
Chapter 12

Fluid Mechanics

12.1 Density

We have already seen (9.58) that the local destiny of a material can be
defined as

ρ =
dm

dV
. (12.1)

When the object has uniform (i.e. position independent) density, then the
local density is the same as average density defined as

ρ =
m

V
. (12.2)

For the same substance this number does not change even if the mass and
volume might be different. For example both a steel wrench and a steel nail
have the same density which the density of steel.
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In SI the units of density are given by kilogram per cubic meter

1 kg/m3 =
1 kg

1m3
(12.3)

but gram per unit centimeter are also widely used

1 g/cm3 = 1000 kg/m3. (12.4)

In the following table we summarize densities of common substances:
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Another useful (but dimensionless) measure of density is specific den-
sity also known as relative density. It is defined as a ratio of density of a
given substance to density of water (at temperature 4.0◦C),

specific density =
ρsubstance
ρwater

. (12.5)

Example 12.2. Find the mass and weight of the air (at 1 atm and 20◦C)
in a living room with 4.0m×5.0m floor and a ceiling 3.0m high, and the mass
and weight of an equal volume of water.

Volume of the living room is

V = 3.0m× 4.0m× 5.0m = 60m3 (12.6)

From definition of density

mair = ρairV =
(

1.20 kg/m3) (60m3
)

= 72 kg

mwater = ρwaterV =
(

1000 kg/m3) (60m3
)

= 6.0× 104 kg (12.7)

and thus the corresponding weights are

wair = mairg = (72 kg)
(

9.8m/s2
)

= 700N

wwater = mwaterg =
(

6.0× 104 kg
) (

9.8m/s2
)

= 5.9× 105N. (12.8)

Example. Rank the following objects in order from highest to lowest
average density:

(i) mass 4.00 kg, volume 1.60× 10−3m3;
(ii) mass 8.00 kg, volume 1.60× 10−3m3;
(iii) mass 8.00 kg, volume 3.20× 10−3m3;
(iv) mass 2560 kg, volume 0.640m3;
(v) mass 2560 kg, volume 1.28m3.
The densities of these objects are

ρi =
4.00 kg

1.60× 10−3m3
= 2500 kg/m3

ρii =
8.00 kg

1.60× 10−3m3
= 5000 kg/m3

ρiii =
8.00 kg

3.20× 10−3m3
= 2500 kg/m3

ρiv =
2560 kg

0.64m3
= 4000 kg/m3

ρv =
2560 kg

1.28m3
= 2000 kg/m3 (12.9)

And so the order is
(ii) → (iv) → (i, iii) → (v). (12.10)
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12.2 Pressure in a Fluid

Pressure. In fluids pressure might change from one place to another and
thus it is convenient to define a local pressure as

p =
dF⊥

dA
(12.11)

which reduces to (11.36) of average pressure

p =
F⊥

A
(12.12)

for uniform (i.e. position independent) pressures. Units of pressure were
already introduced in the previous chapter,

1 Pa ≡ 1N/m2

1 atm ≈ 1.013× 105Pa

1 psi ≈ 6900 Pa. (12.13)

Example 12.2. In the living room with 4.0m × 5.0m floor what is the
total downward force on the floor due to air pressure of 1.00 atm?

From definition of pressure

F⊥ = pA = (1.00 atm)
1.013× 105N

1.00 atm
(4.0m× 5.0m) = 2.0× 106N. (12.14)

Pressure with depth. Consider an infinitesimal volume element of
fluid dV = dxdydz, where y-axis points upwards. In the equilibrium all
forces acting on the object must add up to zero and thus along y-axis we
have

− (ρdV ) g − (p+ dp) dA+ pdA = 0

−ρ (dxdydz) g − (p+ dp) (dxdz) + p (dxdz) = 0

−ρgdy − (p+ dp) + p = 0
dp

dy
= −ρg (12.15)

and thus the pressure must change linearly with y. The above equation can
be solved by direct integration, i.e.

∫ p(y2)

p(y1)

dp = −
∫ y2

y1

ρgdy

p(y2)− p(y1) = ρg (y1 − y2) . (12.16)
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where we used an assumption that ρ is constant or in other words that
the fluid is non-compressible. (This is a good assumption for liquids (e.g.
water), but is not a very good assumption for gases (e.g. air) whose density
can change considerably. )

In terms of depth
d = y2 − y1 (12.17)

and reference pressure
p0 = p(y2) (12.18)

pressure at arbitrary depth is given by

p = p0 + ρgd. (12.19)

As we see if the density is constant, the pressure p depends only on the
pressure at the surface p

0
and depth d. Thus if p0 (atmospheric pressure)

and p(pressure at the bottom of liquid) is the same than d must be the same:

If we change pressure p0 at the surface of fluid, the pressure will change by
the same amount everywhere in the fluid. For example one can use this result
to construct a hydraulic lift to measure large weights:
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Because the pressure is the same at all point on the same height

p0 =
F1

A1
=

F2

A2
(12.20)

or

F2 =
A2

A1
F1. (12.21)

More generally one formulate what is known as Pascal’s law: Pressure
applied to an enclosed fluid is transmitted undiminished to every portion of
the fluid and the walls of the containing vessel.

Gauge pressure. It often useful to measure relative pressure compared
to atmospheric pressure,

p0 = 1 atm ≈ 14.7 psi ≈ 1.01× 105Pa. (12.22)

For example, if the absolute pressure of a car tire is

p = 47 psi (12.23)

then it is often said that the gauge pressure is

pgauge = p− p0 = 32 psi. (12.24)

Example 12.3. Water stands 12.0m deep in a storage tank whose top
is open to the atmosphere. What are the absolute and gauge pressure at the
bottom of the tank?
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The absolute pressure at the bottom of the tank is

p = p0 + ρgh

=
(

1.01× 105 Pa
)

+
(

1000 kg/m3) (9.8m/s2
)

(12.0m)

= 2.19× 105 Pa (12.25)

and so the gauge pressure is

p− p0 = ρgh

= 1.18× 105Pa. (12.26)

To measure the gauge pressure directly, one can use an open-tube manome-
ter, where the difference in heights tells you what the gauge pressure is

pgauge = p− p0 = ρg(y2 − y1) (12.27)

To measure air-pressure one can use a barometer where the difference in
heights tells you what the atmospheric is

patm = p0 + ρg(y2 − y1) = ρg(y2 − y1). (12.28)
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The latter example suggest another unit of measuring pressure in “mil-
limeters of mercury” which is also called torr after the inventor of mercury
barometer Evangelista Torricelli.

Example 12.4. A manometer tube is partially filled with water. Oil
(which does not mix with water) is poured into the left arm of the tube until
the oil-water interface is at the midpoint of the tube as shown. Both arms of
the tube are open to the air. Find a relationship between the heights hoil and
hwater.

The pressure in both fluids at the surface and at the bottom are the same

p− p0 = ρwaterghwater

p− p0 = ρoilghoil (12.29)
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and thus,
ρwaterghwater

ρoilghoil
= 1 (12.30)

or

hoil =
ρwater
ρoil

hwater ≈
1000 kg/m3

850 kg/m3 hwater ≈ 1.2 hwater. (12.31)

12.3 Buoyancy

Any object placed in a fluid experiences a force (buoyant force) arising
due to changes of the pressure inside fluid. This phenomena is known as
Archimedes’s principle: When a body is completely or partially immersed
in a fluid, the fluid exerts an upward force on the body equal to the weight of
the fluid displaced by the body.

To prove Archimedes’s principle we consider an element of fluid of arbi-
trary shape. If the fluid is in equilibrium then the sum of all forces (due to
water pressure) have to be the same as the force of gravity

B = Fgravity (12.32)

or
B = V ρfluidg (12.33)

Now if we fill the shape with some other material, then the equilibrium
condition might not be satisfied, but the buoyant force due to water pressure
would not change.
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Example 12.5. A 15.0 − kg solid gold statue is raised from the sea
bottom. What is the tension in the hosting cable (assumed massless) when
the statues is

a) at rest and completely underwater.
b) at rest and completely out of water.

We can first find volume of the statue

V =
m

ρgold
=

15.0 kg

19.3× 103 kg/m3 = 7.77× 10−4m3. (12.34)

Then the equilibrium condition implies

T +Bfluid −mg = 0 (12.35)

or in water

T = mg − V ρwaterg

= (15.0 kg)
(

9.8m/s2
)

−
(

7.77× 10−4m3
) (

1000 kg/m3) (9.8m/s2
)

= 139N (12.36)

and in air

T = mg − V ρairg

= (15.0 kg)
(

9.8m/s2
)

−
(

7.77× 10−4m3
) (

1.2 kg/m3) (9.8m/s2
)

= 147N. (12.37)
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Example. You place a container of seawater on a scale and note reading
on the scale. You now suspend the statue of Example 12.5 in the water. How
does the scale reading change?

(i) it increases by 7.84N;
(ii) it decreases by 7.84N;
(iii) it remains the same;
(iv) none of these.

In addition to buoyant force there is a force of surface tension which
acts on the object at the surface of fluids, but this force is subdominant for
sufficiently large objects.

12.4 Fluid Flow

Consider a simple model of fluid which is incompressible (density is con-
stant) and inviscid (vanishing internal friction). Then one can follow tra-
jectories of small elements of water (we call particles) which will flow along
along these trajectories. We call these trajectories flow lines and say that
the flow is steady if the flow line do no change with time. This does not
mean that the velocities on any given particle does not change with time.
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More generally the flow becomes irregular where small scale mode and large
scale modes interact with each other which gives rise to turbulence. It is
interesting to note that for 3D fluids the energy is transferred from large
scales to small scale, when in 2D fluids the energy is transferred from small
scales to large scales. Richard Feynman called turbulence “the last unsolved
problem of classical physics”. It is also related to one of seven Millennium
problems formulated by Clay Mathematics Institute in 2000, six of which
(including the turbulence problem) remain unsolved.

Continuity. Consider a flow of fluid through a pipe with changing cross-
sectional area:
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If the fluid is incompressible (i.e. constant density), then the amount of
fluid passing through each cross-sectional area per unit time must be the
same

ρA1ds1 = ρA2ds2 (12.38)

or
A1v1dt = A2v2dt (12.39)

which give us (1D) the continuity equation for non-compressible fluid

A1v1 = A2v2. (12.40)

The continuity equation equates the volume flow rate across different cross-
sectional areas

dV

dt
= Av. (12.41)

Note that(12.40) can be easily generalized to the case when densities do
change

ρ1A1v1 = ρ2A2v2. (12.42)

Example 12.6. Incompressible oil of density 850 kg/m3 is pumped through
a cylindrical pipe at a rate of 9.5 liters per second.

(a) The first section of the pipe has a diameter of 8.0 cm. What is the
flow speed of the oil? What is the mass flow rate?

(b) The second section of the pipe has a diameter of 4.0 cm. What is the
flow speed and the mass flow rate in that section?

From continuity equation

dV

dt
= A1v1 = A2v2 = (9.5 L/s)

(

10−3m3/L
)

= 9.5× 10−3m3/s. (12.43)

and thus the flow speeds are

v1 =
9.5× 10−3m3/s

3.14× (4.0× 10−2m)2
= 1.9m/s

v2 =
9.5× 10−3m3/s

3.14× (2.0× 10−2m)2
= 7.6m/s (12.44)

From the definition of density

dm

dt
= ρ

dV

dt
(12.45)

and thus the mass flow rates are the same for both sections

dm

dt
=
(

850 kg/m3) (9.5× 10−3m3/s
)

= 8.1 kg/s. (12.46)



CHAPTER 12. FLUID MECHANICS 178

Example. A maintenance crew is aworking on a section of a three-lane
highway, leaving only one lane open to traffic. The result is much slower
traffic flow (a traffic jam.) Do cars on a highway behave like:

(i) the molecules of an incompressible fluid or
(ii) the molecules of compressible fluid?

12.5 Bernoulli’s Equation

As fluid moves through pipe external forces such as gravitational force can
do work on the fluid.

This can be described by computing the total work done on (an incom-
pressible) fluid element between sections a and c as they move to sections b
and d

dW = p1A1ds1 − p2A2ds2 = (p1 − p2) dV (12.47)

This must be equal to the change in mechanical energy for fluid. The change
in kinetic and potential energies is due to the difference of kinetic and poten-
tial energies of the fluid between sections a and b to fluid between sections c
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and d

dK =
1

2
ρdV

(

v22 − v21
)

dU = ρdV g (y2 − y1) . (12.48)

By equating the work and change in mechanical energy we arrive at the
Bernoulli’s equation:

dW = dK + dU

(p1 − p2) dV =
1

2
ρdV

(

v22 − v21
)

+ ρdV g (y2 − y1)

p1 + ρgy1 +
1

2
ρv21 = p2 + ρgy2 +

1

2
ρv22 (12.49)

which only applies to incompressible and inviscid fluids. More general fluids
are described by the Navier-Stokes equation.

Example 12.7. Water enters a house through a pipe with an inside
diameter of 2.0 cm at an absolute pressure of 4.0×105 Pa. A 1.0 cm diameter
pipe leads to the second-floor bathroom 5.0m above. When the flow speed at
the inlet pipe is 1.5m/s, find the flow speed, pressure and volume flow in the
bathroom.
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From continuity equation

v1A1 = v2A2

v2 =
π (1.0 cm)2

π (0.5 cm)2
(1.5m/s) = 6.0m/s (12.50)

and from Bernoulli’s equation

p2 = p1 + ρg (y1 − y2) +
1

2
ρ
(

v21 − v22
)

=
(

4.0× 105Pa
)

+
(

1000 kg/m3)
[

(9.8m/s) (−5.0m) +
1

2

(

(1.5m/s)2 − (6.0m/s)2
)

]

= 3.3× 105 Pa. (12.51)

Example 12.8. A gasoline storage tank with cross-sectional area A1,
filled to a depth h. The space above the gasoline contains air at pressure p0,
and the gasoline flows out the bottom of the tank through a short pipe with
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cross-sectional area A2. Derive expression for the flow speed in the pipe and
the volume flow rate.

From Bernoulli’s equation

p1 + ρgy1 +
1

2
ρv21 = p2 + ρgy2 +

1

2
ρv22

p0 +
1

2
ρv21 = patm + ρgh+

1

2
ρv22 (12.52)

where

v1 =
A2

A1
v2 (12.53)

and thus

1

2
ρv22

(

1−
(

A2

A1

)2
)

= p0 − patm + ρgh

v2 =

√

√

√

√

√

2 (p0 − patm + ρgh)

ρ

(

1−
(

A2

A1

)2
) (12.54)

In the limit
A1 ≫ A2 (12.55)
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the flow speed is

v2 ≈

√

2 (p0 − patm)

ρ
+ 2gh (12.56)

and the flow rate

dV

dt
= A2v2 = A2

√

2 (p0 − patm)

ρ
+ 2gh (12.57)

Example 12.9. Venturi meter is used to measure flow speed in a pipe.
Derive an expression for the flow speed v1 in terms of the cross-sectional
areas A1 and A2 and the difference in height h of the liquid levels in the two
vertical tubes.

From continuity equation

v2 =
A1

A2
v1 (12.58)

and thus from Bernoulli’s equation

p1 − p2 =
1

2
ρ
(

v22 − v21
)

p1 − p2 =
1

2
ρv21

(

(

A1

A2

)2

− 1

)

. (12.59)

However we also know that

p1 = p0 + ρgh1

p2 = p0 + ρgh2 (12.60)

and thus
p1 − p2 = ρg(h1 − h2) = ρgh. (12.61)
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By combining (12.59) and (12.61) we get

ρgh =
1

2
ρv21

(

(

A1

A2

)2

− 1

)

v1 =

√

2gh

(A1/A2)
2 − 1

. (12.62)

Example. Lift of an airplane.


