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Abstract— Minimum mean-square error (MMSE) filtering 

in the Fractional Fourier Transform (FrFT) domain, or 

MMSE-FrFT, performs better interference suppression (IS) 

over the fast Fourier Transform (FFT) when the signal-of-

interest (SOI) or interference is non-stationary. This 

technique estimates the optimum FrFT rotational parameter, 

‘a’, as that which gives the MMSE between a signal and its 

estimate. However, MMSE filtering requires computational 

covariance matrix inversion. Furthermore, few samples must 

be used to form the covariance matrix in non-stationary 

environments, where statistics rapidly change, but MMSE 

techniques usually require many samples. Hence, MMSE-

FrFT filtering results in errors. In this paper, we describe 

three recently developed algorithms for FrFT domain IS that 

each estimate ‘a’ differently: (1) using domain decomposition 

(DD), (2) using the relation of the FrFT to the Wigner 

Distribution (WD), and (3) using the correlations subtraction 

architecture of the multistage Wiener filter (CSA-MWF). The 

former two algorithms then use MMSE to perform the 

filtering, whereas the last uses the CSA-MWF. We compare 

the proposed algorithm to the MMSE-FrFT algorithm by 

simulation, and we show that all three new algorithms 

outperform MMSE-FrFT by several orders of magnitude, 

using just N = 4 samples per block. The CSA-MWF is the 

most robust in low Eb/N0, e.g. Eb/N0 < 5 dB. At high Eb/N0, 

both the DD and WD algorithms slightly outperform CSA-

MWF at low carrier-to interference ratios (CIRs), and all 

three algorithms perform equally at high CIRs.   

Keywords—Domain Decomposition, Fractional Fourier 

Transform, MMSE, Multistage Wiener Filter, Wigner 

Distribution. 

I. INTRODUCTION 

The Fractional Fourier Transform (FrFT) has numerous 

applications in fields such as signal and image processing, 

optics, and quantum mechanics ([7] and [8]). It is a 

powerful tool for separating a signal-of-interest (SOI) from 

interference and/or noise when the statistics of either are 

non-stationary, as is often the case [10].  

 

 

 

The FrFT translates the received signal to an axis in the 

time-frequency plane, known as the Wigner Distribution 

(WD), where the SOI and interference may be separable, 

when they are not separable in the time domain or in the 

frequency domain, with a fast Fourier Transform (FFT). 

The FrFT of a function f(x) of order a is defined as [10]   

        (1) 

Where the kernel Ba(x,x′) is defined as 

(2) 

 = aπ/2, and . This applies to the range 

0 < || < π, or 0 < |a| < 2.  In discrete time, the FrFT of an N 

× 1 vector x is 

              (3) 

Where F
a
 is an N × N matrix with elements ([2] and 

[10]) 

   (4) 

uk[m] and uk[n] are eigenvectors of the matrix [2] 

       (5) 

and 

        (6) 
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An MMSE-FrFT solution for estimating an SOI in the 

presence of unknown, non-stationary interference and noise 

in the FrFT domain is presented in [13]. When the 

environment is non-stationary, it is necessary to perform 

this estimation with very few samples, i.e. before the 

statistics of the received signal change. MMSE-based 

algorithms, however, require a large number of samples in 

practice, which produces errors and hence greatly limits 

performance in non-stationary cases [11]. In this paper, we 

summarize three recently developed algorithms using 

domain decomposition (DD), the Wigner Distribution 

(WD), and the reduced rank correlations subtraction 

architecture of the multistage Wiener filter (CSA-MWF) 

that improve performance over the MMSE-FrFT solution 

and operate with few samples. 

An outline of the paper is as follows: Section II 

describes the adaptive filtering problem, now in the FrFT 

domain. Section III presents the full rank MMSE-FrFT 

solution proposed in [13]. Sections IV - VI describe the 

three new algorithms, termed DD-FrFT, WD-FrFT, and 

MWF-FrFT, respectively; MMSE-FrFT has been 

previously shown to outperform FFT methods, so we do 

not discuss the FFT, which fails here [14]. Section VII 

shows simulation results to compare all four algorithms. 

We compare the values of „a‟ as well as the mean-square 

error (MSE) estimates. Finally, conclusions and remarks on 

future work are given in Section VIII. 

II. PROBLEM FORMULATION 

Without loss of generality, we ignore the carrier and 

model the SOI as a baseband binary phase shift keying 

(BPSK) signal whose elements are in (−1,+1), denoted in 

vector form as the N × 1 vector x(i). The number of bits per 

block is denoted N1, we upsample each bit by a factor of 

SPB (samples per bit), giving N = N1SPB samples per 

block. The SOI is corrupted by a non-stationary interferer 

xI(i), which we describe in Section VII and by an additive 

white Gaussian noise (AWGN) signal n(i). Here, index i 

denotes the i
th

 block, where i = 1, 2, …, M, and M is the 

total number of blocks that we process. The received signal 

y(i) is then 

                        (7) 

We obtain an estimate of the transmitted signal x(i), 

denoted (i), by first transforming the received signal to 

the FrFT domain, applying an adaptive filter, and taking the 

inverse FrFT.  This is written as [13] 

    (8) 

Where F
a
 and F

−a
 are the N × N FrFT and inverse FrFT 

matrices of order „a‟, respectively, and 

           (9) 

is an N × 1 set of optimum filter coefficients to be found 

that gives the MMSE between the desired signal x(i) and its 

estimate  (i). That is, we minimize 

     (10) 

The notation diag(G) = (g0,g1,…, gN−1) is a shorthand 

way of denoting a matrix G whose diagonal elements are 

the scalar coefficients g0, g1, ..., and gN−1, with all other 

elements set to zero. 

III. FULL RANK MMSE SOLUTION 

The most well-known solution that minimizes the cost 

function in Eq. (10), denoted here as g0, is obtained by 

setting the partial derivative of the cost function to zero 

[13]. That is, we solve for g0 such that 

             (11) 

This is the MMSE-FrFT solution in [13], given by  

          (12) 

Where 

   (13) 

                             (14)  

              (15) 

 

(16) 

and 

 (17) 
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Note that this solution requires a known, training 

sequence x(i) and a search to find the best „a‟. The three 

new solutions, presented next, will also require the same. 

IV. DOMAIN DECOMPOSITION METHOD 

We represent the kernel of our interference vector xI(i) 

as an N×N matrix XI,N [17]. Note that we could also 

assume this is a non-stationary channel, replacing XI,N with 

HN [17]. Let xI be a complex, time-varying L × 1 vector, 

written as 

    (18) 

So that in matrix form, we can write XI,N as 

         (19) 

Note that if L = N, we can truncate XI,N to be an N × 

N matrix. For reference, the singular value 

decomposition (SVD) of XI,N is [17] 

        (20) 

Where UN and VN are unitary N × N matrices whose 

columns are the eigenvectors of XI,NX
H

I,N, and ΣN is an 

N×N diagonal matrix whose elements are the positive 

square roots of the eigenvalues of XI,NX
H

I,N. Here, (·)
H
 

denotes Hermitian (complex conjugate) transpose of the 

matrix (·). 

The Domain Decomposition (DD) of XI,N uses the FrFT 

matrix F
a
 and is defined as [17] 

     (21) 

Where the Λk‟s are matrices whose diagonal elements 

contain weighting coefficients similar to the weights ΣN of 

Eq. (20). 

Fig. 1 shows the WD of the desired signal x(i) and a 

potential corrupting interferer xI(i).  

 

 

The optimum FrFT axis tak where the interference can 

best be filtered out, corresponds to the axis where the 

projection of the WD of xI(i) is maximum. The WD of a 

continuous time signal x(t) can be written as 

       (22) 

 
Fig. 1. Wigner Distribution of Signal x(i) and Interferer xI(i); 

Optimum rotation axis tak 

We can now summarize the DD-FrFT algorithm in [15]: 

It is well-known that the projection of the WD of a signal, 

specifically the interfering signal xI(t), onto an axis tak gives 

the energy in the FrFT, |XI,ak(t)|
2
 (see e.g. [7] or [8]). Letting 

αk = akπ/2, this is written as 

     (23) 

So this is the quantity to be maximized. Now, examining 

Eq. (21), we observe that the amount of energy contained 

in XI,N in the domain given by ak is given by the coefficient 

Λk. Based upon the above, we choose the ak which 

maximizes Λk in Eq. (21) and hence the energy of the 

interferer. We then rotate to this domain to best filter the 

interferer out. Thus, the problem is to determine the 

maximum Λk in Eq. (21). The solution is a maximization 

problem, written as [15] 

    (24) 

So that the value of ak which produces the largest Λk is 

the optimum FrFT rotational parameter. We then apply the 

MMSE solution to filter out the interference, using Eqs. 

(12) and (8), but with the new „a‟, denoting the new 

solution as g0,DD−FrFT. 
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V. WIGNER DISTRIBUTION METHOD 

The WD technique presented in [16] estimates the 

optimum value of „a‟ without using the received signal y(i), 

because this signal contains the SOI and interference 

together, without needing a large number of samples N, and 

without matrix inversions [16]. Referring back to Fig. 1, 

note that we can choose the FrFT rotational axis as that for 

which the desired signal and interference do not overlap, or 

in the practical case, overlap as little as possible. To avoid 

computing the WD of the SOI and interferer (i.e. SOI 

turned off) separately, which is difficult in practice, this 

method recognizes that we can more easily compute the 

WD along each axis ta by computing the energy of the 

FrFT along that axis [16]. Hence, this algorithm computes 

the energy of the FrFT of both the SOI and interference, 

computes their product, sums the values over the new time-

frequency axis ta defined by the rotational parameter „a‟, 

and selects as the optimum „a‟ the value for which the 

result is minimum. The algorithm is summarized as follows 

[16]: For 0 < a < 2, compute 

           (25) 

         (26) 

and 

                (27) 

Choose the value of „a‟ for which ℜXXI(a) in Eq. (27) is 

minimum. Recall that F
a
 was defined in Eq. (4). Again, 

note that the interferer could be replaced with a non-

stationary channel, and the algorithm could still be applied. 

It is also important to mention that computing |XIa(i)|
2
 in 

Eq. (26) above requires calculation of the FrFT of the 

interference. Since the algorithm operates with very few 

samples, we can compute this in gaps where the SOI is off, 

e.g. using empty sub-carriers, as in OFDM, etc. [16]. Once 

we have the best „a‟, we again compute the filter 

coefficients from Eq. (12), now denoted g0,WD−FrFT and 

apply Eq. (8) to obtain the bit estimates. 

VI. REDUCED RANK MWF SOLUTION 

The full rank MMSE solution in Eq. (12) can be 

implemented efficiently and with better performance using 

the correlations subtraction architecture of the multistage 

Wiener filter (CSAMWF). The MWF was first introduced 

in [3] − [6] and the efficient CSA implementation of the 

MWF was first presented in [12].  

The MWF-FrFT algorithm was introduced in [14]. 

Referring to [14], we initialize the CSA-MWF with 

  (28) 

and 

         (29) 

Recall that Z(i) was defined in Eq. (16).  Using the 

recursion equations in Table I, the CSA-MWF computes 

the D scalar weights wj, j = 1, 2,..., D and vectors hj, from 

which we form the optimum filter 

 
(30) 

Rank reduction is achieved because we set D < N.  

Again, we search over all „a‟ to find the best one, 

computing the filter coefficients from Eqs. (28) - (30) and 

Table I. Hence, this is the only algorithm that applies the 

MWF filter versus the MMSE filter. 

VII. SIMULATIONS 

We present simulation examples to compare the 

performance of the four techniques discussed in this paper: 

MMSE-FrFT, DD-FrFT, WD-FrFT, and MWF-FrFT, 

showing the robustness of the latter three methods, with the 

MWF-FrFT showing the most promise when the Eb/N0 is 
very low. After computing the best rotational parameter „a‟ 

for each algorithm, we compute the filter coefficients using 

Eq. (12) for the first three algorithms and Eq. (30) for the 

fourth and then apply them to Eq. (8) to compute the bit 

estimates. These are compared to the true bit to determine 

if an error occurs, so we can compute the MSE, given by 

the cost function in Eq. (10). In the first example we 

assume the desired BPSK signal is corrupted by a non-

stationary chirp interferer signal given in vector form by 

(see Example 3 in [7]) 

TABLE I   

RECURSION EQUATIONS FOR THE CSA-MWF 
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          (31) 

Where fs is an arbitrary sampling rate and we have 

dropped the block index i for convenience. We set Eb/N0 = 

−5 dB by scaling the amplitude of the AWGN. We vary the 

CIR, which is the ratio of the desired signal power to the 

chirp interferer power, from −10 to 10 dB. Here, due to the 

non-stationarity of the interference, we choose a very small 

block size for best performance, so we let N1 = 2, SPB = 2, 

and therefore N = 4. We let the rank of the MWF-FrFT 

algorithm be D = 1, since there is only a single desired 

signal and we have a training sequence. The performance is 

not very sensitive to rank, so we choose D = 1 for faster 

computation. Since the sample size (N = 4) is so small, the 

choice of rank is 1 ≤ D ≤ 4. We search over 0 < a < 2 using 

a step size of ∆a = 0.01. We run M = 10,000 trials to obtain 

good statistical averages at each CIR and plot both the best 

„a‟ and the MSE as a function of CIR in Fig. 2. The 

subsequent examples use Eb/N0 = 0,5,10, and 15 dB, 

respectively, and are shown in Figs. 3 to 6. 

In Fig. 2, the MSE for the MMSE-FrFT method is much 

greater than one, so it goes off the scale of the plot and is 

not seen; this occurs to a lesser extent in Figs. 3 and 4 also. 

From all the figures, we see that all three new algorithms 

(DD-FrFT, WD-FrFT, and MWF-FrFT) are robust over a 

large range of CIR and produce a much lower MSE 

between the signal and its estimate than the conventional 

MMSE-FrFT algorithm, by several orders of magnitude. 

When Eb/N0 is high, the DD and WD algorithms are better 

than the MWF, at low CIR, but the MWF performs well 

too; at high CIR, all three are the same. When Eb/N0 is low, 

however, the MWF is best. Also, we observe that the best 

value of „a‟ is different for all four algorithms - it is 

typically less than 0.05 for the MWF-FrFT, it is about 0.25 

for the DD-FrFT and WD-FrFT for this interfering signal, 

and it varies significantly for MMSE-FrFT (confirming that 

obtaining a good estimate of the bits is difficult for MMSE-

FrFT in the non-stationary environment). Since all four 

algorithms estimate the best „a‟ using different criteria, 

differences in the outcome are expected. 

 

 
Fig. 2. CIR [dB] vs. BER; BPSK SOI + Chirp Interferer; Eb/N0 = −5 

dB 

VIII. CONCLUSION 

In this paper, we study three new algorithms for 

estimating the optimum rotational parameter „a‟ in the 

FrFT domain for suppressing interference. The three 

algorithms are based on domain decomposition of the 

signal of interest, the relationship of the FrFT to the Wigner 

Distribution, and the reduced rank MWF. All three greatly 

outperform conventional MMSE filtering in the FrFT 

domain and work over a range of CIR and Eb/N0. At low 

Eb/N0, MWF is best, but for high Eb/N0 the three algorithms 

perform comparably.  Future work is to study how the DD-

FrFT and WD-FrFT algorithms perform if the filtering is 

done with the CSA-MWF after the best „a‟ is computed. 

This is expected to improve performance even further. 
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Fig. 3. CIR [dB] vs. BER; BPSK SOI + Chirp Interferer; Eb/N0 = 0 dB 

 

Fig. 4. CIR [dB] vs. BER; BPSK SOI + Chirp Interferer; Eb/N0 = 5 dB 

 
 

 
Fig. 5. CIR [dB] vs. BER; BPSK SOI + Chirp Interferer; Eb/N0 = 10 

dB 

 
Fig. 6. CIR [dB] vs. BER; BPSK SOI + Chirp Interferer; Eb/N0 = 15 

dB 
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