21 - EP Buffer OUT module block diagram

The EP buffer out module is a custom made 8 bits width FIFO that receives the data

packet from the 8 bit PHY_DATA bus during an OUT transaction. The FIFO's 16 bit

output is connected to the crc16 module and the dbus. The FIFO is controlled mostly

by the receive data packet module which has access to most of its control signals.

The FIFO has a read pointer and a write pointer, which are used to keep track of the

FIFO's status. The FIFO is said to be empty when the read and write pointers are

equal and is full when the write pointer points to the highest address in the FIFO.

The FIFO receives the data packet's raw data and CRC16 field, the PID field in the

receive data packet module.

As was explained in the receive data packet module, the protocol engine has no way

of knowing when the CRC16 field arrives from the PHY, but we do know that it is the

last two bytes that were inserted into the FIFO. Since a regular FIFO does not allow

reading the last inserted information, we added getCRC16 signal which extracts the

last two inserted bytes. The st_rd_ptr signal is used to store the position of the read

pointer before the crc16 module reads the data in the FIFO. After extracting the last

two bytes from the FIFO and after storing the read pointer, the rd signal is raised

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

42

and the data starts to flow through crc16 module. At the end of the crc16 calculation

process the FIFO empty signal is will assert and the rd pointer will point to the same

memory address as the write pointer. At this point the receive data packet module

asserts the rest_rd_ptr which resets the read pointer to its previous position before

the crc16 calculations.

EP Buffer IN

Figure 22 - EP Buffer IN module block diagram

The EP buffer IN module is a custom made 8 bits width FIFO that receives the data

packet from the 16 bit dbus during an IN transaction. The FIFO's 8 bit output is

connected to the PHP_DATA bus. During transfer from the DMA the write signal is

controlled by DMA's npbwr signal. The EP Buffer IN receives only the raw data

without the PID or CRC16 fields. The CRC16 is calculated simultaneously while the

raw data is transferred from the DMA to the EP Buffer IN. The configured FSM is

responsible for sending the PID first, the DATA from the FIFO second and the CRC16

last.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

43

The FIFO has a read pointer and a write pointer, which are used to keep track of the

FIFO's status. The FIFO is said to be empty when the read and write pointers point

to the same memory block.

CRC5

Figure 23 – CRC5 module block diagram

The CRC5 module is used whenever a token packet is received. A token packet has a

crc5 field at its tail which has to be checked on arrival. The data part of the token is

composed of the endpoint number and the device’s address. This information is

inserted into the data_in (11 bit) entrance which then produces the correct CRC5

after a single clock.

CRC16

CRC16

clk

crc16_out

clr

en

data_in

Figure 24 – CRC16 module block diagram

The CRC16 module is used whenever a data packet or a setup packet is received.

Each data packet in a transfer contains crc16 field in its tail. Upon each clock cycle

the data is inserted into the module’s data_in (16 bits). After the last word is

processed by the module we receive the correct crc16 in the module’s output.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

44

Detailed Functionality Description

OUT transaction

Figure 25 – OUT transaction.

The OUT transactions start, just like any other transaction in the system, with a

token sent from the host. The state machine in configured FSM waits for the UTMI

signals RXActive and RXValid and receives the OUT token, a detailed description of

the state machine can be viewed in Figure 26.

Figure 26– UTMI Receive State Diagram

The token's fields and size are discussed in the chapter "Technical Background". The

packet is checked for correct PID by comparing the first four bits with the negation

of the last four bits. The CRC5 field is checked with the help of the CRC5 module. If

the checks succeed, it means the token was received correctly, the data load of the

packet is without errors. The data load of the packet contains the endpoint number

to which the data packet should be routed and the device address. First the state

machine checks if the token is addressed to our device by comparing the device

OUT Token

ACK

Data
OUT

Host Device

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

45

address in the token packet with the device address saved in dev_addr register in

the enumeration FSM module. If the token is addressed to our device the endpoint

field is checked and saved in epn register. If the endpoint is zero and the endpoint

state is stall, then a stall handshake is sent back to the host.

At this point, the module analyzes the PID to determine that its type is OUT (0001),

asserts the nTreq signal to get bus access from the µController, sets the ep_dir signal

to OUT and enables the Receive Data Backet block which waits for a data packet to

be received from the host. The signals diagram in Figure 27- UTMI receive signals

describes the transfer of a data packet from the UTMI.

Figure 27- UTMI receive signals timing

The PID is saved in the curr_pid register and the Data and CRC16 are saved in the EP

Buffer OUT FIFO. The FIFO is controlled mostly by the Receive Data Packet module

which has access to most of its control signals. Receive Data Packet checks if the PID

is of type DATA and if the PID is valid, the module will assert the st_rd_ptr_buf_out

signal which stores the current value of the EP buffer OUT read pointer. The state

machine will then signal the EP buffer OUT to output the CRC16 field from the end of

the FIFO and will save it for the CRC16 calculation check later on. The state machine

will then enable the CRC16 module and will assert the rd_buf_out signal, starting the

data flow from the EP buffer OUT to the CRC16 module. The CRC16 module reads the

data from the FIFO and calculates the checksum. The result is then compared with

the CRC16 field which was sent with the data packet and was extracted earlier from

the FIFO. At the same time, the FIFO’s read pointer is reset to its previous position

so it would be ready for the DMA when it’s time for it to read the data.

If this operation ends successfully the Receive Data Packet module asserts the done

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

46

signal. If there was an error and the data was not received correctly err signal is

asserted and if there was only an error with the CRC16 check then the crc16_err

signal is asserted. In case of CRC16 error, Bulk transactions are retried and

isochronous transactions are continued. At this point the Receive Data Packet is

disabled and configured FSM checks the toggle synchronization bit of the PID. For

Bulk transactions the PID should be DATA0 or DATA1 alternately. Isochronous

transactions based on the endpoint's descriptor table have a sequence of two, one or

none DATAM packets followed by DATA2, DATA1 or DATA0 respectively. See the

Technical Background chapter for additional information about the toggle bit.

Figure 28 - Data Phase PID Sequence for Isochronous OUT endpoints

If the toggle check is valid the send to DMA module will be enabled and configured

FSM will wait for the assertion of send_to_dma_nFinishTrans signal which means that

the DMA has finished sending the information. The send to DMA module waits for

the nDack signal to be asserted which means the bus request is granted. Then, the

send to DMA asserts the nPreq to signal that the data is ready to be read. When the

empty signal in EP Buffer OUT is asserted, the nPreq signal is deasserted, and the

send_to_dma_nFinishTrans signal is asserted signaling the end of the packet transfer.

If a packet is of zero length or less than the maximum packet size mentioned in the

endpoint descriptor table (wMaxPacketSize), then the entire transaction to that

endpoint has finished.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

47

clk

nTreq

nPreq

nDack

npbrd

Figure 29– DMAC handshake signaling during an OUT transaction. Two packet transfers in one

transaction.

After the successful data transfer, the configured FSM issues an ACK Handshake

packet to the host.

IN Transaction

Figure 30 – OUT transaction.

The IN transactions start, just like any other transaction in the system, with a token

sent from the host. The state machine in configured FSM waits for the UTMI signals

RXActive and RXValid and receives the IN token. The token's fields and size are

discussed in the chapter "Technical Background". The packet is checked for correct

PID by comparing the first four bits with the negation of the last four bits. The CRC5

field is checked with the help of the CRC5 module. If the checks succeed, it means

the token was received correctly, the data load of the packet is without errors. The

data load of the packet contains the endpoint number from which the data packet

would be routed from and the device address. First the state machine checks if the

token is addressed to our device by comparing the device address in the token

Host Device

IN Token

Data

ACK

IN

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

48

packet with the device address saved in dev_addr register in the enumeration FMS

block. If the token is addressed to our device the endpoint field is checked and saved

in epn register. If the endpoint is zero and the endpoint state is stall, then a stall

handshake is sent back to the host.

At this point, the module analyzes the PID to determine that its type is IN (1001),

asserts the nTreq signal to get bus access from the µController and enables the

Receive Data from DMA block which waits for a data packet to be received from the

DMA. The signals diagram in Figure 31– DMAC handshake signaling during an IN

transaction. Two packet transfers in one transaction. describes the transfer of a data

packet from the DMA.

clk

nEOT

nPreq

nDack

npbwr

Figure 31– DMAC handshake signaling during an IN transaction. Two packet transfers in one

transaction.

Once we are ready to receive data from the endpoint we assert the nPreq signal

which requests a packet. The DMA will assert the nDack signal which acknowledges

our request and asserts the npbwr signal which will enable the EP Buffer IN to

receive the data. If an interrupt in the system will cause the µController to hand

over bus control to a different peripherals in the system, then only the npbwr signal

will deassert and reassert after the DMA will gain back its control over the bus. The

nDack signal will deassert only after the competition of the packet transfer. If the

entire transaction ended, meaning the endpoint had sent all the data it had, then the

nEOT (End Of Transfer) signal will be asserted and bus control will be returned back

to the µController. The npbwr signal also controls the CRC16 enable signal. At the

same time the data is transferred to the FIFO, it also enters the data in input of the

CRC16 block. At the end of the transfer we get the CRC16 field ready for

transmission.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

49

After the transfer from the DMA ends, the Configured FSM uses the UTMI interface

signals to send the packet to the host. Figure 32 shows the relationship between the

signals during transmission to the UTMI.

Figure 32 - UTMI transmit signals timing

Finally the packet transaction to the host starts. First, Configured FSM sends PID,

DATA0, DATA1, MDATA or DATA2, based on the current toggle state and transaction

type as described in the "Technical Background" chapter. Then the rd signal of the

EP Buffer IN is asserted and the data is sent, when the FIFO's empty signal asserts,

the CRC16 field is sent.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

50

Simulation

To simulate the Protocol Engine we used Mentor Graphics Modelsim and Cadence

SimVision Simulator. Unfortunately due to repeatedly computer network problems

in the engineering building SimVision was rarely used.

Following are sample print screens of various transaction states of the Protocol

Engine and their examination.

OUT transaction

This transaction will simulate a data packet sent from the host to the Bulk type

endpoint number one, in the USB device at address 0001010.

Figure 33 and Figure 34 shows the simulation of the OUT Transaction. First the

RXActive and RXValid signals are asserted by the UTMI to signal that a new transfer

is about to start. Then the PHY_DATA bus is mounted with the OUT token. A token is

composed of three bytes as described in the chapter Technical Background The first

byte is PID and in this example it is 0xe1 or 1110 0001 which is the code for an OUT

token. The next two bytes (0x8a and 0xf0) are device address, endpoint number and

CRC5. If we break it down we can see that for 0x8a (1 0001010) the seven LSBs are

the device’s address and the one MSB is the LSB of the endpoint number. For 0xf0

(11110 000) the three LSBs are the MSBs of the endpoint number and the five MSBs

are the CRC5.

After the token has been received the state machine checks it’s validity by analyzing

the PID, CRC5 and Address fields. While the Configure FSM block checks the validity

of the token, the Receive data packet module starts to receive the data packet which

was sent by the UTMI immediately after the token. Notice that the nTreq signal is

asserted at this point to request bus grant from the µController.

Figure 33 - Packet received from the UTMI in an OUT transaction.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

51

The received data packet is composed of PID, data and CRC16 fields. In our

simulation, the PID field is 0xc3 (1100 0011) which according to the PID codes table

in the appendix it is the PID for DATA0. The data field of the packet is composed of

ten bytes which is less than 512 bytes, the maximum packet size allowed for this

endpoint. The last two bytes (0xb9 and 0x57) are the CRC16 field.

After Receive data packet module accepts the data packet and checks the CRC16

field for errors the Protocol Engine has to send the data to the endpoint through the

dbus. The nTreq signal was already asserted after the token has been received

correctly, and now µController asserts the nDack signal which grants the Protocol

Engine access to the dbus. The Protocol Engine will signal the DMA that the data is

ready to be read by asserting the nPreq signal. The DMA will read the data from the

Protocol Engine’s FIFO by asserting the npbrd signal.

In this simulation we also simulate an interrupt in the system that causes the

µController to hand over bus control to a different peripheral in the system. When

the interrupt occurs, the DMA deasserts the npbrd signal and the FIFO will not read

more data. npbrd will reassert after the DMA will gain back its control over the bus.

When the FIFO empties out, the nPreq signal is deasserted. If the packet is less than

the maximum packet size allowed for transmission to this endpoint as it is in this

case, then the nTreq signal also deasserts and the control over the bus is handed

over back to the µController.

Figure 34 – Packet is sent to the DMA in an OUT transaction.

IN transaction

This transaction will simulate a data packet sent from the Bulk-type, endpoint

number one, in the USB device at address 0001010, to the host.

Figure 33 Figure 35 shows the simulation of the IN Transaction. First the Protocol

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

52

Engine has to accept and analyze a token packet. RXAcitve and RXValid signals are

asserted by the UTMI to signal that a new transfer is about to start. Then the

PHY_DATA bus is mounted with the IN token. A token is composed of three bytes as

described in the chapter Technical Background. The first byte is PID and in this

example it is 0x69 or 0110 1001 which is the code for an IN token according to the

PID codes table in the appendix. The next two bytes (0x8a and 0xf0) are device

address, endpoint number and CRC5. If we break it down we can see that for 0x8a

(1 0001010) the seven LSBs are the device’s address and the one MSB is the LSB of

the endpoint number. For 0xf0 (11110 000) the three LSBs are the MSBs of the

endpoint number and the five MSBs are the CRC5.

Figure 35 – IN transaction.

After the token has been received the state machine checks it’s validity by analyzing

the PID, CRC5 and Address fields. Notice that the nTreq signal is asserted at this

point to request bus grant from the µController. nDack is asserted which means the

bus is granted by the µController. The Protocol Engine then asserts nPreq to signal

that the data is ready to be received. npbwr is then asserted by the DMA and the

data is written to the Protocol Engine’s FIFO via the dbus. At the same time the data

is also sent to the CRC16 module which will output the CRC16 field afterwards.

Now, the Protocol Engine will send the data packet to the host via the PHY_DATA.

TXReady signal is asserted to signal the UTMI that valid data is ready for transfer.

The UTMI will then assert the TXValid signal and the packet would be mounted on

the bus. In our simulation, the PID field is 0xc3 (1100 0011), which according to the

PID codes table in the appendix is the PID for DATA0. Following the PID we send the

data and then the CRC16 created by the CRC16 module.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

53

Verification

To verify the Protocol Engine we designed, we used the Altera DE3 board with a

Stratix III FPGA chip. The Stratix III is much powerful than the Cyclone FPGA chip

we intended to use in the beginning. Since Cyclone II have only 68K logic elements,

and since the complexity of the USB 2.0 protocol required many logic elements for

implementation, the Protocol Engine could not fit into it. Therefore we switched to

the Stratix III FPGA which has 338K logic elements.

Compiling and downloading the designed to the FPGA was done by the Altera

Quartus II version 9.0 development software. The design was tested on the three

stages of enumeration: default, addressed and configured, and for IN and OUT

transactions.

For testing the Protocol Engine we created a module called phy_dma_demo that

simulates the host and DMAC by stimulating the appropriate signals of the DMA and

UTMI interfaces. Using the MegaWizard Plug In we created a static ROM within the

phy_dma_demo module that was used to store the demonstrated token and data

packets. The ROM was content was set by a pre defined MIF binary file. To connect

the interface signals between the phy_dma_demo module and the top module of the

Protocol Engine, we created an additional module called demo.

To connect the tri-state buffer of the DMA and PHY busses we assigned the 40-pin

expansion header #2 GPIO1 that resides on the DE3 board. Besides connecting the

interface signals further signals were output for debugging, these output signals

were assigned to the leds, 7-seg displays, switches, push-buttons and some were

assigned to the 40-pin expansion header #1 GPIO0.

To verify the signals that were assigned to the GPIO0 bank, we use Agilent’s

InfiiVision Mixed Signal Oscilloscope. To translate 4 binary digits to hexadecimal

digit for use with the 7-segment display, we created a module which input is 4 bit

wide and its output is connected to the 7-seg display, asserting the appropriate pins

for displaying the input in hexadecimal.

By verifying the Protocol Engine on the FPGA board, we created a demonstration

that emphasizes the capabilities and feasibility of the protocol engine.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

54

Hurdles and Obstacles

High-Z pins

In a project of this magnitude and scale there were quite a few design problems and

hurdles we had to overcome. One of the major issues we faced was having different

output signals derive the same input signal. Since two or more output signals cannot

derive the same input signal simultaneously we had to come up with a way to

disconnect signals to avoid contention. The solution we used was to set the unused

signals to high-z state and the remaining signal maintain connected.

This solution worked fine in the simulation we run, but caused critical warnings

when we synthesized the project in Quartus II. The warning said that Quartus is

substituting each high-z to a MUX. It turns out that the FPGA chip does not support

high-z states and only allow them for I/O pins.

Since we did not trust Quartus to make the substitution correctly, we had to go back

and dive into the code to replace all of the instances where we used high-z states,

with MUXES. The only signals we left with high-z are the PHY_DATA and dbus which

we connected to the device’s 40-pins Expansion Header which support high-z state

by the FPGA.

This solution led to a different problem in the demonstration. Since our

demonstration is actually composed of a different module that drives data packets

to our buses, the buses no longer use the I/O pins. To solve that, we did use the I/O

pins for the buses and we also connected the output signals of the demonstration

module to the same pins. In this way the PE was able to receive the data via the pins

and was able to use the high-z state for bus signals.

FPGA chip

Another obstacle we faced was when we wanted to download our project to the

FPGA board. The FPGA chip we chose was Cyclone II FPGA that can be found on the

DE2-70 board, because of its many switches and 7-segment display units. After

setting all of the signals to the switches, buttons and displays in the system exactly

as the way we wanted, we compiled our project to fit to the DE2-70 FPGA board and

discovered that our design could not fit into our chosen Cyclone II FPGA chip.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

55

Apparently the Cyclone II FPGA chip on the DE2-70 board has only 68K logic

elements which are simply not enough for our project. This revelation forced us to

switch to the DE3 board with EP3SL340 Stratix III FPGA chip. With 338K logic

elements, it has more than five times as many logic elements as the DE2-70 board.

Unfortunately, the DE3 is missing many of the I/O capabilities of the DE2. DE3 board

only has two 7-segment displays compared with eight of the DE2, and only 4

switches compared with sixteen of the DE2.

At this point, changing boards meant to go back and re-declare the signals and

change our demonstration scheme.

USB Checker

After downloading our project to the DE3 FPGA board we had to verify our design

with the USB 2.0 protocol. Checking the integrity of the data that transferred

through the UTMI and DMA busses was also necessary.

USB checker which does automatic tests and provide a detailed report would be the

ideal solution for verifying the Protocol Engine compliance with USB protocol.

Since USB checker wasn’t at our disposal, an alternative solution had to be found.

For checking the PE’s interface signals with the DMAC and UTMI, we output those

signals to the 40-pins Expansion Header on the DE3 board. By using the switches on

the DE3 board we could check step by step that all the interface signals are asserted

and the right order and time. Connecting the UTMI and DMA busses also to the 40-

pins Expansion Header allowed us to check the integrity of the data being

transferred, and to detect and fix bugs.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

56

Alternative Solution

An alternative solution for a hardware based protocol engine is a firmware or

software based protocol engine. The advantage in firmware base solution is that it

is easier to develop, faster to implement, inexpensive and more flexible to changes.

Firmware solutions can be easily modified and upgrade. With that in mind,

firmware solutions also have some drawbacks. Firmware base solutions take more

space than hardware solutions. In general firmware based solutions have much

slower response rate than hardware based solutions, however in our case, since a

high speed USB2.0 is required to deliver packets at a maximum speed rate of only

480Mbps this is not much of an issue. With an 8-bit bus, the protocol engine will

have 16.66 ns to handle each word of data, which could be translated into a 60 MHz

clock. Today's devices have clock rates of more than 1000 times that.

USB2.0 protocol is a well-established protocol which was adopted widely within the

computer industry. Once the protocol has been set to be a standard it does not

change, hence modifying the solution would not be an issue thus a firmware

solution does not have a greater advantage over the hardware solution in this case.

Another disadvantage in using firmware based solution is the device's power

consumption. Firmware based solutions generally consume more power than

hardware based solutions, since firmware implementation uses hardware which is

not designed for a specific task, resulting in less inefficient use of the hardware.

Our implementation is hardware based solution which reduces the power

requirements for the device. This is a consideration especially for battery powered

devices that consume more than 5V hence unable to use the USB built in power

supply.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

57

Conclusion and Summary

Work on the project was divided into several steps. The first step was to read and

learn the USB2.0 specifications. We read the relevant chapters dealing with the

protocol, mainly chapter three, five, eight and nine, and also other smaller parts of

the specification. We also found quite a few websites online that tried to simplify the

protocol.

The second step was to write a specification file for our device based on what we

read from the USB specifications.

The next step was to translate everything we learnt from the specification into finite

state machines using Visio drawings. This part made us dive even deeper into the

specification and understand it to its fool extent. The protocol deals with many

situations and has a lot of features which can be used by the devices and the host.

We had to sift through all of these features, and find the ones that are related to the

normal operation of the device.

The fourth step was drawing a top level block diagram that describes all the

modules and signals to that will be used in the system.

The fifth step was using Verilog to write the different module of the system. We first

had to learn the language since it was the first time we ever used it. Also, each

module we created was tested and simulated using a test bench we wrote.

The next step was to test the entire system using a test bench in Modelsim or

Simvision. We created a test bench with many different packet IN and OUT

transactions and tested our code. We found all kinds of problems and bugs that

were related to the synergy between the different modules and interfaces. At this

point we also inserted the signals we needed for the demonstration on the FPGA

board.

Our next step was to use Quartus to synthesize the project and get it ready for

download to the FPGA board. At this step we found a major flaw in our design and it

is described in the chapter

Hurdles and Obstacles.

Finally we tested our project on the board itself and wrote the project’s book.

It was interesting to work on a project related to something so common that we see

and use every day.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

58

The benefits of having a USB2.0 protocol engine implemented in hardware are clear.

These benefits, already discussed in the chapter Project’s Motivation, will surly

stand out in any commercial protocol engine.

This project hasn’t denied the feasibility of hardware based USB2.0 protocol engine

in principle. There are still more advanced functions which were not implemented

and are required for a commercial protocol engine. Also, there are quite a few

important steps before this project could be implemented in ASIC. With this in mind,

it is still early to defiantly say that a hardware based USB2.0 protocol engine chip is

in hand’s reach.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

59

A Look into the Future

ASIC implementation:

Since the USB2.0 standard is widely used in many peripheral devices. It is well

established and has already proved itself to be reliable and efficient. The protocol's

strict restrictions assure that different devices are compatible in every machine.

This assures that the Protocol Engine we designed can be used in various products

that uses USB2.0 standard as their chosen protocol. The programmable SRAM is

designed to be able to hold any kind of descriptor tables for any product and can

support up to 15 IN and 15 OUT endpoints with each of four different interfaces.

Having a well established protocol allows the Protocol Engine to be implemented in

ASIC, Cadence Encounter Synthesis tool, Low-Power Kit, System-On-Chip Functional

Verification Kit and VirageLogic 65nm Libraries.

The chip would have many advantages over other software based commercial

products. Unlike other Protocol Engines out in the market, this Protocol Engine is

hardware based and thus consumes less power. This feature is a great advantage

especially in portable machines that use USB devices such as a graphical engine "on

key".

USB 3.0

Furthermore, USB3.0 spec has been published and not long from now the computer

industry will adopt this standard and move forward to the more advance protocol. A

future improvement for the Protocol Engine is to support USB3.0 features and

speed.

Protocol Engine with DMA Controller

An advance version of the Protocol Engine would be an assimilation of the DMA

Contorller into it. Including the DMA Controller would simplify the interface with

the device’s bus and reduce chances of bus contention by upgrading the

synchronization capabilities of the Protocol Engine in the USB device.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

60

Bibliography

USB Manuals, Tutorials and Specs:

USB Made Simple:

http://www.usbmadesimple.co.uk/index.html

USB in a NutShell:

http://www.beyondlogic.org/usbnutshell/usb1.shtml

USB 2.0 Specifications:

http://www.usb.org/developers/docs/usb_20_081810.zip

NET2272 - USB 2.0 Peripheral Controller

http://vital-ic.ru/chip/data/NET2272F.pdf

UTMI

USB 2.0 Transceiver Macrocell Interface (UTMI):

 http://www.intel.com/technology/usb/download/2_0_xcvr_macrocell_1_05.pdf

CRC

A Fast CRC Update Implementation:

 http://ce.et.tudelft.nl/publicationfiles/805_404_lu.pdf

Algorithms for Cyclic Redundancy Code (CRC) Computation:

http://ishaksuleiman.tripod.com/00000.pdf

A Practical Parallel CRC Generation Method:

http://outputlogic.com/my-stuff/circuit-cellar-january-2010-crc.pdf

Altera Quartus and FPGA manuals

Altera Configuration Handbook Device Configuration Options:

http://www.altera.com/literature/hb/cfg/cfg_cf52006.pdf

DE2-70 Manual - DE2 Development and Education Board User Manual:

http://csg.csail.mit.edu/6.375/6_375_2010_www/handouts/other/DE2Manual.pdf

DE3 Manual - DE3 Development and Education Board User Manual:

http://www.terasic.com.tw/attachment/archive/260/DE3_User_manual_v1.2.3.pdf

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

61

FPGA Incremental Compilation—Divide and Conquer:

http://www.altera.com/literature/cp/cp-01001.pdf

Stratix III Device Handbook:

http://www.altera.com/literature/hb/stx3/stratix3_handbook.pdf

Altera Quartus Handbook Recommended HDL Coding Styles:

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Verilog Tutorials and Manuals

USB Complete – Everything You Need to Develop USB Peripherals by Jan Axelson.

Verilog HDL - A Guide to Digital Design and Synthesis Samir Palnitkar.

Verilog Tutorial:

http://www.asic-world.com/verilog/intro1.html

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

62

Appendix

Standard Device Descriptor Table

Offset Field Size Value Description
0 bLength 1 0x12 Size of this descriptor, in bytes.

1 bDescriptorType 1 Constant DEVICE Descriptor Type

2 bcdUSB 2 BCD

USB Specification Release Number in Binary-Coded

Decimal (i.e., 2.10 is 210H).

This field identifies the release of the USB

Specification with which the device and its

descriptors are compliant.

4 bDeviceClass 1 Class

Class code (assigned by the USB-IF).

If this field is reset to zero, each interface within a

configuration specifies its own class information

and the various interfaces operate independently.

If this field is set to a value between 1 and FEH, the

device supports different class specifications on
different interfaces and the interfaces may not

operate independently. This value identifies the

class definition used for the aggregate interfaces.

If this field is set to FFH, the device class is vendor-

specific.

5 bDeviceSubClass 1 SubClass

Subclass code (assigned by the USB-IF).

These codes are qualified by the value of the
bDeviceClass field.

If the bDeviceClass field is reset to zero, this field

must also be reset to zero. If the bDeviceClass field

is not set to FFH, all values are reserved for

assignment by the USB-IF.

6 bDeviceProtocol 1 Protocol

Protocol code (assigned by the USB-IF).
These codes are qualified by the value of the

bDeviceClass and the bDeviceSubClass fields. If a

device supports class-specific protocols on a device

basis as opposed to an interface basis, this code

identifies the protocols that the device uses as

defined by the specification of the device class.

If this field is reset to zero, the device does not use
class-specific protocols on a device basis. However,

it may use class specific protocols on an interface

basis.

If this field is set to FFH, the device uses a vendor-

specific protocol on a device basis.

7 bMaxPacketSize0 1 Number
Maximum packet size for endpoint zero (only 8, 16,

32, or 64 are valid)

8 idVendor 2 ID Vendor ID (assigned by the USB-IF)

10 idProduct 2 ID Product ID (assigned by the manufacturer)

12 bcdDevice 2 BCD Device release number in binary-coded decimal

14 iManufacturer 1 Index Index of string descriptor describing manufacturer

15 iProduct 1 Index Index of string descriptor describing product

16 iSerialNumber 1 Index
Index of string descriptor describing the device’s

serial number

17 bNumConfigurations 1 Number Number of possible configurations

Table 10 – Standard Device Descriptor Table

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

63

Configuration Descriptor Table

Offset Field Size Value Description
0 bLength 1 0x0A Size of this descriptor, in bytes.

1 bDescriptorType 1 0x02 CONFIGURATION descriptor

2 wTotalLength 2 0x006D
Length of the total configuration block,

including this descriptor, in bytes

4 bNumInterfaces 1 0x04 This device has four interfaces

5 bConfigurationValue 1 0x01 ID of this configuration

6 iConfiguration 1 0x00 Unused, no string descriptor

7 bmAttributes 1 0x80
Bus-powered device, no remote

wakeup capability

8 bMaxPower 1 0xFA
500mA maximum power consumption
(in 2mA units)

Table 11 – Configuration Descriptor Table

Interface Descriptor Table

Offset Field Size Value Description

0 bLength 1 0x09 Size of this descriptor, in bytes.

1 bDescriptorType 1 0x04 INTERFACE descriptor type

2 bInterfaceNumber 1 Number
Number of this interface. (zero-base

value)

3 bAlternateSetting 1 0x00 Default setting

4 bNumEndpoints 1 Number
Number of endpoints used by this

interface (excluding endpoint 0)

5 bInterfaceClass 1 0x00 Unused

6 bInterfaceSubClass 1 0x00 Unused

7 bInterfaceProtocol 1 0x00
Device does not use class-specific

protocols on a device basis.

8 iInterface 1 0x00 Unused, no string descriptor

Table 12 – Interface Descriptor Table

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

64

Endpoint Descriptor Table

Offset Field Size Value Description
0 bLength 1 0x07 Size of this descriptor, in bytes.

1 bDescriptorType 1 TBD ENDPOINT descriptor type (5- Endpoint)

2 bEndpointAddress 1 TBD
Bit 7 Direction 0 = Out, 1 = In. Ignored for

control endpoints. Bits 0..3 Endpoint
number = 1

3 bmAttributes 1 TBD

Bits 0..1 Transfer Type

00 = Control

01 = Isochronous

10 = Bulk

11 = Interrupt
Bits 2..7 are reserved. If Isochronous

endpoint,

Bits 3..2 = Synchronization Type (Iso

Mode)

00 = No Synchronization

01 = Asynchronous

10 = Adaptive
11 = Synchronous

Bits 5..4 = Usage Type (Iso Mode)

00 = Data Endpoint

01 = Feedback Endpoint

10 = Explicit Feedback Data Endpoint

11 = Unused

4 wMaxPacketSize 2 TBD

Maximum packet size this endpoint is

capable of sending or receiving when this

configuration is selected.

For isochronous endpoints, this value is

used to reserve the bus time in the

schedule, required for the per-

(micro)frame data payloads. The pipe
may, on an ongoing basis, actually use less

bandwidth than that reserved. The device

reports, if necessary, the actual

bandwidth used via its normal, non-USB

defined mechanisms.

For all endpoints, bits 10..0 specify the
maximum packet size (in bytes).

For high-speed isochronous and interrupt

endpoints:

Bits 12..11 specify the number of

additional transaction

opportunities per microframe:
00 = None (1 transaction per microframe)

01 = 1 additional (2 per microframe)

10 = 2 additional (3 per microframe)

11 = Reserved

Bits 15..13 are reserved and must be set

to zero.

6 interval 1 TBD

Interval for polling high BW endpoint for
data.

Period = 2bInterval-1 NAK/ACK per 1µFrame

(125µSec)

Table 13 – Endpoint Descriptor Table

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

65

PID Codes Table

PID Code (bits)

OUT 0001

IN 1001

SOF 0101

SETUP 1101

PING 0100

DATA0 0011

DATA1 1011

DATA2 0111

MDATA 1111

ACK 0010

NACK 1010

STALL 1110

NYET 0110

Table 14 – PID Codes Table

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

66

Altera DE3 Stratix III FPGA board Top view

Figure 36 – Altera DE3 Stratix III FPGA board Top view.

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

67

Pin mapping table for verification and demonstration

Signal Name
FPGA

Pin No.

Verilog

name

SW[0] W5 rom_addr[0]

SW[1] W6 rom_addr[1]

SW[2] W9 rom_addr[2]

SW[3] W11 rom_addr[3]

CPU RESET U31 nrst

OSC2_50 W2 clk

BUTTON[0] K1 go0

BUTTON[1] K2 go1

LED [0] (Blue

color)
AB5 led0

LED [1] (Blue

color)
AB6 led1

LED [4] (Green

color)
Y3 led4

LED [5] (Green

color)
W3 led5

LED [6] (Green

color)
AA4 led6

LED [7] (Green

color)
Y4 led7

HEX0_D[0] W12 HEX0_D[0]

HEX0_D[1] Y11 HEX0_D[1]

HEX0_D[2] W10 HEX0_D[2]

HEX0_D[3] W8 HEX0_D[3]

HEX0_D[4] W7 HEX0_D[4]

HEX0_D[5] Y5 HEX0_D[5]

HEX0_D[6] Y6 HEX0_D[6]

HEX0_DP V3 HEX0_DP

Signal

Name

FPGA Pin

No.

Verilog

name

HEX1_D[0] P3 HEX1_D[0]

HEX1_D[1] N4 HEX1_D[1]

HEX1_D[2] N3 HEX1_D[2]

HEX1_D[3] N1 HEX1_D[3]

HEX1_D[4] M1 HEX1_D[4]

HEX1_D[5] L1 HEX1_D[5]

HEX1_D[6] L2 HEX1_D[6]

HEX1_DP V4 HEX1_DP

GPIO1_D0 AC26 PHY_DATA[0]

GPIO1_D1 AC25 PHY_DATA[1]

GPIO1_D2 AE28 PHY_DATA[2]

GPIO1_D3 AD27 PHY_DATA[3]

GPIO1_D4 AE27 PHY_DATA[4]

GPIO1_D5 AD26 PHY_DATA[5]

GPIO1_D6 AD29 PHY_DATA[6]

GPIO1_D7 AF29 PHY_DATA[7]

GPIO1_D8 AD28 dbus[0]

GPIO1_D9 AF28 dbus[1]

GPIO1_D10 AB27 dbus[2]

GPIO1_D11 AE30 dbus[3]

GPIO1_D12 AB26 dbus[4]

GPIO1_D13 AE29 dbus[5]

GPIO1_D14 AB25 dbus[6]

GPIO1_D15 AB24 dbus[7]

GPIO1_D16 AM21 dbus[8]

GPIO1_D17 AD31 dbus[9]

GPIO1_D18 AP20 dbus[10]

GPIO1_D19 AD30 dbus[11]

GPIO1_D20 AL22 dbus[12]

GPIO1_D21] AJ20 dbus[13]

GPIO1_D22 AM22 dbus[14]

GPIO1_D23 AJ21 dbus[15]

Table 15 – Pin mapping table for verification and demonstration

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

68

Schematic diagram of the 7-segment displays

Figure 37 – Schematic diagram of the 7-segment displays

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

69

Hexadecimal to 7-seg translation table

All pins are Active Low

 segments numbers

Hex

Numbe

r

6 5 4 3 2 1 0 Drive Note

0 1 0 0 0 0 0 0 7'h40

1 1 1 1 1 0 0 1 7'h79

2 0 1 0 0 1 0 0 7'h24

3 0 1 1 0 0 0 0 7'h30

4 0 0 1 1 0 0 1 7'h19

5 0 0 1 0 0 1 0 7'h12

6 0 0 0 0 0 1 0 7'h02

7 1 1 1 1 0 0 0 7'h78

8 0 0 0 0 0 0 0 7'h00

9 0 0 1 0 0 0 0 7'h10

A 0 0 0 1 0 0 0 7'h08

B 0 0 0 0 0 1 1 7'h03 small b

C 1 0 0 0 1 1 0 7'h46

D 0 1 0 0 0 0 1 7'h21 small d

E 0 0 0 0 1 1 0 7'h06

F 0 0 0 1 1 1 0 7'h0E
Table 16 – Hexadecimal to 7-seg translation table

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

70

Bulk Interrupt IN Transfer state machine

Figure 38 – Bulk Interrupt IN Transfer state machine

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

71

Isochronous IN Transfer state machine

Figure 39 – Isochronous IN Transfer state machine

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

72

Bulk OUT Transfer state machine

Figure 40 – Bulk OUT Transfer state machine

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

73

Interrupt OUT Transfer state machine

Figure 41 – Interrupt OUT Transfer state machine

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

74

Isochronous OUT Transfer state machine

Figure 42 – Isochronous OUT Transfer state machine

Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project

75

Device Enumeration state machine

Figure 43 – Device Enumeration state machine

