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ABSTRACT

We review the development of diffuse-interface models of hydrodynamics and
their application to a wide variety of interfacial phenomena. These models have
been applied successfully to situations in which the physical phenomena of inter-
est have a length scale commensurate with the thickness of the interfacial region
(e.g. near-critical interfacial phenomena or small-scale flows such as those oc-
curring near contact lines) and fluid flows involving large interface deformations
and/or topological changes (e.g. breakup and coalescence events associated with
fluid jets, droplets, and large-deformation waves). We discuss the issues involved
in formulating diffuse-interface models for single-component and binary fluids.
Recent applications and computations using these models are discussed in each
case. Further, we address issues including sharp-interface analyses that relate
these models to the classical free-boundary problem, computational approaches
to describe interfacial phenomena, and models of fully miscible fluids.

INTRODUCTION

The nature of the interface between two fluids has been the subject of extensive
investigation for over two centuries. Young, Laplace, and Gauss, in the early
part of the 1800s, considered the interface between two fluids to be represented
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as a surface of zero thickness endowed with physical properties such as surface
tension. In these investigations, which were based on static or mechanical
equilibrium arguments, it was assumed that physical quantities such as density
were, in general, discontinuous across the interface. Physical processes such as
capillarity occurring at the interface were represented by boundary conditions
imposed there (e.g. Young’s equation for the equilibrium contact angle or the
Young-Laplace equation relating the jump in pressure across an interface to the
product of surface tension and curvature). Poisson (1831), Maxwell (1876),
and Gibbs (1876) recognized that the interface actually represented a rapid but
smooth transition of physical quantities between the bulk fluid values. Gibbs
introduced the notion of a dividing surface (asurface of discontinuity) and sur-
face excess quantities in order to develop the equilibrium thermodynamics of
interfaces. The idea that the interface has a non-zero thickness (i.e. it is diffuse)
was developed in detail by Lord Rayleigh (1892) and by van der Waals (1893),
who proposed gradient theories for the interface based on thermodynamic prin-
ciples. In particular, van der Waals gave a theory of the interface based on his
equation of state and used it to predict the thickness of the interface, which he
showed became infinite as the critical temperature is approached. Korteweg
(1901) built on these ideas and proposed a constitutive law for the capillary
stress tensor in terms of the density and its spatial gradients. These original
ideas have been developed further and refined over the past century. For addi-
tional information, Rowlinson & Widom (1989) provide thorough discussions
of the historical perspectives and complete references to the early work on
interfacial and capillary phenomena.

The notion of a diffuse interface and the use of a capillary stress tensor to
model the interface between two fluids and the forces associated with it are
of central importance to the topics under consideration in this review. Our
focus here is on the use of diffuse-interface models that fully couple these
notions into a hydrodynamic description. Such models have been used to
understand physical and hydrodynamic phenomena that occur near a fluid’s
critical point. Additionally, developments in modern computing technology
have stimulated a recent resurgence in the use of the diffuse-interface models
for the computation of flows associated with complex interface morphologies
and topological changes, such as droplet breakup and coalescence, and the
nonlinear development of classical hydrodynamic instabilities.

In the classical fluid mechanical approach, the interface between two immis-
cible fluids is modeled as a free boundary that evolves in time. The equations
of motion that hold in each fluid are supplemented by boundary conditions
at the free surface that involve the physical properties of the interface. This
formulation results in a free-boundary problem (Lamb 1932, Batchelor 1967,
Lighthill 1978, Drazin & Reid 1981, Davis 1983).
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Specifically, in the free-boundary formulation it is assumed that the interface
has a surface tension, which on applying a stress balance at the interface gives
rise to the interfacial boundary condition

σ · n̂|+− = γKn̂, (1)

which relates the jump in the stress across the interface to the interfacial curva-
ture. Hereσ is the stress tensor,n̂ is the unit vector normal to the interface,γ
is the surface tension (here assumed to be constant), andK is the appropriately
signed mean curvature. In addition, an interface between two immiscible fluids
is impermeable, in which case conservation of mass across the interface leads to

Ev · n̂|− = Ev · n̂|+ = Vn, (2)

whereEv represents the velocity of the fluid andVn is the normal velocity of the
interface. Finally, for viscous fluids, there is continuity of tangential velocity
across the interface

[Ev − (Ev · n̂)n̂]|+− = 0. (3)

The free-boundary description has been a successful model in a wide range of
situations. However, there are also important instances where it breaks down.
In short, as a physical model it breaks down when the interfacial thickness is
comparable to the length scale of the phenomena being examined. For example,
(a) in a near-critical fluid the thickness of the interface diverges at the critical
point (Stanley 1971) and consequently the representation of the interface as
a boundary of zero thickness may no longer be appropriate; (b) the motion
of a contact line along a solid surface involves a detailed consideration of the
fluid motion in the vicinity of the contact line and may require the treatment
of length scales comparable to that of the interface thickness; and (c) the free-
boundary description may not be adequate for situations involving changes
in the topology of the interface (e.g. the breakup of a liquid droplet), since
these processes fundamentally involve physical mechanisms acting on length
scales comparable to the interface thickness. In addition to the above situations,
another difficulty associated with the free-boundary formulation arises in its use
in computational settings when the free boundary shape becomes complicated
or self-intersecting.

Diffuse-interface models provide an alternative description in the face of
these difficulties. Quantities that in the free-boundary formulation are local-
ized to the interfacial surface are distributed throughout the interfacial region.
For example, surface tension in the classical model is a representation of a
distributed stress within the interfacial region. In this spirit a continuum theory
of the interface may be developed where the reversible part of the stress tensor,
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C, that is associated with surface tension is expressed in its simplest form as

C ∝
(
ρ∇2ρ + 1

2
|∇ρ|2

)
I −∇ρ ⊗∇ρ, (4)

whereρ is the fluid density,I is the identity tensor, and the components of the
outer product∇ρ ⊗ ∇ρ are given by(∂ρ/∂xi )(∂ρ/∂xj ). Such a stress ten-
sor, often called the capillary tensor, was described by Korteweg (1901). The
derivatives of the density that appear in the stress tensor arise from the nonlocal
interaction of the molecules within the interface. In this situation, the density
ρ is the variable that distinguishes the bulk fluids and the intervening interface.
In this role, it is known as the order parameter. In contrast, for a binary fluid
undergoing spinodal decomposition, the compositionc naturally plays the role
of an order parameter (Cahn & Hilliard 1958). Alternatively it is possible that
neither the density nor the composition may be an appropriate or convenient
order parameter; such is the case in solidification models of single-component
materials (e.g. Caginalp 1985, 1986, Langer 1986). Here it is possible to intro-
duce an alternative order parameter, the so-called phase fieldφ, to characterize
the phases. The phase-field assumes distinct constant values in each bulk phase
and undergoes rapid but smooth variation in the interfacial region. The phase
field can be regarded as a mathematical device that allows a reformulation of
the free-boundary problem and has been used successfully in many instances.
In particular, phase-field models of solidification have been used to compute
complicated realistic interfacial structures such as those present during den-
dritic growth (Kobayashi 1993, Wheeler et al 1993, Warren & Boettinger 1995,
Karma & Rappel 1997) and Ostwald ripening (Warren & Murray 1996).

Inherent in diffuse-interface models is an interfacial width that is character-
ized by the length scale over which the order parameter changes. By considering
the asymptotic limit in which the interfacial width is small compared with the
macroscopic length scale associated with the motion of the two bulk fluids
(i.e. the sharp-interface limit), the diffuse-interface model can be related to the
free-boundary problem.

In Section 2 we formulate the diffuse-interface theory of a single-component
fluid near its critical point. Here we discuss developments for equilibrium and
nonequilibrium situations and also review the applications addressed with this
model. In Section 3 we review the developments of these ideas for a binary fluid.
In Section 4 we discuss related topics, including the sharp-interface limit anal-
yses, computational methods for fluid interfaces, and models of miscible fluids.

A SINGLE-COMPONENT FLUID

Diffuse-interface models of a single-component fluid have been developed
largely from the perspective of critical phenomena. While they have been
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used to study phenomena associated with the critical point, they have also been
applied to situations away from the critical point. With this in mind, we re-
view in this section the ideas and applications of diffuse-interface models of a
single-component fluid.

Equilibrium
We begin by first considering the equilibrium state of a nonuniform single-
component fluid. We assume that an isothermal fluid near its critical point has
a Helmholtz free energy functional given by

F =
∫

V

[
ρ f (ρ, T)+ 1

2
K |∇ρ|2

]
dV, (5)

whereV is a control volume,f (ρ, T) is the bulk free energy density (per unit
mass),K is a gradient energy coefficient (assumed for simplicity to be constant),
andT is the temperature. In a simple model the termρ f (ρ, T) is assumed to
take the form of a double well with respect to the density below the critical
temperature and a single well above the critical temperature. The square-
gradient term is associated with variations of the density and contributes to the
free energy excess of the interfacial region, which defines the surface energy
(Cahn & Hilliard 1958). The form of the energy density can be interpreted in
the context of statistical mechanics in which the square gradient term arises
from attractive long-ranged interactions between the molecules of the fluid and
in which the gradient energy coefficient,K, can be related to the pair correlation
function (for further details see Irving & Kirkwood 1950, Bearman & Kirkwood
1958, Yang et al 1976, Bongiorno et al 1976, Abraham 1979, de Sobrino &
Peternelj 1982, and Davis & Scriven 1982).

The equilibrium conditions are obtained by minimizingF subject to a con-
straint of constant mass,M, where

M =
∫

V
ρ dV. (6)

This leads to the Euler-Lagrange equation

K∇2ρ − (ρ f )ρ + λ = 0, (7)

whereλ is the Lagrange multiplier associated with conservation of mass. The
integrand ofF as well as that of the mass constraint are independent of the spatial
coordinates. Consequently, it follows from Noether’s theorem (Goldstein 1980)
that there is a corresponding conservation law given by

∇ · T = 0, (8)
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where T is a second-rank tensor given by

T = L I −∇ρ ⊗ ∂L
∂(∇ρ) , (9)

andL = ρ f (ρ, T)+ 1
2 K |∇ρ|2 − λρ. Using the Euler-Lagrange equation (7)

to eliminate the Lagrange multiplier we find that

T =
[
−p+ Kρ∇2ρ + 1

2
K |∇ρ|2

]
I − K∇ρ ⊗∇ρ, (10)

wherep = ρ2 fρ has been identified as the thermodynamic pressure ( e.g. see
Callen 1985). Using the divergence theorem, Equation 8 may be expressed as∫

S
T · n̂d A= 0, (11)

whereSis the boundary of a control volume with unit normal vectorn̂. This is
the generalization to three dimensions of the first integral of the Euler-Lagrange
Equation 7 in one dimension. Equations 8 and 11 suggest thatT represents a
stress tensor (up to an additive divergence-free contribution). We show in the
next section thatT represents the reversible part of the stress tensor. Similar
equilibrium conditions have been obtained by Blinowski (1973a,b) from the
point of view of elastic fluids. A review article covering a variety of aspects of
this and related theories can be found in Davis & Scriven (1982). It was noted by
Dunn & Serrin (1985) that consistency with nonequilibrium thermodynamics
requires a more specific form for the capillary tensor than that used originally by
Korteweg (1901), and later in the mechanical equilibrium theories of Aifantis
& Serrin (1983a,b).

The equilibrium density profileρ(z) obtained using a van der Waals equation
of state (Callen 1985, Rowlinson & Widom 1989) represents a smooth transition
from one bulk density to the other (in the two-phase region) over a length scale
associated with the gradient energy coefficient. Such an interface has a surface
energy given by

γ = K
∫ ∞
−∞

(
dρ

dz

)2

dz. (12)

Nonequilibrium
We now pursue the nonequilibrium situation by outlining a thermodynamic
procedure involving local balances of mass, linear momentum, energy, and
entropy consistent with the inclusion of a square-gradient energy term in the
internal energy functional. The total mass,M, total momentum,EP, total
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internal energy,E , and total entropy,S, associated with a material volume�(t)
are

M =
∫
�(t)

ρ dV, (13a)

EP =
∫
�(t)

ρEv dV, (13b)

E =
∫
�(t)

(
1

2
ρ|Ev|2+ ρe(s, ρ)+ 1

2
KE|∇ρ|2

)
dV, (13c)

S =
∫
�(t)

ρs dV, (13d)

whereEv is the fluid velocity,e ands are the internal energy and entropy per
unit of mass, respectively, andKE is the gradient (internal) energy coefficient,
which we assume to be constant. For simplicity, we have neglected body forces
such as gravity. The associated physical balance laws can be expressed as

dM
dt
= 0, (14a)

d EP
dt
=
∫
δ�(t)

m · n̂ d A, (14b)

dE
dt
=
∫
δ�(t)

[Ev · m · n̂− EqE · n̂] d A, (14c)

dS
dt
+
∫
δ�(t)
EqS · n̂ d A=

∫
�(t)

ṡprod dV ≥ 0, (14d)

whereδ�(t) is boundary of�(t), m is the stress tensor,EqE and EqS are the
internal energy and entropy fluxes, respectively, andṡprod is the volumetric
entropy production. The quantitiesm, EqE, andEqS, which in general include
both classical and nonclassical contributions, are specified below such that
their forms guarantee thatṡprod is non-negative, as required by the Second
Law of Thermodynamics. Equation 14a simply represents conservation of
mass. Equation 14b states that the change in total momentum is related to
the forces on the boundary (again note that we have neglected body forces).
Equation 14c states that the change in total energy is related to the rate of
working done by the forces on the boundary and also the energy flux through
the boundary. Equation 14d states that the change in total entropy plus the
entropy flux through the boundary must be equal to the entropy production.
The definitions in Equation 13a–dand the balance laws in Equation 14a–dmay
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be manipulated to show that

ṡprod = ( m− T) : ∇Ev
T

+
(
EqE + KE

Dρ

Dt
∇ρ
)
· ∇
(

1

T

)
+∇ ·

(
EqS− EqE

T
− KE

T

Dρ

Dt
∇ρ
)
, (15)

where T is the reversible part of the stress tensor given by Equation 10 withK
replaced byKE, and we have used the thermodynamic relationshipde= T ds+
(p/ρ2)dρ. The following specifications ensure that the entropy production is
positive:

m= T + τ , (16a)

EqE = −k∇T − KE
Dρ

Dt
∇ρ, (16b)

EqS = −k∇T

T
, (16c)

wherek is the thermal conductivity andτ is the viscous stress tensor given
in the standard manner asτ = η(∇ · Ev) + µ(∇Ev + ∇EvT ), whereη andµ
are coefficients of viscosity (e.g. Batchelor 1967). This prescription form
is similar to that postulated by Korteweg (1901). In this formulation it is
assumed that the viscosity and thermal conductivity are, in general, functions
of the density. We observe that the energy fluxEqE involves both the classical
contribution corresponding to the Fourier Law for heat conduction (Carslaw
& Jaeger 1959, Kittel & Kroemer 1980) and a nonclassical contribution. This
nonclassical contribution was referred to as interstitial working by Dunn &
Serrin (1985), who also noted that there is no corresponding nonclassical term
in the entropy flux. When a square-gradient term is included in the definition
for total entropy (Equation 13d ), a nonclassical entropy flux arises (e.g. Wang
et al 1993, Wheeler et al 1996, Anderson & McFadden 1996). Using the above
forms (Equation 16a–c) for the stress tensor and fluxes, the local balance laws
may then be written as

Dρ

Dt
= −ρ∇ · Ev, (17a)

ρ
DEv
Dt
= ∇ · m, (17b)

ρ
De

Dt
= ∇ · (k∇T)+ (−p I + τ ) : ∇Ev, (17c)

ρT
Ds

Dt
= ∇ · (k∇T)+ τ : ∇Ev. (17d)
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These equations describe viscous, compressible, nonisothermal flow. To solve
these it is necessary to supply an equation of state. In the isothermal situation,
for example, one might specify the pressurep through a van der Waals equation
of state.

This and similar models have been developed and studied by a number of
authors from a variety of perspectives. Fixman (1967) developed a diffuse-
interface hydrodynamic model in which the reversible part of the stress ten-
sor was identified using a mechanical principle. In the model of Felderhof
(1970), a more general form of the stress tensor was obtained that was com-
patible with the underlying Lagrangian. Langer & Turski (1973) derived a
diffuse-interface model that they showed, through a coarse-graining argument,
could be related to a molecular model. The model employed by Jasnow &
Vi ñals (1996) was derived using a Hamiltonian description. Jacqmin (1996)
described a model that also included a wall potential to model the interaction
between the fluid and a solid boundary. Truskinovsky (1993) derived a similar
model that also included an additional nonconserved order parameter and its
gradients. Antanovskii (1996) presented a derivation of the model based on
a maximum entropy principle. The derivation outlined above is most similar
to that described by de Sobrino (1976), Dunn & Serrin (1985), Dunn (1986),
and Anderson & McFadden (1996, 1997). The work of de Sobrino begins in
a more general framework and invokes symmetry and invariance principles to
simplify the gradient dependence of the stress tensor to that described above.
Dunn & Serrin’s approach is similar but mathematically more rigorous and is
given from the viewpoint of rational mechanics.

A detailed numerical analysis of a simplified version of the diffuse-interface
model has been performed by Affouf and Caflisch (1991), who present nu-
merical solutions representing phase transitions, shocks, and rarefaction waves
connecting far-field states, and analyze their stability.

Applications
CRITICAL POINT SCALING LAWS Extensive analyses using renormalization-
group techniques have been performed on a diffuse-interface model, commonly
known in the literature as Model H (Hohenberg & Halperin 1977), which de-
scribes the dynamics of a binary fluid phase transition as well as a single-
component fluid near its critical point (e.g. Halperin et al 1974, Siggia et al
1976, Hohenberg & Halperin 1977). Such analyses have identified divergent
transport coefficients and scaling relations associated with near-critical fluids.

SHEAR FLOWS IN NEAR-CRITICAL FLUIDS Onuki & Kawasaki (1979) and
Onuki et al (1981) studied the dynamics of a near-critical fluid in a shear flow
using a model developed by Kawasaki (1970). They investigated the regime
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in which the equilibrium correlation length (i.e. the interfacial thickness) ex-
ceeds the length scale associated with the shear flow. They found that the
critical fluctuations of classical fluids can be drastically altered (e.g. they can
become highly anisotropic) by shear flows. These ideas have also been applied
to polymers under shear flows (Helfand & Fredrickson 1989, Onuki 1989).

CAPILLARY WAVES The diffuse-interface model has been used to study cap-
illary waves (Felderhof 1970, Turski & Langer 1980, de Sobrino & Peternelj
1985, de Sobrino 1985). These authors began with a diffuse planar interface in
equilibrium. They discussed capillary waves by means of a linearized theory
about the equilibrium state. The linearized governing equations were examined
in the long wavelength limit and the dispersion relation for capillary waves ob-
tained from the classical free-boundary problem (e.g. Landau & Lifshitz 1959)
is recovered. These authors recognized the importance of an isentropic treat-
ment to the existence of capillary waves (in the context of a diffuse-interface
model), although Felderhof derived the result in the isothermal case as well as
under somewhat more restrictive conditions.

MOVING CONTACT LINES Seppecher (1996) established the governing equa-
tions for an isothermal viscous flow near a moving contact line on a planar
solid wall using a diffuse-interface model. In particular, a uniform distribution
of double forces was used to describe the interaction between the fluid and
the wall. In this analysis, the contact-line problem was separated into three
regions: an external (outer) region far from the contact line where the classical
theory of capillarity applies; an inner region very near the contact line whose
dimensions are so small that the thickness of the interface cannot be neglected;
and an intermediate region that matches the inner and outer regions. The flow
in the inner region is compressible, while the flows in the intermediate and
outer regions are incompressible. Examples of the density field and flow field
in the inner region are shown in Figures 1 and 2. A key result of this paper
was that the force singularity present in classical continuum models of moving
contact lines (e.g. Huh & Scriven 1971, Dussan V & Davis 1974, Dussan V
1979) is not present when the interface is modeled as diffuse. This is attributed
to mass transfer across the interfacial region. Additionally, numerical compu-
tations reveal a roughly linear increase in the apparent contact angle with the
contact-line velocity (no contact-line hysteresis was considered), which agrees
with the general trends observed experimentally (see Dussan V 1979). The
moving contact-line problem has also recently been treated computationally by
Jacqmin (1996) and is described in the next section.

INTERNAL WAVES IN A NEAR CRITICAL FLUID Anderson & McFadden (1997)
recently employed the diffuse-interface model to describe internal waves in
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Figure 1 Moving contact line. This figure shows the constant density contours in the inner
region. The frame of reference is fixed on the contact line region so that the bottom plate moves
from left to right at an imposed velocity. In this case the imposed static contact angle at the wall
is approximately 54◦ while the dynamic contact angle (away from the immediate vicinity of the
contact line) is approximately 125◦. The parameter values consistent with the notation given in
Seppecher (1996) are R = 20, um = 2, K = 10, g = −0.3, and Ca = 40 × 10−3. (Figure
courtesy P Seppecher.)

Figure 2 Moving contact line. This figure shows the streamlines in the inner region associated
with the density contours shown in Figure 1. The frame of reference is fixed on the contact line
region so that the bottom plate moves from left to right at an imposed velocity. (Figure courtesy P
Seppecher.)

,
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a near-critical fluid. These internal waves are present in small (centimeter-
scale) containers owing to the large compressibility of the fluid near the critical
point and have been observed experimentally in near-critical Xenon by Berg
et al (1996). In the experimental work of Berg et al, internal gravity wave
frequencies were measured both above the critical temperature where a single
phase exists, and below the critical temperature where two phases, separated
by an interface, exist. The theoretical development of Berg et al consisted of
two separate models, one above the critical temperature and another below the
critical temperature. In contrast to these classical hydrodynamic models, the
diffuse-interface approach employed by Anderson & McFadden allows for a
single model to be applied both above and below the critical temperature. In
their diffuse-interface model, they use a van der Waals equation of state to
obtain a base-state density profile. Upon this base-state, they introduce linear
perturbations to calculate internal wave frequencies for temperatures both above
and below the critical temperature. Predictions of the internal wave frequency
from the diffuse-interface model are compared favorably with experimental
data and theoretical results of Berg et al.

DROPLETS AND NUCLEATION Several authors have investigated the nucleation
of droplets (Blinowski 1974, Dell’Isola et al 1995, 1996). The focus of this work
was to ascertain the effects of interfacial thickness on the nucleation conditions
of a droplet, since at nucleation the droplet radius may be comparable to the
interfacial thickness. Under these circumstances, the classical Laplace-Gibbs
theory for the equilibrium radius of a droplet is called into question. Dell’Isola
et al used an equilibrium formulation of a diffuse-interface model developed
in earlier work (Dell’Isola & Kosiński 1993) to study nucleation of spherical
droplets. In particular, they noted that for microscopic droplets the difference
in mechanical pressures inside and outside the droplet (which is the quantity
that is measured experimentally) is not the same as the difference between
the thermodynamic pressures inside and outside the droplet. The mechanical
pressure involves a (stress) contribution from the spatial density variation (e.g.
the term in Equation 10 involvingρ∇2ρ), which at the center of the microscopic
bubble is important. Based on these ideas, they carefully define quantities such
as surface tension and droplet radius in a way that generalizes the classical
notions. Relationships between surface tension, droplet radius, and the critical
nucleation radius are obtained by using a number of different equations of
state. Results for the minimal nucleation radius are compared with experimental
measurements.

INSTABILITIES OF PLANAR JETS Nadiga & Zaleski (1996) studied the inst-
ability of a planar jet of viscous, compressible, isothermal liquid issuing into
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its surrounding gas phase. They used a van der Waals equation of state to char-
acterize the system. Their calculations focused on the high Reynolds number
regime (Re= 800), and they investigated the effect of surface tension on the
stabilization of the jet.

SPINODAL DECOMPOSITION IN A PURE FLUID Nadiga & Zaleski (1996) also
considered the spinodal decomposition of a single-component fluid rapidly
quenched from a temperature above its critical point to a temperature below
the critical point. These computations are isothermal and two-dimensional.
They found that the inclusion of hydrodynamic effects in the model leads to
a predicted growth rate that is slightly enhanced from the case of diffusion-
limited growth. Numerical computations show the domain growth, and plots
of domain size versus time are presented.

A BINARY FLUID

Nonequilibrium
We now consider the situation of a binary fluid consisting of two components,A
andB. We denote the composition of componentA, expressed as a mass fraction,
by c. In this setting the composition plays the role of an order parameter that
distinguishes the different phases of the fluid and in this way is analogous to
the density in the single-component fluid models. However, a number of subtle
differences exist between the single-component and binary fluid models.

The governing equations for the flow of a nonisothermal, compressible binary
fluid may be developed in a manner similar to those for the single-component
case discussed above, but involve square-gradient contributions in the internal
energy functional from the composition rather than from the density. This
procedure leads to an expression for entropy production of the form

ṡprod = ( m− TC) : ∇Ev
T

+
(
EqE + KE

Dc

Dt
∇c

)
· ∇
(

1

T

)
− EqC · ∇

(
µc

T

)
+∇ ·

(
EqS− EqE

T
− KE

T

Dc

Dt
∇c+ µcEqC

)
, (18)

where TC is the reversible part of the stress tensor given by

TC =
(
−p+ 1

2
KE|∇c|2

)
I − KE∇c⊗∇c, (19)

EqC is the mass flux of componentA, andµc is the generalized chemical potential
given by

µc = ∂e

∂c
− KE

ρ
∇2c. (20)
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The specification ofm, EqE, EqS, andEqC to ensure positive entropy production
follows in an analogous way to the single-component case. In particular,EqC =
−D∇(µc/T), whereD is positive and represents the diffusion coefficient.
Consequently, the equation for the composition is given by

ρ
Dc

Dt
= ∇ ·

{
D∇

[
1

T

(
∂e

∂c
− KE

ρ
∇2c

)]}
. (21)

This is the well-known Cahn-Hilliard equation, used to model spinodal de-
composition by Cahn (1961) and Hilliard (1970), modified to account for fluid
motion. The equations governing density, velocity, and temperature (energy)
are similar to those for a single-component fluid given above by Equations
17a–d. Two subtle differences between the binary fluid equations and the
single-component fluid equations are worth mentioning. First, the reversible
part of the stress tensorTC does not contain the counterpart of the Laplacian
term appearing inT (see Equation 10). This is because the order parameterc
is given per unit mass in contrast to the densityρ. Second, the order parameter
c is governed by the modified Cahn-Hilliard equation (Equation 21), whereas
the densityρ is governed by the continuity equation (Equation 17a).

Details of the derivation of the governing equations for a binary fluid have
been discussed by a number of authors. Blinowski (1975) considered the binary
fluid case, and also more general multi-component systems. Starovoitov (1994)
derived a binary fluid diffuse-interface model using a virtual power method.
Antanovskii (1995) derived the equations for nonisothermal, viscous, quasi-
compressible flow. His derivation was based on a maximum entropy principle,
similar to the approach described here, but used virtual work arguments to iden-
tify the forms of the stress tensor and fluxes. Gurtin et al (1996) derived a model
for an isothermal, incompressible flow using microforce balance laws. Jasnow
& Vi ñals (1996) illustrated the derivation of the equations for a binary fluid using
a Hamiltonian formalism. Although their derivation was given for an isother-
mal, inviscid, incompressible fluid, the model was extended to the case where
the fluid was viscous and the temperature field varied slowly in time. A similar
account can be found in Jacqmin (1996), who discussed the model in a potential
form as well as making note of its relation to the above stress form. The merits
of these two equivalent formulations were discussed in terms of specific appli-
cations. Lowengrub & Truskinovsky (submitted for publication) presented a
thorough derivation of the diffuse-interface model based on entropy production
and paid particular attention to the difference between compressible and quasi-
incompressible fluids. The quasi-incompressible situation describes the case
where the fluid density is independent of the pressure. However, the bulk states
may have different densities and the flow in the interfacial region is in general
nonsolenoidal (∇ · Ev 6= 0), resulting in an expansion or contraction flow upon
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phase transformation. These authors argued that within the context of quasi-
incompressibility, the appropriate thermodynamic description is in terms of a
Gibbs free energy, in which the pressure is an independent variable determined
by the transport equations rather than a quantity determined thermodynamically.

Applications
THERMOCAPILLARY FLOWS Antanovskii (1995) used his nonisothermal bi-
nary fluid model to compute one-dimensional thermocapillary flow in a gap. In
this situation, two fluid phases, characterized by their different compositions,
were separated by a planar diffuse interface along which a temperature gradient
was imposed. Calculations for different values of interfacial layer thickness and
viscosity ratios were presented. Jasnow & Vi˜nals (1996) investigated thermo-
capillary migration of droplets of one phase in the surrounding phase. They
focused on drops with radii on the order of ten times the correlation length. Their
calculations show the motion of the droplet through the temperature gradient
as a function of time, and the dependence of its velocity on this temperature
gradient. Also shown is a sequence in which two droplets coalesce.

SPINODAL DECOMPOSITION Gurtin et al (1996) considered spinodal decom-
position occurring in an isothermal binary fluid. Their computations, which
began with an initial random distribution of the composition, showed the coars-
ening process explicitly. They noted that the main effect of the hydrodynamic
interactions on this process is the flow-induced coalescence of droplets. Their
calculations specifically show the flow associated with these coalescence phe-
nomena. They computed the domain (structure) size, compared with classical
predictions, and found that for long times the growth is faster than the classical
scaling law for coarsening by purely diffusive mechanisms. Jasnow & Vi˜nals
(1996) considered a similar situation but included the effects of a nonuniform
temperature field. Their results, displayed in the time-sequence in Figure 3,
show the spinodal decomposition of a binary fluid in a rectangular cell across
which a vertical temperature gradient is imposed (the cell is hottest at the
bottom). Here, an initially random composition distribution (Figure 3,top) un-
dergoes coarsening and domain growth. At an intermediate time (middle) and
a later time (bottom), their calculations show nonuniform coarsening wherein
the smaller (larger) scales occur in the warmer (cooler) regions.

MIXING AND INTERFACIAL STRETCHING Chella & Viñals (1996) computed the
mixing and interfacial stretching of an isothermal, incompressible binary fluid
in a shear flow with equal densities and viscosities in the two phases. An initially
planar interface distorted under an imposed shear flow. The wrapping up of
the two phases is shown for different values of the capillary number (surface
energy). The amount of interfacial stretching was computed and compared with
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Figure 3 Spinodal decomposition. This time sequence (top to bottom) shows spinodal decompo-
sition of a binary fluid in a rectangular cell across which is imposed a vertical temperature gradient
(the cell is hottest at thebottom). The composition is indicated ingrayscale. These computations
show the system evolving from an initially random composition distribution (top), to one wherein
the domain structure size varies with the temperature (bottom). (Figure courtesy D Jasnow &
J Viñals.)

an analytical solution for that associated with a passive scalar. An increase in
the surface energy corresponded to a decrease in the amount of stretching and
in this way opposed the effect of the shear flow. Further calculations by Chella
and Viñals of flow in a driven cavity are shown in Figure 4. A number of
breakup and coalescence events can be seen in this sequence.

DROPLET BREAKUP Jacqmin (1996) calculated the breakup of an inviscid fluid
in the context of a two-dimensional isothermal model. The initially elongated
droplet relaxes, oscillates, and breaks apart into two separate droplets. In these
calculations, the diffusion coefficient (D in our notation) was made velocity-
dependent. In addition to plots showing the actual droplet breakup process,
the kinetic and surface energy evolutions are also given. In the case where the
flow is strongly damped by using a larger value ofD, the energy of the droplet
decreases rapidly and breakup does not occur.



      
P1: KKK/dat/ary P2: ARK/MBL/plb QC: MBL/agr T1: MBL

November 24, 1997 9:14 Annual Reviews AR049-06

DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS 155

Figure 4 Flow in a driven cavity. This time sequence (top andbottom, left to right) shows the
order parameter (grayscale) representing the binary fluid composition. The flow is set up by an
imposed velocity (left to right) on the bottom surface of the cavity. The densities and viscosities
of both phases are equal. (Figure courtesy R Chella & J Viñals.)

WAVE-BREAKING AND SLOSHING Jacqmin (1996) also applied the diffuse-
interface model to a large-deformation sloshing flow in a two-dimensional rect-
angular domain. Interaction with the solid wall of the container was modeled by
using a wall potential associated with a 90◦ contact angle between the wall and
the interface. The two-phase fluid in a uniform (vertical) gravitational field was
subjected to an oscillating horizontal acceleration whose amplitude increased
linearly in time. The motion of the initially planar interface between the two
stably stratified phases was computed once the horizontal accelerations began.
The shape of the interface became highly nonlinear and several breakup and coa-
lescence events occurred. It was noted that the prediction of coalescence events
may occur more quickly than is physically realistic, because a high level of accu-
racy is needed to resolve the draining layer between the two coalescing phases.

MOVING CONTACT LINES Jacqmin (1996) investigated the fluid motion near a
moving contact line. These steady calculations show the existence of a dynamic
contact angle associated with the interface away from the immediate vicinity
of the contact line. Also observed is a streamline—similar to that observed in
the experiments by Dussan V & Davis (1974)—issuing from the contact line
region into the displaced fluid.
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NUCLEATION Lowengrub & Truskinovsky (submitted for publication) con-
sidered nucleation (and annihilation) of an isothermal, spherically symmetric
equilibrium droplet. In particular, they used the diffuse-interface model to
describe the situation where the droplet size was comparable to the interface
thickness. In the incompressible case, where the density was uniform every-
where, they performed an analysis of the spherically symmetric Cahn-Hilliard
equation with a free-energy density composed of piecewise parabolas to find
analytic solutions for the compositions. In the compressible case, they pro-
ceeded numerically and concluded from their results that compressibility has
little effect on the interfacial structure of the droplet.

RELATED TOPICS

Sharp-Interface Limit
As noted in the section on a single-component fluid, the diffuse-interface mod-
els may be applied away from the critical point, where the interfacial thickness
approaches that of a sharp boundary. The use of the diffuse-interface models
in these regimes may be justified by demonstrating that they approach asymp-
totically the free-boundary formulation. This is achieved by adopting what is
commonly known as the sharp-interface limit.

In the context of phase-field models of solidification, there has been signif-
icant effort to address the sharp-interface limit and to compare the model to
well-known results of the free-boundary problem (e.g. Caginalp 1989, Braun
et al 1994).

A key feature in the diffuse-interface models described here, which is not
present in the phase-field solidification models studied to date, is the (vector)
momentum equation that involves the distributed capillary stresses. Conse-
quently, much of the emphasis in terms of the sharp-interface analyses of the
diffuse-interface model has been to recover the classical interfacial boundary
conditions associated with the stress balance at the interface. Here we describe
the efforts in this area and outline a simple reduction of the momentum balance
to the interfacial stress jump using a pillbox argument.

From his diffuse-interface model of a binary fluid, Antanovskii (1995) de-
rived the special cases of the classical hydrostatic balance for a flat interface
in equilibrium and the Young-Laplace equation for a spherical interface in
equilibrium. The latter case has also been considered for a single-component
model by Blinowski (1979). Nadiga & Zaleski (1996) also confirmed nu-
merically that their diffuse-interface model accurately recovered the classical
results for a flat interface and for a liquid droplet in equilibrium. Jasnow &
Vi ñals (1996) derived from the capillary term in their momentum equation
the appropriate sharp-interface tangential and normal forces when the surface
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tension was a slowly varying function along the interface. More detailed an-
alytical approaches have been addressed by Starovoitov (1994), Anderson &
McFadden (1996), and Lowengrub & Truskinovsky (submitted for publication).

To illustrate these ideas, we apply a pillbox argument to the momentum
balance (Equation 17b) to show how the classical stress balance at a fluid-
fluid interface can be derived from the diffuse-interface model. We define a
small parameterε measuring the thickness of the interface byKE = ε2K̄ . We
then consider the surfaceSI defined by the contour of density upon which the
interfacial region collapses in the limitε → 0 and define a pillbox enclosing a
portion of this surface at a fixed point in time in such a way that the top of the
pillbox is above the surface at a heightr = δ and the bottom of the pillbox is
below the surface at a heightr = −δ. Here,r is a local coordinate normal to
the interface. The key limit in the pillbox argument is thatε � δ � L, where
L is a length scale associated with the outer flow. In this limit, the volume of the
pillbox becomes negligible on the outer scales, but the variations in the density,
which define the interfacial region, occur over a region fully contained within
the pillbox. Also in this limit, the unit normal vectors on the top and bottom
of the pillbox aren̂ and−n̂, respectively, while the unit normal on the side is
given bym̂ (note thatm̂ · n̂ = 0).

We integrate Equation 17b to obtain

0=
∫

Vp

(
∂(ρEv)
∂t
+∇ · (ρEv ⊗ Ev)−∇ · m

)
dV, (22)

where we have used Equation 17a, and the fact that

ρ
DEv
Dt
= ∂(ρEv)

∂t
+∇ · (ρEv ⊗ Ev) . (23)

Next, we note that∫
Vp

∂(ρEv)
∂t

dV→−
∫

Sp

(ρEv)EvI · n̂S dS, (24)

whereEvI is the velocity of the surfaceSI described above, andSp denotes the
surface of the pillbox. This result follows by translating to a frame moving
with the interface so that∂(ρEv)/∂t = ∂(ρEv)/∂t ′ − EvI · ∇(ρEv) = ∂(ρEv)/∂t ′ −
∇ · (ρEvI ⊗ Ev) + ρEv∇ · EvI . The terms∂(ρEv)/∂t ′ + ρEv∇ · EvI are bounded and
hence do not contribute as the pillbox volume goes to zero. We use this and the
divergence theorem to obtain from Equation 22

0=
∫

Sp

[ρEv(Ev − EvI ) · n̂S− n̂S · m] dS. (25)

We further argue that the fluid velocity terms are bounded (so that they do
not contribute to the integral over the side surface of the pillbox), and that the
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nonclassical terms do not contribute to the upper and lower surfaces of the
pillbox (becauseε � δ) so that

0=
∫

A
[ρEv(Ev − EvI ) · n̂− n̂ · (−p I + τ )]+−d A−

∫
side

m̂ · TdS, (26)

whereA is the portion ofSI within the pillbox. Local to the interfacial region
we have∇ρ ∼ ρr n̂ and∇2ρ ∼ ρrr to leading order. Then̂m· T ∼ (m̂· T ·m̂)m̂
so that

0=
∫

A
[ρEv(Ev − EvI ) · n̂− n̂ · (−p I + τ )]+−d A

−
∮

C

∫ ∞
−∞
(m̂ · T · m̂)m̂ dr dl, (27)

whereC is the contour defined by the intersection ofSI , and the pillbox surface
anddl is the increment of arclength alongC. We next define the scalar

γ =
∫ ∞
−∞
(m̂ · T · m̂)dr, (28)

which can be shown to be equal to the excess Kramer’s potential, that is, the
surface energy (Anderson & McFadden 1996). We then apply the surface
divergence theorem (Weatherburn 1925), which allows us to write∮

C
γ m̂dl =

∫
A

[∇Sγ − γ (∇S · n̂) n̂] d A, (29)

where∇Sγ is the surface gradient ofγ , and∇S · n̂, the surface divergence of
n̂, is the interfacial curvature,K. This gives

0=
∫

A

{
[ρEv(Ev − EvI ) · n̂− n̂ · (−p I + τ )]+− − [∇Sγ − γKn̂]

}
d A. (30)

Finally, noting that the area of integration is arbitrary yields

[ρEv(Ev − EvI ) · n̂− n̂ · (−p I + τ )]+− = ∇Sγ − γKn̂, (31)

which is the classical stress balance at a fluid-fluid interface (Delhaye 1974).
Note that the first term on the left-hand side represents a jump in the momentum
across the interface and is zero when there is no mass flux across the interface.

Other Computational Methods
The diffuse-interface models share common features with a number of methods
developed from a more computational point of view. We outline several of these
methods below and highlight some of their applications.
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The volume of fluid (VOF) method (Hirt & Nichols 1981, Hyman 1984, Tsai
& Yue 1996) is a numerical approach to the free-boundary problem in which an
auxiliary functionF , which distinguishes one fluid from another, is introduced
in order to identify the shape and evolution of the free boundary. This function
satisfiesDF/Dt = 0; that is, it is advected with the flow. Each computational
cell has associated with it a value ofF , and those cells that take on a value
between two bulk values ofF are assumed to contain part of the interface.
The normal to the interface in the cell is determined by the direction of the
largest local gradient, and the position of the interface in the cell is arranged
so thatF is the fractional volume of fluid in the cell. The VOF method, like
the diffuse-interface approach, allows a straightforward description of flows
involving complicated boundary shapes and topological changes. In contrast
to the diffuse-interface approach, however, free surface boundary conditions in
the VOF method must still be applied at the free boundary.

Brackbill et al (1992) developed a continuum surface force model wherein
they identified a volume force that represents surface tension spread over a small
but finite three-dimensional interfacial domain. This volume force was related
to acolor function that, for example, can represent density for incompressible
flows. The defining characteristics of this volume force are that it gives the
correct surface force in the limit of a sharp interface and is nonzero only in
the interfacial region. This approach allows a single-domain description of
the two-fluid system and does not require the direct application of boundary
conditions, which are built into the governing equations.

A number of numerical results are presented for both static and dynamic
situations: (a) a static drop (rod), (b) a nonequilibrium rod upon which capil-
lary waves move along the surface, (c) the Rayleigh-Taylor instability and the
associated interfacial deformation, (d) flow induced by wall-adhesion whereby
the fluid conforms to an imposed equilibrium contact angle on the wall, and (e)
jet-induced tank mixing and liquid reorientation in microgravity environments.

Another related approach was developed by Unverdi & Tryggvason (1992a,b),
who used a front-tracking technique employing a numerically diffuse descrip-
tion of the interface. They constructed an indicator function, based on the
known position of the (sharp) interface, that identified fluid properties such as
density and viscosity. This function was then artificially spread out over a small
region on the scale of the computational mesh size, allowing the fluid properties
to vary smoothly through this interfacial region. The surface force (i.e. surface
tension) was also distributed over this interfacial region so that a single-domain
approach could be used to calculate the flow. This flow then determined how
the interface was advected. In Unverdi & Tryggvason (1992a), both two- and
three-dimensional multiple bubble motion and interaction were presented. In
Unverdi & Tryggvason (1992b), the Rayleigh-Taylor instability in two and
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three dimensions and also bubble-bubble interaction in three dimensions were
computed.

Nobari et al (1996) recently used this approach to compute head-on collision
of two viscous liquid droplets with surface tension. Here, rupture was modeled
by artificially removing the thin film between the two drops at a prescribed time.
They found that if no rupture takes place, the drops rebound, but that when rup-
ture occurs the drops may later split. This method was extended by Juric &
Tryggvason (1995, 1996, 1997) to describe flows in the presence of phase
change. Here, they applied the model to vapor bubble dynamics and film boiling.

Another highly successful computational scheme applied to interfacial mo-
tion is the level-set method (Osher & Sethian 1988, Sethian 1996). With this
method, the interface is represented as a level set of a smooth auxiliary func-
tion that is computationally analogous to the order parameter used in diffuse-
interface descriptions. An advantage of the level-set method is that the interface
remains sharp in this formulation, which eliminates the need for added numer-
ical resolution in the direction normal to the interface. Within the context of
fluid mechanics and two-fluid flows, surface tension, for example, is repre-
sented in the momentum equations as a distributed force through the use of a
smoothed delta-function (Sussman et al 1994, Chang et al 1996). The momen-
tum equations are then used to compute the flow over the whole domain and the
level-set function is advected with the flow. After a normalization procedure,
the level-set function determines the new position of the interface.

Mulder et al (1992) applied the level-set approach (without surface tension)
to study the Rayleigh-Taylor and Kelvin-Helmholtz instabilities within the con-
text of compressible gas dynamics. Sussman et al (1994) used this approach to
model incompressible two-dimensional rising bubbles and falling drops, which
show large distortions and topological changes. They also show two impacting
droplets as well as a single droplet impacting a surface. Chang et al (1996) also
applied a level-set approach for incompressible fluids to several topologically
complex flows. They presented computations of two merging fluid bubbles of
equal density and also two merging fluid bubbles of different density. Further,
they investigated the Rayleigh-Taylor instability of an initially motionless, ver-
tical column of fluid and showed calculations of the subsequent vortex sheet
roll-up phenomena.

Miscible Fluids
The ideas that are involved in the diffuse-interface models described in the
preceding sections are similar in many ways to those for miscible fluids. In
particular, fluid stresses (i.e. Korteweg, or capillary, stresses) that arise as
a result of concentration and density gradients at the interface between two
miscible fluids lead to the notion of surface tension between miscible fluids.
Joseph (1990) investigated these ideas both experimentally and theoretically.
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He performed a number of experiments and highlighted other experimental
work in which miscible liquid droplets rising or falling in another liquid exhibit
capillary-type effects; that is, their shapes are consistent with the presence of
surface tension on the interface. In the theoretical development, the equations
governing the motion of the fluid are similar to those presented above on binary
fluids. They are the continuity equation, the Navier-Stokes equations modified
to account for the gradient stresses, the heat (energy) equation, and a standard
diffusion equation, rather than the modified Cahn-Hilliard equation (Equation
21), which describes the evolution of the composition.

Besides the difference in the equations governing the composition, another
key difference between the description given by Joseph (1990) and that for a
binary fluid is that his model described a generalized (or quasi-) incompressible
fluid. Here it is assumed that the density is a function of composition and
temperature but is independent of the pressure. Although the density then is
unchanged by pressure variations, the associated flow may still be nonsolenoidal
(∇ · Ev 6= 0) because of composition or temperature variations. This notion has
been carefully adopted into the diffuse-interface model for a binary fluid by
Lowengrub & Truskinovsky (submitted for publication).

The theoretical model described by Joseph (1990) was analyzed in more detail
by Galdi et al (1991). These authors reworked the equations and identified a new
solenoidal velocity, which is a linear combination of the original velocity field
and the concentration gradient. Associated with this new velocity is a pressure
field that is a linear combination of the original pressure and the divergence of the
original velocity. They addressed the linear and energy stability of a quiescent,
vertically (unstably) stratified incompressible fluid in which Korteweg stresses
arise because of composition gradients. This is the analog of the classical
Bénard problem, with the exception that the authors do not immediately invoke
the Boussinesq approximation. They found that the stability results depended
strongly on the value of the coefficient in the Korteweg stress (and in particular
on its sign). When its sign is chosen consistent with that in the capillary stress
term described in the section on a single-component fluid, and when its effect
is strong enough, an unconditionally stable base state is predicted.

A notable idea described in the paper by Joseph (1990) is that of a dynamic (or
nonequilibrium) surface tension between two miscible fluids. That is, although
for two miscible fluids it is not clear that one can define an equilibrium surface
tension, based on the idea of stresses associated with gradients in density or
composition, transient or dynamic surface tension between two mixing phases
can be studied. Joseph et al (1996) consider this situation in detail. In that paper,
they carried out an analysis using the model of Joseph (1990) of transient or
dynamic interfacial tension during the smoothing of an initial discontinuity of
composition across plane and spherical surfaces separating two miscible liquids.
They found that the dynamic interfacial tension decays in time liket−1/2 and
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had contributions from Korteweg stresses and from the expansion velocity (i.e.
the nonsolenoidal part), which also involved the rate of change of viscosity
with composition. For a plane mixing front, diffusion had a similarity solution,
and they showed that there is no associated pressure jump resulting from the
Korteweg terms (i.e. surface tension does not lead to a jump in pressure when
the curvature of the interface is zero). The only pressure difference across
the mixing front was due to the hydrostatic pressure difference (i.e. due to
gravity) across the layer because its thickness grew with time. For an initially
spherical droplet placed in another (miscible) fluid, they identified a pressure
jump associated with two effects: The first is due to the Korteweg stress and
the second is due to the expansion velocity and is proportional to the rate of
change of viscosity with composition. The latter term can take on either sign,
depending on the assumed composition-dependence of the viscosity.

SUMMARY

We reviewed the development and application of diffuse-interface models for
both single-component and binary fluids. These models have foundations in
statistical mechanics, kinetic theory, mechanical theories, and nonequilibrium
thermodynamics. They provide an alternative approach to the classical hydro-
dynamic free-boundary problem and have been used successfully in many appli-
cations. They should continue to play an important role, in concert with other
theoretical and experimental efforts, in the understanding of hydrodynamic
phenomena associated with critical fluids and other flows involving complex
interface morphologies and topological changes.
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