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Project Summary 

The Protocol Engine is a High Speed USB2.0 Communication Core, used for 

development and production of USB Classic and Vendor Specific Devices by 

processing USB2.0 packet-level Link-Layer Protocol tasks in hardware, thus 

offloading communication tasks from the µController.  

The protocol engine performs, CRC check and generation, packet identifier decoding 

and verification, address recognition and handshake evaluation and response. 

Acting on a received token and analyzing the token’s PID, address and endpoint 

number fields, the protocol engine can handle USB packets and transactions based 

on data sequencing and state machine logic.  

Protocol Engine compiles with High Speed USB 2.0 specification with a transfer rate 

of 480Mbps. The protocol engine also meets UTMI specification, generating control 

signals for UTMI transceiver interface according to the FSM states. 

USB 2.0 is an industry-wide, host oriented protocol, utilizing physical serial bus. 

Protocol Engine performs transaction to/from host and Computational Cores End-

Points, by managing a DMAC. Protocol Engine supports four types of transactions: 

Control - used by the USB System Software to configure devices. 

Bulk – a reliable transfer that includes the handshake phase. 

Isochronous – real-time, saves overhead by excluding handshake phase. 

Interrupt – a limited-latency transfer to or from a device. 

The Protocol Engine is partitioned into several major blocks: 

1. Enumeration FSM – handles the enumeration stages of the USB protocol.  

2. Configured FSM –handles all IN/OUT transfers from end to end.  

3. Receive Data Packet – handles data packets analysis & acceptance from UTMI. 

4. Send Data to DMA - handles handshake with DMA interface in OUT transaction. 

5. Receive Data DMA - handles handshake with DMA interface in IN transaction. 

6. EP Buffer OUT - 8 bits width FIFO holds data packet received from the UTMI. 

7. EP Buffer IN - 8 bits width FIFO holds data transferred from the DMA. 

8. CRC16/CRC5 – cyclic redundancy check generator. 

 

The Protocol Engine project was downloaded into Altera DE3 FPGA development 

board for simulation and verification. 
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Project’s Motivation 

Recent motivation for a separate USB 2.0 protocol engine stems from the fact that 

PCs have increasingly higher performance and are capable of processing vast 

amounts of data. At the same time, PC peripherals have added more performance 

and functionality. User applications such as multimedia applications demand a high 

performance connection between the PC and these highly sophisticated peripherals. 

The separate Protocol Engine addresses this need by working in parallel with the 

USB µController hence releasing the microprocessor from the burden of dealing 

with basic data transfer assignments such as token encoding and decoding, CRC 

check etc. This architecture will increase the parallel work of the USB device and 

increase its overall speed. 

Today’s High speed USB 2.0 compliant protocol engines are mostly firmware based 

and are not hardware based. In general firmware based solutions have much slower 

response rate and are less efficient than hardware based solutions, however in our 

case, since a high speed USB2.0 is required to deliver packets at a maximum speed 

rate of only 480Mbps this is not much of an issue. With an 8-bit bus, the protocol 

engine will have 16.66 ms to handle each word of data, which could be translated 

into a 60 Hz clock. Today's devices have clock rates of more than 100K times that. 

In our case, the main motivation to use the hardware based solution is to reduce the 

power requirements for the device. This is a consideration especially for battery 

powered devices that consume more than 5V and cannot use the USB built in power 

supply. 
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Technical Background 

Introduction 

The Universal Serial Bus (USB) is a specification developed by Compaq, Intel, 

Microsoft and NEC, joined later by Hewlett-Packard, Lucent and Philips. These 

companies formed the USB Implementers Forum, incorporated as a non-profit 

corporation to publish the specifications and organize further development in USB. 

The USB is specified to be an industry-standard extension to the PC architecture 

with a focus on PC peripherals that enable consumer and business applications. 

Main goal of the USB protocol was to replace the over growing number of different 

ports of PC connectivity. For example, parallel, ps/2 ports and serial could now be 

replaced by one simple connection. The USB will do the same role of all the replaced 

ports and suitable for all applications and peripherals. 

USB 2.0 is an Industry-wide, host oriented protocol, employing serial bus, 

supporting up to 127 devices and hot insertion. 

Several criteria were applied in defining the architecture for the USB: Ease-of-use 

for PC peripheral expansion. USB 2.0 represents a great advance in speed while 

keeping a low-cost solution that supports transfer rates of up to 480 Mbps. With full 

support for real-time data, voice, audio, and video it is the chosen protocol for most 

PC peripherals today. Comprehension of various PC configurations and form factors 

make the USB a multifunctional protocol capable of servicing various solutions.  

The USB is a generic protocol making its interface capable of quick diffusion into 

product. Augment the PC’s capability by enabling new classes of devices giving the 

USB a capability to be implemented in new developed devices, advancing with 

technology. Fully backward compatibility of USB 2.0 for devices built to previous 

versions of the USB specification. 

Robustness 

The key advantage of the USB protocol is its robustness. The USB has signal 

integrity which enables it to use differential drivers, receivers, and shielding. CRC 

protection over control and data fields. Detection of attach and detach and system-

level configuration of resources. Self-recovery in protocol, using timeouts for lost or 

corrupted packets. Flow control for streaming data to ensure isochrony and 

hardware buffer management. Data and control pipe constructs for ensuring 
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independence from adverse interactions between Functions. 

Error Detection 

The core bit error rate of the USB medium is expected to be close to that of a 

backplane and any glitches will very likely be transient in nature. To provide 

protection against such transients, each packet includes error protection fields. 

When data integrity is required, such as with lossless data devices, an error 

recovery procedure may be invoked in hardware or software. 

The protocol includes separate CRCs for control and data fields of each packet. A 

failed CRC is considered to indicate a corrupted packet. The CRC gives 100% 

coverage on single- and double-bit errors. 

Error Handling 

The protocol allows for error handling in hardware or software. Hardware error 

handling includes reporting and retry of failed transfers. A USB Host Controller will 

try a transmission that encounters errors up to three times before informing the 

client software of the failure. The client software can recover in an implementation-

specific way. 
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Data Speeds: 

The USB specification defines three data speeds: 

Name Speed Applications Attributes 

Low speed 1.5 Mbit/s 
Mouse, Keyboard, 

Joysticks. 

Lowest cost 

Ease of use 

Dynamic attach-detach 

Multiple peripherals 

Full speed 12 Mbit/s 
POTS, Audio, 

Broadband. 

Lower cost 

Ease of use 

Dynamic attach- detach 

Multiple peripherals 

Guaranteed bandwidth 

Guaranteed latency 

High speed 480 Mbit/s 

Video, Storage, 

Imaging, 

Broadband. 

Lower cost 

Ease of use 

Dynamic attach- detach 

Multiple peripherals 

Guaranteed bandwidth 

Guaranteed latency 

High bandwidth 

Table 1 – USB data speeds 

Low Speed 

This was intended for cheap, low data rate devices like mice. The low speed captive 

cable is thinner and more flexible than that required for full and high speed. 

Full Speed 

This was originally specified for all other devices. 

High Speed 

The high speed additions to the specification were introduced in USB 2.0 as a 

response to the high speed of Firewire. 

Device’s Endpoints 

An endpoint is a uniquely identifiable portion of a USB device that is the final stop of 

a communication flow between the host and device. Each USB logical device is  

composed of up to 30 independent endpoints and a control endpoint. To reach an 

endpoint the host must send a packet to the correct device address assigned by the 

system at device attachment time, and the correct endpoint number given at the 
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design time. Each endpoint has a device-determined direction of data flow, up to 15 

IN and 15 OUT endpoints are available and an additional control endpoint which is 

always referred to as endpoint zero. The combination of the device address, 

endpoint number, and direction allows each endpoint to be uniquely referenced.  

 

 

 

 

 

 

 

 

 

Descriptor Tables 

USB devices report their attributes using descriptors. A descriptor is a data 

structure with a defined format. Each descriptor begins with a byte-wide field that 

contains the total number of bytes in the descriptor followed by a byte-wide field 

that identifies the descriptor type. 

Using descriptors allows concise storage of the attributes of individual 

configurations because each configuration may reuse descriptors or portions of 

descriptors from other configurations that have the same characteristics. In this 

manner, the descriptors resemble individual data records in a relational database. 

Device Descriptor Table 

A device descriptor describes general information about a USB device. It includes 

information that applies globally to the device and all of the device’s configurations. 

A USB device has only one device descriptor. 

 

All USB devices have a Default Control Pipe. The maximum packet size of a device’s 

Default Control Pipe is described in the device descriptor. Endpoints specific to a 

configuration and its interface(s) are described in the configuration descriptor. A 

configuration and its interface(s) do not include an endpoint descriptor for the 

Default Control Pipe. Other than the maximum packet size, the characteristics of the 

Host Controller 

 

 

Device 

Endpoints 

Figure 1– Each endpoint supports data flow in one direction: 

either input (from device to host) or output (from host to device). 
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Default Control Pipe are defined by this specification and are the same for all USB 

devices. 

Table 10 in the Appendix section shows the Standard Device Descriptor Table. 

Configuration Descriptor Table 

The configuration descriptor describes information about a specific device 

configuration. The descriptor contains a bConfigurationValue field with a value that, 

when used as a parameter to the SetConfiguration() request, causes the device to 

assume the described configuration. The descriptor bNumInterfaces field describes 

the number of interfaces provided by the configuration. Each interface may operate 

independently. For example, an ISDN device might be configured with two 

interfaces, each providing 64 Kb/s bi-directional channels that have separate data 

sources or sinks on the host. Another configuration might present the ISDN device 

as a single interface, bonding the two channels into one 128 Kb/s bi-directional 

channel. When the host requests the configuration descriptor, all related interface 

and endpoint descriptors are returned. 

A USB device has one or more configuration descriptors. Each configuration has one 

or more interfaces and each interface has zero or more endpoints. An endpoint is 

not shared among interfaces within a single configuration unless the endpoint is 

used by alternate settings of the same interface. Endpoints may be shared among 

interfaces that are part of different configurations without this restriction. 

Table 11 – Configuration Descriptor Table in the Appendix section shows the 

Configuration Descriptor Table. 

 

Interface Descriptor Table 

The interface descriptor describes a specific interface within a configuration. A 

configuration provides up to four interfaces, each with zero or more endpoint 

descriptors describing a unique set of endpoints within the configuration. When a 

configuration supports more than one interface, the endpoint descriptors for a 

particular interface follow the interface descriptor in the data returned by the 

GetConfiguration() request. The descriptor contains a bInterfaceNumber field that 

specifies the number of the interface. 
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An interface descriptor is always returned as part of a configuration descriptor. 

Interface descriptors cannot be directly accessed with a GetDescriptor() or 

SetDescriptor() request. 

Error! Reference source not found. in the Appendix section shows the Interface 

Descriptor Table. 

Endpoint Descriptor Table 

Each endpoint used for an interface has its own descriptor. This descriptor contains 

the information required by the host to determine the bandwidth requirements of 

each endpoint. The descriptor contains a bEndpointAddress field that specifies the 

direction and endpoint number. bmAttributes field is used to determine the 

endpoint type (i.e Bulk, Isochronous, Control or Interrupt). wMaxPacketSize field 

contains the value of the Maximum packet size this endpoint is capable of sending or 

receiving. For isochronous endpoints, this value is used to reserve the bus time in 

the schedule, required for the per-microframe data payloads. An endpoint 

descriptor is always returned as part of the configuration information returned by a 

GetDescriptor(Configuration) request. There is never an endpoint descriptor for 

endpoint zero. 

Table 13 in the Appendix section shows the Endpoint Descriptor Table. 

Token Packets 

Field PID ADDR ENDP CRC5 

Bits 8 7 4 5 

Table 2 – Token packet bit distribution 

 

A token packet consists of a PID, ADDR and ENDP fields. Table 2 shows the field 

formats and their respective number of bits. Packet ID specifies either IN, OUT or 

SETUP packet type. PID codes table is available in Table 14 in the Appendix. For 

OUT and SETUP transactions, the address and endpoint fields uniquely identify the 

endpoint that will receive the subsequent Data packet. For IN transactions, these 

fields uniquely identify which endpoint from a unique addressed device should 

transmit a Data packet. Only the host can issue token packets. An IN PID defines a 

data transaction from a function to the host. OUT and SETUP PIDs define data 

transactions from the host to a function.  
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The token’s correctness is assured by the combination of two mechanisms. The 4 

bits representing the PID field are duplicated and negated to become 8 bits long. 

The ADDR and ENPD fields are protected by the CRC5 field. 

Data Packets 

Field PID Data CRC16 

Bits 8 0-8192 16 

Table 3  – Data packet bit distribution. 

A data packet consists of a PID, data field containing zero or more bytes of data, and 

a CRC16 as shown in Table 4. There are four types of data packets, identified by 

different PIDs: DATA0, DATA1, DATA2 and MDATA. DATA0 and DATA1 are defined 

to support data toggle synchronization in bulk, setup and interrupt transactions. All 

four data PIDs are used in data PID sequencing for high bandwidth high-speed 

isochronous endpoints. Data must always be sent in integral even number of bytes. 

Similar to the token packet, the data CRC16 is computed over only the data field in 

the packet and does not include the PID, which has its own check field. 

Handshake Packets 

Field PID 

Bits 8 

Table 4  – Data packet bit distribution. 

Handshake packets, as shown in Error! Reference source not found., consist of 

only a PID. Handshake packets are used to report the status of a data transaction.  

 

Assuming successful token decode, a device, upon receiving a data packet, may 

return any one of the three handshake types: 

• If the data packet was corrupted, the function returns no handshake. 

• If the data packet was received error-free and the function’s receiving 

endpoint is halted, the function returns STALL. 

• If the transaction is maintaining sequence bit synchronization and a 

mismatch is detected, then the function returns ACK and discards the data. 

• If the function can accept the data and has received the data error-free, it 

returns ACK. 
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• If the function cannot accept the data packet due to flow control reasons like 

out of space, it returns NAK. 

Upon receiving a SETUP token, a device must accept the data. A device may not 

respond to a SETUP token with either STALL or NAK, and the receiving device must 

accept the data packet that follows the SETUP token. If a non-control endpoint 

receives a SETUP token, it must ignore the transaction and return no response.  

Isochronous transactions have a token and data phase, but no handshake phase. The 

host issues an OUT token followed by the data phase in which the host transmits 

data. Isochronous transactions do not support a handshake phase or retry 

capability. 

Setup Packet 

Every USB device must respond to requests from the host on the device’s endpoint 

zero. The setup packets are used for detection and configuration of the device and 

carry out common functions such as setting the USB device’s address, requesting a 

device descriptor or checking the status of an endpoint. These requests are made 

using control transfers which will be discussed later on. The request and the 

request’s parameters are sent to the device in the Setup packet. Every Setup packet 

has eight bytes with the following fields: 

bmRequestType – One byte field which identifies the characteristics of the specific 

request. In particular, this field identifies the direction of data transfer in the second 

phase of the control transfer. The state of the Direction bit is ignored if the wLength  

field is zero, signifying there is no Data stage. The bitmap of bmRequestType field is 

specified in the table below. 

Bits 7 6..5 4..0 

Description 
Data Phase 

Transfer Direction 
Type Recipient 

Value 
0 = Host to Device 

1 = Device to Host 

0 = Standard 

1 = Class 

2 = Vendor 

3 = Reserved 

0 = Device 

1 = Interface 

2 = Endpoint 

3 = Other 

4..31 = Reserved 

Table 5 – bmRequest bitmap 
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bRequest – This 8 bit field specifies the particular request based on the Table 6 – 

bRequest codes below. 

bRequest Value 

GET_STATUS 0 

CLEAR_FEATURE 1 

Reserved 2 

SET_FEATURE 3 

Reserved 4 

SET_ADDRESS 5 

GET_DESCRIPTOR 6 

SET_DESCRIPTOR 7 

GET_CONFIGURATION 8 

SET_CONFIGURATION 9 

GET_INTERFACE 10 

SET_INTERFACE 11 

SYNCH_FRAME 12 

Table 6 – bRequest codes 

wValue – Two byte field with variable content according to the request. It is used to 

pass a parameter to the device, specific to the request. 

wIndex – Two byte field with variable content according to the request. It is used to 

pass a parameter to the device, specific to the request. The wIndex field is often used 

in requests to specify an endpoint or an interface. 

wLength - Two byte field which specifies the length of the data transferred during 

the second phase of the control transfer. The direction of data transfer (host-to- 

 

device or device-to-host) is indicated by the Direction bit of the bmRequestType 

field. If this field is zero, there is no data transfer phase. 

 

Offset Field Size Value Description 

0 bmRequestType 1 Bit-Map See Table 5 

1 bRequest 1 Value Request 

2 wValue 2 Value Value 

4 wIndex 2 Index or Offset Index 

6 wLength 2 Count 
Number of bytes to transfer if there is a 
data phase 

Table 7 – Format of setup data 
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Enumeration Process 

After a device is powered on it must follow the enumeration process to receive an 

address from the host and configuration. When in powered state it must not respond 

to any bus transactions until it has received a reset from the bus. After receiving a 

reset, the device is then addressable at the default address. Then the system enters 

the High Speed Handshake Detection protocol which includes the detection of a 

series of at least six J-K-J-K-J-K chirps terminated by SE0 as described in Figure 2. 

The device then enters high speed mode and switch to a Default State. 

 

Figure 2 – High speed detection state machine 

The device then waits for a setup token which precedes the setup packet for the 

SET_ADDRESS request. After the setup token has been received correctly, the host 

will send a setup packet to endpoint zero, with address zero and with packet ID 

DATA0. The setup packet contains the SET_ADDRESS request which contains the 

device new address assigned by the host. The new address is saved in the wValue 

field of the setup packet (see Table 7 for wValue description). After the device  

 

changes its address it enters the Addressed state. 

The device will enter its final state called Configured State which starts once the 

device receives the SET_CONFIGURATION request with a non-zero wValue field. 

USB Communications Flow 

All communications on the USB bus are initiated by the host. This means, for 

example, that there can be no communication directly between USB devices. A 

device cannot initiate a transfer, but must wait to be asked to transfer data by the 

host. In any USB system there is only one host and up to 127 peripherals.  
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The attached peripherals share USB bandwidth through a host scheduled, token-

based protocol. 

 

Figure 3 - The logical connection of a USB. 

The USB is a polled bus. Each transaction begins when the host controller, on a 

scheduled basis, sends a USB packet describing the type and direction of 

transaction, the USB device address, and the endpoint number. This packet is 

referred to as the token packet. The USB device that is addressed selects itself by 

decoding the appropriate address fields from the token packet. In a given 

transaction, data is transferred either from the host to the device or from the device 

to the host. The source of the transaction then sends a data packet. If transfer was 

successful the destination, excluding isochronous type of transactions, responds 

with a handshake packet indicating the transfer was successful. 



Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project  

18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 - A typical USB transaction involves a token packet followed by a data packet and ends with a 

handshake packet 

Transaction Types 

The USB architecture comprehends four basic types of data transfers: 

1. Control Transfers - Control data is used by the USB System Software to configure 

devices when they are first attached. Mandatory using Endpoint 0 OUT and 

Endpoint 0 IN. 

2. Bulk Transfers - Bulk data typically consists of larger amounts of data, such as 

that used for printers or scanners. Bulk data is sequential. Reliable exchange of 

data is ensured. Bulk transfers are designed to transfer large amounts of data 

with error-free delivery, but with no guarantee of bandwidth. The host will 

schedule bulk transfers after the other transfer types have been allocated. 

3. Interrupt Transfers - A limited-latency transfer to or from a device is referred to 

as interrupt data. Such data may be presented for transfer by a device at any 

time and is delivered by the USB at a rate no slower than is specified by the 

device 

4. Isochronous Transfers – Isochronous data is continuous and real-time in 

creation, delivery, and consumption. Timing-related information is implied by 

the steady rate at which isochronous data is received and transferred.  

 

Host Device 

IN Token 

Data 

ACK 

OUT Token 

ACK 

Data 

IN 

OUT 
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Isochronous data must be delivered at the rate received to maintain its timing. A 

typical example of isochronous data is voice. The timely delivery of isochronous 

data is ensured at the expense of potential transient losses in the data stream, 

where it is important to maintain the data flow, but not so important if some 

data gets missed or corrupted. In other words, any error in electrical 

transmission is not corrected by hardware mechanisms such as retries.  

Data Toggle Synchronization 

The USB provides a mechanism to guarantee data sequence synchronization 

between data transmitter and receiver across multiple transactions. This 

mechanism provides a means of guaranteeing that the handshake phase of a 

transaction was interpreted correctly by both the transmitter and receiver. 

Synchronization is achieved via use of the DATA0 and DATA1 PIDs and separate 

data toggle sequence bits for the data transmitter and receiver. Receiver sequence 

bits toggle only when the receiver is able to accept data and receives an error-free 

data packet with the correct data PID. Transmitter sequence bits toggle only when 

the data transmitter receives a valid ACK handshake. The data transmitter and 

receiver must have their sequence bits synchronized at the start of a transaction. 

The synchronization mechanism used varies with the transaction type. Data toggle 

synchronization is not supported for isochronous transfers. 
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 Protocol Engine Algorithms 

When the device is first powered on enumeration stage is initialized. When the 

enumeration stage is complete the device enters a standby mode and is ready to 

receive packets from the host.  When a packet is received from the host, the device 

reacts to the received packet, and interacts with the device via the corresponding 

endpoint. 

 

Figure 5 – Device Top level 

Figure 6 describes the algorithm for the Configured device state. First, a token 

packet is received. The packet is checked for correct PID, CRC5 and, if the checks 

succeed, the device checks if the token is addressed to our device. If the token is 

addressed to our device the endpoint field is checked. If the endpoint is zero and the 

endpoint state is stall, then a stall handshake is sent back to the host. 

At this point, the module analyzes the PID to determine if it is of type IN, OUT or 

PING. The device will act upon the transfer type set by the PID. 
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Figure 6 – Configured Final State Machine 
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Development tools 

We used several development tools for compiling, simulations, debugging and 

verifications: 

Modelsim 

Modelsim is an integrated development environment (IDE) used by electronic 

designers to develop, debug, simulate and test electronic designs. We used 

Modelsim for comprehensive simulating and debugging the Protocol Engine. 

Quartus 

Quartus II version 9.0 software offers a seamless development flow for the design of 

digital hardware, allowing you to enter, compile, and simulate a design. 

Quatrtus II provides all the necessary steps for downloading our design into the 

FPGA board, starting with analysis and synthesis through fitter and Assembler and 

ending with timing analysis. 

MegaWizard Plug-in Manager was used to create a ROM element which was part of 

our demonstration. The ROM element contained the packet and data that will be 

sent through the PHY and DMA bus during our demonstration. Using the 

MegaWizard Plug-in Manager we could set the values of the ROM to the content of a 

pre written mif binary file. 

Simvision 

Simvision is Development software for simulation and debugging a HDL design. This 

tool was rarely used due to the often network problems that prevented us from 

using this tool. 
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Altera DE3 FPGA Board 

 

Figure 7 – Altera DE3 FPGA development board 

The Altera DE3 FPGA development board is a powerful Programmable Gate Array. 

Using the DE3 FPGA board we could download the Protocol Engine project into 

hardware for simulation and verification of the design in Real Time conditions. For 

the simulation and verification of the Protocol Engine we used all the available 

board's switches and 7-seg displays and some of the LEDs and push buttons.  

DE3 board possess the EP3SL340 Stratix III FPGA has 338K logic elements, 

compared to the 68K logic elements of the EP2C70F896C6 Cyclone II FPGA that can 

be found on the DE2-70 board. Although the DE2-70 has more leds, 7-seg displays 

and switches we could not use it. Since the complexity of the USB 2.0 protocol 

required many logic elements for implementation, then the design of the Protocol 

Engine resulted in using more logic elements. EP2C70F896C6 Cyclone II FPGA on 

the DE2-70 board cannot supply so many elements. 
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System Level Introduction 

The USB 2.0 Protocol Engine will be integrated into a USB 2.0 device as a peripheral 

device, thus offloading communication tasks from the µController, by processing 

USB 2.0 packet-level Link-Layer Protocol tasks in Hardware.  

The protocol engine interacts with the Transceiver chip (PHY) and with the DMAC. 

Data received through the USB cable will enter the device via the USB connector and 

will then be transferred to the PHY chip which serves as a Serializer-Deserializer 

(SERDES), bit stuffer/un-stuffer and the NRZI encoder/decoder, which also handles 

the low level USB protocol and the signaling task.  The system will use a commercial 

mixed-signal USB 2.0 Transceiver chip (PHY). 

The PHY's output is sent to the Protocol Engine. The interface between the USB 2.0 

Transceiver chip (PHY) and the Protocol Engine, is defined by the UTMI (USB2.0 

Transceiver Macrocell Interface) Standard. Both Transceiver chip and Protocol 

Engine support high-speed (480 Mbps) signaling bit rates.  

The Protocol Engine's output is connected to the device system bus. The system bus 

is controlled by the µController and the DMAC. USB protocol-aware DMA engine 

maximizes data throughput while minimizing demands on the system bus. DMAC 

has the priority in getting access (via arbitration) to the bus. The DMAC performs 

communication data packet transfers between the Protocol Engine packet buffers 

and Device Endpoints, responding to Protocol Engine requests. 
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Figure 8 - µController-based Device Controller Block Diagram 
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The Protocol Engine 

The protocol engine performs CRC check/generation, packet identifier (PID) 

decoding and verification, address recognition and handshake evaluation/response. 

The protocol engine also meets UTMI specification. It generates control signals for 

UTMI transceiver interface according to the FSM states. Control signals are sent to 

the DMA interface and Function Core  

Acting on its USB PID and address recognition logic, and other sequencing and state 

machine logic, the protocol engine can handle USB packets and transactions.  

Protocol Engine supports up to 15 IN & 15 OUT Isochronous, Bulk, or Interrupt 

physical endpoints, and control endpoint 0. Information is sent to the endpoints via 

a DMAC and the System Bus. 

UTMI Interface Signals 

 

Figure 9 – UTMI Interface Block diagram. 

The protocol engine and UTMI work closely together. The UTMI serves as a 

Serializer-Deserializer (SERDES), bit stuffer/un-stuffer and the NRZI 

encoder/decoder, which also handles the low level USB protocol and the signaling 

task.  
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Name Direction 
Active 

Level 
Description 

clk Input 
Rising-

Edge 
Clock. This output is used for clocking receive and transmit 

parallel data. 

nrst Output Low 
Reset. Reset all state machines in the PHY. Same pin as 

Device nrst. 

XcvrSelect Output N/A 

Transceiver Select. This signal selects between the FS and 
HS transceivers: 

0: HS transceiver enabled 

1: FS transceiver enabled 

TermSelect Output N/A 

Termination Select. This signal selects between the FS and 

HS terminations: 

0: HS termination enabled 
1: FS termination enabled 

This signal is set to 0 during enumeration. 

LineState[1:0] Input N/A 

Line State. These signals reflect the current state of the 

single ended receivers. They are combinatorial until a 

"usable" CLK is available then they are synchronized to CLK. 

They directly reflect the current state of the DP 

(LineState[0]) and DM (LineState[1]) signals: 
DM  DP  Description                DP - USB data pin Data+ 

0      0     0: SE0                           DM - USB data pin Data– 

0      1     1: 'J' State 

1      0     2: 'K' State 

1      1     3: SE1 

OpMode[1:0] Output N/A 

Operational Mode. These signals select between various 
operational modes: 

[1][0]     Description 

0     0  0: Normal Operation 

0     1  1: Non-Driving 

1     0  2: Disable Bit Stuffing & NRZI encoding 

1     1  3: Reserved 

RXValid Input High 

Receive Data Valid. Indicates that the Data bus has valid 
data. The PHY RX Data Holding Register is full and ready to 

be unloaded. The PE is expected to latch the Data bus on the 

clock edge. 

RXActive Input High 
Receive Active. Indicates that the PHY detected SYNC and is 

active. RXActive is negated after a Bit Stuff Error or an EOP 

is detected. 

RXError Input High 

Receive Error. 
0 - Indicates no error. 

1 - Indicates that a receive error has been detected. 

This input is clocked with the same timing as the Data out 

lines and can occur at any time during a transfer. If asserted, 

it will force the negation of RXValid on the next rising edge 

of CLK. 

TXReady 

(Wait Signal) 
Input High 

Transmit Data Ready. If TXValid is asserted, the PE must 

always have data available for clocking in to the PHY TX 

Holding Register on the rising edge of CLK. TXReady is an 

acknowledgement to the PE that the PHY has clocked the 

data from the bus and is ready for the next transfer on the 

bus. If TXValid is negated, TXReady can be ignored by the 

PE. 
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TXValid Output High 

Transmit Valid. Indicates that the Data bus is valid for 

transmit. The assertion of TXValid initiates PHY-generated 
SYNC transmission the USB. The negation of TXValid 

initiates PHY-generated EOP on the USB. 

Control inputs (OpMode[1:0], TermSelect,XcvrSelect) must 

not be changed on the de-assertion or assertion of TXValid. 

The PHY must be in a quiescent state when these inputs are 

changed. 

ValidH 
Bi-

directional 
N/A 

If ValidH = 0, PHY_DATA is 8 bits. 
If ValidH = 1, PHY_DATA is 16 bits. 

In our system this bit is always set to 0. 

DataBus16_8 Output High 
Data Bus 16 - 8. Selects between 8 and 16 bit data transfers. 

This bit is always set to 0 since our device supports an 8 bit 

PHY transfer. 

PHY_DATA[15:0] 
Bi-

directional 
N/A 

PHY bus. These pins serve as the input and output data bus 
for the PHY device. 

Table 8 – UTMI Interface Signals 

DMA Interface Signals 

 

Figure 10 – DMA Interface Block diagram. 

Name Direction Active Level Description 

nPreq Output Low 
Packet Request. Data is ready to be sent or to be 

received. 

nTreq Output Low Transfer Request. Bus grant request. 

nDack Input Low 
DMA Acknowledge. Signal from DMA. DMA indicates 

that System Bus has been granted to him and data 
transfer begins. 

nEOT Input Low 
End Of Transfer Indication. DMA reports to PE that 

data transfer to the specific Endpoint, has been 

completed. 

epn[3:0] Output N/A Endpoint number. (0-15) for requested data transfer. 

npbwr Input Low Packet buffer write. Write signal to EP Buffer IN 

npbrd Input Low Packet buffer read. Read signal to EP Buffer OUT 

ep_dir Output N/A 
Endpoint Direction. IN (1) or OUT (0) for requested 

data transfer. 

Ifn Output N/A 
Interface Number. Selects the number of the current 

interface 

Table 9 – DMA Interface Signals 
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Device Description 

Top Level Blocks 

The Protocol Engine is partitioned into several modules is described below and 

shown on the block diagram in Figure 11 – Top Level Block diagram. 
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Figure 11 – Top Level Block diagram. 
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Enumeration FSM 
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Figure 12 –Enumeration FSM block diagram. 

The enumeration FSM module is in charge of the enumeration stages of the USB 

protocol as it is described in the technical background chapter. Once the device is  
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powered, this module is enabled and starts waiting for the reset signaling process. 

The reset process is composed from the following time constraints actions: 

LineState should be logic '0' for at least 2.5 ms, followed by that the module will 

assert Chirp K on the bus for at least 1 ms and not more than 7 ms after the reset. 

The XcvrSelect is then asserted which signals the high speed mode. The host will 

then send a series of at least six J-K-J-K-J-K chirps terminated by SE0, if the process 

ends successfully the TermSelect signal is asserted. The device will then change state 

to default state. 

 

Figure 13 – High speed detection state machine 

Default State - At this point the state machine waits for a setup token that precedes 

the SET_ADDRESS request. The token's address field should be zero. After a valid 

setup token is accepted, the state machine waits for a setup packet with PID DATA0, 

wValue contains the new device address, and the remaining fields should be zero. 

The data is saved and checked for CRC16 errors. The state machine then waits for an 

IN token so it could respond with zero length data packet indicating the previous 

request was accepted successfully. The state machine will wait for an ACK response 

from the host. Only after the ACK has been received the device address will change 

and the device state will switch to addressed state. 
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Figure 14 – Set Address state machine 
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Addressed State - at this point the state machine waits for another setup token that 

precedes the SET_CONFIGURATION request. After a valid setup token is accepted, 

the state machine waits for a setup packet with PID DATA0, wValue contains the 

device configuration number, the remaining fields should be zero. Since our device 

has only one configuration, it will only accept configuration requests that have their 

wValue field set to '1' and will ignore configuration requests which have any other 

value in the wValue field. The data is saved and checked for CRC16 errors. The state 

machine then waits for an IN token so it could respond with zero length data packet 

indicating the previous request was accepted successfully. The state machine will 

wait for an ACK response from the host. Finally after the SET_CONFIGURATION 

request the device state will change to configured state. 

 

Figure 15 – Set Configuration state machine 
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Configured State - once the device is in configured state, the enumeration FSM 

raises the enable signal in the configured FSM module and enters an idle state. The 

enumeration FSM will wake up from its idle state only if a SET_CONFIGURATION 

request with configuration value set to zero will be received. 

Enumeration FSM contains the sub modules receive setup data and receive token, 

which handle the UTMI handshake process, PID checks, CRC checks, and address 

check for received packets and tokens. 
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Configured FSM 

 

Figure 16 –Configured FSM block diagram. 
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The configured FSM module is the heart of the system while in configured state. It 

handles all transfers from end to end starting with the token stage through the data 

stage and ending with the handshake stage if required. It controls the following 

modules: receive data packet, send data to DMA, receive data from DMA and the 

SRAM. 

configured FSM has access to the UTMI interface which enables it to receive tokens. 

Received tokens are checked for errors in PID, CRC5 (with the help of the crc5 

module) and having the device's address. Tokens with an error or of a different 

address are discarded. Valid tokens are analyzed for PID type. The PID determines 

the type of transfer the host requires: OUT, IN, SETUP or PING: 

PING - The device will issue a handshake depending on its current state. If the 

endpoint which was addressed by the token is in a halt state (due to a previous 

request that was sent by the host) the device will issue a Stall handshake. If the 

device buffer is full, then a NAK handshake will be sent and if the device is ready to 

receive packets it will send ACK handshake. 

SETUP - This feature is not yet supported in PE. 

OUT - If an OUT PID is detected, configured FSM will enable the receive data packet 

module.  It will than wait until its operation will finish and the data packet along 

with the CRC16 field will be received into EP buffer OUT. It will check the toggle 

synchronization bit and if its valid the send to DMA module will be enabled and 

configured FSM will wait for the send_to_dma_nFinishTrans signal to rise. Once the 

send to DMA finished successfully an ACK handshake will be sent. 

IN - If and IN PID is detected, configured FSM will enable the receive data from DMA 

module. It will wait until its operation will finish and the data packet will be 

received into EP buffer IN. It will than operate its interface with the UTMI to send 

the data in the buffer with PID at the head and it's CRC16 at its tail. 
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Receive Data Packet 

 

Figure 17 – Receive Data Packet block diagram. 

This module contains a state machine which handles the acceptance of new data 

packets from the UTMI. When in initial state the block waits for RXActive signal to 

assert which signals beginning of the synchronization process between the host and 

the device and data is about to be sent from the host. 

PE then waits for the RXValid signal to assert which signals that valid data is ready 

for reading from the PHY_DATA bus. The new received data is then stored in the EP 

Buffer out FIFO. The data packet transfer stage ends once the RXValid signal is 

deasserted. 

After the data packet has been received, Receive Data Packet module will check the 

packet ID (PID) and toggle synchronization bit. If PID is valid, the module will assert 

the st_rd_ptr_buf_out signal which signals the EP Buffer out FIFO to store the current 

value of its read pointer. The state machine will then signal the EP buffer OUT to 

output the CRC16 field from the end of the FIFO and will save it for the CRC16 

calculation check later on. 

The state machine will then enable the CRC16 module and assert the rd_buf_out 

signal, starting the data flow from the EP buffer OUT to the CRC16 module. The 

CRC16 module reads the data from the FIFO and calculates the checksum. The 

output is then compared with the CRC16 field sent with the data packet. In the same 

time, the Receive Data Packet signals the FIFO to reset its read pointer to its  
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previous position so it would be ready for the DMA when it’s time for it to read the 

data. 

Send Data to DMA 

 

Figure 18 – Send Data to DMA block diagram. 

This module handles the handshake process with the DMA in an OUT transaction. 

The handshake process starts when the PE asks the µCotroller for a grant to use the 

bus by asserting the nTreq signal. The request is granted when the nDack is asserted 

by the µCotroller. Then, the PE asserts the nPreq to signal that the data is ready to be 

read. When the empty signal in EP Buffer OUT is asserted, the nPreq signal is 

deasserted, signaling the end of the packet transfer. If the amount of data is of zero 

length or less than the maximum packet size mentioned in the specific endpoint 

descriptor table (wMaxPacketSize), then not only the packet transfer has ended 

rather the entire transaction to that endpoint has finished. 
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Receive Data from DMA 
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Figure 19 – Receive Data from DMA block diagram. 

After an IN token, data has to be received from the DMA. This module uses the same 

signals as the send to DMA module to handle the handshake procedure in an IN 

transaction. Similarly to the sending process, the nTreq signal has to be asserted to 

request bus grant from µCotroller. When the nDack signal is asserted bus is granted. 

The DMA will then wait for nPreq from the PE indicating the PE is ready to receive 

data. The packet transfer will end once the nDack is deasserted, if in addition the 

EOT is asserted then not only the packet transfer has ended rather the entire 

transaction to that endpoint has finished. 
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SRAM 

 

Figure 20 – SRAM block diagram. 

The 16 bit width SRAM with 512 addresses holds the device’s descriptor tables. The 

SRAM has two outputs which gives it the ability to read two different memory spots 

in a single clock cycle. The descriptor tables hold information such as endpoint’s 

type (bulk, isochronous or interrupt), maximum packet size allowed etc. Once the 

chip is ready for production the SRAM will be replaced with a ROM memory and will 

be hard coded into the board in production.  
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EP buffer OUT 

 

Figure 21 - EP Buffer OUT module block diagram 

The EP buffer out module is a custom made 8 bits width FIFO that receives the data 

packet from the 8 bit PHY_DATA bus during an OUT transaction. The FIFO's 16 bit 

output is connected to the crc16 module and the dbus. The FIFO is controlled mostly 

by the receive data packet module which has access to most of its control signals. 

The FIFO has a read pointer and a write pointer, which are used to keep track of the 

FIFO's status. The FIFO is said to be empty when the read and write pointers are 

equal and is full when the write pointer points to the highest address in the FIFO. 

The FIFO receives the data packet's raw data and CRC16 field, the PID field in the 

receive data packet module. 

As was explained in the receive data packet module, the protocol engine has no way 

of knowing when the CRC16 field arrives from the PHY, but we do know that it is the 

last two bytes that were inserted into the FIFO. Since a regular FIFO does not allow 

reading the last inserted information, we added getCRC16 signal which extracts the 

last two inserted bytes. The st_rd_ptr signal is used to store the position of the read 

pointer before the crc16 module reads the data in the FIFO. After extracting the last 

two bytes from the FIFO and after storing the read pointer, the rd signal is raised  

 



Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project  

42 

 

and the data starts to flow through crc16 module. At the end of the crc16 calculation 

process the FIFO empty signal is will assert and the rd pointer will point to the same 

memory address as the write pointer. At this point the receive data packet module 

asserts the rest_rd_ptr which resets the read pointer to its previous position before 

the crc16 calculations. 

EP Buffer IN 

 

Figure 22 - EP Buffer IN module block diagram 

The EP buffer IN module is a custom made 8 bits width FIFO that receives the data 

packet from the 16 bit dbus during an IN transaction. The FIFO's 8 bit output is 

connected to the PHP_DATA bus. During transfer from the DMA the write signal is 

controlled by DMA's npbwr signal. The EP Buffer IN receives only the raw data 

without the PID or CRC16 fields. The CRC16 is calculated simultaneously while the 

raw data is transferred from the DMA to the EP Buffer IN. The configured FSM is 

responsible for sending the PID first, the DATA from the FIFO second and the CRC16 

last. 
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The FIFO has a read pointer and a write pointer, which are used to keep track of the 

FIFO's status. The FIFO is said to be empty when the read and write pointers point 

to the same memory block.  

CRC5 

 

Figure 23 – CRC5 module block diagram 

The CRC5 module is used whenever a token packet is received. A token packet has a 

crc5 field at its tail which has to be checked on arrival. The data part of the token is 

composed of the endpoint number and the device’s address. This information is 

inserted into the data_in (11 bit) entrance which then produces the correct CRC5 

after a single clock.  

CRC16 

CRC16 

clk

crc16_out

clr

en

data_in

 

Figure 24 – CRC16 module block diagram 

The CRC16 module is used whenever a data packet or a setup packet is received. 

Each data packet in a transfer contains crc16 field in its tail. Upon each clock cycle 

the data is inserted into the module’s data_in (16 bits). After the last word is 

processed by the module we receive the correct crc16 in the module’s output. 
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Detailed Functionality Description 

OUT transaction 

 

 

 

 

 

 

Figure 25 – OUT transaction. 

The OUT transactions start, just like any other transaction in the system, with a 

token sent from the host. The state machine in configured FSM waits for the UTMI 

signals RXActive and RXValid and receives the OUT token, a detailed description of 

the state machine can be viewed in Figure 26. 

 

Figure 26– UTMI Receive State Diagram 

The token's fields and size are discussed in the chapter "Technical Background". The 

packet is checked for correct PID by comparing the first four bits with the negation 

of the last four bits. The CRC5 field is checked with the help of the CRC5 module. If 

the checks succeed, it means the token was received correctly, the data load of the 

packet is without errors. The data load of the packet contains the endpoint number 

to which the data packet should be routed and the device address. First the state 

machine checks if the token is addressed to our device by comparing the device  
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address in the token packet with the device address saved in dev_addr register in 

the enumeration FSM module. If the token is addressed to our device the endpoint 

field is checked and saved in epn register. If the endpoint is zero and the endpoint 

state is stall, then a stall handshake is sent back to the host. 

At this point, the module analyzes the PID to determine that its type is OUT (0001), 

asserts the nTreq signal to get bus access from the µController, sets the ep_dir signal 

to OUT and enables the Receive Data Backet block which waits for a data packet to 

be received from the host. The signals diagram in Figure 27- UTMI receive signals 

describes the transfer of a data packet from the UTMI.  

 

Figure 27- UTMI receive signals timing 

The PID is saved in the curr_pid register and the Data and CRC16 are saved in the EP 

Buffer OUT FIFO. The FIFO is controlled mostly by the Receive Data Packet module 

which has access to most of its control signals. Receive Data Packet checks if the PID 

is of type DATA and if the PID is valid, the module will assert the st_rd_ptr_buf_out 

signal which stores the current value of the EP buffer OUT read pointer. The state 

machine will then signal the EP buffer OUT to output the CRC16 field from the end of 

the FIFO and will save it for the CRC16 calculation check later on. The state machine 

will then enable the CRC16 module and will assert the rd_buf_out signal, starting the 

data flow from the EP buffer OUT to the CRC16 module. The CRC16 module reads the 

data from the FIFO and calculates the checksum. The result is then compared with 

the CRC16 field which was sent with the data packet and was extracted earlier from 

the FIFO. At the same time, the FIFO’s read pointer is reset to its previous position 

so it would be ready for the DMA when it’s time for it to read the data. 

 

If this operation ends successfully the Receive Data Packet module asserts the done 
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signal. If there was an error and the data was not received correctly err signal is 

asserted and if there was only an error with the CRC16 check then the crc16_err 

signal is asserted. In case of CRC16 error, Bulk transactions are retried and 

isochronous transactions are continued. At this point the Receive Data Packet is 

disabled and configured FSM checks the toggle synchronization bit of the PID. For 

Bulk transactions the PID should be DATA0 or DATA1 alternately. Isochronous 

transactions based on the endpoint's descriptor table have a sequence of two, one or 

none DATAM packets followed by DATA2, DATA1 or DATA0 respectively. See the 

Technical Background chapter for additional information about the toggle bit.  

 

Figure 28 - Data Phase PID Sequence for Isochronous OUT endpoints 

If the toggle check is valid the send to DMA module will be enabled and configured 

FSM will wait for the assertion of send_to_dma_nFinishTrans signal which means that 

the DMA has finished sending the information. The send to DMA module waits for 

the nDack signal to be asserted which means the bus request is granted. Then, the 

send to DMA asserts the nPreq to signal that the data is ready to be read. When the 

empty signal in EP Buffer OUT is asserted, the nPreq signal is deasserted, and the 

send_to_dma_nFinishTrans signal is asserted signaling the end of the packet transfer. 

If a packet is of zero length or less than the maximum packet size mentioned in the 

endpoint descriptor table (wMaxPacketSize), then the entire transaction to that 

endpoint has finished. 
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Figure 29– DMAC handshake signaling during an OUT transaction. Two packet transfers in one 

transaction. 

After the successful data transfer, the configured FSM issues an ACK Handshake 

packet to the host. 

IN Transaction 

 

 

 

 

 

 

 

 

Figure 30 – OUT transaction. 

The IN transactions start, just like any other transaction in the system, with a token 

sent from the host. The state machine in configured FSM waits for the UTMI signals 

RXActive and RXValid and receives the IN token. The token's fields and size are 

discussed in the chapter "Technical Background". The packet is checked for correct 

PID by comparing the first four bits with the negation of the last four bits. The CRC5 

field is checked with the help of the CRC5 module. If the checks succeed, it means 

the token was received correctly, the data load of the packet is without errors. The 

data load of the packet contains the endpoint number from which the data packet 

would be routed from and the device address. First the state machine checks if the 

token is addressed to our device by comparing the device address in the token  
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packet with the device address saved in dev_addr register in the enumeration FMS 

block. If the token is addressed to our device the endpoint field is checked and saved 

in epn register. If the endpoint is zero and the endpoint state is stall, then a stall 

handshake is sent back to the host. 

At this point, the module analyzes the PID to determine that its type is IN (1001), 

asserts the nTreq signal to get bus access from the µController and enables the 

Receive Data from DMA block which waits for a data packet to be received from the 

DMA. The signals diagram in Figure 31– DMAC handshake signaling during an IN 

transaction. Two packet transfers in one transaction. describes the transfer of a data 

packet from the DMA. 
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Figure 31– DMAC handshake signaling during an IN transaction. Two packet transfers in one 

transaction. 

Once we are ready to receive data from the endpoint we assert the nPreq signal 

which requests a packet. The DMA will assert the nDack signal which acknowledges 

our request and asserts the npbwr signal which will enable the EP Buffer IN to 

receive the data. If an interrupt in the system will cause the µController to hand 

over bus control to a different peripherals in the system, then only the npbwr signal 

will deassert and reassert after the DMA will gain back its control over the bus. The 

nDack signal will deassert only after the competition of the packet transfer. If the 

entire transaction ended, meaning the endpoint had sent all the data it had, then the 

nEOT (End Of Transfer) signal will be asserted and bus control will be returned back 

to the µController. The npbwr signal also controls the CRC16 enable signal. At the 

same time the data is transferred to the FIFO, it also enters the data in input of the 

CRC16 block. At the end of the transfer we get the CRC16 field ready for 

transmission.  
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After the transfer from the DMA ends, the Configured FSM uses the UTMI interface 

signals to send the packet to the host. Figure 32 shows the relationship between the 

signals during transmission to the UTMI. 

 

Figure 32  - UTMI transmit signals timing 

Finally the packet transaction to the host starts. First, Configured FSM sends PID, 

DATA0, DATA1, MDATA or DATA2, based on the current toggle state and transaction 

type as described in the "Technical Background" chapter. Then the rd signal of the 

EP Buffer IN is asserted and the data is sent, when the FIFO's empty signal asserts, 

the CRC16 field is sent. 
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Simulation 

To simulate the Protocol Engine we used Mentor Graphics Modelsim and Cadence 

SimVision Simulator. Unfortunately due to repeatedly computer network problems 

in the engineering building SimVision was rarely used. 

Following are sample print screens of various transaction states of the Protocol 

Engine and their examination. 

OUT transaction 

This transaction will simulate a data packet sent from the host to the Bulk type 

endpoint number one, in the USB device at address 0001010.  

Figure 33 and Figure 34 shows the simulation of the OUT Transaction. First the 

RXActive and RXValid signals are asserted by the UTMI to signal that a new transfer 

is about to start. Then the PHY_DATA bus is mounted with the OUT token. A token is 

composed of three bytes as described in the chapter Technical Background The first 

byte is PID and in this example it is 0xe1 or 1110 0001 which is the code for an OUT 

token. The next two bytes (0x8a and 0xf0) are device address, endpoint number and 

CRC5. If we break it down we can see that for 0x8a (1 0001010) the seven LSBs are 

the device’s address and the one MSB is the LSB of the endpoint number. For 0xf0 

(11110 000) the three LSBs are the MSBs of the endpoint number and the five MSBs 

are the CRC5. 

After the token has been received the state machine checks it’s validity by analyzing 

the PID, CRC5 and Address fields. While the Configure FSM block checks the validity 

of the token, the Receive data packet module starts to receive the data packet which 

was sent by the UTMI immediately after the token. Notice that the nTreq signal is 

asserted at this point to request bus grant from the µController.  

 

Figure 33 - Packet received from the UTMI in an OUT transaction. 
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The received data packet is composed of PID, data and CRC16 fields. In our 

simulation, the PID field is 0xc3 (1100 0011) which according to the PID codes table 

in the appendix it is the PID for DATA0. The data field of the packet is composed of 

ten bytes which is less than 512 bytes, the maximum packet size allowed for this 

endpoint. The last two bytes (0xb9 and 0x57) are the CRC16 field. 

After Receive data packet module accepts the data packet and checks the CRC16 

field for errors the Protocol Engine has to send the data to the endpoint through the 

dbus. The nTreq signal was already asserted after the token has been received 

correctly, and now µController asserts the nDack signal which grants the Protocol 

Engine access to the dbus. The Protocol Engine will signal the DMA that the data is 

ready to be read by asserting the nPreq signal. The DMA will read the data from the 

Protocol Engine’s FIFO by asserting the npbrd signal. 

In this simulation we also simulate an interrupt in the system that causes the 

µController to hand over bus control to a different peripheral in the system. When 

the interrupt occurs, the DMA deasserts the npbrd signal and the FIFO will not read 

more data. npbrd will reassert after the DMA will gain back its control over the bus. 

When the FIFO empties out, the nPreq signal is deasserted. If the packet is less than 

the maximum packet size allowed for transmission to this endpoint as it is in this 

case, then the nTreq signal also deasserts and the control over the bus is handed 

over back to the µController. 

 

Figure 34 – Packet is sent to the DMA in an OUT transaction. 

IN transaction 

This transaction will simulate a data packet sent from the Bulk-type, endpoint 

number one, in the USB device at address 0001010, to the host.  

 

Figure 33 Figure 35 shows the simulation of the IN Transaction. First the Protocol 
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Engine has to accept and analyze a token packet. RXAcitve and RXValid signals are 

asserted by the UTMI to signal that a new transfer is about to start. Then the 

PHY_DATA bus is mounted with the IN token. A token is composed of three bytes as 

described in the chapter Technical Background. The first byte is PID and in this 

example it is 0x69 or 0110 1001 which is the code for an IN token according to the 

PID codes table in the appendix. The next two bytes (0x8a and 0xf0) are device 

address, endpoint number and CRC5. If we break it down we can see that for 0x8a 

(1 0001010) the seven LSBs are the device’s address and the one MSB is the LSB of 

the endpoint number. For 0xf0 (11110 000) the three LSBs are the MSBs of the 

endpoint number and the five MSBs are the CRC5. 

 

Figure 35 – IN transaction. 

After the token has been received the state machine checks it’s validity by analyzing 

the PID, CRC5 and Address fields. Notice that the nTreq signal is asserted at this 

point to request bus grant from the µController. nDack is asserted which means the 

bus is granted by the µController. The Protocol Engine then asserts nPreq to signal 

that the data is ready to be received. npbwr is then asserted by the DMA and the 

data is written to the Protocol Engine’s FIFO via the dbus. At the same time the data 

is also sent to the CRC16 module which will output the CRC16 field afterwards. 

Now, the Protocol Engine will send the data packet to the host via the PHY_DATA. 

TXReady signal is asserted to signal the UTMI that valid data is ready for transfer. 

The UTMI will then assert the TXValid signal and the packet would be mounted on 

the bus. In our simulation, the PID field is 0xc3 (1100 0011), which according to the 

PID codes table in the appendix is the PID for DATA0. Following the PID we send the 

data and then the CRC16 created by the CRC16 module. 
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Verification 

To verify the Protocol Engine we designed, we used the Altera DE3 board with a 

Stratix III FPGA chip. The Stratix III is much powerful than the Cyclone FPGA chip 

we intended to use in the beginning. Since Cyclone II have only 68K logic elements, 

and since the complexity of the USB 2.0 protocol required many logic elements for 

implementation, the Protocol Engine could not fit into it. Therefore we switched to 

the Stratix III FPGA which has 338K logic elements. 

Compiling and downloading the designed to the FPGA was done by the Altera 

Quartus II version 9.0 development software. The design was tested on the three 

stages of enumeration: default, addressed and configured, and for IN and OUT 

transactions. 

For testing the Protocol Engine we created a module called phy_dma_demo that 

simulates the host and DMAC by stimulating the appropriate signals of the DMA and 

UTMI interfaces. Using the MegaWizard Plug In we created a static ROM within the 

phy_dma_demo module that was used to store the demonstrated token and data 

packets. The ROM was content was set by a pre defined MIF binary file. To connect 

the interface signals between the phy_dma_demo module and the top module of the 

Protocol Engine, we created an additional module called demo. 

To connect the tri-state buffer of the DMA and PHY busses we assigned the 40-pin 

expansion header #2 GPIO1 that resides on the DE3 board. Besides connecting the 

interface signals further signals were output for debugging, these output signals 

were assigned to the leds, 7-seg displays, switches, push-buttons and some were 

assigned to the 40-pin expansion header #1 GPIO0. 

To verify the signals that were assigned to the GPIO0 bank, we use Agilent’s 

InfiiVision Mixed Signal Oscilloscope. To translate 4 binary digits to hexadecimal 

digit for use with the 7-segment display, we created a module which input is 4 bit 

wide and its output is connected to the 7-seg display, asserting the appropriate pins 

for displaying the input in hexadecimal. 

By verifying the Protocol Engine on the FPGA board, we created a demonstration 

that emphasizes the capabilities and feasibility of the protocol engine. 
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Hurdles and Obstacles 

High-Z pins 

In a project of this magnitude and scale there were quite a few design problems and 

hurdles we had to overcome. One of the major issues we faced was having different 

output signals derive the same input signal. Since two or more output signals cannot 

derive the same input signal simultaneously we had to come up with a way to 

disconnect signals to avoid contention. The solution we used was to set the unused 

signals to high-z state and the remaining signal maintain connected. 

This solution worked fine in the simulation we run, but caused critical warnings 

when we synthesized the project in Quartus II. The warning said that Quartus is 

substituting each high-z to a MUX. It turns out that the FPGA chip does not support 

high-z states and only allow them for I/O pins. 

Since we did not trust Quartus to make the substitution correctly, we had to go back 

and dive into the code to replace all of the instances where we used high-z states, 

with MUXES. The only signals we left with high-z are the PHY_DATA and dbus which 

we connected to the device’s 40-pins Expansion Header which support high-z state 

by the FPGA. 

This solution led to a different problem in the demonstration. Since our 

demonstration is actually composed of a different module that drives data packets 

to our buses, the buses no longer use the I/O pins. To solve that, we did use the I/O 

pins for the buses and we also connected the output signals of the demonstration 

module to the same pins. In this way the PE was able to receive the data via the pins 

and was able to use the high-z state for bus signals.  

FPGA chip 

Another obstacle we faced was when we wanted to download our project to the 

FPGA board. The FPGA chip we chose was Cyclone II FPGA that can be found on the 

DE2-70 board, because of its many switches and 7-segment display units. After 

setting all of the signals to the switches, buttons and displays in the system exactly 

as the way we wanted, we compiled our project to fit to the DE2-70 FPGA board and 

discovered that our design could not fit into our chosen Cyclone II FPGA chip. 
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Apparently the Cyclone II FPGA chip on the DE2-70 board has only 68K logic 

elements which are simply not enough for our project. This revelation forced us to 

switch to the DE3 board with EP3SL340 Stratix III FPGA chip. With 338K logic 

elements, it has more than five times as many logic elements as the DE2-70 board. 

Unfortunately, the DE3 is missing many of the I/O capabilities of the DE2. DE3 board 

only has two 7-segment displays compared with eight of the DE2, and only 4 

switches compared with sixteen of the DE2. 

At this point, changing boards meant to go back and re-declare the signals and 

change our demonstration scheme. 

USB Checker 

After downloading our project to the DE3 FPGA board we had to verify our design 

with the USB 2.0 protocol. Checking the integrity of the data that transferred 

through the UTMI and DMA busses was also necessary. 

USB checker which does automatic tests and provide a detailed report would be the 

ideal solution for verifying the Protocol Engine compliance with USB protocol. 

Since USB checker wasn’t at our disposal, an alternative solution had to be found. 

For checking the PE’s interface signals with the DMAC and UTMI, we output those 

signals to the 40-pins Expansion Header on the DE3 board. By using the switches on 

the DE3 board we could check step by step that all the interface signals are asserted 

and the right order and time. Connecting the UTMI and DMA busses also to the 40-

pins Expansion Header allowed us to check the integrity of the data being 

transferred, and to detect and fix bugs. 
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Alternative Solution 

An alternative solution for a hardware based protocol engine is a firmware or 

software based protocol engine.  The advantage in firmware base solution is that it 

is easier to develop, faster to implement, inexpensive and more flexible to changes. 

Firmware solutions can be easily modified and upgrade. With that in mind, 

firmware solutions also have some drawbacks. Firmware base solutions take more 

space than hardware solutions. In general firmware based solutions have much 

slower response rate than hardware based solutions, however in our case, since a 

high speed USB2.0 is required to deliver packets at a maximum speed rate of only 

480Mbps this is not much of an issue. With an 8-bit bus, the protocol engine will 

have 16.66 ns to handle each word of data, which could be translated into a 60 MHz 

clock. Today's devices have clock rates of more than 1000 times that. 

USB2.0 protocol is a well-established protocol which was adopted widely within the 

computer industry. Once the protocol has been set to be a standard it does not 

change, hence modifying the solution would not be an issue thus a firmware 

solution does not have a greater advantage over the hardware solution in this case. 

Another disadvantage in using firmware based solution is the device's power 

consumption. Firmware based solutions generally consume more power than 

hardware based solutions, since firmware implementation uses hardware which is 

not designed for a specific task, resulting in less inefficient use of the hardware. 

Our implementation is hardware based solution which reduces the power 

requirements for the device. This is a consideration especially for battery powered 

devices that consume more than 5V hence unable to use the USB built in power 

supply. 

 

 



Computer Engineering, VLSI Lab, USB2.0 Protocol Engine Project  

57 

 

Conclusion and Summary 

Work on the project was divided into several steps. The first step was to read and 

learn the USB2.0 specifications. We read the relevant chapters dealing with the 

protocol, mainly chapter three, five, eight and nine, and also other smaller parts of 

the specification. We also found quite a few websites online that tried to simplify the 

protocol. 

The second step was to write a specification file for our device based on what we 

read from the USB specifications. 

The next step was to translate everything we learnt from the specification into finite 

state machines using Visio drawings. This part made us dive even deeper into the 

specification and understand it to its fool extent. The protocol deals with many 

situations and has a lot of features which can be used by the devices and the host. 

We had to sift through all of these features, and find the ones that are related to the 

normal operation of the device. 

The fourth step was drawing a top level block diagram that describes all the 

modules and signals to that will be used in the system. 

The fifth step was using Verilog to write the different module of the system. We first 

had to learn the language since it was the first time we ever used it. Also, each 

module we created was tested and simulated using a test bench we wrote. 

The next step was to test the entire system using a test bench in Modelsim or 

Simvision. We created a test bench with many different packet IN and OUT 

transactions and tested our code. We found all kinds of problems and bugs that 

were related to the synergy between the different modules and interfaces. At this 

point we also inserted the signals we needed for the demonstration on the FPGA 

board. 

Our next step was to use Quartus to synthesize the project and get it ready for 

download to the FPGA board. At this step we found a major flaw in our design and it 

is described in the chapter  

Hurdles and Obstacles. 

Finally we tested our project on the board itself and wrote the project’s book. 

It was interesting to work on a project related to something so common that we see 

and use every day. 
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The benefits of having a USB2.0 protocol engine implemented in hardware are clear. 

These benefits, already discussed in the chapter Project’s Motivation, will surly 

stand out in any commercial protocol engine. 

This project hasn’t denied the feasibility of hardware based USB2.0 protocol engine 

in principle. There are still more advanced functions which were not implemented 

and are required for a commercial protocol engine. Also, there are quite a few 

important steps before this project could be implemented in ASIC. With this in mind, 

it is still early to defiantly say that a hardware based USB2.0 protocol engine chip is 

in hand’s reach. 
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A Look into the Future 

ASIC implementation: 

Since the USB2.0 standard is widely used in many peripheral devices. It is well 

established and has already proved itself to be reliable and efficient. The protocol's 

strict restrictions assure that different devices are compatible in every machine. 

This assures that the Protocol Engine we designed can be used in various products 

that uses USB2.0 standard as their chosen protocol. The programmable SRAM is 

designed to be able to hold any kind of descriptor tables for any product and can 

support up to 15 IN and 15 OUT endpoints with each of four different interfaces. 

Having a well established protocol allows the Protocol Engine to be implemented in 

ASIC, Cadence Encounter Synthesis tool, Low-Power Kit, System-On-Chip Functional 

Verification Kit and VirageLogic 65nm Libraries. 

The chip would have many advantages over other software based commercial 

products. Unlike other Protocol Engines out in the market, this Protocol Engine is 

hardware based and thus consumes less power. This feature is a great advantage 

especially in portable machines that use USB devices such as a graphical engine "on 

key". 

USB 3.0 

Furthermore, USB3.0 spec has been published and not long from now the computer 

industry will adopt this standard and move forward to the more advance protocol. A 

future improvement for the Protocol Engine is to support USB3.0 features and 

speed. 

Protocol Engine with DMA Controller 

An advance version of the Protocol Engine would be an assimilation of the DMA 

Contorller into it. Including the DMA Controller would simplify the interface with 

the device’s bus and reduce chances of bus contention by upgrading the 

synchronization capabilities of the Protocol Engine in the USB device. 
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Appendix 

Standard Device Descriptor Table 

Offset Field Size Value Description 
0 bLength 1 0x12 Size of this descriptor, in bytes. 

1 bDescriptorType 1 Constant DEVICE Descriptor Type 

2 bcdUSB 2 BCD 

USB Specification Release Number in Binary-Coded 

Decimal (i.e., 2.10 is 210H). 

This field identifies the release of the USB 

Specification with which the device and its 

descriptors are compliant. 

4 bDeviceClass 1 Class 

Class code (assigned by the USB-IF). 

If this field is reset to zero, each interface within a 

configuration specifies its own class information 

and the various interfaces operate independently. 

If this field is set to a value between 1 and FEH, the 

device supports different class specifications on 
different interfaces and the interfaces may not 

operate independently. This value identifies the 

class definition used for the aggregate interfaces. 

If this field is set to FFH, the device class is vendor-

specific. 

5 bDeviceSubClass 1 SubClass 

Subclass code (assigned by the USB-IF). 

These codes are qualified by the value of the 
bDeviceClass field. 

If the bDeviceClass field is reset to zero, this field 

must also be reset to zero. If the bDeviceClass field 

is not set to FFH, all values are reserved for 

assignment by the USB-IF. 

6 bDeviceProtocol 1 Protocol 

Protocol code (assigned by the USB-IF). 
These codes are qualified by the value of the 

bDeviceClass and the bDeviceSubClass fields. If a 

device supports class-specific protocols on a device 

basis as opposed to an interface basis, this code 

identifies the protocols that the device uses as 

defined by the specification of the device class. 

If this field is reset to zero, the device does not use 
class-specific protocols on a device basis. However, 

it may use class specific protocols on an interface 

basis. 

If this field is set to FFH, the device uses a vendor-

specific protocol on a device basis. 

7 bMaxPacketSize0 1 Number 
Maximum packet size for endpoint zero (only 8, 16, 

32, or 64 are valid) 

8 idVendor 2 ID Vendor ID (assigned by the USB-IF) 

10 idProduct 2 ID Product ID (assigned by the manufacturer) 

12 bcdDevice 2 BCD Device release number in binary-coded decimal 

14 iManufacturer 1 Index Index of string descriptor describing manufacturer 

15 iProduct 1 Index Index of string descriptor describing product 

16 iSerialNumber 1 Index 
Index of string descriptor describing the device’s 

serial number 

17 bNumConfigurations 1 Number Number of possible configurations 

Table 10 – Standard Device Descriptor Table 
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Configuration Descriptor Table 

Offset Field Size Value Description 
0 bLength 1 0x0A Size of this descriptor, in bytes. 

1 bDescriptorType 1 0x02 CONFIGURATION descriptor 

2 wTotalLength 2 0x006D 
Length of the total configuration block, 

including this descriptor, in bytes 

4 bNumInterfaces 1 0x04 This device has four interfaces 

5 bConfigurationValue 1 0x01 ID of this configuration 

6 iConfiguration 1 0x00 Unused, no string descriptor 

7 bmAttributes 1 0x80 
Bus-powered device, no remote 

wakeup capability 

8 bMaxPower 1 0xFA 
500mA maximum power consumption 
(in 2mA units) 

Table 11 – Configuration Descriptor Table 

 

Interface Descriptor Table 

Offset Field Size Value Description 

0 bLength 1 0x09 Size of this descriptor, in bytes. 

1 bDescriptorType 1 0x04 INTERFACE descriptor type 

2 bInterfaceNumber 1 Number 
Number of this interface. (zero-base 

value) 

3 bAlternateSetting 1 0x00 Default setting 

4 bNumEndpoints 1 Number 
Number of endpoints used by this 

interface (excluding endpoint 0) 

5 bInterfaceClass 1 0x00 Unused 

6 bInterfaceSubClass 1 0x00 Unused 

7 bInterfaceProtocol 1 0x00 
Device does not use class-specific 

protocols on a device basis. 

8 iInterface 1 0x00 Unused, no string descriptor 

Table 12 – Interface Descriptor Table 
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Endpoint Descriptor Table 

Offset Field Size Value Description 
0 bLength 1 0x07 Size of this descriptor, in bytes. 

1 bDescriptorType 1 TBD ENDPOINT descriptor type (5- Endpoint) 

2 bEndpointAddress 1 TBD 
Bit 7 Direction 0 = Out, 1 = In. Ignored for 

control endpoints.  Bits 0..3 Endpoint 
number = 1 

3 bmAttributes 1 TBD 

Bits 0..1 Transfer Type  

00 = Control 

01 = Isochronous 

10 = Bulk 

11 = Interrupt 
Bits 2..7 are reserved. If Isochronous 

endpoint,  

Bits 3..2 = Synchronization Type (Iso 

Mode) 

00 = No Synchronization 

01 = Asynchronous 

10 = Adaptive 
11 = Synchronous 

Bits 5..4 = Usage Type (Iso Mode) 

00 = Data Endpoint 

01 = Feedback Endpoint 

10 = Explicit Feedback Data Endpoint 

11 = Unused 

4 wMaxPacketSize 2 TBD 

Maximum packet size this endpoint is 

capable of sending or receiving when this 

configuration is selected. 

For isochronous endpoints, this value is 

used to reserve the bus time in the 

schedule, required for the per-

(micro)frame data payloads. The pipe 
may, on an ongoing basis, actually use less 

bandwidth than that reserved. The device 

reports, if necessary, the actual 

bandwidth used via its normal, non-USB 

defined mechanisms. 

For all endpoints, bits 10..0 specify the 
maximum packet size (in bytes). 

For high-speed isochronous and interrupt 

endpoints: 

 

Bits 12..11 specify the number of 

additional transaction 

opportunities per microframe: 
00 = None (1 transaction per microframe) 

01 = 1 additional (2 per microframe) 

10 = 2 additional (3 per microframe) 

11 = Reserved 

Bits 15..13 are reserved and must be set 

to zero. 

6 interval 1 TBD 

Interval for polling high BW endpoint for 
data.  

Period =  2bInterval-1 NAK/ACK per 1µFrame 

(125µSec) 

Table 13 – Endpoint Descriptor Table
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PID Codes Table 

PID Code (bits) 

OUT 0001 

IN 1001 

SOF 0101 

SETUP 1101 

PING 0100 

DATA0 0011 

DATA1 1011 

DATA2 0111 

MDATA 1111 

ACK 0010 

NACK 1010 

STALL 1110 

NYET 0110 

Table 14 – PID Codes Table 
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Altera DE3 Stratix III FPGA board Top view  

 
Figure 36 – Altera DE3 Stratix III FPGA board Top view. 
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Pin mapping table for verification and demonstration 

Signal Name 
FPGA 

Pin No. 

Verilog 

name 

SW[0] W5 rom_addr[0] 

SW[1] W6 rom_addr[1] 

SW[2] W9 rom_addr[2] 

SW[3] W11 rom_addr[3] 

CPU RESET U31 nrst 

OSC2_50 W2 clk 

BUTTON[0] K1 go0 

BUTTON[1] K2 go1 

LED [0] (Blue 

color) 
AB5 led0 

LED [1] (Blue 

color) 
AB6 led1 

LED [4] (Green 

color) 
Y3 led4 

LED [5] (Green 

color) 
W3 led5 

LED [6] (Green 

color) 
AA4 led6 

LED [7] (Green 

color) 
Y4 led7 

HEX0_D[0] W12 HEX0_D[0] 

HEX0_D[1] Y11 HEX0_D[1] 

HEX0_D[2] W10 HEX0_D[2] 

HEX0_D[3] W8 HEX0_D[3] 

HEX0_D[4] W7 HEX0_D[4] 

HEX0_D[5] Y5 HEX0_D[5] 

HEX0_D[6] Y6 HEX0_D[6] 

HEX0_DP V3 HEX0_DP 

 

 

 

 

Signal 

Name 

FPGA Pin 

No. 

Verilog 

name 

HEX1_D[0] P3 HEX1_D[0] 

HEX1_D[1] N4 HEX1_D[1] 

HEX1_D[2] N3 HEX1_D[2] 

HEX1_D[3] N1 HEX1_D[3] 

HEX1_D[4] M1 HEX1_D[4] 

HEX1_D[5] L1 HEX1_D[5] 

HEX1_D[6] L2 HEX1_D[6] 

HEX1_DP V4 HEX1_DP 

GPIO1_D0 AC26 PHY_DATA[0] 

GPIO1_D1 AC25 PHY_DATA[1] 

GPIO1_D2 AE28 PHY_DATA[2] 

GPIO1_D3 AD27 PHY_DATA[3] 

GPIO1_D4 AE27 PHY_DATA[4] 

GPIO1_D5 AD26 PHY_DATA[5] 

GPIO1_D6 AD29 PHY_DATA[6] 

GPIO1_D7 AF29 PHY_DATA[7] 

GPIO1_D8 AD28 dbus[0] 

GPIO1_D9 AF28 dbus[1] 

GPIO1_D10 AB27 dbus[2] 

GPIO1_D11 AE30 dbus[3] 

GPIO1_D12 AB26 dbus[4] 

GPIO1_D13 AE29 dbus[5] 

GPIO1_D14 AB25 dbus[6] 

GPIO1_D15 AB24 dbus[7] 

GPIO1_D16 AM21 dbus[8] 

GPIO1_D17 AD31 dbus[9] 

GPIO1_D18 AP20 dbus[10] 

GPIO1_D19 AD30 dbus[11] 

GPIO1_D20 AL22 dbus[12] 

GPIO1_D21] AJ20 dbus[13] 

GPIO1_D22 AM22 dbus[14] 

GPIO1_D23 AJ21 dbus[15] 

Table 15 – Pin mapping table for verification and demonstration 
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Schematic diagram of the 7-segment displays 

 
Figure 37 – Schematic diagram of the 7-segment displays 
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Hexadecimal to 7-seg translation table 

All pins are Active Low 

 segments numbers 
 

 

Hex 

Numbe

r 

6 5 4 3 2 1 0 Drive Note 

0 1 0 0 0 0 0 0 7'h40  

1 1 1 1 1 0 0 1 7'h79  

2 0 1 0 0 1 0 0 7'h24  

3 0 1 1 0 0 0 0 7'h30  

4 0 0 1 1 0 0 1 7'h19  

5 0 0 1 0 0 1 0 7'h12  

6 0 0 0 0 0 1 0 7'h02  

7 1 1 1 1 0 0 0 7'h78  

8 0 0 0 0 0 0 0 7'h00  

9 0 0 1 0 0 0 0 7'h10  

A 0 0 0 1 0 0 0 7'h08  

B 0 0 0 0 0 1 1 7'h03 small b 

C 1 0 0 0 1 1 0 7'h46  

D 0 1 0 0 0 0 1 7'h21 small d 

E 0 0 0 0 1 1 0 7'h06  

F 0 0 0 1 1 1 0 7'h0E  
Table 16 – Hexadecimal to 7-seg translation table 
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Bulk Interrupt IN Transfer state machine 

 
Figure 38 – Bulk Interrupt IN Transfer state machine 
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Isochronous IN Transfer state machine 

 
Figure 39 – Isochronous IN Transfer state machine 
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Bulk OUT Transfer state machine 

 
Figure 40 – Bulk OUT Transfer state machine 
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Interrupt OUT Transfer state machine 

 
Figure 41 – Interrupt OUT Transfer state machine 
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Isochronous OUT Transfer state machine 

 
Figure 42 – Isochronous OUT Transfer state machine 
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Device Enumeration state machine 

 
Figure 43 – Device Enumeration state machine 


