Chapter 12

Fluid Mechanics

12.1 Density

We have already seen (9.58) that the local destiny of a material can be
defined as

_dm

p= av

When the object has uniform (i.e. position independent) density, then the
local density is the same as average density defined as

(12.1)

p=1 (12.2)

For the same substance this number does not change even if the mass and
volume might be different. For example both a steel wrench and a steel nail
have the same density which the density of steel.
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Dhfferent mass, same densiiy:
Becaose the wrench and naal
arc both mede of sieel, they
have the same density (mass
per umit volume ).

In SI the units of density are given by kilogram per cubic meter

3 lkg

but gram per unit centimeter are also widely used

1g/cm® = 1000kg/m”. (12.4)
In the following table we summarize densities of common substances:
Material Density (kg/m’y* Material Density (kg/m’/*
Air (1 atm, 20°C) 1.20 Iron, steel 78 x 107
Ethanol 081 = 108 Brass 86 % 107
Benzene 0.90 % 10° Copper 29 % 10°
lce 092 x 107 Silver 105 = 10?
Water 100 % 10° Lead 113 x 10¢
Seawater 1.03 % 10¢ Mercury 13.6 = 10¢
Bicod 1.06 % 107 Gald 193 = 10°
Glycerine 1.26 % 10° Platinum 214 % 10°
Concrete 2% 10? White dwarf star 100
Aluminum 27 = 1P Neutron star 10'8

*To obtain the densitics in grams per cubic centimeter, simply divide by 10°.
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Another useful (but dimensionless) measure of density is specific den-
sity also known as relative density. It is defined as a ratio of density of a
given substance to density of water (at temperature 4.0°C),

specific density = Poubstance (12.5)

Pwater

Example 12.2. Find the mass and weight of the air (at 1 atm and 20°C)
in a living room with 4.0m x 5.0m floor and a ceiling 3.0m high, and the mass
and weight of an equal volume of water.

Volume of the living room is

V =3.0m x 4.0m x 5.0m = 60 m® (12.6)
From definition of density
Maie = parrV = (1.20kg/m?) (60m®) = 72kg
Myatr = PuaterV = (1000 kg/m’) (60m®) = 6.0 x 10' kg (12.7)
and thus the corresponding weights are
Wair = Maing = (72kg) (9.8m/s*) = 700N
= Myaerg = (6.0 x 10°kg) (9.8m/s*) = 5.9 x 10°N. (12.8)

Wyater

Example. Rank the following objects in order from highest to lowest
average density:

(1) mass 4.00 kg, volume 1.60 x 1073 m3;

(ii) mass 8.00 kg, volume 1.60 x 1072 m?;

(111) mass 8.00 kg, volume 3.20 x 1073 m3;

(iv) mass 2560 kg, volume 0.640 m?*;

(v) mass 2560 kg, volume 1.28 m?.

The densities of these objects are

4.00 kg

P= ToowToims — 2000 kg/m*

pii = #% = 5000 kg/m”
piii = % = 2500kg/m”

P = (2)566511;% — 4000 kg /m®

py = i?;j;f — 2000 kg /m* (12.9)

And so the order is
(71) — (iv) — (i,i53) — (v). (12.10)
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12.2 Pressure in a Fluid

Pressure. In fluids pressure might change from one place to another and
thus it is convenient to define a local pressure as

dF',
= — 12.11
=" (12.11)
which reduces to (11.36) of average pressure
Fy
= 12.12
p= (12.12)

for uniform (i.e. position independent) pressures. Units of pressure were
already introduced in the previous chapter,

1Pa = 1N/m’
1 atm 1.013 x 10° Pa
Ipsi ~ 6900 Pa. (12.13)

Q

Example 12.2. In the living room with 4.0m x 5.0m floor what is the
total downward force on the floor due to air pressure of 1.00 atm?
From definition of pressure

1.013 x 10°N

F| =pA=(1.00atm) 00 atm

(4.0m x 5.0m) = 2.0 x 10°N. (12.14)

Pressure with depth. Consider an infinitesimal volume element of
fluid dV = dxdydz, where y-axis points upwards. In the equilibrium all
forces acting on the object must add up to zero and thus along y-axis we
have

—(pdV) g — (p+dp)dA+pdA =

—p (dxdydz) g — (p + dp) (dzdz) + p (dzdz)
—pgdy — (p+dp) +p

dp

dy

= —pg (12.15)

and thus the pressure must change linearly with y. The above equation can
be solved by direct integration, i.e.

p(y2) Y2
/ dp - / pgdy
p(y1) Y1

p(y2) —py1) = pg(y1—v2)- (12.16)
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where we used an assumption that p is constant or in other words that
the fluid is non-compressible. (This is a good assumption for liquids (e.g.
water), but is not a very good assumption for gases (e.g. air) whose density
can change considerably. )
In terms of depth
d=y2— 1 (12.17)
and reference pressure

po = p(y2) (12.18)
pressure at arbitrary depth is given by

p=po+ pyd. (12.19)

As we see if the density is constant, the pressure p depends only on the
pressure at the surface p, and depth d. Thus if py (atmospheric pressure)
and p(pressure at the bottom of liquid) is the same than d must be the same:

The pressure at the top of each higuad

column 1s aimosphenc pressure, g,
, )

The presaune gL the botlom of each housd
columm has the same value p.

The difference between p and py 15 prh, where
i 15 the distance from the top to the bottom of

the bygud column. Hence all columns have the

sume height.

If we change pressure py at the surface of fluid, the pressure will change by
the same amount everywhere in the fluid. For example one can use this result
to construct a hydraulic lift to measure large weights:
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A small force is applied to a small piston.

Because the pressure p is the
same at all points 5
at a given o~
height in

the fluid ...

... a piston of larger area at the same
height experiences a larger force.

Because the pressure is the same at all point on the same height

F F
=122 12.2
Po Al AQ ( O)
o A
F=22F. 12.21
2 Al ! ( )

More generally one formulate what is known as Pascal’s law: Pressure
applied to an enclosed fluid is transmitted undiminished to every portion of
the fluid and the walls of the containing vessel.

Gauge pressure. It often useful to measure relative pressure compared
to atmospheric pressure,

po = latm ~ 14.7psi ~ 1.01 x 10° Pa. (12.22)
For example, if the absolute pressure of a car tire is
p =47 psi (12.23)
then it is often said that the gauge pressure is
Peauge = P — Do = 32 psi. (12.24)

Ezxample 12.3. Water stands 12.0 m deep in a storage tank whose top
18 open to the atmosphere. What are the absolute and gauge pressure at the
bottom of the tank?
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The absolute pressure at the bottom of the tank is

P = po-+pgh
(1.01 x 10° Pa) + (1000 kg/m®) (9.8 m/s”) (12.0m)
2.19 x 10° Pa (12.25)

and so the gauge pressure is

p—po = pgh
1.18 x 10° Pa. (12.26)

To measure the gauge pressure directly, one can use an open-tube manome-
ter, where the difference in heights tells you what the gauge pressure is

Pgauge = P — Po = pg(y2 — y1) (12.27)

!

x
h = ¥—Hh
Pressure p T B ¥z
L)
)

P+ PEFLn, 4 Pamt PV

The pressure 15 the same af
iher bottoms of the two arbes.

To measure air-pressure one can use a barometer where the difference in
heights tells you what the atmospheric is

Patm = Po + p9(y2 — y1) = pg(y2 — Y1) (12.28)



CHAPTER 12. FLUID MECHANICS 172

There is a noar-vECUmn ., =0

it the top of the fube .-F:'»./
The height to
which ihe

METCULY MEes
depends on the
nimospheTic
pressure exeed
on the meroury
-1 i the dish.

F= M

The latter example suggest another unit of measuring pressure in “mil-
limeters of mercury” which is also called torr after the inventor of mercury
barometer Evangelista Torricelli.

Example 12.4. A manometer tube is partially filled with water. Oil
(which does not mix with water) is poured into the left arm of the tube until
the oil-water interface is at the midpoint of the tube as shown. Both arms of
the tube are open to the air. Find a relationship between the heights hoy; and
hwater-

The pressure in both fluids at the surface and at the bottom are the same

P—Po = pwaterghwater
pP—po = poitghoi (12.29)
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and thus,
water hwa er
Pwater§lwater _ (12.30)
Poitghon
or 3
water 1000 k
hoil = Prat water ~~ 7g/nlhwater ~ 1.2 hwater- (1231)

Poil "~ 850kg/m’

12.3 Buoyancy

Any object placed in a fluid experiences a force (buoyant force) arising
due to changes of the pressure inside fluid. This phenomena is known as
Archimedes’s principle: When a body is completely or partially immersed
in a fluid, the fluid exerts an upward force on the body equal to the weight of
the fluid displaced by the body.

(@) Arbatrary element of flurd in equilibriem

of the same size and shape

{b) Fluid clement replaced with solid body

The forces om the g
Fisd The forces due to
1 i flmd clement due
v 3 preszure are the
[dF = tey pressore muost
L B ~ same, 50 the body
= c A= | = Lo a buovani ;
i i ; | must be acted upon
s Wiiesd +dF, || force equal m
=~ e = by the same buoyant
daFy o~ _,-'w mugnitude o the s e ki Bl
dF “ || element’s weizhi
| — —_— c clement, regardiess
— R of the Body s weight
S o || o the body's weigh
——— ey

To prove Archimedes’s principle we consider an element of fluid of arbi-

trary shape. If the fluid is in equilibrium then the sum of all forces (due to
water pressure) have to be the same as the force of gravity

B = Fyavty (12.32)

or

B = Vpﬁuidg (1233)

Now if we fill the shape with some other material, then the equilibrium
condition might not be satisfied, but the buoyant force due to water pressure
would not change.
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Example 12.5. A 15.0 — kg solid gold statue is raised from the sea
bottom. What is the tension in the hosting cable (assumed massless) when
the statues is

a) at rest and completely underwater.

b) at rest and completely out of water.

{a) Immcrsed statue in equilibrium (b)) Free-body dingram of statue
¥

mg = 14TN
We can first find volume of the statue
15.0k
v=""_ o0ke 777k 107w, (12.34)
Pgold  19.3 x 103 kg/m
Then the equilibrium condition implies
T -+ Bﬂuid —mg = 0 (1235)

or in water

T = mg_vaaterg
(15.0kg) (9.8 m/s”) — (7.77 x 10~*m?) (1000 kg/m*) (9.8 m/s”)
= 139N (12.36)

and in air

T = mg—Vpayg
= (15.0kg) (9.8m/s*) — (7.77 x 10~*m?®) (1.2kg/m’) (9.8 m/s”)
147N. (12.37)
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Example. You place a container of seawater on a scale and note reading
on the scale. You now suspend the statue of Fxample 12.5 in the water. How
does the scale reading change?

(i) it increases by 7.84 N;

(1) it decreases by 7.84 N;

(1) it remains the same;

(iv) none of these.

In addition to buoyant force there is a force of surface tension which
acts on the object at the surface of fluids, but this force is subdominant for
sufficiently large objects.

12.4 Fluid Flow

Consider a simple model of fluid which is incompressible (density is con-
stant) and inviscid (vanishing internal friction). Then one can follow tra-
jectories of small elements of water (we call particles) which will flow along
along these trajectories. We call these trajectories flow lines and say that
the flow is steady if the flow line do no change with time. This does not
mean that the velocities on any given particle does not change with time.
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More generally the flow becomes irregular where small scale mode and large
scale modes interact with each other which gives rise to turbulence. It is
interesting to note that for 3D fluids the energy is transferred from large
scales to small scale, when in 2D fluids the energy is transferred from small
scales to large scales. Richard Feynman called turbulence “the last unsolved
problem of classical physics”. It is also related to one of seven Millennium
problems formulated by Clay Mathematics Institute in 2000, six of which
(including the turbulence problem) remain unsolved.

Continuity. Consider a flow of fluid through a pipe with changing cross-
sectional area:

The product Ae 1=
constant for sn
ncompressible
Auid.



CHAPTER 12. FLUID MECHANICS 177

If the fluid is incompressible (i.e. constant density), then the amount of
fluid passing through each cross-sectional area per unit time must be the
same

pAids, = pAsdssy (12.38)

or

Al’Uldt = AQ’Uth (1239)

which give us (1D) the continuity equation for non-compressible fluid
Alvl = AQUQ. (1240)

The continuity equation equates the volume flow rate across different cross-
sectional areas

av

— = Awv. 12.41

o = Av (12.41)
Note that(12.40) can be easily generalized to the case when densities do
change

p1A1U1 = pQAQUQ. (1242)

Example 12.6. Incompressible oil of density 850 kg/m3 1s pumped through
a cylindrical pipe at a rate of 9.5 liters per second.

(a) The first section of the pipe has a diameter of 8.0 cm. What is the
flow speed of the oil? What is the mass flow rate?

(b) The second section of the pipe has a diameter of 4.0 cm. What is the
flow speed and the mass flow rate in that section?

From continuity equation

av

= Ajvy = Asvo = (9.5L/s) (107°m*/L) = 9.5 x 107 m®/s.  (12.43)

and thus the flow speeds are

. 1 -3 3
- 9.5 x 10 m?/s 19m/s
3.14 x (4.0 x 10=2m)
9.5 x 1073 m?
vy = . m’/s 5 =7.6m/s (12.44)
3.14 x (2.0 x 1072 m)

From the definition of density
dm dv

— = p— 12.45
at Pt (12.45)
and thus the mass flow rates are the same for both sections
d . 0
8 (850keg/m®) (9.5 x 1073 m?/s) = 8.1kg/s. (12.46)

dt
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Example. A maintenance crew is aworking on a section of a three-lane
highway, leaving only one lane open to traffic. The result is much slower
traffic flow (a traffic jam.) Do cars on a highway behave like:

(i) the molecules of an incompressible fluid or

(i) the molecules of compressible fluid?

12.5 Bernoulli’s Equation

As fluid moves through pipe external forces such as gravitational force can
do work on the fluid.

This can be described by computing the total work done on (an incom-
pressible) fluid element between sections a and ¢ as they move to sections b

and d
dW = p1Aidsy — paAadsy = (p1 — p2) dV (12.47)

This must be equal to the change in mechanical energy for fluid. The change
in kinetic and potential energies is due to the difference of kinetic and poten-
tial energies of the fluid between sections a and b to fluid between sections ¢
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and d

1
dK = ipdV (v% — ’Uf)
dU = pdVg(y2 —y1). (12.48)

By equating the work and change in mechanical energy we arrive at the
Bernoulli’s equation:

dW = dK +dU

1
(p1 —p2)dV = §pdV(v§—1f)+¢ﬂVb(yz—yO

1 1
m+ww+yﬁ::m+ww+yﬁ (12.49)

which only applies to incompressible and inviscid fluids. More general fluids
are described by the Navier-Stokes equation.

Example 12.7. Water enters a house through a pipe with an inside
diameter of 2.0 cm at an absolute pressure of 4.0 x 10° Pa. A 1.0 cm diameter
pipe leads to the second-floor bathroom 5.0 m above. When the flow speed at
the inlet pipe is 1.5 m/s, find the flow speed, pressure and volume flow in the
bathroom.
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Hot-wuter ' From water
tunk b supply
(2 em pipe)

From continuity equation

’U1A1 = UQAQ
1.0cm)?
vy = W(Oicm)Q(l.Sm/S)zﬁ.Om/s (12.50)
7 (0.5 cm)

and from Bernoulli’s equation

1
p2 = p1+pg (1 —y2) + 5P (Uf —Ug)

= (4.0 x 10° Pa) + (1000 kg/m”) | (9.8 m/s) (=5.0m) + % ((1.5m/s)* = (6.0m/s)*)
= 3.3 x 10° Pa. (12.51)

Example 12.8. A gasoline storage tank with cross-sectional area Ay,
filled to a depth h. The space above the gasoline contains air at pressure pg,
and the gasoline flows out the bottom of the tank through a short pipe with
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cross-sectional area Ay. Derive expression for the flow speed in the pipe and
the volume flow rate.

—P0o
15 Ay v
— | B | 1
r h
E A r r I
f—
A
N
B Paim
From Bernoulli’s equation
L, L,
p1+ pgyr + 5/”’1 = P2+ pgys: + 5/”’2
1 1
Do + §pv% = Datm T Pgh + Epvg (1252)
where 4
2
== 12.53
U1 A, %) ( )
and thus

= Po — Patm + pgh

DO | —
o)

<
O}
VRS
—_

|
7N
D>|:l>
= |
N———
(]
~—
|

Vg = 2 (pO — Patm + pgh) (1254)

(- ()

A > Ay (12.55)

In the limit
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the flow speed is

2 - m
vy A \/M +2gh (12.56)
P

and the flow rate

2 — Patm
% = Ayvy = AQ\/i(pO Paim) + 2gh (12.57)
p

Example 12.9. Venturi meter is used to measure flow speed in a pipe.
Derive an expression for the flow speed vy in terms of the cross-sectional
areas Ay and Ay and the difference in height h of the liquid levels in the two
vertical tubes.

Dhfference i height results from
reduced pressure m throat (pont 2.

v
B g

Ay

=]

Ay
== 12.58
) A, U1 ( )
and thus from Bernoulli’s equation
_ I A
pP1—p2 = 4 (02 Ul)

1 A\’
p—p2 = 5pvf<<A—:> —1). (12.59)

However we also know that

p1 = Dpo+pgh
P2 = po+ pghe (12.60)

and thus
p1 —p2 = pg(h1 — ha) = pgh. (12.61)
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By combining (12.59) and (12.61) we get

1, (AN
pgh = §PU1<(A—2) —1>

2gh
o= | — (12.62)
(Ar/A)" =1

Example. Lift of an airplane.

(a) Flow lines around an airplane wing (b) Computer simulation of air parcels flowing around a wing, showing
that air moves much faster over the top than over the bottom.
Flow lines are crowded together above the wing, so

flow speed is higher there and pressure is lower

e, Notice that air
particles that are

together at the leading

f the wing do

- not mect up at the

trailing edge!

o
Sl p
1 Equivalent explanation: Wing impans a
‘[ net downward momentum 1o the air, «
reaction force on airplane is upward




